Groups and geometry

Mid-term exam

Exercise 1

The goal of this exercise is to show that the exponential map $\exp : \mathfrak{gl}(n, \mathbb{C}) \to \operatorname{GL}(n, \mathbb{C})$ is surjective.

Let $A \in GL(n, \mathbb{C})$. For $P = \sum_{k=0}^{d} a_{x} X^{k} \in \mathbb{C}[X]$, we write $P(A) = \sum_{k=0} a_{k} A^{k} \in \mathcal{M}_{n}(\mathbb{C})$. Let:

$$\mathbb{C}[A] = \{P(A) \mid P \in \mathbb{C}[X]\} \subset \mathcal{M}_n(\mathbb{C})$$

We also consider $\mathbb{C}[A]^{\times} = \mathbb{C}[A] \cap \mathrm{GL}(n, C)$.

1. Prove that $A^{-1} \in \mathbb{C}[A]$, then show that $\mathbb{C}[A]^{\times}$ is a subgroup of $GL(n, \mathbb{C})$.

Solution: Consider $P_A(X) = \det(X1_n - A)$ the characteristic polynomial of A. According to the Cayley-Hamilton Theorem, we have $P_A(A) = 0$. Write $P_A = \sum_{k=0}^n a_k X^k$. Note that $a_0 = (-1)^n \det A \neq 0$, so we can consider the polynomial $Q_A = -\sum_{k=0}^{n-1} \frac{a_{k+1}}{a_0} X^k$ and write $P_A(X) = a_0 - a_0 X Q_A(X)$. Now $P_A(A) = 0$ leads to $A^{-1} = Q_A(A) \in \mathbb{C}[A]$.

Let us now show that $\mathbb{C}[A]^{\times}$ is a subgroup of $GL(n,\mathbb{C})$. It contains $1_n = 1(A)$. Given $B = P(A), C = Q(A) \in \mathbb{C}[A]^{\times}$, we have $BC = PQ(A) \in \mathbb{C}[A]$, and $BC \in GL(n,\mathbb{C})$, so $BC \in \mathbb{C}[A]^{\times}$. Let $B = P(A) \in \mathbb{C}[A]^{\times}$. Applying the previous result to B, there is a polynomial $Q_B \in \mathbb{C}[X]$ such that $B^{-1} = Q_B(B)$, so $B^{-1} = Q_B(B) = Q_B \circ P(A) \in \mathbb{C}[A]$, hence $B^{-1} \in \mathbb{C}[A]^{\times}$ and this concludes the proof that $\mathbb{C}[A]^{\times}$ is a subgroup of $GL(n,\mathbb{C})$.

2. Prove that $\mathbb{C}[A]^{\times}$ is connected.

Hint: for $B, C \in \mathbb{C}[A]^{\times}$, consider the polynomial $Q(X) = \det(B + X(C - B)) \in \mathbb{C}[X]$, and use the fact that $\mathbb{C} \setminus F$ is connected whenever $F \subset \mathbb{C}$ is finite.

Solution: Let $B, C \in \mathbb{C}[A]^{\times}$, and consider the polynomial $Q(X) = \det(B + X(C - B)) \in \mathbb{C}[X]$. Since $Q(0) = \det B \neq 0$, we know that $Q \neq 0$ so $F = \{z \in \mathbb{C} | Q(z) = 0\}$ is finite. Since $0 \in F$ and $1 \in F$ (because $Q(1) = \det C \neq 0$), there is a continuous path $c : [0,1] \rightarrow \mathbb{C} \setminus F$ such that c(0) = 0 and c(1) = 1. Now consider $\gamma(t) = B + c(t)(C - B)$. This is a continuous path $\gamma : [0,1] \rightarrow \mathbb{C}[A]^{\times}$ such that $\gamma(0) = B$ and $\gamma(0) = C$, so $\mathbb{C}[A]^{\times}$ is path-connected.

3. Let *G* be a connected abelian Lie group. Prove that exp_G is surjective.

Solution: Since *G* is abelian, the exponential map $\exp_G : \mathfrak{g} \to G$ is a Lie group morphism from $(\mathfrak{g}, +)$ to *G*. Its image $\exp_G(\mathfrak{g})$ is an open subgroup of *G* (because $d_0 \exp_G = \operatorname{Id}_{\mathfrak{g}}$ is invertible), and any open subgroup is closed. It follows that $\exp_G(\mathfrak{g})$ is open and closed in *G*. Since *G* is connected, we find that \exp_G is onto.

4. Conclude.

Solution: Note that $\mathbb{C}[A]^{\times}$ is an open subset of the vector subspace $\mathbb{C}[A]$ of $\mathcal{M}_n(\mathbb{C})$, so it is a submanifold of $\mathrm{GL}(n,\mathbb{C})$. It follows from question 1. that $\mathbb{C}[A]^{\times}$ is an embedded Lie subgroup of $\mathrm{GL}(n,\mathbb{C})$

(and its Lie algebra is $\mathbb{C}[A]$). It is also abelian (because P(A)Q(A) = PQ(A) = QP(A) = Q(A)P(A)), and connected because of question 3.). According to question 3., there is $B \in \mathbb{C}[A] \subset \mathcal{M}_n(\mathbb{C})$ such that $A = \exp_{\mathbb{C}[A]^{\times}}(B) = \exp_{\mathbb{G}L(n,\mathbb{C})}(B) = \exp(B)$.

Exercise 2

Let $\xi = (E, p, M)$ be a vector bundle of rank r, and let ∇ be a connection on ξ . We consider the induced connection ∇^{End} on the endomorphism bundle $\text{End}(\xi) = \xi^* \otimes \xi$. Recall that for $\varphi \in \Gamma(\text{End}(\xi))$, $\sigma \in \Gamma(\xi)$ and $X \in \mathcal{X}(M) = \Gamma(TM)$, we get:

$$\left(\nabla_X^{\operatorname{End}}\varphi\right)(\sigma) = \nabla_X\left(\varphi(\sigma)\right) - \varphi\left(\nabla_X\sigma\right)$$

1. For $\varphi \in \Gamma(\text{End}(\xi))$, $\sigma \in \Gamma(\xi)$ and $X, Y \in \mathcal{X}(M) = \Gamma(TM)$, give an expression of $(\nabla_X^{\text{End}} \nabla_Y^{\text{End}} \varphi)(\sigma)$ that does not involve the connection ∇^{End} .

Solution:

$$\begin{split} \left(\nabla_{X}^{\mathrm{End}}\nabla_{Y}^{\mathrm{End}}\varphi\right)(\sigma) &= \nabla_{X}\left[\left(\nabla_{Y}^{\mathrm{End}}\varphi\right)(\sigma)\right] - \left[\nabla_{Y}^{\mathrm{End}}\varphi\right](\nabla_{X}\sigma) \\ &= \nabla_{X}\left[\nabla_{Y}\left(\varphi(\sigma)\right) - \varphi\left(\nabla_{Y}\sigma\right)\right] - \left[\nabla_{Y}\left(\varphi(\nabla_{X}\sigma)\right) - \varphi(\nabla_{Y}\nabla_{X}\sigma)\right] \\ &= \nabla_{X}\nabla_{Y}\left(\varphi(\sigma)\right) - \nabla_{X}\left(\varphi(\nabla_{Y}\sigma)\right) - \nabla_{Y}\left(\varphi(\nabla_{X}\sigma)\right) + \varphi(\nabla_{Y}\nabla_{X}\sigma) \end{split}$$

2. Let $F \in \Omega^2(\text{End}(\xi))$ be the curvature of ∇ , and $F^{\text{End}} \in \Omega^2(\text{End}(\text{End}(\xi)))$ the curvature of ∇^{End} . Prove that $F^{\text{End}} = \text{ad}(F)$, i.e.

$$\forall x \in M \ \forall u, v \in T_x M \ \forall \varphi \in \operatorname{End}(\xi_x) \quad F_x^{\operatorname{End}}(u, v)\varphi = [F_x(u, v), \varphi]$$

Solution: The previous computation yields

$$\left(\nabla_{X}^{\mathrm{End}}\nabla_{Y}^{\mathrm{End}}\varphi - \nabla_{Y}^{\mathrm{End}}\nabla_{X}^{\mathrm{End}}\varphi\right)(\sigma) = \nabla_{X}\nabla_{Y}\left(\varphi(\sigma)\right) - \nabla_{Y}\nabla_{X}\left(\varphi(\sigma)\right) - \varphi\left(\nabla_{X}\nabla_{Y}\sigma - \nabla_{Y}\nabla_{X}\sigma\right)$$

Since $\left(\nabla_{[X,Y]}^{\operatorname{End}}\varphi\right)(\sigma) = \nabla_{[X,Y]}\left(\varphi(\sigma)\right) - \varphi\left(\nabla_{[X,Y]}\sigma\right)$, we find

$$(F^{\text{End}}(X,Y)\varphi)(\sigma) = F(X,Y)(\varphi(\sigma)) - \varphi(F(X,Y)\sigma)$$
$$= [F(X,Y),\varphi](\sigma)$$

Exercise 3

Let *G* be a Lie group, \mathfrak{g} its Lie algebra, and $H \subset G$ a closed Lie subgroup whose Lie algebra is denoted by \mathfrak{h} . Consider $\pi_H : G \to G/H$ and $\pi_{\mathfrak{h}} : \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ the canonical projections.

1. Let *V* be a finite dimensional real vector space, and $\rho : H \to GL(V)$ a Lie group morphism. Consider the right action $G \times V \curvearrowleft H$ defined by $(g, v).h = (gh, \rho(g^{-1}).v)$. Prove that the quotient $G \times V/H$ is the total space of a vector bundle ξ_{ρ} over G/H. *Solution*: Let π_1 : $G \times V \rightarrow G$ be the projection on the first factor.

The action of *H* on $G \times V$ is smooth and free (if (g, v).h = (g, v), then gh = g so h = e). It is also proper: if $K \subset G \times V$ is compact, then so is $\pi_1(K)$, and

$$\{h \in H \mid Kh \cap K \neq \emptyset\} \subset \{h \in H \mid \pi_1(K)h \cap \pi_1(K) \neq \emptyset\}$$

is compact. Let E_{ρ} be the quotient manifold, and $\pi_{\rho} : G \times V \to E_{\rho}$ the projection. The smooth map $\pi_H \circ \pi_1 : G \times V \to G/H$ is *H*-invariant, so it descends to a smooth map $p : E_{\rho} \to G/H$. Since π_1 and π_H are both surjective submersions, the equality $p \circ \pi_{\rho} = \pi_H \circ \pi_1$ shows that *p* is also a surjective submersion.

Consider a local section $\sigma : U \to G$ of π_H , where $U \subset G/H$ is open and $\pi_H(e) \in U$. For $x \in U$, consider the map $\varphi_x : V \to p^{-1}(\{x\})$ defined by $\varphi_x(v) = \pi_\rho(\sigma(x), v)$. It is injective: if $\varphi_x(v) = \varphi_x(w)$ for $v, w \in V$, then by definition of π_ρ there is $h \in H$ such that $(\sigma(x), w) = (\sigma(x), v).h$. The first factor yields h = e, so the second yields v = w. It is also an immersion: if $d_v \varphi_x(w) = 0$ for $v, w \in V$, then $d_{(\sigma(x),v)}\pi_\rho(0,w) = 0$, so the vector $(0, w) \in T_{\sigma(x)}G \times V$ is tangent to the fibre of π_ρ , which is the *H*-orbit of $(\sigma(x), v)$. Since $T_{(\sigma(x),v)}(\sigma(x), v).H = \{(d_eL_\sigma(x)(X), -d_e\rho(X)v) \mid X \in \mathfrak{h}\}$, we find that w = 0.

The map φ_x is surjective: if $z \in p^{-1}(\{x\})$, consider $(g, v) \in G \times V$ such that $z = \pi_{\rho}(g, v)$. Since $\pi_H(g) = p(z) = x$, there is $h \in H$ such that $g = \sigma(x)h$, and $\varphi_x(\rho(h)v) = z$.

We have shown that φ_x is an immersion and a bijection, so it is a diffeomorphism. So $(\varphi_x)_{x \in U}$ is a trivialisation of $p|_{p^{-1}(U)}$ with respect to *V*.

Given $g \in G$, we can consider the open set $g.U \subset G/H$ and define $\varphi_x^g(v) = \pi_\rho(g\sigma(g^{-1}.x), v)$ for $x \in g.U$ and $v \in V$. Applying the previous arguments to the local section $x \mapsto g\sigma(g^{-1}.x)$ of π_H , we find that φ_x^g if a diffeomorphism from V to $p^{-1}(\{x\})$ for all $x \in g$. U.

If $x \in g.U \cap h.U$, there is $k \in H$ such that $g\sigma(g^{-1}x) = h\sigma(h^{-1}x)k$ and the transition map $(\varphi_x^h)^{-1} \circ \varphi_x^g : V \to V$ is equal to $\rho(k)$, so it is linear, and this shows that $\xi_\rho = (E_\rho, p, G/H)$ is a vector bundle of rank dim *V*.

2. Let $\rho : H \to GL(\mathfrak{g}/\mathfrak{h})$ be defined by $\rho(h).\pi_{\mathfrak{h}}(X) = \pi_{\mathfrak{h}}(\mathrm{Ad}(h)X)$ for all $h \in H$ and $X \in \mathfrak{g}$. Prove that this defines a Lie group morphism, and that the vector bundle ξ_{ρ} constructed in the previous question with $V = \mathfrak{g}/\mathfrak{h}$ is isomorphic to the tangent bundle T(G/H).

Solution: The fact that $\rho(h)$ is well defined comes from $\operatorname{Ad}(h)\mathfrak{h} \subset \mathfrak{h}$. Consider a vector basis $\mathcal{B} = (X_1, \ldots, X_d)$ of \mathfrak{g} such that (X_1, \ldots, X_k) is a basis of \mathfrak{h} . Then for all $h \in H$, the matrix of Ad(h) in the basis \mathcal{B} writes as $\begin{pmatrix} A(h) & B(h) \\ 0 & C(h) \end{pmatrix}$. The matrix of $\rho(h)$ in the basis $(\pi_{\mathfrak{h}}(X_{k+1}), \ldots, \pi_{\mathfrak{h}}(X_d))$ of $\mathfrak{g}/\mathfrak{h}$ is C(h) and depends smoothly on h because Ad(h) does. This shows that ρ is smooth, so it is a Lie group morphism.

Consider the map $\Psi : G \times \mathfrak{g} \to T(G/H)$ defined by $\Psi(g, X) = (\pi_H(g), d_e(\pi_H \circ L_g)(X))$. If $X \in \mathfrak{h}$, then $d_e(\pi_H \circ L_g)(X) = d_e(\pi_H \circ L_g)\left(\frac{d}{dt}\Big|_{t=0}\exp_H(tX)\right) = \frac{d}{dt}\Big|_{t=0}\pi_H(g\exp_H(tX)) = \frac{d}{dt}\Big|_{t=0}\pi_H(g) = 0$. It follows that Ψ descends to a smooth map $\psi : G \times \mathfrak{g}/\mathfrak{h} \to T(G/H)$ which is linear in the second variable. Let $g \in G$, $X \in \mathfrak{g}$ and $h \in H$.

$$\psi(gh, \rho(h^{-1}).\pi_{\mathfrak{h}}(X)) = \Psi(gh, \operatorname{Ad}(h^{-1})X)$$

$$= (\pi_{H}(gh), d_{e}(\pi_{H} \circ L_{gh})(\operatorname{Ad}(h^{-1})X))$$

$$= (\pi_{H}(g), d_{e}(\underbrace{\pi_{H} \circ L_{gh} \circ \iota_{h^{-1}}}_{=\pi_{H} \circ L_{g}})(X))$$

$$= \psi(gh, \pi_{\mathfrak{h}}(X))$$

It follows that ψ descends to a smooth function $\Phi: E_{\rho} \to T(G/H)$. In the trivialisation $\varphi_x^g: \mathfrak{g}/\mathfrak{h} \to p^{-1}(\{x\})$ defined in the previous question, we find $\Phi \circ \varphi_x^g(\pi_\mathfrak{h}(X)) = (x, d_e(\pi_H \circ L_{g\sigma(g^{-1}.x)})(X))$. Since $\ker d_e(\pi_H \circ L_{g\sigma(g^{-1}.x)}) = \mathfrak{h}$, we find that Φ induces a linear isomorphism from the fibre $p^{-1}(\{x\})$ to T_xG/H , so it is a vector bundle isomorphism.

3. Use a homogeneous space to identify $T_V \mathcal{G}_k(\mathbb{R}^d)$ and $\operatorname{Hom}(V, \mathbb{R}^d/V)$ for $V \in \mathcal{G}_k(\mathbb{R}^d)$.

Solution: The action of $G = GL(\mathbb{R}^d)$ on $\mathcal{G}_k(\mathbb{R}^d)$ is transitive, so the differential of the orbit map identifies the tangent space of the homogeneous space $\mathcal{G}_k(\mathbb{R}^d)$ at V with $\mathfrak{g/h}$ where \mathfrak{h} is the Lie algebra of the stabiliser $H \subset G$ of V. Since $\mathfrak{h} = \{f \in \operatorname{End}(\mathbb{R}^d) | f(V) \subset V\}$, the map $f \mapsto \pi_V \circ f|_V$ (where $\pi_V = \mathbb{R}^d \to \mathbb{R}^d/V$ is the projection) induces an isomorphism from $\mathfrak{g/h}$ to $\operatorname{Hom}(V, \mathbb{R}^d/V)$.