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Chapter 13

Globally and locally symmetric
spaces

13.1 Globally symmetric spaces

Definition 13.1.1. A Riemannian symmetric space is a connected Rieman-
nian manifold (X,〈·|·〉) such that for all x ∈ X, there is an isometry sx ∈ Isom(X)
such that sx(x) = x and dxsx = − IdTxX .

Note that such an isometry sx is unique because of Proposition ??.

Lemma 13.1.2. Let X be a Riemannian symmetric space. Then X is complete,
and if c : R→ X is a geodesic, we have sc(t)(c(s)) = c(2t − s) for all t ∈ R.

Proof. First notice that if c : I → R is a geodesic and x = c(0), then sx ◦ c is
also a geodesic, with velocity vector −ċ(0), hence −I = I and sx ◦ c(t) = c(−t).
Up to a translation of the parameter, this proves the second point under
the assumption of completeness.

Let c : [a ,b] → X be a geodesic with a,b ∈ R. Set z = c(b). Now γ :
[b ,2b − a] defined by γ(t) = sz(c(2b − t)) is a geodesic such that γ(b) = c(b)
and γ̇(b) = ċ(b), so it extends c to [a ,2b−a]. Repeating this argument shows
that c is extendable to R, i.e. X is complete.

Proposition 13.1.3. If X is a Riemannian symmetric space, then X is homoge-
neous, i.e. the isometry group Isom(X) acts transitively on X.

Proof. Let x,y ∈ X. Since X is complete by Lemma 13.1.2, the Hopf-Rinow
Theorem ?? provides a geodesic c : R→ X such that c(0) = x and c(1) = y.
By Lemma 13.1.2, we find that y = sz(x) where z = c

(
1
2

)
.

Notation: IfX is a symmetric space, we considerG = Isom◦(X) the iden-
tity component of the isometry group. Recall that it is a Lie group and that
the action on X is smooth (Myers-Steenrod Theorem). We fix some x0 ∈M,
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4 CHAPTER 13. GLOBALLY AND LOCALLY SYMMETRIC SPACES

and set K = StabG(x0). It is a compact Lie subgroup of G.

For g ∈ G, we have sg(x) = g ◦ sx ◦ g−1.

Lemma 13.1.4. Let X be a Riemannian symmetric space. The map{
X → Isom(X)
x 7→ sx

is smooth.

Proof. Set G = Isom(X) and let o ∈ X. Since G y X is transitive, the orbit
map ϕo : G→ X is a submersion.

Since sg(o) = g ◦ so ◦g−1, the map x 7→ sx lifts through the submersion ϕo
to the map g 7→ g ◦ so ◦ g−1 which is smooth, so x 7→ sx is smooth.

Lemma 13.1.5. Let X a Riemannian symmetric space, and G = Isom◦(X). For
all x,y ∈ X, we have that sx ◦ sy ∈ G. The action of G on X is transitive.

Proof. Let c : R → X be a geodesic such that c(0) = x and c(1) = y. Then
sx ◦ sc(t) is a continuous path in Isom(X) that links Id and sx ◦ sy .

By letting z = c
(

3
2

)
, we find y = sz ◦ sy(x), hence the transitivity.

Examples : En, Sn and Hn are symmetric spaces.

13.2 Locally symmetric spaces

Motivated by Proposition 13.1.3, we can try to define symmetries in arbi-
trary Riemannian manifolds.

Definition 13.2.1. Let (M,g) be a Riemannian manifold, and let x ∈M. The
geodesic symmetry through x is the map sx = expx ◦

(
−exp−1

x

)
defined on

B(x, injx).

In general, it is not a local isometry, but it is in some cases.

Definition 13.2.2. A Riemannian locally symmetric space is a Riemannian
manifold (M,g) such that for all x ∈ M, the geodesic symmetry sx is isometric
on a neighbourhood of x.

Theorem 13.2.3 (Cartan-Ambrose-Hicks). Let (M,g) be a Riemannian man-
ifold. Then (M,g) is a locally symmetric space if and only if ∇R = 0.
If (M,g) is a complete and simply connected Riemannian locally symmetric
space, then it is a symmetric space.

The condition ∇R = 0 will be used in the following way:
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Lemma 13.2.4. Let (M,g) be a Riemannian manifold, and T ∈ T p,0(M) be a
covariant tensor. The following are equivalent:

1. ∇T = 0

2. For any smooth curve I →M and parallel vector fieldsX1, . . . ,Xp ∈ Γ (c∗TM)
along c, T (X1, . . . ,Xp) is constant.

Lemma 13.2.5. Let (M,g) be a Riemannian manifold with curvature tensor R.
If ∇R = 0, then for all x ∈ M and v ∈ TxM with ‖v‖x < injx, the differential
dexpx(v)sx : Texpx(v)M → Texpx(−v)M, is equal to the parallel transport along the
geodesic t 7→ expx(tv).

Proof. Write y = expx(v), and let u ∈ TyM. From the definition of sx and the
chain-rule we find that dysx(u) = −d−v expx(w) where w = (dv expx)

−1 (u) ∈
TxM.

Let c : I →M be the geodesic defined by ċ(0) = v, and J the Jacobi field
along c such that J(0) = 0 and D

dt J(0) = w. The formula for the differential
of the exponential map (Proposition ??) yields w = J(1) and dysx(w) = J(−1).

Consider a parallel orthonormal frame (ε1, . . . , εd) along c, and decom-
pose J(t) =

∑d
i=1 J

i(t)εi(t). Since we have chosen a parallel frame, we have
that Ddt

D
dt J(t) =

∑d
i=1 J̈

i(t)εi(t). Using the fact that it is an orthonormal frame,
we find:

Rc(t)(J(t), ċ(t))ċ(t) =
d∑
j=1

J j(t)Rc(t)(εj(t), ċ(t))ċ(t)

=
∑

1≤i,j≤d
J j(t)Rc(t)(εj(t), ċ(t), ċ(t), εi(t))εi(t)

Let αi,j = Rx(εj(0),v,v,εi(0)) ∈ R. According to Lemma 13.2.4, we have
that:

∀t ∈ I Rc(t)(J(t), ċ(t))ċ(t) =
∑

1≤i,j≤d
αi,jJ

j(t)εi(t)

The Jacobi field equation writes as:

∀i J̈ i +
d∑
j=1

αi,jJ
j = 0

It is a linear differential equation with constant coefficients. It follows
that the vector field J̃ along c defined by J̃(t) = −

∑d
i=1 J

i(−t)εi(t) is also a
Jacobi field.

Since J̃(0) = 0 = J(0) and D
dt J̃(0) =

∑d
i=1 J̇

i(0)εi(0) = D
dt J(0), we find that
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J̃ = J .
Finally we get:

dysx(u) = J(−1)

= J̃(−1)

= −
d∑
i=1

J i(1)εi(−1)

= −‖−1
1 J(1)

= −‖−1
1 u

Since the parallel transport is isometric (proposition ??), it follows that
sx is a local isometry.

Lemma 13.2.5 admits the following generalisation:

Lemma 13.2.6. Let (M,g) be a complete Riemannian manifold, and assume
that ∇R = 0. For all x,y ∈ M and all linear isometry ϕ : TxM → TyM which
preserves the Riemann tensor (i.e. Ry(ϕ(u),ϕ(v))ϕ(w) = ϕ(Rx(u,v)w) for all
u,v,w ∈ TxM), there is a local isometry f : B(x, injx)→M such that f (x) = y
and dxf = ϕ.

If we drop the completeness hypothesis, we can still build f on B(x,r)
where r ≤ injx and expy is defined on BTyM(0, r).

Lemma 13.2.7. Let (M,g) be a complete Riemannian manifold, and assume
that ∇R = 0. For all x,y ∈M and smooth curve c : [0 ,1]→M such that c(0) = x
and c(1) = y, there is a neighbourhood U ⊂M of c ([0 ,1]) and a local isometry
f :U →M such that f (x) = x and dxf = − Id.

Proof. Considering the open cover c ([0 ,1]) ⊂
⋃
t∈[0 ,1]B(c(t), injc(t)), we can

consider a finite sequence 0 = t0 < t1 < · · · < tN = 1 such that c ([ti , ti+1]) ⊂Ui
where xi = c(ti) and Ui = B(xi , injxi ).

Our goal is to inductively construct a connected open set Vi ⊂M con-
taining c ([0 , ti+1]) and a local isometry fi : Vi → M such that fi(x) = x et
dxfi = − Id.

The open set V0 = U0 and the local isometry f0 are given by Lemma
13.2.5.

Assume that we have Vi and fi : Vi →M as described above. Since xi+1 ∈
Vi , Lemma 13.2.6 guarantees the existence of a local isometry f̃ :Ui+1→M
such that f̃ (xi+1) = yi and dxi+1

f̃ = dxi+1
fi .

LetW be the connected component of xi+1 in Ui+1∩Vi . The restrictions
of fi and f̃ to W are equal.
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We now denote by Vi+1 the connected component of xi+1 in Vi ∪Ui+1.
We can define fi+1 : Vi+1 → M that extends both fi and f̃ , since they are
equal on the intersection of their domains, and satisfy all the requirements.

Finally U = VN−1 and f = fN−1 answer the initial problem.

Proof of Theorem 13.2.3. Assume that (M,g) is locally symmetric. Near x ∈
M, we have s∗x(∇R) = ∇R. Evaluating this at x, since sx(x) = x and dxsx = − Id,
we find (s∗x(∇R))x = −(∇R)x (because ∇R is a type (4,1) tensor). Hence
(∇R)x = 0.

If ∇R = 0, then Lemma 13.2.5 shows that (M,g) is locally symmetric
(because parallel transport is isometric).

We now assume that (M,g) is locally symmetric, complete and simply
connected. Let x ∈M. We wish to construct sx.

Lemma 13.2.7 assures that for every y ∈ M, we can find a connected
open set Uy ⊂M containing x and y, and a local isometry fy :Uy →M such
that fy(x) = x et dxfy = − Id. Let us show that fy(y) does not depend on the
choice of the curve to which we apply 13.2.7.

Consider two curves c0, c1 : [0 ,1]→ M such that c0(0) = c1(0) = x and
c0(1) = c1(1) = y. Since M is simply connected, we can consider a smooth
homotopy H : [0 ,1]2→M such that H(0, ·) = c0, H(1, ·) = c1, H(s,0) = x and
H(s,1) = y for all s ∈ [0 ,1].

Let cs be the curve cs = H(s, ·) for s ∈ [0 ,1], also Us the connected open
set and fs :Us→M the local isometry obtained by applying Lemma 13.2.7
to cs.

Let us show that the map
{

[0 ,1] → M
s 7→ fs(y)

is locally constant. Note

that in order to show that fs(y) = fs′ (y), we only need to check that x and y
are in the same connected component of Us ∩Us′ .

For s ∈ [0 ,1], we set r = min
{
injcs(t)

∣∣∣ t ∈ [0 ,1]
}
. Let η > 0 be such that:

|s − s′ | < η⇒∀t ∈ [0 ,1] cs′ (t) ∈ B(cs(t), r)

We find that cs′ (t) ∈Us for s ∈ ]s−η ,s+η[ and t ∈ [0 ,1]. Hence Us∩Us′ ⊃
cs′ ([0 ,1]), and y is in the connected component of Us ∩Us′ which contains
x. Hence fs′ (y) = fs(y).

Since [0 ,1] is connected, we get f0(y) = f1(y).

We now define sx in the following way: for y ∈M, we choose a smooth
path cy from x to y and we set sx(y) = fy(y) where fy is given by Lemma
13.2.7.

The map sx is isometric: for z ∈ B(y, injy), if we choose the concatena-
tion of a path from x to y and the minimising geodesic from y to z in order
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to construct sx(z), we find that sx(z) = fy(z), and fy is isometric on a neigh-
bourhood of y.

Since (M,g) is complete, the local isometry sx :M→M is a Riemannian
covering, hence a diffeomorphism because M is simply connected.

Corollary 13.2.8. Let X be a symmetric space. Then ∇R = 0.

Proposition 13.2.9. Let X be a symmetric space. If c : R → X is a geodesic,
then for all t, s ∈ R the differential at c(t) of sc(s) is equal to the opposite of the
parallel transport along c.

Proof. The same computations as in Lemma 13.2.5 can be carried out.

13.3 The symmetric space of ellipsoids

For n ≥ 2, we let En =
{
x ∈Mn(R)

∣∣∣ tx = x, x > 0, detx = 1
}
. Let x0 = 1n ∈ En,

and p = Tx0
En. Note that

p =
{
X ∈Mn(R)

∣∣∣ tX = X, TrX = 0
}

The map
{
p → En
X 7→ exp(X)

is a diffeomorphism, and we let Log be its

inverse. The map x 7→
√
x = e

1
2 Logx is a diffeomorphism of En.

Consider the action SL(n,R) y En defined by g.x = gxtg. Then StabSL(n,R)(x0) =
SO(n,R). This action is transitive, so we can identify En with SL(n,R)/SO(n,R).

Endow p with the inner product 〈X |Y 〉x0
= Tr(XY ) =

∑
i,jXi,jYi,j .

It is invariant under the action of SO(n,R).

For X ∈ TxEn, we set ‖X‖x =
∥∥∥∥√x−1

X
√
x
−1

∥∥∥∥
x0

. The polarized form is:

〈X |Y 〉x = Tr(Xx−1Y x−1)

It is a Riemannian metric on En, and SL(n,R) acts isometrically.

The map sx0
:
{
En → En
x 7→ x−1 is an isometry. It fixes x0 and satisfies

dx0
sx0

= − Id. Therefore En is a symmetric space.

G = Isom◦(En) = PSL(n,R) = SL(n,R)/{±1n} and K = PSO(n,R).

Exercise: Show that E2 is isometric to H2.
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13.4 The algebraic structure of symmetric spaces

13.4.1 Symmetric spaces and involutions of Lie groups

Proposition 13.4.1. Let X be a Riemannian symmetric space, G = Isom◦(X),
x0 ∈ M and K = StabG(x0). Let H =

{
g ∈ G

∣∣∣sx0
g = gsx0

}
and H◦ its identity

component. Then:
H◦ ⊂ K ⊂H

Conversely, if G is a connected Lie group, σ : G → G an involutive Lie
group automorphism, and K a compact subgroup of G such that H◦ ⊂ K ⊂ H ,
where H = {g ∈ G |σ (g) = g}, then any G-invariant Riemannian metric on G/K
is symmetric.

Remarks.

• If K is compact, then G-invariant Riemannian metrics on G/K exist.

• The double inclusion H◦ ⊂ K ⊂H should be interpreted as the fact that K
as the same Lie algebra as H .

Proof. Let X be a Riemannian symmetric space, G = Isom◦(X), x0 ∈M and
K = StabG(x0). Let H =

{
g ∈ G

∣∣∣sx0
g = gsx0

}
and H◦ its identity component.

If (γt) is a one-parameter subgroup of H , then sx0
(γt(x0)) = γt(x0) for

all t. Since x0 is an isolated fixed point of sx0
, it follows that γt ∈ K , hence

H◦ ⊂ K .
If g ∈ K , then h = sx0

gsx0
is an isometry of X satisfying h(x0) = x0 = g(x0)

and dx0
h = dx0

g, hence h = g. Therefore K ⊂H .

We now consider a connected Lie group G, an involutive Lie group au-
tomorphism σ : G→ G, and K a compact subgroup of G such thatH◦ ⊂ K ⊂
H , where H = {g ∈ G |σ (g) = g}. Let k be the Lie algebra of K .

Remarquons que l’algèbre de Lie de Gσ est {X ∈ g |θ(X) = X}. Comme
Gσ◦ ⊂ K ⊂ Gσ , l’algèbre de Lie de Gσ est celle de k, et on trouve :

k = {X ∈ g |θ(X) = X}

Let π : G → G/K be the projection, and let o = π(e). The map s :{
G/K → G/K
π(g) 7→ π(σ (g))

is well defined because K ⊂H . We have s(o) = o.

Let us show that dos = − Id. Since s ◦π = π ◦ σ , we have that dos ◦ deπ =
deπ ◦ deσ .

Since (deσ )2 = Id, and the Lie algebra of H , which is equal to k, is the
eigenspace of deσ for the eigenvalue 1, the eigenspace of deσ for the eigen-
value −1 is supplementary to kerdeπ = k, hence dos = − Id.

For g ∈ G, we let mg : G/K → G/K be the multiplication by g. We find:
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mg ◦ s ◦π =mg ◦π ◦ σ
= π ◦Lg ◦ σ
= π ◦ σ ◦Lσ (g)

= s ◦π ◦Lσ (g)

= s ◦mσ (g) ◦π

It follows thatmg ◦s = s◦mσ (g). We now consider a G-invariant Riemannian
metric Ω on G/K . Then s∗Ω is also G-invariant:

m∗g(s∗Ω) = (s ◦mg )∗Ω

= (mσ (g) ◦ s)∗Ω
= s∗(m∗σ (g)Ω)

= s∗Ω

Moreover, (σ ∗Ω)o =Ωo, and a G-invariant metric is characterized by its
value at o, hence s∗Ω =Ω, and (G/K,Ω) is a Riemannian symmetric space.

13.4.2 The Cartan involution

Definition 13.4.2. Let X be a Riemannian symmetric space, G = Isom◦(X), g
its Lie algebra, x0 ∈M and K = StabG(x0). The Cartan involution relatively to
x0 is the map θ = dIdσ : g→ g where σ : G→ G is defined by σ (g) = sx0

◦g ◦sx0
.

Exemple : Pour En, et x0 = 1n, on a sx0
(x) = x−1. Pour [g] ∈ PSL(n,R),

notons α([g]) ∈ G, i.e. α([g])(x) = gxtg. On trouve :

sx0
◦α([g]) ◦ sx0

(x) = (gx−1 tg)−1 = tg−1xt(tg−1)

Donc σ ([g]) = [tg−1], et θ(X) = −tX pour X ∈ sl(n,R).
Exemple : Pour En, on a K = Gσ .

Proposition 13.4.3. Let X be a Riemannian symmetric space, G = Isom◦(X),
g its Lie algebra, o ∈ X and K = Go. Let θ be the Cartan involution rela-
tively to o, and B the Killing form of g. Set k = {X ∈ g |θ(X) = X} and p =
{X ∈ g |θ(X) = −X}.

1. g = k⊕ p, and this decomposition is Ad(K)-invariant.

2. [k,k] ⊂ k, [k,p] ⊂ p et [p,p] ⊂ k.

3. k is the Lie algebra of K and deϕo : p→ ToX is an isomorphism.

4. B|k×p = 0.
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5. B|k×k is negative definite.

Remark. The decomposition g = p⊕ k is called the Cartan decomposition of
g.

Proof.

1. The decomposition g = k⊕ p is a consequence of θ2 = Id.
If σ : G→ G denotes the conjugacy by so, then ig ◦ σ = σ ◦ iσ (g) for all
g ∈ G. For g ∈ K , we have σ (g) = g, hence ig ◦σ = σ ◦ig . Differentiating
at Id yields Ad(g) ◦ θ = θ ◦Ad(g), hence the Ad(g)-invariance of the
decomposition k⊕ p.

2. All three inclusions are a consequence of the fact that θ is a Lie alge-
bra morphism.

3. We have seen in the proof of Proposition 13.4.1 that k is the Lie alge-
bra of K .
The map deϕo is surjective because the action of G is transitive. Its
kernel is the Lie algebra of K , hence supplementary to p, therefore
deϕo : p→ ToX is an isomorphism.

4. If X ∈ k and Y ∈ p, then the matrix of ad(X)◦ad(Y ) in a basis adapted
to the decomposition g = k ⊕ p has vanishing diagonal blocs, hence
Tr(ad(X) ◦ ad(Y )) = 0, i.e. B(X,Y ) = 0.

5. Let 〈〈· | ·〉〉 be an Ad(K)-invariant inner product on g. Let (e1, . . . , en) be
an orthonormal basis of g.
For X ∈ k, we find:

B(X,X) = Tr(ad(X) ◦ ad(X))

=
n∑
i=1

〈〈ad(X) ◦ ad(X)ei |ei〉〉

= −
n∑
i=1

〈〈ad(X)ei |ad(X)ei〉〉

= −
n∑
i=1

‖[X,ei]‖2

We get B(X,X) ≤ 0. Moreover, if B(X,X) = 0, then X ∈ z(g). It follows
that for all t ∈ R and Y ∈ g, exp(tX) commutes with exp(Y ).
Since G is connected, we find that exp(tX) ∈ Z(G).
The G-action on M is transitive, and for all g ∈ G we have:

exp(tX)(g(o)) = g(exp(tX)(o)) = g(o)

It follows that exp(tX) = Id, hence X = 0.
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Exemple : Pour En, on a k = so(n,R) et p =
{
X ∈ sl(n,R)

∣∣∣ tX = X
}
. La

forme de Killing de g = sl(n,R) est :

B(X,Y ) = 4nTr(XY )



Chapter 14

The geometry of symmetric
spaces

14.1 Geodesics in symmetric spaces

Definition 14.1.1. Let (M,g) be a Riemannian manifold. An isometry ϕ ∈
Isom(M,g) is a transvection if there are a non constant geodesic c : R → M
and t0 ∈ R such that for all t ∈ R, we have ϕ(c(t)) = c(t + t0) and dc(t)ϕ = ‖t+t0t .

Lemma 14.1.2. Let X be a symmetric space, and let c : R→M be a non con-
stant geodesic. For t ∈ R, consider gt = sc( t2 ) ◦ sc(0). Then gt is a transvection,
and t 7→ gt is a one-parameter subgroup of G.

Proof. Lemma 13.1.2 shows that gt(c(s)) = c(t + s), and Proposition 13.2.9
shows that dc(s)gt = ‖s+ts , so gt is a transvection.

The isometries gt+s and gt ◦ gs both send o = c(0) to c(t + s), and their
differential at o is the parallel transport along c (Proposition 13.2.9). It
follows that they are equal, i.e. t 7→ gt is a one parameter subgroup of G (it
is smooth thanks to Lemma 13.1.4).

Proposition 14.1.3. Let X be a Riemannian symmetric space, G = Isom◦(X), g
its Lie algebra, o ∈ X and g = p⊕ k the associated Cartan decomposition. For all
X ∈ p and g ∈ G, the isometry g expG(X)g−1 is a transvection of X. Moreover,
any transvection of X has this form.

Proof. Since the conjugate of a transvection by an isometry is a transvec-
tion, so we only have to show that expG(X) is a transvection for X ∈ p \ {0}.
Set v = deϕo(X), and c = cv (it is a non constant geodesic because of Propo-
sition 13.4.3). For t ∈ R, we let gt = sc( t2 ) ◦ so.

According to Lemma 14.1.2, t 7→ gt is a one-parameter subgroup of G,
so we can consider X ′ ∈ g such that gt = expG(tX). First, we wish to show

13
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that X ′ is in p. For this we compute σ
(
expG(tX ′)

)
σ
(
expG(tX ′)

)
= so ◦ sc( t2 ) ◦ so ◦ so
= so ◦ sc( t2 )

=
(
sc( t2 ) ◦ so

)−1

= g−1
t

= g−t
= expG(−tX ′)

The derivative at t = 0 yields θ(X ′) = −X ′, i.e. X ′ ∈ p. Since gt(o) = c(t), we
find:

v =
d
dt

∣∣∣∣∣
t=0
gt(o)

=
d
dt

∣∣∣∣∣
t=0
ϕo

(
expG(tX ′)

)
= deϕo(X

′)

It follows from Proposition 13.4.3 that X ′ = X. Hence expG(X) = g1 is a
transvection.

Reciprocally, let g ∈ Isom(X) be a transvection along a geodesic c. Let
t0 ∈ R be given by the definition of a transvection. Since G acts transitively
on X, we can assume that c(0) = o.

Consider gt = sc( t2 ) ◦ so as in Lemma 14.1.2. Then g and gt0 have the
same one-jet at o, so they are equal.

Let X ∈ g be such that gt = expG(tX) for all t ∈ R. The computation
above shows that X ∈ p. We find that g = expG(t0X).

Corollary 14.1.4. Let X be a Riemannian symmetric space, G = Isom◦(X), g
its Lie algebra, o ∈ X and g = p ⊕ k the associated Cartan decomposition. The
geodesics going through o are exactly the curves t 7→ expG(tX)o for X ∈ p.

Proof. Let v ∈ ToX, and set c = cv . According to Proposition 13.4.3, there is
X ∈ p such that v = deϕo(X). Following the proof of Proposition 14.1.3, we
find:

expG(tX).o = sc( t2 ) ◦ so(o)

= sc( t2 )(o)

= c(t)
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14.2 The Levi-Civita connection of a symmetric space

In order to relate the Levi-Civita connection of a symmetric space with
computations in the Lie algebra of its isometry group, we can can start by
seeing that a smooth action G y M induces a Lie algebra anti-morphism
(i.e. reversing the bracket) from the Lie algebra of G to the Lie algebra
X (M) of vector fields on M.

Definition 14.2.1. Let G be a Lie group with Lie algebra g, and M a manifold.
Consider a smooth action G y M. For X ∈ g, the fundamental vector field
associated to X is X ∈ X (M) defined by:

X(x) = deϕx(X)

Lemma 14.2.2. Let GyM be a smooth action of a Lie group. For X,Y ∈ g, we
have [X,Y ] = [Y ,X].

Remark. This result can be interpreted by seeing Diff(M) as an infinite dimen-
sional Lie group, whose Lie algebra is X (M), but the bracket is the opposite of
the usual Lie bracket of vector fields.

Proof. First notice that the flow ϕt of X is given by:

ϕt(x) = expG(tX).x

Indeed, (t,x) 7→ expG(tX).x is a flow and we have:

d
dt

∣∣∣∣∣
t=0

expG(tX).x =
d
dt

∣∣∣∣∣
t=0
ϕx

(
expG(tX)

)
= deϕx(X)

= X(x)

So the flow ψt of Y is also given by:

ψt(x) = expG(tY ).x

We can compute [X,Y ] by looking at the commutators of the flows:

[X,Y ](x) =
d
dt

∣∣∣∣∣
t=0+

ψ√t ◦ϕ√t ◦ψ−√t ◦ϕ−√t(x)

=
d
dt

∣∣∣∣∣
t=0+

(exp(
√
tY )exp(

√
tX)exp(−

√
tY )exp(−

√
tX)).x

But we also have:

d
dt

∣∣∣∣∣
t=0+

exp(
√
tY )exp(

√
tX)exp(−

√
tY )exp(−

√
tX) = [Y ,X]

It follows that [X,Y ] = [Y ,X].
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Definition 14.2.3. Let (M,g) be a Riemannian manifold. A Killing field is
X ∈ X (M) whose flow preserves g, i.e.

gϕtX (x)

(
dxϕ

t
X(u),dxϕ

t
X(v)

)
= gx(u,v)

whenever ϕtX(x) is defined.

Remark. This condition is equivalent to LXg = 0, where LX is the Lie deriva-
tive.

If a Lie group G acts smoothly on a Riemannian manifold (M,g) by
isometries, i.e. the maps x 7→ g.x are isometries, then the fundamental
vector fields are Killing fields.

Lemma 14.2.4. Let (M,g) a Riemmanian manifold with Levi-Civita connec-
tion ∇. Let X ∈ X (M) be a Killing field. For all V ,W ∈ X (M), we have:

[X,∇W (V )] = ∇W ([X,V ]) +∇[X,W ](V )

Proof. For ϕ ∈ Isom(M,g), we have ϕ∗∇ = ∇ (because ϕ∗∇ is the Levi-Civita
connection of ϕ∗g = g). This means ϕ∗(∇W (V )) = ∇ϕ∗W (ϕ∗V ).

We can apply this to the flow ϕt of X, and find:

(ϕt)∗(∇W (V )) = ∇(ϕt)∗W
(
(ϕt)∗V

)
The derivative of the left hand side at t = 0 is [X,∇W (V )] by definition of
the Lie bracket. The right hand side derivates to ∇W ([X,V ]) +∇[X,W ](V ).

Theorem 14.2.5. Let X be a Riemannian symmetric space, G = Isom◦(X), g its
Lie algebra, o ∈ X and g = p⊕ k the associated Cartan decomposition. Consider
X ∈ p and v = deϕo(X). For all V ∈ X (M), we have ∇oV (v) = [X,V ](o).

Proof. Let ϕt be the flow of X, i.e. ϕt(x) = expG(tX).x. The relationship
between a connection and its parallel transport yields

∇oV (v) =
d
dt

∣∣∣∣∣
t=0

∥∥∥∥∥o
ϕt(o)

V
(
ϕt(o)

)
Here ‖oϕt(o) is the parallel transport along the flow line t 7→ ϕt(o) =

expG(tX). According to Proposition 14.1.3, it is equal to the differential
of the transvection ϕt, hence:

∇oV (v) =
d
dt

∣∣∣∣∣
t=0

(
doϕ

t
)−1 (

V
(
ϕt(o)

))
We recognize

(
ϕt

)∗
V (o), and find ∇oV (v) = [X,V ](o).
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14.3 The curvature of a symmetric space

Theorem 14.3.1. Let X be a Riemannian symmetric space, G = Isom◦(X), g
its Lie algebra, o ∈ X and g = p ⊕ k the associated Cartan decomposition. For
X,Y ,Z ∈ p, we set u = deϕo(X),v = deϕo(Y ) and w = deϕo(Z) ∈ ToX. We have:

Ro(u,v)w = −deϕo ([[X,Y ],Z])

Remark. Note that [X,Y ] ∈ k, hence [[X,Y ],Z] ∈ p (Proposition 13.4.3). In
particular, we find Ro(u,v)w = 0 ⇐⇒ [[X,Y ],Z] = 0.

Proof. We use the fundamental vector fields X,Y ,Z to compute the curva-
ture.

Ro(u,v)w = R(X,Y )Z(x0)

= ∇o
(
∇Z(Y )

)
(u)−∇o

(
∇Z(X)

)
(v)−∇oZ

(
[X,Y ](o)

)
(14.1)

According to Lemma 14.2.2, we find:

[X,Y ](o) = −[X,Y ](o)

= −deϕo([X,Y ])

But Proposition 13.4.3 shows that [X,Y ] ∈ k = kerdeϕo, hence [X,Y ](o) = 0,
and (14.1) simplifies:

Ro(u,v)w = ∇o
(
∇Z(Y )

)
(u)−∇o

(
∇Z(X)

)
(v) (14.2)

Theorem 14.2.5 yields

∇o
(
∇Z(Y )

)
(u) =

[
X,∇Z(Y )

]
(o)

Since X is a Killing field, we can apply Lemma 14.2.4.

[
X,∇Z(Y )

]
= ∇Z

(
[X,Y ]

)
+∇[X,Z](Y )

Evaluating at o, we have seen that [X,Y ](o) = 0, so all that remains is:

[
X,∇Z(Y )

]
(o) = ∇o[X,Z](v)

Applying Theorem 14.2.5 once again, we find:

[
X,∇Z(Y )

]
(o) = [Y , [X,Z]](o)
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Two applications of Lemma 14.2.2 yield:[
X,∇Z(Y )

]
(o) = [Y , [X,Z]](o)

We have shown:

∇o
(
∇Z(Y )

)
(u) = [Y , [X,Z]](o) (14.3)

Injecting (14.3) back into (14.2), we find:

Ro(u,v)w = [Y , [X,Z]](o)− [X, [Y ,Z]](o)

The Jacobi identity yields the desired formula.

Example: For En, we can compute the sectional curvature of the plane
generated by X,Y ∈ p :

R(X,Y ,Y ,X) = −Tr([[X,Y ],Y ]X) = Tr([X,Y ]2)

We find that the sectional curvature is 0 if [X,Y ] = 0, and negative other-
wise.

14.4 Totally geodesic submanifolds of symmetric spaces

Recall that a submanifold N of a Riemannian manifold (M,g)M is called
totally geodesic if any geodesic of N is a geodesic of M.

Now we start with a point x ∈M and a vector subspace V ⊂ TxM, and
wonder whether there is a totally geodesic submanifold N ⊂ M such that
x ∈N and TxN = V . Actually there is not much choice forN , as it should be
an open subset of expx(V ). But in general, expx(V ) is not totally geodesic.

We have already seen that a necessary condition is for V to be stable
under the Riemann tensor: if u,v,w ∈ V , then Rx(u,v)w ∈ V . When (M,g)
is a symmetric space, we will show that it is also a sufficient condition. In
the general case, it cannot be sufficient as one should at least impose some
stability by the covariant derivatives of the Riemann tensor.

This stability under the Riemann tensor has a nice interpretation in Lie
algebraic terms for a symmetric space.

Definition 14.4.1. Let g be a Lie algebra. A vector subspace v ⊂ g is called a
Lie triple system if it satisfies:

∀X,Y ,Z ∈ v [[X,Y ],Z] ∈ v

Remark. This can be summarized as [v, [v,v]] ⊂ v.

Lemma 14.4.2. Let g be a Lie algebra. If v ⊂ g is a Lie triple system, then [v,v]
and v+ [v,v] are Lie subalgebras of g.
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Proof. For X,Y ,Z,W ∈ v, the Jacobi identity yields:

[[X,Y ], [Z,W ]] = −[Z, [W, [X,Y ]︸      ︷︷      ︸
∈v

]− [X, [[X,Y ],Z]︸     ︷︷     ︸
∈v

∈ [v,v]

For X,Y ∈ v+ [v,v], there are three cases to deal with:

• If X ∈ v and Y ∈ v then [X,Y ] ∈ [v,v] ⊂ v+ [v,v].

• If X ∈ v and Y ∈ [v,v] then [X,Y ] ∈ v ⊂ v+ [v,v] by definition of a Lie
triple system.

• If X ∈ [v,v] and Y ∈ [v,v] then [X,Y ] ∈ [v,v] ⊂ v+ [v,v] because [v,v] is
a Lie subalgebra.

These three cases show that v+ [v,v] is a Lie subalgebra of g.

Theorem 14.4.3. Let X be a Riemannian symmetric space, G = Isom◦(X), g
its Lie algebra, o ∈ X and g = p ⊕ k the associated Cartan decomposition. Let
V ⊂ ToX be a vector subspace. The following are equivalent:

1. V is stable under the Riemann tensor Ro.

2. (deϕo)−1(V )∩ p is a Lie triple system in g.

3. There is a totally geodesic submanifoldN of X such that x ∈N and TxN =
V .

Moreover, if these conditions are met, then expo(V ) is an immersed totally
geodesic submanifold of X, and it is a symmetric space.

Proof. Note that 1. ⇐⇒ 2. is a straightforward consequence of Theorem
14.3.1.
3.⇒1. is a general fact for Riemannian manifolds (Lemma ??). We will now
prove 2. implies 3. and the last statement.
Let v = (deϕo)−1(V )∩p, and assume that it is a Lie triple system. According
to Lemma 14.4.2, h = v + [v,v] is a Lie subalgebra of g, so we can consider
the connected Lie subgroup H ⊂ G such that TeH = h.

Note that H.o is an immersed submanifold on M (it is an orbit of a
smooth action), and that ToH.o = deϕoh = V (because [v,v] ⊂ k = kerdeϕo).

Let us show that expo(V ) ⊂H.o. Let v ∈ V , and consider X ∈ v such that
deϕo(X) = v. Corollary 14.1.4 yields expo(v) = expG(X).o. Since X ∈ v ⊂ h,
we find expG(X) ∈H and expo(v) ∈H.o. So we have proved expo(V ) ⊂H.o.

This means that any geodesic starting from o and tangent to V lies
in H.o. Given x ∈ H.o, we write x = g.o for some g ∈ H , and we have
TxH.o = dog(V ). For v ∈ V , by setting w = dog(v), we find cw(t) = g.cv(t) ∈
g(H.o) =H.o. This shows that H.o is totally geodesic, i.e. we have proven 3.

Note that H.o is complete. Indeed, for v ∈ V the geodesic cv of H.o is
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defined on R. It follows from the Hopf-Rinow Theorem thatH.o ⊂ expo(V ),
hence H.o = expo(V ). So expo(V ) is an immersed totally geodesic subman-
ifold of X.

Now note that expo(V ) is stable under so. This implies that H.o is also
stable under sg.o = gsog−1 for g ∈H , so H.o is a symmetric space.

Definition 14.4.4. Let X be a symmetric space. A flat of X is a complete and
connected totally geodesic submanifold F ⊂M which is flat.
The rank of X is the maximal dimension of a flat of X.

Remark. The rank is sometimes called the geometric rank.

Proposition 14.4.5. Let X be a Riemannian symmetric space, G = Isom◦(X),
g its Lie algebra, o ∈ X and g = p⊕ k the associated Cartan decomposition. Let
V ⊂ ToX be a vector subspace. There is a flat F ⊂ X such that ToF = V if and
only if (deϕo)

−1 (V )∩ p is an abelian subalgebra of g.

Remark. One only need to ask of (deϕo)
−1 (V )∩ p to be a Lie subalgebra, since

[p,p] ⊂ k shows that a vector subspace of p must be abelian in order to be a Lie
subalgebra of g.

Proof. Let v = (deϕo)
−1 (V )∩ p. If v is an abelian subalgebra of g, then it is a

Lie triple system and Theorem 14.4.3 shows that there is a totally geodesic
submanifold F ⊂ X such that ToF = V , and that F is a symmetric space. The
curvature of F can be computed thanks to Theorem 14.3.1, and it vanishes.

Now assume that there is a flat F ⊂ X such that ToF = V . Theorem 14.3.1
yields [[X,Y ],Z] = 0 for all X,Y ,Z ∈ v. Let B be the Killing form of g. Since
B is ad-invariant, we find for X,Y ∈ v:

B ([X,Y ], [X,Y ]) = B (ad(X)Y , [X,Y ])

= −B (Y ,ad(X)[X,Y ])

= B(Y , [[X,Y ],X])

Since [[X,Y ],X] = 0, we find that B ([X,Y ], [X,Y ]) = 0. But we showed in
Proposition 13.4.3 that B is negative on k, and [X,Y ] ∈ [p,p] ⊂ k. It follows
that [X,Y ] = 0, i.e. v is an abelian subalgebra of g.

Examples: The rank of En is n, the rank of Sn and Hn is 1. For En, a flat
corresponds to matrices that commute, so they are diagonalisable in the
same basis. It follows that the rank of En is n− 1.

14.5 The sectional curvature of symmetric spaces

In order to relate the geometry of a symmetric space X and the Lie algebra
g of its isometry group, we first notice that p in the Cartan decomposition
has two quadratic forms: the Riemannian metric of X and the Killing form
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of g. To understand their relationship, we must first ask if they have the
same signature.

Definition 14.5.1. Let X be a symmetric space, G = Isom(X), g its Lie algebra,
and let o ∈ X with corresponding Cartan decomposition g = p⊕ k. We say that
X is:

• Of Euclidean type if p is an abelian ideal of g.

• Of compact type if B|p×p is negative definite.

• Of non compact type if B|p×p is positive definite.

Remark. By using the homogeneity, we can see that this definition does not
depend on the choice of o ∈ X.

The Euclidean type can be interpreted in terms of curvature.

Proposition 14.5.2. Let X be a symmetric space. Then X is of Euclidean type
if and only if X is flat.

Proof. According to Proposition 14.4.5 applied to ToX, we see that X is flat
if and only if p is abelian. If p is abelian, then [p,k] ⊂ p shows that it is an
ideal, which completes the proof.

Consequently, a simply connected symmetric space of Euclidean type
is isometric to the Euclidean space En, hence the terminology.

Not every symmetric space is of one of these types, but the classification
of symmetric spaces reduces to these three types. Note that the product of
symmetric spaces is always a symmetric space, so a classification of sym-
metric spaces requires the understanding of which symmetric spaces can
split into a product.

Definition 14.5.3. Let X be a symmetric space, G = Isom(X), g its Lie algebra,
and let o ∈ X with corresponding Cartan decomposition g = p⊕ k. We say that
X is irreducible if the only vector subspaces v ⊂ p satisfying [k,v] ⊂ v are {0}
and p.

Remarks.

• By using the homogeneity, we can see that this definition does not depend
on the choice of o ∈ X.

• This is equivalent to stating that the action of the identity component of
K on ToK is irreducible.

Irreducible symmetric spaces must be of one of the three types de-
scribed above.
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Proposition 14.5.4. Every irreducible symmetric space is either of Euclidean,
compact or non compact type.

Before we can prove Proposition 14.5.4, we need to introduce some no-
tations.

Definition 14.5.5. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra
and B its Killing form, o ∈ X and g = p⊕k the associated Cartan decomposition.
The Riemannian form is the inner product 〈·|·〉 on p defined by:

∀X,Y ∈ p 〈X |Y 〉 = 〈deϕo(X)|deϕo(Y )〉o

The Killing operator is the self-adjoint (for 〈·|·〉) operator b ∈ End(p) defined
by:

∀X,Y ∈ p B(X,Y ) = 〈b(X)|Y 〉

Lemma 14.5.6. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra,
o ∈ X and g = p⊕k the associated Cartan decomposition. The Killing operator b
commutes with ad(X) for all X ∈ k.

Proof. Since expG(tX) ∈ Isom(X), we have:

∀v,w ∈ ToX
〈
do expG(tX)(v)

∣∣∣do expG(tX)(w)
〉

expG(tX).o
= 〈v|w〉o

The derivative at t = 0 pulled back by ϕo yields:

∀Y ,Z ∈ p 〈ad(X)Y |Z〉+ 〈Y |ad(X)Z〉 = 0 (14.4)

The ad-invariance of the Killing form now translates to b as:

∀Y ,Z ∈ p 〈b ◦ ad(X)Y |Z〉︸            ︷︷            ︸
=B(ad(X)Y ,Z)

+〈b(Y )|ad(X)Z〉︸            ︷︷            ︸
=B(Y ,ad(X)Z)

= 0 (14.5)

Putting (14.4) and (14.5) together, we find for all Y ,Z ∈ p:

〈b ◦ ad(X)(Y )|Z〉 = −〈b(Y )|ad(X)(Z)〉
= 〈ad(X) ◦ b(Y )|Z〉

Since 〈·|·〉 is positive definite, it follows that b ◦ ad(X) = ad(X) ◦ b.

Proof of Proposition 14.5.4. Since b is self-adjoint, there is an orthonormal
basis X1, . . . ,Xn of p such that b(Xi) = λiXi for λi ∈ R. We set:

v0 = Vect {Xi |λi = 0}
v− = Vect {Xi |λi < 0}
v+ = Vect {Xi |λi > 0}
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We have a direct sum p = v0 ⊕ v− ⊕ v+, this decomposition is orthogonal
for both 〈·|·〉 and B|p×p. It is also ad(k)-invariant because of Lemma 14.5.6.

If X is irreducile, then one of the three K-invariant spaces v0, v−, v+ is
equal to p. If ϕ = v0, then X is of Euclidean type. If ϕ = v+, then X is of
compact type. If ϕ = v−, then X is of non compact type.

Theorem 14.5.7. Let X be an irreducible symmetric space of compact or non
compact type, G = Isom◦(X), g its Lie algebra and B its Killing form, o ∈ X and
g = p⊕ k the associated Cartan decomposition.
There is α ∈ R \ {0} such that B(X,Y ) = α 〈X |Y 〉 for all X,Y ∈ p.
If (u,v) is an orthonormal basis of a plane P ⊂ ToX, and X,Y ∈ p are such that
deϕo(X) = u and deϕo(Y ) = v, then:

K(P ) =
1
α
B([X,Y ], [X,Y ])

If X is of compact (resp. non compact) type, then it has non negative (resp. non
positive) sectional curvature.

Proof. The Killing operator b is diagonalisable, and ad(X) commutes with
b so it must preserve its eigenspaces for each X ∈ k, so there is α ∈ R such
that b = α Id. Therefore B(X,Y ) = α 〈X |Y 〉 for all X,Y ∈ p.

By looking at the sign of B, we see that α < 0 (resp. α > 0) when X is of
compact (resp. non compact) type.

K(P ) = Ro(u,v,v,u)

= 〈Ro(u,v)v|u〉o
= 〈−[[X,Y ],Y ]|X〉

=
1
α
B([Y , [X,Y ]],X)

=
1
α
B([X,Y ], [X,Y ])

The sign of the sectional curvature comes from the fact that B is negative
definite on k.
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Chapter 15

Classification of symmetric
spaces

15.1 Decomposition into irreducible symmetric spaces

Recall that the universal cover of a symmetric space is still a symmetric
space, and that the product of symmetric spaces is also a symmetric space.
Up to these manipulations, the classification of symmetric spaces reduces
to the irreducible ones.

Theorem 15.1.1. Every simply connected symmetric space is isometric to a
product X1 × · · · ×Xk where each Xi is an irreducible symmetric space.

Lemma 15.1.2. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra
and B its Killing form, o ∈ X and g = p⊕k the associated Cartan decomposition.
The vector space p admits a decomposition

p = v0 ⊕ v1 ⊕ · · · ⊕ vk+
⊕ v−1 ⊕ · · · ⊕ vk−

such that:

• [k,vi] ⊂ vi and vi is irreducible for i , 0.

• If i , j then vi et vj are orthogonal for both the Riemannian form 〈·|·〉 and
the Killing form B.

• v1 ⊕ · · · ⊕ vk+
is equal to the sum v+ of eigenspaces attached to positive

eigenvalues of the Killing operator b and v−1⊕· · ·⊕vk− is equal to the sum
v− of eigenspaces attached to negative eigenvalues of b.

• v0 = kerb.

Proof. Since ad(X) preserves the Riemannian form on p for all X ∈ k, the
orthogonal of an ad(k)-invariant subspace is also invariant, and we can find
a decomposition of p into irreducible subspaces. Each of them must be
included in an eigenspace of b.

25
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Definition 15.1.3. Let X be a symmetric space, G = Isom◦(X), g its Lie alge-
bra, o ∈ X and g = p⊕ k the associated Cartan decomposition.
The decomposition p =

⊕
k−≤i≤k+

vi given by Lemma 15.1.2 is called the de-
composition into irreducible factors of p.

Remark. The space v0 may not be irreducible.

Lemma 15.1.4. Let X be an irreducible symmetric space of compact or non
compact type, G = Isom◦(X), g its Lie algebra and B its Killing form, o ∈ X and
g = p⊕ k the associated Cartan decomposition.
The kernel of the Killing operator v0 = kerb ⊂ p is equal to kerB. It is an abelian
ideal of g, and [v0,p] = {0}.

Proof. The definition of v0 yields B(X,Y ) = 0 for X ∈ v0 and Y ∈ p. Since k
is B-orthogonal to p, we also have B(X,Y ) = 0 for X ∈ v0 and Y ∈ k, hence
v0 ⊂ kerB.

Since B is negative definite on k, we find that kerB is included in the
orthogonal for B of k, i.e. in p. It follows that kerB ⊂ kerb = v0.

This implies that v0 is an ideal of g. Moreover, for X ∈ v0 and Y ∈ p, we
have [X,Y ] ∈ k∩ v0 = {0}, hence [v0,p] = {0}, and v0 is abelian.

Lemma 15.1.5. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra,
o ∈ X, g = p⊕ k the associated Cartan decomposition and p =

⊕
k−≤i≤k+

vi the
decomposition into irreducible factors.
For i , 0, write li = [vi ,vi] and hi = vi ⊕ li .

1. vi is a Lie triple system of g.

2. li is an ideal of k.

3. hi is an ideal of g.

4. If i , j are both different from 0, then [hi ,hj ] = {0}.

5. If i , j are both different from 0, the ideals li and lj of k are orthogonal for
B.

Proof. 1. Since [vi ,vi] ⊂ [p,p] ⊂ k, we have [[vi ,vi],vi] ⊂ [k,vi] ⊂ vi , so vi
is a Lie triple system.

2. For X ∈ k and Y ,Z ∈ vi , we find:

[X, [Y ,Z]] = −[ Y︸︷︷︸
∈vi

, [Z,X]︸︷︷︸
∈[vi ,k]⊂vi

]− [ Z︸︷︷︸
∈vi

, [X,Y ]︸︷︷︸
∈[k,vi ]⊂vi

] ∈ [vi ,vi] = li
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3. Let us start by proving that [vi ,vj ] = {0}. Let X ∈ vj and Y ∈ vi . Since
vi and vj are B-orthogonal, we find:

B([X,Y ], [X,Y ]) = B(X, [Y , [X,Y ]]︸      ︷︷      ︸
∈[vi ,k]⊂vi

) = 0

Since B is negative definite on k, we find [X,Y ] = 0, and [vj ,vi] = {0}.
We already know that [k, li] ⊂ li and [k,vi] ⊂ vi , so we find that [k,hi] ⊂
hi .
The fact that [vi ,vj ] = {0} for j , i shows that [p,vi] ⊂ [vi ,vi] = li .
Finally, for X ∈ p and Y ,Z ∈ vi , we have:

[X, [Y ,Z]] = −[ Y︸︷︷︸
∈vi

, [Z,X]︸︷︷︸
∈[vi ,p]⊂li

]− [ Z︸︷︷︸
∈vi

, [X,Y ]︸︷︷︸
∈[p,vi ]⊂li

] ∈ [vi , li] ⊂ vi

4. Since hi and hj are both ideals, we have [hi ,hj ] ⊂ hi ∩ hj = {0}.

5. For Xi ,Yi ∈ vi , and Xj ,Yj ∈ vj , we find:

B([Xi ,Yi], [Xj ,Yj ]) = B(Xi , [Yi , [Xj ,Yj ]]︸        ︷︷        ︸
=0

= 0

Thanks to Theorem 14.4.3 and Lemma 15.1.5, we know that the Xi =
expo(vi) are totally geodesic subspaces of X, and symmetric spaces.

Lemma 15.1.6. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra,
o ∈ X, g = p⊕ k the associated Cartan decomposition and p =

⊕
k−≤i≤k+

vi the
decomposition into irreducible factors.
For i , 0, write li = [vi ,vi] and hi = vi ⊕ li . Denote by l0 the B-orthogonal of⊕

i,0 li in k, and write h0 = l0 ⊕ v0.

1. h0 is an ideal of g.

2. For i , 0 we have [hi ,h0] = {0}.

3. The decomposition g =
⊕

k−≤i≤k+
hi is B-orthogonal.

Proof. Let us start by showing that for i , 0, we have [hi ,v0] = {0}. It follows
from [vi ,v0] ⊂ [p,v0] = {0} and:

[li ,v0] = [[vi ,vi],v0] ⊂ [[vi ,v0]︸ ︷︷ ︸
={0}

,vi] + [[v0,vi]︸ ︷︷ ︸
={0}

,vi] = {0}
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1. Thanks to Lemma 15.1.4 we know that [g,v0] ⊂ v0, so it only remains
to show that [g, l0] ⊂ h0. Let X ∈ k, Y ∈ l0 and Z ∈ li for some i , 0.

B([X,Y ],Z) = B(Y , [Z,X]︸︷︷︸
∈[li ,k]⊂li

) = 0

It follows that [k, l0] ⊂ l0. Now let X ∈ p, Y ∈ l0 and Z ∈ vi for some
i , 0.

B([X,Y ],Z) = B(Y , [Z,X]︸︷︷︸
∈[vi ,p]⊂li

) = 0

It follows that [p,k0] is orthogonal to vi . Since it is included in p, we
find [p, l0] ⊂ v0.

2. Since hi and h0 are both ideals of g we have [hi ,h0] ⊂ hi ∩ h0 = {0}.

3. Since the decompositions p =
⊕

k−≤i≤k+
vi and k =

⊕
k−≤i≤k+

li are B-
orthogonal, and so is g = p⊕ k, the same goes for g =

⊕
k−≤i≤k+

hi .

Lemma 15.1.7. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra,
o ∈ X, g = p⊕ k the associated Cartan decomposition and p =

⊕
k−≤i≤k+

vi the
decomposition into irreducible factors.
For i , 0, write li = [vi ,vi] and hi = vi ⊕ li . Denote by l0 the B-orthogonal of⊕

i,0 li in k, and write h0 = l0 ⊕ v0.
Let H0 be the connected Lie subgroup of G with Lie algebra h0. The symmetric
space X0 =H0.o is of Euclidean type.

Proof. This is a consequence of Proposition 14.4.5 and Lemma 15.1.4.

Lemma 15.1.8. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra,
o ∈ X, g = p⊕ k the associated Cartan decomposition and p =

⊕
k−≤i≤k+

vi the
decomposition into irreducible factors.
For i , 0, write li = [vi ,vi] and hi = vi ⊕ li . Denote by l0 the B-orthogonal of⊕

i,0 li in k, and write h0 = l0 ⊕ v0.
Let Hi be the connected Lie subgroup of G with Lie algebra hi . If i < 0 (resp.
i > 0), the symmetric space Xi = Hi .o is of compact (resp. non compact) type
and irreducible.

Proof. Since hi is an ideal of g, its Killing form is the restriction of the
Killing form of g. It is non degenerate, so according to Cartan’s criterion hi
is semi-simple.
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Let gi be the Lie algebra of the isometry group of Xi , Gi = Isom◦(Xi),
and gi = pi ⊕ki the Cartan decomposition associated to o. Since Hi acts iso-
metrically on Xi , we have a Lie group morphism fi : Hi → Gi . The kernel
of fi acts trivially on Xi so it fixes o, hence kerfi ⊂ K . It follows that defi is
injective on vi . Hence defi(vi) = pi by equality of dimensions. We also have
defi(li) ⊂ ki .

Let us show that Xi is irreducible. If v ⊂ pi is ad(ki)-invariant, then
v′ = (defi)−1(v)∩vi must be ad(li)-invariant. Indeed, given X ∈ v′ and Y ∈ li ,
we have [X,Y ] ∈ [vi , li] ⊂ vi and since defi is a Lie algebra morphism we
find:

defi([X,Y ]) = [defi(X)︸  ︷︷  ︸
∈v

,defi(Y )︸  ︷︷  ︸
∈ki

] ∈ v

Since [lj ,vi] = {0} for j , i, it follows that v′ is ad(k)-invariant, so v′ = {0} or
v′ = vi , hence v = {0} or v = pi , and Xi is irreducible.

The same computation as in Theorem 14.5.7 shows that Xi has non neg-
ative (resp. non positive) sectional curvature when i < 0 (resp. i > 0), so Xi
must have compact (resp. non compact) type.

Lemma 15.1.9. Let G be a Lie group with Lie algebra g. Let H1,H2 ⊂ G be
connected Lie subgroups with respective Lie algebras h1,h2 ⊂ g.
If [h1,h2] = {0}, then any elements g1 ∈H1 and g2 ∈H2 commute:

g1g2 = g2g1

Proof. Since H1 is connected, we find Ad(g1)|h2
= Idh2

. By considering the
one-parameter subgroup associated to X2 ∈ h2, we find that g1 commutes
with expG(X2). Since H2 is connected, g1 commutes with any element of
H2.

Proof of Theorem 15.1.1. We consider the decomposition into irreducible fac-
tors p =

⊕
k−≤i≤k+

vi . For i , 0, write li = [vi ,vi] and hi = vi ⊕ li . Denote by
l0 the B-orthogonal of

⊕
i,0 li in k, and write h0 = l0 ⊕ v0.

Let Hi be the connected Lie subgroup of G with Lie algebra hi , and recall
that the symmetric space Xi = Hi .o is a totally geodesic submanifold of X.
Consider Li =Hi ∩Ki , so that Xi can be identified with Li\Hi .

We will now show that X is isometric to the product Xk− × · · · × Xk+
.

This implies that X0 is simply connected, so it is isometric to the Euclidean
space Ek , and therefore is irreducible. So the proof of Theorem 15.1.1 will
be complete thanks to Lemma 15.1.7 and 15.1.8.

We start by considering the map:

ϕ :
{
Hk− × · · · ×Hk+

→ X
(gk− , . . . , gk+

) 7→ gk− · · ·gk+
o
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It is smooth, and Lemma 15.1.9 shows that for all (`k− , . . . , `k+
) ∈ Lk−×· · ·×Lk+

we have ϕ(`k−gk− , . . . , `k+
gk+

) = ϕ(gk− , . . . , gk+
). Thus the map:

ϕ :
{

Xk− × · · · ×Xk+
→ X

(gk−o, . . . , gk+
o) 7→ gk− · · ·gk+

o

is well defined and smooth.
Let us prove that it is isometric (then the completeness of Xk− ×· · ·×Xk+

,
the simple connectedness of X and a count of dimensions will imply that
ϕ is an isometry).

We start by computing the differential of ϕ. Since the elements in dif-
ferent groups Hi commute, we can easily compute the partial derivatives:

d(gk− ,...,gk+ )ϕ(0, . . . ,0,Xi ,0, . . . ,0) = do
(
gk− · · · ĝi · · ·gk+

)
◦ dgiϕo(Xi)

= do
(
gk− · · ·gk+

)
◦ (dogi)

−1
[
dgiϕo(Xi)

]
This leads to:

d(gk−o,...,gk+o)ϕ(0, . . . ,0,ui ,0, . . . ,0) = do
(
gk− · · ·gk+

)
◦ (dogi)

−1 (ui)

Since the spaces ToXi are pairwise orthogonal, we find that ϕ is isometric.

15.2 Symmetric spaces without Euclidean factors

Definition 15.2.1. A symmetric space X has no Euclidean factor if none of the
factors in the decomposition of its universal cover X̃ given by Theorem 15.1.1 is
of Euclidean type.

Lemma 15.2.2. Let X be a symmetric space, G = Isom◦(X), g its Lie algebra, B
its Killing form, o ∈ X and g = p⊕ k the associated Cartan decomposition.
For X ∈ p \ {0}, the following are equivalent:

1. X ∈ kerB.

2. Any plane P ⊂ ToX containing deϕo(X) has vanishing sectional curva-
ture.

Proof. First assume that X ∈ kerB, and consider a plane P ⊂ ToX spanned
by deϕo(X) and deϕo(Y ) for some Y ∈ p. According to Lemma 15.1.4, we
have [X,Y ] = 0, so Theorem 14.3.1 shows that the curvature of P is 0.

Now assume that any plane P ⊂ ToX containing deϕo(X) has vanishing
sectional curvature. Then according to Proposition 14.4.5, we find that
[X,Y ] = 0 for all Y ∈ p. Let c = {X ′ ∈ p |∀Y ∈ p [X ′ ,Y ] = 0}. Let us see that c
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is stable under the Killing operator b. For X ′ ∈ c, Y ∈ p and Z ∈ k we can
compute:

B(Z, [Y ,b(X ′)]) = B([Z,Y ],b(X ′))

=
〈
b([Z,Y ])

∣∣∣b(X ′)
〉

=
〈
[Z,b(Y )]

∣∣∣b(X ′)
〉

= B([Z,b(Y )],X ′)

= B(Z, [b(Y ),X ′])

= 0

Since B is negative definite on k, we find [Y ,b(X ′)] = 0, i.e. b(X ′) ∈ c. It
follows that c is the direct sum of its intersections with eigenspaces of b.
Let X ′ ∈ c be such that b(X ′) = λX ′ for some λ , 0. For Z ∈ k and Y ∈ p, we
find:

B(Y , [X ′ ,Z]) = B([Y ,X ′],Z) = 0

It follows that [X ′ ,Z] ∈ kerb. However the eigenspaces of b are invariant
under ad(Z), hence [X ′ ,Z] = 0, and X ′ ∈ z(g) ⊂ kerB, therefore X ′ = 0. It
follows that c ⊂ kerB, and X ∈ kerB.

Proposition 15.2.3. Let X be a symmetric space, G = Isom◦(X) and g its Lie
algebra. Then X has no Euclidean factor if and only if g is semi-simple.

Proof. Cartan’s criterion states that g is semi-simple if and only if kerB =
{0}. But Lemma 15.2.2 shows that the condition kerB = {0} remains invari-
ant under coverings, so we can assume that X is simply connected. If X
has a Euclidean factor X0, then any element X ∈ v0 is in kerB, so g is not
semi-simple. If X has no Euclidean factor, then B is non degenerate on p,
so it is non degenerate on g and g is semi-simple.

Proposition 15.2.4. A symmetric space with no Euclidean factor is of compact
(resp. non compact) type if and only if it has non negative (resp. non positive)
sectional curvature.

For a symmetric space X of compact or non compact type, we find that
all the irreducible factors must be of the same type.

Proposition 15.2.5. Let X be a simply connected symmetric space. If X is
of compact (resp. non compact) type, there are irreducible symmetric spaces
X1, . . . ,Xk of compact (resp. non compact) type such that X is isometric to X1 ×
· · · ×Xk .

Proof. If X is of compact (resp. non compact) type, then p = v− (resp. p = v+)
in Lemma 15.1.2. The rest of the proof of Theorem 15.1.1 can be carried
out in the same way.
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Geometrically, the three types of symmetric spaces are determined by
the sign of the curvature.

Proposition 15.2.6. Let X be a symmetric space. If X is of compact (resp. non
compact) type, then the sectional curvature of X is non negative (resp. non
positive).

Proof. This is a consequence of the fact that the universal cover of X has
the same property, so we can apply Theorem 14.5.7, Proposition 15.2.5 and
the fact that a product of Riemannian manifolds with non negative (resp.
non positive) sectional curvature also has non negative (resp. non positive)
sectional curvature).

Lemma 15.2.7. Let X be a symmetric space. The universal cover X̃ is of Eu-
clidean (resp. compact, non compact) type if and only if X is of Euclidean (resp.
compact, non compact) type.

Proof. The Euclidean case is a consequence of Proposition 14.5.2.

Proposition 15.2.8. If X1, . . . ,Xk are symmetric spaces and are all of Euclidean
(resp. compact, non compact) type, then X1 × · · · × Xk is of Euclidean (resp.
compact, non compact) type.

Proof.

Theorem 15.2.9. Any simply connected symmetric space X is isometric to a
product X0 ×X− ×X+ where:

• X0 is a symmetric space of Euclidean type.

• X− is a symmetric space of compact type.

• X+ is a symmetric space of non compact type.

15.3 Symmetric spaces of compact type

Proposition 15.3.1. Let X be a simply connected symmetric space of compact
type. There are irreducible symmetric spaces X1, . . . ,Xk of compact type such
that X is isometric to X1 × · · · ×Xk .

Proof. If X is of compact type, then p = v− in Lemma 15.1.2. The rest of the
proof of Theorem 15.1.1 can be carried out in the same way.

Proposition 15.3.2. A symmetric space of compact type has non negative sec-
tional curvature.
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Proof. Non negative sectional curvature for a symmetric space X or for its
universal cover X̃ are equivalent, so we can apply Theorem 14.5.7, Propo-
sition 15.2.5 and the fact that a product of Riemannian manifolds with non
negative sectional curvature also has non negative sectional curvature.

Proposition 15.3.3. Let X be a symmetric space, G = Isom◦(X) and g its Lie
algebra. If X is of compact type, then G is compact, and g is semi-simple.

Remark. Since G acts transitively on X, it is also compact.

Proof. The Killing form of g is negative definite, so g is semi-simple.
The opposite of the Killing form of g induces a bi-invariant Riemannian

metric on G, and computations show that its sectional curvature must be
positive. The Myers Theorem implies that G is compact.

Definition 15.3.4. A real Lie algebra g is called compact if its Killing form is
negative definite.

If g is compact, then it is semi-simple, and so is g⊗C.

Theorem 15.3.5. The map g 7→ g⊗C is a bijection from the set of compact Lie
algebras (up to isomorphism) to the set of complex semi-simple Lie algebras (up
to isomorphism).

Compact Lie algebras Complex simple Lie algebras
so(n) so(n,C)
su(n) sl(n,C)
sp(n) sp(n,C)

Note that even if X is irreducible, the group G may not be simple. The
main example is a compact Lie group itself. If h is a compact Lie algebra,
there is a unique (up to isomorphism) Lie group H with trivial centre and
Lie algebra isomorphic to h. We can endow H with a bi-invariant Rieman-
nian metric whose value at h is the opposite of the Killing form. Then H is
a symmetric space, and G =H ×H acts on the left and on the right on H .

Classical examples include spheres Sn = SO(n+1)/SO(n) and projective
spaces CPn = SU (n+ 1)/U (n).

15.4 Symmetric spaces of non compact type

We will admit the following result.

Proposition 15.4.1. A symmetric space of non compact type is simply con-
nected.
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A symmetric space of non compact type is therefore a Cartan-Hadamard
manifold. According to the Cartan-Hadamard Theorem, it is diffeomorphic
to the Euclidean space.

Proposition 15.4.2. Let X be a symmetric space of non compact type. There
are irreducible symmetric spaces X1, . . . ,Xk of non compact type such that X is
isometric to X1 × · · · ×Xk .

Proof. If X is of non compact type, then p = v+ in Lemma 15.1.2. The rest
of the proof of Theorem 15.1.1 can be carried out in the same way.

Proposition 15.4.3. A symmetric space of non compact type has non positive
sectional curvature.

Proof. Simply apply Theorem 14.5.7, Proposition 15.2.5 and the fact that
a product of Riemannian manifolds with non positive sectional curvature
also has non positive sectional curvature.

Proposition 15.4.4. Let X be a symmetric space of non compact type, and G =
Isom◦(X). Any compact subgroup K ⊂ G fixes a point of X.

Proof. This was already shown to be true for any Cartan-Hadamard mani-
fold.

Proposition 15.4.5. Let X be a symmetric space of non compact type, G =
Isom◦(X) and o ∈ X. The stabiliser K = Go is a maximal compact subgroup of
G, i.e. any compact subgroup L ⊂ G containing K is equal to K .

Definition 15.4.6. A semi-simple Lie algebra has no compact factor if it has
no compact ideal.

Theorem 15.4.7. The map sending X to the Lie algebra g of its isometry group
is a bijection from the set of symmetric spaces of non compact type (up to multi-
homothety) to the set of non compact semi-simple real Lie algebras (up to iso-
morphism).

A multi-homothety is a map that is homothetic on each irreducible fac-
tor, but possibly with different constants .

Starting with a semi-simple Lie algebra with no compact factor g, we
can choose a Lie group G whose Lie algebra is g, and with trivial centre
Z(G) = {1}. We then consider the symmetric space X = G/K where K ⊂ G is
a maximal compact subgroup.
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Real semi-simple Lie algebras

16.1 The algebraic structure of real semi-simple Lie
algebras

16.1.1 Restricted roots

Definition 16.1.1. Let g be a finite dimensional real semi-simple Lie algebra
with Killing form B. A Cartan involution of g is a Lie algebra automorphism
θ of g such that θ2 = Id and such that the bilinear form 〈·|·〉θ on g defined by

∀X,Y ∈ g 〈X |Y 〉θ = −B(X,θ(Y ))

is positive definite.
Given a Cartan involution θ, we write p = {X ∈ g |θ(X) = −X} and k = {X ∈ g |θ(X) = X}.
The decomposition g = p⊕ g is called the Cartan decomposition.

Note that it is symmetric because θ is a Lie algebra morphism. The
same computations as in Proposition 13.4.3 show that [p,p] ⊂ k, [k,k]⊂k
and [k,p] ⊂ p.

Proposition 16.1.2. Let X be a symmetric space of non compact type, G =
Isom◦(X), and g its Lie algebra. For all o ∈ X, the Cartan involution of X
associated to o is a Cartan involution of g.

Lemma 16.1.3. Let g be a finite dimensional real semi-simple Lie algebra, θ a
Cartan involution of g and g = p⊕ k the associated Cartan decomposition.
For all X ∈ p, the map ad(X) : g→ g is self-adjoint for the inner product 〈·|·〉θ.

Proof. Recall that θ is a Lie algebra automorphism of g, so ad(θ(X)) ◦ θ =
θ ◦ ad(X), hence ad(X) ◦θ = −θ ◦ ad(X) since X ∈ p.

For Y ,Z ∈ g, we find:

35
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〈ad(X)Y |Z〉θ = −B(ad(X)Y ,θ(Z))

= B(Y ,ad(X) ◦θ(Z))

= −B(Y ,θ(ad(X)Z))

= B(Y ,ad(X)Z)

Consequently, the map ad(X) is diagonalisable for all X ∈ p.

Definition 16.1.4. Let g be a finite dimensional real semi-simple Lie algebra,
θ a Cartan involution of g and g = p⊕ k the associated Cartan decomposition.
A Cartan subspace of g is a maximal abelian subalgebra of p.

Definition 16.1.5. Let X be a symmetric space. A maximal flat of X is a flat
F ⊂ X that is maximal for the inclusion.

Proposition 16.1.6. Let X be a symmetric space of non compact type, G =
Isom◦(X), g its Lie algebra, B its Killing form, o ∈ X, and g = p⊕ k the Cartan
decomposition.
Let a ⊂ p be a vector subspace. Then a is Cartan subspace if and only if deϕo(a) ⊂
ToX is the tangent space of a maximal flat.

Proof. This is a consequence of Proposition 14.4.5.

For α ∈ a∗, we write:

gα = {Y ∈ g |∀X ∈ a [X,Y ] = α(X)Y }

Definition 16.1.7. Let g be a finite dimensional real semi-simple Lie algebra,
θ a Cartan involution of g and g = p⊕ k the associated Cartan decomposition.
Let a ⊂ p be a Cartan subspace. A restricted root is α ∈ a∗ \ {0} such that
gα , {0}.

We will denote by Σ ⊂ a∗ the set of restricted roots. We have a decom-
position

g = g0 ⊕
⊕
α∈Σ

gα

Moreover, this decomposition is orthogonal for the Cartan form.

Theorem 16.1.8. Let g be a finite dimensional real semi-simple Lie algebra, θ
a Cartan involution of g and g = p⊕ k the associated Cartan decomposition.
Let a ⊂ p be a Cartan subspace, and Σ ⊂ a∗ the set of restricted roots.

1. Σ is a root system of a∗.
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2. ∀α,β ∈ a∗ [gα ,gβ] ⊂ gα+β .

3. ∀α ∈ a∗ θ(gα) = g−α

4. g0 ∩ p = a and g0 = a⊕ (g0 ∩ k).

5. If α + β , 0, then gα and gβ are orthogonal for B.

Contrary to the complex case, the root system Σ is not always reduced.
For α ∈ Σ, the root space gα does not decompose as the sum of its in-

tersections with k and p. The root space decomposition and the Cartan
decomposition are related in a more complicated way.

Lemma 16.1.9. Let g be a finite dimensional real semi-simple Lie algebra, θ a
Cartan involution of g and g = p⊕ k the associated Cartan decomposition.
Let a ⊂ p be a Cartan subspace, and Σ ⊂ a∗ the set of restricted roots. For X ∈ a
and Y ∈ gα, we write Y = Yk + Yp ∈ k⊕ p the Cartan decomposition of Y . The
Lie bracket [X,Yα] decomposes as:

[X,Yk] = α(X)Yp and [X,Yp] = α(X)Yk

Proof. We have [X,Yk] + [X,Yp] = α(X)Yp +α(X)Yk. Since [X,Yk] ∈ [p,k] ⊂ p
and [X,Yp] ∈ [p,p] ⊂ k, we can identify the factors.

16.1.2 Some examples

The hyperbolic space Hn

To understand the description of the Lie algebra g = so(n,1), we will use
a decomposition in blocks of size n and 1. For A ∈ gl(n,R), u,v ∈ Rn and
λ ∈ R we find:(

A tv
u λ

)
∈ so(n,1) ⇐⇒ A ∈ so(n), v = u, λ = 0

For the symmetric space Hn, by fixing the point o = (0, . . . ,0,1) in the
hyperboloid model, we find that the Cartan involution of is simply θ(X) =
−tX.

k =
{(

A 0
0 0

) ∣∣∣∣∣∣A ∈ so(n)
}

; p =
{(

0 tu
u 0

) ∣∣∣∣∣∣u ∈ Rn
}

The bracket of two elements in p can be computed explicitly.[(
0 tu
u 0

)
,

(
0 tv
v 0

)]
=

(
tuv − tvu 0

0 0

)
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This bracket can only vanish if u = 0 or v = 0. It follows that a maximal
abelian subalgebra of p has dimension 1. Set a = R.X where

H =
(

0 th
h 0

)
; h = (0, . . . ,0,1)

The bracket between H and an arbitrary element of g can be computed
explicitly. [

H,

(
A tv
v 0

)]
=

(
thv − tvh −Ath
hA 0

)
The line hA is simply the last line of A, and for v = (v1, . . . , vn) ∈ Rn, we

have:

thv − tvh =


−v1

0
...

−vn−1
v1 · · · vn−1 0


The centraliser of a can be found easily:

g0 ∩ k =
{(

A 0
0 0

) ∣∣∣∣∣∣A ∈ so(n− 1)
}

Here we identify so(n − 1) with the top left block diagonal embedding
in so(n). The roots are ±α where α(H) = 1, and the root spaces are:

gα =




0 −tu tu
u 0 0
u 0 0


∣∣∣∣∣∣∣∣u ∈ Rn−1


g−α =




0 tu tu
−u 0 0
u 0 0


∣∣∣∣∣∣∣∣u ∈ Rn−1


The space of ellipsoids En

The decomposition that we find for g = sl(n,R) is exactly the same as for
sl(n,C). Indeed, we can choose a to be the space of diagonal traceless ma-
trices. It happens to be a Cartan subalgebra, i.e. g0 = a. A real semi-simple
Lie algebra with this property is called a real split Lie algebra. There is
a one to one correspondence between real split Lie algebras and complex
semi-simple Lie algebras.
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Real split Lie algebras Complex Lie algebras
sl(n,R) sl(n,C)

so(n,n+ 1) so(2n+ 1,C)
sp(2n,R) sp(2n,C)
so(n,n) so(2n,C)

16.1.3 Restricted roots and geometry

Lemma 16.1.10. Let g be a finite dimensional real semi-simple Lie algebra, θ a
Cartan involution of g and g = p⊕ k the associated Cartan decomposition.
Let a ⊂ p be a Cartan subspace, and Σ ⊂ a∗ the set of restricted roots.
For α ∈ Σ, consider Yα ∈ gα such that 〈Yα |Yα〉θ = 1. Then Xα = [θ(Yα),Yα] ∈ a
satisfies:

∀X ∈ a 〈Xα |X〉θ = α(X)

Proof. It follows from Theorem 16.1.8 that [θ(Yα),Yα] ∈ g0. By using the
Cartan decomposition of Yα we also find [θ(Z),Z] ∈ p for any Z ∈ g, so
[θ(Yα),Yα] ∈ g0 ∩ p = a.

〈Xα |X〉θ = −B([θ(Yα),Yα],X)

= −B(θ(Yα), [Yα ,X])

= B(θ(Yα),α(X)Yα
= α(X)〈Yα |Yα〉θ
= α(X)

Definition 16.1.11. Let X be a symmetric space of non compact type, G =
Isom◦(X), g its Lie algebra, B its Killing form, o ∈ X, and g = p ⊕ k the Car-
tan decomposition. We say that X is normalized if the Killing form and the
Riemannian form are equal on p.

Proposition 16.1.12. Let X be a symmetric space of non compact type, G =
Isom◦(X), g its Lie algebra, B its Killing form, o ∈ X, θ : g→ g the associated
Cartan involution and g = p⊕ k the Cartan decomposition.
Let a ⊂ p be a Cartan subspace, and Σ ⊂ a∗ the set of restricted roots.
For α ∈ Σ, consider Yα ∈ gα such that 〈Yα |Yα〉θ = 1, and Xα = [θ(Yα),Yα].
There is a totally geodesic surface S ⊂ X containing o such that ToS is spanned
by deϕo(Xα) and deϕo(Yα).
If X is normalized, then the sectional curvature of S is −‖α‖2.

Proof. Use B(Y ,θ(Y )) = 1 and B(Y ,Y ) = 0.
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16.1.4 Regular elements and Weyl chambers

Proposition 16.1.13. Let g be a real semi-simple Lie algebra, θ : g→ g a Cartan
involution and g = p⊕ k the Cartan decomposition.
For X ∈ p, the following assertions are equivalent.

1. z(X)∩ p is abelian.

2. X belongs to a unique Cartan subspace.

3. For any Cartan subspace a ⊂ p containing X, we have ∀α ∈ Σ α(X) , 0.

4. There is a Cartan subspace a ⊂ p containing X, such that ∀α ∈ Σ α(X) ,
0.

Definition 16.1.14. Such an element X ∈ p is called regular.

Proof. 1.⇒2.If z(X)∩ p is abelian, then it is a Cartan subspace. If a ⊂ p is a
Cartan subspace containing X, then a ⊂ z(X), hence a = z(X)∩ p because of
maximality.

(2)⇒(1) Let a ⊂ p be the Cartan subspace containing X. For Y ∈ z(X)∩p,
the abelian subalgebra R.X + R.Y is contained in Cartan subalgebra, so
Y ∈ a, and z(X)∩ p ⊂ a is abelian.

(3)⇒(4) is just specification.

(1)⇒(3) Assume that z(X)∩p is abelian, and consider a Cartan subspace
a ⊂ p that contains X.
If α(X) = 0 for some α ∈ Σ, then Lemma 16.1.9 shows that Yp ∈ z(X)∩ p = a
for all Y ∈ gα. Hence [X ′ ,Yp] = α(X ′)Yk = 0 for all X ′ ∈ a, and gα ⊂ p, which
leads to α = 0.

(4)⇒(1) For Y ∈ z(X)∩ p, we write Y = Y0 +
∑
α∈ΣYα its decomposition

in g = g0 ⊕
⊕

α∈Σ gα. Since 0 = [X,Y ] =
∑
α∈Σα(X)Yα, we get Yα = 0, hence

Y ∈ g0 ∩ p = a.

Note that a consequence of the fourth point is that every Cartan sub-
space contains regular elements (because

⋃
α∈Σkerα has empty interior in

a).

Now consider a symmetric space of non compact type X. The stabiliser
K of a point o ∈ X acts on the set of Cartan subspaces of p (an element g ∈ K
acts on a Cartan subspace a ⊂ p by g.a = Ad(g)a).

Proposition 16.1.15. Let X be a symmetric space of non compact type, G =
Isom◦(X), g its Lie algebra, o ∈ X, K = Go its stabiliser and g = p⊕k the Cartan
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decomposition.
The action of K on the set of Cartan subspaces of p is transitive.

Proof. Let a,b ⊂ p be Cartan subspaces. Consider regular elements X ∈ a
and Y ∈ b, and the function

f :
{
K → R
g 7→ B(Ad(g)X,Y )

Since K is compact, f reaches its maximum at some g0 ∈ K . Up to replacing
X with Ad(g0)X and a with Ad(g0)a, we can assume that g0 = Id.

For all Z ∈ k, we have d
dt

∣∣∣
t=0
f (expG(tZ)) = 0. This derivative can be

computed:

d
dt

∣∣∣∣∣
t=0
f (expG(tZ)) = B(ad(Z)X,Y ) = B(Z, [X,Y ])

Since [X,Y ] ∈ k and B is negative definite on k, it follows that [X,Y ] = 0.
The elements X and Y being regular, we find a = b.

Definition 16.1.16. Let g be a real semi-simple Lie algebra, θ : g→ g a Cartan
involution and g = p⊕ k the Cartan decomposition.
Let a ⊂ p be a Cartan subspace, and Σ the set of restricted roots.
A Weyl chamber of a is a connected component of a \

⋃
α∈Σkerα.

Proposition 16.1.17. Let X be a symmetric space of non compact type, G =
Isom◦(X), g its Lie algebra, o ∈ X, K = Go its stabiliser and g = p⊕k the Cartan
decomposition.
The group K acts transitively on the set of pairs (a+,a) where a ⊂ p is a Cartan
subspace and a+ ⊂ a is a Weyl chamber.

Proof. Consider X ∈ a+ ⊂ a, Y ∈ b+ ⊂ b, and the function f introduced in
the proof of Proposition 16.1.15.

f :
{
K → R
g 7→ B(Ad(g)X,Y )

We can still assume that f reaches its maximum at e (hence a = b). For Z ∈
k, we have d2

dt2

∣∣∣∣
t=0
f (expG(tZ)) ≤ 0. Since Ad(expG(tZ)) = expGL(g)(t ad(Z)),

we find:

d2

dt2

∣∣∣∣∣∣
t=0

f (expG(tZ)) = B(ad(Z)2X,Y )

= B([Z, [Z,X]],Y )

= −B([Z,X], [Z,Y ])

= −B([X,Z], [Y ,Z])
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We are left with:
B([X,Z], [Y ,Z]) ≥ 0

For α ∈ Σ, choose Y ∈ gα \ {0} and decompose Y = Yk+Yp ∈ k⊕p. We can
apply the previous inequality with Z = Yk.

Since [X,Yk] = α(X)Y p, we find:

α(X)α(Y )B(Yp,Yp) ≥ 0

Note that Yp , 0. Since B is positive definite on p, we find that α(X)α(Y ) ≥ 0.
It follows that X and Y are in the same Weyl chamber.

Proposition 16.1.18 (Polar decomposition). Let X be a symmetric space of
non compact type, G = Isom◦(X), g its Lie algebra, o ∈ X, K = Go its stabiliser
and g = p⊕ k the Cartan decomposition.
For all g ∈ G, there is a unique pair (k,X) ∈ K × p such that g = k expG(X).

Proof. Let X ∈ p be such that g(o) = expG(X).o (i.e. X = (deϕ−1
o (v) where

g(o) = expo(v)). Now k = g expG(−X) ∈ K satisfies g = k expG(X).
The uniqueness comes from the fact that expo is a diffeomorphism.

Proposition 16.1.19 (KAK decomosition). Let X be a symmetric space of non
compact type, G = Isom◦(X), g its Lie algebra, o ∈ X, K = Go its stabiliser and
g = p⊕ k the Cartan decomposition.
Let a ⊂ p be a Cartan subspace and a+ ⊂ a a Weyl chamber.

For all g ∈ G, there are k,k′ ∈ K and X ∈ a+ such that :

g = k expG(X)k′

Proof. Following Proposition 16.1.18, we write g = l expG(Y ) with Y ∈ p
and l ∈ K .

Note that any element of a is in the closure of a Weyl chamber, so ac-
cording to Proposition 16.1.17 there is k′ ∈ K such that X = Ad(k′)Y ∈ a+.
Set k = lk′−1 ∈ K , so that we find:

k expG(X)k′ = lk′−1 expG(X)k′

= lk′ expG(Ad(k′−1)X)

= l expG(Y )

= g
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16.2 Compactifications of symmetric spaces

16.2.1 The visual boundary of a symmetric space of non compact
type

Proposition 16.2.1. Let X be a symmetric space of non compact type, G =
Isom◦(X), o ∈ X and K = Go its stabiliser.
The map ψo : T 1

o X→ ∂∞X is K-equivariant.

Proof. For g ∈ K and v ∈ T 1
x0
X, we find g(cv(t)) = cg.v(t) where g.v = dx0

g(v).

Proposition 16.2.2. Let X be a symmetric space of non compact type, G =
Isom◦(X), o ∈ X and K = Go its stabiliser.
The following assertions are equivalent.

1. Gy ∂∞X is transitive.

2. K y T 1
o X is transitive.

3. X has rank 1.

4. The sectional curvature of X is negative.

Proof. (1)⇐⇒ (2) is a consequence of Proposition 16.2.1.

(3) ⇐⇒ (4) is a consequence of the formula for sectional curvature
(Proposition ??).

(3)⇒(2) is a consequence of Proposition 16.1.17.

(2)⇒(3) is a consequence of Proposition ??.

Theorem 16.2.3. Any rank 1 symmetric space of non compact type is homoth-
etic to one of the following:

• The real hyperbolic space Hn (and g = so(n,1)).

• The complex hyperbolic space Hn
C (and g = su(n,1)).

• The quaternionic hyperbolic space Hn
H (and g = sp(n,1)).

• The octonionic hyperbolic plane H2
O (and g = f−20

4 ).

In particular, a rank 1 symmetric space of non compact type is irre-
ducible (this is the first part of the proof, and a consequence of the more
general fact that the rank is additive under products).
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Proposition 16.2.4. Let X be a symmetric space of non compact type, G =
Isom◦(X), o ∈ X and K = Go its stabiliser.
For all ξ ∈ ∂∞X, we have G.ξ = K.ξ, i.e.

∀g ∈ G ∃k ∈ K gξ = kξ

More over, the stabiliser Gξ ⊂ G acts transitively on X.

Proof. Let γ be the unit speed geodesic such that γ(0) = o and γ ∈ ξ. Let γt
be the 1-parameter group of transvections along γ (i.e. γ̇(0) = deϕo(X) and
γt = expG(tX) for some X ∈ p).

Let g ∈ G. For t > 0, we let σt be the unit speed geodesic such that
σt(0) = x0 and passing through gγ(t) = gγt(x0). Set ξt = [σt].

Denote by qt the transvection along σt such that qt(x0) = gγt(x0). Note
that qt .ξt = ξt.

Set kt = q−1
t gγt. We have kt(x0) = x0, i.e. kt ∈ K . Hence:

^x0
(ktξ,ξt) = ^qt(x0)(gξ,qtξt) = ^gγ(t)(x0, g(x0))→ 0

We also find:

^x0
(ξt , gξ) = ^x0

(gγ(t), gξ) ≤ π −^gγ(t)(gξ,x0) = ^gγ(t)(x0, g(x0))→ 0

It follows that ^x0
(ktξ,gξ)→ 0, hence ktξ → gξ. Therefore gξ ∈ K.ξ =

K.ξ (because K is compact).

The transitivity of Gξ y X = G/K is a rewriting of the transitivity of
K y G.ξ = Gξ\G:

∀g ∈ G ∃k ∈ K gk ∈ Gξ ⇐⇒ ∀g ∈ G ∃k ∈ K ∃p ∈ Gξ gk = p

⇐⇒ ∀g ∈ G ∃p ∈ Gξ ∃k ∈ K gk = p

⇐⇒ ∀g ∈ G ∃p ∈ Gξ ∃k ∈ K pg = k

Therefore Gξ y K\G =M is transitive.

16.2.2 The Furstenberg boundary

Definition 16.2.5. Let X be a symmetric space of non compact type, G =
Isom◦(X), and g its Lie algebra.
An asymptotic Weyl chamber is ψo(deϕo(a+)) ⊂ ∂∞X where a+ ⊂ p is a Weyl
chamber and g = p⊕ k is the Cartan decomposition associated to some o ∈ X.
The Furstenberg boundary ∂FX is the set of asymptotic Weyl chambers.
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An asymptotic Weyl chamber can be described geometrically: it is the
boundary at infinity of a maximal flat.

Proposition 16.2.6. Let X be a symmetric space of non compact type. The
group G = Isom◦(X) acts transitively on the Furstenberg boundary ∂FX.

Definition 16.2.7. Let X be a symmetric space of non compact type. A point
ξ ∈ ∂∞X is called regular if there are o ∈ X and a regular vector v ∈ T 1

o X such
that ξ = ψo(v).

Proposition 16.2.8. Let X be a symmetric space of non compact type, and G =
Isom◦(X). If ξ ∈ ∂∞X is regular, then ξ belongs to a unique asymptotic Weyl
chamber C, and {g ∈ G |gC = C} = Gξ .

If ξ ∈ ∂∞M is regular, we fix o ∈ X and the Weyl chamber a+ ⊂ a ⊂ p
such that ξ = limt→+∞ expG(tX)o with X ∈ a+. We set:

Aξ = expG(a)

nξ =
⊕
α(X)>0

gα

Nξ = expG(nξ )

Theorem 16.2.9 (Iwasawa decomposition). Nξ is a subgroup of G, and the
multiplication K ×Aξ ×Nξ → G is a diffeomorphism.

16.3 Lattices in semi-simple Lie groups

If (M,g) is a complete locally symmetric space, then its universal cover is
a symmetric space X. So the study of locally symmetric spaces is related
to the study of discrete subgroups of the isometry groups of symmetric
spaces. For the Euclidean type, these groups are, up to finite index, abelian
(Bieberbach’s Theorem). For the compact type, they must be finite. The
non compact type leads to a very rich theory.

Definition 16.3.1. Let G be a Lie group. A lattice of G is a discrete subgroup
Γ ⊂ G such that Γ \G has finite volume. We say that Γ is uniform (or cocom-
pact) if Γ \G est compact.

Theorem 16.3.2 (Borel, Harish-Chandra). Every semi-simple Lie group pos-
sesses a lattice.

IfG = Isom◦(X) where X is a symmetric space of non compact type, then
a lattice Γ ≤ G is the fundamental group of a complete locally symmetric
space Γ \X if Γ is also required to be torsion-free (i.e. non trivial elements
have infinite order).

Examples:
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1. SL(n,Z) is a non uniform lattice in SL(n,R).

2. If P ⊂H2 is a regular right angled polygon with 4g sides (it exists for
any g ≥ 2) labelled A1,B1,A

−1
1 ,B−1

1 ,A2, . . .B
−1
g , consider the isometry

ai (resp. bi) sending Ai to A−1
i (resp. Bi to B−1

i ) and reversing the
orientation of the edges. The subgroup Γ of PSL(2,R) = Isom◦(H2)
generated by a1,b1, . . . , ag ,bg is a torsion-free uniform lattice, and the
quotient Γ \H2 is a compact orientable surface of genus g.

Consider two torsion-free lattices Γ1,Γ2 ≤ G, and the associated locally
symmetric spaces Mi = Γi\X, i = 1,2. If Γ1 and Γ2 are conjugate, i.e. if Γ2 =
gΓ1g

−1 for some g ∈ G, then the isometry g of X induces an isometry from
M1 to M2. Reciprocally, an isometry ϕ : M1 → M2 induces an isometry
g ∈ Isom(X) such that Γ2 = gΓ1g−1.

Theorem 16.3.3 (Mostow rigidity). Let X be an irreducible symmetric space
of non compact type which is not homothetic to H2. If Γ1,Γ2 ⊂ G = Isom◦(X) are
lattices, and θ : Γ1→ Γ2 is a group isomorphism, there is g ∈ G such that:

∀γ ∈ Γ1 θ(γ) = gγg−1

For H2, the situation is very different. If S is a closed orientable sur-
face of genus g ≥ 2 and Γ = π1(S), then the space of representations ρ :
Γ → PSL(2,R) such that ρ(Γ ) is a lattice, up to conjugation in PGL(2,R) =
Isom(H2), is homeomorphic (for a suitable topology) to R6g−6. This space
is called the Teichmüller space of S.
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