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1. In this paper, we will consider compact kählerian manifolds with negative
or zero first Chern class. Since the work of Aubin-Calabi-Yau, it is known that such a
manifold M carries a unique Kähler-Einstein metric in each Kähler class if c1(M) = 0,
and a unique Kähler-Einstein metric with Einstein constant −1 if c1(M) < 0.

When c1(M) < 0, or more generally when M is projective, one can ask whether
one of the Kähler-Einstein metrics carried by M can be realized by a complex isometric
embedding of M into a complex projective space equipped with its Fubini-Study metric
g
F−S

. The following asserts that this never happens.

Theorem : Let (Mn, g) →֒ (PN , g
F−S

) be an Einstein compact complex submanifold

of the projective space. Then the Einstein constant of M is strictly positive.

(In the sequel, we will normalize the Fubini metric g
F−S

so that it has constant holo-
morphic sectional curvature 4, and will place no restriction on the value of the Einstein
constant of M .)

This result can be seen as an extension of the well-known theorem by E. Calabi [5],
which states that (PN , g

F−S
) admits no complex submanifold with nonpositive constant

holomorphic sectional curvature.

On the other hand, flag manifolds provide us with a series of Fano (homogeneous)
examples of complex submanifolds of (PN , g

F−S
) which are Einstein for the induced metric

[6].

When c1(M) < 0, that is when the canonical bundle KM of M is ample, it is worth
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comparing our result with the following asymptotic theorem obtained by G. Tian [7] and
T. Bouche [3] :

Let g be the unique Kähler-Einstein metric on M with Einstein constant
−1. One can build, from each (high) power Km

M of the cano–nical bundle of
M , a projective embedding im : M →֒ (PN(m), g

F−S
), so that if we denote

by gm the corresponding induced metric, the normalized sequence of metrics
gm/m converges C2 to g.

Here, the metric g is obtained as a limit of metrics induced by complex embeddings into
projective spaces (which dimensions and holomorphic sectional curvatures are unbounded).

Let us finally note, as a particular case of the above theorem, the fact that none of
the Calabi-Yau metrics carried by an algebraic K3 surface can be realized by a projective
embedding. The question was raised in [4] by J-P. Bourguignon.

The sequel of the paper is devoted to the proof of the theorem.

2. We work in the projective space P
N = (CN+1\{0})/C∗ equipped with its Fu-

bini metric (with constant holomorphic sectional curvature 4) and consider a (connected)
complex submanifold i : Mn →֒ P

N endowed with the induced Kähler metric g.
Let us pick up a point m in M , and choose a unitary frame (e0, . . . , eN ) for C

N+1

with m = [C·e0], and in such a way that, if M̂ ⊂ C
N+1\{0} denotes the cone above M ,

the tangent space to M̂ at any point m̂ ∈ C ·e0 is spanned by the first (n + 1) vectors
(e0, . . . , en).

Let then P
N−1(m) be the hyperplane at infinity relative to the point m, that is the

set of all complex lines in C
N+1 which are perpendicular to e0 ; the homogeneous co-

ordinate system [1; z1, . . . , zn; zn+1, . . . , zN ] associated to our frame allows us to identify
P
N\PN−1(m) with C

N = C
n×C

N−n ; the immersion i is then given around m by a graph

z = (z1, . . . , zn) ∈ C
n −→ [1, z1, . . . , zn; f1(z), . . . , fN−n(z)] ∈ C

n × C
N−n ,

where the (fj)1≤j≤N−n are holomorphic functions which vanish at the order 2 at the origin.

Let us denote by M(m) = M ∩P
N−1(m) the part of M which lies in the hyperplane at

infinity relative to m. Assuming that (M,g) is Einstein, we will prove that the restriction
to M \M(m) ⊂ C

n × C
N−n of the n first homogeneous coordinates (z1, . . . , zn) of PN

–which are holomorphic on M\M(m)– actually provides us with a local coordinate system
in the neighbourhood of any point of M\M(m) (although this was a priori only true in the
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neighbourhood of m) ; moreover we will derive a simple identity linking the riemannian
volume element of M \M(m), and the euclidean volume element of the chart Cn.

The following proof was inspired by [5] and [1], who exhibit, in the neighbourhood of
any point of a Kähler-analytic manifold, a preferred potential and local coordinate system.

3. The function log (1+
∑N

i=1 |zi|
2) is a Kähler potential for the Fubini-Study metric

on P
N \PN−1(m). It induces by restriction to M \M(m) a Kähler potential for g, which

reads in our chart around m as :

D(z) = log (1 +

n∑

α=1

|zα|
2 +

N−n∑

j=1

|fj|
2) = log (1 + |z|2 + |f |2) .

Let us denote by ω and ρ the Kähler and Ricci forms of g ; around m,

ω =
i

2

∑
gαβ̄ dzα ∧ dz̄β =

i

2
∂∂̄ D

ρ = −i ∂∂̄ log (det gαβ̄)

hold, where det gαβ̄ = det (∂2D/∂zα∂z̄β) denotes the riemannian volume element for
(M,g) expressed in our chart (zα).

Let us assume from now on that (M,g) is Einstein with Einstein constant 2k ; then
ρ = 2kω, and there exists around m an holomorphic function ϕ satisfying

log det (
∂2D

∂zα ∂z̄β
) = −kD + ϕ+ ϕ̄ ;

now since
D = |z|2 +

∑

|a|≥2,|b|≥2

ca,b z
az̄b ,

only mixed terms (that is of the form zaz̄b with a 6= 0 and b 6= 0) will show up in the (z, z̄)
series expansion of the left side of the above identity ; this will force ϕ + ϕ̄ = 0, hence
around m :

det (
∂2D

∂zα ∂z̄β
) = (1 + |z|2 + |f |2)−k = e−kD ,

or better, denoting by vg the riemannian volume form for (M,g) :

vg = in2−n (1 +
n∑

α=1

|zα|
2 +

N−n∑

j=1

|zj |
2)−k dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n . (∗)

Both sides of this identity being real analytic on M\M(m), we infer that (∗) is actually
satisfied on the whole (connected) M \M(m). In particular, the projection

πm : [1; z1, . . . , zn; zn+1, . . . , zN ] ∈ M \M(m) −→ (z1, . . . , zn) ∈ C
n
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provides us in the neighbourhood of any point of M\M(m) with a local coordinate system.

4. From now on, we will assume that M is compact hence algebraic by Chow’s
theorem, and that the Einstein constant 2k of (M,g) is nonpositive. Then, the identity
(∗) implies that, at each point of M \M(m), the riemannian volume element of (M,g)
is bounded below by the euclidean volume element of the chart πm. This allows us to
estimate from below the riemannian volume of M :

vol (M,g) ≥ voleucl (πm(M \M(m)) . (∗∗)

On the other hand, the algebraic map πm : M\M(m) −→ C
n is open, hence its image

is Zariski dense in C
n (that is, πm is a dominant morphism). Thus Chevalley’s theorem

([2]) asserts that this image actually contains a Zariski open subset of Cn, hence is of
infinite euclidean volume, a contradiction with (∗∗) : the theorem is proved.
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