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Abstract
We prove a Carleman estimate and a logarithmic stability estimate for an
inverse problem in three-dimensional viscoelasticity. More precisely, we obtain
logarithmic stability for the inverse problem of recovering the spatial part of a
viscoelastic coefficient of the form p(x)h(t) from a unique measurement on an
arbitrary part of the boundary. The main assumptions are h′(0) = 0, h(0) "= 0,
p is known in a neighborhood of the boundary and regularity and sensitivity of
the reference trajectory. We propose a method to solve the problem numerically
and illustrate the theoretical result by a numerical example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and main results

This paper is concerned with the inverse problem of determining an unknown coefficient in
the 3D viscoelasticity system. We set ! an open bounded domain of R3 with a sufficiently
smooth boundary ∂!. Then the viscoelasticity system, endowed with initial and boundary
conditions, is as follows:






Pu(x, t) = f (x, t), ∀(x, t) ∈ ! × (0, +∞),

u(x, 0) = ū0(x), ∀x ∈ !,

∂tu(x, 0) = ū1(x), ∀x ∈ !,

u(x, t) = 0, ∀(x, t) ∈ ∂! × (0, +∞),

(1)

where P is the integro-differential hyperbolic operator defined as

Pu(x, t) = ∂2
t u(x, t) − ∇ · (µ(x)(∇u(x, t) + ∇u(x, t)T ) + λ(x)(∇ · u)(x, t)I )

+
∫ t

0
∇ · (µ̃(x, s)(∇u(x, t − s) + ∇u(x, t − s)T ) + λ̃(x, s)(∇ · u)(x, t − s)I ) ds.

(2)
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This system models the dynamics of a 3D viscoelastic material subjected to a load f , u being
the displacement vector, ū0 and ū1 the initial displacement and velocity, (λ, µ) the Lamé
coefficients and (λ̃, µ̃) the viscosity coefficients, respectively. The well-posedness nature of
the direct problem (1)–(2) is guaranteed by the following proposition.

Proposition 1 (Theorem 4.2 in [1]). Under regularity assumptions on the coefficients
(λ, µ, λ̃, µ̃), if ū0 ∈ H 1

0 (!)3, ū1 ∈ L2(!)3 and f ∈ L∞(0, +∞;L2(!)3) ∩
L2(0, +∞;L2(!)3), then there exists a unique weak solution u ∈ L∞(0, +∞;H 1

0 (!)3) ∩
W 1,∞(0, +∞;L2(!)3) ∩ W 2,∞(0, +∞;H−1(!)3) to the problem (1)–(2).

If we now assume that the coefficient µ̃ can be decomposed as follows:

µ̃(x, t) = p(x)h(t), ∀(x, t) ∈ ! × (0, +∞), (3)

then the inverse problem we are interested in is formulated accordingly.

Definition 1 (Inverse problem). Given (λ, µ, λ̃, h, u0, u1, f ), recover p(x), for all x ∈ !,
from measurements of

u(x, t), ∀(x, t) ∈ $ × (0, T ),

where $ is a part of ∂! and T > 0.

Several authors have dealt with the problem of recovering the coefficients of the
viscoelasticity system (1)–(2). Some of them, e.g. Grasselli [2], Janno et al [3], von
Wolfersdorf [4], Cavaterra et al [5], recovered the time dependence h of the coefficient µ̃

by reducing the problem to a nonlinear Volterra integral equation by using Fourier’s method
to solve the direct problem and by applying the contraction principle. Others, e.g. Lorenzi
[6], Lorenzi and Romanov [7], recovered the space dependence p of the coefficient µ̃ by
using the method of Bukhgeim and Klibanov [8] based on Carleman estimates [9]. Thus,
in 2007, Lorenzi et al [10] recovered the coefficient p from three measurements, relying on
the assumption that all the coefficients in the operator (2) are independent of the third space
variable. Here, unlike the latter, we recover p from a unique measurement, assuming that it is
known in a neighborhood of the boundary.

Furthermore, theorem 1 establishes the logarithmic stability with respect to a unique
measurement on an arbitrary part of the boundary for the inverse problem of recovering the
coefficient p. Its proof is given in section 2. It relies on a Carleman estimate (theorem 2) and
a sharp unique continuation result (theorem 3) for the operator (2). We prove these results
in sections 3 and 4 respectively. In section 5, we propose an adaptive spectral method to
approximate the solution of the inverse problem numerically.

1.1. Stability estimate

Inverse problems are ill-posed in the classical sense [11]. Stability estimates play thus a
special role in the theory. Bukhgeim and Klibanov [8] developed a remarkable method based
on Carleman estimates [9] to prove the uniqueness and stability for inverse problems associated
with partial differential equations. In [12], using this method, we proved a Hölder stability
result with a unique internal measurement for the recovery of p in the system (1)–(3). In this
paper, we extend this result using a unique continuation estimate and obtain a logarithmic
stability result. Although this estimate is weaker, it is nonetheless related to a measurement on
an arbitrary part of the boundary. A similar result was proved in [13] for the hyperbolic scalar
equation and in [14] for the Lamé system. We follow their method but adapt it to take into
account the additive integral term of operator (2). Thus, our result can be seen as an extension
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of the paper [14]. Nevertheless, the presence of the integral term modifies the structure of the
equation. Firstly, the latter is no longer reversible because of the energy dissipation associated
with the viscous phenomenon. In practice, this prevents the extension of the solution to [−T , 0]
as usually performed. This explains why we need to use a point-wise Carleman estimate (see
section 1.2). Secondly, the coefficients of the equation now depend on time and not only on
space as for the Lamé system. This implies that the Fourier–Bros–Iagolnitzer (FBI) transform
classically used to prove the unique continuation result (see section 1.3) is useless. Hence, we
have to introduce a new transformation in order to deal with convolution terms. We now need
to define the following condition on a scalar function q.

Condition 1. The scalar function q is said to satisfy condition 1 if

(i) there exists K > 0 such that ∀x ∈ !, q(x) ! K ,
(ii) there exists x0 ∈ R3\! such that ∀x ∈ !, 1

2q(x) − ∇q(x) · (x − x0) ! 0.

We can now state the main result.

Theorem 1 (Logarithmic stability). Let u (respectively ū) be the solution of the system
(1)–(3), associated with the coefficient p (respectively p̄). We assume that

(H1) (λ, µ) ∈ C2(!)2 and (λ̃, µ̃) ∈ C2(! × (0, +∞))2 are such that the solutions u and
ū ∈ W 8,∞(! × (0, +∞))3,

(H2) µ and λ + 2µ satisfy condition 1 with the same x0;
(H3) p = p̄ is known in a neighborhood ω of ∂!;
(H4) h(0) "= 0, h′(0) = 0;
(H5) there exists M > 0 such that ∀x ∈ !\ω,

∣∣(∇ū0 + ∇ūT
0

)
(x) · (x − x0)

∣∣ ! M .

Then, for $ ⊂ ∂! arbitrarily small, there exist κ ∈ (0, 1) and T0 > 0 such that, for all
T > T0, the following estimate holds:

‖p − p̄‖H 2(!) " C



log



2 +
C

∑
1!|α|!2

∥∥∂αx (u − ū)
∥∥2

L2($×(0,T ))








−κ

where C > 0 depends on the C2(!)-norm of p and p̄ and on the W 8,∞(!× (0, T ))3-norm of
u and ū.

An example of an initial datum ū0 verifying (H5) corresponds to the choice ū0 ∈ H 1
0 (!)3

such that ū0(x) = x, ∀x ∈ !\ω. Thus,
∣∣(∇ū0 + ∇ūT

0

)
(x) · (x − x0)

∣∣ = |x − x0| ! d0 > 0, ∀x ∈ !\ω.

From theorem 1, we immediately deduce corollary 1.

Corollary 1 (Uniqueness). Under all the hypothesis of theorem 1, we have then

∂αx u(x, t) = ∂αx ū(x, t), ∀(x, t) ∈ $ × (0, T ), |α| = 1, 2

,⇒ p(x) = p̄(x), ∀x ∈ !.
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Figure 1. The Carleman weight function ϕ(x, t) (left) and its isovalues ϕ(x, t) = δ (right) for
x0 = 0 and β = 1.

1.2. A Carleman estimate

In a pioneering work [9], Carleman introduced what is now commonly known as a Carleman
estimate, in the context of proving the uniqueness in the Cauchy elliptic problem. Since then,
the theory of Carleman estimates has been extensively studied. As for a general treatment of
Carleman estimates, see Hörmander [15], Isakov [16], Tataru [17], Imanuvilov and Yamamoto
[18]. In 2006, Cavaterra et al [19] modified the point-wise Carleman inequality of Klibanov
and Timonov [20] for a hyperbolic scalar equation and integrated, thanks to a change of
variable, the integral term of (2). In 2008, Imanuvilov and Yamamoto [21] proved a Carleman
estimate for the 3D Lamé system—operator (2) without the integral term. Their approach
consisted in decoupling the system by writing the equations satisfied by u, ∇ ∧ u and ∇ · u

in view of applying the well-known results for hyperbolic scalar equations [22]. In this
paper, we prove a Carleman estimate for the complete integro-differential operator (2) by the
combination of these two techniques. We start by introducing the following Carleman weight
function.

Definition 2 (A Carleman weight function). For x0 ∈ R3\! and β > 0, we introduce a
function ϕ in the following way:

ϕ(x, t) = |x − x0|2 − βt2, ∀(x, t) ∈ ! × (0, +∞). (4)

This function is plotted in figure 1. Let us now introduce some notations used in what
follows.

• Distances (see figure 2): for x0 ∈ R3\!, we note

d0 = inf
x∈!

|x − x0| and d = sup
x∈!

|x − x0|2.

• Domains (see figure 3): for ε > 0 and δ > 0, we note

!(ε) = {x ∈ !, dist(x, ∂!) > ε}, !(0) = !,

Q(ε, δ) = {(x, t) ∈ !(ε) × (0, +∞), ϕ(x, t) > δ}, Q(0, 0) = Q.

We note that Q ⊂ ! × (0, T ) if T > d√
β

.
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Figure 3. Definitions of the domains !(ε) and Q(ε, δ).

• Norms: for Q ⊂ R3 × R, σ > 0 and k ∈ N, we introduce the following norms:

‖ - ‖2
H 1,σ (Q) = ‖∇x,t - ‖2

L2(Q) + σ 2‖ - ‖2
L2(Q),

‖ - ‖2
Hk,σ

x (Q)
=

∑

|α|!k

σ 2(k−|α|)∥∥∂αx -
∥∥2

L2(Q)
.

• Constants: C and Cj, 1 " j " 6, are generic positive constants.

Equipped with these definitions, we can now state the following result.

Theorem 2 (Carleman estimate). Let P be the operator defined by (1). We assume that

(H1) (λ, µ) ∈ C2(!)2 and (λ̃, µ̃) ∈ C2(! × (0, +∞))2,
(H2) µ and λ + 2µ satisfy condition 1 with the same x0.

Then, there exist β0 > 0 and σ0 > 0 such that, for all β " β0, for all σ ! σ0, for all
ε > 0, for all 0 < δ < d2

0 and for all u ∈ H 2(Q)3 satisfying u(x, 0) = 0 or ∂tu(x, 0) = 0,
∀x ∈ !, the following estimate holds:

C
σ
‖u eσϕ‖2

H 2,σ
x (Q(ε,δ))

" ‖(Pu) eσϕ‖2
L2(Q)

+ ‖∇(Pu) eσϕ‖2
L2(Q)

+ eCσ‖u‖2
H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖u‖2

H 2(Q)
,

where ϕ is defined by (4) and C > 0 depends on the C2(Q)-norm of the coefficient µ̃ but is
independent of σ .

The last term of this estimate is rather uncommon since it is global but it will disappear
thanks to a clever choice of σ .
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1.3. A unique continuation result

In [23], Bellassoued proved a sharp unique continuation result for the Lamé system. He
applied a method initially developed by Robbiano [24] which uses the FBI transform [25]
to change the problem near the boundary into a problem for which elliptic estimates can be
applied. In this paper, we show a similar result for the system (1)–(2) by adapting these
techniques. In particular, we propose a new transformation inspired from the FBI transform
but which is able to deal with the additive convolution term of the operator (2). The result we
prove is as follows.

Theorem 3 (Unique continuation). Let u be the vector solution of





Pu(x, t) = R(x, t), ∀(x, t) ∈ ! × (0, +∞),

u(x, 0) = 0, ∀x ∈ !,

∂tu(x, 0) = 0, ∀x ∈ !,

u(x, t) = 0, ∀(x, t) ∈ ∂! × (0, +∞).

We assume that

(H1) (λ, µ) ∈ C2(!)2 and (λ̃, µ̃) ∈ C2(! × (0, +∞))2 are such that the solution u ∈
W 4,∞(! × (0, +∞))3,
(H6) R(x, t) = 0, ∀(x, t) ∈ ω × (0, +∞) where ω is a neighborhood of ∂!.

Then, for $ ⊂ ∂! arbitrarily small, there exists T0 > 0 such that, for all T ! T0 and for
all ρ > 0, the following estimate holds:

‖u‖2
H 2(ω×(0, T

2 −ρ)) " C



log



2 +
C

∑
1!|α|!2

∥∥∂αx u
∥∥2

L2($×(0,3T ))








−1

where C > 0 depends on the C2(! × (0, T ))-norm of the coefficient µ̃ and on the norm
W 4,∞(! × (0, T ))3 of u.

1.4. Numerical results

Section 5 presents a numerical example to illustrate one of our theoretical results [12]. Here, we
propose a non-quadratic functional to solve the inverse problem. Moreover, as a regularization
method [26], we use a spectral basis, adapted in space and in frequency to the solution. This
idea, combined with mesh adaptation, allows us to improve the accuracy of the method by
minimizing the numerical error. The unknown parameter is successfully recovered at each
vertex of the discretized domain.

2. Proof of theorem 1

This section presents the proof of the stability result (theorem 1). The idea of the proof is the
following. Firstly, we bring the unknown parameter p to the source by writing the equation
satisfied by v̂ = ∂t (u − ū). Then, we use the method of Bukhgeim and Klibanov; i.e. we
differentiate the previous equation to bring the parameter in the initial condition and we apply
the Carleman estimate of theorem 2 to the new variable ∂t v̂ in order to bound the initial energy.
Thanks to a Carleman estimate for a first-order operator (lemma 2), we come back to the
coefficient in the estimate. Thus, we obtain a first Hölder stability result with an internal
measurement on a neighborhood of the boundary. Finally, we combine this result with the
unique continuation relation of theorem 3 to conclude.
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Let u (respectively ū) be the solution of the system (1)–(3), associated with the coefficient
p (respectively p̄). We suppose that hypotheses (H1)–(H5) hold and we fix $ ⊂ ∂! arbitrarily
small. By linearity and without loss of generality, we can suppose that ū1 = 0.

2.1. Bring the unknown parameter p to the source

We suppose (p̄, ū) to be known and we introduce p̂ = p − p̄ and û = u − ū which satisfy the
following equation:

Pû(x, t) = ∂2
t û(x, t) − ∇ · (µ(x)(∇û(x, t) + ∇û(x, t)T ) + λ(x)(∇ · û)(x, t)I )

+
∫ t

0
∇ · (h(s)p(x)(∇û(x, t − s) + ∇û(x, t − s)T )

+ λ̃(x, s)(∇ · û)(x, t − s)I ) ds

= −
∫ t

0
h(s)∇ · (p̂(x)(∇ū(x, t − s) + ∇ū(x, t − s)T )) ds,

∀(x, t) ∈ ! × (0, +∞),

with null initial and boundary conditions. We note that the coefficient p̂ we wish to recover
appears in the source term. The problem is that this source term vanishes at the initial time
t = 0, so it does not satisfy the hypothesis of the method of Bukhgeim and Klibanov [8]. To
overcome this problem, we derive the equation in time and set

v̂(x, t) = ∂t û(x, t), ∀(x, t) ∈ ! × (0, +∞).

Then, v̂ satisfies the equation

P v̂(x, t) = −
∫ t

0
h(s)∇ · (p̂(x)(∇v̄(x, t − s) + ∇v̄(x, t − s)T )) ds

− h(t)∇ · (p̂(x)(∇ū0(x) + ∇ū0(x)T )), ∀(x, t) ∈ ! × (0, +∞), (5)

with null initial and boundary conditions. As a consequence, the unknown coefficient is still
in the source term but it no longer vanishes at the initial time.

2.2. Use the method of Bukhgeim and Klibanov

We derive (5) and set

ŵ(x, t) = ∂t v̂(x, t) = ∂2
t û(x, t), ∀(x, t) ∈ ! × (0, +∞),

which satisfies then

Pŵ(x, t) = −
∫ t

0
h(s)∇ · (p̂(x)(∇w̄(x, t − s) + ∇w̄(x, t − s)T )) ds

− h′(t)∇ · (p̂(x)(∇ū0(x) + ∇ū0(x)T )), ∀(x, t) ∈ ! × (0, +∞), (6)

with the following initial and boundary conditions:





ŵ(x, 0) = 0, ∀x ∈ !,

∂t ŵ(x, 0) = −h(0)∇ · (p̂(x)(∇ū0(x) + ∇ū0(x)T )),

ŵ(x, t) = 0, ∀(x, t) ∈ ∂! × (0, +∞).

(7)

Therefore, the coefficient p̂ that we want to recover appears now in the initial conditions. We
are going to write an inequality by bounding the energy of the system (7) by the source and
the observations. To do that, we apply the Carleman estimate of theorem 2 to ŵ and to its time
derivatives.

7
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2.3. Apply the Carleman estimate

Theorem 2 states that for ϕ defined by equation (4) with β sufficiently small, for σ sufficiently
large, for ε > 0 and 0 < δ < d2

0 , the following estimate holds:

1
σ

‖ŵ eσϕ‖2
H 2,σ

x (Q(ε,δ))
" C

(

eCσ‖ŵ‖2
H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖ŵ‖2

H 2(Q)

+
∫

Q

∣∣∣∣

∫ t

0
h(s)∇ · (p̂(x)(∇w̄(x, t − s) + ∇w̄(x, t − s)T )) ds

∣∣∣∣
2

× e2σϕ(x,t) dx dt +
∫

Q

∣∣∣∣

∫ t

0
h(s)∇(∇ · (p̂(x)(∇w̄(x, t − s)

+ ∇w̄(x, t − s)T ))) ds

∣∣∣∣
2

e2σϕ(x,t) dx dt +
∥∥h′∇ ·

(
p̂
(
∇ū0 + ∇ūT

0

))
eσϕ

∥∥2
L2(Q)

+
∥∥h′∇

(
∇ ·

(
p̂
(
∇ū0 + ∇ūT

0

)))
eσϕ

∥∥2
L2(Q)

)

. (8)

We now need a result to bound the integral terms. This is given by the following lemma.

Lemma 1 (Lemma 3.1.1 in [20]). Let ϕ be defined by (4). There exists C > 0 such that, for
all σ > 0 and u ∈ L2(Q),

∫

Q

(∫ t

0
|u(x, s)| ds

)2

e2σϕ(x,t) dx dt " C

σ

∫

Q

|u(x, t)|2 e2σϕ(x,t) dx dt.

We use the result of lemma 1 and the fact that (p̂, h) is bounded in ! × (0, +∞) (H1) to
write

C

σ
‖ŵ eσϕ‖2

H 2,σ
x (Q(ε,δ))

" eCσ‖ŵ‖2
H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖ŵ‖2

H 2(Q)

+
∥∥∇ ·

(
p̂
(
∇ū0 + ∇ūT

0

))
eσϕ

∥∥2
L2(Q)

+
∥∥∇

(
∇ ·

(
p̂
(
∇ū0 + ∇ūT

0

)))
eσϕ

∥∥2
L2(Q)

.

Thus, taking into account the fact that ū0 ∈ W 8,∞(! × (0, +∞)) (H1), we obtain

C

σ
‖ŵ eσϕ‖2

H 2,σ
x (Q(ε,δ))

" eCσ
∥∥∂2

t û
∥∥2

H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ
∥∥∂2

t û
∥∥2

H 2(Q)

+
∑

|α|!2

∥∥(∂αx p̂
)

eσϕ
∥∥2

L2(Q)
.

Similarly, we obtain, for i = 1, 2,

C

σ

∥∥(∂i
t ŵ

)
eσϕ

∥∥2
H 2,σ

x (Q(ε,δ))
" eCσ

∥∥∂2+i
t û

∥∥2
H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ

∥∥∂2+i
t û

∥∥2
H 2(Q)

+
∑

|α|!2

∥∥(∂αx p̂
)

eσϕ
∥∥2

L2(Q)
. (9)

In order to apply the Carleman estimate, we verified that the functions ∂t ŵ and ∂2
t ŵ have one

of their initial conditions null. This requirement is true since we supposed h′(0) = 0 in (H4).
We will now bound the initial energy of the system (7).

8
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Figure 4. Definition of the cut-off function χ1.

2.4. Bound the initial energy

We define the cut-off function χ1 ∈ C∞(R3 × R) by 0 " χ1 " 1 and

χ1(x, t) =
{

1, if (x, t) ∈ Q(0, 2δ),
0, if (x, t) ∈ Q\Q(0, δ),

and we set

w∗(x, t) = χ1(x, t)ŵ(x, t), ∀(x, t) ∈ ! × (0, +∞).

This function is illustrated in figure 4.
Since the time derivative of w∗ is null outside Q(0, δ), i.e. for

t ! t δx =

√
|x − x0|2 − δ

β

which is well defined for all x ∈ ! because δ < d2
0 , we can write

∫

!(ε)

|∂tw
∗(x, 0)|2 e2σϕ(x,0) dx = −

∫

!(ε)

∫ t δx

0
∂t (|∂tw

∗(x, t)|2 e2σϕ(x,t)) dx dt

=
∫

Q(ε,δ)

(
4βtσ |∂tw

∗(x, t)|2 e2σϕ(x,t)

− 2∂tw
∗(x, t) · ∂2

t w∗(x, t) e2σϕ(x,t)
)

dx dt.

In addition, we have

∂tw
∗(x, t) = χ1(x, t)∂t ŵ(x, t) + ∂tχ1(x, t)ŵ(x, t), ∀(x, t) ∈ ! × (0, +∞),

∂2
t w∗(x, t) = χ1(x, t)∂2

t ŵ(x, t) + 2∂tχ1(x, t)∂t ŵ(x, t) + ∂2
t χ1(x, t)ŵ(x, t).

Therefore, we obtain
∫

!(ε)

|∂tw
∗(x, 0)|2 e2σϕ(x,0) dx

" C

(∫

Q(ε,δ)

(
σ |ŵ(x, t)|2 + σ |∂t ŵ(x, t)|2 + |∂2

t ŵ(x, t)|2
)

e2σϕ(x,t) dx dt

)
.

9
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We do the same work for the derivatives in x for |α| " 2 and thus we obtain
∑

|α|!2

σ 2(1−|α|)
∫

!(ε)

∣∣∂αx (∂t ŵ)(x, 0)
∣∣2 e2σϕ(x,0) dx

" C

σ

(
‖ŵ eσϕ‖2

H 2,σ
x (Q(ε,δ))

+ ‖(∂t ŵ) eσϕ‖2
H 2,σ

x (Q(ε,δ))
+
∥∥(∂2

t ŵ
)

eσϕ
∥∥2

H 2,σ
x (Q(ε,δ))

)

" C




∑

|α|!2

∥∥(∂αx p̂
)

eσϕ
∥∥2

L2(Q)
+ eCσ‖û‖2

H 6(Q(ε,2δ)\Q(2ε,δ)) + σ 3 e2σδ‖û‖2
H 6(Q)



,

where we used (9) in the last inequality. We have to go back to the coefficient on the left-hand
side.

2.5. Return to the coefficient in the estimate

To this end, we need a Carleman estimate for a first-order operator. It is given by the following
lemma.

Lemma 2 (Lemma 3.2 in [18]). We consider the following first-order partial differential
operator:

R(x)- = a(x) · ∇ - +a0(x)-, ∀x ∈ !,

with

a0 ∈ C0(!), ‖a0‖C2(!) " M1 and a ∈ C1(!)n, ‖a‖C2(!) " M2,

∃x0, |a(x) · (x − x0)| ! M3 > 0, ϕ0(x) = |x − x0|2, ∀x ∈ !.

Then, there exist σ0 > 0 and C > 0 such that, for all σ ! σ0 and for all q ∈ C2
0(!),

σ 2
∑

|α|!2

∫

!

∣∣∂αx q(x)
∣∣2 e2σϕ0(x) dx " C

∑

|α|!2

∫

!

∣∣∂αx (R(x)q(x))
∣∣2 e2σϕ0(x) dx.

Since the coefficient p̂ satisfies the following first-order system:

h(0)∇ · (p̂(x)(∇ū0(x) + ∇ū0(x)T )) = −∂tw
∗(x, 0),

we can apply lemma 2 to each equation of the system with

q(x) = p̂(x), R(x)q(x) = −∂tw
∗(x, 0), ϕ0(x) = ϕ(x, 0),

a0(x) = h(0)∇ · (∇ū0(x) + ∇ū0(x)T ), a(x) = h(0)(∇ū0(x) + ∇ū0(x)T ),

which satisfy (H5) and we obtain then
∑

|α|!2

∫

!(ε)

∣∣∂αx p̂(x)
∣∣2 e2σϕ(x,0) dx " C

∑

|α|!2

σ 2(1−|α|)
∫

!(ε)

∣∣∂αx (∂tw
∗)(x, 0)

∣∣2 e2σϕ(x,0) dx.

We supposed in (H3) that we know p in a neighborhood ω of the boundary ∂!, i.e. p̂ = 0 in
ω and so we can assume ε to be sufficiently small such that !\!(ε) ⊂ ω. This allows us to
integrate on ! on the left-hand side. Then, we have
∑

|α|!2

∫

!

∣∣∂αx p̂(x)
∣∣2 e2σϕ(x,0) dx

" C




∑

|α|!2

∥∥(∂αx p̂
)

eσϕ
∥∥2

L2(Q)
+ eCσ‖û‖2

H 6(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖û‖2
H 6(Q)



 .

(10)

10
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We can absorb the first term of the right-hand side of (10) on the left-hand side, thanks to the
Carleman weights. Indeed,

∑

|α|!2

∥∥(∂αx p̂
)

eσϕ
∥∥2

L2(Q)
=

∑

|α|!2

∫

!

∣∣∂αx p̂(x)
∣∣2 e2σϕ(x,0)

(∫ t0
x

0
e2σ(ϕ(x,t)−ϕ(x,0)) dt

)

dx,

with, ∀x ∈ !:
∫ t0

x

0
e2σ(ϕ(x,t)−ϕ(x,0)) dt "

∫ +∞

0
e−2σβt2

dt = 1√
2σβ

∫ +∞

0
e−z2

dz = C√
σ

.

Then,
∑

|α|!2

∥∥(∂αx p̂
)

eσϕ
∥∥2

L2(Q)
" C√

σ

∑

|α|!2

∫

!

∣∣∂αx p̂(x)
∣∣2 e2σϕ(x,0) dx.

Finally, we obtain

e2σd2
0 ‖p̂‖2

H 2(!) "
∑

|α|!2

∫

!

∣∣∂αx p̂(x)
∣∣2 e2σϕ(x,0) dx

" C
(
eCσ‖û‖2

H 6(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖û‖2
H 6(Q)

)
,

and thus, we conclude that

‖p̂‖2
H 2(!) " C

(
eCσ‖û‖2

H 6(Q(ε,δ)\Q(2ε,δ)) + e−σ(d2
0 −δ)

)
,

with l = d2
0 − δ > 0, since supσ (σ 3 e−σ l) < +∞ and since we assumed in (H1) that û is in

W 8,∞(Q). In order to have

eCσ‖û‖2
H 6(Q(ε,δ)\Q(2ε,δ)) = e−σ l,

we propose to set

σ = − 1
l + C

log
(
‖û‖2

H 6(Q(ε,δ)\Q(2ε,δ))

)
. (11)

We have σ > 0 if we suppose that ‖û‖2
H 6(Q(ε,δ)\Q(2ε,δ)) < 1. Thus, the right-hand side of the

equation can be written as follows:

eCσ‖û‖2
H 6(Q(ε,δ)\Q(2ε,δ)) + e−σ l = 2

(
‖û‖2

H 6(Q(ε,δ)\Q(2ε,δ))

) l
l+C

.

We now use the following interpolation result.

Lemma 3 (Proposition 4 in [27]). For all m ∈ N∗, there exists a constant C > 0 such that,
for all r satisfying 0 " r " m and for all u ∈ Hm(Q), we have

‖u‖Hr(Q) " C‖u‖1− r
m

L2(Q)
‖u‖

r
m

Hm(Q).

We apply lemma 3 to the second derivative of û ∈ H 8(Q) with m = 6 and r = 2 in order
to write

‖û‖H 6(Q(ε,δ)\Q(2ε,δ)) " C‖û‖1/3
H 2(Q(ε,δ)\Q(2ε,δ))‖û‖2/3

H 8(Q(ε,δ)\Q(2ε,δ)).

Hence,

‖p̂‖H 2(!) " C
(
‖û‖1/3

H 2(Q(ε,δ)\Q(2ε,δ))

) l
l+C . (12)

So we already have a stability result with observation in Q(ε, δ)\Q(2ε, δ) which is included
in (!(ε)\!(2ε)) × (0, T ) if T > d√

β
.

11
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2.6. Use the unique continuation result

We can now apply theorem 3 to û. We verify that hypothesis (H6) holds, i.e. that

R(x, t) = −
∫ t

0
h(s)∇ · (p̂(x)(∇ū(x, t − s) + ∇ū(x, t − s)T )) ds

vanishes in !\!(2ε) ⊂ ω, and choose ρ < δ. We deduce that if T is large enough, we have

‖û‖2
H 2(Q(ε,δ)\Q(2ε,δ)) " C



log



2 +
C

∑2
|α|=1

∥∥∂αx û
∥∥2

L2($×(0,6T ))








−1

.

Therefore,

‖p̂‖H 2(!) " C



log



2 +
C

∑2
|α|=1

∥∥∂αx û
∥∥2

L2($×(0,6T ))








− l

6(l+C)

.

We set κ = l
6(l+C)

∈ (0, 1) and change 6T by T. This achieves to prove theorem 1.

3. Proof of theorem 2

This section is devoted to the proof of the Carleman estimate (theorem 2). The proof consists
in decoupling the system of equations as in [21] by writing the equations satisfied by u, ∇ ∧ u

and ∇ · u. Then, the idea is to introduce a change of variable as in [19] to reduce the problem
to a scalar hyperbolic equation for which the Carleman estimate is well known (corollary 2).
Finally, we come back to the initial variable by a series of inequalities assuming the regularity
of the coefficients and using the fundamental lemma 1.

Let u be the solution of the system





Pu(x, t) = F(x, t), ∀(x, t) ∈ ! × (0, +∞),

u(x, 0) = 0 or ∂tu(x, 0) = 0, ∀x ∈ !,

u(x, t) = 0, ∀(x, t) ∈ ∂! × (0, +∞),

(13)

with

Pu(x, t) = ∂2
t u(x, t) − ∇ · (µ(x)(∇u(x, t) + ∇u(x, t)T ) + λ(x)(∇ · u)(x, t)I )

+
∫ t

0
∇ · (µ̃(x, s)(∇u(x, t − s) + ∇u(x, t − s)T )

+ λ̃(x, s)(∇ · u)(x, t − s)I ) ds.

Let us assume that hypotheses (H1) and (H2) are satisfied. First we have to decouple the
equations.

3.1. Decouple the system of equations

To this end, we develop the system (13) as follows:

∂2
t u(x, t) − µ(x)0u(x, t) − (µ + λ)(x)∇(∇ · u)(x, t) − (∇ · u)(x, t)∇λ(x)

− (∇u(x, t) + ∇u(x, t)T ) · ∇µ(x) +
∫ t

0
µ̃(x, t − s)0u(x, s) ds

+
∫ t

0
(∇ · u)(x, s)∇λ̃(x, t − s) ds +

∫ t

0
(µ̃ + λ̃)(x, t − s)∇(∇ · u)(x, s) ds

12
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+
∫ t

0
(∇u(x, s) + ∇u(x, s)T ) · ∇µ̃(x, t − s) ds = F(x, t),

∀(x, t) ∈ ! × (0, +∞).

Note the change of variable in the convolution terms. Then, we take the curl and the divergence
of this system. We introduce the vectors u1 = u, u3 = ∇ ∧ u and the scalar u2 = ∇ · u which
satisfy then the following system of seven equations:

∂2
t ui(x, t) − qi(x)0ui(x, t) +

∫ t

0
q̃i (x, t − s)0ui(x, s) ds

= Fi(x, t) + Ai(u1, u2, u3)(x, t), ∀i ∈ {1, 2, 3}, (14)

where we set

q1 = q2 = µ, q3 = λ + 2µ, q̃1 = q̃2 = µ̃, q̃3 = λ̃ + 2µ̃,

F1 = F, F2 = ∇ ∧ F and F3 = ∇ · F.

Here, the coupling terms Ai are first-order integro-differential operators in x and t, with
coefficients bounded in ! × (0, +∞), according to hypothesis (H1). These equations are
coupled only at order 1; therefore, we can apply the results known for the scalar equations.
However, the problem is now that the trace of the functions ∇ · u and ∇ ∧ u on ∂! are no
longer defined. We need now to change the integro-differential hyperbolic equation (14) into
a hyperbolic equation in order to apply the classical results.

3.2. Use a change of variable

We introduce the following change of variable:

ũi(x, t) = qi(x)ui(x, t) −
∫ t

0
q̃i (x, t − s)ui(x, s) ds, ∀i ∈ {1, 2, 3}. (15)

Then, we have, for all i ∈ {1, 2, 3} and for all (x, t) ∈ ! × (0, +∞),

∂2
t ũi (x, t) = qi(x)∂2

t ui(x, t) −
∫ t

0
∂2
t q̃i (x, t − s)ui(x, s) ds

+ ∂t q̃i(x, 0)ui(x, t) + q̃i (x, 0)∂tui(x, t)

and

0ũi(x, t) = qi(x)0ui(x, t) −
∫ t

0
q̃i (x, t − s)0ui(x, s) ds + 2∇qi(x) · ∇ui(x, t)

+0qi(x)ui(x, t) − 2
∫ t

0
∇q̃i (x, t − s) · ∇ui(x, s) ds

−
∫ t

0
0q̃i(x, t − s)ui(x, s) ds.

Therefore, for all i ∈ {1, 2, 3} and for all (x, t) ∈ ! × (0, +∞), the ũi satisfy a hyperbolic
system of the type

∂2
t ũi (x, t) − qi(x)0ũi(x, t) = qi(x) (Fi(x, t) + Ai(u1, u2, u3)(x, t)) + Li(ui)(x, t),

where the Li are first-order integro-differential operators, the coefficients of which are bounded
in ! × (0, +∞). We now need a Carleman estimate for a scalar hyperbolic equation.

13
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ε

x0

Ωt(0, 0)

Ωt(ε, δ)

t

ϕ(x, ·)

ϕ(x, 0)

0

d√
β

δ

tδx

Figure 5. Definition of the domain !t (ε, δ) and the time tδx .

3.3. Use a Carleman estimate for a hyperbolic scalar equation

The equations we consider are valid in (0, +∞) and because of the presence of the integral
term, we cannot extend the solution to (−∞, 0). That is why we cannot use a classical
global Carleman estimate found in the literature. Therefore, we will start with the following
point-wise Carleman estimate stated in Q(0, δ):

Lemma 4 (Theorem 2.2.4 in [20]). Let q ∈ C2(!) satisfy condition 1 and ϕ be defined by
(4). Then, there exist β0 > 0 and σ0 > 0 such that, for all β " β0, for all σ ! σ0, for all
δ > 0 and for all u ∈ H 2(Q(0, δ)), we have

(σ |∇x,tu(x, t)|2 + σ 3|u(x, t)|2) e2σϕ(x,t) + ∇ · U(x, t) + ∂tV (x, t)

" C
∣∣∂2

t u(x, t) − q(x)0u(x, t)
∣∣2 e2σϕ(x,t), ∀(x, t) ∈ Q(0, δ). (16)

Here, (U, V ) is a vector-valued function and satisfies

|U(x, t)| + |V (x, t)| " C(σ |∇x,tu(x, t)|2 + σ 3|u(x, t)|2) e2σϕ(x,t), ∀(x, t) ∈ Q(0, δ).

Moreover, V (x, 0) = 0, ∀x ∈ !, if u(x, 0) = 0 or ∂tu(x, 0) = 0, ∀x ∈ !.

From this lemma, we deduce the following Carleman estimate.

Corollary 2. Let q ∈ C2(!) satisfy condition 1 and ϕ be defined by (4), with β > 0
sufficiently small. Then, there exist β0 > 0 and σ0 > 0 such that, for all β " β0, for all
σ ! σ0, for all δ > 0 and for all u ∈ H 2(Q(0, δ)) satisfying u(x, 0) = 0 or ∂tu(x, 0) = 0,
∀x ∈ !, we have

σ‖u eσϕ‖2
H 1,σ (Q(0,δ)) " C

(∥∥(∂2
t u − q0u

)
eσϕ

∥∥2
L2(Q(0,δ))

+ σ‖u eσϕ‖2
H 1,σ (∂Q(0,δ)\(!×{0}))

)
.

Proof. We integrate (16) over Q(0, δ):
∫

Q(0,δ)

(σ |∇x,tu(x, t)|2 + σ 3|u(x, t)|2) e2σϕ(x,t) dx dt " −
∫

Q(0,δ)

(
∇ · U(x, t) − ∂tV (x, t)

+ C
∣∣∂2

t u(x, t) − µ(x)δu(x, t)
∣∣2 e2σϕ(x,t)

)
dx dt.

We now define (see figure 5) ∀t ! 0, !t(ε, δ) = Q(ε, δ) ∩ (! × {t}) and

∀x ∈ !, tδx =






√
|x−x0|2−δ

β
if δ < |x − x0|2,

0 else.

14
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Ω(2ε)

χ2 = 0

ε
ε

χ2 = 1Ω

0
x

t

ϕ(x, t) = 0

Q

√
δ√

2δ

Q(2ε, 2δ)
χ2 = 1

χ
2 =

0

εε

Figure 6. Definition of the cut-off function χ2.

We note that
∫

Q(0,δ)

∇ · U(x, t) dx dt =
∫ ∞

0

∫

!t (0,δ)

∇ · U(x, t) dx dt =
∫ ∞

0

∫

∂!t (0,δ)

U(x, t) · n dx dt

=
∫

∂Q(0,δ)\(!×{0})
U(x, t) · n dx dt

and that
∫

Q(0,δ)

∂tV (x, t) dx dt =
∫

!

∫ t δx

0
∂tV (x, t) dt dx =

∫

!

(
V
(
x, tδx

)
− V (x, 0)

)
dx

=
∫

∂Q(0,δ)\(!×{0})
V (x, t) dx dt.

Thus,

−
∫

Q(0,δ)

∇ · U(x, t) dx dt −
∫

Q(0,δ)

∂tV (x, t) dx dt

"
∫

∂Q(0,δ)\(!×{0})
(|U(x, t)| + |V (x, t)|) dx dt

" C

∫

∂Q(0,δ)\(!×{0})
(σ |∇x,tu(x, t)|2 + σ 3|u(x, t)|2) e2σϕ(x,t) dx dt.

This achieves to prove the expected result.
#

For ε > 0 and δ > 0, we introduce then the cut-off function χ2 ∈ C∞(R3 × R) which
satisfies 0 " χ2 " 1 and is such that

χ2(x, t) =
{

1, if (x, t) ∈ Q(2ε, 2δ),
0, if (x, t) ∈ Q\Q(ε, δ).

(17)

Figure 6 illustrates this cut-off function. Then, we set

u∗
i (x, t) = χ2(x, t)ũi(x, t), ∀i ∈ {1, 2, 3}, ∀(x, t) ∈ ! × (0, +∞).

15



Inverse Problems 26 (2010) 095006 M de Buhan and A Osses

Thus, u∗
i satisfies the equation

∂2
t u∗

i (x, t) − qi(x)0u∗
i (x, t) = χ(x, t)

(
∂2
t ũi (x, t) − µ(x)0ũi(x, t)

)

+ 2∂tχ(x, t)∂t ũi(x, t) + ũi(x, t)
(
∂2
t χ(x, t) − µ(x)0χ(x, t)

)

− 2µ(x)∇χ(x, t) · ∇ũi(x, t)

= χ(x, t) (qi(x) (Fi(x, t) + Ai(u1, u2, u3)(x, t)) + Li(ui)(x, t)) + L̃i(ũi)(x, t),

where L̃i is a first-order integro-differential operator with coefficients bounded in!×(0, +∞).
Since we supposed that u(x, 0) = 0 or ∂tu(x, 0) = 0, ∀x ∈ !, and that, according to (H2),
the coefficient qi satisfies condition 1, we can apply corollary 2 to u∗

i in Q(0, δ/2), i.e. there
exists β > 0 sufficiently small such that, for σ > 0 sufficiently large, we have

σ‖u∗
i eσϕ‖2

H 1,σ (Q(ε,δ)) " C
∥∥(∂2

t u∗
i − qi0u∗

i

)
eσϕ

∥∥2
L2(Q(ε,δ))

,

without the boundary term since u∗
i is null in Q\Q(ε, δ).

3.4. Return to the initial variable u

3.4.1. Upper bound for the right-hand side. We take into account the fact that

• all the coefficients λ, µ, λ̃, µ̃ and χ are bounded in ! × (0, +∞) according to (H1);
• all the operators Ai, Li and L̃i are of order inferior or equal to 1;
• lemma 1 holds

to calculate
∥∥(∂2

t u∗
i − qi0u∗

i

)
eσϕ

∥∥2
L2(Q(ε,δ))

= ‖(χ(µ(Fi + Ai(u1, u2, u3)) + Li(ui))

+ L̃i(ũi)) eσϕ‖2
L2(Q(ε,δ)).

Then,

σ‖u∗
i eσϕ‖2

H 1,σ (Q(ε,δ)) " C‖Fi eσϕ‖2
L2(Q) + C

∑

1!j!3

‖uj eσϕ‖2
H 1,σ (Q(ε,δ)). (18)

3.4.2. Lower bound for the left-hand side. We use again the change of variable (15), for all
(x, t) ∈ ! × (0, +∞):

ui(x, t) = 1
qi(x)

ũi(x, t) +
∫ t

0

q̃i (x, t − s)

qi(x)
ui(x, s) ds, ∀i ∈ {1, 2, 3}.

Then, we can write, taking into account (H2) and thanks to lemma 1, ∀i ∈ {1, 2, 3}:
∫

Q(ε,δ)

|ui(x, t)|2 e2σϕ(x,t) dx dt " C

∫

Q(ε,δ)

|ũi(x, t)|2 e2σϕ(x,t) dx dt

+
C

σ

∫

Q(ε,δ)

|ui(x, t)|2 e2σϕ(x,t) dx dt.

For σ sufficiently large, we obtain
∫

Q(ε,δ)

|ui(x, t)|2 e2σϕ(x,t) dx dt " C

∫

Q(ε,δ)

|ũi(x, t)|2 e2σϕ(x,t) dx dt.

In the same way,
∫

Q(ε,δ)

|∇x,tui(x, t)|2 e2σϕ(x,t) dx dt

" C

∫

Q(ε,δ)

(|ũi(x, t)|2 + |∇x,t ũi(x, t)|2) e2σϕ(x,t) dx dt

16
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ε

x0

Ωt(0, 0)

Ωt(ε, δ)

O

Figure 7. Definition of the open O.

which allows to to write, ∀i ∈ {1, 2, 3}:

‖ui eσϕ‖2
H 1,σ (Q(ε,δ)) " C‖ũi eσϕ‖2

H 1,σ (Q(ε,δ)). (19)

In addition, χ2 = 1 sur Q(2ε, 2δ), so we have ũi = u∗
i . Hence, ∀i ∈ {1, 2, 3},

‖ũi eσϕ‖2
H 1,σ (Q(ε,δ)) = ‖u∗

i eσϕ‖2
H 1,σ (Q(2ε,2δ)) + ‖ũi eσϕ‖2

H 1,σ (Q(ε,δ)\Q(2ε,2δ)). (20)

Finally, using (18), (19) and (20) and again lemma 1, we obtain
∑

1!i!3

σ‖ui eσϕ‖2
H 1,σ (Q(ε,δ))

" C
∑

1!i!3

(
‖Fi eσϕ‖2

L2(Q) + ‖ui eσϕ‖2
H 1,σ (Q(ε,δ)) + σ‖ui eσϕ‖2

H 1,σ (Q(ε,δ)\Q(2ε,2δ))

)
,

and thanks to the Carleman weights, we absorb the second term of the right-hand side on the
left-hand side. Finally, we need the following lemma.

Lemma 5. Let ϕ be defined by (4). There exist C > 0 and σ0 > 0 such that, for all σ ! σ0

and for all u ∈ H 2(Q), we have

1
σ

‖u eσϕ‖2
H 2,σ

x (Q(2ε,2δ)

" C
(
σ‖u eσϕ‖2

H 1,σ
x (Q(ε,δ))

+ ‖∇(∇ · u) eσϕ‖2
L2(Q(ε,δ)) + ‖∇(∇ ∧ u) eσϕ‖2

L2(Q(ε,δ))

)
.

Proof. With χ2 defined in (17), we compute, for all (x, t) ∈ Q,

0(χ2(x, t)u(x, t) eσϕ(x,t)) = 2(σχ2(x, t)∇ϕ(x, t) + ∇χ2(x, t)) · ∇u(x, t) eσϕ(x,t)

+ (σ 2χ2(x, t)|∇ϕ(x, t)|2 + σχ2(x, t)0ϕ(x, t) + 0χ2(x, t))u(x, t) eσϕ(x,t)

+ (σ∇ϕ(x, t) · ∇χ2(x, t))u(x, t) eσϕ(x,t) + χ2(x, t)0u(x, t) eσϕ(x,t).

For all t ! 0, we can find an open O (see figure 7) with a smooth boundary (at least C1,1)
such that !t(ε, δ) ⊂ O ⊂ !t(0, 0). Since, for t fixed, the function χ2(·, t)u(·, t) eσϕ(·,t) is in
H 2(O) ∩ H 1

0 (O), we can write

‖χ2(·, t)u(·, t) eσϕ(·,t)‖H 2(O) " C‖0(χ2(·, t)u(·, t) eσϕ(·,t))‖L2(O). (21)

17
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If we integrate inequality (21) for t ∈ (0, +∞) and note that χ1 = 0 in O\!t(ε, δ), we obtain

‖χ2u eσϕ‖2
H 2,σ

x (Q(ε,δ))

" ‖u eσϕ‖2
L2(0,+∞;H 2(!t (ε,δ)))

+ σ 2‖∇(u eσϕ)‖2
L2(Q(ε,δ)) + σ 4‖u eσϕ‖2

L2(Q(ε,δ))

" C
(
‖ eσϕ0u‖2

L2(Q(ε,δ)) + σ 2‖ eσϕ∇u‖2
L2(Q(ε,δ)) + σ 4‖u eσϕ‖2

L2(Q(ε,δ))

)
.

We use the classical formula

0u = ∇ (∇ · u) − ∇ ∧ (∇ ∧ u),

and the fact that χ2 = 1 in Q(2ε, 2δ) to write

‖u eσϕ‖2
H 2,σ

x (Q(2ε,2δ))
" ‖χ2u eσϕ‖2

H 2,σ
x (Q(ε,δ))

" C
(
‖ eσϕ∇(∇ · u)‖2

L2(Q(ε,δ)) + ‖ eσϕ∇ (∇ ∧ u) ‖2
L2(Q(ε,δ))

+ σ 2‖u eσϕ‖2
H 1,σ

x (Q(ε,δ))

)
.

This is the expected result. #

Using this lemma, we can finally write

1
σ

‖u eσϕ‖2
H 2,σ

x (Q(2ε,2δ))
" C

(
σ‖u1 eσϕ‖2

H 1,σ
x (Q(ε,δ))

+ ‖∇u2 eσϕ‖2
L2(Q(ε,δ)) + ‖∇u3 eσϕ‖2

L2(Q(ε,δ))

)

" C
∑

1!i!3

σ‖ui eσϕ‖2
H 1,σ (Q(ε,δ))

" C
∑

1!i!3

(
‖Fi eσϕ‖2

L2(Q) + σ‖ui eσϕ‖2
H 1,σ (Q(ε,δ)\Q(2ε,2δ))

)
;

then
1
σ

‖u eσϕ‖2
H 2,σ

x (Q(ε,δ))
= 1

σ
‖u eσϕ‖2

H 2,σ
x (Q(2ε,2δ))

+
1
σ

‖u eσϕ‖2
H 2,σ

x (Q(ε,δ)\Q(2ε,2δ))

" C
∑

1!i!3

(
‖Fi eσϕ‖2

L2(Q) + σ‖ui eσϕ‖2
H 1,σ (Q(ε,δ)\Q(2ε,2δ))

)
.

Moreover, we have
∑

1!i!3

σ‖ui eσϕ‖2
H 1,σ (Q(ε,δ)\Q(2ε,2δ))

=
∑

1!i!3

(
σ‖ui eσϕ‖2

H 1,σ (Q(ε,δ)\Q(2ε,δ) + σ‖ui eσϕ‖2
H 1,σ (Q(ε,δ)\Q(ε,2δ))

)

" eCσ‖u‖2
H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖u‖2

H 2(Q),

since

ϕ(x, t) " δ, ∀(x, t) ∈ Q(ε, δ)\Q(ε, 2δ).

Thus
1
σ

‖u eσϕ‖2
H 2,σ

x (Q(ε,δ))
" C

(
‖F eσϕ‖2

L2(Q) + ‖(∇F) eσϕ‖2
L2(Q)

+ eCσ‖u‖2
H 2(Q(ε,δ)\Q(2ε,δ)) + σ 3 e2σδ‖u‖2

H 2(Q)

)
,

and this concludes the proof of theorem 2.
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ω

Ω

∂Ω

Ω(4ε)

χ3 = 1

χ3 = 0

Ω Ω(3ε)

ε3ε

\

Figure 8. Definition of the neighborhood ω of ∂! and the cut-off function χ3.

4. Proof of theorem 3

In this section, we prove the unique continuation result of theorem 3. It consists in transforming
the integro-differential hyperbolic system (1)–(2) into an elliptic one thanks to a FBI-type
transform. Then, we show a Carleman estimate (theorem 4) for the resulting integro-
differential elliptic operator, using the same techniques as in the proof of theorem 2. And
we use this Carleman estimate to obtain interpolation inequalities which link the value of the
solution in an interior domain near the boundary to the one on the boundary. Finally, we come
back to the solution of the initial problem by a series of inequalities.

Let u be the solution of

Pu(x, t) = R(x, t), ∀(x, t) ∈ ! × (0, +∞), (22)

with null initial and boundary conditions and let us assume that (H1) and (H6) are satisfied.

4.1. Transform the hyperbolic system into an elliptic one

Let us choose ε > 0 such that !\!(3ε) ⊂ ω.
We introduce the cut-off function χ3 ∈ C∞

0 (R3) (see figure 8) which satisfies 0 " χ3 " 1
and is such that

χ3(x) =
{

0, if x ∈ !(4ε),
1, if x ∈ !\!(3ε),

and we set

u∗(x, t) = χ3(x)u(x, t), ∀(x, t) ∈ ! × (0, +∞).

Thus, the new variable u∗ satisfies the following equation:

Pu∗(x, t) = χ3(x)Pu(x, t) + [P, χ3]u(x, t)

,⇒ ∂2
t u∗(x, t) − L(x)u∗(x, t) +

∫ t

0
L̃(x, s)u∗(x, t − s) ds (23)

= [P(x, t), χ3]u(x, t),

since, according to (H6), R(x,t) is equal to zero in ω. We have introduced the following
operators:

L(x)- = ∇ · (µ(x)(∇ - +∇-T ) + λ(x)(∇ · -)I ),

L̃(x, t)- = ∇ · (p(x)h(t)(∇ - +∇-T ) + λ̃(x, t)(∇ · -)I ).
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0 z−T

2
+ 3η
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Figure 9. Definition of the cut-off function θ .

We define a special transformation which is inspired from the classical FBI transform [25]:

Definition 3. Let T > 1 and 0 < η < 1
6 . We introduce Q̃ = ! ×

(
− T

2 , 5T
2

)
× (−3η, 3η).

Then, ∀(x, t, r) ∈ Q̃, we define

(Fγ u∗)(x, t, r) =
√

γ

2π

∫ +∞

0
e− γ

2 (t+ir−y)2
θ(t − y)u∗(x, y) dy,

where θ ∈ C∞(R), 0 " θ " 1,

θ(z) =
{

1, if z > − T
2 + 3η,

0, if z < − T
2 + 3η

2 .

This function is plotted in figure 9.
Thanks to this transform, we will convert locally the hyperbolic system (23) into an elliptic

system. Firstly, we note that, ∀(x, t, r) ∈ Q̃,

∂r(Fγ u∗)(x, t, r) =
√

γ

2π

∫ +∞

0
−iγ (t + ir − y) e− γ

2 (t+ir−y)2
θ(t − y)u∗(x, y) dy

=
√

γ

2π

∫ +∞

0
−i∂y

(
e− γ

2 (t+ir−y)2)
θ(t − y)u∗(x, y) dy

=
√

γ

2π

∫ +∞

0
i e− γ

2 (t+ir−y)2
∂y(θ(t − y)u∗(x, y)) dy.

The boundary terms of the integration by parts vanish because u∗(x, 0) = 0 and
e− γ

2 (t+ir−y)2 −→ 0 if y −→ ∞. Moreover, θ(t − y) = 0 if y ! T . Then,

∂2
r (Fγ u∗)(x, t, r) = −

√
γ

2π

∫ +∞

0
e− γ

2 (t+ir−y)2
∂2
y (θ(t − y)u∗(x, y)) dy

= −
(
Fγ

(
∂2
yu∗))(x, t, r) − Fγ (x, t, r), ∀(x, t, r) ∈ Q̃,

where

Fγ (x, t, r) =
√

γ

2π

∫ +∞

0
e− γ

2 (t+ir−y)2
(θ ′′(t − y)u∗(x, y) − 2θ ′(t − y)∂yu

∗(x, y)) dy.
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Similarly, we can write

∂2
t (Fγ u∗)(x, t, r) =

(
Fγ

(
∂2
yu∗))(x, t, r), ∀(x, t, r) ∈ Q̃,

and it is easy to see that

L(x)(Fγ u∗)(x, t, r) = (Fγ (L(x)u∗))(x, t, r), ∀(x, t, r) ∈ Q̃.

We now have to look at the integral term

Fγ

(∫ y

0
L̃(x, s)u∗(x, y − s) ds

)
(x, t, r)

=
√

γ

2π

∫ +∞

0
e− γ

2 (t+ir−y)2
θ(t − y)

∫ y

0
L̃(x, s)u∗(x, y − s) ds dy

=
√

γ

2π

∫ +∞

0
L̃(x, s)

∫ +∞

s

e− γ
2 (t+ir−y)2

θ(t − y)u∗(x, y − s) dy ds

=
∫ +∞

0
L̃(x, s)

√
γ

2π

∫ +∞

0
e− γ

2 (t−s+ir−z)2
θ(t − s − z)u∗(x, z) dz ds

=
∫ +∞

0
L̃(x, s)(Fγ u∗)(x, t − s, r) ds =

∫ t

−T/2
L̃(x, t − s)(Fγ u∗)(x, s, r) ds.

The main advantage of this transformation with respect to the FBI transform is that
it transforms the convolution product of two functions into the convolution of the first
function by the transform of the second function. The function uγ = Fγ u∗, function
of three variables (x, t, r), then satisfies a system of elliptic integro-differential equations,
∀(x, t, r) ∈ Q̃:

Quγ (x, t, r) = −2∂2
r uγ (x, t, r) − ∂2

t uγ (x, t, r) − L(x)uγ (x, t, r)

+
∫ t

−T/2
L̃(x, t − s)uγ (x, s, r) ds = 2Fγ (x, t, s) + Gγ (x, t, s), (24)

where

Gγ (x, t, r) =
√

γ

2π

∫ +∞

0
e− γ

2 (t+ir−y)2
θ(t − y)[P(x, t), χ3]û(x, y) dy,

with the boundary conditions:
{

uγ (x, t, r) = 0, ∀(x, t, r) ∈ ∂! ×
(
− T

2 , 5T
2

)
× (−3η, 3η),

uγ (x, t, r) = 0, ∀(x, t, r) ∈ ! ×
{
− T

2

}
× (−3η, 3η).

We note then that

Gγ (x, t, r) = 0, ∀x ∈ !\!(3ε), (25)

because [P(x, t), χ3] only involves the derivatives of χ3 and its support is in !(3ε)\!(4ε).
We also have

‖Fγ ‖H 1(Q̃) " C e−mγT ‖u∗‖H 2(!×(0,3T )) (26)

as well as

‖uγ ‖H 2(Q̃) " C eCγ ‖u∗‖H 2(!×(0,3T )), (27)

where C depends on η, T ,! but not on γ and where m is independent of T. Indeed,

‖Fγ ‖2
L2(Q̃)

= γ

2π

∫

Q̃

∣∣∣∣

∫ +∞

0
e− γ

2 (t+ir−y)2
(θ ′′(t − y)u∗(x, y)

− 2θ ′(t − y)∂yu
∗(x, y)) dy

∣∣∣∣
2

dr dt dx
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with
∣∣∣∣

∫ +∞

0
e− γ

2 (t+ir−y)2
(θ ′′(t − y)u∗(x, y) − 2θ ′(t − y)∂yu

∗(x, y)) dy

∣∣∣∣
2

"
(∫

y"0, −T/2+3η/2!t−y!−T/2+3η

∣∣e− γ
2 (t+ir−y)2 ∣∣2 dy

)

×
(∫ t+T/2

0
|θ ′′(t − y)u∗(x, y) − 2θ ′(t − y)∂yu

∗(x, y)|2 dy

)

"
(∫

y"0, −T/2+3η/2!t−y!−T/2+3η
e−γ ((t−y)2−r2) dy

)
C‖u∗(x, ·)‖2

H 1(0,3T )

" Ce−mγT ‖u∗(x, ·)‖2
H 1(0,3T ), ∀(x, t, r) ∈ Q̃.

Indeed, (t − y)2 !
(
− T

2 + 3η
)2

and r2 " 9η2; therefore, (t − y)2 − r2 ! T
4 (T − 6η). Thus,

if we suppose T > 1, since η < 1/6, then there exists m > 0 independent of T such that
(t − y)2 − r2 ! mT . We can do the same work for the derivatives of Fγ . Likewise, we have

‖uγ ‖2
L2(Q̃)

=
∫

!

∫ 5T/2

−T/2

∫ 3η

−3η

∣∣∣∣

√
γ

2π

∫ +∞

0
e− γ

2 (t+ir−y)2
θ(t − y)u∗(x, y) dy

∣∣∣∣
2

dr dt dx

with, ∀(x, t, r) ∈ Q̃,
∣∣∣∣

∫ +∞

0
e− γ

2 (t+ir−y)2
θ(t − y)u∗(x, y) dy

∣∣∣∣
2

"
(∫ t+T/2

0

∣∣e− γ
2 (t+ir−y)2 ∣∣2 dy

)(∫ t+T/2

0
|θ(t − y)u∗(x, y)|2 dy

)

"
(∫ 3T

0
e−γ ((t−y)2−r2) dy

)
C‖u∗(x, ·)‖2

L2(0,3T ) " CeCγ ‖u∗(x, ·)‖2
L2(0,3T ).

And we use the same procedure for the derivatives of uγ to obtain the desired result.

4.2. Prove a Carleman estimate

We write a Carleman estimate for the system of elliptic integro-differential equations (24),
applying the same methods we used in the hyperbolic case. That is, we combine the decoupling
of the equations proposed by [14] with the change of variables of [10], and we use a classical
Carleman estimate for a scalar elliptic equation (lemma 2). The difference is that here we
have three variables (x, t, r), so the weight function has to be modified. Let us first introduce
some notations:

• Domains: for T > 0 and η > 0, we note

Q̃ = ! ×
(
− T

2 , 5T
2

)
× (−3η, 3η),

5̃ = ∂! ×
(
− T

2 , 5T
2

)
× (−3η, 3η).

• Norms

‖ - ‖2
Hk,σ (Q̃)

=
∑

|α|!k

σ 2(k−|α|)‖∂α - ‖2
L2(Q̃)

,

‖ - ‖2
Hk,σ (5̃)

=
∑

|α|!k

σ 2(k−|α|)‖∂α - ‖2
L2(5̃)

.
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Definition 4 (A Carleman weight function). Let x0 ∈ R3\! and ξ > 0. We introduce a
function ψ in the following way:

ψ(x, t, r) = |x − x0|2 +
(

t +
T

2

)2

+ r2, ∀(x, t, r) ∈ Q̃,

and we set

ϕ(x, t, r) = e−ξψ(x,t,r), ∀(x, t, r) ∈ Q̃. (28)

Because we introduced this new weight function, we must now check that we still have
a result, similar to one of lemma 1, to bound the integral terms in the proof of the Carleman
estimate. It is given by the following lemma.

Lemma 6. Let ϕ be defined by (28), σ > 0 and u ∈ L2(Q̃). Then, there exists a constant
C > 0, independent of σ , such that
∫

Q̃

(∫ t

−T/2
|u(x, s, r)| ds

)2

e2σϕ(x,t,r) dx dt dr " C

σ

∫

Q̃

|u(x, t, r)|2 e2σϕ(x,t) dx dt dr.

Proof. Using the Cauchy–Schwarz inequality, we can write
∫

Q̃

(∫ t

−T/2
|u(x, s, r)| ds

)2

e2σϕ(x,t,r) dx dt dr

"
∫

Q̃

(∫ t

−T/2
|u(x, s, r)|2 ds

)(
t +

T

2

)
e2σϕ(x,t,r) dx dt dr.

We note then that, ∀(x, t, r) ∈ Q̃,
(

t +
T

2

)
e2σϕ(x,t,r) " −eξψ(x,t,r)

4ξσ
∂t ( e2σϕ(x,t,r)) " −C

σ
∂t (e2σϕ(x,t,r)).

Therefore,
∫

Q̃

(∫ t

−T/2
|u(x, s, r)| ds

)2

e2σϕ(x,t,r) dx dt dr

"
∫

!

∫ 3η

−3η

∫ 5T/2

−T/2
− C

σ

(∫ t

−T/2
|u(x, s, r)|2 ds

)
∂t ( e2σϕ(x,t,r)) dt dx dr

" C

σ

∫

!

∫ 3η

−3η

[∫ 5T/2

−T/2
|u(x, t, r)|2 e2σϕ(x,t,r) dt dx dr

− e2σϕ(x,5T/2,r)

(∫ 5T/2

−T/2
|u(x, s, r)|2 ds

)
dx dr

]
.

Thus, we deduce the result. #

We are now ready to state the Carleman estimate for the operator Q.

Theorem 4 (Carleman estimate). Let Q be the operator defined by (24). Let K be a compact
set in ! ×

(
− T

2 , 5T
2

)
× (−3η, 3η). We assume that

(H1) (λ, µ) ∈ C2(!)2 and (λ̃, µ̃) ∈ C2(! × (0, +∞))2.

23



Inverse Problems 26 (2010) 095006 M de Buhan and A Osses

Then, there exists ξ0 > 0 such that, for all ξ ! ξ0, there exists σ0 > 0 such that, for all
σ ! σ0 and for all u ∈ C∞

0 (K)3, we have the following estimate:

1
σ

‖u eσϕ‖2
H 2,σ (Q̃)

" C
(
‖(Qu) eσϕ‖2

H 1(Q̃)
+ ‖u eσϕ‖2

H 2,σ (5̃)

)
,

where ϕ is defined by (28), and C > 0 depends on the C2(Q)-norm of the coefficient µ̃ but is
independent of σ .

Proof. Let K be a compact set in !×
(
− T

2 , 5T
2

)
× (−3η, 3η), let u ∈ C∞

0 (K)3 be the solution
of

Qu(x, t, r) = S(x, t, r), ∀(x, t, r) ∈ Q̃, (29)

and let us assume (H1). We must first decouple the equations. To this end, we take the
divergence of (29) and we introduce the scalar v = ∇ ·u and the vector w = ∇ ∧u. We obtain
the following system of seven scalar equations only coupled at the first order:

−2∂2
r u(x, t, r) − ∂2

t u(x, t, r) − µ(x)0u(x, t, r) +
∫ t

−T/2
µ̃(x, t − s)0u(x, s, r) ds

= S(x, t, r) + A1(u, v)(x, t, r), ∀(x, t, r) ∈ Q̃,

−2∂2
r v(x, t, r) − ∂2

t v(x, t, r) − (λ + 2µ)(x)0v(x, t, r)

+
∫ t

−T/2
(λ̃ + 2µ̃)(x, t − s)0v(x, s, r) ds

= (∇ · S)(x, t, r) + A2(u, v,w)(x, t, r), ∀(x, t, r) ∈ Q̃,

−2∂2
r w(x, t, r) − ∂2

t w(x, t, r) − µ(x)0w(x, t, r) +
∫ t

−T/2
µ̃(x, t − s)0w(x, s, r) ds

= (∇ ∧ S)(x, t, r) + A3(u, v,w)(x, t, r), ∀(x, t, r) ∈ Q̃,

(30)

where A1, A2 and A3 are the first-order integro-differential operators. We only treat the first
equation of (30); the other equations can be treated accordingly. We introduce the following
change of variable:

ũ(x, t, r) = µ(x)u(x, t, r) −
∫ t

−T/2
µ̃(x, t − s, r)u(x, s, r) ds, ∀(x, t, r) ∈ Q̃.

Thus, ũ satisfies the classical elliptic equation

−2∂2
r ũ(x, t, r) − ∂2

t ũ(x, t, r) − µ(x)0ũ(x, t, r)

= µ(x)(S(x, t, r) + A1(u, v)(x, t, r)) + L1(u)(x, t, r),

where L1 is a first-order integro-differential operator with bounded coefficients. We now
need a Carleman estimate for a scalar elliptic equation. It is given by the following
lemma.

Lemma 7 ([28] and [29]). Let Q be an open domain in Rn, K be a compact set in Q and ψ

be a C∞(Q) function satisfying ∇ψ(x) "= 0, ∀x ∈ K . Let

ϕ(x) = e−ξψ(x), ∀x ∈ Q,

where ξ > 0 is sufficiently large. We consider the scalar second-order elliptic operator

R(x)- = a(x) : ∇2 - +b(x) · ∇ - +c-, ∀x ∈ Q,
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where all the coefficients are C2(Q). Then, there exist σ0 > 0 and C > 0 such that, for all
σ ! σ0 and for all u ∈ C∞

0 (K), the following Carleman estimates hold true:

C

σ
‖u eσϕ‖2

H 2,σ (Q) " ‖(Ru) eσϕ‖2
L2(Q) + ‖u eσϕ‖2

H 2,σ (∂Q),

Cσ‖u eσϕ‖2
H 1,σ (Q) " ‖(Ru) eσϕ‖2

L2(Q) + σ‖u eσϕ‖2
H 1,σ (∂Q).

As the weight function ϕ defined in (28) satisfies the hypothesis of lemma 7, we can apply
the first inequality to ũ:
1
σ

‖ũ eσϕ‖2
H 2,σ (Q̃)

" C
(∥∥(−2∂2

r ũ − ∂2
t ũ − µ0ũ

)
eσϕ

∥∥2
L2(Q̃)

+ ‖ũ eσϕ‖2
H 2,σ (5̃)

)
.

We take into account the fact that the coefficients λ, λ̃, µ, µ̃ are bounded in Q, that
lemma 6 holds and that all the terms of the operators A1 and L1 are of order less than or
equal to 1. Then, we obtain
1
σ

‖ũ eσϕ‖2
H 2,σ (Q̃)

" C
(
‖S eσϕ‖2

L2(Q̃)
+ ‖u eσϕ‖2

H 1,σ (Q̃)
+ ‖v eσϕ‖2

H 1,σ (Q̃)
+ ‖u eσϕ‖2

H 2,σ (5̃)

)
.

We use again the change of variable

u(x, t, r) = 1
µ(x)

ũ(x, t, r) +
∫ t

−T/2

µ̃(x, t − s)

µ(x)
u(x, s, r) ds, ∀(x, t, r) ∈ Q̃.

Hence,
∫

Q̃

|u(x, t, r)|2 e2σϕ(x,t,r) dx dt dr " C

∫

Q̃

|ũ(x, t, r)|2 e2σϕ(x,t,r) dx dt dr

+
C

σ

∫

Q̃

|u(x, t, r)|2 e2σϕ(x,t,r) dx dt dr.

For σ sufficiently large, the second term is absorbed. We do the same for the derivatives of u,
which leads to

1
σ

‖u eσϕ‖2
H 2,σ (Q̃)

" C
1
σ

‖ũ eσϕ‖2
H 2,σ (Q̃)

.

Finally,
1
σ

‖u eσϕ‖2
H 2,σ (Q̃)

" C
(
‖S eσϕ‖2

L2(Q̃)
+ ‖u eσϕ‖2

H 1,σ (Q̃)
+ ‖v eσϕ‖2

H 1,σ (Q̃)
+ ‖u eσϕ‖2

H 2,σ (5̃)

)
.

Thanks to the Carleman weights, we absorb the second term of the right-hand side on the
left-hand side. We do the same work for v and w but using the second Carleman inequality of
lemma 7 in order to obtain

σ‖v eσϕ‖2
H 1,σ (Q̃)

" C
(
‖(∇ · S) eσϕ‖2

L2(Q̃)
+ ‖u eσϕ‖2

H 1,σ (Q̃)
+ ‖w eσϕ‖2

H 1,σ (Q̃)
+ σ‖v eσϕ‖2

H 1,σ (5̃)

)

σ‖w eσϕ‖2
H 1,σ (Q̃)

" C
(
‖(∇ ∧ S) eσϕ‖2

L2(Q̃)
+ ‖u eσϕ‖2

H 1,σ (Q̃)
+ ‖v eσϕ‖2

H 1,σ (Q̃)
+ σ‖w eσϕ‖2

H 1,σ (5̃)

)
.

Hence,

σ‖v eσϕ‖2
H 1,σ (Q̃)

" C
(
‖(∇S) eσϕ‖2

L2(Q̃)
+ ‖u eσϕ‖2

H 1,σ (Q̃)
+ ‖w eσϕ‖2

H 1,σ (5̃)
+ σ‖v eσϕ‖2

H 1,σ (5̃)

)
.

Finally,

1
σ

‖u eσϕ‖2
H 2,σ (Q̃)

" C

(
‖Qu eσϕ‖2

L2(Q̃)
+

1
σ

‖(∇Qu) eσϕ‖2
L2(Q̃)

+
1
σ

‖u eσϕ‖2
H 1,σ (Q̃)

+ ‖u eσϕ‖2
H 2,σ (5̃)

)
.
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Ω

4η
x(0)

2η

Γ

Figure 10. Definition of x(0) and η.

And thanks to the Carleman weights, we absorb the third term of the right-hand side in the
left-hand side to obtain the result

1
σ

‖u eσϕ‖2
H 2,σ (Q̃)

" C
(
‖Qu eσϕ‖2

H 1(Q̃)
+ ‖u eσϕ‖2

H 2,σ (5̃)

)

and this concludes the proof of theorem 4.

4.3. Obtain local estimations

We are now going to apply the Carleman estimate we proved in theorem 4 to the function uγ .

To ensure that its support is in a compact set of ! ×
(
− T

2 , 5T
2

)
× (−3η, 3η), we multiply it

by a cut-off function. A good choice of this cut-off function leads to two local estimations.
Summing these estimations, we obtain the desired interpolation result. This work is inspired
from [23] which uses some results of [24] but note that we have here an additional variable.

4.4. First estimation

Let $ ⊂ ∂! be arbitrarily small. We begin by estimating uγ in a ball, which is close to $. Let
us choose 0 < η < ε and x(0) ∈ R3\! such that

B(x(0), η) ∩ ! = ∅, B(x(0), 2η) ∩ ! "= ∅, B(x(0), 4η) ∩ ∂! ⊂ $.

Figure 10 illustrates this construction. We define then

ψ(0)(x, t, r) = |x − x(0)|2 +
η2

T 2

(
t +

T

2

)2

+ r2, ∀(x, t, r) ∈ Q̃,

and we set

ϕ(0)(x, t, r) = e− ξ

η2 ψ
(0)(x,t,r)

, ∀(x, t, r) ∈ Q̃.

As in figure 11, we introduce the cut-off function χ4 ∈ C∞
0 (R) such that

χ4(z) =
{

0, if z < 1
2 , z > 8,

1, if 3
4 < z < 7,

and we set

u∗
γ (x, t, r) = χ4

(
ψ(0)

η2

)
uγ (x, t, r), ∀(x, t, r) ∈ Q̃.
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1

87 z0 3

4

1

2

χ4

Figure 11. Definition of the cut-off function χ4.

Here, u∗
γ has a compact support in ! ×

(
− T

2 , 5T
2

)
× (−3η, 3η) since

ψ(0)(x, t,±3η) > 10η2 ,⇒ u∗
γ (x, t, r) = 0 if |r| ! 3η,

ψ(0)

(
x,

5T

2
, r

)
> 10η2 ,⇒ u∗

γ (x, t, r) = 0 if t ! 5T

2
,

and

uγ (x, t, r) = 0 if t < −T

2
+

3η
2

.

Therefore, we can apply the Carleman estimate we showed in theorem 4 to this function:

1
σ

∥∥u∗
γ eσϕ

(0)∥∥2
H 2,σ (Q̃)

" C
(∥∥(Qu∗

γ ) eσϕ
(0)∥∥2

H 1(Q̃)
+
∥∥u∗

γ eσϕ
(0)∥∥2

H 2,σ (5̃)

)
.

The last norm is actually in $̃ = $ ×
(
− T

2 , 5T
2

)
× (−3η, 3η) ⊂ 5̃. Indeed, we supposed

B(x(0), 4η) ∩ ∂! ⊂ $; therefore, if x ∈ ∂!\$, then u∗
γ (x, t, r) = 0. In addition,

∀(x, t, r) ∈ Q̃,

Qu∗
γ (x, t, r) = χ4

(
ψ(0)

η2

)
Quγ (x, t, r) +

[
Q, χ4

(
ψ(0)

η2

)]
uγ (x, t, r)

= χ4

(
ψ(0)

η2

)
(Fγ (x, t, r) + Gγ (x, t, r)) +

[
Q, χ4

(
ψ(0)

η2

)]
uγ (x, t, r)

= χ4

(
ψ(0)

η2

)
Fγ (x, t, r) +

[
Q, χ4

(
ψ(0)

η2

)]
uγ (x, t, r),

since we saw in (25) that Gγ (x, t, r) = 0, ∀x ∈ !\!(3ε). And here, χ4
(
ψ(0)

η2

)
is different

from zero if |x − x(0)|2 " 8η2, thus, in particular, if |x − x(0)| " 3η < 3ε. Then, we can write

1
σ

∥∥u∗
γ eσϕ

(0)∥∥2
H 2,σ (Q̃)

" C
(∥∥(Qu∗

γ ) eσϕ
(0)∥∥2

H 1(Q̃)
+
∥∥u∗

γ eσϕ
(0)∥∥2

H 2,σ ($̃)

)

,⇒ 1
σ

e2σe−6ξ ‖uγ ‖2
H 2,σ ({η2!ψ(0)!6η2}∩Q̃)

" C
(
σ 2 e2σe−7ξ ‖uγ ‖2

H 2(Q̃)
+ σ 2 e2σe− ξ

2 ‖Fγ ‖2
H 1(Q̃)

+ σ 4 e2σe− ξ
2 ‖uγ ‖2

H 2($̃)

)
.
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2η

x(0)

Γ

Ω

B(x(1), ρ)

Figure 12. Definition of x(1) and ρ.

As illustrated in figure 12, we choose then ρ and x(1) such that

dist(x(1), ∂!) ! 4ρ, B̃1 = B(x(1), ρ) ×
(

−T

2
,
T

2

)
× (−ρ, ρ) ⊂ {η2 " ψ(0) " 6η2}.

This choice is valid since, in B̃1, we have

ψ(0)(x, t, r) " |x − x(1)|2 + |x(1) − x(0)|2 +
η2

T 2

(
t +

T

2

)2

+ r2

" ρ2 + |x(1) − x(0)|2 + η2 + ρ2

and since B(x(0), 2η) ∩! "= ∅, we can choose x(1) such that |x(1) − x(0)|2 < 4η2 and 4ρ " η

so that ψ(0)(x, t, r) " 6η2. Then, if σ is sufficiently large, we have

‖uγ ‖2
H 2(B̃1)

" C e−C1σ‖uγ ‖2
H 2(Q̃)

+ C eC2σ
(
‖Fγ ‖2

H 1(Q̃)
+ ‖uγ ‖2

H 2($̃)

)
.

We minimize this with respect to σ (cf [24]) to obtain, with ν0 = C2
C1+C2

,

‖uγ ‖H 2(B̃1)
" C(‖uγ ‖H 2(Q̃))

1−ν0(‖Fγ ‖H 1(Q̃) + ‖uγ ‖H 2($̃))
ν0 . (31)

4.5. Second estimation

Now, we extend the estimation in B(x(1), ρ) into !(ε)\!(2ε). Let B(x(j), ρ), 2 " j " N,

be a cover of !(ε)\!(2ε). We suppose that x(j) is such that for 2 " j " N ,

dist(x(j), ∂!) ! 4ρ and B(x(j+1), ρ) ⊂ B(x(j), 2ρ).

We introduce

B̃j = B(x(j), ρ) ×
(

−T

2
,
T

2

)
× (−ρ, ρ).

This construction is illustrated in figure 13. We define

ψ(j)(x, t, r) = |x − x(j)|2 +
ρ2

T 2

(
t +

T

2

)2

+ r2, ∀(x, t, r) ∈ Q̃,

and

ϕ(j)(x, t, r) = e− ξ

ρ2 ψ
(j)(x,t,r)

, ∀(x, t, r) ∈ Q̃.
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ε
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x(0)

2η
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Ω(ε)\ Ω(2ε)

B(x(j), 2ρ)

B(x(j+1), ρ)
B(x(j), ρ)

Figure 13. Definition of the balls B(x(j), ρ).

We set

u∗
γ (x, t, r) = χ4

(
ψ(j)

ρ2

)
uγ (x, t, r), ∀(x, t, r) ∈ Q̃,

to which we apply theorem 4, without the boundary term, since the support of u∗
γ is an interior

domain:
1
σ

∥∥u∗
γ eσϕ

(j)∥∥2
H 2,σ (Q̃)

" C
∥∥(Qu∗

γ ) eσϕ
(j)∥∥2

H 1(Q̃)
.

In addition, ∀(x, t, r) ∈ Q̃,

Qu∗
γ (x, t, r) = χ4

(
ψ(j)

ρ2

)
Fγ (x, t, r) +

[
Q, χ4

(
ψ(j)

ρ2

)]
uγ (x, t, r).

Thus, we have
C

σ
e2σe−6ξ ‖uγ ‖2

H 2,σ ({ρ2!ψ(j)!6ρ2}∩Q̃)
" σ 2 e2σe− ξ

2 ‖uγ ‖2
H 2(ψ(j)!ρ2)

+ σ 2 e2σe−7ξ ‖uγ ‖2
H 2(ψ(j)!8ρ2) + σ 2 e2σe− ξ

2 ‖Fγ ‖2
H 1(Q̃)

,

and, if we choose σ large, we can write

e2σe−6ξ ‖uγ ‖2
H 2,σ ({ψ(j)!6ρ2}∩Q̃)

" C e2σe− ξ
3 ‖uγ ‖2

H 2(ψ(j)!ρ2)

+ C e2σe− 13ξ
2 ‖uγ ‖2

H 2(ψ(j)!8ρ2) + C e2σe− ξ
3 ‖Fγ ‖2

H 1(Q̃)
.

This allows us to conclude that

‖uγ ‖2
H 2(B̃j+1)

" CeC3σ
(
‖uγ ‖2

H 2(B̃j )
+ ‖Fγ ‖2

H 1(Q̃)

)
+ Ce−C4σ‖uγ ‖2

H 2(Q̃)
,

since B̃j+1 ⊂ {ψ(j) " 6ρ2} and {ψ(j) " ρ2} ⊂ B̃j . We minimize this with respect to σ to
obtain, with ν1 = C4

C3+C4
,

‖uγ ‖H 2(B̃j+1)
" C(‖uγ ‖H 2(Q̃))

1−ν1
(
‖Fγ ‖H 1(Q̃) + ‖uγ ‖H 2(B̃j )

)ν1 .

We use then the recurrence result of the following lemma.

Lemma 8 (Lemma 4 in [29]). Let αj > 0 satisfying, for all j ! 0,

αj " B1−ν(αj−1 + A)ν and αj " B

where A > 0, B > 0 and ν ∈ ]0, 1[. Then, for all µ ∈ ]0, νN [, we have

αN " 21/(1−ν)B1−µ(α0 + A)µ.
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Here,

αj = ‖uγ ‖H 2(B̃j+1)
, A = ‖Fγ ‖H 1(Q̃), B = ‖uγ ‖2

H 2(Q̃)
.

Therefore, we obtain

‖uγ ‖H 2(B̃n)
" C(‖uγ ‖H 2(Q̃))

1−ν
(
‖Fγ ‖H 1(Q̃) + ‖uγ ‖H 2(B̃1)

)ν
.

We apply the Young inequality and we obtain

‖uγ ‖H 2(B̃n)
" εq‖uγ ‖H 2(Q̃) + ε−q ′ (‖Fγ ‖H 1(Q̃) + ‖uγ ‖H 2(B̃1)

)
,

where q = 1
1−ν

and q ′ = 1
ν
. We use the estimations (26) and (27) on Fγ and uγ to write

‖uγ ‖H 2(B̃n)
" εq eMγ ‖u∗‖H 2(!×(0,3T )) + ε−q ′ (

e−mγT ‖u∗‖H 2(!×(0,3T )) + ‖uγ ‖H 2(B̃1)

)
.

We choose then ε = e−2Mγ/q , so that

‖uγ ‖H 2(B̃n)
" e−Mγ ‖u∗‖H 2(!×(0,3T )) + e−(mT −2M q′

q
)γ ‖u∗‖H 2(!×(0,3T )) + e2Mγ q′

q ‖uγ ‖H 2(B̃1)
.

If we fix T > Tn with

mTn − 2M
q ′

q
= M,

we obtain, with κ = 2Mγ q ′

q
,

‖uγ ‖H 2(B̃n)
" e−Mγ ‖u∗‖H 2(!×(0,3T )) + eκγ ‖uγ ‖H 2(B̃1)

.

We can do the same work on the first estimation (31), the one in B̃1. We apply the Young
inequality and the estimations (26) and (27) to obtain

‖uγ ‖H 2(B̃1)
" εq0 eMγ ‖u∗‖H 2(!×(0,3T )) + ε−q ′

0(e−mγT ‖u∗‖H 2(!×(0,3T )) + ‖uγ ‖H 2($̃))

where q0 = 1
1−ν0

and q ′
0 = 1

ν0
. We choose then ε = e−(2M+κ)γ /q0 , so that

‖uγ ‖H 2(B̃1)
" e−(M+κ)γ ‖u∗‖H 2(!×(0,3T ))

+ e−(mT −(2M+κ)
q′

0
q0

)γ ‖u∗‖H 2(!×(0,3T )) + e(2M+κ)γ
q′

0
q0 ‖uγ ‖H 2($̃).

If we fix T > T0 with

mT0 − (2M + κ)
q ′

0

q0
= M + κ,

we obtain

‖uγ ‖H 2(B̃1)
" e−(M+κ)γ ‖u∗‖H 2(!×(0,3T )) + eCγ ‖uγ ‖H 2($̃).

And then we regroup the two estimations in

‖uγ ‖H 2(B̃n)
" e−Mγ ‖u∗‖H 2(!×(0,3T )) + eCγ ‖u∗‖2

H 2($×(0,3T )).

Finally, we take T > maxn Tn and we sum the inequalities to obtain

‖uγ ‖2
H 2(!(ε)\!(2ε)×(− T

2 , T
2 )×(−ρ,ρ))

" e−Cγ ‖u∗‖2
H 2(!×(0,3T )) + eCγ ‖u∗‖2

H 2($×(0,3T )).

We can now go back to the variable u in the estimations.
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4.6. Return to the variable u

We introduce the new variable

wγ (x, t) = uγ (x, t, r = 0) =
√

γ

2π

∫ ∞

0
e− γ

2 (t−y)2
θ(t − y)u∗(x, y) dy

= (Kγ ∗ u∗)(x, t), ∀(x, t) ∈ ! × R,

with

Kγ (t) =
√

γ

2π
e− γ

2 t2
θ(t), ∀t ∈ R.

We see that wγ converges to u∗ when γ tends to infinity. We have

‖wγ ‖2
H 2(!(ε)\!(2ε)×(0, T

2 −ρ))
" C‖uγ ‖2

H 2(!(ε)\!(2ε)×(− T
2 , T

2 )×(−ρ,ρ))

" e−Cγ ‖u∗‖2
H 2(!×(0,3T )) + eCγ ‖u∗‖2

H 2($×(0,3T )).

Indeed, the Cauchy formula states that, for 0 < d < ρ, we have

wγ (x, a) = 1
2iπ

∫

|w−a|=d

wγ (x,w)

w − a
dw,

which, using the polar coordinates, implies that

|wγ (x, a)|2 " C

∫ 2π

0
|wγ (x, a + d eiθ )|2 dθ.

We integrate the above then, for 0 < d < ρ, into

|wγ (x, a)|2 " C

ρ

∫ ρ

0

∫ 2π

0
|wγ (x, a + d eiθ )|2 dθ dρ,

so that we can write

|wγ (x, a)|2 " C

∫ ρ

−ρ

∫

|t−a|!ρ

|wγ (x, t + ir)|2 dt dr

= C

∫ ρ

−ρ

∫

|t−a|!ρ

|uγ (x, t, r)|2 dt dr,

according to the definition of wγ . Then, we integrate for x ∈ !(ε)\!(2ε):

‖wγ (·, a)‖2
L2(!(ε)\!(2ε)) " C

∫ ρ

−ρ

∫

|t−a|!ρ

‖uγ (·, t, r)‖2
L2(!(ε,2ε)) dt dr

" C‖uγ ‖2
L2(!(ε,2ε)×(− T

2 , T
2 )×(−ρ,ρ))

.

We integrate for a ∈
(
0, T

2 − ρ
)
:

‖wγ ‖2
L2(!(ε)\!(2ε)×(0, T

2 −ρ))
" C‖uγ ‖2

L2(!(ε,2ε)×(− T
2 , T

2 )×(−ρ,ρ))

and we do the same for the derivatives of wγ . We can now come back to u∗ (and u) using the
classical Fourier transform (noted with a big hat symbol) because we note that

wγ (x, t) = (Kγ ∗ u∗)(x, t) ,⇒ ŵγ (x, τ ) = K̂γ (τ )û∗(x, τ ),

where

K̂γ (τ ) =
√

γ

2π

∫ +∞

−∞
e−iτ te− γ

2 t2
θ(t) dt

=
√

γ

2π

∫ +∞

−∞
e−iτ te− γ

2 t2
dt +

√
γ

2π

∫ +∞

−∞
e−iτ te− γ

2 t2
(θ(t) − 1) dt.

31



Inverse Problems 26 (2010) 095006 M de Buhan and A Osses

We have√
γ

2π

∫ +∞

−∞
e−iτ te− γ

2 t2
dt =

√
γ

2π

∫ +∞

−∞
e−(

√
γ
2 t+

√
1

2γ iτ)2

e− τ2
2γ dt

= 1√
π

e− τ2
2γ

∫ +∞

−∞
e−z2

dz = e− τ2
2γ .

Hence,

K̂γ (τ ) = e− τ2
2γ +

√
γ

2π

∫ − T
2 +3η

−∞
e−iτ te− γ

2 t2
(θ(t) − 1) dt.

Therefore, we have

|(1 − K̂γ )(τ )| "
∣∣1 − e− τ2

2γ
∣∣ +

√
γ

2π

∫ − T
2 +3η

−∞
|e−iτ te− γ

2 t2 ||θ(t) − 1| dt

" τ 2

2γ
+
√

γ

2π

∫ − T
2 +3η

−∞
e− γ

2 t2
dt,

where we used for the first term the fact that the function 1−e−t2

t2 is bounded in R. We win one
order of convergence since we have 1

γ
and no 1√

γ
as in [14]. Then, we can introduce in the

second term the change of variable z = e− γ
2 t2

, that is t =
√

− 2
γ

ln(z), and dz = −γ t e− γ
2 t2

dt ,
and so we have

√
γ

2π

∫ − T
2 +3η

−∞
e− γ

2 t2
dt " 1

2
√
π

∫ e
− γ

2

(
− T

2 +3η

)2

0

dz√
− ln(z)

" 1
2
√
π

e− γ
2 (− T

2 +3η)2

√
γ
2 (− T

2 + 3η)2
" C

γ
.

Then,

‖u∗ − wγ ‖2
L2(!(ε)\!(2ε)×(0, T

2 −ρ))
" ‖u∗ − wγ ‖2

L2(!×R) = ‖ ̂u∗ − wγ ‖2
L2(!×R)

"
∫

!

∫ +∞

−∞

∣∣∣∣
τ 2 + C

γ

∣∣∣∣
2

|û∗(x, τ )|2 dτ

" C

γ 2

∫

!

∫ +∞

−∞
(|û∗(x, τ )|2 + |∂̂2

t u∗(x, τ )|2) dτ " C

γ 2
‖û∗‖2

H 2(!×R).

Finally, if we suppose that u∗ is prolonged by zero outside (0, 3T ), we have

‖u∗ − wγ ‖L2(!(ε)\!(2ε)×(0, T
2 −ρ)) " C

γ
‖u∗‖H 2(!×(0,3T )).

Thus,

‖u∗‖H 2(!(ε)\!(2ε)×(0, T
2 −ρ))

" C
(
‖u∗ − wγ ‖H 2(!(ε)\!(2ε)×(0, T

2 −ρ)) + ‖wγ ‖H 2(!(ε)\!(2ε)×(0, T
2 −ρ))

)

" C

γ
‖u∗‖H 4(!×(0,3T )) + C‖wγ ‖H 2(!(ε)\!(2ε)×(0, T

2 −ρ)).

Coming back to u and taking into account that u∗(x, t) = χ3(x)u(x, t), so that u = u∗ in
!(ε)\!(2ε), we have

‖u‖H 2(!(ε)\!(2ε)×(0, T
2 −ρ)) " C

γ
‖u‖H 4(!×(0,3T )) + eCγ ‖u‖H 2($×(0,3T )).
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We use the fact that ‖u‖H 4(!×(0,3T )) is bounded and that

‖u‖2
H 2($×(0,3T )) =

2∑

|α|=1

∥∥∂αx u
∥∥2

L2($×(0,3T ))
,

since û and its time derivatives vanish on $ to write

‖u‖2
H 2(!(ε)\!(2ε)×(0, T

2 −ρ))
" C5

γ 2
+ eC6γ

2∑

|α|=1

∥∥∂αx u
∥∥2

L2($×(0,3T ))
.

Then, we choose γ such that the first term dominates the second. We can for example choose

γ = 1
2C6

log



2 +
C5

∑2
|α|=1

∥∥∂αx u
∥∥2

L2($×(0,3T ))



 .

We achieve the proof of theorem 3.

5. Numerical results

To illustrate the theoretical result (12), we present here one numerical example in 2D, even if
the result is also valid in 3D. The numerical resolution that we propose leads to recover the
values of the unknown coefficient p at each vertex of the discretized domain. Since the linear
viscoelastic system (1) is a simplified model for the mechanical behavior of brain structures
[30], we could use the method to retrieve the localization of a brain tumor. However, this
example can be considered as an academic test case, sufficient to emphasize the motivation of
the study, to illustrate the stability result and to propose an efficient numerical method.

5.1. Direct problem

We consider now the system (1)–(3), in two dimensions, with the following coefficients:

• µ(x) = λ(x) = 1200, h(t) = e−t/τ with τ = 1, λ̃(x, t) = 400 h(t),

• p̄(x) =
{

400, in the healthy tissue,
>400, in the tumor (cf figure 14),

• f (x, t) = 0, ū1(x) = 0 and ū0 is the solution of the stationary problem associated with
(1):
{
−∇ ·

(
µ(x)(∇ū0(x) + ∇ū0(x)T ) + λ(x)(∇ · ū0)(x)I

)
= 1, ∀x ∈ !,

u0(x) = 0, ∀x ∈ ∂!.

When dealing with a real experiment, it is difficult to ensure that the initial data ū0 satisfy
hypothesis (H5). In practice, the recuperation is carry out with ū0 "= 0. Moreover, we assume
that p̄ is known in the boundary of !. This hypothesis, less restrictive than hypothesis (H3),
is more likely to be acknowledged because experimental measurements of the coefficient on
the boundary may be possible.

We can solve numerically the direct problem (1)–(3) by discretizing the equations

• in space using P1 Lagrange finite elements in the mesh shown in figure 14,
• in time using a θ -scheme with θ = 0.5 (implicit centered scheme) and δt = 1,
• by using the trapezium formula for the integral term.
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Figure 14. Unknown coefficient p̄ (on the left), computational mesh and initial data ū0 (in the
center), observation zone ω (on the right).

The time of observation is taken equal to T = 50 whereas the observation zone ω is the
one shown in figure 14. A uniform relative error of 2% corresponding to the experimental
error is added to the solution, i.e. the observed displacement measured experimentally uobs is
obtained by the formula

uobs(x, t) = (1 + r 0.02)ū(x, t), ∀(x, t) ∈ ω × (0, T ),

where r is a constant in [−1, 1], randomly chosen (according to a uniform distribution law) at
each discretization point in the domain ω × (0; T ).

5.2. Inverse problem

We are looking for the minimizer of the non-quadratic functional

J (p) = 1
2

∫ T

0

∫

ω

(
|u − uobs|2 + |∇(u − uobs)|2

)
dx dt,

with u = M(p), M being the nonlinear operator from P to U associated with the system
(1)–(3). In general, uobs "∈ M(P ). Note that adding a Tikhonov regularizing term to J does
not numerically help in this case since we will filter high frequencies when choosing the
parameter space for p (see section 5.4). We solve the minimization problem by a Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [31]. Thus, we calculate

∇J (p, δp) = lim
ε→0

1
ε

(J (p + εδp) − J (p))

=
∫ T

0

∫

ω

Mpδp · ((u − uobs) − 0(u − uobs)) dx dt,

with Mp being the linearized operator of M around p; i.e. Mpδp = δu satisfies





Pδu(x, t) = −
∫ t

0 ∇ · (δp(x)h(t − s)(∇u(x, s) + ∇u(x, s)T )) ds,

δu(x, 0) = 0, ∀x ∈ !,

∂tδu(x, 0) = 0, ∀x ∈ !,

δu(x, t) = 0, ∀(x, t) ∈ ∂! × (0, T ).

(32)

We introduce the adjoint operator P∗ of (2)

P∗v(x, t) = ∂2
t v(x, t) − ∇ · (µ(x)(∇v(x, t) + ∇v(x, t)T ) + λ(x)(∇ · v(x, t))I )

+
∫ T

t

∇ · (p(x)h(s − t)(∇v(x, s) + ∇v(x, s)T ) + λ̃(x, s − t)(∇ · v)(x, s)I ) ds,

34



Inverse Problems 26 (2010) 095006 M de Buhan and A Osses

and we define δu∗, the solution of




P∗δu∗(x, t) =
{
(u − uobs)(x, t) − 0(u − uobs)(x, t), ∀x ∈ ω,

0, ∀x ∈ (!\ω),

δu∗(x, T ) = 0, ∀x ∈ !,

∂tδu
∗(x, T ) = 0, ∀x ∈ !,

δu∗(x, t) = 0, ∀(x, t) ∈ ∂! × (0, T ).

Therefore, we can write

∇J (p, δp) =
∫ T

0

∫

!

δu(x, t) · P∗δu∗(x, t) dx dt =
∫ T

0

∫

!

Pδu(x, t) · δu∗(x, t) dx dt

=
∫

!

δp(x)

(∫ T

0

∫ t

0
h(t − s)(∇u(x, s) + ∇u(x, s)T ) : ∇δu∗(x, t) ds dt

)
dx.

5.3. Regularization method

We denote by p∗ the numerical parameter and by p̄ the exact parameter, and we suppose p∗

close to p̄. We can write
‖p∗ − p̄‖P =

∥∥M−1
p̄ (Mp̄p∗ − ū)

∥∥
P

"
∥∥M−1

p̄

∥∥‖Mp̄p∗ − ū‖U .

If Mp̄, linear from P (of infinite dimension) to U, is compact for ‖ · ‖P and ‖ · ‖U , then its
inverse M−1

p̄ is not bounded. So, even if we find p∗ such that Mp̄p∗ is close to ū, we cannot
guarantee that p∗ will be close to p̄. Thus, as a regularization method [26], we introduce the
operator

RK = ;KM−1
p̄ ,

where ;K is the projection of P to a finite-dimensional space PK. This operator RK is bounded
in U and verifies

RK −→ M−1
p̄ if K → +∞,

and we now look for p∗ ∈ PK .

5.4. Mesh and basis adaptation

We choose to look for the unknown coefficient p∗ in the space PK of the K first eigenfunctions
of the mesh, that is

PK =
{

p ∈ P, p = p̄|∂! +
K∑

i=1

piϕi

}

,

where p̄|∂! is a raising of the trace of the exact value of p (which is known as we assumed p̄

known in ω) and{
−0ϕi(x) = σiϕi(x), ∀x ∈ !,

ϕi(x) = 0, ∀x ∈ ∂!.

We propose an adaptive method to solve the problem accurately. After computing a first
solution p∗

0 on the initial mesh, we use it to refine the mesh and to adapt the spectral basis.
Indeed, we consider next as basis functions the solutions of the following problem:{

−∇ · (a(x)∇ϕi(x)) = σiϕi(x), ∀x ∈ !,

ϕi(x) = 0, ∀x ∈ ∂!,

with

a(x) = 1
∇p∗

0(x)
.

The initial and adapted meshes and basis functions are shown in figures 15 and 16.

35



Inverse Problems 26 (2010) 095006 M de Buhan and A Osses

Figure 15. Initial mesh (left), initial basis functions no1, no2 and no5 (right).

Figure 16. Adapted mesh (left), adapted basis functions no1, no2 and no5 (right).
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Figure 17. Relative error for the coefficient p in L2-norm with respect to K.

5.5. The results

We solve the inverse problem by the method introduced in sections 5.2–5.4. In figure 17,
we plot the relative error between p∗ and p̄ in L2-norm with respect to the number K of
eigenfunctions in the basis and for different steps of the iterative process. In figure 18, we
show the exact coefficient and the numerical result we obtain at different steps.
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Figure 18. Exact coefficient p̄ (on the left), recovered coefficient p∗ at step 0 with K0 = 50 and
K0 = 100 (in the center), recovered coefficient p∗ at step 2 with K0 = K1 = K2 = 50 (on the
right).

5.6. Perspectives

Note that we only try to recover the coefficient p̄, assuming that all the other coefficients are
known. Indeed, the aim of this example is to illustrate the main result of the paper, which
is the theoretical stability for recovering the spatial part of only one viscoelastic coefficient
from only one measurement. The other objective of this example is to show the interesting
choice we can do for the spectral basis in an adaptive way. To recover simultaneously all
the coefficients, there are various methods (see [32]). One method consists in adding to the
minimal criteria more parameters, but this could be unstable if only a single observation is
available, so we would need more independent observations. Another method consists in
using an iterative procedure fixing all coefficients except one at each step. In both cases, we
should start in a neighborhood of the real coefficients and play with noise levels. All this deep
analysis of the numerical simulations is of course very relevant but it is out of the scope of
the present publication. We are preparing a forthcoming publication that will include these
numerical issues and more details about the choice of the spectral adaptive basis.
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