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Chapter 8

Pseudo-Riemannian manifolds

8.1 Metrics on vector bundles

8.1.1 Euclidean metrics

Definition 8.1.1. Let ξ = (E,p,M) be a real vector bundle of rank r. A Eu-
clidean metric on ξ is a section h ∈ Γ (S2ξ∗) such that for all x ∈M, the map
hx : ξx × ξx→ R is an inner product.

Proposition 8.1.2. Euclidean metrics exist on every real vector bundle.

Proof. Let ξ = (E,p,M) be a real vector bundle of rank r, and consider an
open cover U of M such that ξ |U is trivialisable for every U ∈ U . Consider
a partition of unity (ϕU )U∈U subordinate to U , and for each U ∈ U let εU =
(εU1 , . . . , ε

U
r ) be a frame field of ξ |U . Now h =

∑
U∈U ϕU

∑r
α=1(eUα )∗⊗ (eUα )∗ is a

Euclidean metric on ξ.

Definition 8.1.3. Let ξ = (E,p,M) be a real vector bundle of rank r, and h a
Euclidean metric on ξ. An orthonormal frame field is a frame field (ε1, . . . , εr )
such that for all x ∈M, the basis (ε1(x), . . . , εr(x)) of ξx is orthonormal for hx.

Proposition 8.1.4. Let ξ = (E,p,M) be a real vector bundle of rank r, and h
a Euclidean metric on ξ. If ξ possesses a frame field, then it also possesses an
orthonormal frame field.

Proof. Consider an arbitrary frame field, and apply the Gram-Schmidt pro-
cess on every fibre. Since the operations involved in this process are alge-
braic, they are smooth and the result is an orthonormal frame field.

Proposition 8.1.5. Let ξ = (E,p,M) be a real vector bundle of rank r, and h
a Euclidean metric on ξ. If η is a vector subbundle of ξ, then η⊥ defined by
(η⊥)x = (ηx)⊥ for every x ∈M is a vector subbundle of ξ, supplementary to η.
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4 CHAPTER 8. PSEUDO-RIEMANNIAN MANIFOLDS

Proof. Consider a local frame field (ε1, . . . , εr ) of ξ such that (ε1, . . . , εk) is a
frame field of η. Applying the Gram-Schmidt process, we find an orthonor-
mal frame field (δ1, . . . ,δr ) such that (δ1, . . . ,δk) is still a frame field of η. It
follows that (δk+1, . . . ,δr ) is a frame field of η⊥.

Proposition 8.1.6. Let ξ = (E,p,M) be a real vector bundle of rank r. The
data of a Euclidean metric on ξ is equivalent to the data of a reduction of the
structural group of ξ to O(r,R).

Proof. Given a Euclidean metric on ξ, the trivialisations given by local or-
thonormal frame fields form a reduction of the structural group to O(r,R).

Given a reduction of the structural group to O(r,R), the inner product
computed in a trivialisation belonging to this reduction of the structural
group does not depend on said trivialisation, so it defines a Euclidean met-
ric on ξ.

Proposition 8.1.7. Let ξ = (E,p,M) be a real vector bundle of rank r, and h
a Euclidean metric on ξ. For x ∈ M, we let Uξx = {v ∈ ξx |hx(v,v) = 1} and
UE =

⋃
x∈MUξx. Then (UE,p|UE ,M,Sr−1) is a fibre subbundle of ξ.

Proof. Let x ∈M, and let (ε1, . . . , εr ) be a local orthonormal frame of ξ de-
fined on some open set U ⊂M containing x. For y ∈U , define

θy :
{

Rr → ξy
(v1, . . . , vr ) 7→ v1ε1(y) + · · ·+ vrεr(y)

It is a local trivialisation of ξ sending Sr−1 ⊂ Rr diffeomorphically to Uξy
for all y ∈U .

Definition 8.1.8. Let ξ = (E,p,M) be a real vector bundle of rank r, and h a
Euclidean metric on ξ. The fibre bundle Uξ = (UE,p|UE ,M,Sr−1) is called the
unit bundle.

An inner product 〈·|·〉 on a finite dimension real vector space V induces
an inner product on V ∗, using the isomorphism between V and V ∗ obtained
by sending v ∈ V to (w 7→ 〈v|w〉) ∈ V ∗.

Inner products on two vector finite dimensional vector spaces (V ,〈·|·〉)
and (W, (·, ·)) also induce a unique inner product << ·‖· >> on V ⊗W satis-
fying << v1 ⊗w1‖v2 ⊗w2 >>= 〈v1|v2〉 (w1,w2) for all pure tensors.

Put together, we find inner products on all tensor powers (V ∗)⊗p ⊗V ⊗q.
The identification of V ∗ ⊗ V with End(V ) gives the usual product 〈f |g〉 =
Tr(f tg).

Similarly, a Euclidean metric h on a vector bundle ξ induces Euclidean
metrics on all tensor powers (ξ∗)⊗p ⊗ ξ⊗q.
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A Euclidean metric h on a vector bundle ξ = (E,p,M) allows us to de-
fine semi-norms on Γ (ξ) (or a norm when M is compact): given a compact
subset K ⊂ M, define ‖σ‖∞,K = supx∈K

√
hx(σ (x),σ (x)). The topology asso-

ciated to this family of semi-norms is the compact-open topology (it does
not depend on the Euclidean metric h).

8.1.2 Pseudo-Euclidean metrics

Definition 8.1.9. Let ξ = (E,p,M) be a vector bundle of rank r, and p,q ∈ N be
such that p + q = r. A pseudo-Euclidean metric of signature (p,q) on ξ is a
section h ∈ Γ (S2ξ∗) such that hx has signature (p,q) for every x ∈M.

Note that given a fixed signature, a pseudo-Euclidean metrics does not
always exist.

A big difference with Euclidean metrics is that the restriction of a pseudo-
Euclidean metric to a vector subbundle is not necessarily a pseudo-Euclidean
metric. However, if it is, then we can still define the orthogonal comple-
ment.

Proposition 8.1.10. Let ξ = (E,p,M) be a vector bundle of rank r, and h a
pseudo-Riemannian metric on ξ. Let η be a vector subbundle of ξ such that for
all x ∈M, the restriction of hx to ηx × ηx is non degenerate. Then η⊥ defined by
(η⊥)x = (ηx)⊥ for every x ∈M is a vector subbundle of ξ, supplementary to η.

Proof. Use the corresponding statement for quadratic vector spaces and
copy the proof of Proposition 8.1.5.

Let us recall some basic facts on quadratic forms over real vector spaces.

Definition 8.1.11. Let V ,V ′ be vector spaces, and ϕ : V × V → R, ϕ′ : V ′ ×
V ′→ R be bilinear forms. We say thatϕ andϕ′ are equivalent if there is a linear
isomorphism f : V → V ′ such that ϕ′(f (x), f (y)) = ϕ(x,y) for all x,y ∈ V .

Given integers p,q, r ∈ N, we let 〈·|·〉p,q,r be the bilinear form on Rp+q+r

defined by
〈
x
∣∣∣y〉

p,q,r
=

∑p
i=1 xiyi −

∑p+q
i=p+1 xiyi for x,y ∈ Rp+q+r .

Theorem 8.1.12 (Sylvester’s inertia law). Let V be a finite dimensional real
vector space, and ϕ : V ×V → R a symmetric bilinear form. There is a unique
triple (p,q, r), called the signature of ϕ, such that ϕ is equivalent to 〈·|·〉p,q,r .

Lemma 8.1.13. Let V be a finite dimensional real vector space, and ϕ a sym-
metric bilinear form on V of signature (p,q, r). Then ϕ is non degenerate if and
only if r = 0.

For non degenerate forms, we will call (p,q) the signature.

Definition 8.1.14. Let V be a finite dimensional vector space, and ϕ a sym-
metric bilinear form on V . A linear map u ∈ End(V ) is called ϕ-self adjoint if
ϕ(x,u(y)) = ϕ(u(x), y) for all x,y ∈ V .
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Proposition 8.1.15. Let V be a finite dimensional vector space, and ϕ a non
degenerate symmetric bilinear form on V . If B is a symmetric bilinear form on
V , then there is a unique ϕ-self adjoint operator b ∈ End(V ) such that B(x,y) =
ϕ(x,b(y)) for all x,y ∈ V .

Definition 8.1.16. Let V be a finite dimensional vector space, and ϕ a non
degenerate symmetric bilinear form on V . If B is a symmetric bilinear form on
V , then the trace of B with respect to ϕ is Trϕ(B) = Tr(b) where b ∈ End(V ) is
the ϕ-self adjoint operator such that B(x,y) = ϕ(x,b(y)) for all x,y ∈ V .

Recall that the matrix of a bilinear form ϕ in a basis e = (e1, . . . , ed) is
(ϕ(ei , ej ))1≤i,j≤d .

Proposition 8.1.17. Let V be a finite dimensional vector space, and ϕ,B sym-
metric bilinear forms on V . Assume that ϕ is non degenerate. Let e = (e1, . . . , ed)
be a basis of V , on consider the matrices P and Q respectively of ϕ and B in e.
Then Trϕ(B) = Tr

(
QP −1

)
.

In particular, if ϕ is positive definite and e is ϕ-orthonormal, then Trϕ(B) =
Tr(Q).

8.1.3 Hermitian metrics on complex vector bundles

Definition 8.1.18. Let ξ = (E,p,M) be a complex vector space of rank r. A
Hermitian metric on ξ is a section h ∈ Γ (V

∗ ⊗V ∗) such that hx is a Hermitian
inner product on ξx for every x ∈M.

Proposition 8.1.19. Every complex vector bundle possesses a Hermitian met-
ric.

Proof. Let ξ = (E,p,M) be a complex vector bundle of rank r, and consider
an open cover U of M such that ξ |U is trivialisable for every U ∈ U . Con-
sider a partition of unity (ϕU )U∈U subordinate to U , and for each U ∈ U
let εU = (εU1 , . . . , ε

U
r ) be a frame field of ξ |U . Now h =

∑
U∈U ϕU

∑r
α=1 (eUα )∗ ⊗

(eUα )∗ is a Hermitian metric on ξ.

8.2 Metrics on manifolds

8.2.1 Pseudo-Riemannian metrics

Definition 8.2.1. Let M be a manifold of dimension d.
A Riemannian metric on M is a Euclidean metric on TM, i.e. a section g ∈
Γ (S2T ∗M) such that for every x ∈M, gx is an inner product TxM.
A pseudo-Riemannian metric of signature (p,q) (with p+ q = d) is a pseudo-
Euclidean metric of signature (p,q) on TM, i.e. a section g ∈ Γ (S2T ∗M) such
that for every x ∈M, gx is non-degenerate and has signature (p,q).
A Lorentzian metric is a pseudo-Riemannian metric of signature (d − 1,1).
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A (pseudo-)Riemannian manifold is a pair (M,g) whereM is a manifold and
g is a (pseudo-)Riemannian metric on M.

Notation: Given a pseudo-Riemannian metric g, we write gx(v,w) =
〈v|w〉x = 〈v|w〉 for x ∈ M and v,w ∈ TxM. If g is Riemannian, we write
‖v‖ = ‖v‖x =

√
〈v|v〉x.

Proposition 8.2.2. Every manifold has a Riemannian metric.

This is a consequence of the existence of Euclidean metrics on vector
bundles (Proposition 8.1.2).

It does not hold for Lorentzian metrics: the sphere S2 has no Lorentzian
metric (it is a consequence of the hairy ball theorem).

Before we move on any further with pseudo-Riemannian manifolds, let
us start with the most basic example. On Rp+q, we consider the bilinear
form: 〈

x
∣∣∣y〉

p,q
=

p∑
i=1

xiyi −
p+q∑
i=p+1

xiyi

Definition 8.2.3. The pseudo-Euclidean space of signature (p,q) is the pseudo-
Riemannian manifold Rp,q = (Rp+q, g) where gx = 〈·|·〉p,q for all x ∈ Rp+q.
For q = 0, Ep = Rp,0 is called the Euclidean space.
For q = 1, Mn = Rn−1,1 is called the Minkowski space.

Another elementary way of producing pseudo-Riemannian manifolds
is through products. If (M,g) and (M,g ′) are pseudo-Riemannian mani-
folds, then we can define the product pseudo-Riemannian manifold (M ×
M ′ , g ⊕ g ′) where the metric is defined by:

(g ⊕ g ′)(x,x′)((v,v
′), (w,w′)) = gx(v,w) + g ′x′ (v

′ ,w′)

Note that if (M,g) and (M ′ , g ′) are Riemannian, then so is the product.
This construction generalizes to the product of a finite number of pseudo-

Riemannian manifolds.

8.2.2 Local expression of a pseudo-Riemannian metric

Let (M,g) be a pseudo-Riemannian manifold of dimension d. Given lo-
cal coordinates (x1, . . . ,xd), for u =

∑d
i=1u

i∂i and v =
∑d
i=1 v

i∂i , we find
gx(u,v) =

∑
1≤i,j≤d gi,j(x)uivj , where gi,j(x) = gx(∂i ,∂j ). We write:

g =
∑

1≤i,j≤d
gi,j(x)dxidxj

Here we use the notation dxidxj = 1
2

(
dxi ⊗ dxj + dxj ⊗ dxi

)
.
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It is quite frequent to see the notation ds2 for a pseudo-Riemannian
metric, especially in coordinates:

ds2 =
∑

1≤i,j≤d
gi,j(x)dxidxj

Given another coordinate system (y1, . . . , yd), if we write g ′i,j the metric

in these coordinates, i.e. g ′i,j(x) = gx
(
∂
∂yi
, ∂
∂yj

)
, the formula for the coordinate

change is:

g ′i,j =
∑

1≤k,l≤d

∂xk

∂yi
∂xl

∂yj
gk,l

8.2.3 Isometric maps

Definition 8.2.4. Let (M,g) and (M ′ , g ′) be pseudo-Riemannian manifolds. A
smooth map f :M→M ′ is an isometric immersion if f ∗g ′ = g.
It is called an isometry if it is also a diffeomorphism.
A local isometry is a local diffeomorphism which is an isometric immersion.

Note that an isometric immersion is indeed an immersion, since kerdxf ⊂
kergx. In particular, its existence implies that dimM ′ ≥ dimM.

Definition 8.2.5. Let (M,g) be a pseudo-Riemannian manifold. The isometry
group of (M,g) is:

Isom(M,g) = {f ∈Diff(M) |f ∗g = g}

The isometry group is a subgroup of Diff(M), and we will discuss its
topology later. It is important however to understand that even though
most of the examples that we will work on have many isometries, a typi-
cal pseudo-Riemannian manifold (i.e. a generic metric for an appropriate
topology on the set of metrics) has no non trivial isometry. Indeed, the
equation f ∗g = g where the map f is the unknown is an overdetermined
partial differential equation.

Example: Given γ ∈ O(p,q) and v ∈ Rp+q, the affine map x 7→ γx + v
is an isometry of Rp,q. This means that the group O(p,q) nRp+q of affine
transformations whose linear part is in O(p,q) is a subgroup of Isom(Rp,q).

Proposition 8.2.6. Isom(Rp,q) = O(p,q)nRp+q

Proof. Let f ∈ Isom(Rp,q). This means that for all x,u,v ∈ Rp+q, we have:

〈dxf (u)|dxf (v)〉p,q = 〈u|v〉p,q (8.1)
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Let us differentiate this expression with respect to x at some vector w.〈
d2
x f (u,w)

∣∣∣dxf (v)
〉
p,q

+
〈
dxf (u)

∣∣∣d2
x f (v,w)

〉
p,q

= 0 (8.2)

The same formula remains true when switching u and w.〈
d2
x f (w,u)

∣∣∣dxf (v)
〉
p,q

+
〈
dxf (w)

∣∣∣d2
x f (v,u)

〉
p,q

= 0 (8.3)

Since f is smooth, d2fx is symmetric, and subtracting (8.3) from (8.2) yields:〈
dxf (u)

∣∣∣d2
x f (w,u)

〉
p,q

=
〈
dxf (w)

∣∣∣d2
x f (v,u)

〉
p,q

(8.4)

Now a cyclic permutation of u,v,w in (8.2) gives:〈
d2
x f (v,u)

∣∣∣dxf (w)
〉
p,q

+
〈
dxf (v)

∣∣∣d2
x f (w,u)

〉
p,q

= 0 (8.5)

Combining (8.4) and (8.5), we find:〈
dxf (u)

∣∣∣d2
x f (v,w)

〉
p,q

= 0

Since f is a diffeomorphism, we find that d2
x f = 0, i.e. f is affine. Now (8.1)

shows that the linear part of f is in O(p,q).

For pseudo-Riemannian manifolds of the same dimension, another in-
teresting type of isometric immersions are those that are covering maps.

Definition 8.2.7. Let (M,g) and (M̃, g̃) be pseudo-Riemannian manifolds. A
map f : M̃→M is called a pseudo-Riemannian covering if it is an isometric
immersion and a covering map.

8.3 Volume and angles

8.3.1 Pseudo-Riemannian volume

If g is a Riemannian metric, the Riemannian volume is the unique Borel
measure Volg on M such that, for any chart (U,ϕ) and continuous function
f with support in U ,∫

U
f dVolg =

∫
ϕ(U )

f ◦ϕ−1
√

det(g ◦ϕ−1)dλ

where λ denotes the Lebesgue measure on Rd et g(x) est la matrix (gi,j(x))1≤i,j≤d .
If moreoverM is oriented, the Riemannian volume form is the volume

form volg ∈ Γ (ΛdT ∗M) defined in oriented coordinates by:

volgx =
√

det(g(x))dx1 ∧ · · · ∧ dxd

The volume and the volume form are also defined for pseudo-Riemannian
metrics by considering the absolute value of the determinant.
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8.3.2 Conformal metrics

If (M,g) is a pseudo-Riemannian manifold and φ ∈ C∞(M, ]0 ,+∞[), then
φg is also a pseudo-Riemannian metric on M, with the same signature as
g.

Definition 8.3.1. LetM be a manifold. Two pseudo-Riemannian metrics g and
g ′ are called conformal if there is φ ∈ C∞(M, ]0 ,+∞[) such that g ′ = φg.
The conformal class of a pseudo-Riemannian metric is the set [g] ⊂ Γ

(
S2T ∗M

)
of pseudo-Riemannian metrics that are conformal to g.

Note that two conformal metrics have the same signature. Their pseudo-
Riemannian volumes are related by dvolg ′ = φ

dimM
2 dvolg .

In order to understand the geometric meaning of conformal Rieman-
nian metrics, we have to define a notion of angles in Riemannian geometry.

Definition 8.3.2. Let (M,g) be a Riemannian manifold. Let x ∈M, and v,w ∈
TxM \ {0}. The Riemannian angle between v and w is the angle ^x(v,w) ∈
[0 ,π] defined by:

cos^x(v,w) =
〈v|w〉x
‖v‖x ‖w‖x

One can easily prove that two Riemannian metrics on a given manifold
are conformal if and only if they define the same Riemannian angles.

For a pseudo-Riemannian manifold (M,g) of signature (p,q) with pq ,
0, the situation is different. Here the conformal class is characterized by
the isotropic cone: given another pseudo-Riemannian metric h on M, we
find:

h ∈ [g] ⇐⇒ ∀x ∈M {v ∈ TxM |gx(v,v) = 0} = {v ∈ TxM |hx(v,v) = 0}

8.4 Examples of pseudo-Riemannian manifolds

8.4.1 Pseudo-Riemannian quotients

Just as examples of covering maps can be constructed from group actions,
examples of pseudo-Riemannian coverings can be constructed from iso-
metric actions.

Theorem 8.4.1. Let (M̃, g̃) be a pseudo-Riemannian manifold, and Γ ⊂ Isom(M̃, g̃)
a subgroup such that the action Γ y M̃ is free and properly discontinuous.
There is a unique pseudo-Riemannian metric g on M = M̃/Γ for which the pro-
jection M̃→M is a pseudo-Riemannian covering.

Proof. Let π : M̃ → M be the projection. Let x ∈ M, and consider a local
inverse f of π. Set gx = (f ∗g̃)x. Since two local inverses differ by an element
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of Γ , the metric does not depend on the choice of f , and defines a smooth
Riemannian metric on M.

Examples:

• For any λ > 0, we can define the circle E1/λZ as the quotient of E1 by
the group generated by the translation x 7→ x+λ.

• The flat torus E2/Z2. More generally we can define En/Λ where Λ is
the subgroup of Isom(En) generated by n linearly independent trans-
lations.

• The Clifton-Pohl torus, which is the quotient of (R2\{0}, 2dxdy
x2+y2 ) by the

map (x,y) 7→ (2x,2y). It is a Lorentzian manifold often used to point
out the differences between Riemannian and Lorentzian geometries.

8.4.2 Pseudo-Riemannian submanifolds

Definition 8.4.2. Let (M,g) be a pseudo-Riemannian manifold. An immersed
submanifold N ⊂M is called a pseudo-Riemannian submanifold if there are
integers p′ ,q′ with p′ + q′ = dimN such that the restriction of g to TxN × TxN
is non degenerate and has signature (p′ ,q′) for all x ∈N .
It is a Riemannian submanifold if q′ = 0.
If N ⊂ M is a pseudo-Riemannian submanifold, then the pseudo-Riemannian
metric defined on N by restriction of g to tangent spaces is called the induced
metric, or restricted metric, or the first fundamental form.

Note that every submanifold of a Riemannian manifold is a Riemannian
submanifold. In particular, every submanifold of Rd inherits a Riemannian
metric in this way. It is the case for spheres Sn ⊂ Rn+1. The induced metric
gsph is called the round metric, or standard metric on Sn.

IfN ⊂M is a pseudo-Riemannian embedded submanifold of (M,g) and
f ∈ Isom(M,g) preserves M, then the restriction of f to N is an isometry.
However N can have many more isometries.

Applied to the sphere Sn ⊂ Rn+1, we find that O(n+ 1) ⊂ Isom(Sn). We
will see later that this is an equality.

Submanifolds of a pseudo-Riemannian manifold of arbitrary signature
are not always pseudo-Riemannian submanifolds, since the restriction of
the metric can be degenerate. If (M,g) is a pseudo-Riemannian manifold of
signature (p,q), then a pseudo-Riemannian submanifold of (M,g) can have
any signature (p′ ,q′) with p′ ≤ p and q′ ≤ q.
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We will now see an example of a Riemannian submanifold of the Minkowski
space Mn+1. Consider one sheet of the one-sheeted hyperboloid:

Hn =
{
(x1, . . . ,xn+1) ∈ Rn+1

∣∣∣〈x|x〉n,1 = −1 & xn+1 > 0
}

For x ∈ Hn, the tangent space is:

TxHn =
{
v ∈ Rn+1

∣∣∣〈x|v〉n,1 = 0
}

Since 〈x|x〉n,1 = −1, its orthogonal complement is definite positive, i.e. Hn
is a Riemannian submanifold of Mn+1. This Riemannian manifold Hn =
(Hn, gHn) is called the real hyperbolic space.

By the same considerations as for the sphere, we find that O+(n,1) ⊂Hn,
where O+(n,1) is the subgroup of O(n,1) preserving each sheet of the two-
sheeted hyperboloid Hn (it has index two in O(n,1)).

8.4.3 Riemannian manifolds of dimension 1

Theorem 8.4.3. Let (M,g) be a connected Riemannian manifold of dimension
1. Then (M,g) is isometric to an interval of E1 or to a circle E1/λZ.

Proof. Consider two isometric maps ϕ : I →M and ψ : J →M. Now con-
sider the set

X =
{
t ∈ I ∩ J

∣∣∣ϕ(t) = ψ(t) & ϕ̇(t) = ψ̇(t)
}

It is a closed subset of I∩J . Now let t0 ∈ X. Since ϕ is an immersion and
dimM = 1, it is a local diffeomorphism. Considering a local inverse ϕ−1

near ϕ(t0), we see that f = ϕ−1 ◦ψ, which is defined on an open interval K
containing t0, satisfies |ḟ (t)| = 1 for all t ∈ K . The fact that t0 ∈ X implies
that f (t0) = t0 and ḟ (t0) = 1. It follows that f = IdK , i.e. ϕ = ψ on K . This
argument shows that the set X is open in I ∩ J .

Let x0 ∈ M, and v0 ∈ Tx0
M such that gx0

(v0,v0) = 1 (there are exactly
two such vectors). Consider the set E of pairs (I,ϕ) where I ⊂ R is an open
interval containing 0 and ϕ : I →M is an isometric map such that ϕ(0) = x0
and ϕ̇(0) = v0.

By the above discussion, if (I,ϕ), (J,ψ) ∈ E then ϕ and ψ coincide on
I ∩ J . This allows us to define a maximal element of E: set IM =

⋃
(I,ϕ)∈E I ,

and define ϕM : I →M by ϕM(t) = ϕ(t) if (I,ϕ) ∈ E and t ∈ I .
First, let us check that E is not empty. For this, start with a curve γ :

J →M such that γ(0) = x0 and γ̇(0) = v0. Up to shrinking J , we can assume
that γ is an immersion. Then the function λ : I → R defined by λ(t) =∫ t

0

√
gγ(t) (γ̇(t), γ̇(t)) is increasing, so it is a diffeomorphism onto its image

I ⊂ R. Now set ϕ = γ ◦λ−1, so that (I,ϕ) ∈ E.
Since E is not empty, we find that (IM ,ϕM ) ∈ E. Now notice that since

ϕM is an immersion, its image ϕM(IM ) is open in M. Its complement is the
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union of such open sets obtained by starting at a different base point. It
follows that ϕM(IM ) is closed. Since M is assumed to be connected, we see
that ϕM is onto.

If ϕM is injective, then it is an isometry between an interval of E1 to
(M,g). Now assume that ϕM is not injective. We wish to show that it is
periodic. Up to changing x0 and v0, we can assume that there is T > 0 such
that ϕM(T ) = x0, and that T is the smallest positive real number with this
property. First assume that ϕ̇M(T ) = v0 (we will see that it is always the
case). Then (IM −T ,ϕM(·+T )) ∈ E, and it follows from the maximality of IM
that IM is stable by translation by T , therefore IM = R, and that ϕM(·+T ) =
ϕM . It follows that there is a map ϕ : E1/TZ→ M such that ϕM = ϕ ◦ π
where π : E1 → E1/TZ is the canonical projection. Since T was chosen to
be minimal, the map ϕ is injective, and it is an isometry between the circle
E1/TZ and (M,g).

Now let us see why we must have ϕ̇M(T ) = v0. If not, then ϕ̇M(T ) = −v0.
The same type of argument as above shows that IM = R and thatϕM(T −t) =
ϕM(t) for all t ∈ R. This implies that ϕ̇M

(
T
2

)
= −ϕ̇M

(
T
2

)
, i.e. ϕ̇M

(
T
2

)
= 0.

This is a contradiction with the fact that ϕM is isometric.

This implies that the isometries of a submanifold are not all restric-
tions of isometries, since one dimensional submanifolds have isometries
but need not be preserved by any isometry of the ambient space.

8.4.4 Conformal models of the real hyperbolic space

The Poincaré ball model of the real hyperbolic space Hn is (Bn, ghyp) where

Bn = {x ∈ Rn | ‖x‖ < 1}

and
ghyp =

4(
1− ‖x‖2

)2

(
dx2

1 + · · ·+ dx2
n

)
It is a pseudo-Riemannian manifold conformal to the unit ball in the Eu-
clidean space. Its volume element is dvolhyp = 2n

(1−‖x‖2)n
dx1 · · ·dxn.

Consider the following map f from the hyperboloid model to the ball
model of Hn: set p = (0, . . . ,0,−1) ∈ Mn+1, and embed Rn into Mn+1 as the
hyperplane xn+1 = 0. For x ∈ Hn we let f (x) be the intersection of the line
from x to p with Rn.

Precisely, we have:

f (x1, . . . ,xn+1) =
(

x1

1 + xn+1
, . . . ,

xn
1 + xn+1

)
The map f is an isometry.
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The Lobachevsky upper half-space model of the real hyperbolic space
Hn = Hn

R is (Rn+,ds2hyp) where

Rn+ = {x ∈ Rn |xn > 0}

and

ds2hyp =
dx2

1 + · · ·+ dx2
n

x2
n

It is conformal to a half Euclidean space. The volume element is dvolhyp =
dx1···dxn

xnn
.

8.4.5 Invariant metrics on Lie groups

Let G be a Lie group with Lie algebra g. A pseudo-Riemannian g on G is
left invariant if {Lx |x ∈ G} ⊂ Isom(G,g), i.e.

∀x ∈ G L∗xg = g

It is right invariant if {Rx |x ∈ G} ⊂ Isom(G,g), i.e.

∀x ∈ G R∗xg = g

It is bi-invariant if it is both left and right invariant.

Any bilinear symmetric non degenerate form b : g × g → R defines a
unique left invariant pseudo-Riemannian metric g on G such that ge = b.

The metric g is bi-invariant if and only if b is Ad-invariant, i.e. {Ad(x) |x ∈ G} ⊂
O(b).

8.4.6 The space of ellipsoids

For n ≥ 2, we consider the set

En =
{
x ∈Mn(R)

∣∣∣ tx = x, x > 0, detx = 1
}

It is a submanifold ofMn(R), and it can be identified with the set of volume
1 ellipsoids of Rn centred at 0 (by identifying x ∈ En with

{
v ∈ Rn

∣∣∣ txvx ≤ 1
}
).

The tangent spaces are easily described, as T1nEn =
{
X ∈Mn(R)

∣∣∣ tX = X, TrX = 0
}
,

and more generally TxEn =
{
X ∈Mn(R)

∣∣∣ tX = X, Tr(x−1X) = 0
}
.

Consider the Riemannian metric on En defined as

〈X |Y 〉x = Tr(x−1Xx−1Y )

To prove that it is a Riemannian metric (the hard part is the positive defi-
niteness), it is convenient to use the existence of a square root of x, i.e. an
element

√
x ∈ En such that

√
x

2 = x.
For g ∈ SL(n,R) the map x 7→ tgxg is an isometry of En. Since −1n acts

as the identity, this gives an embedding of PSL(n,R) into Isom(En). We will
see later that this map is surjective.
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8.5 Raising and lowering indices

8.5.1 The musical isomorphisms

A non degenerate symmetric bilinear form 〈·|·〉 on a finite dimensional real
vector space V induces isomorphisms:

[ :
{
V → V ∗

v 7→ v[ = 〈v|·〉 and ] = [−1 :
{
V ∗ → V
λ 7→ λ]

A pseudo-Riemannian metric g on a manifold M therefore defines iso-
morphisms between TM and T ∗M. We can apply these isomorphisms
to tensor powers, and find isomorphisms between T r,s(M) and T r ′ ,s′ (M)
whenever r + s = r ′ + s′.

In particular we get an isomorphism [ : X (M) = T 0,1(M) → Ω1(M) =
T 1,0(M) from vector fields to 1-forms. For X ∈ X (M), if we write X =∑d
i=1X

i∂i in coordinates, then

X[ =
d∑
i=1

 d∑
j=1

gi,jX
j

dxi
Similarly, the inverse ] :Ω1(M)→X (M) writes for ω =

∑d
i=1ωidx

i as

ω] =
d∑
i=1

 d∑
j=1

g i,jωj

∂j
Einstein’s convention makes these formulae very concise:

X[i = gi,jX
j and ωi] = g i,jωj

When writing tensors in coordinates, the lower indices correspond to
the covariant part and the upper indices to the contravariant part. Be-
cause of this convention for notations, applying an isomorphism T r,s(M)→
T r+1,s−1(M) is called lowering an index, and applying an isomorphism
T r,s(M)→ T r−1,s+1(M) is called raising an index (note that this terminol-
ogy is consistent with the musical notations [ and ]).

Note that there are several isomorphisms T r,s(M) → T r+1,s−1(M), de-
pending on which index we lower (i.e. on which factor of TM⊗q we ap-
ply [). If s = 1, there is no possible confusion. For example, if we have
T ∈ T 3,1(M), then there is only one index to lower, and we find T [ ∈ T 4,0(M)
defined locally by

T [i,j,k,l =
d∑
a=1

gl,aT
a
i,j,k
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8.5.2 Contractions of tensors

Given a finite dimension real vector space V , there is a unique linear map
V ∗⊗V → R sending λ⊗v to λ(v). The identification of V ∗⊗V with End(V )
identifies this map with the trace in End(V ).

This map also yields maps (V ∗)⊗r ⊗ V ⊗s → (V ∗)⊗r−1 ⊗ V ⊗s−1 (where we
have to choose the factors of (V ∗)⊗r and V ⊗s to which we apply the map
V ∗ ⊗V → R).

On a manifold M, this defines maps T r,s(M)→ T r−1,s−1(M) called the
contraction of a tensor. For T ∈ T 3,1(M), its contraction U ∈ T 2,0(M) is
given by:

Ui,j =
d∑
a=1

T aa,i,j

On a pseudo-Riemannian manifold (M,g), by combining this with the
musical isomorphisms, we are able to contract covariant (and contravari-
ant) tensors. For R ∈ T 4,0(M), its contraction S ∈ T 2,0(M) is defined by

Si,j =
∑

1≤a,b≤d
ga,bRa,i,j,b

For V ∈ T 2,0(M), its contraction is a functionW ∈ C∞(M) = T 0,0(M) defined
by

W =
∑

1≤i,j≤d
g i,jRi,j



Chapter 9

The Levi-Civita connection

9.1 The fundamental theorem of pseudo-Riemannian
geometry

Theorem 9.1.1. Let (M,g) be a pseudo-Riemannian manifold. There is a unique
connection ∇ on TM with the following two properties:

1. ∇ is torsion-free: ∀X,Y ∈ X (M) ∇Y (X)−∇X(Y ) = [X,Y ]

2. g is parallel for ∇:

∀X,Y ,Z ∈ X (M) X · g(Y ,Z) = g(∇Y (X),Z) + g(Y ,∇Z(X))

Remarks.

• This connection ∇ = ∇g is called the Levi-Civita connection of g.

• Condition 2. is equivalent to ∇g = 0 (where ∇ also denotes the induced
connection on T ∗M ⊗ T ∗M).

Proof. Let us start with uniqueness. If ∇ satisfies 1. and 2., we find, for
X,Y ,Z ∈ X (M):

X · g(Y ,Z) = g(∇Y (X),Z) + g(Y ,∇Z(X))

Y · g(Z,X) = g(∇Z(Y ),X) + g(Z,∇X(Y ))

Z · g(X,Y ) = g(∇X(Z),Y ) + g(X,∇Y (Z))

By adding the first two lines and subtracting the third, then simplifying
because ∇ is torsion-free, we find:

2g(∇Y (X),Z) = X · g(Y ,Z) +Y · g(Z,X) +Z · g(X,Y )

+ g([X,Y ],Z)− g([X,Z],Y )− g([Y ,Z],X)

17



18 CHAPTER 9. THE LEVI-CIVITA CONNECTION

Since g is non-degenerate, this formula defines ∇Y (X), hence the unique-
ness.

For the existence, we use this formula to define ∇. For this we first have
to check that the formula is tensorial with respect to Z, so that it defines
∇Y (X) ∈ X (M), then that it is tensorial inX, so that it defines ∇Y ∈ T 1,1(M).
Finally we can check that it satisfies the Leibniz rule.

Example: For the pseudo-Euclidean space Rp,q, the Levi-Civita connec-
tion is the trivial connection on TRp+q = Rp+q ×Rp+q.

9.2 Parallel transport in pseudo-Riemannian manifolds

Proposition 9.2.1. Let (M,g) be a pseudo-Riemannian manifold, and c : I →
M be a smooth curve. If X,Y : I → TM are vector fields along c, then:

d
dt
g(X,Y ) = g

(D
dt
X,Y

)
+ g

(
X,
D
dt
Y
)

Proof. The definition of the intrinsic derivative D
dtg induced on the tensor

bundle T ∗M ⊗ T ∗M leads directly to:

d
dt
g(X,Y ) =

(D
dt
g
)

(X,Y ) + g
(D
dt
X,Y

)
+ g

(
X,
D
dt
Y
)

Since g is a tensor defined on all of M, we have that D
dtg = ∇g(ċ) = 0. The

result follows.

Proposition 9.2.2. Let (M,g) be a pseudo-Riemannian manifold and c : I →M
a piecewise smooth curve. For every t0, t1 ∈ I , the parallel transport for the Levi-
Civita connection

‖t1t0 : (Tc(t0)M,gc(t0))→ (Tc(t1)M,gc(t1))

is isometric.

Remark. Consequently, the holonomy group Holx is a subgroup of O(gx) ≈
O(p,q).

Proof. If X,Y : I → TM are vector fields along M, we get:

d
dt
gc(t)(X(t),Y (t)) = gc(t)

(D
dt
X(t),Y (t)

)
+ gc(t)

(
X(t),

D
dt
Y (t)

)
If X and Y are parallel, it follows that g(X,Y ) is constant.
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9.3 The Christoffel symbols

Let (M,g) be a pseudo-Riemannian manifold, and consider local coordi-
nates (x1, . . . ,xd). The connection form of the Levi-Civita connection is usu-
ally denoted by Γ . Its components Γ ki,j are called the Christoffel symbols.

gij = g(∂i ,∂j ) ; g =
∑

gi,jdx
idxj ; ∇∂j (∂i) =

∑
Γ ki,j∂k

Since the Levi-Civita connection is torsion-free, we have:

Γ kj,i = Γ ki,j
The formula used to prove its existence yields:

2g (∇∂j (∂i) ,∂k) = ∂igj,k +∂jgk,i −∂kgi,j
To obtain the Christoffel symbols, we must consider the inverse matrix
(g i,j )1≤i,j≤d of (gi,j )1≤i,j≤d .

Γ ki,j =
1
2

d∑
l=1

g l,k(∂igj,l +∂jgi,l −∂lgi,j )

9.4 Differential operators on Riemannian manifolds

Definition 9.4.1. Let (M,g) be a Riemannian manifold, and let f ∈ C∞(M).
The gradient of f is the vector field ~∇f ∈ X (M) defined by:

∀x ∈M ∀v ∈ TxM dxf (v) = gx(~∇f (x),v)

Remark. With the notation of the musical isomorphisms, we have ~∇f = df].

Note that the notation ~∇ has nothing to do with the Levi-Civita connec-
tion. In coordinates, we find:

~∇f =
∑

1≤i,j≤d
g i,j∂if ∂j

Definition 9.4.2. Let (M,g) be a Riemannian manifold, and letX ∈ X (M). The
divergence of X is the function divX ∈ C∞(M) such that for all x ∈M, divX(x)
is the trace of the map v 7→ ∇X(v), where ∇ is the Levi-Civita connection.

In local coordinates, for X = Xi∂i (using Einstein’s convention), we find
divX = ∂iXi + Γ ji,jX

i . Note that divX is the contraction of the tensor ∇X ∈
T 1,1(M).

Definition 9.4.3. Let (M,g) be a Riemannian manifold, and let f ∈ C∞(M).
The Laplacian of f is the function ∆f ∈ C∞(M) defined by ∆f = div~∇f .

We have already seen that a connection ∇ on TM allows us to define a
Hessian Hessf . If ∇ is the Levi-Civita connection of a Riemannian mani-
fold, one can check that ∆f = Trg(Hessf ).
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9.5 Examples of Levi-Civita connections

9.5.1 The Levi-Civita connection of a submanifold

If (M,g) is a pseudo-Riemannian manifold andN ⊂M is a pseudo-Riemannian
submanifold, then recall that we can consider the restriction of the Levi-
Civita connection ∇ to N , which is a connection on TM |N . This allows us
to define ∇xX(v) for x ∈ N , v ∈ TxN and X ∈ Γ (TM |N ). In other terms,
the vector field X is only defined on N but is not necessarily tangent to N .
However, requiring X to be tangent to N does not ensure that ∇xX(v) is.

The tangent bundle TN is a vector subbundle of TM |N . Since N is a
pseudo-Riemannian submanifold, according to Proposition 8.1.10 the vec-
tor bundle TM |N splits as a direct sum TM |N = TN⊕TN⊥. The vector bun-
dle νN = TN⊥ is called the normal bundle of N . For x ∈ N and v ∈ TxM,
we write v = v> + v⊥ its decomposition according to this direct sum.

Lemma 9.5.1. Let M be a manifold and N ⊂M an immersed submanifold. For
all x ∈ N and v ∈ TxN , there is a vector field X ∈ X (M) and a neighbourhood
U ⊂N of x such that X(x) = v and X(y) ∈ TyN for all y ∈U .

Proof. Use the linearisation of immersions and a plateau function on M.

Proposition 9.5.2. Let (M,g) be a pseudo-Riemannian manifold, and N ⊂M
a pseudo-Riemannian submanifold, with induced metric g. For all X ∈ X (N ),
x ∈ N and v ∈ TxN , we have ∇xX(v) = (∇xX(v))> where ∇ is the Levi-Civita
connection of (N,g) and ∇ is the Levi-Civita connection of (M,g).

Proof. First check, let us check that the formula∇xX(v) = (∇xX(v))> defines
a connection ∇ on TN . It is a map from X (N ) to Ω1(N ) (because the map
v 7→ v> is a vector bundle morphism).

Let f ∈ C∞(N ), X ∈ X (N ), x ∈ N and v ∈ TxN . Since ∇ is a connection
we have:

∇x(f X)(v) = dxf (v)X(x) + f (x)∇xX(v)

Since X(x) ∈ TxN , we have X(x)> = X(x) and projecting on TN yields:

∇x(f X)(v) = dxf (v)X(x) + f (x)∇xX(v)

This shows that ∇ is a connection on TN . We now wish to compute its tor-
sion. For this, we first consider vector fields X,Y ∈ X (M) whose restrictions
X,Y to N are tangent to N . Since ∇ is torsion free, we find:

∇Y (X)−∇X(Y ) = [X,Y ]

Now evaluating this at some point x ∈ N and projecting on TxN , the left
hand side is ∇Y (X)−∇X(Y ), and the right hand side is [X,Y ], so we find:

∇Y (X)−∇X(Y ) = [X,Y ]
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Hence T (X,Y ) = 0 where T is the torsion of ∇. Using the tensoriality of T
and Lemma 9.5.1, we find that ∇ is torsion free.

Now let X,Y ,Z ∈ X (M) be such that their restrictions X,Y ,Z to N are
tangent to N . Since g is parallel for ∇, we have:

X · g(Y ,Z) = g(∇Y (X),Z) + g(Y ,∇Z(X)

When restricting to N , the left hand side becomes X · g(Y ,Z). Let us com-
pute the first term of the right hand side:

g
(
∇Y (X),Z

)
= g

(
∇Y (X),Z

)
+ g

((
∇Y (X)

)⊥
,Z

)
︸              ︷︷              ︸

=0

= g
(
∇Y (X),Z

)
In the end, we find:

X · g(Y ,Z) = g
(
∇Y (X),Z

)
+ g

(
Y ,∇Z(X)

)
This shows that ∇g(X)(Y ,Z) = 0. Once again by using the tensoriality of ∇g
and Lemma 9.5.1, we find that ∇g = 0, so ∇ is the Levi-Civita connection
of g.

9.5.2 Conformal metrics

Consider a pseudo-Riemannian manifold (M,g) and a conformal metric
g ′ = e2σg with σ ∈ C∞(M). Then the Levi-Civita connections ∇,∇′ of g,g ′

respectively are related by:

∇′xX(v) = ∇xX(v) + dxσ (v)X(x) + dxσ (X(x))v − gx(X(x),v)~∇σ (x)

Where the gradient ~∇σ is considered for the metric g.

9.5.3 The space of ellipsoids

For n ≥ 2, we consider the set

En =
{
x ∈Mn(R)

∣∣∣ tx = x, x > 0, detx = 1
}

Recall that the tangent spaces are given by TxEn =
{
X ∈Mn(R)

∣∣∣ tX = X, Tr(x−1X) = 0
}
,

and the Riemannian metric is defined as:

〈X |Y 〉x = Tr(x−1Xx−1Y )

The Levi-Civita connection ∇ of En is given by:

∇xX(v) = dxX(v)− vx
−1X(x) +X(x)x−1v

2
To prove this, one should first check that it is well defined (i.e. that

∇xX(v) ∈ TxEn), that it is a connection, that the torsion vanishes, and that
the metric is parallel.
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9.6 Pseudo-Riemannian geodesics

9.6.1 The geodesic flow

Definition 9.6.1. Let (M,g) be a pseudo-Riemannian manifold. A geodesic of
(M,g) is a geodesic of its Levi-Civita connection∇, i.e. a smooth curve c : I →M
such that D

dt ċ = 0.

Example: Since the Levi-Civita connection of Rp,q is the trivial connec-
tion, geodesics of Rp,q are affinely parametered straight lines.

Even though it is not possible to solve explicitly the geodesic equation,
it does have a first integral.

Proposition 9.6.2. Let (M,g) be a pseudo-Riemannian manifold, and c : I →
M a geodesic. Then g(ċ, ċ) is constant.

Proof. It is a straightforward consequence of Proposition 9.2.2 and the fact
that D

dt ċ = 0.

Let us fix a notation: for v ∈ TM, we let Iv ⊂ R be the maximal interval
on which the geodesic cv is defined.

Definition 9.6.3. Let (M,g) be a pseudo-Riemannian manifold, and set

U =
⋃
v∈TM

Iv × {v} ⊂ R× TM

The geodesic flow of (M,g) is the map

Φ :
{

U → TM
(t,v) 7→ ċv(t)

Write Φ(t,v) = Φ t(v). It is a local flow: if t, t + s ∈ Iv then s ∈ IΦ t(v) and
Φs(Φ t(v)) = Φ t+s(v).

The corresponding vector field Zg = d
dt

∣∣∣
t=0
Φ t ∈ X (TM) is called the

geodesic spray.
If the Levi-Civita connection ∇ is complete, then U = R × TM, and

(Φ t)t∈R is a one parameter subgroup of Diff(TM).
If g is Riemannian, we can consider the unit tangent bundle

T 1M = {v ∈ TM | ‖v‖ = 1}

The geodesic flow Φt preserves T 1M (Proposition 9.6.2), so we get a dy-
namical system (T 1M, (Φt)). Note that if M is compact, then so is T 1M.
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9.6.2 Normal coordinates and the injectivity radius

Definition 9.6.4. Let (M,g) be a Riemannian manifold. Consider x ∈M, open
sets U ⊂ TxM and V ⊂ M such that expx |U : U → V is a diffeomorphism,
and an orthonormal basis (e1, . . . , ed) of TxM. The coordinates (x1, . . . ,xd) on V
defined by xi = gx

(
(expx |U )−1 , ·

)
are called normal coordinates.

Normal coordinates (x1, . . . ,xd) correspond to the chart (x1, . . . ,xd) 7→
expx(x

1e1 + · · ·+ xded).

Proposition 9.6.5. Let (M,g) be a Riemannian manifold. Consider x ∈M and
normal coordinates (x1, . . . ,xd) around x. Then

∀i, j,k ∈ {1, . . . ,d} gi,j(x) = δi,j ; Γ ki,j(x) = ∂kgi,j(x) = 0

Remark. This means that a Riemannian metric is "Euclidean up to order one".
This makes it hopeless to find invariants of Riemannian metrics that only in-
volve first order derivatives.

Proof. By definition of normal coordinates, (∂1(x), . . . ,∂d(x)) is an orthonor-
mal basis of TxM, so gi,j(x) = gx(∂i(x),∂j(x)) = δi,j .

Now fix some v = (v1, . . . , vd) ∈ Rd . The curve c defined by c(t) = expx(tv
1∂1(x)+

· · ·+ tvd∂d(x)) is a geodesic. Recall the geodesic equation in coordinates:

∀k ∈ {1, . . . ,d} c̈k(t) +
∑

1≤i,j≤d
Γ ki,j(c(t))ċ

i(t)ċj(t) = 0

Here ci(t) = tvi , so the equation simplifies:

∀k ∈ {1, . . . ,d}
∑

1≤i,j≤d
Γ ki,j(c(t))v

ivj = 0

In particular we have
∑

1≤i,j≤d Γ
k
i,j(x)vivj = 0. This being true for all v ∈ Rd ,

we find Γ ki,j(x) = 0.
Now we also have

∀i, j,k ∈ {1, . . . ,d} ∂igj,k(x) +∂jgi,k(x)−∂kgi,j(x) = 2
d∑
l=1

gk,l(x)Γ li,j(x) = 0

By permuting the indices we also get

∀i, j,k ∈ {1, . . . ,d} ∂kgi,j(x) +∂igk,j(x)−∂jgk,i(x) = 0

By adding these last two equalities and using the symmetry of g, we find
∂igj,k(x) = 0.
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Definition 9.6.6. Let (M,g) be a Riemannian manifold, and let x ∈ M. The
injectivity radius of (M,g) at x is injx = supE ∈ ]0 ,+∞] where E ⊂ ]0 ,+∞[ is
the set of positive real numbers r such that expx is diffeomorphic from BTxM(0, r)
onto its image.

The injectivity radius of (M,g) is injM = infx∈M injx ∈ [0 ,+∞].

Remark. The theory of ODEs shows that x 7→ injx is lower semi-continuous.
Therefore if M is compact then injM > 0.

9.6.3 Isometries and geodesics

Proposition 9.6.7. Let (N,h) and (M,g) be pseudo-Riemannian manifolds. If
ϕ : N → M is an isometric immersion, and c : I → N is a smooth curve such
that ϕ ◦ c is a geodesic, then c is a geodesic.

Proof. Since being a geodesic is a local condition, we can work in coordi-
nates. In other words, we can assume that N is an open set of Rn, M is an
open set of Rd , and ϕ is the map ϕ(x) = (x,0). Write Γ ki,j the Christoffel sym-

bols of g, and c(t) = (x1(t), . . . ,xn(t)). Then ϕ ◦ c(t) = (x1(t), . . . ,xn(t),0, . . . ,0)
and the fact that ϕ ◦ c is a geodesic gives

∀k ∈ {1, . . . ,n} ẍk(t) +
∑

1≤i,j≤n
Γ ki,j(c(t),0)ẋi(t)ẋj(t) = 0

Now let Γ
k
i,j be the Christoffel symbols of h. Since ϕ is an isometry, we find

that hi,j(x) = gi,j(x,0) for all 1 ≤ i, j ≤ k. It follows that Γ
k
i,j(x) = Γ ki,j(x,0), and

the geodesic equation for ϕ ◦ c yields the geodesic equation for c.

This is far from being an equivalence. It can be seen in the proof: the
geodesic equation for ϕ ◦ c has d −n more constraints that we did not use:

∀k ∈ {n+ 1, . . . ,d}
∑

1≤i,j≤n
Γ ki,j(c(t),0)ẋi(t)ẋj(t) = 0

To find some explicit examples, consider ϕ to be the inclusion of a sub-
manifold in Ed . Most submanifolds do not contain any straight line, and
geodesics always exist.

Corollary 9.6.8. Let (N,h) and (M,g) be pseudo-Riemannian manifolds. Let
ϕ :N →M be an isometry. If x ∈M and v ∈ TxM are such that expx(v) is well
defined, then:

ϕ(expx(v)) = expϕ(x)(dxϕ(v))

Proposition 9.6.9. Let (N,h) and (M,g) be pseudo-Riemannian manifolds,
with N connected. Let ϕ,ψ : N → M be isometries. If there is some x ∈ N
such that ϕ(x) = ψ(x) and dxϕ = dxψ, then ϕ = ψ.
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Proof. Consider the set X = {x ∈N
∣∣∣ϕ(x) = ψ(x) & dxϕ = dxψ}. It is open

because of Corollary 9.6.8 and closed because ϕ and ψ are smooth.

Examples: We can use Proposition 9.6.9 to find the isometry groups of
the sphere and the hyperbolic space. Indeed, in both cases, we have found a
subgroup G of Isom(M,g) such that for all x,y ∈M and any linear isometry
L : TxM→ TxM, there is ϕ ∈ G such that ϕ(x) = y and dxϕ = L (G = O(n+ 1)
for Sn and G = O+(n,1) for Hn). It follows that G = Isom(M,g).

Proposition 9.6.9 says that an isometry ϕ can be recovered from the im-
ageϕ(x0) of a given point x0 and the differential dx0

ϕ. It is actually possible
to use this to define charts on the isometry group, and prove that it is a Lie
group.

The topology that we consider on Isom(M,g) is the compact-open topol-
ogy: a basis is given by {ϕ ∈ Isom(M,g) |ϕ(K) ⊂U }where K ⊂M is compact
and U ⊂M is open.

Theorem 9.6.10 (Myers-Steenrod). Let (M,g) be a pseudo-Riemannian man-
ifold. The group Isom(M,g) has a unique Lie group structure for the compact-
open topology such that the action on M is smooth.

9.6.4 Examples of geodesics

We already mentioned that geodesics of Rp,q are affinely parameterised
straight lines.

A straightforward consequence of Proposition 9.5.2 is that for any pseudo-
Riemannian submanifold N ⊂ Rp,q and smooth curve c : I →N , we have:

D
dt
ċ = c̈>

It follows that c is a geodesic if and only if:

∀t ∈ I c̈(t) ∈ Tc(t)N⊥

For x ∈ Sd ⊂ Ed and v ∈ TxSd = x⊥ with ‖v‖ = 1, the geodesic is:

cv(t) = cos(t)x+ sin(t)v

For x ∈ Hd ⊂Md+1 and v ∈ TxHd = x⊥ with ‖v‖ = 1, the geodesic is:

cv(t) = cosh(t)x+ sinh(t)v

In both cases, we find that images of geodesics are intersections with
linear planes in the ambiant vector space.
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We can use the isometries between the various models of the hyperbolic
space to see that geodesics in the ball and hyperboloid models of Hd are cir-
cle arcs perpendicular to the boundary.

Finally, if p : M̃→M is a Riemannian covering, then geodesics ofM are
compositions of geodesics of M̃ with p.

In the space of ellipsoids En, geodesics through 1n are exactly the curves
t 7→ exp(tX) where X is a traceless symmetric matrix.



Chapter 10

Riemannian manifolds as
metric spaces

10.1 The Riemannian distance

10.1.1 Lengths of curves

We now consider a connected Riemannian manifold (M,g).

Recall that we use the convention that piece-wise smooth paths c : [a ,b]→
M are continuous.

Definition 10.1.1. Let (M,g) be a Riemannian manifold, and c : [a ,b]→ M
be a piece-wise smooth curve. The length of c is

L(c) =
∫ b

a
‖ċ(t)‖dt

Definition 10.1.2. Let (M,g) be a Riemannian manifold, and c : [a ,b]→M be
a piece-wise smooth curve. We say that c has constant speed if ‖ċ‖ is constant.

Remark. Geodesics have constant speed.

We can use the lengths of curves to define a distance.

Definition 10.1.3. Let (M,g) be a connected Riemannian manifold. The Rie-
mannian distance of (M,g) is d :M ×M→ [0 ,+∞[ given by

d(x,y) = inf {L(c)
∣∣∣c : [a ,b]→M piece-wise smooth, c(a) = x, c(b) = y}

Remark. Since M is connected, it is also path connected, so d(x,y) ∈ [0 ,+∞[ is
well defined (understand: it is finite).

27
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Staring at this definition won’t get you very far. The space of curves
joining two given points is infinite dimensional in its nature, so minimising
a functional on this space is by no means easy.

Before we attempt general methods and subtle definitions, let us work
out the case of the Euclidean space.

Theorem 10.1.4. The Riemannian distance of the Euclidean space En is equal
to the Euclidean distance.

Remark. This can be summarized by the fact that the shortest path joining two
points is the straight line.

Proof. Let d be the Riemannian distance on En, and x,y ∈ En such that
x , y. Consider the straight line

γ :
{

[0 ,1] → En
t 7→ x+ t(y − x)

joining x and y. Since L(γ) = ‖x − y‖, we get d(x,y) ≤ ‖x − y‖.
Now let c : [0 ,1]→ En be a piecewise smooth curve such that c(0) = x

and c(1) = y. Decompose c(t) = a(t) + b(t) where a(t) is on the line joining

x and y, and b(t) is orthogonal to it (i.e. a(t) = x +
〈
c(t)− x

∣∣∣∣∣ y−x
‖y−x‖

〉
y−x
‖y−x‖ and

b(t) = c(t)− a(t)).
Since ȧ(t) and ḃ(t) are orthogonal, we have that ‖ċ(t)‖ ≥ ‖ȧ(t)‖, hence

L(c) ≥ L(a).
Now write a(t) = x+λ(t)(y − x), so that

L(a) =
∫ 1

0
|λ̇(t)|

∥∥∥y − x∥∥∥dt ≥ ∣∣∣∣∣∣
∫ 1

0
λ̇(t)dt

∣∣∣∣∣∣∥∥∥x − y∥∥∥ =
∥∥∥y − x∥∥∥

It follows that L(c) ≥ L(a) =
∥∥∥y − x∥∥∥, hence d(x,y) ≥

∥∥∥y − x∥∥∥.

We will keep this result in mind when we prove that the Riemannian
distance is always a distance. The idea is that locally, one can compare the
Riemannian metric to a Euclidean metric in charts.

Lemma 10.1.5. Let (M,g) be a Riemannian manifold, and dg the Riemannian
distance.

1. If h is another Riemannian metric on M and g ≥ h, then dg ≥ dh where
dh is the Riemannian distance of (M,h).

2. If U ⊂M is open, then dU (x,y) ≥ dg(x,y) for all x,y ∈U , where dU is the
Riemannian distance of (U,g |U ).

Remark. By g ≥ h for Riemannian metrics, we mean that gx(v,v) ≥ hx(v,v) for
all x ∈M and v ∈ TxM.
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Proof.

1. If c : I → M is a piece-wise smooth curve, then we let Lg(c) (resp.
Lh(c)) be its length with respect to g (resp. h). Since gc(t)(ċ(t), ċ(t)) ≥
hc(t)(ċ(t), ċ(t)) for all t ∈ I , we find that Lg(c) ≤ Lh(c), therefore Lg(c) ≥
dh(x,y) if c joins x and y, and finally dg(x,y) ≥ dh(x,y).

2. Given x,y ∈ U , a curve in U joining x and y is also a curve in M
joining x and y, i.e. dU (x,y) is the infimum of a subset contained in
the one defining dg(x,y), therefore dU (x,y) ≥ dg(x,y).

We can use this principle to prove that the Riemannian distance is a
distance.

Theorem 10.1.6. Let (M,g) be a connected Riemannian manifold. The Rie-
mannian distance d is a distance on M that defines the manifold topology.

Proof. One easily checks that d is well defined, non negative, symmetric,
and that it satisfies the triangle inequality (this is why we work with piece-
wise smooth curves: they are stable under concatenation).

Let x,y ∈ M be such that x , y. Consider local coordinates (x1, . . . ,xd)
on an open domain U ⊂M such that gi,j(x) = δi,j (e.g. normal coordinates)
and y <U . To simplify notations, assume that U ⊂ Rd .

Since the functions gi,j are continuous, we can shrinkU and assume the
existence of a > 0 such that:

∀z ∈U ∀v ∈ TzU
1
a2 ‖v‖

2
eucl ≤ gz(v,v) ≤ a2 ‖v‖2eucl

Let ε > 0 be such that Beucl(x,ε) ⊂U . For z ∈ Beucl(x,ε), consider a piece-
wise smooth path c : [0 ,1]→ M joining x and z. If c([0 ,1]) ⊂ U , then the
first point of Lemma 10.1.5 implies that L(c) ≥ ‖z−x‖eucla . If the path c leaves
U , consider t∂ the smallest parameter such that c(t∂) ∈ ∂Beucl(x,ε), then the
restriction of c to [0 , t∂] is a path contained in U joining x to c(t∂), and it is
shorter than c, hence L(c) ≥ ε

a ≥
‖z−x‖eucl

a .

This shows all for z ∈ Beucl(x,ε) satisfy d(x,z) ≥ ‖z−x‖eucla .

Since any continuous curve from x to y must cross ∂Beucl(x,ε), we also
find that d(x,y) ≥ ε

a > 0, therefore d(x,y) , 0, and d is a distance.

The fact that d(x,z) ≥ ‖z−x‖eucla for all z ∈ Beucl(x,ε) shows that Bd(x,r) ⊂
Beucl(x,ar) for all r ≤ aε.

The first point of Lemma 10.1.5 and the fact that g ≤ ageucl imply that
Beucl(x,r) ⊂ Bd(x,ar) for all r ≤ ε. It follows that d defines the manifold
topology.
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10.1.2 Minimising curves

The computation of the Riemannian distance for the Euclidean space is
based on the fact that we can find an explicit formula for the shortest path
between two points. In other terms, the infimum defining the Riemannian
distance is a minimum.

This will not always be the case. Consider R2 \ {0} with the Euclidean
metric. Considering paths that take arbitrarily small detours around the
origin, we see that the Riemannian distance is still equal to the Euclidean
distance, however given two opposite points, there is no shortest curve in
R2 \ {0}. This problem will be avoided by working locally.

Definition 10.1.7. Let (M,g) be a connected Riemannian manifold, and d the
Riemannian distance.
A piece-wise smooth curve c : [a ,b]→M is called minimising if L(c) = d(c(a), c(b)).

It will be practical to consider minimising curves defined on infinite in-
tervals, so we need a definition that does not involve the endpoints. Notice
that the notion of minimising curve is stable under restrictions.

Lemma 10.1.8. Let (M,g) be a connected Riemannian manifold, d the Rieman-
nian distance, and c : [a ,b]→ M a minimising curve. For all [a′ ,b′] ⊂ [a ,b],
the restriction c|[a′ ,b′] is minimising.

Proof. We already have d(c(a′), c(b′)) ≤ L
(
c|[a′ ,b′]

)
.

Consider a piece-wise smooth curve γ : [a′ ,b′] → M such that γ(a′) =
c(a′) and γ(b′) = c(b′). Let γ̃ : [a ,b] → M be the piece-wise smooth curve
defined by γ̃(t) = c(t) if t ∈ [a ,a′] or t ∈ [b′ ,b] and γ̃(t) = γ(t) for t ∈ [a′ ,b′].
Since γ̃ is a piece-wise smooth curve joining c(a) and c(b), we have that
L(γ̃) ≥ d(c(a), c(b)) = L(c).

By writing out the integral that defines the length, we find that L(γ) ≥
L
(
c|[a′ ,b′]

)
. Therefore c|[a′ ,b′] is minimising.

If I ⊂ R is any interval and c : I →M is a curve, where M is a manifold,
we say that c is piece-wise smooth if its restriction to any compact interval
is piece-wise smooth.

Definition 10.1.9. Let (M,g) be a Riemannian manifold, and d the Rieman-
nian distance.
If I ⊂ R is any interval, then a piece-wise smooth curve c : I → M is called
minimising if

∀s, t ∈ I L(c|[s ,t]) = d(c(s), c(t))

It is locally minimising if

∀t ∈ I ∃ε > 0 c|[t−ε ,t+ε] is minimising
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The two definitions of minimising curves coincide for a compact inter-
val. Minimising curves are locally minimising, but we will see that the
converse is not true.

10.1.3 Riemannian spherical coordinates

We now wish to find out some more about the relationship between geodesics
and the Riemannian distance. In the Euclidean space, we used an orthogo-
nal projection to find the Riemannian distance, which is somehow related
to Cartesian coordinates. However, these coordinates are not well defined
in Riemannian geometry. We can however define some spherical coordi-
nates, and they will be very useful.

Theorem 10.1.10 (Gauß Lemma).
Let (M,g) be a Riemannian manifold, and x ∈M. If expx is defined at v ∈ TxM,
then:

∀w ∈ TxM
〈
dv expx(v)

∣∣∣dx expx(w)
〉

expx(v)
= 〈v|w〉x

Proof. Given ε > 0 small enough, consider:

f :
{

]−ε ,1 + ε[× ]−ε ,ε[ → M
(t, s) 7→ expx(tv + stw)

We find that ∂f
∂t (1,0) = dv expx(v) and ∂f

∂s (1,0) = dv expx(w), so we wish to

compute
〈
∂f
∂t

∣∣∣∣∂f∂s 〉 at (t, s) = (1,0).

Note that for s fixed, f (·, s) is a geodesic, so D
∂t
∂f
∂t = 0.

∂
∂t

〈
∂f

∂t

∣∣∣∣∣∂f∂s
〉

=
〈
D
∂t

∂f

∂t

∣∣∣∣∣∂f∂s
〉

︸        ︷︷        ︸
=0

+
〈
∂f

∂t

∣∣∣∣∣D∂t ∂f∂s
〉

=
〈
∂f

∂t

∣∣∣∣∣D∂s ∂f∂t
〉

=
1
2
∂
∂s

〈
∂f

∂t

∣∣∣∣∣∂f∂t
〉

Since f (·, s) is a geodesic, it has constant speed, i.e.
〈
∂f
∂t

∣∣∣∣∂f∂t 〉 does not depend

on t. Since ∂f
∂t (0, s) = v + sw, we find

〈
∂f
∂t

∣∣∣∣∂f∂t 〉 = ‖v + sw‖2, and:

∂
∂t

〈
∂f

∂t

∣∣∣∣∣∂f∂s
〉

=
1
2
∂
∂s

〈
∂f

∂t

∣∣∣∣∣∂f∂t
〉

= 〈v|w〉+ s ‖w‖2
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Integrating yields:〈
∂f

∂t

∣∣∣∣∣∂f∂s
〉

(1, s) =
〈
∂f

∂t

∣∣∣∣∣∂f∂s
〉

(0, s) + 〈v|w〉+ s ‖w‖2

Since ∂f
∂s (0, s) = 0, we finally get:〈

∂f

∂t

∣∣∣∣∣∂f∂s
〉

(1,0) = 〈v|w〉

This has a nice interpretation in terms of spherical coordinates.

Proposition 10.1.11. Let (M,g) be a Riemannian manifold, and x ∈M. Define

Φ :
{

]0 , injx[× T 1
xM → M

(r,v) 7→ expx(rv)

There is a smooth family of Riemannian metrics (h(r))r∈]0 ,injx[ on the sphere
T 1
xM such that (Φ∗g)r,v = dr2 + h(r)v .

Remark. By smooth family of Riemannian metrics, we mean that each h(r) is
a Riemannian metric on T 1

xM, and the map (r,v) 7→ h(r)v is a smooth from
]0 , injx[ × T 1

xM to the total space of the vector bundle S2T ∗(T 1
xM). In human

language, this means that the expressions in coordinates are smooth functions
in (r,v).

Proof. Since T(r,v)

(
]0 , injx[× T 1

xM
)

= R×TvT 1
xM, any Riemannian metric on

]0 , injx[× T 1
xM can be written as

α(r,v)dr2 + dr ⊗ω(r)v + h(r)v

Where ω(r) is a smooth family of 1-forms on T 1
xM and h(r) is a smooth

family of Riemannian metrics.
First, we have that α(r,v) =

∥∥∥d(r,v)Φ(1,0)
∥∥∥2

= ‖ċv(r)‖2 where cv is the
geodesic satisfying ċv(0) = v. It follows that α(r,v) = ‖v‖2 = 1.

Since any w ∈ TvT 1
xM satisfies 〈v|w〉x = 0, the Gauss Lemma yields:

ω(r)v(w) =
〈
d(r,v)Φ(0,w)

∣∣∣d(r,v)Φ(1,0)
〉

=
〈
drv expx(rw)

∣∣∣drv expx(rv)
〉

= 0

In the following examples, the metric h(r) can be computed easily.

E2 ds2 = dr2 + r2dθ2 (r > 0)

S2 ds2sph = dr2 + sin2 rdθ2 (0 < r < π)

H2 ds2hyp = dr2 + sinh2 rdθ2 (r > 0)
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10.1.4 Shortest paths and geodesics

Theorem 10.1.12. Let (M,g) be a Riemannian manifold, and c : I → M a
piece-wise smooth curve. Then c is a locally minimising if and only if c is a
reparametrization of a geodesic.

It is a consequence of the following more precise statement.

Proposition 10.1.13. Let (M,g) be a Riemannian manifold. Let x ∈ M, v ∈
T 1
xM, and let c be the geodesic with initial velocity v. If t ∈ ]0 , injx[, then:

1. The curve c|[0 ,t] is minimising.

2. Any minimising curve joining x and expx(tv) is a reparametrization of
c|[0 ,t].

3. BM(x, t) = expx
(
BTxM(0, t)

)
.

Proof. Let γ : [a ,b]→ M be a piece-wise smooth curve such that γ(a) = x

et γ(b) = expx(tv). Let b′ be the first time at which γ exits expx
(
BTxM(0, t)

)
,

i.e. b′ = inf
{
s ∈ [a ,b]

∣∣∣∣c(s) < expx
(
BTxM(0, t)

)}
∈ ]a ,b].

For s ∈ [a ,b′], we set r(s) =
∥∥∥exp−1

x (c(s))
∥∥∥. Using the Riemannian spheri-

cal coordinates of Proposition 10.1.11, we can write c(s) = expx(r(s)u(s)) for
s ∈ [a ,b′] where u(s) ∈ T 1

xM. We find:∥∥∥γ̇∥∥∥2
= ṙ2 + h(r)u(u̇, u̇)

It follows that
∥∥∥γ̇(s)

∥∥∥ ≥ |ṙ(s)| for all s ∈ [a ,b′]. We can use this estimate
the length of γ :

L(γ) =
∫ b

a

∥∥∥γ̇(s)
∥∥∥ds

≥
∫ b′

a

∥∥∥γ̇(s)
∥∥∥ds

≥
∫ b′

a
|ṙ(s)|ds

≥
∣∣∣∣∣∣
∫ b′

a
ṙ(s)ds

∣∣∣∣∣∣ = |r(b′)− r(a)| = t

This shows that L(γ) ≥ L
(
c|[0 ,t]

)
, i.e. the geodesic c|[0 ,t] is minimising.

If γ is also minimising, then every inequality that we used is an equality.

In particular, we have that
∫ b
b′

∥∥∥γ̇(s)
∥∥∥ds = 0, which shows that b′ = b, and

h(r)u(u̇, u̇) = 0, i.e. u is constant, however γ(b) = expx(v) implies that u(s) =
v for all s, hence γ(s) = expx(r(s)v) = c(r(s)), and γ is a reparametrization of
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c|[0 ,t].
Since c|[0 ,t] is minimising, we find that d(x,expx(tv)) = t. This being true

for all t ∈ ]0 , injx[ and v ∈ T 1
xM, we find expx

(
BTxM(0, t)

)
⊂ BM(x, t). Since

we have shown that every piece-wise smooth curve starting from x and
leaving expx

(
BTxM(0, t)

)
has length at least t, we also find that BM(x, t) ⊂

expx
(
BTxM(0, t)

)
.

Proposition 10.1.14. Let (M,g) be a Riemannian manifold. Every x0 ∈M has
a neighbourhood U such that:

1. Any x,y ∈U are joined by a unique unit-speed minimising geodesic cx,y .

2. There is ε > 0 such that cx,y is defined on ]−ε ,ε[ for all x,y ∈ U , and the

map
{
U ×U × ]−ε ,ε[ → M

(x,y, t) 7→ cx,y(t)
is smooth.

3. If x,y,z ∈U and d(x,y) + d(y,z) = d(x,z), then y = cx,z(d(x,y)).

4. If c : I →U satifies d(c(t), c(s)) = |t−s| for all t, s ∈ I , then c is a unit speed
geodesic.

Proof. Using the lower semi-continuity of the injectivity radius, we can find
an open set V ⊂ M containing x0 such that for all x ∈ V , we have V ⊂
B(x, injx).
As seen for connections, we can find an open set U ⊂ V containing x0, and
a smooth map ϕ : U ×U → TM such that ϕ(x,y) ∈ TxM, ϕ(x,x) = 0 and
expx(ϕ(x,y)) = y for all x,y ∈ U . Now cx,y(t) = expx(tϕ(x,y)) is a smooth
function of (x,y, t).
Proposition 10.1.13 implies the fist point because U ⊂ V , and the remark
above implies the second point.
Now let x,y,z ∈ U and d(x,y) + d(y,z) = d(x,z). The concatenation of cx,y
and cy,z is a minimising curve from x to z, so it must be a geodesic, hence
y = cx,z(d(x,y)).
Finally, if a curve c : I → U satifies d(c(t), c(s)) = |t − s| for all t, s ∈ I , the
previous point shows that c(t) = cc(a),c(b)(t − a) for t ∈ [a ,b] ⊂ I .

Lemma 10.1.15. Let (M,g) be a Riemannian manifold, and let x ∈ M. For
v,w ∈ TxM, we have:

d(expx(tv),expx(tw)) = t ‖v −w‖x + o(t)

Proof. Consider a neighbourhoodU ⊂M given by Proposition 10.1.14, and
the smooth map ϕ :U ×U → TM used in its proof.

Let W = exp−1
x (U ), and consider the function F :W ×W → R defined by

F(u,v) = d(expx(u),expx(v))2. Then F(u,v) =
∥∥∥ϕ(expx(u),expx(v))

∥∥∥2
expx(u)

,
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which shows that F is smooth.
Using the fact that F(u,v) = F(v,u), F(0,v) = ‖v‖2x and F(u,u) = 0, we

can recover the first and second order differentials of F at (0,0). We find
d(0,0)F = 0 and:

d2
(0,0)F((u,v), (z,w)) = 2gx(u − v,z −w)

This leads to:

d(expx(tv),expx(tw))2 = t2 ‖v −w‖2x + o(t2)

10.1.5 Recovering a Riemannian metric from the distance

Proposition 10.1.16. Let M be a manifold, and g,g ′ Riemannian metrics on
M. If the Riemannian distances dg and dg ′ are equal, then g = g ′.

Proof. At first we only consider the metric g. Let x ∈M, and define f :M→
R by f (y) = 1

2dg(x,y)2. By Proposition 10.1.13, we find that f (expx(v)) =
1
2 ‖v‖

2 for v ∈ TxM small enough. It follows that f is smooth in a neigh-
bourhood of x, that dxf = 0 and that d2

x f = gx (where d2
x f is the Hessian of

a function at a critical point).
The same being true for g ′, we find that gx = g ′x.

Proposition 10.1.17. Let (M,g) be a Riemannian manifold, and d the Rieman-
nian distance. If f :M→M is an isometry of the metric space (M,d), then it is
an isometry of the Riemannian manifold (M,g).

Proof. If f is smooth, then the Riemannian distance of f ∗g is equal to
the Riemannian distance of g, and Proposition 10.1.16 implies that f ∈
Isom(M,g). So it remains to show that f is smooth.

Let x ∈M. For all v ∈ TxM, the image of the geodesic t 7→ expx(tv) un-
der f is a geodesic because of the last point in Proposition 10.1.14, so there
is L(v) ∈ Tf (x)M such that f (expx(tv)) = expf (x)(tL(v)) for t small enough.
The map L : TxM→ Tf (x)M fixes 0, and it satisfies:

‖L(u)−L(v)‖f (x) = lim
t→0

d(f (expx(tu)), f (expx(tv)))
t

= lim
t→0

d(expx(tu),expx(tv))
t

= ‖u − v‖x

It follows that L is a linear isometry. Since f (expx(v)) = expf (x)(L(v)) for
v small enough and expx is a local diffeomorphism at x, we find that f is
smooth around x.
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This implies that Isom(M,g) is closed in Homeo(M). This is also true
for pseudo-Riemannian manifolds, but considerably more difficult.

If M is compact, then so is Isom(M,g) (by Ascoli’s Theorem). Any com-
pact Lie group acting on a manifold preserves a Riemannian metric.

Proposition 10.1.18. Let GyM be a smooth action of a compact Lie group on
a manifold. There is a Riemannian metric on M for which G acts isometrically.

Proof. We use a left-invariant volume form ω on G and any Riemannian
metric h on M to define:

Hx(u,v) =
∫
G
hgx (dxg(u),dxg(v))dω(g)

Then H is a Riemannian metric on M, invariant under the action of G.

10.1.6 Closed geodesics

Corollary 10.1.19. Let (M,g) be a compact Riemannian manifold. Any non
trivial free homotopy class contains a closed geodesic.

Remark. The statement is false for non compact manifolds.

Proof. Since M is compact, we know that r = injM > 0.
Let C ⊂ C0([0 ,1],M) be a non trivial free homotopy class. It is a closed

subset of C0([0 ,1],M). Let C′ ⊂ C be the subset of piecewise C1 paths.
For c ∈ C′, we can find a piecewise geodesic γ ∈ C′, with at most L(c)

r
pieces, such that L(γ) ≤ L(c). Set:

L = inf
{
L(c)

∣∣∣c ∈ C′}
Let us prove that L > 0. If not, we could find a sequence of paths (ck) in C′
such that L(ck)→ 0. SinceM is compact, up to a considering a subsequence
this means that ck converges to a constant path, which must be in C because
it is closed. This contradicts the non triviality of C.

Consider a sequence ck ∈ C′ such that L(ck) → L. Using the above re-
mark, we can assume that ck is piecewise geodesic with at most L+1

r pieces.
Using Ascoli’s Theorem, we can assume that ck converges in C0([0 ,1],M)

to some path c ∈ C. We find that c is a geodesic.

10.2 Geodesics and calculus of variations

10.2.1 Energy and the variational approach to geodesics

The fact that minimising the length is invariant under a change of param-
eter is a major technical issue. It means that if we find an equation de-
scribing minimising curves, then this equation must have an infinite di-
mensional space of solutions (a physicist might say that the group of dif-
feomorphisms of the interval act as gauge transformations, and infinite di-
mensional gauge is something that one should stay away from).
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A first clue towards finding a way around this problem is to consider
only curves with constant speed. Indeed, any regular curve (i.e. with non
vanishing velocity) can be reparametrized so that it has constant speed, and
this reparametrization is unique.

The appropriate solution consists in finding a functional on curves that
is minimised by length-minimising curves with constant speed. This func-
tional is the energy.

Definition 10.2.1. Let (M,g) be a Riemannian manifold, and c : [a ,b]→ M
be a piece-wise smooth curve. The energy of c is

E(c) =
1
2

∫ b

a
‖ċ(t)‖2dt

Remark. The energy still makes sense in pseudo-Riemannian manifolds, but
the length does not (artificially defining it with an absolute value before the
square root can be useful but only if we restrict the study to subspaces of curves).

There is a simple inequality between the length and the energy of a
curve, and the equality case is only achieved by curves with constant speed.

Lemma 10.2.2. Let (M,g) be a Riemannian manifold, and c : [a ,b]→M be a
piece-wise smooth curve. Then L(c)2 ≤ 2(b − a)E(c), and equality holds if and
only if c has constant speed.

Proof. It is a consequence of the Cauchy-Bunyakovsky-Schwarz inequality,
and its equality case.

We can define energy-minimising curves in a similar fashion as for the
length.

Definition 10.2.3. Let (M,g) be a connected Riemannian manifold, and d the
Riemannian distance.
A piece-wise smooth curve c : [a ,b]→ M is called energy-minimising if any
other piece-wise smooth curve γ : [a ,b]→M such that γ(a) = c(a) and γ(b) =
c(b) satisfies E(γ) ≥ E(c).

Note that considering curves defined on the same interval is vital in this
definition, since the energy changes when rescaling to a different interval.

We still have the same properties for restrictions.

Lemma 10.2.4. Let (M,g) be a connected Riemannian manifold, d the Rie-
mannian distance, and c : [a ,b] → M an energy-minimising curve. For all
[a′ ,b′] ⊂ [a ,b], the restriction c|[a′ ,b′] is energy-minimising.

Proof. The proof of Lemma 10.1.8 can be carried out mutatis mutandis.

This also allows for a notion of energy-minimising curves defined on an
arbitrary interval.
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Definition 10.2.5. Let (M,g) be a Riemannian manifold, and d the Rieman-
nian distance.
If I ⊂ R is any interval, then a piece-wise smooth curve c : I → M is called
energy-minimising if for all s, t ∈ I , the restriction c|[s ,t] is energy-minimising.
It is locally energy-minimising if

∀t ∈ I ∃ε > 0 c|[t−ε ,t+ε] is energy-minimising

Proposition 10.2.6. Let (M,g) be a Riemannian manifold, and let c : I →M
be a piece-wise smooth curve. Then c is energy-minimising if and only if it is
minimising and has constant speed.
Similarly, it is locally energy-minimising if and only if it is locally minimising
and has constant speed.

Proof. Note that the global statement implies the local one, since constant
speed is a local property. Without loss of generality we can assume that I
is a compact interval [a ,b].

First assume that c is minimising and has constant speed. If γ : [a ,b]→
M is a piece-wise smooth curve such that γ(a) = c(a) and γ(b), then Lemma

10.2.2 gives E(γ) ≥ L(γ)2

2(b−a) Since c is minimising, it follows that E(γ) ≥ L(c)2

2(b−a) .

However c has constant speed, so Lemma 10.2.2 implies that L(c)2

2(b−a) = E(c),
hence E(γ) ≥ E(c), and c is energy-minimising.

Now assume that c is energy-minimising. Let c̃ : [a ,b] → M be the
constant speed reparametrization of c. By Lemma 10.2.2, we get E(c) ≥
L(c)2

2(b−a) = L(̃c)2

2(b−a) = E(̃c). Since c is energy-minimising, these are equalities, i.e.

E(c) = L(c)2

2(b−a) , and according to Lemma 10.2.2 c has constant speed.
Let γ : [a ,b] → M be a piece-wise smooth curve such that γ(a) = c(a)

and γ(b) = c(b), and let γ̃ be the constant speed reparametrisation of γ .
Lemma 10.2.2 and the invariance of the length under reparametrisations
each applied twice give:

L(γ) = L(γ̃) =
√

2(b − a)E(g̃) ≥
√

2(b − a)E(c) = L(c)

It follows that c is minimising.

10.2.2 The first variation formula

Since we are looking for minimisers of the energy functional, a possible
approach is to try to find its critical points, then compute the second order
derivative at these points and try to evaluate its sign. For now we will just
focus on the first derivative.

It is possible to formalize this in terms of functions on infinite dimen-
sional manifolds of paths, but we will not go down this path.

Instead, we will work with variations of curves.
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Definition 10.2.7. Let (M,g) be a Riemannian manifold, and c : [a ,b]→M a
smooth curve.
A variation of c is a smooth map f : [a ,b] × ]−ε ,ε[→M for some ε > 0 such
that, if cs : I →M is the curve defined by cs(t) = f (t, s), then c0 = c.
It has fixed endpoints if cs(a) = c(a) and cs(b) = c(b) for all s ∈ ]−ε ,ε[.
The variation field of f the the vector field J along c defined by J(t) = ∂

∂s

∣∣∣
s=0
cs(t) ∈

Tc(t)M.

Remarks.

• We consider smooth curves in order to avoid complicated definitions of
piece-wise smooth functions of two variables.

• If a variation f has fixed endpoints, then the variation field J satisfies
J(a) = 0 and J(b) = 0.

• One can show that any vector field along c is the variation field of a vari-
ation of c, and that the variation can be chosen with fixed endpoints if
the vector field vanishes at the endpoints of c. However, it will not be
necessary for our applications.

Theorem 10.2.8 (First variation formula for the energy).
Let (M,g) be a Riemannian manifold, c : [a ,b]→M a smooth curve, f : [a ,b]×
]−ε ,ε[→M a variation of c, and J its variation field. We have:

d
ds

∣∣∣∣∣
s=0
E(cs) = −

∫ b

a
gc(t)

(
J(t),

D
dt
ċ(t)

)
dt + gc(b) (ċ(b), J(b))− gc(a) (ċ(a), J(a))

Remark. If f has fixed endpoints, then the formula simplifies to:

d
ds

∣∣∣∣∣
s=0
E(cs) = −

∫ b

a
gc(t)

(
J(t),

D
dt
ċ(t)

)
dt

Proof. Since we are considering smooth functions and integrating on a com-
pact interval, we can differentiate before integrating:

d
ds
E(cs) =

1
2

∫ b

a

∂
∂s
gcs(t) (ċs(t), ċs(t))dt

We can compute the integrand:

∂
∂s
gcs(t) (ċs(t), ċs(t)) =

∂
∂s
g

(
∂f

∂t
,
∂f

∂t

)
= 2g

(
∂f

∂t
,
D
∂s

∂f

∂t

)
= 2g

(
∂f

∂t
,
D
∂t

∂f

∂s

)
= 2

∂
∂t
g

(
∂f

∂t
,
∂f

∂s

)
− 2g

(
D
∂t

∂f

∂t
,
∂f

∂s

)
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At s = 0, this simplifies as:

∂
∂s

∣∣∣∣∣
s=0
gcs(t) (ċs(t), ċs(t)) = 2

d
dt
g (ċ, J)− 2g

(D
dt
ċ, J

)
Integration yields the desired formula.

We little effort, one can show that critical points of the energy must
satisfy D

dt ċ = 0, i.e. be geodesics.
A similar formula can be obtained for the variation of the length, but it

is only practical if we assume the curve c to have constant speed.

Theorem 10.2.9 (First variation formula for the length).
Let (M,g) be a Riemannian manifold, c : [a ,b] → M a smooth curve with

constant speed, f : [a ,b] × ]−ε ,ε[ → M a variation of c with fixed endpoints,
and J its variation field. We have:

d
ds

∣∣∣∣∣
s=0
L(cs) = −

√
b − a
L(c)

∫ b

a
gc(t)

(
J(t),

D
dt
ċ(t)

)
dt

Proof. We proceed in the same way as we did for Theorem 10.2.8, and find
that:

d
ds
L(cs) =

∫ b

a

∂
∂s

g (∂f∂t , ∂f∂t
) 1

2
dt

Since c has constant speed, we get g (ċ, ċ) = L(c)
b−a . Using the computations

made in the proof of Theorem 10.2.8, we find:

∂
∂s

∣∣∣∣∣
s=0

g (∂f∂t , ∂f∂t
) 1

2
 =

√
b − a
L(c)

(
d
dt
g (ċ, J)− g

(D
dt
ċ, J

))
Integration once again yields the desired formula.

10.3 Completeness of Riemannian manifolds

10.3.1 The Hopf-Rinow Theorem

Definition 10.3.1. A Riemannian manifold (M,g) is called geodesically com-
plete if any geodesic c : I →M extends to R.
It is called geodesically connected if any pair of points in M is linked by a
minimising geodesic.

Examples: En is geodesically complete, but not Rn \ {0}.

Geodesic completeness and connectedness are linked.
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Lemma 10.3.2. Let (M,g) be a connected Riemannian manifold. Let x ∈ M
be such that expx is defined on all TxM. For all y ∈ M, there is a minimising
geodesic from x to y.

Proof. Consider ε ∈ ]0 , injx[, and denote by S(x,ε) the sphere of radius ε
around x, i.e.

S(x,ε) = {z ∈M |d(x,z) = ε}

According to Proposition 10.1.13, we have:

S(x,ε) = expx
(
STxM(0, ε)

)
It follows that S(x,ε) is compact, and we can find zε ∈ S(x,ε) such that:

∀z ∈ S(x,ε) d(y,z) ≤ d(y,zε)

Let γ be a piece-wise smooth curve such that γ(0) = x and γ(1) = y. Let
t be the first time at which γ exits S(x,ε), i.e.

t = min {s ∈ [0 ,1]
∣∣∣γ(s) ∈ S(x,ε)}

We find:

L(γ) ≥ L
(
γ |[0 ,t]

)
+L

(
γ |[t ,1]

)
≥ d(x,γ(t)) + d(y,γ(t))

≥ ε+ d(y,zε)

Since the right term does not depend on γ , we find:

d(x,y) ≤ ε+ d(y,zε)

Since d(x,zε) = ε, the triangle inequality yieldsε+d(y,zε) ≥ d(x,y), hence
d(x,y) = ε+ d(y,zε).

Let v ∈ T 1
xM be such that expx(εv) = zε, and set:

I =
{
t ∈ [0 ,d(x,y)]

∣∣∣d(y,expx(tv)) + t = d(x,y)
}

The set I ⊂ [0 ,d(x,y)] is closed, contains 0, and is open according to the
previous discussion. Consequently d(x,y) ∈ I , i.e. expx(d(x,y)v) = y.

Theorem 10.3.3 (Hopf-Rinow). Let (M,g) be a connected Riemannian mani-
fold, ∇ its Levi-Civita connection and d the Riemannian distance. The following
assertions are equivalent.

1. (M,g) is geodesically complete.

2. ∀x ∈M expx is defined on TxM.
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3. ∃x ∈M expx is defined on TxM.

4. ∀x ∈M ∀R > 0 B(x,r) is compact.

5. (M,d) is complete.

Furthermore, if there conditions are satisfied then (M,g) is geodesically con-
nected.

Remark. We will say that (M,g) is complete if it satisfies these conditions.

Proof. First note that (1)⇒(2) is a matter of definitions, and that 2.⇒(3) is
just specification.
3.⇒4. Lemma 10.3.2 implies that B(x,R) ⊂ expx

(
BTxM(0,R)

)
, hence the

compactness.
4.⇒5. is a general fact for metric spaces (Cauchy sequences are bounded).
5.⇒1. Let c : ]a ,b[→M be a geodesic. Without loss of generality, we can
assume that ‖ċ‖ = 1 and 0 ∈ ]a ,b[.
If b < +∞, consider a sequence (tk) such that tk→ b.
Since c is 1-Lispchitz, the sequence (c(tk)) is Cauchy, therefore converges to
some y ∈M.
For ε > 0 small enough, there is a geodesic γ from c(b − ε) to y, which can
be used to extend c.

Corollary 10.3.4. Let (M,g) be a complete Riemannian manifold, and d the
Riemannian distance. If the metric space (M,d) is bounded, then M is compact.

Proof. Let x ∈ M and R > 0 be such that M = B(x,R). The Hopf-Rinow
Theorem implies that B(x,R) is compact, and so is M.

Corollary 10.3.5. Let (M,g) be a connected Riemannian manifold. If M is
compact, then (M,g) is geodesically complete and geodesically connected.

This is not true for general pseudo-Riemannian manifolds: the Clifton-
Pohl torus is a compact Lorentzian manifold yet is not geodesically com-
plete.

Proposition 10.3.6. Let (M,g) be a Riemannian manifold. There exists σ ∈
C∞(M) such that the conformal metric eσg is complete.

10.3.2 Riemannian coverings

Proposition 10.3.7. Let (M,g) and (N,h) be connected Riemannian manifolds,
and f :M→N a smooth map.

1. If f is a local isometry and (M,g) is complete, then f is a Riemannian
covering and (N,h) is complete.
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2. If (N,h) is complete and f is a Riemannian covering, then (M,g) is com-
plete.

Proof.

1. Let us start by showing that f is onto, using the connectedness of N .
Since f is a local diffeormphism, f (M) is open in N . Let us show that
it is also closed.
Let x ∈ M and v ∈ Tf (x)N . Since f is a local diffeomorphism, set
w = (dxf )−1 (w) ∈ TxM. We then have that cv(t) = f (cw(t)). Since cw is
defined on R, it is also the case for cv , and the Riemannian manifold(
f (M),h|f (M)

)
is complete. Since the Riemannian distance of (N,h),

when restricted to f (M), is smaller than the Riemannian distance of
f (M) (Lemma 10.1.5). It follows that a sequence (yk) in f (M) con-
verging to y ∈ N is Cauchy for the Riemannian distance of f (M). It
is therefore convergent in f (M), and since the topologies on f (M) are
the same, we find that y ∈ f (M), i.e. f (M) is closed in N .
This shows not only that f (M) =N , but also that (N,h) is complete.

Let y ∈N , and ε ∈ ]0 , 1
2 injyN [. For x ∈ f −1({y}), we setUx = expx(BTxM(0, ε))

(it is well defined because (M,g) is complete).

If x , x′, let us prove by contradiction that Ux ∩Ux′ = ∅. Consider z ∈
Ux ∩Ux′ , and let v,v′ ∈ BTxM(0, ε) be such that z = expx(v) = expx(v

′).
The geodesics f ◦ cv and f ◦ cv′ join f (z) to y and d(f (z), y) < injy , so
they must be equal. Consequently ċv(1) = ċv′ (1), and cv = cv′ , hence
x = cv(0) = cv′ (0) = x′.

The restruction f |Ux is injective because f ◦expx = expy ◦dxf and expy
is injective on BTyN (0, ε).

We finally have to show that f −1(B(y,ε)) =
⋃
f (x)=yUx.

For z ∈ f −1(B(y,ε)), we can write y = expf (z)(w) where ‖w‖f (z) < ε.

Let ŵ = (dzf )−1 (w) ∈ TzM. Since f (cŵ(t)) = expf (z)(tw), if we set
x = cŵ(1) ∈ f −1({y}), we find z ∈Ux.

SInce f is 1-lispchitz, we also have f (Ux) ⊂ B(y,ε) for any x ∈ f −1({y}).

2. Let c : I →M be a geodesic. Then f ◦c is a geodesic of N , and extends
to R. Every lift of a geodesic of N is a geodesic of M.
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Proposition 10.3.8. Let (M,g) and (N,h) be Riemannian manifolds. If (M,g)
is complete and f : M → N is a smooth map such that f ∗h ≥ g, then f is a
covering map.

Proof. Since f ∗h ≥ g, we see that f ∗g is a Riemannian metric onM. Now the
inequality f ∗h ≥ g integrates to an inequality on the Riemannian distances:

∀x,y ∈M df ∗h(x,y) ≥ dg(x,y)

This means that for x ∈M and r > 0, we have an inclusion of closed balls:

Bf ∗h(x,r) ⊂ Bg(x,r)

The Hopf-Rinow Theorem assures that Bg(x,r) is compact, and so is Bf ∗h(x,r).
According to the Hopf-Rinow Theorem, the Riemannian manifold (M,f ∗h)
is complete. Since f is an isometry from (M,f ∗h) to (N,h), we can apply
Proposition 10.3.7 and find that f is a covering map.

10.3.3 Completeness and vector fields

The classical property of finite time explosion for ODEs generalizes to com-
plete Riemannian manifolds.

Proposition 10.3.9. Let (M,g) be a complete Riemannian manifold, and let
X ∈ X (M). For x ∈M, let I ⊂ R be maximal the interval on which the flow line(
ϕtX(x)

)
t∈I

is defined. If t0 = sup I is finite, then

limsup
t→t0

∥∥∥∥X (
ϕtX(x)

)∥∥∥∥
ϕtX (x)

= +∞

Proof. Assume the contrary. Then for any sequence tk ∈ I with tk → t0, we
find that ϕtkX (x) is a Cauchy sequence for the Riemannian distance, so it
must converge to some y ∈ M because (M,g) is complete. Then the flow
line starting at y extends the flow line of x on a larger interval, hence the
contradiction.

Corollary 10.3.10. Let (M,g) be a complete Riemannian manifold. If X ∈
X (M) is bounded for the metric g, then it is complete.



Chapter 11

Pseudo-Riemannian curvature

11.1 The various notions of curvature

11.1.1 Symmetries and contractions of the curvature tensor

Definition 11.1.1. Let (M,g) be a pseudo-Riemannian manifold, and ∇ the
Levi-Civita connection. The curvature field of ∇ is called the Riemann tensor
of type (3,1) of (M,g). It is denoted by R ∈Ω2 (End(TM)).

Let us list its symmetries.

Proposition 11.1.2. Let (M,g) be a pseudo-Riemannian manifold, ∇ the Levi-
Civita connection, and R its type (3,1) Riemann tensor.
For all x ∈M and u,v,w,z ∈ TxM, we have the following symmetries:

1. Rx(u,v)w = −Rx(v,u)w.

2. Rx(u,v)w+Rx(v,w)u +Rx(w,u)v = 0.

3. gx(Rx(u,v)w,z) = −gx(Rx(u,v)z,w).

4. gx(Rx(u,v)w,z) = gx(Rx(w,z)u,v).

Remark. Property 3. can be written as Rx(u,v) ∈ so(gx).

Proof. Property 1. is a consequence of the skew-symmetry of the curvature,
i.e. R ∈Ω2 (End(TM)).

Property 2. is the first Bianchi identity.
In order to prove property 3. we consider a smooth function f : R2→M

such that f (0) = x, ∂f∂t (0) = u and ∂f
∂s (0) = v. Also consider sections σ,τ ∈

45
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Γ (f ∗TM) such that σ (0) = w and τ(0) = z. First we compute:

g

(
R

(
∂f

∂t
,
∂f

∂s

)
σ,τ

)
= g

([D
∂t
,
D
∂s

]
σ,τ

)
= g

(D
∂t
D
∂s
σ,τ

)
− g

(D
∂s
D
∂t
σ ,τ

)
= −g

(D
∂s
σ,
D
∂t
τ
)
− ∂
∂t
g
(D
∂s
σ,τ

)
+ g

(D
∂t
σ,
D
∂s
τ
)

+
∂
∂s
g
(D
∂t
σ,τ

)
When symmetrizing in σ and τ , half of the terms disappear and the rest
yields:

g

(
R

(
∂f

∂t
,
∂f

∂s

)
σ,τ

)
+ g

(
R

(
∂f

∂t
,
∂f

∂s

)
τ,σ

)
=
∂
∂s

[
g
(D
∂t
σ,τ

)
+ g

(
σ,
D
∂t
τ
)]

− ∂
∂t

[
g
(D
∂s
σ,τ

)
+ g

(
σ,
D
∂s
τ
)]

=
∂2

∂s∂t
g(σ,τ)− ∂2

∂t∂s
g(σ,τ)

= 0

Evaluating at 0 yields property 3.

In order to prove property 4., let us use normal coordinates (x1, . . . ,xd)
around x. We then have that gi,j(x) = g i,j(x) = δi,j and ∂kgi,j(x) = 0 (also
Γ ki,j(x) = 0), hence Rli,j,k(x) = ∂iΓ

l
j,k(x) − ∂jΓ li,k(x). Derivatives at x simplify a

lot:

∂iΓ
l
j,k(x) = ∂i

1
2

d∑
m=1

g l,m(∂jgk,m +∂kgj,m −∂mgj,j )

 (x)

=
1
2

(∂2
i,jgk,l(x) +∂2

i,kgj,l(x)−∂2
i,lgj,k(x))

We now get:

gx(Rx(∂i ,∂j )∂k ,∂l) = Rli,j,k(x)

=
1
2

(
∂2
i,kgj,l(x)−∂2

i,lgj,k(x)−∂2
j,kgi,l(x) +∂2

j,lgi,k(x)
)

This formula remains invariant when switching (i, j) and (k, l), which is the
desired symmetry (and all other symmetries can be retrieved through this
formula).
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These symmetries are all encoded in the type (4,0) tensor obtained by
lowering an index of the type (3,1) curvature tensor.

Definition 11.1.3. Let (M,g) be a pseudo-Riemannian manifold, ∇ the Levi-
Civita connection, and R its type (3,1) Riemann tensor.
The type (4,0) Riemann tensor is the tensor R ∈ Γ

(
T ∗M⊗4

)
defined by:

∀x ∈M ∀u,v,w,z ∈ TxM Rx(u,v,w,z) = gx(Rx(u,v)w,z)

We use the same letter for the type (3,1) and the type (4,0) tensor as
there is very little chance of it inducing a confusion.

Proposition 11.1.4. Let (M,g) be a pseudo-Riemannian manifold. The type
(4,0) Riemann tensorR satisfies the following symmetries, for x ∈M and u,v,w,z ∈
TxM:

Rx(u,v,w,z) = −Rx(v,u,w,z)
= −Rx(u,v,z,w)

= R(w,z,u,v)

Remark. These symmetries are summarized by R ∈ Γ
(
S2(Λ2T ∗M)

)
.

Proof. These are just concise versions of Proposition 11.1.2.

In local coordinates, we write Ri,j,k,l = R(∂i ,∂j ,∂k ,∂l), and find:

Ri,j,k,l =
n∑

m=1

gm,lR
m
i,j,k

Definition 11.1.5. Let (M,g) be a pseudo-Riemannian manifold. For x ∈ M
and a vector plane P ⊂ TxM non degenerate for gx, if (v,w) is a vector basis of
P , the sectional curvature K(P ) is defined by:

K(P ) =
Rx(v,w,w,v)

gx(v,v)gx(w,w)− gx(v,w)2

Remarks.

• It does not depend on the choice of a vector basis (v,w) of P .

• The fact that P is non degenerate for gx is equivalent to the non vanishing
of the denominator.

• If g is Riemannian, and (v,w) is an orthonormal basis of P , then K(P ) =
Rx(v,w,w,v).
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• If g is Riemannian, then planes are always non degenerate, so the section-
nal curvature can be defined as a function K : G2(TM)→ R where G2(R)
is the (total space of the) fibre bundle above M whose fibre over x ∈M is
the Grassmannian G2(TxM). The function K is smooth. It follows that for
a compact M, the sectional curvature is bounded.

One can show that the sectional curvature determines the Riemann ten-
sor R (it is a consequence of the symmetries of the Riemann tensor).

Definition 11.1.6. Let (M,g) be a pseudo-Riemannian manifold, and R its type
(3,1) Riemann tensor. The Ricci curvature of (M,g) is the type (2,0) tensor
Ric ∈ Γ

(
(T ∗M)⊗2

)
defined for x ∈M and v,w ∈ TxM by:

Ricx(v,w) = Tr(z 7→ Rx(z,v)w)

Proposition 11.1.7. Let (M,g) be a pseudo-Riemannian manifold. The Ricci
curvature Ric is symmetric, i.e. ∀x ∈M ∀v,w ∈ TxM Ricx(v,w) = Ricx(w,v).

Remark. This is summarized by Ric ∈ Γ (S2T ∗M).

Proof. Let (e1, . . . , ed) be an orthonormal basis of TxM. Then we have:

Ricx(v,w) =
d∑
i=1

Rx(ei ,v,w,ei)

The symmetries of the type (4,0) tensor imply that Ricx is symmetric.

In local coordinates, we write Ri,j = Ric(∂i ,∂j ), and we find:

Ri,j =
d∑
k=1

Rkk,i,j =
∑

1≤k,l≤d
gk,lRk,i,j,l

Note that the Ricci curvature is of the same type as the metric, so it
makes sense to compare them.

Definition 11.1.8. An Einstein manifold is a pseudo-Riemannian manifold
(M,g) for which there is λ ∈ R such that Ric = λg.

Remarks.

• If (M,g) has constant sectional curvature equal to κ, then Ric = (n−1)κg.

• This implies that∇Ric = 0, and it is almost an equivalence (in other terms,
an Einstein manifold should be interpreted as a pseudo-Riemannian man-
ifold with constant Ricci curvature).
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Definition 11.1.9. Let (M,g) be a pseudo-Riemannian manifold, and Ric ∈
Γ (S2T ∗M) its Ricci curvature. The scalar curvature of (M,g) is the function
R = Scal ∈ C∞(M) defined by:

∀x ∈M R(x) = Scal(x) = Trgx (Ricx)

where Trgx is the trace of a quadratic form with reference gx.

Remarks.

• If (ei)1≤i≤d is a gx-orthonormal frame of TxM, thenR(x) =
∑d
i=1 Ricx(ei , ei).

• It can also be defined as R(x) = Tr(fx) where fx ∈ End(TxM) is the gx-self
adjoint operator such that Ricx(v,w) = gx(v,fx(w)) for all v,w ∈ TxM.

• In local coordinates, R =
∑

1≤i,j≤d g
i,jRi,j .

Einstein’s equation: in the theory of General Relativity, a spacetime is
represented by a 4-dimensional Lorentzian manifold (M,g) (Special Rela-
tivity corresponds to the Minkowski space M4). The physics of a spacetime
are encoded in a type (2,0) tensor T ∈ Γ (S2(T ∗M)), called the stress-energy
tensor, and Einstein’s equation is an equation on the Lorentzian metric g:

Ric− 1
2
R+Λg = T

where Λ is called the cosmological constant.

Proposition 11.1.10. Let (M,g) be a pseudo-Riemannian manifold. For λ >
0, the following tensors and functions associated to the metrics g and λ2g are
related in the following way:

1. ∇λ2g = ∇g

2. dvolλ
2g = λndvolg

3. If g is Riemannian, then dλ2g = λdg .

4. Rλ
2g = Rg (where R is the type (3,1) Riemann tensor).

5. Kλ
2g = 1

λ2K
g

6. Ricλ
2g = Ricg

7. Scalλ
2g = 1

λ2 Scalg .

Moreover, isometries preserve R,K,Ric and Scal.
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Definition 11.1.11. We say that a Riemannian manifold (M,g) has pinched
sectional curvature if there are α,β ∈ R such that α ≤ K(P ) ≤ β for every plane
P ∈ G2(TM).
We say that it has negative pinched curvature if there are b < a < 0 such that
−b2 ≤ K(P ) ≤ −a2 for every plane P ∈ G2(TM).

Remark. These definitions would make sense for pseudo-Riemannian mani-
folds, but they are totally irrelevant.

The formulae for different types of curvature look quite intimidating
when it comes to computing them in examples. For this, we can try to
cheat and use the abundance of isometries in the three main examples.

If (M,g) is Riemannian, and Isom(M,g) y M is transitive, then (M,g)
has pinched sectional curvature, and Scal is constant.

If moreover Isom(M,g) y G2(TM) is transitive, then (M,g) has constant
sectional curvature.

Consequence: the Riemannian manifolds En, (Sn,λ2gsph) and (Hn,λ2ghyp)
have constant sectional curvature (we will see that their values are respec-
tively 0, 1

λ2 and − 1
λ2 ).

11.1.2 Jacobi fields as variation fields

Consider a Riemannian manifold (M,g) and a geodesic c : I →M.

Reminder: A Jacobi field along c is J : I → TM such that ∀t ∈ I J(t) ∈
Tc(t)M and D

dt
D
dt J +R(J, ċ)ċ = 0.

A Jacobi field J is determined by J(t0) and D
dt J(t0) for a given t0 ∈ I .

Proposition 11.1.12. Let (M,g) be a Riemannian manifold, and c : I →M a
geodesic. If J is a Jacobi field along c, and if

∃t0 ∈ I J(t0)⊥ ċ(t0) and
D
dt
J(t0)⊥ ċ(t0)

then
∀t ∈ I J(t)⊥ ċ(t) and

D
dt
J(t)⊥ ċ(t)

Proof. Since c is a geodesic, we have that:

d
dt
g
(D
dt
J, ċ

)
= g

(D
dt
D
dt
J, ċ

)
Using the fact that J is a Jacobi field, it follows that:

d
dt
g
(D
dt
J, ċ

)
= −R(J, ċ, ċ, ċ) = 0
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In other words, g(Ddt J, ċ) is constant. If it vanishes a t0, then it vanishes
everywhere.
We now have d

dtg(J, ċ) = g(Ddt J, ċ) = 0, so g(J, ċ) is also constant, and vanishes
on I .

Lemma 11.1.13. Let (M,g) be a Riemannian manifold, and c : I → M a
geodesic. Consider a function f ∈ C∞(I), and set J = f ċ. Then J is a Jacobi
field if and only if f̈ = 0.

Proof. Since D
dt ċ = 0, we find D

dt
D
dt J = D

dt (ḟ ċ) = f̈ ċ. Now R(J, ċ)ċ = f R(ċ, ċ)ċ =
0 because of skew-symmetry.

Definition 11.1.14. Let (M,g) be a Riemannian manifold, and c : I → M a
geodesic. A Jacobi field J along c is called orthogonal if

∀t ∈ I J(t)⊥ ċ(t) and
D
dt
J(t)⊥ ċ(t)

It is called tangent if there are a,b ∈ R such that J(t) = (at + b)ċ(t) for all t ∈ I .

Proposition 11.1.15. Let (M,g) be a Riemannian manifold, c : I → M a
geodesic and J a Jacobi field along c. Then g is tangent if and only if there is
t0 ∈ I such that J(t0) and D

dt J(t0) are proportional to ċ(t0).

Proof. If J is tangent, then the computation made in Lemma 11.1.13 shows
that J and D

dt J are proportional to ·J everywhere.
If D

dt J(t0) = aċ(t0) and J(t0) = (at0 +b)ċ(t0), then the t 7→ (at+b)ċ(t) is a Jacobi
field according to Lemma 11.1.13, and has the same initial condition at t0
as J , so it must be equal to J , therefore J is tangent.

Proposition 11.1.16. Let (M,g) be a Riemannian manifold, and c : I →M a
geodesic. If J is a Jacobi field along c, then J decomposes uniquely as J = JT + J⊥

where JT is a tangent Jacobi field along c and J⊥ is an orthogonal Jacobi field
along c.

Proof. The uniqueness comes from the fact that tangent and orthogonal
Jacobi fields form vector spaces whose intersection in null.
For the existence, fix t0 ∈ I , and decompose D

dt J(t0) = aċ(t0) + u and J(t0) =
(at0 + b)ċ(t0) + v where a,b ∈ R and u,v ∈ ċ(t0)⊥. Let JT (t) = (at + b)ċ(t), and
let J⊥ be the Jacobi field along c such that J⊥(t0) = u and D

dt J
⊥(t0) = v. Then

JT +J⊥ is a Jacobi field along c with the same initial data at t0 as J , therefore
J = JT + J⊥.
By construction JT is tangent, and J⊥ is orthogonal thanks to Proposition
11.1.12.

Definition 11.1.17. Let (M,g) be a Riemannian manifold, and c : I → M a
smooth curve.
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A variation of c is a smooth map f : I × ]−ε ,ε[→M for some ε > 0 such that,
if cs : I →M is the curve defined by cs(t) = f (t, s), then c0 = c.
It is a geodesic variation if all the curves cs are geodesics.
The variation field of f the the vector field J along c defined by J(t) = ∂

∂s

∣∣∣
s=0
cs(t) ∈

Tc(t)M.

Proposition 11.1.18. Let (M,g) be a Riemannian manifold, c : I → M a
geodesic, and J a vector field along c.
Then J is a Jacobi field if and only if for every t0 ∈ I , there is an open interval
I0 ⊂ I with t0 ∈ I such that J |I0 is the variation field of a geodesic variation of
c|I0 .

Remark. If (M,g) is geodesically complete, then the local asumption can be
removed: J is a Jacobi field if and only if it is the variation field of a geodesic
variation of c.

Proof. The fact that the variation field of a geodesic variation is a Jacobi
field was proved in section ??.

If J is a Jacobi field and t0 ∈ I , first consider a geodesic γ : [−ε ,ε]→M
such that γ(0) = c(t0) and γ̇(0) = J(t0).

Let X,Y : ]−ε ,ε[→ TM be the parallel vector fields along γ such that
X(0) = ċ(t0) and Y (0) = D

dt J(t0).
Let I0 ⊂ I be an open interval such that t0 ∈ I and the geodesic cs with

initial condition cs(t0) = γ(s) and ċs(t0) = X(s) + sY (s) is defined on I0 (note
that c0 = c).
On pose cs(t) = expγ(s)(tX(s) + stY (s)).

Then f : I0 × ]−ε ,ε[→M defined by f (t, s) = cs(t) is a geodesic variation
of c. It follows that J1 = ∂

∂s

∣∣∣
s=0
cs is a Jacobi field.

Since cs(t0) = γ(s), we have that J1(t0) = γ̇(0) = J(0). We also have that
D
∂t
∂f
∂s = D

∂s
∂f
∂t and ∂f

∂t (t0, s) = ċs(t0) = X(s) + sY (s), so D
∂s
∂f
∂t (t0,0) = Y (0) (be-

cause X and Y are parallel along γ). This shows that D
dt J1(t0) = D

dt J(t0), so
J1 = J , and J is the variation field of a geodesic variation on I0.

11.1.3 The second variation formula

Jacobi fields also arise naturally from the variational study of geodesics.

Definition 11.1.19. Let (M,g) be a Riemannian manifold, R its type (3,1)
curvature tensor and c : [a ,b]→M a geodesic. The bilinear form

I :

 Γ (c∗TM)× Γ (c∗TM) → R
(X,Y ) 7→ −

∫ b
a
g
(
X, Ddt

D
dtY +R(Y , ċ)ċ

)
dt

is called the index form of c.
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Theorem 11.1.20. Let (M,g) be a Riemannian manifold, c : [a ,b] → M a
geodesic, f : [a ,b] × ]−ε ,ε[→M a variation of c, and J its variation field. We
have:

d2

ds2

∣∣∣∣∣∣
s=0

E(cs) = I(J, J)

11.1.4 Jacobi fields and sectional curvature

Let (M,g) be a Riemannian manifold, x ∈ M, P ⊂ TxM a plane, and (v,w)
vector basis of TxM.

Let c = cv be the geodesic with initial velocity v, and J a Jacobi field
along c such that J(0) = w.

K(P ) =
gx(Rx(v,w)w,v)

gx(v,v)gx(w,w)− gx(v,w)2 = −
gx

(
D
dt
D
dt J(0), J(0)

)
gx(ċ(0), ċ(0))gx(J(0), J(0))− gx(ċ(0), J(0))2

In particular, if gx(v,v) = 1, gx(v,w) = 0, and J is orthogonal along c, we
find:

K (Rċ(0)⊕RJ(0)) = −

〈
D
dt
D
dt J(0)

∣∣∣J(0)
〉

‖J(0)‖2

If we know the explicit expressions of geodesics of a given Riemannian
manifold, then we can compute Jacobi fields using geodesic variations, and
this formula gives the sectional curvature.

11.2 Curvature and topology

11.2.1 Riemannian manifolds with constant sectional curvature

Theorem 11.2.1. For n ≥ 2, the sectional curvature of (Sn, gsph) is +1, that of
(Hn, ghyp) is −1.

Proof. For x ∈ Sn ⊂ En+1 and v ∈ TxSn = x⊥ such that ‖v‖ = 1, the geodesic
cv is given by:

c(t) = cos tx+ sin tv

If w ∈ TxSn is such that ‖w‖ = 1 and 〈v|w〉 = 0, then:

f (s, t) = cos tx+ sin t(cossv + sinsw)

is a geodesic variation of c. Therefore J(t) = sin tw is a Jacobi field along c.
Now D

dt
D
dt J = J̈ = −J , so for t such that sin t , 0, we haveK(Rċ(t)⊕RJ(t)) =

−〈J̈(t)|J(t)〉〈J(t)|J(t)〉 = 1.
Since we have already seen that the sectional curvature is constant, we
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find that it is 1 everywhere.

For the hyperbolic space Hn, consider the hyperboloïd model Hn ⊂
Mn+1. The geodesic cv is now given by:

c(t) = cosh tx+ sinh tv

The geodesic variation is:

f (s, t) = cosh tx+ sinh t(cossv + sinsw)

The associated Jacobi field is J(t) = sinh tw, it satisfies D
dt
D
dt J = J̈ = J , and the

sectional curvature is K = −1.

Theorem 11.2.2. Let (M,g) be a Riemannian manifold of dimension n with
constant sectional curvature equal to κ ∈ R. Then every x ∈M has a neighbour-
hood U isometric to an open set of:

En if κ = 0
(Sn, 1

κgsph) if κ > 0
(Hn,− 1

κghyp) if κ < 0

Moreover, if (M,g) is complete and simply connected, then it is globally isomet-
ric to this model space.

Lemma 11.2.3. Let (M,g) be a Riemannian manifold with constant sectional
curvature equal to κ ∈ R. For all x ∈ M, if (u,v) is an orthonormal basis of a
plane P ⊂ TxM, then Rx(u,v)v = κu.

Proof. Let us start with showing that Rx(u,v)v ∈ R.v ⊕R.w. If dimM = 2,
it is automatic. If dimM ≥ 3, we can consider w ∈ TxM such that ‖w‖x = 1
and gx(u,w) = gx(v,w) = 0.
Notice that since (u,v) and (v,w) are both orthonormal, we have:

Rx(u,v,v,u) = Rx(w,v,v,w) = κ

Expressing the sectional curvature of the plane generated by v and u +w
yields R(u +w,v,v,u +w) = 2κ.
The symmetries of the (4,0) Riemann tensor show thatRx(w,v,v,u) = Rx(u,v,v,w),
and multi-linearity leads to:

Rx(u +w,v,v,u +w)︸                   ︷︷                   ︸
=2κ

= Rx(u,v,v,u)︸        ︷︷        ︸
=κ

+2Rx(u,v,v,w) +Rx(w,v,v,w)︸         ︷︷         ︸
=κ

It follows that Rx(u,v,v,w) = 0 = gx(R(u,v)v,w). This being true for any
unitary vector w orthogonal to u and w, we find that Rx(u,v)v = λu+µv for
some λ,µ ∈ R.
Now Rx(u,v,v,v) = 0 yields µ = 0, and Rx(u,v,v,u) = κ yields λ = κ, hence
the result.
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Lemma 11.2.4. Let (M,g) be a Riemannian manifold with constant sectional
curvature equal to κ ∈ R. For x ∈M, and u,v ∈ TxM such that gx(u,v) = 0 and
gx(v,v) = 1, we let U be the parallel vector field along cv such that U (0) = u,
and J the Jacobi field along cv such that J(0) = 0 and D

dt J(0) = u.
For t ∈ Iv , we have J(t) = f (t)U (t), where

f (t) =


t if κ = 0

1√
κ

sin
(√
κt

)
if κ > 0

1√
−κ sinh

(√
−κt

)
if κ < 0

Proof. Notice that the function f satisfies (and is determined by) f (0) = 0,
ḟ (0) = 1, and f̈ = −κf .

Set J1(t) = f (t)U (t). Since U is parallel along cv , we find D
dt J1 = ḟ U , and

D
dt
D
dt J1 = f̈ U = −κJ1.
According to Lemma 11.2.3, we have R(J1, ċv)ċv = κJ1. So J1 is a Jacobi

field along cv . But J1(0) = 0 and D
dt J1(0) = u, therefore J1 = J .

Proof of Theorem 11.2.2. Multiplying g by some well chosen λ > 0 if neces-
sary, we can assume that κ = 0, 1 or −1.
Fix some x ∈M.

Flat case: Let us show that expx : (TxM,gx)→ (M,g) is a local isometry.

Let v ∈ TxM be such that expx(v) is well defined. Set c(t) = expx(tv).
For w ∈ TxM, we have dv expx(w) = J(1), where J is the Jacobi field along

c satisfying J(0) = 0 and D
dt J(0) = w. Write w = λv +u where gx(v,u) = 0.

Lemma 11.2.4 shows that J(1) = U (1) where U is the parallel vector
field along c such that U (0) = w.

It follows that dv expx(w) = J(1) + λċ(1) is the value at 1 of a parallel
vector field along c. Since the parallel transport is isometric, it follows that
dv expx is isometric, i.e. expx is a local isometry.

In the complete case, the map expx is local isometry from En to M,
hence a Riemannian covering by Proposition 10.3.7, and an isometry if M
is simply connected.

Negative curvature case: Now Lemma 11.2.4 gives
∥∥∥dtv expx(tw)

∥∥∥ =
sinh t when gx(v,w) = 0.

Consider some x̃ ∈Hn. We know that expx̃ = Tx̃Hn→Hn is a diffeomor-
phism.

Fix a linear isometry f : Tx̃Hn → TxM. Just as in the flat case, Lemma
11.2.4 shows that exp∗x̃ ghyp = (expx ◦f )∗g.

The map F = expx ◦f ◦ exp−1
x̃ is an isometry (local or global depending
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on the hypothesis) with Hn.

Positive curvature case: Now Lemma 11.2.4 gives
∥∥∥dtv expx(tw)

∥∥∥ = sin t
when gx(v,w) = 0.

The construction of a local isometry works exactly as in the negative
curvature case.

In the complete and simply connected case, we have to be more care-
ful. Using the inverse of the exponential map, we build a local isometry
F : Sn \ {−x̃} →M.

Fix some ỹ ∈ Sn \ {x̃,−x̃}. Consider y = F(ỹ), and the same construction
as for F gives a local isometryG : Sn\{−ỹ} such thatG(ỹ) = y and dỹG = dỹF.

Since Sn \ {±x̃,±ỹ} is connected, It follows from Proposition 9.6.9 that
F = G on this subset, and we have built a local isometry Sn→M, which is
an isometry because M is simply connected.

Consequence: If a Riemannian manifold (M,g) has constant sectional
curvature equal to κ, then (M,g) is isometric to a quotient Xnκ/Γ where
Γ ⊂ Isom(Xnκ) is isomorphic to π1(M).

All surfaces posses a Riemannian metric with constant sectional curva-
ture. This is not true for higher dimensional manifolds (e.g. S2 × S1).

Theorem 11.2.5 (Poincaré-Koebe Uniformisation Theorem).
Let (M,g) be a two-dimensional Riemannian manifolds. There is a constant
curvature metric g ′ conformal to g. It is unique up to homothety.

Case κ = 0: A Riemannian manifold (M,g) with constant sectional cur-
vature equal to 0 is called flat.

Theorem 11.2.6 (Bieberbach Theorem).
If En/Γ is compact and orientable, then Γ ∩ Rn is the group generated by n
linearly independent translations, and has finite index in G.

Flat compact surfaces are the torus T2 = E2/Z2 and the Klein bottle E2/Γ
where Γ is the group generated by (x,y) 7→ (x+1, y) and (x,y) 7→ (1−x,y+1).

Case κ = 1: A Riemannian manifold with constant sectional curvature
equal to +1 is called spherical (note that it is not the negation of aspheri-
cal. . . ).

A complete spherical manifold is compact.
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Compact spherical surfaces are the sphere S2 and the projective plane
RP2.

Case κ = −1: A Riemannian manifold with constant sectional curvature
equal to −1 is called hyperbolic.

Hyperbolic manifolds are plentiful (e.g. all the remaining compact sur-
faces), their study is still an active area of research.

11.2.2 The topology of non positively curved Riemannian mani-
folds

Given κ ∈ R, we define the function fκ : R→ R by:

fκ(t) =


t if κ = 0

1√
κ

sin
(√
κt

)
if κ > 0

1√
−κ sinh

(√
−κt

)
if κ < 0

It is the solution of the ODE ÿ +κy = 0 with initial conditions fκ(0) = 0 and
ḟκ(0) = 1.

Recall that if J is a Jacobi field along a unit speed geodesic in a Rieman-
nian manifold with constant sectional curvature equal to κ, and J(0) = 0,
then ‖J(t)‖ =

∥∥∥D
dt J(0)

∥∥∥fκ(t) for t ≥ 0 (and t < π√
κ

when κ > 0).

Lemma 11.2.7. Let (M,g) be a Riemannian manifold with sectional curvature
bounded from above by κ0 ∈ R.
If c : I → M is a unit speed geodesic, and J : I → TM is an orthogonal Jacobi
field along c such that J(0) = 0, then ‖J(t)‖ ≥

∥∥∥D
dt J(0)

∥∥∥fκ0
(t) for t ∈ I (and

t < π√
κ0

when κ0 > 0).

Proof. Assume that
∥∥∥D
dt J(0)

∥∥∥ = 1 (which is always possible unless D
dt J(0) = 0,

in which case J = 0 and the result is straightforward).
Set u(t) = ‖J(t)‖. If u(t) , 0, we find:

u̇(t) =

〈
J(t)

∣∣∣D
dt J(t)

〉
‖J(t)‖

Let us differentiate once more:
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ü(t) =

〈
D
dt J

∣∣∣D
dt J

〉
+
〈
J
∣∣∣D
dt
D
dt J

〉
‖J‖

−

〈
J
∣∣∣D
dt J

〉2

‖J‖3

=

∥∥∥D
dt J

∥∥∥2 ‖J‖2 −
〈
J
∣∣∣D
dt J

〉2

‖J‖3
− 〈R(J, ċ)ċ|J〉

‖J‖

≥ −〈R(J, ċ)ċ|J〉
‖J‖

≥ −κ0 ‖J‖

Hence ü ≥ −κ0u.

In order to justify this formula, let us prove that u(t) , 0 when t > 0 is
small enough. Set v = u2 = g(J, J). Then v̇ = 2

〈
J
∣∣∣D
dt J

〉
, hence v̈ = 2

∥∥∥D
dt J

∥∥∥2
+

2
〈
J
∣∣∣Ddt Ddt J〉. We find v̈(0) = 1, hence the result.

We wish to compare u and fκ0
. We have:

d
dt

(
u
fκ0

)
=
u̇fκ0
−uḟκ0

f 2
κ0

Since u(0) = fκ0
(0) and u̇(0) = ḟκ0

(0), we find (u̇fκ0
−uḟκ0

)(0) = 0.

d
dt

(u̇fκ0
−uḟκ0

) = fκ0
(ü +κ0u) ≥ 0

It follows that u
fκ0

is non-decreasing, hence u ≥ kκ0
, which is the desired

result.

Definition 11.2.8. Let (M,g) be a Riemannian manifold. Two points x,y ∈M
are called conjugate if there is a geodesic c : [0 ,1]→M such that c(0) = x and
c(1) = y, and a non trivial Jacobi field J along c such that J(0) = 0 and J(1) = 0.

Proposition 11.2.9. Let (M,g) be a Riemannian manifold with non-positive
sectional curvature. Then M has no pairs of conjugate points.

Proof. If c is a geodesic and J a Jacobi field along c such that J(0) = 0 and
J(1) = 0, Lemma 11.2.7 yields D

dt J(0) = 0, hence J = 0.

Theorem 11.2.10 (Cartan-Hadamard Theorem).
Let (M,g) be a connected complete Riemannian manifold. If the sectional curva-
ture is non-positive, then for all x ∈M, the map expx : TxM→M is a covering
map.
In particular, its universal cover is diffeomorphic to Rd (where d = dimM).
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Proof. By completeness, expx is defined on all TxM. Recall (Proposition ??)
that for v,w ∈ TxM, the differential dv expx(w) is equal to J(1) where J is the
Jacobi field along the geodesic cv satisfying J(0) = 0 and D

dt J(0) = w.
According to Lemma 11.2.7, we have

∥∥∥dv expx(w)
∥∥∥

expx(v)
≥ ‖w‖x. This

means that exp∗x g ≥ gx. It follows from Proposition 10.3.8 that expx is a
covering map.

Consequence: if M is simply connected and κ ≤ 0, then two points are
linked by a unique geodesic.

11.2.3 The topology of positively curved Riemannian manifolds

Theorem 11.2.11 (Myers).
Let (M,g) be a complete Riemannian manifold of dimension d. If there is r > 0
such that:

Ric ≥ d − 1
r2 g

Then diamM ≤ πr. In particular, M is compact and π1(M) is finite.

Remarks.

• Under these conditions, diamM = πr if and only if (M,g) is isometric to
Sn (Cheng).

• If κ ≥ 1
r2 , then Ric ≥ d−1

r2 g.

This result can appear weaker than the Cartan-Hadamard Theorem,
since it does not determine the topology of M. The reason for this is that
positively curved simply connected Riemannian manifolds can have differ-
ent topologies (e.g. Sn and CPn). In even dimension, the Synge Theorem
asserts that an oriented complete Riemmannian manifold with positive sec-
tional curvature is simply connected (this is not true in odd dimensions, as
show the Lens spaces, quotients of S3 by finite cyclic groups).

To obtain that M is covered by Sn, we need to add a condition on the
curvature. The story starts in 1926 with a conjecture of Hopf stating that
a simply connected Riemannian manifold with sectional curvature close
enough to 1 should be homeomorphic to a sphere. This was first proved in
1951 by Rauch: if the sectional curvature κ of a complete simply connected
Riemannian manifold (M,g) satifies 3

4 ≤ κ ≤ 1, then M is homeomorphic
to a sphere. The optimal constant was found in 1961, a result of Berger
(heavily relying on the work of Klingenberg) states that if the sectional cur-
vature κ satisfies 1

4 < κ ≤ 1, then M is homeomorphic to a sphere. Berger
also showed that if it satisfies 1

4 ≤ κ ≤ 1 but M is not homeomorphic to a
sphere, then (M,g) is isometric to a standard Riemannian metric on a pro-
jective space CPn, HPn or OP2.

The question of differentiability in the Sphere Theorem stayed open
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for many years after the work of Berger. A first version with non optimal
pinching constants was obtained by Gromoll and Calabi in 1966. The final
version was proved in Brendle and Schoen in 2007: if (M,g) is a complete
simply connected Riemannian manifold with sectional curvature κ satis-
fying 1

4 < κ ≤ 1, then M is diffeomorphic to a sphere. Note that there are
examples of manifolds that are homeomorphic to a sphere Sn but not dif-
feomorphic to Sn (e.g. for n = 7), known as exotic spheres. Gromoll and
Meyer exhibited in 1974 an exotic sphere with a positively curved Rieman-
nian metric.

The main tool used by Brendle and Schoen is the Ricci flow, which is
famous for being used by Perelman in his proof of the Poincaré conjecture.

11.3 The geometry of non positively curved Rieman-
nian manifolds

Definition 11.3.1. A Cartan-Hadamard manifold is a simply connected com-
plete Riemannian manifold of non positive sectional curvature.

We have seen that if (M,g) is a Cartan-Hadamard manifold and x ∈M,
then expx is a diffeomorphism. For x,p,q ∈ M, we can define the angle
^x(p,q) to be ^(u,v) where p = expx(u) and q = expx(v).

Lemma 11.3.2. Let (M,g) be a Cartan-Hadamard manifold, x ∈M and u,v ∈
TxM. We have:

d(expx(u),expx(v)) ≥ ‖u − v‖x
Proof. We saw in the proof of the Cartan-Hadamard Theorem that

∥∥∥dw expx(z)
∥∥∥ ≥

‖z‖x for all w,z ∈ TxM. Now consider the curve γ(t) = expx(u + t(v − u)) for
t ∈ [0 ,1]. We find:∥∥∥γ̇(t)

∥∥∥
γ(t)

=
∥∥∥du+t(v−u) expx(v −u)

∥∥∥
γ(t)
≥ ‖v −u‖x

This yields d(expx(u),expx(v) ≥ L(γ) ≥ ‖v −u‖x.

Lemma 11.3.3. Let (M,g) be a Cartan-Hadamard manifold, and let x,y,z ∈M.
Set a = d(x,z), b = d(y,z), c = d(x,y) and γ = ^z(x,y). We have the following
relation:

c2 ≥ a2 + b2 − 2abcosγ

Proof. Consider u,v ∈ TzM such that x = expz(u) and y = expz(v).

c2 = d(expz(u),expz(v))2

≥ ‖u − v‖2x = ‖u‖2x + ‖v‖2x − 2〈u|v〉x
≥ a2 + b2 − 2abcos(γ)
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Proposition 11.3.4. Let (M,g) be a Cartan-Hadamard manifold, and let S ⊂M
be a non empty bounded subset. There is a unique closed ball of minimal radius
containing S.

Proof. Set E =
{
(x,r) ∈M ×R+

∣∣∣S ⊂ B(x,r)
}

and R = inf {r |∃x ∈M (x,r) ∈ E}.
Consider a sequence (xk , rk) ∈ E such that rk → R. Let us show that (xk)

is a Cauchy sequence.
Let ε > 0, and let k0 > 0 be such that: ∀k ≥ k0 r

2
k ≤ R

2 + ε. For k, l ≥ k0
and p ∈ S, we let q be the middle point of the geodesic segment joining xk
and xl , hence

^q(p,xk) +^q(p,xl) = π

Up to exchanging k and l, we can assume that

cos^q(p,xk) ≤ 0

We now get

R2 + ε ≥ r2
k

≥ d(xk ,p)2

≥ d(xk ,q)2 + d(p,q)2 =
d(xk ,xl)2

4
+ d(p,q)2

Since S is not included in B(q,R− ε) (by definition of R), we can choose
p ∈ S that satisfies d(p,q)2 ≥ R2 − ε. Therefore

R2 + ε ≥ d(xk ,xl)2

4
+R2 − ε

It follows that (xk) is a Cauchy sequence.

Existence: Consider any sequence (xk , rk) such as above, and let x =
limxk ∈M. Then S ⊂ ∩k≥0B(xk , rk) ⊂ B(x,R).

Uniqueness: If S ⊂ B(x,R) and S ⊂ B(y,R), then consider the sequence
(xk , rk) in E such that rk = R, x2k = x and x2k+1 = y. We find that (xk) con-
verges in M, so x = y.

Corollary 11.3.5. Let (M,g) be a Cartan-Hadamard manifold, and let K be a
compact group that acts continously on M by isometries. Then K fixes a point
in M.

Remark. By a continuous action, we mean that the map K ×M →M is con-
tinuous.

Proof. Let x ∈ M. The orbit K.x is compact, hence bounded and Propo-
sition 11.3.4 says there is a unique closed ball of minimal radius B(x0,R)
containing K.x. For ϕ ∈ K , we find that B(ϕ(x0),R) contains ϕ(K.x) = K.x,
so ϕ(x0) = x0 by uniqueness.



62 CHAPTER 11. PSEUDO-RIEMANNIAN CURVATURE

11.3.1 The boundary at infinity of a Cartan-Hadamard manifold

Definition 11.3.6. Let (M,g) be a complete Riemannian manifold.
Two unit speed geodesics c1, c2 : R → M are called positively asymptotic if
there is M such that d(c1(t), c2(t)) ≤M for all t ≥ 0.

Lemma 11.3.7. Let (M,g) be a Cartan-Hadamard manifold. For any unit speed
geodesic c : R→M and any x ∈M, there is a unique v ∈ T 1

xM such that cv is
positively asymptotic to c.

Proof. For t ≥ 0, we let vt ∈ T 1
xM be such that the geodesic cvt goes through

c(t). Let us show that t 7→ vt is Cauchy.
Set d0 = d(x,c(0)). Lemma 11.3.3 yields

d(c(t), c(s))2 ≥ d(c(t),x)2 + d(c(s),x)2 − 2d(c(t),x)d(c(s),x)cos^(vt ,vs)

The triangle inequality gives

t − d0 ≤ d(c(t),x) ≤ t + d0

s − d0 ≤ d(c(s),x) ≤ s+ d0

For t, s large enough, we find

cos^(vt ,vs) ≥
(t − d0)2 + (s − d0)2 − (t − s)2

2(t + d0)(s+ d0)

≥ (t − d0)(s − d0)
(t + d0)(s+ d0)

(11.1)

We can set v = limt→+∞ vt ∈ T 1
xM. For t, s ≥ 0, we have

d(cv(t), c(t)) ≤ d(cv(t), cvs(t)) + d(cvs(t), c(t))

For s > t, Lemma 11.3.2 yields d(cvs (t
′), c(t)) ≤ d(cvs (z), c(0)) where t′ =

t + s′ − s and z = s′ − s, with cvs(s
′) = c(s).

The triangle inequality gives s − d0 ≤ s′ ≤ s+ d0, and we find

d(cvs(t), c(t)) ≤ d(cvs(t), cvs(t
′)) + d(cvs(t

′), c(t))

≤ d0 + d(cvs(z), c(0))

≤ d0 + d(cvs(z),x) + d0

≤ 3d0

It follows that d(cv(t), c(t)) ≤ d(cv(t), cvs(t)) + 3d0, and s → +∞ leads to
d(cv(t), c(t)) ≤ 3d0 for all t ≥ 0.
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The uniqueness is also a consequence of Lemma 11.3.3, as for all v′ ∈
T 1
xM, we have

d(cv(t), cv′ (t))
2 ≥ 2t2 (1− cos^(v,v′))

We now let G(M) be the set of unit speed geodesics in M, and ∂∞M =
G(M)/ ∼ where c1 ∼ c2 if c1 and c2 are positively asymptotic.

According to Lemma 11.3.7, for all x ∈M the map

ϕx :
{
T 1
xM → ∂∞M
v 7→ [cv]

is a bijection.

Lemma 11.3.8. Let (M,g) be a Cartan-Hadamard manifold. For x,y ∈M, the
map ϕ−1

y ◦ϕx : T 1
xM→ T 1

yM is a homeomorphism.

Proof. We only have to prove that ϕ−1
y ◦ϕx : T 1

xM→ T 1
yM is continuous.

For this purpose we consider uk → u ∈ T 1
xM. For t ≥ 0, we let vk(t) ∈

T 1
yM be such that cvk(t) goes through cuk (t) and v(t) ∈ T 1

yM be such that cv(t)
goes through cu(t).

Now set vk = ϕ−1
y ◦ϕx(uk) and v = ϕ−1

y ◦ϕx(u). Applying Lemma 11.3.3
to the triangle with vertices y, cuk (t) and cu(t), we find

cos^(vk(t),v(t)) ≥
(
t − d(x,y)
t + d(x,y)

)2

− 1
2

(
d(cuk (t), cu(t))

t − d(x,y)

)2

The uniformity in (11.1) in the proof of Lemma 11.3.7 shows that vk(t)→
vk and v(t)→ v as t→ +∞.

So for all ε > 0, we can find t > 0 such that

cos^(vk ,v) ≥ cos^(vk(t),v(t))− ε

and (
t − d(x,y)
t + d(x,y)

)2

≥ 1− ε

it follows that

cos^(vk ,v) ≥ 1− 2ε − 1
2

(
d(cuk (t), cu(t))

t − d(x,y)

)2

But cuk (t)→ cu(t) because expx is continuous, which leads to vk→ v.

Theorem 11.3.9. Let (M,g) be a Cartan-Hadamard manifold. There is a unique
topology on M =M ∪∂∞M such that:
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• For all x ∈M, the map ϕx : T 1
xM→ ∂∞M is a homeomorphism.

• M is open and dense inM, and the induced topology is the manifold topol-
ogy.

• For any unit speed geodesic c : R→M, we have limt→+∞ c(t) = [c].

• M is compact.

Note that by uniqueness, the group Isom(M) acts by homeomorphisms
on M, hence on ∂∞M.



Chapter 12

Riemannian submanifolds

Let (M,g) be a Riemannian manifold, andN ⊂M a submanifold (immersed
or embedded). Recall that the first fundamental form of N , also called the
induced metric is the Riemannian metric g on N defined as the restriction
of g to TN .

We will use a bar to denote everything that relates to N : the Levi-Civita
connection of N is ∇, the curvature tensor is R, the Riemannian distance is
d, etc. . .

For x ∈ N and v ∈ TxM, we will write v = v> + v⊥ where v> ∈ TxN and
v⊥ ∈ (TxN )⊥.

Recall that the Levi-Civita connection ∇ of (M,g) restricts to N (i.e.
∇xX(v) is well defined for X ∈ Γ (TM |N ) and v ∈ TxN ), and that the Levi-
Civita connection ∇ of (N,g) satisfies ∇xX(v) = (∇xX(v))> for all X ∈ X (N ),
x ∈N and v ∈ TxN .

12.1 The second fundamental form

Definition 12.1.1. Let (M,g) be a Riemannian manifold, and N ⊂ M a sub-
manifold. The normal bundle of N is the vector sub-bundle νN of TM |N
defined by νxN = (TxN )⊥ ⊂ TxM.

The orthogonal decomposition induces an isomorphism of vector bun-
dles TN ⊕ νN = TM |N .

Example: the normal bundle of Sn ⊂ En+1 is a trivialisable line bundle
(νxSn = R.x).

Lemma 12.1.2. Let (M,g) be a Riemannian manifold, and N ⊂M a submani-
fold. The map A : X (N ×X (N )→ Γ (νN ) defined by:

∀X,Y ∈ X (N ) A(X,Y ) = (∇Y (X))⊥

is tensorial and symmetric.

65
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Proof. Tensoriality in X comes from the definition of a connection. For
f ∈ C∞(N ), we haveA(X,f Y ) = f A(X,Y )+(X ·f )Y⊥ = f A(X,Y ) since Y⊥ = 0.
Now that we know that it is tensorial, in order to prove the symmetry we
can consider the case where X,Y are vector fields on M whose restriction
to N is tangent, thanks to Lemma 9.5.1.

A(X,Y )−A(Y ,X) = ∇Y (X)⊥ −∇X(Y )⊥

= [X,Y ]⊥

= 0

Definition 12.1.3. Let (M,g) be a Riemannian manifold, and N ⊂ M a sub-
manifold. The second fundamental form of N is

−→
II ∈ Γ

(
S2(T ∗N )⊗ νN

)
de-

fined by:
∀X,Y ∈ X (N )

−→
II (X,Y ) = (∇Y (X))⊥

Note that for X,Y ∈ X (N ), we find ∇Y (X) = ∇Y (X) + ~II(X,Y ) (this is
known as the Gauß formula).

The second fundamental form has values in the normal bundle. Given
a normal vector n ∈ νxN , the map (u,v) 7→ gx

(
n, ~IIx(u,v)

)
is a symmetric

bilinear form TxN , so it can be represented by a self adjoint operator of
TxN .

Definition 12.1.4. Let (M,g) be a Riemannian manifold, and N ⊂ M a sub-
manifold. The shape operator of N is S ∈ Γ ((νN )∗ ⊗End(TN )) defined by:

∀x ∈N ∀n ∈ νxN ∀u,v ∈ TxN gx(Sx(n)u,v) = −gx
(
n,
−→
II x(u,v)

)
Remark. The shape operator is also called the Weingarten operator.

Proposition 12.1.5 (Weingarten formula). Let (M,g) be a Riemannian man-
ifold, and N ⊂M a submanifold. For all n ∈ Γ (νN ), we have

S(n) = (∇n)>

Proof. Consider X,Y ∈ X (N ). Since the formula is local, we can assume
that X,Y ,n extend to vector fields on M. Note that we only assume that
g(n,Y ) = 0 on N , but this is enough to find that X · g(n,Y ) = 0 on N .

g
(
(∇n(X))> ,Y

)
= g (∇n(X),Y )

= X · g(n,Y )− g(n,∇Y (X))

= 0− g
(
n, ~II(X,Y ) +∇Y (X)

)
= −g(S(n)X,Y )



12.2. HYPERSURFACES 67

Theorem 12.1.6 (Gauß equation). Let (M,g) be a Riemannian manifold
with Levi-Civita connection ∇ and curvature tensor R, and let N ⊂ M be a
submanifold. Let g be the restricted metric on N , and R the curvature tensor of
g. All x ∈N and u,v ∈ TxN satisfy

Rx(u,v,v,u) = Rx(u,v,v,u)− gx
(
~IIx(u,v), ~IIx(u,v)

)
+ gx

(
~IIx(u,u), ~IIx(v,v)

)
Proof. Recall that according to Lemma 9.5.1, we can consider that u = X(x)
and v = Y (x) where X,Y ∈ X (M) are vector fields that restrict to vector
fields of N .

First, we consider two other tangent vectors w,z ∈ TxN , and use the
Weingarten formula to obtain:

gx
(
∇x

(
~II(X,Y )

)
(w), z

)
= −gx

(
Sx

(
~II(X,Y )

)
(w), z

)
= gx

(
~IIx(u,v), ~IIx(w,z)

)
(12.1)

By using the decomposition ∇ = ∇+ ~II for vector fields on N , we find:

Rx(u,v,v,u)−Rx(u,v,v,u) = gx
(
∇x

(
~II(Y ,Y )

)
(u),u

)
− gx

(
∇x

(
~II(Y ,X)

)
(v),u

)
Using (12.1), we find the desired formula.

12.2 Hypersurfaces

Consider a hypersurface N ⊂M, and n ∈ Γ (νN ) unitary (it is always possi-
ble to find such a field locally, and there are exactly two choices).

We can consider the scalar second fundamental form defined by II =〈
n
∣∣∣∣−→II 〉.

The Eigenvalues of the shape operator S(n) are called the principal cur-
vatures of N .

The Gauß curvature is K = detS(n). It is the product of the principal
curvatures.

Theorem 12.1.6 in the caseM = R3 says that the Gauß curvature ofN is
equal to its sectional curvature for the induced metric. This result implies
the Theorema Egregium of Gauß: the Gauß curvature is invariant under
isometries.

Proposition 12.2.1. LetN be an immersed hypersurface of a Riemannian man-
ifold (M,g), with unitary normal field n. Let x ∈ N , v ∈ TxN , and consider a
smooth curve c : ]−ε ,ε[→ N such that c(0) = x ∈ N and ċ(0) = v. The scalar
second fundamental form satisfies:

IIx(v,v) = gx
(D
dt
ċ(0),n(x)

)
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Proof. Differentiating the fact that ċ(t) and n(c(t)) are orthogonal for all t,
we find that:

g
(D
dt
ċ,n

)
= −g

(
ċ,
D
dt
n
)

= −g (ċ,∇n(ċ))

= −g (ċ,S(n)ċ)

= g
(
n, ~II(ċ, ċ)

)
= II(ċ, ċ)

Hypersurfaces of Ed . If (M,g) is the Euclidean space Ed , then the shape
operator is simply dn, i.e. it is already tangent to N . Indeed, the normal
field n can be seen as a map n : N → Sd−1, and its differential dxn at x ∈ N
is a map from TxN to Tn(x)Sd−1 = n(x)⊥ = TxN .

To compute the second fundamental form, we start with a smooth curve
c : ]−ε ,ε[→N such that c(0) = x ∈N and ċ(0) = v. Proposition 12.2.1 yields

IIx(v,v) = 〈c̈(0)|n(x)〉

i.e. IIx(v,v) is the curvature of the curve obtained by intersecting N with a
plane spanned by the normal direction to N and v.

The Gauß curvature of a surface in R3: it is the product of the prin-
cipal curvatures λ1,λ2, which are the extrema of the curvature of curves
drawn on N .

Ruled surfaces: a ruled surface is a surface that is obtained as a union
of straight lines.
A ruled surface has non positive Gauß curvature κ ≤ 0, it vanishes if and
only if it stays on one side of the tangent plane. The main examples are
cones, cylinders, and the one-sheeted hyperboloids.

Definition 12.2.2. Let N ⊂M be an immersed submanifold of a Riemannian
manifold (M,g). The mean curvature of N is H ∈ Γ (νN ) given by H(x) =
TrIIx.
A submanifold is called minimal if H = 0.

Remark. It is the trace of a quadratic form, i.e. H(x) =
∑n
i=1 IIx(vi ,vi) where

(vi) is an orthonormal basis of TxN .

If N is a hypersurface, we locally choose a unit normal field ~n ∈ Γ (νN ),
and consider the scalar mean curvature H(x) = TrIIx.
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Theorem 12.2.3. IfN is compact, and X ∈ X (M) is a complete vector field with
flow (ϕt), then:

d
dt

∣∣∣∣∣
t=0

Vol
(
ϕt(N )

)
= −

∫
N
g(H,X)dvolg

12.3 Totally geodesic submanifolds

Proposition 12.3.1. Let (M,g) be a Riemannian manifold and N ⊂M an im-
mersed submanifold. The following are equivalent:

1. ∀x ∈M ~IIx = 0.

2. Any geodesic of N is a geodesic of M.

3. For all x ∈ N , there are neighbourhoods V ⊂ N of x and U ⊂ TxN of 0
such that expx(U ) = V (where expx is the exponential in (M,g)).

4. TN is stable under ∇, i.e.

∀X ∈ X (N ) ∀x ∈N ∀v ∈ TxN ∇xX(v) ∈ TxN

A submanifold satisfying these properties is called totally geodesic.

Proof. First note that 1.⇐⇒ 4. comes from the definition of ~II.
2. ⇒ 3. is a consequence of the local surjectivity of the exponential map.
3. ⇒ 2. is a consequence of the uniqueness of geodesics.
2. ⇐⇒ 4. comes from the geodesic equation on a submanifold (see the
discussion following Proposition 9.6.7).

Exercise: The totally geodesic submanifolds of En are open subsets of
affine subspaces.

Lemma 12.3.2. Let (M,g) be a Riemannian manifold, and let N ⊂M be a to-
tally geodesic submanifold. For all x ∈N and u,v,w ∈ TxN , we haveRx(u,v)w ∈
TxN where R is the Riemann tensor of (M,g).

Proof. We let R be the Riemann tensor of N , so that Rx(u,v)w ∈ TxN . The
Gauß equation (Theorem 12.1.6) associated to the fact that ~II = 0 assures
that for z ∈ TxN⊥, we have 0 =

〈
Rx(u,v)w

∣∣∣z〉
x

= 〈Rx(u,v)w|z〉, henceRx(u,v)w ∈
TxN (and furthermore Rx(u,v)w = Rx(u,v)w).
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