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A CELL-CENTERED ARBITRARY LAGRANGIAN EULERIAN (ALE) METHOD
FOR MULTI-MATERIAL COMPRESSIBLE FLOWS

P.-H. Maire1, M. De Buhan2, A. Diaz 3, C. Dobrzynski4, G. Kluth5 and F.
Lagoutière6

Abstract. We present an original and accurate unstructured cell-centered ALE algorithm devoted
to the simulation of two-dimensional multi-material compressible fluid flows. Gas dynamics equations
are discretized with an unstructured finite volume scheme.

Résumé. Nous présentons dans cet article une méthode du type ALE appliquée à la résolution
d’écoulements multimatériaux compressibles. Les équations de la dynamique des gaz sont discrétisées
sur des maillages non structurés en utilisant un schéma du type volume fini.

Introduction

Fidelity in tracking multifluid interfaces makes the Lagrangian frame of reference attractive for a wide variety
of hydrocode applications. Unfortunately, since the mesh moves with the flow, convolution of the flow can lead
to mesh deformation and tangling. The Arbitrary Lagrangian-Eulerian (ALE) framework, introduced by [5],
allows a computation to be broken up into a Lagrangian phase, a mesh rezoning phase intended to correct
for mesh deformation, and a remapping phase where computed physical values are advanced to the rezoned
mesh. The Arbitrary Lagrangian-Eulerian framework has demonstrated the ability to simultaneously elicit the
advantages of both the Lagrangian and Eulerian frames of reference. The goal of this paper is to describe an
original cell-centered ALE strategy for multi-material fluid flows and to focus more precisely on the description
of the rezoning phase. Classically, Lagrangian step uses a staggered scheme, in which velocities are vertex-
centered and the other variables are cell-centered [3]. The main difficulty with this approach lies in the fact that
one needs special treatment for momentum remapping [9]. As our Lagrangian step is fully cell-centered [11,12],
we avoid such special treatment. Our rezoning step utilizes the “local” minimization of nodally based objectives
functions [6]. The remapping step is based on an unstructured extension of the “simplified face-based donor-
cell” method of [14]. The remainder of this paper is organized as follows. We first describe the different steps of
the ALE formulation. Then, computational results are given to assess the robustness and the accuracy of this
method.
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4 UMR 5251, IMB, Université Bordeaux I et INRIA Bordeaux - Sud-Ouest, 351 Cours de la Libération, 33 405 Talence, France.
5 CEA-DIF/DSSI, BP 12 91680 Bruyères Le Châtel, France.
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1. Governing equations

Let D be a region of the two-dimensional space R2, filled with an inviscid fluid and equipped with an
orthonormal frame. It is convenient, from the point of view of subsequent discretization to write the unsteady
compressible Euler equations in the control volume formulation which holds for an arbitrary moving control
volume

d

dt

∫
Ω(t)

dΩ−
∫
∂Ω(t)

Ẋ ·N dl = 0, (1a)

d

dt

∫
Ω(t)

ρdΩ +
∫
∂Ω(t)

ρ
(
V − Ẋ

)
·Nρdl = 0, (1b)

d

dt

∫
Ω(t)

ρV dΩ +
∫
∂Ω(t)

[(
V − Ẋ

)
·NρV + PN

]
dl = 0, (1c)

d

dt

∫
Ω(t)

ρE dΩ +
∫
∂Ω(t)

[(
V − Ẋ

)
·NρE + PV ·N

]
dl = 0. (1d)

Here, Ω(t) is the moving control volume, and ∂Ω(t) its boundary. ρ,V , P, E are the density, velocity, pressure,
and specific total energy of the fluid. N denotes the unit outward normal vector to the moving boundary ∂Ω(t)
whose velocity is denoted Ẋ. The set of previous equations is referred to as the ALE integral form of the
Euler equations and can be found in many papers [1, 5]. The first equation, (1a), is a geometric conservation
law (GCL), whereas (1b), (1c) and (1d) express the conservation of mass, momentum and total energy. When
Ẋ = V , we recover the Lagrangian description of the fluid flow for which the control volume moves with the
fluid velocity. On the other hand, when Ẋ = 0, we get the Eulerian description.

The thermodynamical closure of the set of previous equations is obtained by the addition of an equation of
state which is taken to be of the form

P = P (ρ, ε), (2)

where the specific internal energy, ε, is related to the specific total energy by ε = E − 1
2 | V |

2 .
It is possible to formulate the ALE scheme as a single algorithm [10] based on solving the previous equations

in a moving coordinate frame. However it is more usual to separate it into three phases. These are: a
Lagrangian phase in which the solution and the grid are updated; a rezoning phase in which the nodes of the
computational grid are moved to a more optimal position; and a remapping phase in which the Lagrangian
solution is interpolated onto the rezoned grid.

2. Lagrangian phase

The Lagrangian phase consists in computing the rates of change of volume, mass, momentum and energy,
assuming that the computational volumes are following the material motion. By setting Ẋ = V in the set of
equations (1) one gets

d

dt

∫
ΩL

dΩ−
∫
∂ΩL

V ·N dl = 0, (3a)

d

dt

∫
ΩL

ρdΩ = 0, (3b)

d

dt

∫
ΩL

ρV dΩ +
∫
∂ΩL

PN dl = 0, (3c)

d

dt

∫
ΩL

ρE dΩ +
∫
∂ΩL

PV ·N dl = 0, (3d)
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Figure 1. Notations in a cell

where ΩL is the Lagrangian (material) control volume, ∂ΩL is its surface, and the time rates of change refers
to quantities associated with this volume. We notice that equation (3b) implies that the mass of the control
volume remains constant during the Lagrangian phase.

2.1. Spatial approximation

In order to recall the spatial approximation of the Lagrangian phase derived in [11], we introduce the following
notations. Let {c} be a collection of non overlapping polygons whose reunion covers the domain filled by the
fluid. Each cell is labelled with a unique index c. We denote by {n} the set of all the vertices of the cells. Each
vertex is labelled with a unique index n. If we consider a given cell c, we introduce the set of all the vertices of
the cell c and denote it by N (c). For a given node n, we also define the set of all the cells that share this vertex
and denote it by C(n). The sets N (c) and C(n) are counterclockwise ordered. For a node n ∈ N (c), n− and n+

are the previous/next nodes with respect to n in the list of vertices of cell c, see Figure 1. We denote by Lcn
and Lcn the half length of the edges [n−, n] and [n, n+]. We use the same notations to define the unit normal
outward Nc

n and Nc
n, see Figure 1.

All fluid variables are assumed to be constant in cell c and we denote them by using subscript c. Therefore,
we obtain a spatial approximation which is first order accurate. A set of evolution equations is written for the
the discrete unknowns (τc,Vc, Ec) using the Lagrangian conservation equations in control volume form applied
for cell c, see [11].

mc
d

dt
τc −

∑
n∈N (c)

(
LcnN

c
n + LcnN

c
n

)
· V ?

n = 0, (4a)

mc
d

dt
Vc +

∑
n∈N (c)

(
LcnP

?,c
n Nc

n + LcnP
?,c
n Nc

n

)
= 0, (4b)

mc
d

dt
Ec +

∑
n∈N (c)

(
LcnP

?,c
n Nc

n + LcnP
?,c
n Nc

n

)
· V ?

n = 0. (4c)

In these equations τc = 1
ρc

is the specific volume and mc is the mass in the cell c that is constant during time.
V ?

n denotes the nodal velocity. The main feature of our discretization is the introduction of the two pressure
fluxes P ?,cn and P ?,cn at the node n, see Figure 1. P ?,cn (resp. P ?,cn ) represents the pressure acting between the
midpoint of edge [n−, n] (resp. [n, n+]) and the node n, seen from cell c. The Cartesian coordinates of node n
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are Xn = (Xn, Yn)t. The motion of the nodes is given by the trajectories equation d
dtXn = V ?

n , Xn(0) = xn.
We note that (4a) is consistent with the nodes motion.

2.2. Nodal solver

The nodal fluxes V ?
n , P ?,cn and P ?,cn are computed in a consistent manner due to a solver located at

the nodes. We give hereafter a summary of fluxes computation. Let us introduce the 2 × 2 matrix Mc
n =

Zc

(
LcnN

c
n ⊗Nc

n + LcnN
c
n ⊗Nc

n

)
. Here, Zc denotes the acoustic impedance of cell c that is, Zc = ρcac where

ac is the isentropic sound speed of cell c. The nodal velocity is written

V ?
n =

 ∑
c∈C(n)

Mc
n

−1 ∑
c∈C(n)

[(
LcnN

c
n + LcnN

c
n

)
Pc + Mc

nVc

]
, (5)

where C(n) is the set of the cells that share node n. The pressure fluxes are given by the following discrete
Riemann invariants

Pc − P ?,cn = Zc
(
V ?

n − Vc

)
·Nc

n,

Pc − P ?,cn = Zc
(
V ?

n − Vc

)
·Nc

n.

It is shown in [11] that these fluxes lead to a conservative and entropy consistent scheme. This scheme computes
in a coherent way the vertex motion as well as the nodal fluxes, and for 1D flows, it recovers exactly the Godunov
acoustic fluxes.

2.3. Second order extension

The spatial second order extension is obtained by a piecewise linear monotonic reconstruction of the pressure
and velocity, given by their mean values over mesh cells. Let φ denotes a fluid variable (pressure or velocity
components), we assume a linear variation for φ in cell c

φc(X) = φc + ∇φc · (X −Xc) . (6)

Here, Xc = 1
|c|

∫
c

X dΩ is the cell centroid and | c |=
∫
c

dΩ is the volume of cell c. The gradient in (6) is

approximated by a least squares procedure [2]. To preserve monotonicity, we limit the value that the gradient is
allowed to take, using a multidimensional extension of the van Leer’s classical method. We introduce a limiting
coefficient αc (0 ≤ αc ≤ 1) for each cell c such that

∇φc = αc∇̂φc,

where the hat symbol denotes the approximated gradient obtained by least squares. The coefficient αc is
determined by enforcing a local monotonicity criterion so that the quantity φ in the cell c does not lie outside
the range of the average quantities in the neighboring cells. Let φmax

c , φmin
c be the maximum and the minimum

values of φ in the neighboring cells. We also define φ?,max
c , φ?,min

c the maximum and the minimum values of φ
in cell c obtained from (6) with ∇̂φc. Then, the coefficient αc is determined by

αc = min(1, αmin
c , αmax

c ),
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where

αmax
c = max(0,

φmax
c − φc

φ?,max
c − φc

),

αmin
c = max(0,

φmin
c − φc

φ?,min
c − φc

).

Finally, instead of using the mean values of the pressure and the velocity in our nodal solver, we use their nodal
extrapolated values deduced from the linear monotonic reconstruction. The time discretization is explicit and
based on a classical two steps Runge-Kutta procedure.

3. Rezoning phase

The rezoning phase consists in moving the node of the Lagrangian grid to improve the geometric quality of
the grid while keeping the rezoned grid as close as possible to the Lagrangian grid. This constraint must be
taken into account to maintain the accuracy of the computation brought by the Lagrangian phase [7]. In fact,
by requiring the rezoned grid to remain as close as possible to the Lagrangian grid, we minimize the error of
the remap phase, and we justify employing a local remapper in which mass, momentum and energy are simply
exchanged between neighboring cells, see Section 4.

We will describe two types of smoothing algorithm, the first one is the well known Laplacian smoothing and
the second one is the condition number smoothing which is closely related to the Winslow algorithm [6]. For
both types of rezoning we make the assumption that the input grid (the grid produced by the Lagrangian phase)
is unfolded. If the Lagrangian phase produces non valid cells then we have to use an untangling procedure [18].

3.1. Laplacian smoothing

The regularization methods based on the resolution of a discrete Laplacian were first introduced in image
processing (see [4]) for smoothing and denoising curves and surfaces. In fact, these methods can be seen as
filters on the highest frequencies and are used to eliminate the random noise in data. The Laplacian smoothing
(or barycentric regularization) is so far the most commonly used method for mesh smoothing mainly because
it is easy to implement and rather inexpensive to carry out (the complexity is linear in the number of edges).
This method consists in locally relaxing the position of each vertex in the direction of the weighted barycenter
of its neighbors. It can be obtained by minimizing the following quadratic local objective function related to
node n

Fl(Xn) =
∑

m∈V(n)

1
2
ωnm‖nm‖2, (7)

where V(n) is the set of vertices that are connected to vertex n and ωnm ∈ [0, 1] is a weight such that∑
m∈V(n)

ωnm = 1. The minimum of this functional is obtained for

X̄n =
∑

m∈V(n)

ωnmXm.

The rezoned position of node n, X̃n is defined as

X̃n = Xn + λn(X̄n −Xn), (8)

where the relaxing parameter, λn ∈ [0, 1], is a number which can be specified for each vertex or global (λn = λ).
The weights can be chosen in many different ways. A specific trivial choice, although producing good results,
is to set ωnm = 1

N(n) , where N(n) is the the number of nodes connected to node n.
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The main advantage of this method is related to its simplicity. But, in image processing, it is well known
(see [15]) that this simple method produces shrinkage, that is a diminution of the area (resp. the volume) of
the closed curve (resp. surface) when the smoothing method is applied a large number of times. This can be
explained by the fact that the single Laplacian smoothing not only suppresses the hight frequencies but also
attenuates the low frequencies (except zero). In mesh regularization, this results in a loss of desirable geometric
features (privileged directions, rezoning zone...) in the mesh, which becomes fast over-smoothed, see Figure
2 (d). In many cases, this can be avoided by choosing suitable weights. An empirical choice that gives good
results is to set the weights to the inverse distances between the vertex n and its neighbors m :

ωnm =
1

‖nm‖
(9)

and to normalize them by the sum of all the weights
∑

m∈V(n)

ωnm to ensure ωnm ∈ [0, 1] . This choice allows to

keep the distance ratios of the initial mesh, see Figure 2 (f). In order to cure the shrinkage problem observed

(a) (c) (e)

(b) (d) (f)

Figure 2. Laplacian smoothing with λ = 0.5, (a) initial mesh, (b) randomly perturbed mesh,
(c) after 3 iterations without weights, (d) after 300 iterations (convergence) without weights,
(e) after 3 iterations with weights, (f) after 300 iterations (convergence) with weights

with a single Laplacian smoothing G. Taubin has introduced an alternative method [16]. It consists of two
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consecutive Laplacian smoothing steps:

X?
n = Xn + λ(X̄n −Xn),

X̃n = X?
n − µ(X̄?

n −X?
n).

After a first Laplacian smoothing step with a positive scale factor λ applied to all vertices of the mesh, a second
Laplacian smoothing step is applied to all the vertices, but with a negative scale factor −µ, greater in magnitude
than the first scale factor: 0 < λ < µ.

To produce a significant smoothing effect, these two steps must be repeated, alternating the positive and
negative scale factors, a number of times. In fact, this method produces a low pass filter effect, the two
scale factors determining the pass-band limit (see below). The Taubin’s method presents the same advantages
(simplicity and linear complexity) than the Laplacian smoothing. It suppresses high frequencies of a discrete
Laplacian operator defined in the mesh but it does not produce shrinkage. Nevertheless, when applied a large
number of times, Taubin’s smoothing enhances low-frequency oscillations which can invalid the mesh and this
can not be avoided even by introducing weights.

Finally, we briefly explain why the Laplacian smoothings can be considered as low pass filters. For more
explanations, we refer to [17]. Let N denotes the total number of nodes, we introduce W the N ×N matrix of
weights under the convention that ωnm = 0 if m /∈ V(n), that is, m is not connected to n

W = (ωnm)1≤n,m≤N .

This matrix contains all the information relative to the mesh connectivity and to the distances for instance, if
the weights have been chosen as the inverse of the distances between the vertices. Let X be the vector of the
positions of the n mesh vertices. Then, the Laplacian operator can be written as

∆X = (W − I)X.

Let K = −(W − I), if we assume that K is a normal matrix, one can show that it is a positive matrix, hence it
has N real positive eigenvalues. This depends on the mesh connectivity and it is the case in all the examples
we have presented. Then, the eigenvectors of the matrix K can be seen as the vibration mode of the mesh and
the corresponding eigenvalues kn as the related frequencies. Filtering a signal X is equivalent to change its
frequency according to a transfer function f(k):

X̃ = f(K)X,

where f(K) is a matrix having the same eigenvectors as K but with eigenvalues equal to f(kn). The component
of X corresponding to the frequency kn is enhanced or attenuated by a factor f(kn). The transfer function for
an ideal low pass filter with pass band frequency kPB is :

f(k) =

{
1 for 0 ≤ k ≤ kPB,

0 for kPB ≤ k.

It suppresses all the frequencies greater than kPB and do not change the others. But it is very expensive to
compute. For the Laplacian smoothing, the transfer function corresponding to the L-th iteration is fL(k) =
(1− λk)L. This function produces shrinkage because:

lim
L→∞

(1− λk)L =

{
1 for k = 0,
0 for k > 0.

That is, as the number of iterations grows, all the frequencies are attenuated. For Taubin’s smoothing, the
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Figure 3. Graph of transfer function for Taubin’s smoothing - reprinted from [17]

Figure 4. Notations for condition number smoothing

transfer function is fL(k) = ((1− λk)(1 + µk))L, see Figure 3. This simple modification still produces smoothing
but prevents shrinkage. The pass band frequency of this filter is defined as the unique value of k such that
fL(k) = 1. Such a value exists when 0 < λ < µ and turns out to be equal to kPB = 1

λ−
1
µ . So, all the frequencies

greater than kPB will be attenuated when those smaller than kPB will be slightly enhanced.
Laplacian type smoothing methods are attractive because of their simplicity. Acting as low pass filters, they

permit to smooth fast the mesh. Unfortunately, these methods operate heuristically and there is no theoretical
guarantee that they lead to valid meshes or elements of better quality than the original mesh. So, the process
can not be fully automated. Then, we have to adjust manually the coefficients and the number of iterations for
each case.

3.2. Condition number smoothing

This smoothing method has been introduced by Knupp [6] for mesh quality optimization. We recall hereafter
its main features. Let c be a given cell of the Lagrangian grid, n ∈ N (c) a node of this cell and n−, n+

the previous and next nodes with respect to n in the list of the vertices of cell c, see Figure 4. We define
Jcn = [nn+ | nn−] the 2× 2 Jacobian matrix associated with each corner at a vertex n of cell c. The condition
number of matrix Jcn in R2 is defined as

κ(Jcn) =
‖nn+‖2 + ‖nn−‖2

Acn
, (10)
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where Acn is the area of the triangle between edges [nn+] and [nn−]. We note that κ is minimal for a 90 degree
corner with edges of equal length. With this condition number, we define a local objective function associated
to node n

Fn(Xn) =
∑
c∈C(n)

∑
m∈V(n)

κ(Jcm), (11)

where C(n) is the set of cells that share node n and V(n) is the set of vertices that are connected to vertex n
(including n itself). By summing this functional over all the grid nodes, we can also define a global objective
function.

One very important feature that can be seen explicitly in the definition of κ(Jcn) is that the functional has
a barrier, i.e., the value of the functional approaches infinity when the new grid approaches a non valid grid
where Acn = 0. This explains how the condition number smoothing produces unfolded grids.

The rezoned position of node n, X̃n, is determined by minimizing the local functional (11) using a single
step procedure

X̃n = Xn − Hn
−1(Xn)∇Fn(Xn), (12)

where Hn is the 2×2 Hessian matrix related to Fn. We separately minimize each of the local objective functions
and iterating over all the nodes. This approach is termed as Jacobi sweep minimization. Its main advantage
lies in the fact that the algorithm does not depend on the vertex order.

It is well known that the condition number smoothing has the tendency of driving the mesh to a square mesh.
Therefore, it is unable to maintain non-uniformity which is beneficial when a higher node density is desired in
the area of the flow feature of interest such as a shock boundary. To address this concern, we introduce the
following local quadratic objective function

Fw(Xn) =
∑
c∈C(n)

∑
m∈V(n)

wcA
2
cm (13)

where wc is a given positive weight defined in cell c. By minimizing this functional, the node n displacement
tends to adapt to the distribution of the weight function. The motion of node n is obtained by solving an
equation analogous to (12).

Let δXn
cn (resp. δXn

w) denotes the displacement of node n due to condition number smoothing (resp.
weight smoothing). The final displacement of node n is defined as

δXn = αδXn
cn + (1− α)δXn

w, (14)

where α ∈]0, 1] is a user defined parameter. For numerical applications, we will set the weight function w equal
to the density of the fluid flow ρ in order to maintain a higher node density in the shock region. Finally, the
displacement vector may be rescaled to the fluid velocity to prevent unnecessary mesh movement in domains
which have not become dynamically active. This is achieved by setting

δXn → δXn min
(

1, κ
‖V ?

n ‖∆t
‖δXn‖

)
,

where κ is an arbitrary scale constant, ∆t the physical Lagrange time step, and V ?
n the Lagrangian velocity of

node n.

4. Remapping phase

The remapping phase is a conservative interpolation procedure of mass, momentum and total energy from
the grid obtained at the termination of the Lagrangian phase to the new grid obtained from the rezoning phase.
In the context of our ALE method, we consider that the Lagrangian grid and the rezoned one have the same
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Figure 5. Lagrangian grid (thin lines and solid circles) and rezoned grid (thick lines and solid squares)

connectivity-i.e., the same number of cells and vertices, and the same neighbor relations. Let c̃ denotes the cell
of the rezoned grid that corresponds to the cell c of the Lagrangian grid, see Figure 5.

Let ψ ≡ ψ(X) be a density function of the flow, ψ = (ρ, ρV , ρE). At the end of the Lagrangian phase, for
each cell c, we know Mc =

∫
c
ψ(X) dΩ, the mass associated with the density function, and also its corresponding

mean value ψc = Mc

|c| . The conservative remapping consists in computing the masses M̃c and the mean values

ψ̃c for each cell of the rezoned grid. Since the density distribution is unknown on the rezoned grid we have to
define it by using an approximation. This approximation should be conservative and sufficiently accurate to
limit the numerical diffusion. First, we compute ψc(X) = ψc+∇ψc · (X −Xc), the piecewise linear monotonic
reconstruction for ψ in the cell c following the methodology described in Section 2.3. Then, ψc(X) could be
exactly integrated over the new cell c̃. This approach, which needs to compute the intersection of the Lagrangian
grid and the rezoned one, is very expensive and will not be used in the sequel. To minimize the computational
cost, we prefer to use an approximate remapping that is an unstructured extension of the simplified face-based
donor cell method [8, 14]. The new mass M̃c is defined in terms of the old mass Mc plus the mass exchange
with the neighboring cells

M̃c = Mc +
∑
n,m

Fcn,m (15)

where Fcn,m represents the flux exchanged by the cell c with its neighbors, through the oriented edge [n,m].
To define this flux more precisely, we introduce the oriented quadrilateral Kn,m = {n, ñ, m̃,m}, see Figure 5,
that is obtained when following the displacement of the nodes n and m to their new locations ñ and m̃. This
quadrilateral is called a fluxing area or a swept region. Its area | Kn,m | is signed and, its sign depends on the
ordering of its vertices, for situation shown in Figure 5, | Kn,m |> 0. With these notations, we define the flux
as follows

Fn,m =
∫
Kn,m

ψKn,m
(X) dΩ, (16)

where

ψKn,m
(X) =

{
ψc(X) if | Kn,m |≥ 0,
ψcn,m

(X) if | Kn,m |< 0.

Here, cn,m denotes the cell that shared the edge [n,m] with cell c. The computation of the integral in (16)
is made using quadrature formula which is exact for linear function. The formula (15) is conservative since
Fcn,m = −Fcn,m

n,m .
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5. Numerical results

In this section, we address the following three materials instability problem. We consider a shocktube problem
filled in with three different ideal gases. Initial conditions and geometry are displayed in the Figure 6. At the

Figure 6. Initial conditions for the three materials instability problem.

first time, near the vertical interface located at X = 1, the solution consists of a rarefaction moving to the left,
and a contact discontinuity and a two shock waves moving to the right. These two shock waves travel with
different speeds since the densities on both sides of the horizontal interface are different. This difference in
shock wave velocities create a strong shear at the horizontal interface and initiate an instability.

We compute the different solutions on a quadrangular mesh composed of 70 × 30 square cells until time
tend = 5. We use equations of concentration for ALE computations, with iso-pressure and iso-temperature
assumptions.

We have displayed in Figure 7 the grids obtained at t = 4.3 for a pure Lagrangian computation and an ALE
computation. The Lagrangian computation stops at this time due to mesh tangling caused by the high level of
vorticity, see Figure 8. For the ALE computation, we perform rezoning and remapping at each time step. The
rezoning utilizes only the condition number smoothing. We can observe in Figure 7 (right) that the ALE mesh
has a better quality than the Lagrangian. Hence, the ALE computation is more robust than the Lagrangian
one. However, the ALE mesh has been over-smoothed and a lot of details of the features of the flow have
been lost. We perform another ALE simulation combining condition number and weighted smoothing with
parameter α = 0.5, as it is described in Section 3.2. We notice that the addition of the weighted smoothing
tends to increase the density of the mesh in the vicinity of the shocked regions and improve the accuracy of the
computation, see Figure 9.

6. Conclusion

We have described a cell-centered Arbitrary Lagrangian Eulerian method for the simulation of two-dimensional
multi-material compressible flows. This method is based on a three steps algorithm: a Lagrangian phase, a re-
zoning phase and a remapping phase. We have detailed two types of smoothing procedures (Laplacian smoothing
and condition number smoothing). The numerical results show the robustness and the accuracy of the proposed
algorithm. In the future, we intend to investigate improvements of the rezoning phase in order to properly han-
dle the case of high aspect ratio mesh. We also plan to extend our ALE algorithm by implementing interface
reconstruction.
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Figure 7. Comparison of the Lagrangian (left) and the ALE (right) solutions at t = 4.3.

Figure 8. Zoom on the tangled Lagrangian mesh at t = 4.3.

Figure 9. Comparison of ALE solution with condition number smoothing (left) and with
condition number plus weighted smoothing (right), at t = 5.
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