Corrigé du partiel du 12 octobre 2020

Exercice 1

- a) C'est vrai. En effet on sait que G possède un p-Sylow S, et que tout p-Sylow H est conjugué de S, mais comme G est abélien ceci implique H = S.
- b) C'est vrai. En effet, si D(G) = G, alors par récurrence $D^{i}(G) = G$ pour tout $i \in \mathbb{N}^{*}$, ce qui n'est pas possible puisqu'on a vu que G est résoluble, donc vérifie $D^{i}(G) = \{1\}$ pour i assez grand.
- c) C'est vrai. Sinon, le cardinal de G aurait un diviseur premier $q \neq p$, et G contiendrait donc un q-Sylow non trivial H. Tout $x \neq 1$ dans H serait alors d'ordre q^s avec s > 0, ce qui n'est pas possible vu que l'hypothèse impose que l'ordre de x est de la forme p^r avec r > 0.
- d) C'est faux. Par exemple pour n=15, on sait que ce groupe est isomorphe à $(\mathbf{Z}/15)^*$, ou encore par le lemme chinois à $(\mathbf{Z}/3)^* \times (\mathbf{Z}/5)^*$, lequel est isomorphe au groupe additif $\mathbf{Z}/2 \times \mathbf{Z}/4$. Or, ce groupe n'est pas cyclique (tous ses éléments sont d'ordre 1, 2, ou 4).

Exercice 2

a) Soient $u = \text{int}_n$ un élément de Int(N) et $f \in \text{Aut}(N)$. Alors, pour tout $x \in N$, on a

$$(f\circ u\circ f^{-1})(x)=f(nf^{-1}(x)n^{-1})=f(n)xf(n)^{-1},$$

ce qui montre que $f \circ u \circ f^{-1} = \operatorname{int}_{f(n)}$ reste dans $\operatorname{Int}(N)$.

b) Soit $h \in H$, choisissons $g \in G$ tel que p(g) = h. Nécessairement $\varphi(h)$ doit être défini par

$$\varphi(h)(n) = gng^{-1},$$

ce qui montre déjà l'unicité. Par ailleurs, $\varphi(h)$ ne dépend pas du choix de g car si $g_1 \in G$ vérifie $p(g_1) = h = p(g)$, alors il existe $n_0 \in N$ tel que $g_1 = gn_0$, ce qui donne

$$g_1 n g_1^{-1} = g(n_0 n n_0^{-1}) g^{-1} = g n g^{-1}$$

puisque N est abélien. Il est immédiat que $\varphi(h) \in \operatorname{Aut}(N)$ (c'est la restriction de int_g à N, dont la réciproque est la restriction de $\operatorname{int}_{g^{-1}}$ à N) et il vérifie

par construction $gng^{-1} = [\varphi(p(g))](n)$ pour tous $g \in G$, $n \in N$. Finalement $\varphi : H \to \operatorname{Aut}(N)$ est un morphisme car si $h, h_1 \in H$ et on choisit $g, g_1 \in G$ tels que p(g) = h et $p(g_1) = h_1$, alors on a $p(gg_1) = hh_1$, ce qui fait que pour tout $n \in N$, on a :

$$\varphi(hh_1)(n) = (gg_1)n(gg_1)^{-1} = g(g_1ng_1^{-1})g^{-1} = (\varphi(h) \circ \varphi(h_1))(n)$$

comme on voulait.

Exercice 3

- a) Comme A est principal, il existe $a \in J$ tel que J = aA. Alors, il existe un indice i tel que $a \in J_i$, d'où $J = aA \subset J_i$.
- b) Comme x_i n'est dans aucun I_k si $k \neq i$, on a forcément $x_i \in I_i$ pour tout i. De plus $x_2...x_n$ n'est pas dans I_1 vu que I_1 est un idéal premier et aucun des $x_2, ..., x_n$ n'est dans I_1 . Du coup, $(x_1 + x_2...x_n) \notin I_1$. Pour $i \neq 1$, on a $x_2...x_n \in I_i$ et $x_1 \notin I_i$, d'où $(x_1 + x_2...x_n) \notin I_i$. Finalement $(x_1 + x_2...x_n)$ est dans I mais n'est dans aucun des I_i , contradiction.
- c) Le b) nous dit que dès que $n \geq 2$, il existe un indice i tel que $I \subset \bigcup_{k \neq i} I_i$. On conclut alors par récurrence sur n, le cas n = 1 étant évident.

Exercice 4

a) Soit x non nul dans B. Par hypothèse, il existe $a_0, ..., a_{n-1}$ dans A tels que

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0.$$

L'un des coefficients a_i est non nul; soit $k \in \mathbb{N}$ le plus petit indice avec a_k non nul, on a donc

$$x^n + a_{n_1}x^{n-1} + \dots + a_k x^k = 0,$$

et comme B est intègre, on peut simplifier par x^k pour trouver finalement une écriture

$$x^r + \dots + b_1 x + b_0 = 0$$

avec tous les b_i dans A et b_0 non nul, ainsi que $r \geq 1$. Alors

$$-b_0^{-1}x(b_1 + \dots + x^{r-1}) = 1,$$

où $b_0^{-1} \in A$ est l'inverse de b_0 , donc x est bien inversible dans B.

b) Soit a non nul dans A, il admet par hypothèse un inverse $a^{-1} \in B$. On sait aussi que a^{-1} annule un polynôme unitaire P de A[X], soit

$$P = X^n + b_{n-1}X + \dots + b_0$$

que l'on peut prendre de degré minimal. En particulier $b_0 \neq 0$, sinon par intégrité de B, a^{-1} annulerait un polynôme unitaire de degré plus petit. On a alors, en multipliant par a^n l'égalité $P(a^{-1}) = 0$:

$$1 + b_{n-1}a + \dots + b_0a^n = 0,$$

ce qui montre que a est inversible dans A, d'inverse $-(b_0a^{n-1} + ... + b_{n-1})$.

c) On a un morphisme injectif d'anneaux $A/Q \to B/P$ induit par l'inclusion $A \to B$, ce qui permet de voir A/Q comme un sous-anneau de B/P. De plus, si $\bar{b} \in B/P$ est la classe de $b \in B$, on a par hypothèse $P \in A[X]$ unitaire tel que P(b) = 0, donc en prenant les images des coefficients de P dans A/Q on a encore un polynôme $\overline{P} \in (A/Q)[X]$ unitaire tel que $\overline{P}(\bar{b}) = 0$. Il suffit alors d'appliquer a) et b) puisqu'un idéal I d'un anneau commutatif R est maximal si et seulement si R/I est un corps.