Groups and geometry
 Mid-term exam

Exercise 1

The goal of this exercise is to show that the exponential map exp : $\mathfrak{g l}(n, \mathbb{C}) \rightarrow \mathrm{GL}(n, \mathbb{C})$ is surjective.
Let $A \in \operatorname{GL}(n, \mathbb{C})$. For $P=\sum_{k=0}^{d} a_{x} X^{k} \in \mathbb{C}[X]$, we write $P(A)=\sum_{k=0} a_{k} A^{k} \in \mathcal{M}_{n}(\mathbb{C})$. Let:

$$
\mathbb{C}[A]=\{P(A) \mid P \in \mathbb{C}[X]\} \subset \mathcal{M}_{n}(\mathbb{C})
$$

We also consider $\mathbb{C}[A]^{\times}=\mathbb{C}[A] \cap G L(n, C)$.

1. Prove that $A^{-1} \in \mathbb{C}[A]$, then show that $\mathbb{C}[A]^{\times}$is a subgroup of $\operatorname{GL}(n, \mathbb{C})$.

Solution: Consider $P_{A}(X)=\operatorname{det}\left(X 1_{n}-A\right)$ the characteristic polynomial of A. According to the CayleyHamilton Theorem, we have $P_{A}(A)=0$. Write $P_{A}=\sum_{k=0}^{n} a_{k} X^{k}$. Note that $a_{0}=(-1)^{n} \operatorname{det} A \neq 0$, so we can consider the polynomial $Q_{A}=-\sum_{k=0}^{n-1} \frac{a_{k+1}}{a_{0}} X^{k}$ and write $P_{A}(X)=a_{0}-a_{0} X Q_{A}(X)$. Now $P_{A}(A)=0$ leads to $A^{-1}=Q_{A}(A) \in \mathbb{C}[A]$.

Let us now show that $\mathbb{C}[A]^{\times}$is a subgroup of $G L(n, \mathbb{C})$. It contains $1_{n}=1(A)$. Given $B=P(A), C=$ $Q(A) \in \mathbb{C}[A]^{\times}$, we have $B C=P Q(A) \in \mathbb{C}[A]$, and $B C \in G L(n, \mathbb{C})$, so $B C \in \mathbb{C}[A]^{\times}$.
Let $B=P(A) \in \mathbb{C}[A]^{\times}$. Applying the previous result to B, there is a polynomial $Q_{B} \in \mathbb{C}[X]$ such that $B^{-1}=Q_{B}(B)$, so $B^{-1}=Q_{B}(B)=Q_{B} \circ P(A) \in \mathbb{C}[A]$, hence $B^{-1} \in \mathbb{C}[A]^{\times}$and this concludes the proof that $\mathbb{C}[A]^{\times}$is a subgroup of $\operatorname{GL}(n, \mathbb{C})$.
2. Prove that $\mathbb{C}[A]^{\times}$is connected.

Hint: for $B, C \in \mathbb{C}[A]^{\times}$, consider the polynomial $Q(X)=\operatorname{det}(B+X(C-B)) \in \mathbb{C}[X]$, and use the fact that $\mathbb{C} \backslash F$ is connected whenever $F \subset \mathbb{C}$ is finite.

Solution: Let $B, C \in \mathbb{C}[A]^{\times}$, and consider the polynomial $Q(X)=\operatorname{det}(B+X(C-B)) \in \mathbb{C}[X]$. Since $Q(0)=\operatorname{det} B \neq 0$, we know that $Q \neq 0$ so $F=\{z \in \mathbb{C} \mid Q(z)=0\}$ is finite. Since $0 \in F$ and $1 \in F$ (because $Q(1)=\operatorname{det} C \neq 0)$, there is a continuous path $c:[0,1] \rightarrow \mathbb{C} \backslash F$ such that $c(0)=0$ and $c(1)=1$. Now consider $\gamma(t)=B+c(t)(C-B)$. This is a continuous path $\gamma:[0,1] \rightarrow \mathbb{C}[A]^{\times}$such that $\gamma(0)=B$ and $\gamma(0)=C$, so $\mathbb{C}[A]^{\times}$is path-connected.
3. Let G be a connected abelian Lie group. Prove that $\exp _{G}$ is surjective.

Solution: Since G is abelian, the $\operatorname{exponential~map~} \exp _{G}: \mathfrak{g} \rightarrow G$ is a Lie group morphism from ($\mathfrak{g},+$) to G. Its image $\exp _{G}(\mathfrak{g})$ is an open subgroup of G (because $d_{0} \exp _{G}=\operatorname{Id}_{\mathfrak{g}}$ is invertible), and any open subgroup is closed. It follows that $\exp _{G}(\mathfrak{g})$ is open and closed in G. Since G is connected, we find that $\exp _{G}$ is onto.
4. Conclude.

Solution: Note that $\mathbb{C}[A]^{\times}$is an open subset of the vector subspace $\mathbb{C}[A]$ of $\mathcal{M}_{n}(\mathbb{C})$, so it is a submanifold of $\operatorname{GL}(n, \mathbb{C})$. It follows from question 1 . that $\mathbb{C}[A]^{\times}$is an embedded Lie subgroup of $G L(n, \mathbb{C})$
(and its Lie algebra is $\mathbb{C}[A]$). It is also abelian (because $P(A) Q(A)=P Q(A)=Q P(A)=Q(A) P(A)$), and connected because of question 3.). According to question 3., there is $B \in \mathbb{C}[A] \subset \mathcal{M}_{n}(\mathbb{C})$ such that $A=\exp _{\mathbb{C}[A]^{\times}}(B)=\exp _{G L(n, \mathbb{C})}(B)=\exp (B)$.

Exercise 2

Let $\xi=(E, p, M)$ be a vector bundle of rank r, and let ∇ be a connection on ξ. We consider the induced connection $\nabla^{\text {End }}$ on the endomorphism bundle $\operatorname{End}(\xi)=\xi^{*} \otimes \xi$. Recall that for $\varphi \in \Gamma(\operatorname{End}(\xi)), \sigma \in \Gamma(\xi)$ and $X \in \mathcal{X}(M)=\Gamma(T M)$, we get:

$$
\left(\nabla_{X}^{\mathrm{End}} \varphi\right)(\sigma)=\nabla_{X}(\varphi(\sigma))-\varphi\left(\nabla_{X} \sigma\right)
$$

1. For $\varphi \in \Gamma(\operatorname{End}(\xi)), \sigma \in \Gamma(\xi)$ and $X, Y \in \mathcal{X}(M)=\Gamma(T M)$, give an expression of $\left(\nabla_{X}^{\mathrm{End}} \nabla_{Y}^{\mathrm{End}} \varphi\right)(\sigma)$ that does not involve the connection $\nabla^{\text {End }}$.

Solution:

$$
\begin{aligned}
\left(\nabla_{X}^{\mathrm{End}} \nabla_{Y}^{\mathrm{End}} \varphi\right)(\sigma) & =\nabla_{X}\left[\left(\nabla_{Y}^{\mathrm{End}} \varphi\right)(\sigma)\right]-\left[\nabla_{Y}^{\mathrm{End}} \varphi\right]\left(\nabla_{X} \sigma\right) \\
& =\nabla_{X}\left[\nabla_{Y}(\varphi(\sigma))-\varphi\left(\nabla_{Y} \sigma\right)\right]-\left[\nabla_{Y}\left(\varphi\left(\nabla_{X} \sigma\right)\right)-\varphi\left(\nabla_{Y} \nabla_{X} \sigma\right)\right] \\
& =\nabla_{X} \nabla_{Y}(\varphi(\sigma))-\nabla_{X}\left(\varphi\left(\nabla_{Y} \sigma\right)\right)-\nabla_{Y}\left(\varphi\left(\nabla_{X} \sigma\right)\right)+\varphi\left(\nabla_{Y} \nabla_{X} \sigma\right)
\end{aligned}
$$

2. Let $F \in \Omega^{2}(\operatorname{End}(\xi))$ be the curvature of ∇, and $F^{\text {End }} \in \Omega^{2}\left(\operatorname{End}(\operatorname{End}(\xi))\right.$ the curvature of $\nabla^{\text {End }}$. Prove that $F^{\text {End }}=\operatorname{ad}(F)$, i.e.

$$
\forall x \in M \forall u, v \in T_{x} M \forall \varphi \in \operatorname{End}\left(\xi_{x}\right) \quad F_{x}^{\operatorname{End}}(u, v) \varphi=\left[F_{x}(u, v), \varphi\right]
$$

Solution: The previous computation yields

$$
\left(\nabla_{X}^{\mathrm{End}} \nabla_{Y}^{\mathrm{End}} \varphi-\nabla_{Y}^{\mathrm{End}} \nabla_{X}^{\mathrm{End}} \varphi\right)(\sigma)=\nabla_{X} \nabla_{Y}(\varphi(\sigma))-\nabla_{Y} \nabla_{X}(\varphi(\sigma))-\varphi\left(\nabla_{X} \nabla_{Y} \sigma-\nabla_{Y} \nabla_{X} \sigma\right)
$$

Since $\left(\nabla_{[X, Y]}^{\mathrm{End}} \varphi\right)(\sigma)=\nabla_{[X, Y]}(\varphi(\sigma))-\varphi\left(\nabla_{[X, Y]} \sigma\right)$, we find

$$
\begin{aligned}
\left(F^{\mathrm{End}}(X, Y) \varphi\right)(\sigma) & =F(X, Y)(\varphi(\sigma))-\varphi(F(X, Y) \sigma) \\
& =[F(X, Y), \varphi](\sigma)
\end{aligned}
$$

Exercise 3

Let G be a Lie group, \mathfrak{g} its Lie algebra, and $H \subset G$ a closed Lie subgroup whose Lie algebra is denoted by \mathfrak{I}. Consider $\pi_{H}: G \rightarrow G / H$ and $\pi_{\mathfrak{I}}: \mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{l}$ the canonical projections.

1. Let V be a finite dimensional real vector space, and $\rho: H \rightarrow \mathrm{GL}(V)$ a Lie group morphism. Consider the right action $G \times V \curvearrowleft H$ defined by $(g, v) \cdot h=\left(g h, \rho\left(g^{-1}\right) \cdot v\right)$. Prove that the quotient $G \times V / H$ is the total space of a vector bundle ξ_{ρ} over G / H.

Solution: Let $\pi_{1}: G \times V \rightarrow G$ be the projection on the first factor.
The action of H on $G \times V$ is smooth and free (if $(g, v) . h=(g, v)$, then $g h=g$ so $h=e)$. It is also proper: if $K \subset G \times V$ is compact, then so is $\pi_{1}(K)$, and

$$
\{h \in H \mid K h \cap K \neq \emptyset\} \subset\left\{h \in H \mid \pi_{1}(K) h \cap \pi_{1}(K) \neq \emptyset\right\}
$$

is compact. Let E_{ρ} be the quotient manifold, and $\pi_{\rho}: G \times V \rightarrow E_{\rho}$ the projection. The smooth map $\pi_{H} \circ \pi_{1}: G \times V \rightarrow G / H$ is H-invariant, so it descends to a smooth map $p: E_{\rho} \rightarrow G / H$.
Since π_{1} and π_{H} are both surjective submersions, the equality $p \circ \pi_{\rho}=\pi_{H} \circ \pi_{1}$ shows that p is also a surjective submersion.

Consider a local section $\sigma: U \rightarrow G$ of π_{H}, where $U \subset G / H$ is open and $\pi_{H}(e) \in U$. For $x \in U$, consider the $\operatorname{map} \varphi_{x}: V \rightarrow p^{-1}(\{x\})$ defined by $\varphi_{x}(v)=\pi_{\rho}(\sigma(x), v)$. It is injective: if $\varphi_{x}(v)=\varphi_{x}(w)$ for $v, w \in V$, then by definition of π_{ρ} there is $h \in H$ such that $(\sigma(x), w)=(\sigma(x), v) . h$. The first factor yields $h=e$, so the second yields $v=w$. It is also an immersion: if $d_{v} \varphi_{x}(w)=0$ for $v, w \in V$, then $d_{(\sigma(x), v)} \pi_{\rho}(0, w)=0$, so the vector $(0, w) \in T_{\sigma(x)} G \times V$ is tangent to the fibre of π_{ρ}, which is the H-orbit of $(\sigma(x), v)$. Since $T_{(\sigma(x), v)}(\sigma(x), v) \cdot H=\left\{\left(d_{e} L_{\sigma}(x)(X),-d_{e} \rho(X) v\right) \mid X \in \mathfrak{I}\right\}$, we find that $w=0$.
The map φ_{x} is surjective: if $z \in p^{-1}(\{x\})$, consider $(g, v) \in G \times V$ such that $z=\pi_{\rho}(g, v)$. Since $\pi_{H}(g)=p(z)=x$, there is $h \in H$ such that $g=\sigma(x) h$, and $\varphi_{x}(\rho(h) v)=z$.
We have shown that φ_{x} is an immersion and a bijection, so it is a diffeomorphism. So $\left(\varphi_{x}\right)_{x \in U}$ is a trivialisation of $\left.p\right|_{p^{-1}(U)}$ with respect to V.

Given $g \in G$, we can consider the open set $g . U \subset G / H$ and define $\varphi_{x}^{g}(v)=\pi_{\rho}\left(g \sigma\left(g^{-1} \cdot x\right), v\right)$ for $x \in g . U$ and $v \in V$. Applying the previous arguments to the local section $x \mapsto g \sigma\left(g^{-1} \cdot x\right)$ of π_{H}, we find that φ_{x}^{g} if a diffeomorphism from V to $p^{-1}(\{x\})$ for all $x \in^{g} . U$.
If $x \in g . U \cap h . U$, there is $k \in H$ such that $g \sigma\left(g^{-1} x\right)=h \sigma\left(h^{-1} x\right) k$ and the transition map $\left(\varphi_{x}^{h}\right)^{-1} \circ \varphi_{x}^{g}$: $V \rightarrow V$ is equal to $\rho(k)$, so it is linear, and this shows that $\xi_{\rho}=\left(E_{\rho}, p, G / H\right)$ is a vector bundle of rank $\operatorname{dim} V$.
2. Let $\rho: H \rightarrow G L(\mathfrak{g} / \mathfrak{l})$ be defined by $\rho(h) \cdot \pi_{\mathfrak{l}}(X)=\pi_{\mathfrak{l}}(\operatorname{Ad}(h) X)$ for all $h \in H$ and $X \in \mathfrak{g}$. Prove that this defines a Lie group morphism, and that the vector bundle ξ_{ρ} constructed in the previous question with $V=\mathfrak{g} / \mathfrak{h}$ is isomorphic to the tangent bundle $T(G / H)$.

Solution: The fact that $\rho(h)$ is well defined comes from $\operatorname{Ad}(h) \mathfrak{I} \subset \mathfrak{h}$. Consider a vector basis $\mathcal{B}=$ $\left(X_{1}, \ldots, X_{d}\right)$ of \mathfrak{g} such that $\left(X_{1}, \ldots, X_{k}\right)$ is a basis of \mathfrak{I}. Then for all $h \in H$, the matrix of $\operatorname{Ad}(h)$ in the basis \mathcal{B} writes as $\left(\begin{array}{cc}A(h) & B(h) \\ 0 & C(h)\end{array}\right)$. The matrix of $\rho(h)$ in the basis $\left(\pi_{\mathfrak{l}}\left(X_{k+1}\right), \ldots, \pi_{\mathfrak{l}}\left(X_{d}\right)\right)$ of $\mathfrak{g} / \mathfrak{l}$ is $C(h)$ and depends smoothly on h because $A d(h)$ does. This shows that ρ is smooth, so it is a Lie group morphism.

Consider the map $\Psi: G \times \mathfrak{g} \rightarrow T(G / H)$ defined by $\Psi(g, X)=\left(\pi_{H}(g), d_{e}\left(\pi_{H} \circ L_{g}\right)(X)\right)$. If $X \in \mathfrak{I}$, then $d_{e}\left(\pi_{H} \circ L_{g}\right)(X)=d_{e}\left(\pi_{H} \circ L_{g}\right)\left(\left.\frac{d}{d t}\right|_{t=0} \exp _{H}(t X)\right)=\left.\frac{d}{d t}\right|_{t=0} \pi_{H}\left(g \exp _{H}(t X)\right)=\left.\frac{d}{d t}\right|_{t=0} \pi_{H}(g)=0$. It follows that Ψ descends to a smooth map $\psi: G \times \mathfrak{g} / \mathfrak{h} \rightarrow T(G / H)$ which is linear in the second variable.
Let $g \in G, X \in \mathfrak{g}$ and $h \in H$.

$$
\begin{aligned}
& \psi\left(g h, \rho\left(h^{-1}\right) \cdot \pi_{\mathfrak{l y}}(X)\right)=\Psi\left(g h, \operatorname{Ad}\left(h^{-1}\right) X\right) \\
&=(\pi_{H}(g h), d_{e}\left(\pi_{H} \circ L_{g h}\right)(\underbrace{}_{\left.\left.=d_{e}{l_{h}-1}^{\operatorname{Ad}\left(h^{-1}\right)} X\right)\right)} \\
&=(\pi_{H}(g), d_{e}(\underbrace{\pi_{H} \circ L_{g h} \circ L_{h^{-1}}}_{=\pi_{H} \circ L_{g}})(X)) \\
&=\psi\left(g h, \pi_{\mathfrak{l d}}(X)\right)
\end{aligned}
$$

It follows that ψ descends to a smooth function $\Phi: E_{\rho} \rightarrow T(G / H)$. In the trivialisation $\varphi_{x}^{g}: \mathfrak{g} / \mathfrak{r} \rightarrow$ $p^{-1}(\{x\})$ defined in the previous question, we find $\Phi \circ \varphi_{x}^{g}\left(\pi_{\mathfrak{r}}(X)\right)=\left(x, d_{e}\left(\pi_{H} \circ L_{g \sigma\left(g^{-1} . x\right)}\right)(X)\right)$. Since $\operatorname{ker} d_{e}\left(\pi_{H} \circ L_{g \sigma\left(g^{-1} . x\right)}\right)=\mathfrak{h}$, we find that Φ induces a linear isomorphism from the fibre $p^{-1}(\{x\})$ to $T_{x} G / H$, so it is a vector bundle isomorphism.
3. Use a homogeneous space to identify $T_{V} \mathcal{G}_{k}\left(\mathbb{R}^{d}\right)$ and $\operatorname{Hom}\left(V, \mathbb{R}^{d} / V\right)$ for $V \in \mathcal{G}_{k}\left(\mathbb{R}^{d}\right)$.

Solution: The action of $G=G L\left(\mathbb{R}^{d}\right)$ on $\mathcal{G}_{k}\left(\mathbb{R}^{d}\right)$ is transitive, so the differential of the orbit map identifies the tangent space of the homogeneous space $\mathcal{G}_{k}\left(\mathbb{R}^{d}\right)$ at V with $\mathfrak{g} / \mathfrak{h}$ where \mathfrak{I} is the Lie algebra of the stabiliser $H \subset G$ of V. Since $\mathfrak{I}=\left\{f \in \operatorname{End}\left(\mathbb{R}^{d}\right) \mid f(V) \subset V\right\}$, the map $\left.f \mapsto \pi_{V} \circ f\right|_{V}$ (where $\pi_{V}=\mathbb{R}^{d} \rightarrow \mathbb{R}^{d} / V$ is the projection) induces an isomorphism from $\mathfrak{g} / \mathfrak{h}$ to $\operatorname{Hom}\left(V, \mathbb{R}^{d} / V\right)$.

