Groups and geometry

Final exam

Exercise 1

A few results on left-invariant Riemannian metrics

1. Prove that a left-invariant Riemannian metric on a Lie group is complete.

Solution: Let T > 0 be such that any geodesic starting at e is defined up to time T. If c: I - G isa
maximal geodesic, for any t, € I then L )-1 oc is a geodesic going through e, hence Jto—T,ty+T[ C I,
and I =R.

2. Prove that if V is the Levi-Civita connection of a left-invariant Riemannian metric on a Lie group G,
and X,Y € °X(G), then VxY € CX(G).

Solution: If X,Y,Z € X(G) are left-invariant, then the products (X,Y), (Y, Z) and (Z, X) are constant
so the Koszul formula is simplified:

2(VxY,2) =([X,Y],2)=([X, 2], Y) = ([Y, Z], X)

This shows that (Vx Y, Z) is constant.
Now let V € X(G) be such that (V, Z) is constant for any Z € X'(G). We have <LZ,V,Z> =(V,Z)oLg =
(V,Z), so we find that L,V = V. Applying this to V = VxY answers the question.

3. Let G and H be connected Lie groups, and consider a Lie group morphism f : G — H. Let us assume
that d, f is invertible. Given a left-invariant Riemannian metric (,-) on H, prove that the pull-back
f*(-,-) is a left-invariant Riemannian metric on G. Infer that f is a covering map.

Solution: Since d —ef is invertible, the map f is an immersion and f*(,-) is a Riemannian metric on
G. For g € G, we find:

Lof () =(foLg) (o)
=(Lggy o f) ¢
=Ly o)
=f7¢00)
It follows from the first question that (G, f*(-,-)) is complete, since this metric makes f a local isom-
etry it is a covering map.

4. Let G be a connected Lie group whose Lie algebra g is abelian. Prove that G is abelian and that exp
is surjective.

Solution: If g is abelian, then expg is a Lie group morphism from (g,+) to G, and dyexp; = Id,
is invertible, so the previous question shows that exp. is a covering map, hence onto. Because
exps(X)exps(Y) =exps(Y)exps(X), it also follows that G is abelian.



Exercise 2

Construction of a Lie algebra

Let V be a finite dimensional real vector space, and consider a linear form ¢: V — R.

1. Prove that the map [-,-]: { \(/xx;)/ : €(x)y‘—/€(y)x is a Lie bracket.

Solution: It is bilinear because ¢ is linear. Skew-symmetry is straightforward. Note that {([x,y]) =0,
which will make the the Jacobi identity easier to establish:

[[x, 9] 2]+ ([, 2] x] + [z x], ] = =C(2)[x, 9] - €(x)[, 2] - €()][2, x]
= —l(2)l(x)y +L(2)l(y)x = L(x)l()z + L(x)l(2)y = L(y)l(2)x + L(y)L(x)z
=0

We now denote by g the Lie algebra that we obtain.

2. Is the Lie algebra g solvable? Nilpotent? Semi-simple?

Solution: If £ = 0 then g is abelian, so we now assume that € # 0. As discussed, we have [g,g] C ker.
If dim V =1, this shows that g is abelian, and we now assume dimV > 2.

Let z € g be such that ¢(z) = 1. If x € ker € then [z,x] = x, so [g,g] = ker.

We also have [z, [x,y]] = [x,y] for all x,y € g, and this shows that C,(g) = C;(g), so g is not nilpotent.
However [x,y] = 0 whenever x,y € ker{ = [g,g], so D,(g) = {0} and g is solvable (hence not semi-
simple).

The Lie subalgebras n and a

Consider an inner product (:,-) on g. Let n = ker¢ C g and a C g its orthogonal. Consider the vector X, € a
such that {(X) = (X, X), for all X e g.

3. Prove that n is an abelian Lie subalgebra of g. Is it an ideal?

Solution: We have already seen that n is an abelian subalgebra in the previous answer. If x € g and
y e, then ¢([x,y]) = €(x)¢(y) = 0 so n is an ideal of g.

4. Prove that a is an abelian Lie subalgebra of g. Is it an ideal?

Solution: If £ = 0, then a = {0} is an abelian ideal. If £ # 0, then a is a vector subspace of dimension 1
of g, therefore an abelian ideal. If X € n'\ {0}, then [X,, X] = €(X;)X = ||X,||* X € a, so a is not an ideal
unless dim V = 1.

5. Given X e n, describe the matrix of ad(X) in a basis adapted to the decomposition g = n@®a. Do the
same for ad(Xp).



Solution: Consider a basis (Xj,...,X;) of n. For X € n, we have ad(X)X; =0 for 1 <i <d. We also
have ad(X)X, = —||¢||* X, so the matrix of ad(X) in the basis (X1,..., X4, X;) is

ad(X):( 0 _”€||2X )

0 0

Here we identified X with the column of its coordinates in (X1,..., X ).
Since [X,, X;] = ||1€)|*> X;, we find:

2
ad(Xg):( ||€||01d 8 )

The Lie group G

Let G be a connected Lie group whose Lie algebra is g. Consider the connected immersed Lie subgroup
N (resp. A) whose Lie algebra is n (resp. a).

6. Prove that for X enor X € a, if exp;(X) = ¢, then X = 0.
Hint: describe the matrix of Ad(exp(X)) in a basis adapted to g =nd®a.

Solution: Since Ad(exp;(X)) = exp(ad(X)), in the basis previously described we find for X e n

1; —llerPx
0 1

If exp(X) = e, then Ad(exp;(X)) =1Id and we get X = 0.

Ad(exps(X)) = (

Similarly, for X = AX, € a, we find

Al
Ad(expg(X)) = ( Y )
0 1
If exps(X) = ¢, then eMAP =1 and X = 0.

7. Prove that exp is a diffeomorphism from n to N, and also from a to A.

Solution: This result is false if € = 0, so we now assume for the rest of the exercise that € # 0.

The result of Question 4. of Exercise 1 shows that N is a abelian and that expy; is onto. The previous
question shows that expy = exp |, is injective (because it is a Lie group morphism), so it is a Lie
group isomorphism (the injectivity of exp|, is the part that uses £ = 0).

This only shows that expy is a diffeomorphism when N is considered with its intrinsic manifold
structure, it is not clear that it is embedded. It is however the case because exp|, is proper: if
Xy — oo in N, then Ad(exp;(Xk)) — oo in GL(g) thanks to the previous computation, therefore
exps(X,) — oo in G. This shows that N is an embedded Lie subgroup, and exp is a diffeomor-
phism from n to N.

The same reasoning applies to A because the formula for Ad(exp;(X/)) also implies the properness
of exp¢l;-



8.

10.

11.

12.

Prove that the restriction to A of the projection G — G/N is a covering map.

Solution: We have seen in the previous answer that N is an embedded Lie subgroup. It is normal
in G because it is connected and its Lie algebra n is an ideal of g. So G/N is a Lie group and the
projection G — G/N is a Lie group morphism, and so is its restriction to A. The differential at e is
the restriction to a of the projection g — g/n, hence an isomorphism. The result of Question 3. of
Exercise 1 states that it is a covering map.

Given g € G, prove that there is a unique pair (n,a) € N x A such that g = na.

Solution: Let m: G — G/N be the projection. First, let us show that its restriction to A is an isomor-
phism, which amounts to proving that ANN = {e}. If g € ANN, there is X € n such that g = exp;(X),
and following the answer to question 6. we find

2

There is also A € R such that g = exp;(1X/), and the answer to question 6. know yields

Ad(g) :( M1, 0 )

0 1

The equality between these matrices implies that X = 0, hence g =e.

Now let g € G. There is a unique b € A such that 7t(¢g™!) = 7(b), i.e. ¢ = na where a="b"! € A and
n=gbeN.

Prove that the map G — N x A thus defined is a diffeomorphism.

Solution: Using the inverse of the isomorphism 7|4 : A — G/N, we see that g + (n,4) is smooth. It is
inverse is the multiplication map of G, so it is also smooth, hence a diffeomorphism.

Prove that G is simply connected.

Solution: We have seen that exp is a diffeomorphism from n to N (resp. from a to A) so N (resp.
A) is simply connected. Thanks to the previous question, G is diffeomorphic to N x A, so it is also
simply connected.

Can the Lie group G possess a bi-invariant Riemannian metric?

Solution: No. If such a metric {-,-) were to exist, we would then have:

VgeGVYX,Yeg (Ad(g)X,Y),+(X,Ad(g)Y),=0

Applying this with ¢ = exp;(X,) and X =Y = X, we find that Ad(g)X = X because of question 6.,
so (X, X) =0, which is a contradiction since X, # 0.



Curvature of G

Let (-, ) be a left-invariant Riemannian metric on G.

13. Given X,Y € SX(G) such that X(e) e n and Y (e) € n, prove that VxY(e) = (X, Y)X,.

Solution: As seen in Question 2. of Exercise 1., for Z € “X(G) the Koszul formula becomes

2(VxY,Z) = ([X,Y],Z)+([Z,X],Y) +([Z, Y], X)
Evaluating these constant functions at e, we find
2(VxY,Z)=0+L(Z(e))(X,Y)+{(Z(e))(Y,X)
= 2(X, Y )(X¢, Z(e))
This shows that VxY(e) =(X,Y) X,.

14. Given Y € “X(G), prove that V,Y(X,) = 0.

Solution: Let Z € g.

2(V.Y(X¢), Z) =([Xp. Y(e)], 2), +([Z, X, ], Y (€)), +([Z, Y (e) ], Xp),
=0(X)(Y(e),2), — (Y (e))(X¢, Z)o +L(Z)(Xy, Y (e)), — U(Xe){Z, Y (e)),
+([Z,Y(e)])
=U(Xp)(Y(e),Z), —L(Y(e)l(Z) + L(Z)L(Y (e)) = L(X)(Z, Y (e)),
+0
=0

15. Calculate VxY(e) when X,Y € CX/(G) satisfy X(e) enand Y(e) € a.

Solution: Let Z € g. We also identify X, Y with X(e), Y(e) € g.

2(VxY,Z) =([X, Y], 2) +([Z,X], Y) +([Z, Y], X)
Let us treat the three terms separately.

* [X,Y]=-0(Y)Xs0o([X,Y],Z)=—C(Y){X,Z).
* Since [Z,X]enand Y € a=n't, we have ([Z,X],Y)=0.
* [Z,Y]=42)Y -€(Y)Z so([Z,Y],X)=-€(Y)(Z,X)=0Dbecause (X,Y)=0.
It follows that
2(VxY,Z)=2(-€(Y)X,Z)

So VxY = —{(Y)X.



16.

17.

For which X € g is the curve t — exp;(tX) a geodesic?

Solution: First, note that this is equivalent to VxX = 0. Indeed, if VxX = 0, then all integral curves
of the left-invariant vector field X are geodesics, and t - exp(tX) is one of them. Reciprocally,
if t > exps(tX) is a geodesic, then the geodesic equation at t = 0 yields VxX(e) = 0, but VxX is
left-invariant so Vx X = 0.

If X € a, then question 14. shows that VxX =0, so t = exp(tX) is a geodesic.

In general, write X = X, + A X, where X, € n and A € R. The results of the previous questions lead to

A
VxX = [IXaI* Xp - > IXell? X,

This shows that Vx X =0 < X €a.

Give a simple expression of R(X,Y)Z for X,Y,Z € X(G).
Solution: If X, Y € a, then R(X,Y) = 0 because of skew-symmetry and dima = 1.

Now assume that X,Y € n. If Z € n, then according to Question 13. we find VyZ =(Y,Z)X,, and
following Question 15. we find VxVyZ = -0(X,)(Y,Z)X = —|leI1>¢Y, Z)X. Since [X,Y] =0, we get
the following expression:

R(X,Y)Z :||€||2((X,Z>Y—(Y,Z)X) (1)

If Z € a, then
VxVyZ =Vx(-€(2)Y)
=-UZ)(X,Y) X,
This leads to

R(X, Y)Z = VXVYZ - VYVXZ - V[X,y]z
= —U(Z)(X,Y)+L(Z)(Y,X)-0
=0

Note that is still valid for Z € a, because (X,Z) = (Y,Z) = 0. This means that is valid for
X,Yeaandany Z €g.

It is also valid for X,Y € n and any Z € g. Indeed, the right-hand side of (1) is skew-symmetric in
X,Y and dima = 1, so it must vanish.

Now assume that X e mand Y € a. Because of Question 14. we know that VyZ =0, hence VxVyZ =0
and also VyVxZ = 0. This simplifies the expression of the curvature tensor:

R(X, Y)Z = —V[X,y]z = g(Y)VxZ

If Z en, then VxZ = (X, Z)X,, but £(Y)X, = (X;, Y) X, = ||€]|* Y (since Y € a =RX;), so we find

RX,Y)Z = ||€|I>(X,Z)Y



18.

19.

Since (Y, Z) = 0, we find that (1) also holds in this case.
If Z € a, then VxZ = —€(Z)X and in this case {(Y)((Z) = ||¢|*(Y,Z), so R(X,Y)Z = —||¢|*(Y,Z)X
and once again (1)) is valid because (X,Z) = 0.

In conclusion, we have shown that (1) is valid for any Z € g in the three following cases: (X, Y) € nxn,
(X,Y)eaxaand (X,Y) e nxa. Since both sides of the equality are multi-linear and skew-symmetric
in X,Y, we find that it always holds, i.e.

VX,Y,Zeg RX,Y)Z=|l0]*({X,2)Y —(Y,Z)X)

Prove that the sectional curvature of G is constant, and give its value.

Solution: Let P C g = T,G be a plane, and (X, Y) an orthonormal basis of P. The previous question
shows R(X,Y)Y = —||¢||*, and the sectional curvature is x(P) = (R(X, Y)Y, X) = —norm{2.
If PC T,G is a plane, then x(P) = x(dgLg-1(P)) = - I€||* because the metric is left-invariant.

Infer that (G,(:,-)) is isometric to a Riemannian manifold seen in the lectures, and that it is a sym-
metric space.

Solution: The Riemannian manifold (G, (:,-)) is complete (question 1. of exercise 1.), simply con-
nected (question 11. of exercise 2.) and has constant negative sectional curvature (question 18. of
exercise 2.), so it is homothetic to the hyperbolic space H4™C, which is a symmetric space.

The isometry group of G

20.

21.

Given a linear isometry ¢ : g — g (for the inner product (-, -),), prove that there is a unique isometry
® e Isom(G) such that ®(e) = e and d, P = ¢.

Solution: This is a consequence of the result of question 19. and the fact that the statement is
true for the real hyperbolic space H (in a general symmetric space, in order to use the Cartan-
Ambrose-Hicks Theorem one would need to add the condition that ¢ preserves the Riemann ten-
sor, but the expression of R in question 17. shows that it is true for any linear isometry). Note that
® = exp,o@ oexp,' where exp, is the Riemannian exponential map (which is different from the Lie
exponential as seen in question 16.).

Let K c Isom(G) be the stabilizer of e. Prove that the map

KxAxN — Isom(G)
(k,a,n) +— koL,oL,

is a diffeomorphism.

Solution: Denote by W : K x A x N — Isom(G) this map, and @ : G —» N x A the diffeomorphism
obtained in question 9. Then W is a diffeomorphism with inverse

Y(f)=(f o Lp1(ep @(F T (e) eKx AXN



22. When dimg = 2, give an explicit representation of G in PSL(2,R), and describe the images of A and

' s>operpa={| wohn={l 7 |ver}

The linear form ¢ on the Lie algebra g = {( g y ) X,y € ]R} is given by Z( g y ) =x

—X —X

a b
0 al

S

a—l

(@RS
—_

Solution: G = {[

Exercise 3

Curvature of a graph

Let U C R? be an open set, and f : U — R a smooth map. Consider its graph S = {(x,7, f (x,)) | (x,v)eU}C

R3. At a point (xg, v, f (X0, o)) € S such that d(xyp0)f = 0, calculate the second fundamental form of S and
its Gauf$ curvature.

Solution: We first need to find a unit normal vector field. Consider the parametrization ¢(x,y) =
(%, v, f(x,v)), which gives us a way to compute the normal direction:

1 0 _of
a—qo A a—(p = 0 A 1 = _gi
dx  dy of of 9
Ix dy 1
We get a unit normal vector field by normalizing.
of
do , do 2L
= A =—
7o dx " dy _ 1 gf

ETe e

0
Note that ii(¢(x(,v9)) = [ 0 ] In order to differentiate 7, we need to compute some partial derivatives.
1

of #p , of #f
d 1 dx dx?> ' Jdy dxdy

P @) (e )

of *f , of Pf
d 1 _ dy Iy T Ox Ixdy

P ) ()

u
Both of these expression vanish at (xg,y9). The tangent space of S is Ty(x,,y,)S = [ v ]
0

u,v e ]R} and we

find



©(x0,%0)

=
—_——

o< =

2

9 P
—”Té(xo;}’o)—vré(xo,yo)

2’ f

82
—Mré;(xo'yo)—vg—yz(xofyo)

0

The second fundamental form is:

Uy Uj Ui Uj
H(P(Xof}’o) vr || V2 il ‘d<P(x0'y0)ﬁ) V2
0 0 0 0

82 92 92
= —uluza—xz(xo,}’o) —(ugvy + szl)m(xoryo) - Uzvza—yz(xo’yo)

u Uz
HeSS(f)<p<x0’y°)[[ " ]l[ o ]]
0 0

The Gaufs curvature is the determinant

92 92 92 ?
Kt ) = 5550300 5 k000 - 50|



