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0 Introduction 

0.1. In this article, we study the problem (sometimes called the Berger-Nirenberg 
problem) of prescribing the curvature on a Riemann surface (that is on an oriented 
surface equipped with a conformal class of Riemannian metrics). In the compact case, 
the theory is well understood, and can be found in [KW1]. 

Here, we are interested in non compact surfaces. As a byproduct of the results of 
this paper, we shall prove that, on any connected non compact Riemann surface of 
finite type, different from C or C*, there is no obstruction to construct a conformal 
metric with prescribed curvature (see A.1). However, the metric given by this result 
is usually not complete. 

Even if we restrict ourselves to complete metrics, the problem of prescribing the 
curvature may have a continuum of solutions, with variable asymptotic geometries 
(see the example in [HT]). 

Thus we are lead to study complete metrics, keeping control on their asymptotic 
geometries. We propose two precise formulations for the problem of prescribing the 
curvature on open Riemann surfaces (see 0.3). The first will be the natural one for 
surfaces with finite total curvature, while the second will deal with surfaces having 
hyperbolic ends. 

An announcement of this work has appeared in [HT]. 

0.2. In order to formulate our first problem, we need to discuss the structure of 
complete surfaces with finite total curvature. Thanks to the work of Alfred Huber, 
these surfaces are known to have a natural compactification. 

Theorem (Huber). A complete Riemannian sulface (S ~, g') with finite total culwature 
is isometric to the regular part of  a compact Riemannian surface (S, 9) with finitely 
many singular points Pi E S (i = 1, . . .  , n), each admitting a neighbourhood Ui 
isometric to the disk D = {z E C: Izl < 1} equipped with the metric 

ds 2 = e2",lzl=~ldzl 2 ' 
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where, for  i = 1, . . .  , n, t3~ <__ - 1, and the functions ui are "sufficiently regular" 
(see 2.1). 

Furthermore, for such surfaces a Gauss-Bonnet formula holds: 

1 f K'dA'= 1 f - -  z 27r ~ K d A  x (S )  + /3i . 
S t S i=1  

This theorem allows us to shift our attention from non compact complete surfaces 
(with finite total curvature) to compact Riemannian surfaces with isolated singularities. 

We shall say that, on a surface S, a metric g having at n points Pi (i = 1, . . .  , n) 
a singularity of the type e 2uilz1213i [dzl 2 (with ui "sufficiently regular") represents the 

divisor [I := ~ /3ipi. 
i=1  

0.3. Huber's theorem suggests to formulate the problem of prescribing the curvature 
on non compact Riemann surfaces with finite total curvature as follows. 

Problem 1. Let S be a surface of finite type with a conformal structure, equipped 

with a divisor [I := ~ /~iPi. For a given function K :  S ---, R, find a conformal metric 
i=1  

9 on S representing I~ and having curvature K.  

Our answer to this problem (see 6.1, 7.1, 7.2, and 8.1) can be expressed in a form 
very similar to the classical results available for compact surfaces. For that purpose, 
it will be convenient to define the Euler characteristic of a surface with divisor (S, [i) 

as x(S ,  [1) = x (S )  + ~ /3i. We then have: 
i=1  

Theorem A. Let (S,[i) be a compact connected Riemann surface with divisor 

= ~ fliPi, and let K : S  ~ R be a smooth function. Assume that there exists a 
i=1  

number p > 1 such that, at every Pi, (Iz - P i l 2 ~ K ( z ) )  E L p. Furthermore." 

(a) if x (S ,  ~t) > O, a s s u m e q x ( S , [ l ) < 2 a n d s u p K > O ( w h e r e  P-l+l-q = 1 ) ;  

(b) if x(S,[I) = 0, assume K =- 0 or s u p K  > 0 and f KdA1 < 0 (where dA1 is 
S 

the area element of  a flat conformal metric on S representing [l); 
(c) if x (S ,  [~) < O, assume K <= 0 and K ~r O. 
Then, there exists a conformal metric 9 on S with curvature K ,  representing the 

divisor [l. 

The above is well known for smooth compact Riemannian surfaces (cf. [KW1]). 
It is also known in the case of the sphere with one point singularity (cf. [Nil, McO1, 
McO2]) and for surfaces with conical singularities (cf. [T2]). 

However, we might also be interested in surfaces with infinite total curvature, for 
which there is no analog of Huber's theorem. A convenient way to formulate the 
problem is then the following. 

Problem 2. Let (S,91) be a Riemannian surface of finite type. For a given func- 
tion K : S  --~ R, find a metric 9 on S with curvature K,  which is conformal and 
conformally quasi-isometric to 91. 
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We say by definition that two conformal metrics 91 and g = e2Ug 1 are conformally 
quasi-isometric if the function u is bounded (in the sequel, we will shortly say quasi- 
isometric). 

We will see that, for surfaces with finite total curvature, Problem 1 is - in some 
sense - contained in Problem 2 (2.10). 

For negatively curved surfaces, we are - under suitable assumptions - able to solve 
Problem 2. We can for instance prescribe cusps on the surface. 

The o r em B (8.1, 8.4, 2.3). Let (S, 91) be a compact sulface with a (singular) 

metric" 91 representing some divisor [I = ~ /3jqj such that X(S,[I) < O. Set 
j--1 

S '  :=  S \  { ql , . . .  , qn } and let K : S '  --+ R be a smooth non positive function. Assume 
that K is negative somewhere, and that there exist two positive constants a, b > 0 and 
a compact set N c S'  such that 

bK(x )  <= KI (x )  <= a K ( x )  <= 0 for  all x in S ' \ N ,  

where K1 is the curvature o f  gl. 
Then, there exists a unique metric g on S with curvature K which is conformal 

and (conformally) quasi-isometric to gl (in particular, 9 is complete whenever gl is). 
Moreover g also represents [~. 

The theorem holds true even when (S, 9j)  is non compact  but has finitely many 
complete hyperbolic ends. For instance, when the prescribed curvature function is 
negatively pinched at infinity, we have the following: 

T h e o r e m  C (8.2). Let S be a connected open Riemann sulface o f  finite topological 
type, different from C and C*. Let K : 5; ---+ R be a smooth non positive function such 
that 

- b < _ K < _ - a < O  

outside a compact set N C S. 
Then, there exists a unique complete conformal metric 9 on S with curvature K .  

Moreover, each end of  (S, 9) admits a neighbourhood eonformally quasi-isometric to 
the end of  the Beltrami pseudo-sphere when parabolic, and to the end of  the Poincard 
disk when hyperbolic. 

Furthermore, if S has no hyperbolic ends, then a generalized Gauss-Bonnet formula 
holds: l ] 

K d A  = ~((S). 

S 

This result was already known when S is the disk (see [AMcO, BK]). 

0.4. Let us shortly describe the methods we use in this article. The technique used 
to investigate Problems 1 and 2 is by now classical. On our surface S we choose 
a "base" metric 9, in the desired conformal class. We also demand that 91 has a 
given conformal quasi-isometry type, or that 91 represents a specified divisor on a 
compactification S of S. We then look for a metric with curvature K in the form 
9 = eZUgl .  Then, u has to be a solution of the equation 

A l u  = K e  2~' - K ,  , 

where At and K1 are respectively the Laplace-Beltrami operator and the curvature 
of gl. 
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The surprise is that all the hard work (namely solving the above equation) can be 

done on the compact surface S (rather than on the non compact S) and using only 
classical tools (namely, the variational method and the method of upper and lower 
solutions). One has just to be careful, and allow for L p coefficients in the equation. 
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In the first two sections, we discuss Huber 's  results on complete surfaces with 
finite total curvature, and introduce the notion of simple singularities. An important 
example is discussed in (2.2). The result that will serve as foundation for the rest of 
the paper is stated in (2.9). 

An analytic formulation of Problems 1 and 2 and some obstructions are given in 
Sects. 3 and 4. 

The equation to be solved is rapidly studied by means of a variational method in 
Sect. 5 and the results of this section are used in Sects. 6 and 7 to solve Problem 1 
for positive and null surfaces (i.e. when x(S,[~) > 0). 

In Sect. 8, we discuss the negative case. This discussion rests on the method of 
upper and lower solutions, and allows us to solve Problem 2 for negatively curved 
surfaces of finite type (even with hyperbolic ends). 

As explained in Appendix A, there exists a description of the class of functions 
on a non compact surface of finite type which can be prescribed as curvatures if we 
drop the conformality or the completeness requirements (with the exceptions of the 
once or twice punctured sphere). 

In Appendix B, we discuss some relations with uniformization theory. In particular, 
we show how the uniformization theorems for compact simply connected Riemann 
surfaces and for Riemann orbifolds follow from our results. 

For the convenience of the reader, we finally give in Appendix C a self contained 
proof of the "method of upper and lower solutions" for the equation A u  = f (x ,  u) 
on a non compact manifold. Although Ni and Noussair give proofs, their expositions 
are not self contained and require further reading. 

0.6. In this paper, we use standard notations for function spaces L p, w k , p . . ,  as 
in [GT]. Our convention for the sign of the Laplace-Beltrami operator is that 
Ag = (--4/co)02/0z02 when g = oldzl 2 (for instance a smooth function r is subhar- 
monic if ,4r < 0). 

Let us stress that we generally speak about Riemann surfaces though nothing would 
change for non-orientable surfaces with a given conformal structure. We could even 
allow for (piecewise-)geodesic boundaries, as in [T2]. 
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1 Complete surfaces with finite total curvature 

In the whole section, S t will denote a non compact smooth surface, endowed with 
a complete metric g of class C 2. Under the assumption of finite total curvature, we 
obtain precise information concerning the topology of S t, the conformal type of its 
ends, and the asymptotic behaviour of the metric at each end. In distinct terms, the 
following holds: 

1.1. Theorem (Huber). Let (S t, gt) be a non compact, complete Riemannian surface 
of class C 2 with finite total curvature (that is f IK]dZ < ~ .  Then. 

\ sr / 

(i) S I is of finite topological type; 
(ii) each end of (S I, 9 I) is parabolic; 

(iii) in a neighbourhood of each end, the metric can be written as 

9 = e2UlzlZ~3[dz] 2 (0 < [zl =< 1) 

where/3 _~ -1 ,  and 

u E L 1, and Au E L l in a weak sense. ( ,)  

1.2. Remarks. (i) We will show in (1.7) that the function u in (iii) satisfies the nice 
property that e u and e -~' belong to every Lq(1 < q < oc). 

(ii) For a definition of parabolic ends, see Appendix B (B.2). 
(iii) There is a generalization of Theorem 1.1 in higher dimensional K~ihler ge- 

ometry (see [SY, Mok]). 

The above result is actually spread in the literature into three theorems, all of them 
due to Huber. 

1.3. Proposition. Let (S' ,g/) be a complete Riemannian surface such that 
f [K-IdA < oc, where K -  is the negative part of the curvature, and dA is the 
s ~ 
area element of (S I, 91), Then: 

(a) f IKIdA < ~ ,  and S' is homeomorphic to S \ { p l , . . .  , Pn}, where S is a 
s;' 

compact surface and pi (1 = i, . . .  , n) are points in S; 
(b) furthermore, the Cohn-Vossen inequality holds: 

1 f K d A  < X(S').  
27r = 

sr 

Part (a) is due to Huber (cf. [H2, Theorem 10, Theorem 13]), and part (b) to Cohn- 
Vossen. We shall see in (2.9) that the Cohn-Vossen inequality admits a sharp form. 

For a nice proof of this proposition, see [WI, W2]. 
The second step is concerned with the conformal structure of the ends of (S t, g,). 

1.4. Proposition [H2, Theorem 15]. Let (J'2, g) be a complete Riemannian surface of 
class C 2, diffeomorphic to ]0, 1] x S 1, and such that f IK- IdA < c~. Then (Y2, g) is 
parabolic, n 

Karp gave a generalization of this result (see Theorem 3.5 and corollaries in [K]). 
We give a proof of this proposition. This will give the flavour of typical arguments 

used throughout the paper. 
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Proof. We may assume (cf. B.2) that 

/2 -- {z c Czr  < Izl < l} and 9 = e2Uldzl 2 , 

where 0 < r < 1, u C C2(f2), and f I(Au)-[dxdy < oc. Assuming moreover that r 
s 

is strictly positive, we will show that (/2, g) is conformally equivalent to a complete 
euclidean half-cylinder, and this will lead to a contradiction. 

Let d#_ be the measure defined on C by d#_ = (Au) - l s?  dxdy, and u_ be its 
logarithmic potential defined by 

u_(z) = 27  log Iz - Cld#-(r 
c 

Local elliptic regularity implies that u ECL6(/2)  for 0<~5< 1, since zSu_ = ( A u ) -  is 
locally bounded on /2 .  Note also that u_ is subharmonic on C, hence bounded above 
on f2. 

Let v = u - u _  c C1(/2), and h C C2(D) be the solution of the Neumann problem 
on D -- {z e C:lzl  = l )  defined by: 

A h = 0  on D ,  

Oh Ov 
Onn = 3 ' -  Onn on OD, 

1 of D Ov Idzl. where 7 = ~ Onn 

We now introduce the auxiliary metric 

O = e2Wldzl 2 

o n / 2 ,  where w = v + h - (1 + 3`) log [z], and observe the following properties of  ~0: 
(a) (/2,0) is complete: for w - u = h - (1 + 3`)log Izl - u_ is bounded below on 

s) =- {r ~ Izl 5- 1} (recall r > 0), and g = e2Uldzl 2 is complete; 
(b) 0[2 is geodesic in (/2, g): indeed, the geodesic curvature of  0/2 for the metric 

.0 is (o ) 
ko= l + ~ n -  n = ( 1 + 3 ` )  1-b-~loglzl e-w=0 

on 0 /2  = {z  e C : l z l - -  l};  
(c) the curvature of  (/2, g) is non negative: since Aw = Av = (Au) + >= O. 
Now apply the Cohn-Vossen inequality (cf. 1.3.b) to (/2, .q), (this is valid since w, 

although not C 2, may be written as the difference of  two subharmonic functions (see 
[H2, p. 15])). No boundary term comes in, for 0/2 is geodesic, and we get 

o -- x ( { z  ~ C : r  < Izl < 1}) > KodAo, 
g2 

thus (c) implies that 
(d) (/2, g) is flat. 
From (a), (b), (d), we infer that (/2, g) is a complete euclidean half-cylinder with 

geodesic boundary, thus isometric to {z E C : 0  < [z I < 1} equipped with the metric 
Idz/zl 2. And this contradicts our assumption on r. [] 
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The final step is concerned with the metric properties of  the ends of  (S' ,  9')- The 
next proposition describes, for a Riemannian surface admitting a complete parabolic 
end of finite total curvature, the asymptotic behaviour of  the metric at this end. We 
work on the punctured disk Y2 = {z C C : 0  < Iz] =< l}, equipped with a metric 
9 = e2Vldz] 2, where v c C2(y2) and Av  E L 1. The function v is defined, up to an 
harmonic function, by its logarithmic potential; assuming moreover that the metric 9 
is complete at the origin, Huber shows that the singularity of the harmonic term is 
logarithmic. Thus, the following can be thought of  as a "Removabil i ty of  singularities" 
result. 

1.5. Proposi t ion [H4, Satz 1 ]. Let v be a function o f  class C 2 on the punctured disk 
F2 = {z C C : 0  < ]z I =< 1}, andassume  that: 

(i) f IAv ldxdy  < co; 
Y2 

(ii) f o r  any path 7 diverging to the origin, f eVr I = cx). 
"r 

Then, there exis ts /3  E R and a function h which is harmonic in the whole disk 
A = {z C C:]z]  =< 1}, such that 

1/ 
v(z)  = / 3  log Izl + h(z)  - ~ log I z - ~lAv(~)d{d,?.  

1.6. Remarks. (a) The hypothesis (ii) may be weakened to: 
(ii') there exists c~ E R such that, for  any path 7 diverging to the origin, 

f eV<Z>lzl~ldzl = ~ 
7 

(b) This result is stated in the original paper for J'2' = {z C C: tzl => 1} and with 
a singularity at infinity. It reads: 

l /  i v(z)  = g ( z )  + clog Izl - ~ log 1 - Av(~)d{drl ,  

~2r 

with H harmonic up to infinity. Perform the inversion z ~-+ 1 / z  to pass from one 
formulation to the other. 

(c) The "regular part" of v, that is the function u defined by 

u(z)  = h(z)  - 27  log Iz - glAv(C)@drl 

~2 

satisfies: 
u E L I , and Au  C L l in a weak sense. ( . )  

For a proof of  this proposition, we refer to [H4]. We now state two properties of  the 
functions of the type described in (1.5). 

1.7. Proposi t ion.  Let v E C2(J'2) with A v  E L I , and assume that v can be written as 

1/ 
v(z)  = / 3  log Iz[ + h(z)  - ~ log Iz - ~ l A v ( O @ d ~  = / 3  log Izf + u(z) ,  

where h is harmonic on the whole disk. Then: 
(i) in case /3  < - 1 ,  the metric 9 = e2Vldzl 2 on Y2 is complete at the origin; in 

case/3 > - 1 ,  it is not; 
(ii) e u and -u  belong to every Lq(J'2) (1 ~ q < oo). 
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The proof  follows from an idea of  Rechetjnack (cf. JR2, Theorem 3.1]). 

Proof. (i) We first assume that/7 > - 1 ;  since h is bounded, it suffices to show that the 
metric e2~lzl2nldzl 2, where w = u - h is the Riesz potential of Av ,  is not complete 
at the origin. 

Let Av( ( )d (  = d# + § alp- be the decomposit ion of the measure into its positive 
and negative parts, and set 

1 f l o g  Iz  - r162 w• - 27r 
~2 

The function w_ is subharmonic on C, hence bounded above on $2. Now let 3' be 
e.g. the segment [0, 1]. The HSlder inequality yields with 1/79 + 1/q = l:  

l (G/)  < const e~+(~)izl~idz i <__ c o n s t  e~+(:)ta~ �9 IzlP~laz 
3" 

The second integral on the right-hand side is finite for pfl > - 1  when q is large 
enough. The first integral is obviously finite if  Aw + =-- 0. Otherwise set M = f dp +, 
and use Jensen's  inequality as follows: s~ 

i S [-qMSl~ eq~'+(Z)ldzl < exp ~ i 

3" 3" 

Working in a smaller disk if  necessary, we may assume -qM/2~r > - 1 ,  and the 
integral on the fight is finite. Hence, the length of  ~, is finite, and g is not complete. 
Assuming now ~ < - 1 ,  we can choose 1 < p < o~ such that ~/p  < - 1 ,  and write 
for any segment 7 diverging to the origin: 

oo = S lzlnl'ldzl = S Izlni~ewlPe-~lPldzl 
3" 3' 

(s )"(s ),q < Izfne~~ I c-q~<z)/pldz I 

The conclusion follows by using the same trick as above. 
(ii) Since u ---- h q- w_ + w+, with h and w_ bounded above, it suffices to show 

that e w+ belongs to every Lq(1 __< q < oo). Once again, write: 

e qw+(z) = exp - - ~  - -  , 

and use Jensen's  inequality, working in a smaller disk if  necessary to make 
-qM/2rr  > - 2 :  thus e u belongs to Lq. The same argument shows also that e - u  
belongs to every Lq(1 ~ q < oc). [] 
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In view of  these results, we are now interested in compact manifolds, equipped with 
metrics which have finitely many "mild" singularities (that is of  the type described 
in (1.1.iii)). These will be the object of  the next section. 

2 Compact Riemann surfaces with divisor 
A Gauss-Bonnet formula 

In what follows, S will denote a compact (Riemann) surface. The metrics we will 
consider on S are "smooth", that is C 2, outside a finite set. 

2.1. Definition. A (conformal) metric g on S admits a simple singularity of order t3 
at p E S if it can be locally written as 

g = e 2 ~ l z l 2 ~ l d z l 2  

with 

u c L  1, and A u E L  1 (in a weak sense), ( . )  

where z is a local (conformal) coordinate such that z(p) = 0. Note that this definition 
does not depend on the particular choice of  z, and recall that e '~ and e -~ belong then 
to every Lq(1 =< q < oo) (see 1.7). 

A simple singularity of  order/3 is said to be: 
(i) a conical singularity (with total angle 0 ----- 27r(/3 + 1)) when/3 > - 1 ;  

(ii) a parabolic end of order/3, when/3 < - 1. 
Recall that in the second case, the metric is complete at p, but not in the first one 

(cf. 1.7). 
The order/3 of the singularity at p describes "first order" properties of  the metric 

(that is provides a best conical approximation of  S at p). When /3 is fixed, the be- 
haviour of  u yields "second order" properties and leads to various types of  geometries. 
In particular, since e ~' may be unbounded, all these metrics need not be conformally 
quasi-isometric (see 0.3). 

Let us just describe an example of  a family of such metrics, in the most striking 
- though atypical - case (that is /3 = - 1), for which volume and diameter can be 
finite or not. 

2.2. Example and definition. Let us define on the disk D = {z E C : 0  < Izl 5 ~} 
the family of  metrics 

I d z l  2 _ e 2 ~ = l z l - 2 1 d z [ 2 .  
g(=) - Izl21 log [zl[ 2a 

For all values of  a, the metric 9(a) has got a simple singularity of  order - 1  at the 
origin. A computation gives us the curvature K~ of  9(a), namely, 

K,~ = - a I log lztI 2(a-~) . 

In particular, (D,g(0)) is an euclidean half-cylinder, and (D,g(l)) is isometric to a 
Beltrami pseudo-sphere. The metric 9(1) will be called the Beltrami metric. 
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We sum up some geometric features of  the metrics 9~a) as follows: 

diameter: finite iff a > 1; 

volume: finite iff a > 1/2; 

of curvature: / a < 0 : K  > 0; sign 

limit of curvature: J 

t 

a = 0 : K  = 0; 

a > 0 : K  < 0; 

a <  1 : K  ---~ 0; 

a = 1 : K  - - 1 ;  

a >  1 : K - - ~  -cx~. 

CL<O 

. . . . . . . .  ~ 

O_=0 

We will say that a singular point q of a metric 9 is a cusp if 9 is complete at 
this point, and has finite volume in a neighborhood of  q. Note that if moreover the 
curvature of  9 is bounded, then 9 has at q a simple singularity of  order - 1  (1.5, 1.7). 

Observe that, if 9 = e2~91 is conformally quasi-isometric to a metric 91 having 
at some point p a simple singularity, then p need not be a simple singularity for 9. 
However,  it will be the case whenever 9 has finite total curvature. 

2.3. L e m m a .  Let 91 and 9 = eZUgl be two (conformally) quasi-isometric conformal 
metrics of class C 2 on the punctured disk Y2 = {z E C :0 < Iz] =< 1}. 

Assume that 91 admits a simple singularity of order/3 at the origin, and that 9 has 
finite total curvature. 

Then, 9 also has a simple singularity of order/3 at the origin. 

Proof. By assumption, gl = e 24'~ ]dz] 2 with Ol = / 3 l o g  [z] + Vl, and 

v l E L  l ,  Avl  E L  1 (in a weak sense). ( . )  

Write on the other hand g = e2~gl = e2~ldzl 2. Since gl has a simple singularity at 
the origin, and u is bounded, we know by (1.7) that there exists c~ E R such that the 
metric ]zl2~e2Oldzi2 is complete at the origin, so that we can apply (1.5) (see 1.6.a), 
and get 

0 = / 3 ' l o g  Izl + v ,  

where v satisfies ( , ) ,  and fl~ G R. 
Now u +  q~j = 0, so that u +  (Vl - v) = (/3' - / 3 )  log [z]. Since u is bounded, and 

e +(vt-v) belongs to every Lq(1 __< q < c~) by (1.7), we infer that /3 ~ = /3, so that 
u = v - vl satisfies ( ,) .  [] 

It will be convenient to control the quasi-isometry type of a simple singularity. 
For that purpose, we introduce the following. 
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2.4. Definition. A metric 9 on S with a simple singularity of  order/3 at p is said to 
have a normal singularity at this point if it can be locally written as 

g = e2~lzl2~ldzl  2 

with 
u E W  2,p for s o m e p >  1, (**) 

where, again, z(p) = 0. Since W 2,p C C ~ such a metric is conformally quasi- 
isometric to Izl2~ldzl 2 in a neighbourhood of p. 

In order to deal with several simple singularities, we propose the following: 

2.5. Definition. A divisor 13 on S is a finite formal sum 

13 = k / ~ i p i ,  

where the p i ' s  are points in S and the/3i 's are real numbers. The support of the divisor 
13 is the finite set supp13 = {pl, . . .  , Pn}- We also define the Euler characteristic of 
(S, 13) as 

n 

x(s ,13)  = x ( s )  + 9 ,  . 
i=l  

2.6. Definition. A (conformal) metric g on S is said to represent the divisor 

13 = k /3~p~ when: 
i = 1  

(i) g is C 2 on S\supp13; 
(ii) g admits a simple singularity of  order/3~ at Pi (1 _< i _< n). 
If  moreover g admits at each Pi a normal singularity of order 13i, we will say that 

9 represents 13 normally. 

Examples. (i) For a E R, 9,~ = ]z]2'~ldz]2 is a flat metric on C t3 {cx~}, representing 
normally the divisor 13 = a �9 0 + ( - 2  - a ) .  oo. 

(ii) If w = r is a meromorphic differential form on a Riemann surface, then 
g = lwl 2 is a flat metric representing normally the divisor div(w). 

Other examples are given in [T2, Sect. 1.2]. 

2.7. A Gauss-Bonnet formula. As in the smooth case, the total curvature of  a compact 
Riemannian surface with simple singularities does not depend on the metric. It does, 
however, depend on the divisor. 

2.8. Theorem [F]. Let (S, 9) be a compact surface endowed with a metric 9 repre- 
senting a divisor 13. Then, the total curvature of 9 is well defined and satisfies 

__I / "  K d A  = x(S,13) 
27r 

s 

Pro@ We indicate the proof in the case 13 =/~p,  that is when the metric has a unique 
singularity. Cut S into two pieces ~U, and Z'2, where (~z \{P} ,g )  is isometric to 

(/2, e2U]z]2~]dzl 2) -- (~'2, J"ldzl2), 
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. -p  

where Y2 is the punctured disk, and let An = {r < lz[ < l} C 5J2 (with r > 0). 
Since Ke 2v = Av C L 1, the total curvature of g is finite and 

/ K d A  = / K d A  + lim / 

S E l Ar 

The Gauss-Bonnet formula for the compact surfaces with boundaries Z1 and An gives 

1/ ' I  
x(S) - 1 = ~ ( S 1 )  = ~ K d A  + ~ kgds, 

ZI OE1 

0 = x(A~) = ~ K d A  - 2-~ ~ kgds, 

Ar 0121 Izl=r 

where k~ denotes the geodesic curvature. But on [zl = r, we have 

kgds = l ldzl + Ov Idzl 

Olog Izl Idzl + o~ = l_r Idzl + ~ ~ -~n Idzl, 

hence the result, since we assumed A u  (in weak sense) to be a L l function, which 
implies: 

lim f Ou ~ o  7 n  ds = O" [] 

Izl=~ 

We may now restate the main results of  Sect. 1, completed with the Gauss-Bonnet 
formula, in the language we just introduced. 

2.9. Theorem (Huber). Let (S t, 9 p) be a complete Riemannian surface of class C 2 with 
finite total curvature. 

Then, there exist a compact Riemann surface S, a divisor l] = ~ ~Pi  on S (with 
i=1 

/3i < - 1), and a conformal metric g on S representing ~ such that (S t, 9 r) is isometric 
to (S\supp[~, g). 
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Moreover, the following generalized Gauss-Bonnet formula holds: 

1 f K d A  x(S ,~) .  
27r 

s 

This Gauss-Bonnet formula is the sharp version of the Cohn-Vossen inequality we 
mentioned in (1.3). 

2.10. Remark. Thanks to Lemma 2.3, we see that if (S,[]) is a compact Riemann 
surface with a divisor, //" a function on S and gl a conformal metric representing 
on S, then any metric g on S solving Problem 2 of the introduction (i.e. such that 9 
is conformal, conformally quasi-isometric to gl and has curvature K),  and with finite 
total curvature also solves Problem 1 (i.e. g represents ~). 

3 The Schwarz lemma and some consequences 

The Schwarz lemma is an estinaation on a metric derived from an estimation of its 
curvature. 

3.l. Theorem (The Schwarz lemma). Let 9 and h be conformal metrics representing 
a divisor [J on a Riemann surface S. Assume 

(i) 9 is complete at infinity and Ka is bounded below; 
(ii) we have Kh <= --a < 0 on the complement of some compact set in S," 

(iii) Kh =< min{0, Kg}, and Kh ~ O; 
(iv) h = e2U 9 for some continuous function u : S ---+ R. 
Then h <__ 9. 

Observe that there is no assumption of completeness on h and no hypothesis on 
the sign of K~; the hypothesis (iv) is satisfied e.g. when g and h represent ~ normally 
(see 2.4). 

The proof is obtained by applying the generalized maximum principle of Yau to 
the equation (4.2) relating Kg and Kh, see [T3, Y, Ahl and Ah2]. (Our assumptions 
imply that u is continuous and C 2 outside a compact set, this is good enough to carry 
on the proof in [T3].) 

3.2. Corollary (Liouville's theorem, compare [Os]). There is no conformal metric on 
C or C* with curvature I f  satisfying 

I f  <= O and K <__ - a  < O outside a compact subset. 

Proof. Suppose that such a metric h exists. Denote by 9 the canonical (fiat and 
complete) metric on C (or C*). The Schwarz lemma tells us that 

h<c.g= 

for all e > 0, which is absurd. [] 

This result has been generalized by Sattinger [Sa] and Oleinik [O1]. They prove: 

3.3. Theorem. There is no conformal metric on C with curvature I f  satisfying 
K(z)  <= 0 on C and K( z )  < -e[z[  -2 on [z[ > R (c and R being any positive 
constants). 

Theorem 3.3 has an obvious extension on C* (namely there is no conformal metric 
on C* with curvature I f  satisfying K(z )  < - c(log [z[) -2 for all z E C*). 

It is still an open problem to describe all negative functions K on C that are 
curvature of some conformal metric. Ni proves in [Ni 1 ] that any function K such that 
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-e2[z1-2-e =~_ K(z) ~ 0 is the curvature of (many) conformal (complete) metrics on 
C (a result recovered by our Theorem 8.2). 

On the other hand, Ni also gives some obstructions that are more refined than (3.2) 
(see (3.6) and (3.11) in [Nil]). 

The reader should be aware that these results are special to C and C*, and are 
false for other open Riemann surfaces (see Theorem A. 1). Also, there is no Liouville 
theorem on C if K is allowed to be positive even in a small region (think of a 
spherical cap glued to a Beltrami pseudo-sphere). 

We now draw some consequences of Liouville 's  theorem that we shall need later. 

3.4. Proposit ion.  Let 9 be a conformal metric on a Riemann sulface ~2 homeomorphic 
to the half closed annulus ]0, 1] x S 1. Assume that the curvature K of  9 satisfies 

s u p K < 0  and /" K d A  = - ~  . 
t l  

g2 

Then g2 is hyperbolic. 

Proof. Assume ad absurdum that (~2, 9) is parabolic. Then, by (B.2), we may suppose 
that J2 = / ) \ { 0 }  = {z C C : 0  < Iz[ =< 1} and 9 = e2Vldzl 2. Let us set 

bzl~l Izl=l 

Case 1. 3' => 0. Choose any function f E C~($2) such that f < 0 and 

f d x d y = - 7 .  

D 

Then, there exists a function u C C2(/3) which solves the Neumann problem: 

(3.5) Ou _ Ov 
On 1 +  = - kge v on OD. 

And the metric 9o = e2'~9 on Y2 satisfies: 
(i) 052 = {z: Izl = 1} is geodesic for 90; 

(ii) sup/Co _-< sup(Ke 2") < 0. 
Now, 9o induces a C 2 conformal metric .qo on C* with sup/r < 0 by reflection 

(.qo = 90 on 1"2 and .qo = ~*(9o) on {z : lz  ] > 1} with 9~(z) = 1/5). The surface 
(C*, 9o) is obtained by gluing two copies of  (/2, 9o) along their geodesic boundaries. 

We have thus constructed a conformal metric .q0 on C* with sup/Co < 0, in 
contradiction to Theorem 3.2. 

Case 2. 7 < 0. From the hypothesis, we see that we can easily construct a function 
f E C~(J2)  such that 

, / f < -~ IKle 2v and f d x d y  = - 7 .  

D 

We may again find a function u o n / )  satisfying (3.5) and conclude as in the previous 
case. [] 
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3.5. Corollary.  Let 9 be a complete conformal metric' on the annulus 
= {z E C : 0  < tzt =< 1}, and K be its curvature. Assume that s u p K  < 0. 
Then, 9 is the restriction to S) of  a metric on the disk b : O U  {0} having a simple 

singularity of order -1  at the origine. Also, f IKrdA < or 
s2 

Proof. By the previous proposition, we necessarily have f JKIdA < oo and, since 
/2 

9 is complete, (1.5) implies that 9 is the restriction to /2 of  a metric on the disk D 
having a simple singularity of  order/3 at the origin. By (1.7.i), the order/3 of  this 
singularity does not exceed - 1  (since 9 is complete). On the other hand, /3 _>_ - 1 ,  
for otherwise f IKIdA >-_ -(sup K). f dA = oo. [] 

/2 /2 

4 Discussion of  our assumptions  on K 

Given a function K on a Riemann surface with divisor (S,I~), our task is to construct 
a conformal metric 9 with curvature K representing i~. If S has got hyperbolic ends, 
we will also require that 9 be complete at these ends. 

4.1. To attack this problem, we first choose a smooth conformal metric 90 on S and 
then a singular metric 91 = ogo representing [~. We will usually require from 91 to 
have special features (e.g., that 9~ represents normally 1~ and]or that gl is complete at 
each hyperbolic end of  the surface). 

Writing the desired metric as 9 = e2~'91, we have to solve the non linear PDE: 

(4.2) AlU = K e  2u - K1 , 

which is equivalent to the more convenient equation 

(4.3) A0u = K L o e  2u - -  K 1 Q  , 

where A i is the Laplacian and Ki the curvature of  the metric 9i. The latter is an 
elliptic equation on the smooth compact Riemannian manifold (S, 9o). 

We will always work in a fixed conformal quasi-isometry class. Therefore, we are 
interested in bounded solutions u of (4.3). If the point p E supp [~ is to be a normal 
singularity of  9, then we have to require u E W 2,p in some neighbourhood of  p. 

4.4. In order to solve Eq (4.3), we will have to assume that K behaves reasonably 
near supp[~. Since the curvature of  the desired metric 9 should be regular enough to 
define a measure, a natural hypothesis on K should be KQ E L~oc(S, 9o). However, 
this would be too weak for our methods to apply, and we will usually assume that in 
some neighbourhood U of  a point pi E supp[~ which is a normal singularity of  91, 

(H) K e  E LP(U,9o) for some p > 1. 

Recall that if z is a coordinate in U, then 0 = O(Izt2#) �9 Hence, if/3i -<_ - 1, then (H) 
implies that lira inf ]K] = 0, whereas if/3i > - 1  then any bounded function satisfies 
(H). z-~v, 

4.5. Working under hypothesis (H) is convenient, but the metrics constructed under 
this assumption will always represent ~ normally. This is sometimes too restrictive 
since, for instance, we might want to construct metrics having cusps (which are not 
normal singularities). 
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When dealing with negative curvature, this difficulty may be overcome by assum- 
ing the following alternative "pinching" hypothesis for the functions K and K~ in 
some neighbourhood U of a point qi c suppli: 

(P) bK1 < K < aK1 < 0 for some positive constants a, b > 0.  

4.6. In the case where S is a non compact surface, we will always assume (P) to 
hold in the complement S \ N  of some compact set N C S. 

Let us finally indicate that we will use hypothesis (H) to study Problem 1 on a 
compact (S, [i) with x(S,  [i) > 0 (in Sects. 6 and 7), and a combination of (H) and (P) 
to study Problem 2 on a compact (S, [i) with x(S,  [i) < 0 or on a non compact (S',  [i) 
with finitely many hyperbolic ends (in Sect. 8). 

5 Variational theory  of the equation A u  ---- h e  2~ - -  h i  

The discussion of the preceeding section leads us to study the quasilinear elliptic 
equation: 

(5.1) A0u = he 2u - hi , 

on a compact smooth Riemannian surface (S, 9o) with h, hi c LP(S ,  go) for some 
p > l .  

In this section, we give a short description of the variational method for solving 
(5.1). Further details can be found in [KW1] and [T2]. 

Before constructing a variational scheme, we recall a basic "non-linear" property 
of  the Sobolev space H = WI '2(S,  90): 

1 l 
5.2. T rud inge r ' s  nequali ty.  Let p, q > 1 with - + - = 1, 0 < b < 47r 
and ~ C Lr(S, 90) with f ~dAo = 1 for r > 1. P q 

S 
Let I be the functional defined on H by 

I(u) = q [ HVOU[[2dAo + 2  f * u d A o .  
P d d 

s s 

Then, there exists a constant c > 0 such that for all qo C LP(S, 9o) the following 
inequality holds 

f eZ~TdAo <= ell~ltL~ I (~ ) .  exp  

s 

A reference is [T2, Sect. 4.8, Theorem 8]. Trudinger proved this inequality for small 
values of  b > 0. The sharp form we give here is due to Moser and Cherrier. 

5.3. Corol lary .  The embedding 

is compact for all 1 < q < ~ .  

H --* L q ( s ,  go) 

U -~ e 2u 

A proof can be found e.g. in IT2, Sect. 4.10, Proposition 11]. 
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For u E H,  we now define 

.Y(u)  := / llVoull2 dAo + 2 / h ludAo and .~(u) := / e2~h dAo . 

s s s 

Observe that .~7 and :~ define functionals of  class C 1 on H whenever h and hi belong 
to LP(S, go) for some p > 1. To solve (5.1), we try and minimize the functional .~r 
on the hypersurface of H defined by the "constraint" 

:~(u) = 7 :=  f hi dAo. 
, ]  

s 

W h e n T - - 0 s e t [ - I =  ~u E H : f udAo = O ~, and /~ = H otherwise. 
[ s J 

5.4. Theorem [T2, Sect. 5.3, Theorem 1]. Let (S, go) be a smooth compact Riemannian 
surface. Let h, hi E LP(S, go) (for some p > l) and assume there exists a number 
m E R such that 

(i) the set B :=  {u E / t  : 5,r'(u) = 7 and :Y'(u) < m} is not empty; 
(ii) .• is bounded below on B;  

(iii) B is a bounded subset of f-1. 
Then, there exists ,~ E R and u ,  E H such that ~ ( u , )  = % and u ,  satisfies 

(5.5~) A u ,  = ~he 2u* - ho. 

Moreover, u ,  belongs to W2,p(S, go) and is of class C 2'~ on any domain on which h 
a n d h l a r e C  5 ( 0 < 5 <  1). 

Remark. When "7 =~ 0, integrating (5.5;0 shows that ~ = 1. 

Proof(sketch, see [T2]for details). Corollary 5.3 implies that .~ is continuous for the 
weak topology on H. On the other hand, 3 "  is lower semi-continuous (in the weak 
topology). This implies that . ~  achieves its minimum # on B. Thus, there exists 
u ,  E B such that ./7"(u,) = # and u ,  satisfies the Euler-Lagrange equation of  our 
variational problem which is but (5.5;0. Standard elliptic regularity theory applies and 
proves the last assertions. [] 

Applying the above variational theory, we obtain the following "three-headed" 
existence theorem for (5.1). We first consider the case 7 > 0: 

5.6 +. Theorem.  Assume h, hi E LP(S, go) for some p > 1 and "y = f hi dAo > O. 
s 

If 0 < q7 < 47r (where 1/p + 1/q = 1) and h is positive on some domain of S, then 
(5.1) has a solution u E W2'P(S, go). Moreover, u is C 2,5 wherever h and hi are C ~. 

Proof. We can clearly find v E C1(S) with :d'(v) = % S e t / ~  = H and m = ~Z'(v), 
then 

(i) the set B :=  {u E /1 : .~  (u) = '7 and ,~(u)  < m} is not empty. Choose now 
b E R such that q3' < b < 47r and define the functional ! o n / t  by 

I(u) = -~ IlVoull2 dAo + - h ludAo .  
7 

s s 
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By (5.2), we have for all u E B 

"7 = f e2UhdAo <= ellhllLP e x p I ( u ) ,  

S 

and I is thus bounded below on B. The main fact is that I is dominated by .Y: 

1 ,  (+ 
s 

(since 1 /7  > q/b). Hence 
(ii) g "  is bounded below on B. 

Now, using Poincar6 inequality as in ]T2, Sect. 5.7], we can show that 
(iii) B is a bounded subset of  H,  
and apply (5.5) to conclude. [] 

We now turn to the case 3' = 0. If  h = 0, the equation reduces to Aou + hl = 0 
and has a solution as soon as f hi dAo = 0. If h ~ 0, we will only need to solve 
(5.1) with hi = 0 (see [T2, Sect. 5.5] for the general case). In this situation, necessary 
and sufficient conditions were given by Kazdan and Warner (see [KWI]).  

5.6 ~ Theorem.  Assume h E LP(S, 9o) for some p > 1 and h ~- O. Then the equation 
A0u = he 2~ has a solution if and only if." 

(i) h is positive on some domain; 
(ii) f hdAo < O. 

S 
Such a solution belongs to Wz'P(S, 9o) and is C 2'6 wherever h E C ~. 

Proof. The necessity of  the first condition is obvious. As for the second, we have for 
any solution: 

i S S f 
8 S S 

Set [-I = [u  E H: f u dAo = 0"~; since h changes sign, we may find v E C l 
( s J 

with ,~(v) = 0, hence B :=  {u E H : . f f ( u )  -- 0 and ~ ( u )  < m} is not empty for 
m = ~Z'(v). We may show, using Poincar6 inequality, that B is a bounded subset of  
H on which 3 z" is bounded. 

By (5.1), there exists a function u ,  such that Zl0u, --- Abe 2u* . An integration by 
1 parts shows that condition (ii) above implies A > 0. We check that u :=  ~ ,  + 5 log A 

solves our equation. [] 

When 7 < 0, the variational approach is fruitful only if h is everywhere negative. 
(Otherwise, one has to use the method of upper and lower solutions (see [KW1, 
Sect. 10])). 

5 .6- .  Theorem.  Assume h, hi E LP(,_q, go)for some p > 1 and 7 = f hi dAo < O. If  
S 

h < - e < 0 on S, then (5.1) has a unique solution u E W2'p(S, go). This solution is 

C 2,~ wherever h and hi E C 6. 

The proof is easy, see [Be] or [T2, Sect. 5.6]. 
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6 The case x(S,]]) > 0 

We have the following existence result. 

6.1. Theorem. Let (S,]]) be a compact Riemann surface equipped with a divisor 

[~ = ~ /3@i, such that x(S,  6) > O. 
i=1 

Let K : S ~ R be locally H61der continuous on S\supp]], and assume the follow- 
ing: 

(i) t (  is positive somewhere; 
(ii) (H) K o  c LP(S, 9o) for some p > 1; 

(iii) 0 < q x ( S , ] ~ ) < 2 ,  (wherep-I + l_q = 1) .  

Then, there exists a conformal metric g on S, representing ~ normally, and with 
curvature K. 

Proof Let 9o be a smooth conformal metric on S, and 91 = 690 be a conformal 
metric representing normally I~. 

From (5.6+), the equation A0u = KQ e 2u - K t  ~ admits a solution u E W 2,p since 
(see 2.8): 

47r / / 
- -  > 7 := K~odAo = KldAI  = 27rx(S,~) > 0. 
q 

S S 

The metric 9 = e2U91 is the desired one. Since K is locally H61der continuous, 9 is 

C~o' [ on S\supp~. [] 

When looking for complete metrics, this forces/3i < -1 ,  for X(S,~) > 0. Hence, 
(S, ~) is a sphere with a unique singularity. In this case we have the following. 

6.2. Corollary. Let ~ =/3p be a divisor on S 2 with - 2  </3 < 0. Let K : S \ { p }  --~ R 
be locally Hglder continuous, positive somewhere, and such that in the neighbourhood 
ofp  

I f(z)  = O(Iz - pl/)  with / > - /3 .  

Then, K is the curvature of a conformal metric on S 2 representing ~ normally. 

This result has been previously obtained by MacOwen [McO2, Theorem 1]. Com- 
pare to [Av]. 

Proof We have KQ = O(Iz -p[  2~+/) in a neighbourhood ofp.  Now, since / > - /3 ,  
we can find p > 1 such that 

x ( S 2 , [ ~ )  = 2 +/3 < 2/q = 2(1 - 1/p) < 2 + 2/3 + / .  

Thus KO E L p (for (2/3 + / )  > - 2 / p )  and 0 < qx(S2,1]) < 2. [] 

When dealing with conical singularities, Theorem 6.1 recovers a previous result 
of Troyanov [T2, Sect. 5.6, Theorem 5]. 

6.3. Corollary. Let (S, ll) be a compact Riemann surface equipped with a divisor 

[~ = ~ /3iP~, with/3i > - 1. Assume 0 < x(S,  [i) < r(S, If) := inf{2 + 2/3i, 2}. 
i=l  

Let K : S ---* R be bounded and locally H6lder continuous outside supp[t and 
positive on a domain. Then, there exists a conformal metric 9 on S representing [] 
normally, and with curvature K.  
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Proof. Indeed, if all the /3~'s are nonnegative, 140 belongs to L ~ (with 
O = O(fz - Pl 2~) again), and our condition reads 

~ ( s ,  I~) < 2 = -r(S,l~). 

If  not, 140 belongs to LP(p > 1) if and only if 

- 1 / p  < inf/3j = : / 3 ,  

and our condition reads again: 

x(S,~) < 2(1 +/3)  -- "r(S,]]). [] 

6.4. Remark. When 7(S,1]) < 2, Theorem 6.1 shows that our problem has a solution 
as long as 0 < x(S, ~) < 2, provided p is large enough. Compare to [M]. 

7 The  case x ( S , ~ )  = 0 

We first study the case where the prescribed curvature function is identically zero 
(see also [T1]). It is easy to see that any flat metric representing a divisor actually 
represents it normally. 

7.1. Theorem.  Let (S,[J) be a compact Riemann surface equipped with a divisor 

[$ = ~ /3iPi, such that X(S, [I) = O. 
i=1  

Then, there exists a flat conformal metric g on S, representing [$ normally. Such a 
metric is unique up to homothety. 

Proof. Let go be a smooth conformal metric on S, and gl = 090 be a conformal 
metric representing I~ normally. 

We are looking for a solution to the equation Aou = - K 1 0 .  We know that 
K10 G LP(S, go) for some p > 1, and by (2.8) that 

f K1QdZo = f K l d Z l  = 27rx(S ,~)=  0.  
. J  . 1  

S S 

Hence, our equation admits a solution u E W2'p(S, go). The metric g = e2Ugl has got 
locally HOlder continuous curvature, hence is C 2 on S \supp~.  

Now, the difference of  two solutions is a bounded harmonic function on S\supp[$, 
hence a constant. Uniqueness follows. [] 

We now turn to the case of  variable curvature. Necessary and sufficient conditions 
for existence are available. 

7.2. Theorem.  Let (S,~) be a compact Riemann surface equipped with a divisor 

[i = ~ ~iPi, such that x(S, ~) -~ O. 
i=1 

Let K :S: ~ R be locally HSlder continuous on S\supp[~. 
We assume that 14 is not identically zero, and that 

(H) KQ E LP(S, go) for some p > 1. 

Then, there exists a conformal metric g, representing normally [$ and of curvature K 
if and only if." 

(i) K is positive somewhere; 
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(ii) f K dA1 = f KQdAo < O, where dA1 is the area element of a flat conformal 
s s 

metric gl representing [l. 

Proof Let 90 be a smooth conformal metric on S, and g~ = 09o be a flat conformal 
metric representing lI normally. 

We must solve the equation Au  = K p e  2~. The result is then a straightforward 
consequence of  (5.60), since (2.8) yields 

/ K I o d A o =  f KIdAI  = X(S,[I)=O. [] 

s s 

7.3. Remarks. (i) This result has been previously obtained by Kazdan-Warner in the 
smooth compact case (cf. [KWI,  Theorem 6.1]), by Troyanov for compact surfaces 
with conical singularities (that is with /3~ > - 1 ) ,  and by MacOwen in the case of  
the plane - that is on S 2 with a unique singularity of  order /3 = - 2  (see [T2, 
Sect. 3,Theorem 3] and [McO2, Theorem 2]). 

(ii) When looking for complete metrics, this forces /3/ < - 1 ,  hence the non 
compact surface S ~ = S \ supp l ]  we are dealing with in this case are homeomorphic 
either to the plane or to the cylinder. 

8 Negative surfaces, and surfaces with hyperbolic ends 

For non positive curvature, we will construct our metrics using the method of  upper 
and lower solutions, as in [KW1]. 

Geometrically speaking, it relies on the following fact: let 91 and g2 be two con- 
formal metrics on a (maybe non compact) Riemann surface S, and such that: 

0<e_<g---~l ~ 1 ,  and KI<_K2 
g2 

(where Ki is the curvature of gi). Then, for any function K on S which satisfies 
K1 = K ~ K2, there exists a conformal metric g, conformally quasi-isometric to gl 
and g2, and with curvature K.  

For example, any function K on the unit disk satisfying - b  = K _< - a  < 0 is 
the curvature of a conformal metric g which is conformally quasi-isometric to the 
Poincar5 metric (in particular, g is complete). 

The statement of our first theorem is quite technical, the reader should compare it 
with Theorems B and C in the introduction. 

8.1. Theorem.  Let (S,[~) be a Riemann sulface of finite type equipped with a divisor 

i=l j=l 

Assume either that S is compact and X(S,~I) < O, or that S is non compact and with 
all its ends hyperbolic. 

Let go be a smooth conformal metric on S, 91 = 09o be a conformal metric rep- 
resenting ~, having normal singularities at each of the pi's, and assume that 91 is 
complete at each (hyperbolic) end of S, and is c~Zo~ on S\supp~l. We denote by K~ 
the curvature of 91. 

Let K : S ~ R he locally H61der continuous on S \  supp 1~ and assume the following: 
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(i) K is non positive on S, and strictly negative on a domain of S; 
(ii) in a neighbourhood of each Pi, we suppose that 

(H) K 6  E LP(S, 9o) for some p > 1 ; 

(iii) in a neighbourhood of each qj and of the hyperbolic ends, we suppose that." 

(P) bK <= K1 <= a K  <= 0 holds, for some positive constants a and b. 

Then, there exists a conformal metric 9 on S, conformally quasi-isometric to gl, and 
of curvature K.  Moreover, 9 represents 6. 

Note that, at a point where assumption (P) is used, we can construct metrics having 
cusps. 

Remarks. Partial results have been previously obtained by several people. In the 
smooth compact case, this theorem is due to Berger (when K < 0) and to Kazdan 
and Warner (when K __< 0). Later on, Ni and MacOwen, have studied the case of  the 
plane (that is S 2 with one parabolic end). Aviles and MacOwen, and Bland and Kalka 
treated the case of  the disk. Finally, Troyanov worked out the case of  a compact 
surface with conical singularities and negative Euler characteristic. See [AMcO, Be, 
BK, KW1, McO1, McO3, Nil ,  and T2]. 

Proof of Theorem 8.1. Case 1. S is compact. To prove existence, we solve the equation 

(E) A0u = K 6  e 2u - KI 6, 

by showing it admits upper and lower solutions. The first step is to consider the 
modified equation 

(E') `4ou = f e  2u - f l ,  

obtained from (E) by cutting K 6  and K16 as follows. 
By assumption, there exists a compact set N C S \{q l ,  . . .  , qm} such that: 

(i) f KI 6 dAo < 0 (Gauss-Bonnet formula 2.8); 
N 

(ii) K is negative on a domain of N;  
(iii) bK < K1 <= a K  < 0 o n  S\N.  
Define then f and f l  by 

on N : f  = K 6 ,  f l  = K l 6  

on S \ N : f  = f l  =O 

where we gain f l ,  f E LP(S~ 9o) for some p > 1. However, since the supremum of 
f may be zero, (5.6-)  does not apply directly to (E'). We proceed as follows. 

Lower solutions." Since f - 1 < - 1  < 0, Theorem 5.6- applies now to produce a 
solution r E W2'p(s)  for the equation 

"40r = ( f  - 1)e 24' - f l -  

We claim that, for c~ > 0 large enough, u_ = r  is a lower solution for (E). Indeed 
we have on N 

"40u- = AOr = ( f  -- 1)e 2'b - fi  < fe2C~e2U- - f l ,  

hence, since f < 0 and a < 0, 

Aou- <-_ f e  2u- - f i  <= K 6  e 2 u -  - -  g l  6" 
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While on S \ N  

A 0 u _ = 0 < =  K Q e 2 r  -2~ K1K e-Zr  

holds  as soon  as ~ >= I1r - �89 loga ,  that is 

Aou_ <= K p e  2u- -- K1Q. 

Upper solutions." Fix # > 0 large enough such that 

f ( P f  - f l )dA0 

~ : = s  < 0 .  
f dAo 
S 

Then, there exists a solution r C W2'P(S) of the equation 

A0~b = # f -  f ,  - A 

(for # f  - fl  - )~ C LP(S, go) for some p > 1). 
Now we claim that for 7 > 0 large enough, u+ = r § 7 provides an upper solution 

for (E). 
Namely on N 

A0u+ = A0~b = # f  - fl - -  A ~ # f  - f l  

>= #e-2U+(KQe 2~+ ) - K1Q 

>->_ KO e 2~+ - KI 

1 log p. when 7 ~ II~ll~ + 7 
And on S \ N  

Aou+ = - A > 0 >_ KO e 2u+ - -  K I  Q 

1 l o g  b. as soon  as 7 _-_ I1r + 

Finally, since r and ~b are bounded, we conclude that for a and '7 large enough: 
( i )  u _  = r - a is a lower solution for (E); 

(ii) u+ = ~b + -~ is an upper solution for (E); 
(iii) u• E W l'2 N C~ 
(iv) l + u _  =<u+. 
By (iv), there exists a smooth function w c C ~ ( S )  such that u_ =< w =< u+. 

Theorem C.4 produces a bounded classical solution u E C2(S\supp~)  for our equa- 
2u tion. The metric g = e gl is conformal, conformally quasi-isometric to gl and of 

curvature K.  
We now turn to the divisor. 
Since g is conformally quasi-isometric to gl, our assumption on K ensures that 

g has finite total curvature in a neighbourhood of  suppl .  Now, (2.3) implies that g 
represents 6- This achieves the proof in the compact case. 

Case 2. S is non compact. By (13.3), there exists a compact Riemann surface ~' such 
that S C S, and S \ S  is a finite union of disks. 

We may assume that 90 extends to a smooth metric on ~ (still denoted by 9o). To 
prove existence, we must find a bounded solution u for the equation 

A o u = [ ( 6 e 2 U - K 1 Q  on S 

A ~ 0 u = 0  on ~ \ S .  
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Since K l  is non positive in a neighbourhood of the hyperbolic ends, we infer from 
(1.4) that 

f K1 = -exp. dA1 

s 

Hence, there exists a compact subset N of ,~, with N c S\{q l ,  . . .  , q,~}, such that: 
(i) f KlpdAo < O; 

N 
(ii) K is negative on a domain of N;  

(iii) bK < K~ < aK < 0 on S\N.  
Now, we define f and f l  by 

on N : f  = K~ ,  f: = Kl~ 

on S \ N : f  = f l  ---- 0 

where f l ,  f G LP(S, go) for some p > 1, then proceed as in Case 1, and exhibit 
a lower solution u_ and an upper solution u+ for (E), with 1 + u_ < u+, and 
u:~ bounded (the same construction holds). Applying (C.4) again yields a bounded 

2u solution u for our equation. The desired metric is given on S by g = e 91. 
That 9 represents ~ can be proved as in Case 1. [] 

When we assume the function K to be pinched between two negative constants 
at infinity, we have uniqueness of  the metric with curvature K :  

8.2. Theorem.  Let S be a connected Riemann surface of finite topological type 

equipped with a divisor [~ = ~ /3ipi. Assume that either x(S,  [~ < 0 or that S has a 
hyperbolic end. i=l 

Let K:  S ~ R be locally Hglder continuous on S \  supp[Iand assume the following: 
(i) K is non positive on S, and strictly negative on a domain of S; 

(ii) in a neighbourhood of each pz, we suppose that 

(H) / ' ( IZ] 2/3~ G L p for some p > 1; 

(iii) in the complement of a compact subset N C S, we suppose that." 

(P) - b  =< K _<_ - a  < 0 holds, for some positive constants a and b. 

Then, there exists a unique conformal metric 9 on S, complete at infinity, representing 
[~ normally and having curvature K.  

Moreover, each end of (S, 9) admits a neighbourhood conformally quasi-isometric 
to the end of the Beltrami pseudo-sphere when parabolic, and to the end of the PoinearO 
disk when hyperbolic'. 

Finally, if S has no hyperbolic ends, then we have." 

1 f K d A  X(S,~). 
27r 

S 

Proof. The uniqueness follows from the Schwarz lemma (3.1). 
To prove the existence, add an ideal point at each parabolic end of S to 

obtain a Riemann surface ~'. Let ql,q2, . . .  , qn be the ideal points of S and set 

:=  1~-t- ( - - l )q l  + (--1)q2 + " "  + (--1)qn.  
Now choose a conformal metric 91 on ,~ such that 
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(i) 9l has a normal singularity of order/3i  at Pi; 
(ii) 91 coincides with the Beltrami metric (see 2.2) in a neighbourhood of  

each qj; 
(iii) 91 coincides with the standard Poincar6 metric of the disk (at infinity) in a 

neighbourhood of  each hyperbolic end of ~.  

In particular, 91 is complete and represents the divisor [~. 
By Theorem 8.1, there exists a conformal metric 9 on ~,  conformally quasi- 

isometric to 91, representing [~ and of  curvature K .  The restriction 9 of  ~ to S is the 
desired metric. 

To prove the last statement, observe that x(S,[~) = X(S,[~) and apply the Gauss- 
Bonnet formula (2.8). [] 

8.3. Other resuhs on uniqueness. In the general case, (i.e. when some singularities are 
not normal), the Schwarz lemma is not available and we can only prove uniqueness 
in a given conformal quasi-isometry class. We still have to assume - b  < K __< - a  
at infinity. 

8.4. Proposi t ion .  Let (S, 6) be a Riemann surface o f  finite type with divisor. Let 9 and 
91 = e2V 9 be two conformally quasi-isometric conformal metrics, complete at infinity, 
on S. Suppose that 9 and 9 r represent ~ and have the same curvature K ~_ O, K ~_ O. 

Assume moreover that 

- b  <= K <= - a < O outside a compact set N C S .  

Then 9 = g ~. 

For the proof, it will be convenient to introduce a smooth conformal metric 9o on 
S (say whose curvature K0 - - 1 outside N).  

We will need the following result: 
1,2 

8.5. Lemma .  We have v E Wlo c (S, 9o). 

Proof. We may work in a neighbourhood U of a singular point, identified w.l.o.g. 
with D = {z C C:  Izl <__ 1}. Since Av E L t in a weak sense, elliptic regularity shows 
that the first weak derivatives of  v on the disk D are functions; it remains to prove 
that these functions are square integrable. 

Let Y2 = {z E C : 0  < Izl _-< 1}. We know that v E C2(Y2), and that v is uniformly 
bounded, and A v  C L l in a weak sense. The result will easily follow from Green 's  
theorem applied to a sequence of smooth approximations of  v. [] 

We now prove Proposition 8.4: 

Let us choose a smooth conformal metric 9o on S such that 9o is isometric to the 
Poincar6 metric in a neighbourhood of  the (hyperbolic) ends of S.  A localization of  

the Schwarz lemma shows that 9 = e2Ug0 and 9 ~ = 2u' e 9o are conformally quasi- 
isometric to g0 at infinity (i.e. u and u'  are bounded on S \ N ) .  

12 
Moreover,  we know from (8.5) that v = u'  - u E WI~ (S, 9o). Since v is smooth 

'~ 1 2  
off a finite set, v is bounded and Vv  E L-,  we infer that v 2 E W j :  (S, 9o). Now, 

1 Ao(v2) = v A o v  - IV~ 2 
2 

: K ( u  ! - u )  ( e  2ut - -  r  - -  ] V 0 • [ 2  

< 0  

so that v 2 is subharmonic. 
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In particular, V 2 is upper semicontinuous and satisfies the maximum principle. 

Case 1. The maximum o f v  2 is achieved at a point x C S. By the maximum principle, 
v 2 is a constant. Since 9 and 9 t = e 2v have the same curvature K ~ 0, we see that 
in fact v = 0. 

Case 2. The maximum o f  v 2 is not achieved. Then there exists a divergent sequence 
of  points xn E S with 

lim v2(x,0 = sup(v2). 

We want to show that sup(v 2) = 0 (hence v ---- 0). Since v 2 is uniformely bounded and 
of  class C 2 outside a compact  set, and since (S, 90) has bounded curvature, we can 
use the generalized maximum principle (see e.g. [Au, 8.4]). It asserts the existence 
of  a divergent sequence of  points Yn E S such that 

t i m  v2(yn) : sup(v2), and lim (A0(v2))(y~) > 0.  
n - - - * ~  n---~ o o  

Assuming sup(v 2) > 0 yields 

1 
(A0(v2)) (Yn) <= K v ( e  2u' -- e zu) <= const < 0 

for n large enough since K < - a  < 0 and u, u t are bounded, a contradiction. [] 

Appendix A: Further results on open surfaces 

So far, we have been looking for conformal metrics on a Riemann surface having a 
specified geometry (e.g., being complete, and representing some divisor or lying in 
some conformal quasi-isometry class), and having a prescribed curvature. 

If we drop the control on the geometry,  the problem of prescribing the curvature 
has a straightforward answer as we now show. 

A,1, Theorem.  Let S t be a non compact Riemann surface o f  finite type. Assume S t is 
neither conformally equivalent to C nor to C*. 

Let K : S r ~ R be any bounded locally Hrlder-continuous function. Then, there 
exists a conformal metric 9 on S '  with curvature K .  

Remarks. (i) As can be seen from the proof, this metric is far from being unique. 
(ii) It follows from Theorem 3.2 that the above result is clearly false for C 

or C*. 
(iii) When S t is of  genus less than two and has a hyperbolic end, the result is due 

to Kazdan and Warner [KW2, Theorem 3.4]. 

Proof. By (B.3), there exists a compact  Riemann surface S such that S '  c S and 
S \ S  ~ is a disjoint union of (finitely many) points and disks. 

The strategy of  the proof will be best illustrated in case S t has a hyperbolic end. 

Case 1. S \ S  ~ contains an open set U. Choose points p l ,P2,  . . .  , Pn E U and 

numbers 13t,/~2, . . .  , /~n ~> - -  1 such that x ( S )  + ~ /3i = O. 
i = 1  

Let now 91 be a flat metric on S representing the divisor I~ = ~ fliPi (known to 
exist by (7.1)) and choose a function K : S  ---+ R such that i=l 
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(i) /~ is bounded on S and R l s ,  = K;  
(ii) / f  is positive on some domain; 

(iii) f I~ dAt  < O. 
s 

Then, Theorem 7.2 provides us with a conformal metric 0 on S having curvature 
/7[ (and representing 1~). The desired metric on S '  is the restriction 9 := gis ' .  

In the next five cases, S '  is assumed to have only parabolic ends, that is there 
exists a compact Riemann surface S such that S'  c S and S \ S  t = {pl,P2, . . .  , Pn} 
is a finite set. Choosing a suitable divisor I~ with support in this set we may achieve a 
compatibility between the signs of K and of X(S, ~). We will work only with conical 
singularities (13i > - 1 )  unless K ~ 0, thus condition (H) will automatically hold. 

Case 2. S is a sphere and sup K > 0. In case S is a sphere, our assumption is that 
S \ S  t = {PI,P2, . . -  , Pn} contains at least three points. Let us choose a real number 

/3 such that - 1  < - 2 / n  < / 3  < 0 and set l] = ~ 13Pi. Then 
i=1 

0 < x (S ,  ~) = 2 + n/3 < r (S ,  ~i) = 2 + 213, 

and (6.3) gives us the desired metric. 

Case 3. S is not a sphere and s u p K  > 0. Now X(S)  <= O, thus we may choose 
/3 C R such that 0 _<_ - x ( S )  < t3 < 2 - x (S) .  We observe that, if 1~ = 13pl, then 
0 < x (S ,  fJ) = x ( S )  + 13 < 2 and conclude as above. 

Case 4. K =-- O. Let/3 := - X ( S )  and [i := /3pl .  Proposition 7.1 applies. 

Case 5. S is a sphere, K ~- 0 and K <__ O. Again S \ S '  = {Pt, . . . ,  Pn} with n > 3. 

Choose/3 such that - 1  < 13 < - 2 / n  and se t~  = ~ /3pi. Then, X(S,~I) = 2+n /3  < 0 
and Theorem 8.2 gives us the desired metric. ~=t 

Case 6. S is not a sphere, K ~ 0 and K <= O. Pick some number/3 E] -- 1,0[ and set 
= 13Pt. Observe that x(S,~)  < 0 and apply Theorem 8.2. [] 

Alternatively, we may drop the condition that g be in some specified conformal 
class and hope to control the geometry of 9. The following theorem gives a charac- 
terization of curvature functions on complete open surfaces of finite type. This result 
has been proved by Kazdan and Warner for surfaces homeomorphic to the plane and 
then extended to the general case by Burago (see [KW2, Theorem 4.1] and [Bu]). 

A.2. T h e o r e m  (Burago-Kazdan-Warner). Let K be a smooth function on an open 
surface S '  o f  finite type. Then, the following conditions are necessary and sufficient 
for  K to be the curvature of  some complete metric on St: 

(i) lira i n f K ( x )  <__ 0 at each end of  St; 
x ~ o o  

when x ( S  t) < O, assume also i n f K  < 0; 

(ii) when x(  S')  = O, assume also i n f K  < 0 or K =- 0.  

Since the proof (for x ( S  t) < 0) is only available in Russian, we give it below. 

Proof. The necessity of  condition (i) follows from the Bonnet-Myers theorem (cf. 
e.g. [GHL, 3.85]) on the existence of conjugate points on geodesics in positively 
curved Riemannian manifolds, and that of  condition (ii) follows from the Cohn-Vossen 
inequality (1.3.b). Indeed, if a complete surface has K > 0, then 0 = f t K - I  < oo 
and Proposition 1.3 implies 0 < f K < 27rx(S'). This is possible only if x (S ' )  > 0 
or x (S ' )  = 0 and K = 0. 
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The ingredient used to prove the sufficiency of conditions (i) and (ii) is a combi- 
nation of  the methods used by Kazdan and Warner to treat the compact case and the 
case of  the plane, with a clever lemma due to Burago. 

Case 1. X(S ~) > 0. Then, S '  is diffeomorphic to the plane and we refer to [KW2, 
Theorem 4.1 ]. 

Case 2. x (S  ~) < 0. Recall that S t is diffeomorpbic to a compact surface S with a finite 
numbers of  points removed: S '  = S \ { p l , p 2 , . . . ,  Pn}. We may decompose S ~ into 
a compact domain with smooth boundary N and a finite number of (disjoint) annuli 
A1,A2 , . . .  , An (such that the closure of  A~ in S is a neighbourhood of Pi). The 
function K satisfies condition (ii) of the theorem, thus we may choose our decompo- 
sition in such a way that N and each Ai meet the set {x r S r : K(x)  < - # }  for some 
# > 0. We will also assume that N meets A, on a circle F, :=  N if/A~ = ON A OAz. 

R "'P 

The desired metric will be con,~tlUCtcd ,~cparalely on N and the Ai's in such a way 
that it can be glued to give a smooth complete metric on S'. 

Since x ( N )  = X(S r) < 0 and inf (K)  < 0, there exists a metric 9 on N which 
N 

has curvature K and for which ON is geodesic. This follows from [KWl,  Theorem 
v 

11.6] applied to the double M = N tO N of  N (observing that all constructions in the 
proof may be performed in a o--invariant way, where ~ is the natural involution on 
M exchanging N and N,  giving thus a symmetric metric for which ON is obviously 
geodesic). 

Let ( t ,O)(-e  < t <__ 0;0  r R)/(r~Z)) be radial exponential coordinates (for the 
metric 9) in a neighbourhood of Fi in N.  T h u s , / / i s  the length of Fi, 0 is the length 
parameter along Fi, and we have in this neighbourhood 

9 = dr2 + a~(t, O)dO 2 , 

where ai(t, O) is a function such that ai(0, 0) = 1 and (Oai/Ot) (0, 0) = 0, since F~ is 
geodesic. 

Let us now parametrize Ai by (t, 0) E [0, o c [ •  in such a way that this 
parametrization is a smooth continuation of  the one defined above. We shall need the 
following. 

A.3. FacL. There exists a diffeomorphism ~ of Ai which is the identity in a neigh- 
bourhood of ['i = OAi in Ai, and such that the initial value problem 

OZb Ob 
(A.4) ~ (t, 0) + (K o r 0)) b(t, 0) = 0 ,  b(0, 0) = 1, ~-~ (0, 0) = 0,  

admits a positive solution bi. 
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Assuming this fact, we continue the proof of Theorem A.2. Define a metric 0 on 
S t by setting 

dr + b2(t, O) on Ai; 

9 =  g on N .  

Let us denote by ~ the diffeomorphism of S ~ which is the identiy on N and satisfies 
= ~i  on Ai. 
A simple check shows that ~*0 is a complete smooth metric with curvature K on 

S ~. This finishes the proof when X(S  ~) < O. 

Case 3. S ~ is a cylinder. If K - 0, then take the usual euclidean metric on S t ~ R2/Z.  
If K ~ 0, then decompose S ~ as S ~ = AI U A2 and use Fact A.3 to construct the 
desired metric separatedly on A1 and A2. 

Case 4. S ~ is a MObius band. Then work equivariantly on its orientation cover 
~ /z = R 2 

The theorem will thus be proved for all surfaces once Fact A.3 is established. To 
this aim, we will need two technical lemmas. We have to understand which conditions 
on a function f C C~([0 ,  oo[) insure that the solution ~t of 

u"(t) + f ( t )u( t )  = 0 with u(0) = 1 , u'(0) = 1 

never vanishes. The first lemma deals with "short time" behaviour of the solution, 
and will allow us to start with "better" initial data (namely u ~ > 0) in the above 
differential equation. 

A.5. Lemma.  Let f : [0, T] ~ R be a smooth function. Then, for  all B > O, there 
exists an c > 0 such that if 

IIf[lL,~ < B 2 and mes{ tE[O,  T l : f ( t ) > - # }  < e ,  

where # := 4T  -2, then the solution u of  the initial value problem 

(A.6) u" + f u  = O, u(O) = 1 ; u~(O) = 0 

is positive for  all t C [0, T] and satisfies u ' (T)  => 1/(2T). 

I min{ 1; T;  B - 2 e - B T ;  T - 1 B - Z e - B T } .  We Proof  We will prove the lemma with e = 
1 first show that u ->_ y on [0, e]. By the Sturm comparison theorem, we have u <_ e BT, 

hence integrating (A.6) once gives us 

(A.7) u~(t) 2> - - t B Z e  B T  " 

Integrating this inequality yields for t < e 

t 2 I 
'~*(t) >- 1 - - -  B2e BT >_ - 

- 2 - 2  

since c2B2e BT <= I < 1. 
l Then, we prove that ~t > ~ on [c, TI. Indeed, assume that there exists t r [0, T] 

I = inf{t [O, T l :u ( t )  < �88 In particular r < to < T. such that 'u(t) _<_ ~ and set to C = = 
Now, on the interval [0, to], we have 

- B 2 e  BT everywhere; 

u" = - f u  >= p, 
-~ everywhere in [0, to] minus a set of measure =< e .  
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We also have u'(O) = O, hence, for s C [e, to] 

I't (S -- e) -- eB2e BT (A.8) u'(s) >_ -~ . 

Integrating (A.8) from e to to yields 

u ( t o )  - u ( e )  > Iz = ~ (tO -- e) 2 -- (tO -- e)eBZe BT 

l _ _  1 hence, since u(e) > ~ and u(to) 

# 
0 < ~ (to - e) z =< u(to) - u(e) + (to - e)eB2e B r  _<- -41 _ 21 + e T B 2 e B r .  

This is impossible since e T B 2 e  s T  < ! 
4 "  
1 We have thus established that u > ~ on [0, T]. Now, from (A.8) we have 

1 z eB2eBT u'(T)  > ~ (T  - e) - 

since / p (T  - e) > 3 / (4T)  and cB2e BT <: 1/(4T), we conclude 

u' (T) > 1 
= 2 7 "  [] 

The second lemma deals with "long time" behaviour of  u. It is similar to Lemma 4.3 
in [KW2], and is again based on a comparison theorem for differential equations. 

A.9. Lemma.  Let f :[T, oo[--~ R be a smooth function (T  > 0). Let u be a solution 
o f  the equation u" § f u  = 0 such that 

u ' (T)  >= " /u(T)  > O, for  some "7 > O. 

Assume that there exists ce >= max{4, 2/(-,/T)} such that for  any t > T 

f f+(s )ds  < 1 
= c t t '  

t 

where f+ ( s )  = m a x { f  (s), 0}. 
Then, u does not vanish on [T, oo[. 

Proof. By the comparison theorem for differential equations (see [D, XIV 7.4]), it 
suffices to exhibit a function F on [T, oc[ which satisfies f =< F and such that there 
exists a non vanishing function v on IT, oc[ with 

v" + F v  = O, v(T)  > O, v ' (T)  > 0 ,  v'(T___) <= u'(T___)) 
v(T)  u(T)  

of) 

Now, let z(t)  = f f+(s )ds  + 1 
t c~t 

< 2 / (a t ) ,  and set F( t )  :=  - z ' ( t )  - z2(t). A 

F(t)  _: < 

1 
- f+( t )  + - S ~  (4 - a )  < - f (t) 

since a > 4. 
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t 

Let us set v ( t ) =  e x p f  z(s)'ds. Then, v satisfies v " + F v = O ,  v ( T ) =  1, 
T 

v'(T) = z(T) < 2/(oLT), and v does not vanish on [T, cx~[. 
Hence, since 3` = 2 / ( a T ) ,  the comparison theorem applies, and shows that u is 

everywhere positive on [ T , ~ [ .  [] 

We can now complete the proof of  Theorem A.2. To prove Fact A.3, we have 
to construct a diffeomorphism ~i of Ai which is the identity in a neighbourhood of  
1-'i = OAi and such that the initial value problem 

02b Ob 
(A.4) ~ (t, 0) + (K  o r 0)) b(t, 0) = 0 ,  b(0, 0) = 1, ~-~ (0, 0) = 0,  

admits a positive solution bi. 
Recall that K =< - #  in a neighbourhood of  some point of Ai. Thus, for every 

T > 0, there exists a non empty region U~ ~]0,  T [ x R / d Z  = :  Qi c Ai on which 

K __< - # .  We shall choose T = V/4-/#. Now take a simply connected domain Pi ~ Qi 
with smooth boundary and such that each "generatrix" {0 = const} intersects Pi on 
a set of  t-measure > T - e, where e is small enough for Lemma A.5 to apply (with 
#, T defined above and t32 = sup [K[). 

Q~ 

~ 0 

~ . . ~ " ~  ,. '. . . 

J ,  , , , , 
i , i * 

Now, choose also a diffeomorphism ~ of Qi mapping Ui onto Pi and such that 
~Pi is the identity on a neighbourhood of  OQi. 

Then, by Lemma A.5, the solution bi of 

02b (t, O) + (K o q)i(t, 0)) b(t, 0) = 0 b(0, 0) = 1 Ob 
Ot 2 , , - ~  (o ,  o )  = o 

is positive on ]0, T] and satisfies (Obi/Ot)(T, O) > O. 
Let us now set 3 , := inf{b~(O,T)/bi(O,T):O c R/ / /Z} ,  recall that 

l i m i n f K < 0  and construct as in [KW2, Lemma 4.7] a diffeomorphism qa~ of  
Ai\Q~ = [T, o c [ x R / d Z  which is the identity near the boundary {t = T} and 
such that for any 0 and any t __> T 

f K o qo~(s,O) ds <<_ 
1 

- -  o l t  ' 

t 

for a = max{4, 2/(3`T)}. 
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The desired diffeomorphism ~i of Ai is given by ~i = ~i on Qi and ~i = cp~ on 
Ai\Qi .  Indeed, Lemma A.9 applies and shows that the solution bi of (A.3) is always 
positive. This completes the proof of  Theorem A.2. [] 

Appendix B: Relations with uniformization theory 

First, we recall the Poincar6-Koebe uniformization theorem for open simply connected 
Riemann surfaces. 

B.1. Theorem.  Let S be a non compact simply connected Riemann surface. Then, S 
is either conformally equivalent to the plane C, or to the unit disk {z C C :lz I < 1 }. 

See [Ah2] or [Fis, Sect. 2.2] for a proof. 
The surface S is called parabolic in the first case, and hyperbolic in the second 

one. Uniformization theory may be defined as the study of the consequences of  this 
theorem. 

B.2. Corollary,  Let [2 be a Riemann surface homeomorphic to the annulus ]0, 1 [ • S 1 . 
Then, either (2 is conformally equivalent to C* or there exists a well dr number 
r E [0, 1[ such that [2 is conformally equivalent to {z E C : r  < Izl < 1}. 

The surface [2 is called parabolic if it is conformally equivalent to C* or 
D* = {z C C : 0  < Iz] < 1}, and hyperbolic otherwise. 

Proof(sketch). It is convenient to replace the unit disk by the (conformally equivalent) 
upper-half plane . ~  :=  {z E C:  Im(z) > 0}. 

By (B.I), the simply connected covering o f / 2  is ~ ~ .7/ or J) ~ C. 
If ~0 ~ ..~, then ~ = , T f / F  where F is a discrete infinite cyclic subgroup of  

PSL2(R) (the group of  contonn al transformations of.?/~). 
It is easy to prove that such a group is -- up to conjugation - generated by z H z +  1 

o r z H A z ( A >  1). 
In the first case, z~--~exp(2iTrz) is an isomorphism between .7~IF and 

{z E C : 0  < Izl < 1}. In the second case, z ~ z 2 ~  = exp(2iTrlog(z)/Iog(A)) 
(principal determination) is an isomorphism between . 7 / / F  and {z E C : r  < Izl < 1} 
(where/z = 1 / l ogA and r :-  e 27r21~). 

Now if ~ ~ C, then ~c2 = C/F ,  where F is generated by z H z + I, and 
z ~ exp(2irrz) is an isomorphism between C / F  and D*.  

Since an end of  a surface of finite topological type can be represented by a closed 
subset diffeomorphic to the annulus ]0, 1] x S t, the above corollary has the following 
important consequence. 

B.3. Corollary,  Let S be a Riemann surface o/'finite type. Then, there exists a compact 
Riemann sulfate S such that S is isomorphic to S minus a dL~joint union of ([in#ely 
many) points and disks. 

An end of  S is said to be parabolic if it corresponds to a point in 5~ and hyperbolic 
if it corresponds to a disk in 5~. 

Uniformization theory is thus relevant to geometry through the distinction between 
parabolic and hyperbolic ends. But, on the other hand, the geometry pays its tribute to 
the uniformization theory in offering alternative proofs of  some important theorems. 

B.4, Theorem.  Let 5; be a compact Riemann sulface; 
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if x(S)  > O, then S is isomorphic to C U {co}; 
if x(S)  = O, then S is isomorphic to C /A  (where A is a lattice in C); 
if X(S) < O, then S is isomorphic to ,2g/F (where F is a Fuchsian group). 

Furthermore, F and A are unique up to conjugation. 

Recall that a lattice in C is a subgroup generated by two complex numbers whose 
ratio is not real and that a Fuchsian group is a discrete subgroup of  PSL2R. 

Proof If X(S) > 0, then S is homeomorphic to a sphere and X(S) = 2. Choose a 
point p in S and consider the divisor ~ :--= - (2)p .  By (7.1), there exists a flat metric 
9 on S representing I~. It is easy to see that (S, 9) is isometric (hence conformally 
equivalent) to C tJ {ec} endowed with its usual flat metric Idz] 2. 

If X(S) = 0, then S admits (7.1) a smooth conformal flat metric 9, thus (S, 9) is 
isometric to (C, Idz[2), and the conclusion follows from the classification of  discrete 
groups of isometries of the euclidean plane. 

If x(S)  < 0, then S admits by (8.2) a smooth conformal metric 9 of constant curva- 
ture - 1 ,  thus (S, 9) is isometric to .7# equipped with its Poincar6 metric Idz/Im(z)l 2. 

Uniqueness for F (or A) is standard. [] 

For open surfaces, we also have by (8.2): 

B.5. Theorem.  Let S be an open Riemann surface of finite type difcerent from C and 
C*. Then, S is isomorphic to .~,/ / F  Jbr some Fuchsian group F. 

The above theorems state in particular that to each Riemann surface S with either 
X(S) < 0, or with an hyperbolic end, corresponds a Fuchsian group well defined up 
to conjugation. On the other hand, given a Fuchsian group of finite type F,  we can 
consider the quotient Q :=  3 / / F .  This quotient Q is generally not a Riemann surface, 
but it is an oriented 2-dimensional orbifold endowed with a conformal structure (see 
ITh, Sc] for these notions). To such an orbifold, we can associate a Riemann surface 
(of finite type) with a divisor (S, [I) in a canonical way: let 5: be a Riemann surface such 

that the regular part Q0 of Q is isomorphic to S '  = S \{p i ,  . . .  , p,~}, and 1~ :=  ~ fliPi 
i=1 

where /3~ = - 1  if Pi corresponds to a parabolic end of  Q and/3~ = (1/u~) - 1 if Pi 
is an orbifold singularity of local group Z/u~Z. 

It is clear that the Poincar6 metric on Q :=  3 / / F  gives rise to a metric 9 of  
curvature - 1  representing ~ on S (such that each hyperbolic end is complete). It is 
also clear that x(Q) (in orbifold sense) is equal to X(S,[I). 

With these preparations, we can state the following. 

B.6, Theorem.  There are canonical one-to-one correspondances between the follow- 
ing three classes: 

.7-: the class (~[ Fuchsian grotq~s of finite type up to conjugation; 
# : the class of oriented 2-dimensional orbi[olds of finite (vpe with a coJ!formal 

structure and such that x(Q) < 0 or with an hyberbolic end, up to isomorphism; 
. ' /:  the class of finite type Riemann surfaces with divisors (S,~) such that 

fit = (1/u~) - l f i , r  u~ C N U {oc}, and with X(S,[~) < 0 or with an hyperbolic 
end, up to isomorphism. 

P~wof. The bijection # +--* . /  has just been described. The map . 7  ---* # is given by 
F H Q = . 7 / / F  and is clearly injective. 

It only remains to prove that the compound map .7- --, # --, . ' /  is onto, a fact 
which follows from our Theorem 8.2. [] 
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Appendix C: The method of upper and lower solutions 
on a non compact manifold 

This appendix is devoted to the so-called "method of upper and lower solutions" used 
in Sect. 8 for solving on a non compact Riemannian manifold (M, g) the non linear 
equation 

A u  = he 2u - hi = f ( x ,  u) ,  

where h and hi are assumed to be locally H61der continuous. 
In the compact case, a proof has been given by Kazdan and Warner [KWI,  Sect. 9], 

and in the non compact case by Ni and Noussair. We basically follow their exposition 
[Ni2, Theorem 2.10; Nou]. 

Let us first describe the method. Assuming we are already provided with upper 
and lower solutions u+ and u_,  i.e., that 

A u _  <__ f ( x , u _ ) ,  Au+ >_ f ( x , u + ) ,  with u_ <_ u+ ,  

we follow an iterative scheme based on a compact exhaustion of  M,  and construct a 
solution u of  the equation 

A u  = f ( x ,  u) 

which satisfies u_ _< u _< u+. 
The main result is stated in (C.4). We will first set the method of  upper and lower 

solutions for a non linear Dirichlet problem on a compact Riemannian manifold with 
boundary (C.2). For this purpose, we need the following existence result for a linear 
Dirichlet problem. 

C.1. Lemma.  Let (N, ON) be a compact smooth riemannian manifold with boundary, 
f C L~176 and w C C2'6(JY)for some 0 < 6 < l, and c > 0 be a constant. Then, 
the Dirichlet problem 

A u  = - e u  + f ( x ) ,  u log = w 

has a unique solution u C W22(N).  
Iffurthermore f E C6(N),  then u E C2'6(N). 

Proof. We better set v = u - w and solve the Dirichlet problem: 

A v  = - -cv  + f l  , V[ON = 0,  

with f l  = f - cw - A w  E L~~ 

Fix a real number b with 2cb > (1 + I]fl]l~) and, for v E Wo'2(N),  define 

, ) J ( v ) =  ]Vv] 2 + ~ c v  2 - f l v + b  dv o. 

N 

1 From the choice of b, we have Iv] =< 2 cv2 - f l y  + b, hence 

IlVvll  + I1 11, ---_ 2Jr  

and from the Poincar6 inequality we get 

I lv l lw, ,2  _-__ CJ(v), 

where C is a constant. 
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Let c~ := i n f { J ( v ) : v  E Wo'2(N)}, and let (v j )  E wl '2( /~)  be a minimizing 
sequence for J .  Since ]lvj Ilwl,2 is bounded, there exists a subsequence which con- 

verges weakly to v ,  in Wo ~'2, hence strongly to v ,  in L 2. Now, the Dirichlet integral 
v ~ f [Vvl 2 being lower semi-continuous with respect to the weak topology on 

N 

W~ '2, we have J ( v , )  = c~. 

Thus, for any r E C~(fi/) ,  we have 

0 = ~ J ( v ,  + tO)It=0 = (Vv, ,  Vr + c v , r  - f i e ,  

N 

that is v ,  is a weak solution of A v ,  = - c v ,  + f l .  

Thus v ,  E W 2'2 M Wo '2, hence by the embedding theorems of Sobolev, v ,  E 
CO(N). In case f C CO(fi) ,  we also have A v ,  E CO(N),  so that the Schauder regu- 
larity yields v ,  E C2'6(fi). Uniqueness follows from the Hopf maximum principle 
(cf. [aT, 8.11). [] 

We can now state and prove the result for a compact manifold with boundary. 

C.2. Proposition. Let (N,  ON)  be a smooth compact Riemannian manifold with 
boundary, w E C2'e( f i )  for  some 6 E]0, 1[, and f :l~ x R --~ R be such that: 

(i) f is locally HOlder continuous on f i x  R;  
(ii) f o r  any -cxD < a < b < o~, there exists a positive constant c = c(a, b) such 

that, f o r  a <-_ tl <= to <= b, we have f ( x ,  to) - f ( x ,  t l )  > - c ( t o  - tD. 
Assume there exist upper and lower solutions u• E W I ' 2 ( N )  M C ~  

zOu_ < f ( x ,  u _ ) ,  Au+ > f ( x ,  u+),  

u_log < w = U+IoN >_ W 

with u_ <= u+. Then, there exists a solution u E C2(N) o f  the Dirichlet problem 

(D) Au = f ( x ,  u ) ,  U[ON = W 

which satisfies u_ < u < u+. 

Proof. Let u_(N),  u+(N) C [a,b], c = c(a,b) and assume w.l.o.g, f is C 6 on 
x [a, b]. Let ul E wz ' e (N)  be the (unique) solution of 

Z~Ul  ~" - -  CUl -~- ( f  (x,  u+ ) + cu+ ) , U l [ o N  : 713 

(see C. 1). We claim the following: 

Assertion. u: satisfies u_ < ul < u+ and is an upper solution for (D). 

For A ( u l  -- u+) < A u l  -- f ( x , u + )  < -- c(ul -- u+), hence ul < u+ (if not, the 
maximum of (Ul - u+) would be positive and achieved at a point where A(ul -- u+) 
is negative, a contradiction to the maximum principle, see [GT, 8.1]). 

Argue similarly with 

A ( u _  - u l )  < f ( x , u _ ) -  A u l  

__< (f(x,  u_)  -- f ( x ,  u+ )) + c(u: -- u+ ) 

< c(u+ -- u_)  + c(ul -- u+) by hypothesis (ii) 

< - e ( u _  - u l ) ,  

hence u_ < Ul 
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Finally, Aul  - f ( x ,  ul)  = f ( x ,  u+) -- f ( x ,  ul)  + c(u+ -- Ul) ~ 0, (by hypothesis 
(ii) and the choice of c), so that u~ is a supersolution. 

Now Lemma C.1 provides us recursively with a decreasing sequence (uj) j> 2 of 

supersolutions uj E W2'2(N -) for (D) by setting 

A u j  = - cuj + f ( x ,  u j - l )  + eu j - i  

UjlON = W j >= 2. 

Since W <2 C C ~, f ( x ,  u j -1)  c C ~ hence uj C C2'e(N) (j > 1). By the above 
arguments, u_ _-< . . .  =< uj  =< uj-1 = < u+ and A u j  => f ( x ,  u j )  on N. 

Since Iluj I1~ is uniformly bounded, so is ]lAuj I1~. Moreover, the u j ' s  have fixed 
boundary values, hence elliptic regularity [GT, 9.17] yields that 

Vp> 1, Ilujllw2,p(g) is bounded. 

By the embedding theorems of Sobolev [GT, 7.26], we know that (uj)  is bounded in 
some C~'~(N)(0 < c~ < 1), hence [[Auj IIc,(~) is again bounded. 

Now, the Schauder estimates [GT, 6.6] prove that (uj)  is bounded in Ce'6(N), 
hence contains a subsequence which converges in C2(N). Let u be its limit. Then 

u_ <- u N u+, A u  = f ( x , u ) ,  UION = w ,  

thus u is the desired solution. [] 

We finally set an a priori estimate which will be useful in the iteration procedure 
of Theorem C.4. 

C.3. Lemma.  We work under the same assumptions as in (C.2). Let K ~ N be a 
compact domain with smooth boundary contained in the interior o f  N .  Then, there 
exists a constant C = C ( K )  such that if u E C2(N) satisfies: 

(i) u _ _ < u _ < u + ,  
(ii) A u  = f ( x ,  u), 
then Ilullc2,6(u) <= C. 

proof. Let u• C [a, b] and f(Sr • [a, b]) C ] - B ,  B]. Since u_ < u ____ u+, we 
have IIf(x,u)ll~ <= m hence IIAull~ __< B. 

Now, let Kl be a compact domain with K ~ K�91 ~ N. The interior L p estimates 
[GT, 9.11 ] yield for any p > 1 

Ilul[w2.p(K,) =< c(p, B).  

And we derive from the Sobolev embedding theorems (cf. [GT, 7.26]) 

Ilullc,,~(K,) <= C ' ( p , m ,  for some a > 0, 

hence 

[IAuIIC~K,~ <= C"(p, B) 

(since u satisfies A u  = f ( x ,  u)). 
Now, the Schauder interior estimates (cf. [GT, 6.2]) show that 

Ibllc=,~(K)_-< C(K). [] 

The proof of the main result of this section is now straightforward. 
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C.4. Theorem.  Let (M, g) be a non compact Riemannian manifold, exhausted by a 
sequence (Ni,  ONi) of  compact smooth manifolds with boundaries, that is with 

N~ N Ni+l ,  U Ni = M .  
i c N  

Let f : M x R --+ R be such that." 
(i) f is locally HOlder continuous on M x R; 

(ii) for  any - o c  < a < b < oo, and any compact subset N c M,  there exists a 
positive constant e = e(a, b, N )  such that, for  a = < t~ = < to = < b 

f ( x ,  to) - f ( x ,  t l )  >-_ - c(to - t l)  

1/1/1, 2 holds. Assume there exist upper and lower solutions u i  C ,, loc fq C~ and 
26 M w E C(o' c(  ) ,wi th  

A u _  < f ( x , u  ) Au+ > f ( x , u + ) ,  u_ < w < u+ 

Then, there exists a solution u C C2(M) of  the equation A u  = f ( x ,  u), which satisfies 
u _ < _ u < _ u + .  

Proof. Let vj C C2(~jj) (j  E N) be a solution of the following Dirichlet problem on 
Nj: 

A v j  = f ( x ,  v j ) ,  VjloN 3 = W ,  with u_ < v j  < u +  

known to exist by (C.2). These functions satisfy the a priori estimates (C.3): 

for 0 < k < j - 1 :l]vjllc2,~(k)(2k) < C ( k ) ,  

where c~(k) E]0, l[ and C(k)  depend only on k. 
Since the embedding C2,~(N-T) c C2(~1) is compact, there exists a subsequence 

(vj j)  which converges in C2(N-~l) to some function ul c C 2 ( ~ ) .  
By induction, we produce subsequences (Vjk+l )C(v jk ) (k  >= 1), such that 

(vjk+l) converges in C2(Nk+1) to Uk+lEC2(Nk+l) ,  and with u_ <= Uk+l < u+, 

Uk+lINk :--- U k. 
Thus, we can define a function u E C2(M) as follows: 

for k=> I : U l N  k = U k ,  

SO that the diagonal sequence (vj3) converges to u in the compact-C 2 topology. 
Hence u is a (classical) solution of the equation A u  = f ( x , u ) ,  and satisfies 

moreover u_ g u < u+. [] 
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