Groups and geometry

Mid-term exam

Exercise 1

The goal of this exercise is to show that the exponential map exp : gl(n, C) — GL(n, C) is surjective.

Let A € GL(n,C). For P = szo a,X* € C[X], we write P(A) = ¥ ;_, axAF € M,,(C). Let:
C[A] ={P(A)|P e C[X]} € M,(C)
We also consider C[A]* = C[A]NGL(n,C).

1. Prove that A~! € C[A], then show that C[A]* is a subgroup of GL(n, C).

Solution: Consider P4(X) = det(X1,,—A) the characteristic polynomial of A. According to the Cayley-
Hamilton Theorem, we have P4(A) = 0. Write Py =} |, aX*. Note that ay = (-1)"det A = 0, so we
can consider the polynomial Q4 = —ZZ;}) aZ—ngk and write Py(X) = ag —agXQa(X). Now P4(A) =0
leads to A1 = Q4(A) € C[A].

Let us now show that C[A]* is a subgroup of GL(n,C). It contains 1, = 1(A). Given B = P(A),C =
Q(A) e C[A]*, we have BC = PQ(A) € C[A], and BC € GL(n,C), so BC € C[A]*.

Let B = P(A) € C[A]*. Applying the previous result to B, there is a polynomial Qg € C[X] such that
B! = Qg(B), so B! = Qp(B) = Qgo P(A) € C[A], hence B! € C[A]* and this concludes the proof that
C[A]* is a subgroup of GL(n,C).

2. Prove that C[A]* is connected.
Hint: for B,C € C[A]*, consider the polynomial Q(X) = det(B+ X(C — B)) € C[X], and use the fact that
C\ F is connected whenever F C C is finite.

Solution: Let B,C € C[A]*, and consider the polynomial Q(X) = det(B + X(C — B)) € C[X]. Since
Q(0) =detB # 0, we know that Q = 0 so F = {z € C|Q(z) = 0} is finite. Since 0 € F and 1 € F (because
Q(1) = detC = 0), there is a continuous path ¢ : [0,1] — C\ F such that ¢(0) = 0 and ¢(1) = 1. Now
consider y(t) = B+ ¢(t)(C — B). This is a continuous path y : [0,1] — C[A]* such that y(0) = B and
7(0) = C, so C[A]* is path-connected.

3. Let G be a connected abelian Lie group. Prove that exp; is surjective.

Solution: Since G is abelian, the exponential map exp; : g — G is a Lie group morphism from (g, +)
to G. Its image exp(g) is an open subgroup of G (because dyexpg = Id, is invertible), and any open
subgroup is closed. It follows that exp(g) is open and closed in G. Since G is connected, we find
that exp is onto.

4. Conclude.

Solution: Note that C[A]* is an open subset of the vector subspace C[A] of M,,(C), so it is a subman-
ifold of GL(n,C). It follows from question 1. that C[A]* is an embedded Lie subgroup of GL(#n,C)



(and its Lie algebra is C[A]). It is also abelian (because P(A)Q(A) = PQ(A) = QP(A) = Q(A)P(A)),
and connected because of question 3.). According to question 3., there is B € C[A] ¢ M,,(C) such
that A = expgi4}«(B) = expgy,,c)(B) = exp(B).

Exercise 2

Let £ = (E,p,M) be a vector bundle of rank r, and let V be a connection on £. We consider the induced
connection VE" on the endomorphism bundle End(&) = £* ® £. Recall that for ¢ € I'(End(&)), o0 € (&)
and X e X(M) =T(TM), we get:

(VEp)(0) = Vx (9(0)) - ¢ (Vx0)

1. For ¢ e T(End(¢)), 0 € (&) and X, Y € X(M) = (TM), give an expression of (V%ndvgnd(p)(a) that

does not involve the connection VEd,

Solution:

(VEndvEnd(p) (0) = [ vEnd ] [VEnd(P] (Vxo)
=Vx [VY ®(0) = VYU)]—[VY((P(VXU))—(P(VYVXU)]
=VxVy (QD(U))—VX (GD(VYO"))—VY((P(VXU))+§0(VYVXU)

2. Let F € Q%(End(&)) be the curvature of V, and FF"d € Q?(End(End(&)) the curvature of VE", Prove
that FEnd = ad(F), i.e

VxeMVu,ve TMVYpeEnd(&,) FE(u,v)p = [Fe(u,v), @]

Solution: The previous computation yields

(VEndVEnd(P VEndVEnd(P) (0) =VxVy ((P(O')) -VyVx ((P(O‘)) - (VXVYO' - VYVXO')

Since (VF)‘(‘ Y](p)( o) =Vixy] ((p(o)) - (p(V[X,y]a), we find

(F*(X, Y)¢)(0) = F(X, V) (9(0)) = ¢ (F(X, Y)o)
= [F(X,Y),¢)(0)

Exercise 3

Let G be a Lie group, g its Lie algebra, and H C G a closed Lie subgroup whose Lie algebra is denoted by
hi. Consider rty; : G — G/H and 7y, : g — g/l the canonical projections.

1. Let V be a finite dimensional real vector space, and p : H — GL(V') a Lie group morphism. Consider
the right action G x V «~ H defined by (g,v).h = (gh,p(¢g"!).v). Prove that the quotient G x V/H is
the total space of a vector bundle &, over G/H.



Solution: Let 1y : Gx V — G be the projection on the first factor.
The action of H on GxV is smooth and free (if (g,v).h = (g,v), then gh = g so h =e). It is also proper:
if K € Gx V is compact, then so is 711 (K), and

{(he HIKhnK #0) C (he H|m, (K)hN 7ty (K) = 0)

is compact. Let E, be the quotient manifold, and 7, : G x V — E, the projection. The smooth map
ngomy : GxV — G/H is H-invariant, so it descends to a smooth map p: E, — G/H.

Since 7y and 7y are both surjective submersions, the equality p o 71, = gy o 771 shows that p is also
a surjective submersion.

Consider a local section 0 : U — G of rtyy, where U € G/H is open and 7my(e) € U. For x € U, consider
the map ¢, : V — p~({x}) defined by ¢, (v) = 7,(0(x),v). It is injective: if @, (v) = @y (w) forv,w eV,
then by definition of 7, there is h € H such that (o(x), w) = (0(x),v).h. The first factor yields h =, so
the second yields v = w. It is also an immersion: if d, ¢, (w) = 0 for v,w € V, then d (4 (x),) 7, (0, w) = 0,
so the vector (0,w) € T, ()G x V is tangent to the fibre of 7, which is the H-orbit of (o(x),v). Since
Tio(x)v)(0(x),v).H = {(d. L (x)(X), —dep(X)v)|X € I}, we find that w = 0.

The map ¢, is surjective: if z € p~!({x}), consider (g,v) € G x V such that z = Tp(g,v). Since
1ty (g) = p(z) = x, there is h € H such that g = o(x)h, and ¢, (p(h)v) = z.

We have shown that ¢, is an immersion and a bijection, so it is a diffeomorphism. So (@,).cy is a
trivialisation of p|,-1(y) with respect to V.

Given g € G, we can consider the open set g.U C G/H and define ¢%(v) = np(ga(g_l.x),v) forxeg.U
and v € V. Applying the previous arguments to the local section x > go(g~!.x) of 7y, we find that

q0§ if a diffeomorphism from V to p~!({x}) for all x €8 .U.
If x € g.UNh.U, there is k € H such that go(g~'x) = ho(h~'x)k and the transition map ((pf})_l o

V — V is equal to p(k), so it is linear, and this shows that &, = (E,, p, G/H) is a vector bundle of rank
dim V.

. Let p: H — GL(g/h) be defined by p(h).7,(X) = ty(Ad(h)X) for all h € H and X € g. Prove that this
defines a Lie group morphism, and that the vector bundle £, constructed in the previous question
with V = g/ly is isomorphic to the tangent bundle T(G/H).

Solution: The fact that p(h) is well defined comes from Ad(h)h C . Consider a vector basis B =
(X1,...,Xy) of g such that (Xy,...,Xy) is a basis of 1. Then for all h € H, the matrix of Ad(h) in the

Agl) (B;((Z)) ) The matrix of p(h) in the basis (7y(Xk1),..., (X)) of g/l is C(h)
and depends smoothly on h because Ad(h) does. This shows that p is smooth, so it is a Lie group
morphism.

basis B writes as (

Consider the map W : G xg — T(G/H) defined by W(g, X) = (1ty(g), de(my o Lg)(X)). If X € I, then

do(mpy 0 Ly)(X) = de(mty o L) (4], epo(tX)) = £| _ mu(gexpy (tX)) = &|,_, mu(g) = 0. It follows
that W descends to a smooth map ¢ : G x g/l = T(G/H) which is linear in the second variable.
Letge G, Xegand he H.



P(gh, p(h™").my(X)) = W(gh, Ad(h™1)X)
= (g (gh), de(1e 0 Lgy)(Ad(h™) X))

~——
=d, 1,1

= (1t (8), de(mp © Lgy 0 1y-1)(X))
=mgol,

= (gh, 7y(X))

It follows that ¢ descends to a smooth function @ : E, — T(G/H). In the trivialisation (p,gc :g/h -
p~!({x}) defined in the previous question, we find ® o ¢f(775(X)) = (x,d, (75 0 Lgo(g1.x))(X)). Since
kerd,(mp o Lgy(g-1.x)) = It, we find that @ induces a linear isomorphism from the fibre p~H({x}) to
T.G/H, so it is a vector bundle isomorphism.

. Use a homogeneous space to identify Ty G (R?) and Hom(V,R%/V) for V € G¢(IRY).

Solution: The action of G = GL(R?) on Gi(R?) is transitive, so the differential of the orbit map
identifies the tangent space of the homogeneous space Ge(R?) at V with g/i where i is the Lie
algebra of the stabiliser H € G of V. Since I = {f € End(IRd)|f(V) C V}, the map f — my o fly

(where 7ty = RY — RY/V is the projection) induces an isomorphism from g/h to Hom(V,R%/V).



