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We analyze an observer strategy based on partial—that is, in a subdomain—measurements of the
solution of a wave equation, in order to compensate for uncertain initial conditions. We prove the
exponential convergence of this observer under a nonstandard observability condition, whereas
using measurements of the time derivative of the solution would lead to a standard observability
condition arising in stabilization and exact controlabillity. Nevertheless, we directly relate our
specific observability condition to the classical geometric control condition. Finally, we provide
some numerical illustrations of the effectiveness of the approach.

1. Introduction

Observer theory has been established for decades [1], but onlymuchmore recently has it been
considered for systems governed by evolution partial differential equations (PDEs), see [2–4]
and references therein. In this realm challenges abound, as in particular observer convergence
can no longer be mathematically analyzed solely by investigating the poles of the observer
dynamics operator. Furthermore, observers are only meaningful when they provide an actual
computable estimate of the system state—and possibly also of some uncertain parameters, see
[2]—which implies that wemust consider discretization issues both in their design and in their
analysis, and this in turn introduces additional serious difficulties, as is already well known
in the field of stabilization of PDE-governed systems, see for example [5].

In this paper we consider an observer strategy originally proposed in [6] under the
name “Schur Displacement Feedback” (SDF) for elasticity-like formulations, and directly
adapted here to the scalar wave equation. A major advantage of this observer is that it
exploits measurements of the primary variable rather than of the time derivative of this
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variable. Such direct measurements are more easily obtained in practice, in general, hence
no detrimental time differentiation of the data is required in this case. When analyzing the
estimation error, we find—as always with Luenberger observers—a closed-loop stabilized
dynamics, albeit here of a rather uncommon—nonphysical—type. Nevertheless, we will
show that exponential convergence is achieved under an observability condition closely
related to that associated with more standard stabilization strategies, a condition which is
itself equivalent to the classical geometric control condition [7].

2. Observer Design

Let Ω be a bounded domain of R
n with a regular boundary ∂Ω. Given a known source

term f ∈ L1(R+, L2(Ω)) with ḟ—namely, the time derivative of f—also in L1(R+, L2(Ω)),
we consider the following wave equation:

ü(x, t) −Δu(x, t) = f(x, t), (x, t) ∈ Ω × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

u(x, 0) = u0(x), u̇(x, 0) = v0(x), x ∈ Ω.

(2.1)

Denoting x(t) =
(
u(t)
u̇(t)

)
, we can rewrite (2.1) as the first-order system

ẋ(t) = Ax(t) + R, t > 0,

x(0) = x0,
(2.2)

where x0 = ( u0v0 ) and A : D(A) → X with

D(A) = D(−Δ) × D
(
−Δ1/2

)
, X = D

(
−Δ1/2

)
×H, A =

(
0 I
Δ 0

)
, R =

(
0
f

)
,

(2.3)

for H = L2(Ω) here. Note that with the boundary conditions considered in (2.1), we have
D(−Δ1/2) = H1

0(Ω) and D(−Δ) = H2(Ω) ∩H1
0(Ω). The operator A generates a group and for

all x0 ∈ X then (u, u̇) ∈ C((0, T);X) for any T > 0, see for example [8].
For this system, we consider that some measurements are available—assumed to be

without noise in this paper—in ω ⊂ Ω an open and nonempty subset of Ω and at every time
t. These measurements can be either of the form

∀t ≥ 0,
∣∣∣∣
H1

0(Ω) −→ H1(ω)
u(·, t) 	−→ z(t) = u(·, t)|ω

(2.4)

or alternatively

∀t ≥ 0,
∣∣∣∣
L2(Ω) −→ L2(ω)
u̇(·, t) 	−→ z(t) = u̇(·, t)|ω.

(2.5)
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Our paper will mainly concentrate on the first type of observation, but we will consider the
second type as a matter of comparison. In each case, accordingly introducing the observation
space Z = H1(ω) or Z = L2(ω), we can define an observation operatorH ∈ L(X,Z) by

H =
(
H0 0

)
, or H =

(
0 H0

)
, (2.6)

respectively, withH0 the restriction operator on ω.
The aim in observer design is to define a system x̂, with modified dynamics compared

to that followed by the original system x and based on using the discrepancy z −Hx̂, so that
for any initial condition x̂0, the state system x̂ tends to x in time. The dynamics of the observer
x̂ read

˙̂x(t) = Ax̂(t) + R +G(z(t) −Hx̂(t)), t > 0,

x̂(0) = x̂0,
(2.7)

with G a gain operator to be defined in L(Z,X) in our case.
In order to assess the efficiency of the observer, we can consider the dynamics followed

by the error x̃ = x − x̂, namely

˙̃x = (A −GH)x̃(t), t > 0,

x̃(0) = x0 − x̂0,
(2.8)

and then G should stabilize x̃ to 0. This type of approach can be categorized as a Luenberger
observer [1]—also sometimes referred to as “nudging” [3]—applied on an evolution PDE.

In the case of time-derivative measurements (2.5), we can choose G = γ
( 0

1ω

)
, for any

γ > 0. Then the observer system derived from a Direct Velocity Feedback (DVF) gives

¨̂u(x, t) −Δû(x, t) = f + γ1ω(x)
(
z(x, t) − ˙̂u(x, t)

)
, (x, t) ∈ Ω × (0,∞),

û(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

û(x, 0) = û0(x), ˙̂u(x, 0) = v̂0(x), x ∈ Ω,

(2.9)

and the error follows the dynamics

¨̃u(x, t) −Δũ(x, t) + γ1ω(x) ˙̃u(x, t) = 0, (x, t) ∈ Ω × (0,∞),

ũ(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ṽ0(x), x ∈ Ω.

(2.10)
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This system is well known to be exponentially stable—see [7, 9] and references therein—if
and only if the observability condition

∃(T0, C), ∀T ≥ T0, ∀(u0, v0) ∈ H1
0(Ω) × L2(Ω),

∫T

0

∫

ω

|u̇(x, t)|2dΩdt ≥ C
(
‖u0‖2H1(Ω) + ‖v0‖2L2(Ω)

)
,

(2.11)

is satisfied for arbitrary solutions of the system (2.1) with f = 0, which is equivalent to the
geometric control condition (GCC) of [7].

In the first case of direct measurements of the field (2.4), we can also propose
an observer without any time differentiation involved—typically to avoid amplifying the
measurement errors which always arise in practice. To that purpose, we define the operator

Lω : H1(ω) −→ H1
0(Ω), Lωφ = ψ, (2.12)

where ψ is the solution of the following elliptic equation:

Δψ = 0, in Ω \ω,
ψ = 0, on ∂Ω,

ψ = φ, in ω,

(2.13)

namely, Lω is a harmonic lifting operator. We easily verify that Lω is bounded from H1(ω)
toH1

0(Ω) using the trace and lifting properties to write

∥∥Lωφ
∥∥2
H1

0 (Ω) ≤
∥∥∇φ∥∥2

L2(ω) + C1
∥∥φ|∂ω

∥∥2
H1/2(∂ω) ≤ C2

∥∥φ∥∥2
H1(ω). (2.14)

As a candidate observer, we will consider G = γ
( Lω

0

)
which gives the following first-order

system:

˙̂u(x, t) = v̂(x, t) + γLω(z(t) − 1ω(x)û(x, t)|ω), (x, t) ∈ Ω × (0,∞),

˙̂v(x, t) −Δû(x, t) = 0, (x, t) ∈ Ω × (0,∞),

û(x, 0) = û0(x), v̂(x, 0) = v̂0(x), x ∈ Ω

(2.15)

with γ > 0 a gain parameter. Note that this system amounts to a modification of the wave
equation written in first-order form, with a correction term based on the discrepancy between
the measurement and the observer primary variable. This strategy is the direct adaptation
to the wave equation of the “Schur Displacement Feedback” (SDF) filtering methodology
originally proposed in [6] for elasticity-like formulations.
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Remark 2.1. The above choices of gain operator G fulfill the identity G = γH∗ where the
∗ symbol denotes the adjoint via Riesz representation. This is obvious in the case of (2.5),
whereas we will provide the detailed proof with Proposition 3.1 below for (2.4).

Remark 2.2. We consider in this paper a known source term, but the observers considered here
can be extended to also estimate an unknown source term, following the strategy introduced
in [2].

3. Exponential Convergence of the Observer System for
Field Measurements

In order to establish that (2.15) is an adequate observer for (2.1), we should study the decay
of the error satisfying for (2.15) the following system:

˙̃u(x, t) = ṽ(x, t) − γLω(1ω(x)ũ(x, t)), (x, t) ∈ Ω × (0,∞),

˙̃v(x, t) −Δũ(x, t) = 0, (x, t) ∈ Ω × (0,∞),

ũ(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x), x ∈ Ω

(3.1)

and we will prove the exponential decay of the associated energy, namely,

Ẽ(t) =
1
2

(∫

Ω
|∇ũ(x, t)|2dΩ +

∫

Ω
|ṽ(x, t)|2dΩ

)
. (3.2)

Proposition 3.1. Assume that we have the observability condition

∫T0

0
‖u(·, t)‖2H1(ω)dt ≥ C

(
‖u0‖2H1(Ω) + ‖v0‖2L2(Ω)

)
, ∀(u0, v0) ∈ H1

0(Ω) × L2(Ω), (3.3)

for some T0 > 0, for arbitrary solutions of (2.1)with f = 0. Then, there exist strictly positive constants
M and μ such that

Ẽ(t) ≤Me−μtẼ(0), ∀t > 0. (3.4)
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Proof. Let us consider the spaceH1
ω defined byH1(ω) equipped with the norm

∥∥φ∥∥H1
ω
=
∥∥∇(Lωφ)

∥∥
L2(Ω). (3.5)

It is straightforward to see that this norm is equivalent to the usual norm of H1(ω), using
first (2.14), and secondly

∥∥φ∥∥2
H1(ω) =

∥∥∇φ∥∥2
L2(ω) +

∥∥φ∥∥2
L2(ω)

≤ ∥∥∇(Lωφ
)∥∥2

L2(Ω) +
∥∥Lωφ

∥∥2
L2(Ω) ≤ (1 + C)

∥∥∇(Lωφ
)∥∥2

L2(Ω),
(3.6)

with C given by the Poincaré inequality. Considering now Lω as a bounded operator from
H1

ω toH1
0(Ω), we want to identify L∗

ω. Using the orthogonality property

∀ψ ∈ H1
0(Ω) s.t. ψ|ω = 0,

〈∇(Lωφ
)
,∇ψ〉L2(Ω) = 0, (3.7)

directly inferred from the first equation of (2.13), we have that for all ψ ∈ H1
0(Ω) and φ ∈ H1

ω

〈∇(Lωφ
)
,∇ψ〉L2(Ω) =

〈∇(Lωφ
)
,∇(Lωψ|ω

)〉
L2(Ω) =

〈
φ, ψ|ω

〉
H1

ω
, (3.8)

showing that the adjoint via Riesz representation is then

L∗
ω : H1

0(Ω) −→ H1
ω, L∗

ωψ = ψ|ω. (3.9)

Hence, we have proven that G = γH∗, as claimed in Remark 2.1. Therefore, the error system
(3.1) dynamics can be rewritten as

˙̃x =
(
A − γH∗H

)
x̃(t), (3.10)

and the exponential decay of the energy (3.2) is then equivalent to the following observability
inequality, see for example Theorem 2.3 in [9]with B = H∗,

∫T0

0
‖Hx‖2

H1
ω
dt ≥ C‖x0‖2X, ∀x0 ∈ X, (3.11)

where x is the solution of the original wave equation in first-order form (2.2) with f = 0,
and for some strictly positive constants T0 and C, and of course this condition is directly
equivalent to (3.3).
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However, the observability condition (3.3) is somewhat nonstandard since we are
using the H1-norm of the field in the observation space instead of the L2-norm of the
time derivative. Nevertheless, the following proposition directly relates our observability
condition with classical results.

Proposition 3.2. Assume that the geometric control condition of Bardos et al. [7] is satisfied for some
ω̆ strict subset of ω such that dist(Ω \ ω, ω̌) > 0, in the time interval ]0, T0[ for T0 > 0. Then the
observability condition (3.3) holds for the same time T0.

Proof. Since the geometric control condition holds, we have the classical observability
condition [7]

∫ T̆

0

∫

ω̆

|u̇(x, t)|2dΩdt ≥ C
(
‖u0‖2H1(Ω) + ‖v0‖2L2(Ω)

)
, ∀(u0, v0) ∈ H1

0(Ω) × L2(Ω), (3.12)

for some time T̆ = T0 − δ with δ sufficiently small, for arbitrary solutions of (2.1) with f = 0.
We will show that this entails (3.3) by an argument inspired from [10]. Let ψ ∈ C∞

c (Ω) be a
cutoff function satisfying

ψ(x) =

{
0, if x ∈ Ω \ω
1, if x ∈ ω̆ (3.13)

and 0 ≤ ψ(x) ≤ 1 for every x ∈ Ω. Denote also φ(t) = t2(T̆ − t)2. Then, by repeated integrations
by parts, we obtain

0 =
∫ T̆

0

∫

ω

φψ(ü −Δu)udΩdt

=
∫ T̆

0

∫

ω

φ̈ψ
|u|2
2

dΩdt −
∫ T̆

0

∫

ω

φψ|u̇|2dΩdt +
∫ T̆

0

∫

∂ω

φ
∂ψ

∂n

|u|2
2

dΓdt

−
∫ T̆

0

∫

ω

φΔψ
|u|2
2

dΩdt +
∫ T̆

0

∫

ω

φψ|∇u|2dΩdt.

(3.14)

The definition of ψ entails (∂ψ/∂n)|∂ω = 0, hence

∫ T̆

0

∫

ω

φψ|u̇|2dΩdt =
∫ T̆

0

∫

ω

φψ|∇u|2dΩdt +
∫ T̆

0

∫

ω

φ̈ψ
|u|2
2

dΩdt −
∫ T̆

0

∫

ω

φΔψ
|u|2
2

dΩdt.

(3.15)
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This identity combined with the properties of the cutoff functions φ and ψ provides, for any
strictly positive ε, the existence of a constant C > 0 such that

∫ T̆−ε

ε

∫

ω̆

|u̇|2dΩdt ≤ C
(∫ T̆

0

∫

ω

|∇u|2dΩdt +
∫ T̆

0

∫

ω

|u|2dΩdt

)
. (3.16)

Substituting T̆ + 2ε for T̆ in all the above computations gives

∫ T̆+ε

ε

∫

ω̆

|u̇|2dΩdt ≤ C
∫ T̆+2ε

0
‖u(·, t)‖2H1(ω)dt. (3.17)

We proceed by making the change of variable τ = t − ε in the left-hand side integral, yielding

∫ T̆

0

∫

ω̆

|u̇(x, τ + ε)|2dΩdτ ≤ C
∫ T̆+2ε

0
‖u‖2H1(ω)dt. (3.18)

Noting that u(x, t + ε) satisfies the wave equation with initial data (u(x, ε), u̇(x, ε)) and
applying (3.12)with this shifted solution, we obtain that there exists also C such that

∫ T̆

0

∫

ω̆

|u̇(x, t + ε)|2dΩdt ≥ C
(
‖u(ε)‖2H1(Ω) + ‖u̇(ε)‖2L2(Ω)

)
. (3.19)

Combining (3.18), (3.19), and the the fact that the energy of the solution of the wave equation
is exactly conserved over time, we have our observability inequality (3.3) upon choosing
ε = δ/2.

Remark 3.3. Note that this proof requires a geometric control condition slightly stronger than
that directly associated with the measurement domain ω, since ω̆ is a strict subset. However,
it is likely that our desired observability condition (2.11) could also be established directly by
adapting a microlocal analysis strategy used for the standard observability condition (3.3),
for example, using defect measures [11]. In our case, the defect measure of interest would
be in H1 as considered more recently in [12]. This H1 defect measure should be proven
to be made of the same bicharacteristic set as the L2 defect measure introduced in [13] for
the classical GCC. In this context we would have the new observability condition with the
same subdomainω. Nevertheless, the advantage of our approach lies in its compactness, and
moreover it demonstrates an interesting property of equirepartition (over time) of the total
energy localized within the subdomain ω between the kinetic and potential contributions.
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Figure 1: Geometry and two observation domains considered.
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Figure 2: Initial condition in mesh used.

Remark 3.4. For both observer strategies, the potential noise in the measurements—
disregarded in this paper—would simply entail an additional source term in the error
equations, without amplification of this error term by time or space differentiation. The
parameter γ should then be chosen to obtain the best decay rate without undue amplification
of the noise [2, 6].

4. Numerical Illustrations

In order to illustrate the effectiveness of our Schur Displacement Feedback (SDF) observer
approach—and compare it to the classical Direct Velocity Feedback (DVF) observer—we
consider the two-dimensional domain shown in Figure 1 and, with the two choices of
observation domains also displayed in the Figure. In order for the mesh to be conforming
with the observation domain, we use one specific triangular mesh for each observation
choice, with very similar mesh sizes—corresponding to about 950 vertices—for both cases,
one of which being shown in Figure 2 with the initial condition considered in the simulations.
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Figure 3: Poles for SDF and DVF stabilization (up and down, resp.) with large and small observation
domains (left and right, resp.).

The variational form of the wave equation is then discretized using P1-Lagrange finite
elements in space and a mid-point Newmark type time-discretization scheme [6]. As
discretization issues in relation to observation and stabilization properties are not the topic
of this paper—we instead refer to [6, 14] for detailed discretization considerations and
analysis—we use sufficiently small values of the time step to obtain “converged” solutions
in time, and we focus on the semidiscrete equation—namely, discretized space-wise only—
when computing poles. Furthermore, as it is well known that spatial discretization itself
induces undesirable numerical artifacts in the stabilization and control of our type of partial
differential equation, with some numerical “high-frequency” poles featuring vanishing
dissipation, we resort to incorporating a numerical viscosity term as advocated in [14, 15]
to circumvent this difficulty.

We show in Figures 3(a) and 3(b) the numerical poles of the SDF-stabilized equation,
for the two observation domains considered (γ = 8). We can see that the stabilization
strategy is very effective for the large observation domain, as all real parts lie below −1,
and below −2 or so when excluding high-frequency poles. As a matter of comparison,
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Figure 4: Energies of the undamped and SDF-stabilized solutions.

the imaginary part of the first undamped eigenmode is about 5.6. Of course, the effectiveness
is significantly reduced in the case of the second observation domain, which does not satisfy
the above geometric control condition, indeed. We also compare in Figures 3(c) and 3(d) the
corresponding poles obtained with the DVF strategy (γ = 8), and we observe that the two
approaches provide similar stabilization properties.

This is further illustrated in Figure 4, where we compare the energy norms of the
SDF-stabilized numerical solutions in time with that of the wave equation itself—note
that the time discretization scheme used is energy preserving. This confirms the excellent
stabilization properties of the SDF approach, as expected provided that the controllability
(or equivalent observability) condition is fulfilled. Of course, this directly translates into
equivalent observation convergence properties following our above discussion.
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