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Abstract

We prove that a Jordan curve in the 2-sphere is a quasicircle if and
only if the closure of its orbit under the action of the conformal group
contains only points and Jordan curves.

1 Introduction

The 2-sphere S2, oriented and equipped with its standard conformal struc-
ture, is isomorphic to the complex projective line P1C ' C ∪ {∞}.

Let K ≥ 1. By definition (see [16] or paragraph 2.1), a K-quasicircle
c ⊂ S2 is the image c = f(c0) of a circle c0 ⊂ S2 under a K-quasiconformal
homeomorphism f : S2 → S2.

Our aim in this paper is to characterize those Jordan curves in S2 that
are quasicircles in terms of their orbit under the action of the conformal
group G := Conf+(S2) ' PSl2C.

Let K denote the set of nonempty compact subsets of S2 equipped with
the Hausdorff distance. This space K is a compact metric space. Observe
that, when C ( S2 is any proper compact subset of S2, the closure GC ⊂ K
of its orbit in K contains all singletons in S2. We thus also introduce K0 ⊂ K,
the set of compact subsets of S2 distinct from a singleton.

Theorem 1.1 Let K ≥ 1. The set of all K-quasicircles of S2 is a closed
G-invariant subset of K0.

Conversely, any closed G-invariant subset of K0 which consists only of
Jordan curves is included in the set of K-quasicircles for some K ≥ 1.1

A straightforward consequence is the following topological characteriza-
tion of quasicircles.
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Corollary 1.2 A Jordan curve c ⊂ S2 is a quasicircle if and only if its orbit
closure Gc in K consists only of points and Jordan curves.

In other words, quasicircles are characterized among Jordan curves by
the fact that “when zooming in, one sees nothing but Jordan curves”.

Since they were first introduced by Pfluger and Tienari in the early 60’s,
a number of various characterizations of quasicircles has been progressively
discovered. This history leading to an impressive list of equivalent definitions
is the subject of the nice and recent book “The ubiquitous quasidisk” by
Gehring and Hag [9]. Our new characterization has yet a different flavour.

The paper is organized as follows. In Section 2, we briefly recall the
definition of quasiconformal maps and quasicircles, and prove that the limit
in K of a convergent sequence of K-quasicircles is either a point or a K-
quasicircle. This result, which is the first part of Theorem 1.1, follows readily
from a standard compactness result for K-quasiconformal homeomorphisms
of S2. We also recall the so-called Ahlfors’ arc condition, which is a criterion
for a Jordan curve in S2 to be a quasicircle. In section 3 we outline the
proof of the second part of Theorem 1.1. It involves three intermediate
results : Propositions 3.1, 3.3 and 3.4. We fill in on the details of these
three propositions in Section 4 where we address topology of the plane, in
Section 5 where we consider maximal disks in Jordan domains of S2, and in
Section 6 where we examine finite sequences of real numbers. We wrap up
the proof of Theorem 1.1 in Section 7.

In Section 8, we will explain an analog of Theorem 1.1 where Jordan
curves are replaced by Cantor sets (Theorem 8.1). In Section 9, we give an
elementary proof of a technical result (Proposition 5.6) which is needed in
our proof.

2 Limits of K-quasicircles

In this section, we prove the first part of Theorem 1.1. It
relies on the classical compactness property of K-quasiconformal
maps (Theorem 2.1). We also recall Ahlfors’ characterization of
quasicircles (Theorem 2.4).

2.1 Quasiconformal maps and quasicircles

Let us first recall the definition of quasiconformal maps (see [2] or [13]).

A quadrilateral Q is a Jordan domain in S2, together with a cyclically
ordered quadruple of boundary points. We say that two quadrilaterals Q
and Q′ are conformally equivalent when there exists an homeomorphism
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ϕ : Q → Q′ between their closures that sends the vertices of Q to the
vertices of Q′, and whose restriction ϕ : Q→ Q′ is a conformal map.

Any quadrilateral Q is conformally equivalent to a rectangle R with
vertices (0, x, x+ iy, iy) where x and y are positive. The conformal modulus
of the quadrilateral Q is then defined as m(Q) = m(R) := x/y.

A homeomorphism f : S2 → S2 is said to be K-quasiconformal (K ≥ 1)
if the inequalities

K−1m(Q) ≤ m(f(Q)) ≤ Km(Q)

hold for any quadrilateral Q ⊂ S2.

A conformal homeomorphism f : S2 → S2 is 1-quasiconformal. It can be
proved that the converse is true, that is, a 1-quasiconformal homeomorphism
is actually conformal ([13], Theorem I.5.1). It follows immediately from the
definition that, when fi : S2 → S2 are Ki-quasiconformal homeomorphisms
(i = 1, 2), the composed map f1 ◦ f2 : S2 → S2 is K1K2-quasiconformal.

As already mentionned, a K-quasicircle c ⊂ S2 is the image c = f(c0) of
a circle c0 ⊂ S2 under a K-quasiconformal homeomorphism f : S2 → S2.

2.2 Compactness for quasiconformal maps

Equip the 2-sphere S2 with its canonical Riemannian metric d. The main
property of quasiconformal maps that will be used in this paper is the fol-
lowing fundamental compactness theorem.

Theorem 2.1 [13, Theorems II.5.1 and II.5.3] Let K ≥ 1, z1, z2, z3 be three
distinct points in S2, and fn : S2 → S2 be a sequence of K-quasiconformal
homeomorphisms such that the three sequences (fn(zi))n≥1 converge to three
distinct points. Then, there exists a subsequence (fnk

) and a K-quasiconfor-
mal homeomorphism f : S2 → S2 such that fnk

→ f uniformly on S2.

We will infer that the limit of a sequence of K-quasicircles that converges
to a compact set which is not a point is also a K-quasicircle. Moreover,
we will prove that one can choose parameterizations for this sequence of
quasicircles that converge to a parameterization of the limit. This means
that a convergent sequence of K-quasicircles cannot fold several times over
its limit, that is, the configuration in Figure 1 is forbidden.

Let S1 := R ∪ {∞} denote the standard circle in S2 ' C ∪ {∞}.

Proposition 2.2 Let cn ⊂ S2 be a sequence of K-quasicircles that converges
in K to a compact set c∞ ⊂ S2 which is not a point. After going to a
subsequence if necessary, there exist K-quasiconformal homeomorphisms fn :
S2 → S2 and f∞ : S2 → S2 with cn = fn(S1), c∞ = f∞(S1), and such that
fn → f∞ uniformly on S2.
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Proof Let hn be a K-quasiconformal homeomorphism of S2 such that
cn = hn(S1). The limit c∞ = lim cn, as a limit of compact connected sets,
is also compact and connected. Since c∞ is not a singleton, it contains at
least two, hence three distinct points x∞, y∞ and z∞.

For each n ∈ N, one can pick three distinct points xn, yn, zn in S1 such
that hn(xn) → x∞, hn(yn) → y∞ and hn(zn) → z∞. Let γn ∈ PSl2R ⊂
PSl2C be the conformal transformation of S2 that preserves S1 and that
sends 0 to xn, 1 to yn and ∞ to zn. Each map fn := hn ◦ γn : S2 → S2 is
still a K-quasiconformal homeomorphism of S2 such that cn = fn(S1). We
now have fn(0) → x∞, fn(1) → y∞ and fn(∞) → z∞. Thus Theorem 2.1
applies to the sequence (fn), and yields the result. �

This proves the first part of Theorem 1.1. To prove the second part of
Theorem 1.1, we will use the following characterization of quasicircles due
to Ahlfors.

2.3 Ahlfors’ arc condition

We recall that a Jordan arc a ⊂ S2 is a subset of S2 which is homeomorphic
to the closed interval [0, 1].

Definition 2.3 A Jordan curve c ⊂ S2 satisfies the arc condition with con-
stant A ≥ 1 if, for any pair of points x, z ∈ c delimiting two Jordan arcs
a+, a− on c, their diameters satisfy

min(diam(a+),diam(a−)) ≤ Ad(x, z) .

Theorem 2.4 (Ahlfors, see [1] and [9, Theorem 2.2.5]) A Jordan curve
c ⊂ S2 is a quasicircle if and only if it satisfies the arc condition.

The implied constants depend only on each other.

3 An overview of the proof of Theorem 1.1

We sketch the proof of the second part of Theorem 1.1. It will
consist of four propositions that will be proved in the following
sections.

We assume that

F is a closed G-invariant subset of K0, which consists only
of Jordan curves and such that, for all A ≥ 1, there ex-
ists a Jordan curves in F that does not satisfy Ahlfors’ arc
condition with constant A.

(3.1)

Under this assumption, we want to find a contradiction. The first step is
the following and will be completed in Section 4.
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Proposition 3.1 Two threads with the same limit. Assume (3.1). Then,
there exist a sequence (cn) in F that converges to a Jordan curve c∞ ∈ F ,
a Jordan arc a∞ ⊂ c∞ and, for each n ∈ N, two disjoint Jordan arcs an
and a′n in cn such that both sequences (an) and (a′n) converge to a∞ when
n→∞.

c

cn

an

a'n

∞

a
∞

y

z

x

t
∞

n

n

n

n

x

Figure 1: Two threads with the same limit. Note that this cannot happen in a

convergent sequence of K-quasicircles.

We will assume from now on, without loss of generality, that the Jordan
arc a∞ lies in C ⊂ C ∪ {∞} ∼ S2. What we have in mind to obtain
our contradiction is now to zoom in, that is to replace each cn by another
Jordan curve γncn ∈ F where γn ∈ PSl2C fixes the point ∞, and examin
the behaviour of the arcs γnan and γna

′
n.

To achieve this goal, we will first associate to each one of the Jordan
curves cn a “pearl necklace”, that is a sequence of disks roughly joining
the endpoints of a∞ and channelled by the arcs an and a′n (see Figure 2).
This necklace will grow thinner as n → ∞. The precise statement, which
constitutes our second step and will be proved in Section 5, is as follows.

Definition 3.2 Let U ( C be an open subset. A necklace N = (D(i)|i ∈ I)
in U is a sequence of open disks D(i) ⊂ U of the complex plane, indexed by
a finite interval I ⊂ Z, and that satisfy the following conditions :

1. two consecutive disks D(i) and D(i+ 1) intersect orthogonally

2. when |i− j| ≥ 2, the disks D(i) and D(j) do not intersect

3. for each three consecutive disks, the set ∂D(i) \ (D(i−1)∪D(i+1)) is
a disjoint union of two arcs that both meet the boundary ∂U .

The thickness of the necklace N is the ratio

max
i∈I

diamD(i)/diam(∪i∈ID(i))

where diam denotes the diameter with respect to the Euclidean distance on
C. The necklace is said to be ε-thin if its thickness is bounded by ε.
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Figure 2: A pearl necklace

Proposition 3.3 Thin pearl necklaces. Assume (3.1). Then, for each
ε > 0, there exist a Jordan curve cε ∈ F and an ε-thin necklace Nε =
(Dε(i)|i ∈ Iε) in the domain Uε = C \ cε.

As mentioned above, the last step of the proof will consist in zooming in
on a well chosen pearl of each of these necklaces to obtain a contradiction.
To this effect, we associate to each necklace Nε provided by Proposition 3.3
the sequence

xε = (xε(i)|i ∈ Iε) , where xε(i) = log diamDε(i) ,

of the logarithms of the diameters of the Dε(i)’s.

Our third proposition is a very general statement on families of sequences
of real numbers and will be proved in Section 6.

Proposition 3.4 Finite sequences of real numbers. Let S be a family
of sequences x = (x(i) | i ∈ Ix) of real numbers, indexed by finite intervals
Ix ⊂ Z. Then at least one of the following three possibilities occurs.

1. There are pipes in S : there exists a thickness h1 > 0 such that, for
any length `, there exists a sequence x ∈ S and a subinterval J ⊂ Ix
with length |J | = ` such that

|x(i)− x(j)| ≤ h1 for any i, j ∈ J .

2. There are wells in S : for any depth h2 > 0, there exist a sequence
x ∈ S and i < j < k in Ix such that

x(j) < x(i)− h2 and x(j) < x(k)− h2.

3. All sequences in S are slides : there exist a height h3 ∈ R and a slope
σ > 0 such that for any sequence x ∈ S and any index i0 ∈ Ix such
that x(i0) = max{x(i), i ∈ Ix}, one has

x(i) ≤ x(i0) + h3 − σ|i− i0| for any i ∈ Ix.
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By applying Proposition 3.4 to the family SF of finite sequences associated
to the necklaces in Proposition 3.3 we will obtain Proposition 3.5 which
provides us with the desired contradiction.

Proposition 3.5 Excluding the three cases. Assume (3.1). Then, there
are no pipes in SF . There are no wells in SF . Not all the sequences in SF
are slides.

Proposition 3.5 will be proved in Section 7.

4 Constructing the two threads

Proof of Proposition 3.1 Recall that F ⊂ K0 is a closed G-invariant
subset of K0 which consists only of Jordan curves, and that the Jordan
curves in F do not satisfy a uniform Ahlfors’ arc condition. This means
that we can find a sequence cn ∈ F and, for each n ∈ N, a cyclically ordered
quadruple (xn, yn, zn, tn) of points on cn such that

min(d(xn, yn), d(xn, tn)) ≥ n d(xn, zn) .

Note that this forces d(xn, zn) → 0. Replacing if necessary each Jordan
curve cn by γn(cn) ∈ F , where γn ∈ PSl2C is a suitable zoom in on the
point xn, we may assume moreover that

r := infn∈N min(d(xn, yn), d(xn, tn)) is positive .

We want to prove that there exist, for each n ∈ N, two disjoint Jordan arcs
an and a′n in cn that converge to the same Jordan arc a∞ when n→∞.

The sphere S2 and the space K are compact metric spaces. Going to a
subsequence, we may thus also assume that :

– there exist three points x∞, y∞ and t∞ in S2 with x∞ 6= y∞ and x∞ 6= t∞,
and such that

xn → x∞, zn → x∞, yn → y∞, tn → t∞ when n→∞

– the sequence of Jordan curves (cn) converges in K. Its limit c∞ is not a
singleton since it contains the points x∞ 6= y∞. Since F is a closed subset
of K0, the limit c∞ belongs to F : it is a Jordan curve.

Consider the four Jordan arcs

[xn, yn], [xn, tn], [zn, yn] and [zn, tn].

We shorten each of them, keeping the first endpoint xn or zn, in order to get
a Jordan arc whose diameter is exactly r/2. Going again to a subsequence,
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we may assume that each one of these four sequences of shortened arcs
converges in K. Their respective limits α1, α2, α3 and α4 are compact
connected subsets of c∞ that contain x∞ and have diameter r/2 so that
they all are Jordan arcs in c∞. Thus there exists a Jordan arc a∞ ⊂ c∞
that contains x∞ as an endpoint and that is a subarc of at least two of the
limit sets αi (see Figure 1). Proposition 3.1 now follows from Lemma 4.1.
�

Lemma 4.1 Let αn ⊂ S2 be a sequence of Jordan arcs converging to a
Jordan arc α∞. Let a∞ be a Jordan subarc of α∞. Then, there exists a
sequence of Jordan subarcs an ⊂ αn such that an converges to a∞.

Proof Using Jordan theorem, one may assume that α∞ ⊂ S1 and a∞ =
[−1, 1]. The proof in this case is left to the reader. �

5 Pearl necklaces

5.1 Normal disks and Thurston’s stratification

Recall that S2 is equipped with its canonical Möbius structure. Let U ⊂ S2
be a connected domain that avoids at least two points. W. Thurston intro-
duced a stratification of the domain U associated to the family of maximal
disks D ⊂ U sitting in U . We briefly recall the construction of this stratifi-
cation, and the facts we will be using in this paper.

Any disk D ⊂ S2 carries a conformal hyperbolic metric, whose geodesics
are arcs of circles that cut the boundary ∂D of D orthogonally. The convex
hull, for this metric, of a subset A ⊂ ∂D will be denoted by convD(A) ⊂ D.

Definition 5.1 An open disk D ⊂ U is normal when its boundary ∂D meets
∂U in at least two points. When D ⊂ U is a normal disk, define

C(D) = convD(∂D ∩ ∂U) .

Note that a normal disk D ⊂ U is maximal among the disks sitting in U .

Proposition 5.2 (W. Thurston) For any point p ∈ U , there exists a unique
normal disk Dp ⊂ U such that p ∈ C(Dp). This disk Dp depends continu-
ously on the point p ∈ U .

This means that the convex hulls C(D) of all the normal disks provide
a stratification of U .

A proof of this proposition is given in [11, Theorem 1.2.7], [12], [7] or [3,
Chapter 4]. See also [15] and [8] for other applications of this construction.
For the convenience of the reader we include a short and elementary proof.

Proof of Proposition 5.2 We may assume U ⊂ C.
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Uniqueness Just notice that, for any two open disks D1 and D2 in C,
the convex hulls ConvD1(∂D1 \D2) and ConvD2(∂D2 \D1) do not meet.

Existence Let p ∈ U . We will use the inversion jp : z 7→ (z − p)−1

of the sphere. We introduce the compact subset Kp := jp(S2 \ U) of C.
Recall that there exists a unique closed disk ∆p of C with minimal radius
that contains Kp. Moreover the intersection ∂∆p ∩ ∂Kp is not included in
an open arc of ∂∆p whose endpoints are diametrically opposed. Thus the
open disk Dp := j−1p (S2r∆p) is a normal disk of U and the point p belongs
to the convex hull C(Dp).

Continuity Since the compact set Kp depends continuously on the point
p, the disks ∆p and Dp also depend continuously on p. �

Notation 5.3 When p ∈ U , we will denote by Cp := C(Dp) ⊂ U the
stratum that contains the point p.

When D ⊂ U is a normal disk, let λ(D) ⊂ U denote the boundary in
the disk D of the convex hull C(D). This boundary λ(D) has a finite or
countable number of connected components, which are arcs of circles.

Assume from now on the domain U to be simply connected. Then, when
D ⊂ U is a normal disk, U \C(D) is not connected. More precisely, we have
the following lemma whose proof is left to the reader.

Figure 3: A normal disk D and the connected components of U \ C(D)

Lemma 5.4 Let U ⊂ S2 be a simply connected domain that avoids at least
two points, and D ⊂ U be a normal disk. If ∂D ∩ ∂U contains only two
points, then U \ C(D) has two connected components. If ∂D ∩ ∂U contains
at least three points then, there is a natural bijection between the set of
connected components Ω of U \ C(D) and the set of connected components
of λ(D). It is given by Ω −→ ∂Ω ∩ U .

5.2 Monotonous paths

We now introduce monotonous paths in the simply connected domain U .

Definition 5.5 Let x, y, z be three points of U . We say that y lies between
x and z if one cannot find a connected component of U \ Cy that contains
both x and z. A path γ : [0, 1] → U is monotonous if, for any parameters
0 ≤ r ≤ s ≤ t ≤ 1, the point γ(s) lies between γ(r) and γ(t).
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Figure 4: Maximal disks, the stratification and monotonous paths in a rectangle

Proposition 5.6 Monotonous paths. Let U ⊂ S2 be a simply connected
domain that avoids at least two points. Let p, q ∈ U . Then there exists a
monotonous path µ : [0, 1]→ U with µ(0) = p and µ(1) = q.

A proof of this proposition is given in [12, Section 11.1], where µ is
obtained as a geodesic for the Thurston metric. Recall that the Thurston
metric is a complete C1,1 metric on U with non positive curvature, for which
the strata Cp (p ∈ U) are convex (see [12, Section 5] or [5]; see also [10,
Chapter 5] for more general constructions of monotonous paths).

We will give an elementary proof of Proposition 5.6 in Section 9.

5.3 Pearl necklaces

To a monotonous path between p, q ∈ U , we will associate a pearl necklace.

Proposition 5.7 Pearl necklaces. Let U ⊂ S2 be a simply connected do-
main that avoids at least two points. Let p, q ∈ U . Then there exists a pearl
necklace (D(i))1≤i≤n in U that joins the points p and q, that is, such that
D(1) = Dp and D(n) ∩Dq 6= ∅.

The proof will follow from a series of lemmas that describe the behaviour
of the normal disks along a monotonous path.

Notation 5.8 Let µ : [0, 1] → U be a monotonous path and s ∈ [0, 1], We
let Ω−s (resp. Ω+

s ) be the connected component of U\Cµ(s) that meets µ([0, s])
(resp. µ([s, 1])) if such a connected component does exist. Otherwise we let
Ω−s (resp. Ω+

s ) be the empty set.

Roughly, starting at time s, the past of µ lies in Ω−s and its future in Ω+
s .

Lemma 5.9 When 0 ≤ r ≤ s ≤ t ≤ 1, we have the inclusions

Dµ(t) \Dµ(s) ⊂ Ω+
s and Dµ(r) \Dµ(s) ⊂ Ω−s .

Proof It suffices to prove the first assertion. Assume that Dµ(s) 6= Dµ(t).
Then, Cµ(t) is connected and disjoint from Cµ(s). Since µ(t) ∈ Cµ(t), it
follows that Cµ(t) ⊂ Ω+

s . The result follows since Dµ(t) \Dµ(s) is connected
and Cµ(t) does not entirely lie in Dµ(s). �
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Lemma 5.10 Let 0 ≤ r ≤ s ≤ t ≤ 1.
a) We have the inclusion Dµ(r) ∩Dµ(t) ⊂ Dµ(s) .
b) If Dµ(s) meets both Dµ(r) and Dµ(t) and is equal to none of them, the set
∂Dµ(s) \ (Dµ(r)∪Dµ(t)) is a disjoint union of two arcs, each of them meeting
the boundary ∂U .

D

r

s

t

D

D

rD D
s

tD

rD D
s

tD

Figure 5: Two forbidden configurations, and a legit one (r < s < t)

Proof a) Lemma 5.9 ensures that (Dµ(r) ∩ Dµ(t)) \ Dµ(s) lies in both Ω−s
and Ω+

s , hence is empty.
b) If ∂Dµ(s)∩∂U were included in only one arc of ∂Dµ(s)\(Dµ(r)∪Dµ(t)),

then the points µ(r) and µ(t) would belong to the same connected compo-
nent of U \ Cµ(s). A contradiction to the monotonicity of µ. �

Lemma 5.11 Let r ∈ [0, 1]. Then, there exists at most one disk Dµ(s), with
s ≥ r, that is orthogonal to the disk Dµ(r).

Proof Assume that r < s < t and that Dµ(r) is orthogonal to both Dµ(s)

and Dµ(t). Lemma 5.10 forces the inclusion Dµ(t) ⊂ Dµ(s) of these maximal
disks, hence the equality Dµ(t) = Dµ(s). �

Proof of Proposition 5.7 Let p, q ∈ U . According to Proposition 5.6,
there exists a monotonous path µ : [0, 1] → U from p to q. Let t1 = 0 and
define recursively, when it is possible, ti+1 ∈ [ti, 1] as the only parameter in
the future of ti for which the disks D(i) := Dµ(ti) and D(i + 1) := Dµ(ti+1)

are orthogonal (Lemma 5.11).
We end up with a chain of normal disks (D(i)), where i ≥ 1. Since the

distance of the image µ([0, 1]) ⊂ S2 to cU is non zero, the diameters of these
disks are uniformly bounded below, hence the orthogonality of consecutive
disks ensures that this chain has finite cardinality n.

By construction, there is no parameter t ∈ [tn, 1] with Dµ(t) orthogonal
to D(n). Hence, since the normal disk Dx depends continuously on the point
x ∈ U , it follows that the disk D(n) intersects Dµ(t) for every t ∈ [tn, 1]. In
particular, D(n) meets Dq.

We must now prove that this chain is a necklace in U . Condition 1 and
3 in Definition 3.2 follow from the construction and from Lemma 5.10. We
check now Condition 2. Let 1 ≤ i < j ≤ n, with j− i ≥ 2, we want to prove
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that D(i) and D(j) are disjoint. According to Lemma 5.10, the intersection
D(i) ∩D(j) is included in D(i) ∩D(i + 2). This is empty since both D(i)
and D(i+ 2) intersect D(i+ 1) orthogonally and since, by the same Lemma
5.10, the set ∂D(i+ 1) \ (D(i)∪D(i+ 2)) is a union of two disjoint arcs. �

5.4 Thin necklaces

We prove Proposition 3.3. Recall that we assume that the arc
a∞ provided by Proposition 3.1 lies in C.

As mentionned in the previous paragraph, there always exist pearl necklaces
in any domain U ( C. However the thickness of these necklaces (see Defini-
tion 3.2) may well be uniformly bounded below. It is the case for example
when U is a triangle. On the contrary, one can find arbitrarily thin necklaces
in a domain whose boundary is a piecewise C1 curve that admits a cusp.

x

z
a
+

a
-

a
+ z

x

a
-

Figure 6: A triangle satisfies the Ahlfors’ arc condition, and it does not contain

arbitrarily thin necklaces. A Jordan domain with a cusp does not satisfy the Ahlfors’

arc condition, and it contains arbitrarily thin necklaces.

Let (cn) be the sequence of Jordan curves in F provided by Proposition
3.1. We will use Proposition 5.7, to construct a necklace of S2 \ cn, that is
drawn within a small neighbourhood of the arc a∞ and that roughly joins
its endpoints. This necklace will grow thinner when n→∞. We begin with
a general lemma.

Lemma 5.12 Let a ⊂ C be a Jordan arc. Let ε > 0.

1. There exists η > 0 such that the diameter of any disk lying in the
η-neighbourhood of a is at most ε.

2. There exists r > 0 such that, for any Jordan curve Γ sitting in the
r-neighbourhood of a, the bounded connected component of C \ Γ lies in the
η-neighbourhood of the arc a.

Proof 1. If Vη(a) denotes the η-neighbourhood of a, one has a = ∩η>0Vη(a).
Proceed by contradiction and assume that there exists r0 > 0 and a sequence
of disks D(xn, r0) of center xn ∈ C and radius r0 that are included in V1/na.
The sequence (xn)n≥1 being bounded, we may assume that it converges to
x∞. We would then have D(x∞, r0) ⊂ a, a contradiction.
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2. The statement is obvious when a = [0, 1] is a segment. The Jordan’s
theorem yields an homeomorphism ϕ : C→ C with ϕ(a) = [0, 1]. The result
follows, since both ϕ and ϕ−1 are locally uniformly continuous. �

We may now proceed with our construction.

Proof of Proposition 3.3. Let (cn) be the sequence of Jordan curves in
F and a∞ the arc of the limit curve c∞ provided by Proposition 3.1. Let
p, q denote the endpoints of a∞. Let ε > 0 be very small with respect to
d(p, q), and r, η as in Lemma 5.12. Note that r ≤ η ≤ ε. By construction,
for n large enough, there exist disjoint arcs an and a′n of cn that lie in the
r-neighborhood of a∞ and meet both spheres S(p, r) and S(q, r).

Cutting out both ends of an and a′n if necessary, we may moreover assume
that an (resp. a′n) has an endpoint xn (resp. x′n) on the sphere S(p, r),
an endpoint yn (resp. y′n) on the sphere S(q, r), and is otherwise drawn
in S2 \ D(p, r) ∪ D(q, r). Choose an arc αn,p on S(p, r) joining xn and
x′n, and an arc αn,q on S(q, r) joining yn and y′n. Then the union Γn :=
an ∪ a′n ∪ αn,p ∪ αn,q is a Jordan curve which lies in the r-neighbourhood of
a∞. It thus follows from Lemma 5.12 that the bounded component Bn of
C \ Γn lies in the η-neighbourhood of a∞.

Bn
p

qa

c
n

Γn
an

a'n

Figure 7: The arcs an and a′n on the Jordan curves cn and Γn, and the box Bn

Observe that some arcs of cn may enter the box Bn. We thus introduce
the connected component Un of Bn \ cn whose closure Un contains the arc
an. We claim that such a connected component Un does exist. This fact is
easy when the quadrilateral Bn is a rectangle, and the general case follows
since the Jordan’s theorem provides us with an homeomorphism between
Bn and a rectangle. Note that, since S2 \ Un is connected, the domain Un
is simply connected. A glance at Figure 7 may be useful, but keep in mind
that the closure Un does not always contain the arc a′n.

Choose two points pn and qn in Un such that d(p, pn) = r + ε and
d(q, qn) = r + ε. Then, Proposition 5.7 provides us with a pearl necklace
Nn = (Dn(i) | i ∈ In) in the simply connected domain Un, joining pn to qn.
Since Un ⊂ Bn, Lemma 5.12 ensures that the diameters of all the disks that
constitute this necklace are at most ε.

We are not done yet, since Nn is only a necklace in the domain Un.
Indeed the contact points of the disks Dn(i) with the boundary ∂Un, which
occur in the condition 3 of Definition 3.2, may either lie in cn (which is
good), or on one of the arcs αn,p or αn,q. Hence we choose a subnecklace
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Nn ⊂ Nn, whose first disk meets the sphere S(p, r+ 2ε) and whose last disk
meets the sphere S(q, r + 2ε), and that is minimal with respect to these
properties. This necklace Nn is also a necklace in S2 \ cn. This necklace is
ε/(d(p, q)− 4 ε)-thin as required. �

6 Finite sequences of real numbers

We prove here an elementary fact on finite sequences of real numbers.

Proof of Proposition 3.4 Assume that there are no wells. This means
that there exists h2 > 0 such that, for any sequence x = (x(i))i∈Ix ∈ S and
i < j < k, one has either x(i) ≤ x(j) + h2 or x(k) ≤ x(j) + h2.

Assume that there are no pipes either. Choose h1 = 2h2. Then, there
exists a length ` such that any subsequence (x(i))i∈J ⊂ (x(i))i∈Ix – where
x ∈ S and J ⊂ Ix is a subinterval of length at least ` – has an oscillation
greater than 2h2 : there exist i, j ∈ J with |x(i)− x(j)| ≥ 2h2.

We will prove that each sequence in S is a slide, with height h3 := h2
and slope σ := h2

` . Let thus x = (x(i))i∈I ∈ S and choose i0 such that
x(i0) = maxi∈Ix x(i). Let us work for example in the future of i0.

Assume that [i0, i0 + `] ⊂ Ix. Since there are no pipes and all x(i) are
bounded by x(i0), there exists i1 ∈ [i0, i0 + `] such that x(i1) ≤ x(i0)− 2h2.
Since there are no wells, this implies that x(i) ≤ x(i0) − h2 for any i ∈ Ix
with i ≥ i1.

Assume that [i1, i1 + `] ⊂ Ix. Denying again the existence of pipes and
wells yields an i2 ∈ [i1, i1 + `] with x(i2) ≤ x(i0) − 3h2, and ensures that
x(i) ≤ x(i0)− 2h2 for i ≥ i2. We go on and, as long as [ik−1, ik−1 + `] ⊂ Ix,
we get an integer ik in [ik−1, ik−1 + `] such that,

x(i) ≤ x(i0)− k h2 for any i ∈ Ix with i ≥ ik.

For all i ≥ i0 in Ix, one can choose k such that i ∈ [ik, ik + `]. Note that, by
construction, ik ≤ i0 + k`. Hence this k is larger than i−i0−`

` , and one has
as required

x(i) ≤ x(i0)− i−i0−`
` h2 ≤ x(i0) + h2 − h2

` |i− i0| . �

7 Pipes, wells and slides

We put together the results of the previous sections 5.4 and 6 to
finally prove Proposition 3.5, and hence Theorem 1.1.

Proof of Proposition 3.5 Proposition 3.3 provides us, for all ε > 0, with a
Jordan curve cε ∈ F and an ε-thin necklace Nε = ((Dε(i)| i ∈ Iε) in S2 r cε.
We let SF denote the family of sequences xε = (xε(i)| i ∈ Iε) associated to
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the necklaces Nε, with xε(i) = log diamDε(i) and apply Proposition 3.4 to
SF .

B Suppose that there exist pipes in SF . Shortening and shifting the intervals
Iε, we may extract from the family {cε , ε > 0} a sequence of Jordan curves
(cn)n∈N and corresponding necklaces Nn = (Dn(i) | |i| ≤ n) such that the
ratios

diamDn(i)/diamDn(j) (for n ∈ N and |i|, |j| ≤ n)

of the diameters of these disks are uniformly bounded between 1/δ and δ
for some δ > 1.

Applying a suitable conformal transformation of S2 that fixes ∞, we
furthermore assume that the middle disk Dn(0) of each necklace is always
the unit disk D(0, 1) ⊂ C. Together with condition 1, this implies that, for a
fixed i ∈ Z, all the disks Dn(i) (where n ≥ |i|) live in a compact set of disks
of the complex plane. Using a diagonal argument we may thus assume that,
for each i ∈ Z, the sequence (Dn(i))n≥|i| converges to a disk D∞(i) with
center ωi and diameter between 1/δ and δ. Going again to a subsequence,
we may also assume that the sequence (cn)n∈N converges to c∞ ∈ K when
n→∞. The bounds on the diameters of the Dn(i)’s and condition 2 force
|ωi| → ∞ when |i| → ∞, so that the broken line L = ∪i∈Z[ωi, ωi+1] ⊂ C
yields a proper embedding of R into C. By Jordan’s theorem, C \L has two
connected components. As a consequence of condition 3, the limit curve c∞
visits both connected components of C\L. This ensures that the limit c∞ is
not a singleton, hence is a Jordan curve. However since, for all n, cn avoids
the open set ∪iDn(i), the limit curve c∞ does not meet L and hence can
not be a Jordan curve (see the first drawing in Figure 8) : a contradiction.

B Assume now that there are wells in SF . We proceed as in the previous
case. This time, we shift the intervals so that the bottom of each well
occurs for the index 0, and apply a conformal normalisation so that the
corresponding disk Dn(0) is always the unit disk D(0, 1).

We obtain this time a sequence of Jordan curves cn ∈ F , a non-decreasing
sequence of finite intervals In that contains 0, and a sequence of necklaces
Nn = (Dn(i) | i ∈ In) in S2\cn such that Dn(0) = D(0, 1), and such that the
logarithms of the diameters of these disks, xn(i) := log diamDn(i), satisfy :

xn(0) = 0, xn(i) ≥ 0 for i in In, and xn(i) ≥ n for both endpoints i ∈ In.

Let I ⊂ ∪nIn be the maximal subinterval containing 0 such that the
sequence n 7→ xn(i) is bounded when i is an interior point of I. Note that
this interval may be finite or infinite. By construction for any endpoint i
of I the sequence n 7→ xn(i) is unbounded. After going through a diagonal
process, the sequence of disks Dn(i) converges, when n → ∞, to a disk
D∞(i) when i is an interior point of I and to a half-plane D∞(i) when i is
an endpoint of I.
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The conclusion follows as in the previous case : the limit c∞ = lim
n→∞

cn

avoids the shaded area and visits both components of its complementary set
and hence can not be a Jordan curve (see the second and third drawings in
Figure 8) : a contradiction.

c

c

∞

∞

c
∞

c
∞

Figure 8: The limit curve and the limit of necklaces when respectively I = Z, I

is finite, and I = {−1, 0, 1} in which case ∂D∞(−1) = ∂D∞(1)

B Finally, if all sequences in SF were slides with height h3 ≥ 0 and slope
σ > 0, the ratio inverse of the thickness would be uniformly bounded,

diam (∪i∈IεDε(i))/ max
i∈Iε

diam (Dε(i)) ≤ 2
∞∑
i=0

eh3e−σi ≤ 2eh3/(1−e−σ) :

a contradiction. �

This also ends the proof of Theorem 1.1.

8 Cantor sets and the conformal group

In this section we prove an analog of Theorem 1.1 where
Jordan curves are replaced by Cantor sets.

8.1 Quasi-middle-third Cantor sets

Recall that a non-empty compact set C is called a Cantor set if it is perfect
and totally disconnected. The main example is the middle-third Cantor set

C0 := {
∑

n≥1 an3−n | an = 0 or 2} ⊂ [0, 1].

Let K ≥ 1. We will say that a Cantor set C ⊂ S2 is a K-quasi-middle-
third Cantor set if C is the image C = f(C0) of the middle-third Cantor set
C0 ⊂ S2 under a K-quasiconformal homeomorphism f : S2 → S2.

The following theorem is an analog of Theorem 1.1.

Theorem 8.1 Let K ≥ 1. The set of all K-quasi-middle-third Cantor sets
of S2 is a closed G-invariant subset of K0.
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Conversely, any closed G-invariant subset of K0 which consists only of
Cantor sets is included in the set of K-quasi-middle-third Cantor sets for
some K ≥ 1.

Corollary 8.2 A Cantor set C ⊂ S2 is a quasi-middle-third Cantor set if
and only if its orbit closure GC in K consists only of points and Cantor
sets.

We will just sketch the proof of Theorem 8.1 which is much shorter than
the proof of Theorem 1.1. It follows from the three Lemmas 8.5, 8.6 and
8.7, combined with the MacManus’ condition described below.

8.2 MacManus’ condition

Here is an analog of Ahlfors’s arc condition (Theorem 2.4) for Cantor sets.
We recall that d denotes the canonical Riemannian metric on S2 and we
denote by B(x, r) the balls and by diamd the diameter with respect to this
metric.

Definition 8.3 Let A > 1. A compact set C ⊂ S2 is A-uniformly perfect
if, for all x in C and all 0 < r < diamd(C), one has

B(x, r) ∩ C 6⊂ B(x, r/A).

A compact set C ⊂ S2 is A-uniformly disconnected if, for all x in C and
all r > 0, the connected component of x in the r/A-neighborhood of C is
included in B(x, r).

Theorem 8.4 (MacManus, see [14, Theorem 3]) A compact subset C ⊂ S2
is a quasi-middle-third Cantor set if and only if it is uniformly perfect and
uniformly disconnected. The implied constants depend only on each other.

Let us also mention two related results : another characterization of
quasi-middle-third Cantor sets (see [4, Corollary 2.1]), and a similar char-
acterization of all compact metric spaces that are quasisymmetric to the
middle-third Cantor set (see [6, Chapter 15]).

8.3 Limits of Cantor sets

The direct implication in Theorem 8.1 is a special case of the following
analog of Proposition 2.2.

Lemma 8.5 Limits of quasi-middle-third Cantor sets. Let (Cn)n≥1 be
a sequence of K-middle-third Cantor sets in S2 that converges in K to a
compact set C∞ ⊂ S2 which is not a point. After going to a subsequence if
necessary, there exist K-quasiconformal homeomorphisms fn : S2 → S2 and
f∞ : S2 → S2 with Cn = fn(C0), C∞ = f∞(C0), and such that fn → f∞
uniformly on S2.
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Proof Same as Proposition 2.2 using the “uniformly perfect” part of Mac-
Manus condition to know that the limit C∞ contains at least 3 points. �

The converse implication in Theorem 8.1 follows from the MacManus’
condition and the following two lemmas.

Lemma 8.6 Non uniformly perfect sequences of compact sets.

Let (Cn)n≥1 be a sequence of compact subsets of S2 such that Cn is not
n-uniformly perfect. After going to a subsequence if necessary, there exist
elements γn ∈ G such that (γnCn) converges in K to a non-perfect set C∞
containing at least two points.

Proof By assumption, there exist xn in Cn and 0 < rn < diam(Cn) such
that B(xn, rn)∩C ⊂ B(xn, rn/n). Fix x0 in S2 and choose γn ∈ G such that
γnxn = x0 and γn(B(xn, rn)) = B(x0, 1). Going to a subsequence, (γnCn)
converges to a compact set C∞ of S2 which contains x0 as the only point in
B(x0, 1), and is not a singleton. Hence the set C∞ is not perfect. �

The second lemma is very similar to the first one.

Lemma 8.7 Non uniformly disconnected sequences of compact sets. Let
(Cn)n≥1 be a sequence of compact subsets of S2 such that Cn is not n-
uniformly disconnected. After going to a subsequence if necessary, there
exist elements γn ∈ G such that (γnCn) converges in K to a non-totally
disconnected set C∞.

Proof The argument is also very similar. By assumption, there exist xn
in Cn, 0 < rn < π and a finite subset Fn ⊂ Cn containing xn such that
the rn/n-neighborhood of Fn is connected and meets the sphere S(xn, rn).
Fix x0 in S2 and choose γn ∈ G such that γnxn = x0 and γn(B(xn, rn)) =
B(x0, 1). Going to a subsequence, (γnCn) converges to a compact set C∞
of S2 and (γnFn) converges to a compact set F∞ ⊂ C∞ which contains x0,
which is connected and which meets the sphere S(x0, 1). Hence the set C∞
is not totally disconnected. �

This ends the proof of Theorem 8.1.

9 Thurston’s lamination and monotonous paths

We give in this last section an elementary and self-contained
proof of the existence of monotonous paths (Proposition 5.6).

In all this section, U ⊂ S2 will denote a simply connected domain that
avoids at least two points. We keep the notation of Sections 5.1 and 5.2.
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9.1 Thurston’s lamination

Thurston’s lamination is the lamination Λ of U by the arc of circles equal
to the connected component of λ(Dp) for some p ∈ U (see Lemma 5.4).

Definition 9.1 Let A be an arc of the lamination Λ. Let a ∈ A be a point
on this arc. A transverse τ to (A, a) is a non trivial segment on a geodesic
of Dp that meets A orthogonally at the point a and that admits this point a
as an endpoint.

The following proposition will be useful for the construction of monotonous
paths.

Proposition 9.2 Let A ∈ Λ be an arc of the lamination, Ω be one of the
connected components of U \ A and a1, a2 ∈ A be two points on this arc.
Then, there exist
• transverses τi to (A, ai) with second endpoints xi in Ω (for i = 1, 2) with
Cx1 = Cx2
• and a path γ ⊂ Cx1 from x1 to x2
satisfying the following property. Let B ⊂ Ω be the closed region bounded by
the segments [a1, a2] ⊂ A, the transverses τ1 and τ2 and the path γ. Then
each stratum Cm that intersects B also intersects both τ1 and τ2.

The closed region B is called a well-combed box for ([a1, a2],Ω).

x

x

a 1

2

1

1

2

a
2

A

B

Figure 9: A box

We begin with a lemma.

Lemma 9.3 Let A be an arc of the lamination Λ, a ∈ A and τ be a trans-
verse to (A, a). Assume that Ca ∩ τ = {a}.

Let p, q denote the endpoints of A. Let ε > 0. Then, when x ∈ τ is close
to a, the set of contact points ∂Dx∩∂U meets both balls B(p, ε) and B(q, ε),
and lies in their union.

In particular, if (an) is a sequence of points on the transverse τ that
converges to a, then, the sequence of convex hulls (Can) converges to A.
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Note that when Ca ∩ Ω 6= ∅ and the transverse τ is short enough, then
τ lies in Ca. In this case, Cx = Ca for any x ∈ τ .

Proof Let p, q ∈ ∂Da ∩ ∂U denote the endpoints of the arc A. Let (an) be
a sequence of points of τ that converges to a.

To begin with, we assume that each point an belongs to an arc An of the
lamination Λ. Both endpoints of An lie in ∂U , thus the arc An intersects the
boundary ∂Da in two points pn and qn. Going to a subsequence, we may
assume that (pn) and (qn) respectively converge to p̃ ∈ ∂Da and q̃ ∈ ∂Da.
We claim that {p, q} = {p̃, q̃}.

Indeed, the sequence of disks (Dan) converges to Da (see Proposition
5.2), thus

convDan
(pn, qn) −→ convDa(p̃, q̃) .

a

an
p

q

n

n

D
Da

an

p

q

an
Da

D
x
D

C C Ca x an

A

U

Figure 10: Transverses

Since the points an belong to convDan
(pn, qn) and since the point a be-

longs to convDa(p, q) while, by construction, the points pn and qn belong to
the same connected component of ∂Da \{p, q}, we infer that {p, q} = {p̃, q̃}.

We now turn to the general case. Note that we can find a sequence
αn ∈ τ such that αn 6= a, (αn) converges to a and αn belongs to an arc Aαn

of the lamination Λ. For x sitting in the segment ]a, αn[⊂ τ , the portion
Cx ∩ Da is included in the region delimited in Da by the arcs A and Aαn .
When n is large, we just proved that A and Aαn are close. The result follows
as above, arguing that the disk Dx depends continuously on x. �

Proof of Proposition 9.2 Note that we have Da1 = Da2 and Ca1 = Ca2 .
The result is obvious when A 6= Ca1 and Ω is the connected component

of U \A that intersects Ca1 since, in this case, we may find a box B that lies
in Ca1 .

Assume now that Ω does not intersect Ca1 , and let [a1, ξ1[ and [a2, ξ2[
respectively denote the geodesic rays of Da1 that are orthogonal to A at the
points a1 (resp. a2), and point towards Ω (see Figure 9).
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Lemma 9.3 provides a point x1 ∈]a1, ξ1[ such that all the Cx’s, where
x ∈ [a1, x1] ⊂ τ1, are close enough to A so that they intersect ]a2, ξ2[. We
may even assume that Cx1 is an arc and let x2 := Cx1 ∩ T2. If x1 is close
to a1, then x2 is close to a2 and all the Cy’s – where y ∈ [a2, x2] ⊂ τ2 – do
intersect τ1. We may then choose τ1 = [a1, x1] and τ2 = [a2, x2]. �

9.2 Piecewise monotonous paths

Recall that a path γ : [0, 1] → U is monotonous if, for any parameters
0 ≤ r ≤ s ≤ t ≤ 1, the point γ(s) lies between γ(r) and γ(t) (see Definition
5.5). To strengthen our intuition, we first observe the following.

Lemma 9.4 A monotonous path γ : [0, 1] → U with endpoints x and z
crosses a convex hull Cy if and only if y lies between x and z.

Proof By definition of monotony, we know that γ(t) lies between x and z
for any 0 ≤ t ≤ 1. Conversely, let y be a point of U that lies between x and
z and such that Cx 6= Cy and Cy 6= Cz. This means that x and y belong to
two different connected components of U \Cy, hence the path γ, which goes
from x to z, must cross Cy. �

Our aim in this paragraph is to prove that U is monotonous-path-
connected (this is Proposition 5.6). To prove this result, we will use the
following alternative definition of monotony.

Proposition 9.5 A path γ : [0, 1]→ U is monotonous if and only if it cuts
each Cp only once namely if, for any point p ∈ U , the set γ−1(Cp) ⊂ [0, 1]
is connected.

Proof Let γ be monotonous. We proceed by contradiction, and assume
that there exist r < s < t in [0, 1] such that both x = γ(r) and z = γ(t) lie
in Cx, while y = γ(s) /∈ Cx. Since γ is monotonous, we know that x and z
lie in two distinct connected components of U \ Cy. This is a contradiction
since Cx ⊂ U \ Cy is connected.

Assume that γ : [0, 1]→ U is not monotonous ; we may assume with no
loss of generality that both points x = γ(0) and z = γ(1) lie in the same
connected component Ω of U \ Cy, where y := γ(1/2). Define

t1 = inf {t > 0 | γ(t) ∈ Cy} , b1 = γ(t1)

t2 = sup{t < 1 | γ(t) ∈ Cy} , b2 = γ(t2) .

It follows from the assumption and Lemma 5.4 that the points b1 and
b2 belong to the same arc A ⊂ λ(Dy) of the lamination Λ. Pick two points
a1 and a2 on A so that the segment [b1, b2] ⊂ A lies in the open segment
]a1, a2[⊂ A. Proposition 9.2 provides a well-combed box B for ([a1, a2],Ω).
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Figure 11: Equivalent definition of monotony

Observe that any Cm that meets the transverse τ1 at an interior point dis-
connects the box B. Choosing Cm ⊂ Ω close enough to A, this ensures that
there exist s1 ∈]0, t1[ and s2 ∈]t2, 1[ such that γ(s1) and γ(s2) both lie in
Cm, hence that γ−1(Cm) is not connected. �

Corollary 9.6 Let A ∈ Λ be an arc of the lamination and a ∈ A. Let τ
and τ ′ be transverses to (A, a) corresponding to each connected component
of U \ A. If these transverses are short enough, their union τ ∪ τ ′ is the
image of a monotonous path.

Proof Proposition 9.2 implies that both τ and τ ′ are images of monotonous
paths. The equivalent definition of monotony provided by Proposition 9.5
implies that their union τ ∪ τ ′ is also the image of a monotonous path. �

Lemma 9.7 The domain U is locally monotonous-path-connected : each
point x ∈ U admits arbitrarily small neighbourhoods V such that any pair of
points y, z ∈ V may be joined by a monotonous path.

Proof Assume first that x belongs to the interior of Cx. Then, we may
take for V any neighbourhood of x included in Cx.

Suppose now that x belongs to an arc A of the lamination. Pick two
points a1 and a2 on A such that x lies in the open segment ]a1, a2[⊂ A. For
the segment [a1, a2], and each one of the connected components Ω of U \A,
Proposition 9.2 provides us with a well-combed box. The union of these
two boxes is a neighbourhood V of x. It can be made arbitrarily small by
choosing the points ai close to x, and the transverses short. We claim that
V is monotonous-path-connected.

Let indeed y, z ∈ V . Choose paths γy ⊂ Cy ∩ V and γz ⊂ Cz ∩ V that
respectively join the points y and z to points y1 and z1 that lie on one of the
transverses to (A, a1) that bound the domain V . It follows from Corollary
9.6 that the concatenated path µ = γ−1z ∗ [y1, z1] ∗ γy is monotonous. �
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Figure 12: A neighbourhood of x that is monotonous-path-connected

Definition 9.8 A path γ : [0, 1]→ U is piecewise-monotonous if there exists
an interval subdivision 0 = t0 < t1 · · · < tn = 1 such that each restriction
γ|[ti,ti+1] is a monotonous path for i = 0, · · · , n− 1.

Corollary 9.9 The domain U is piecewise-monotonous-path connected.

Proof Immediate consequence of Lemma 9.7, since U is connected. �

9.3 Monotonous paths

Proof of Proposition 5.6 We just proved that U is piecewise-monotonous-
path connected. The fact that U is monotonous-path-connected will thus
be an immediate consequence of the following Proposition. �

Proposition 9.10 Let x, y and z be three points in U . Assume that there
exists a monotonous path γ1 from x to y, and a monotonous path γ2 from y
to z. Then, there exists a monotonous path from x to z.

Proof Let both paths γi (i = 1, 2) be parameterized by [0, 1].
1. Assume first that y lies in between x and z. We claim that, in this

case, the concatenated path γ := γ2 ∗ γ1 is monotonous. Were it not the
case, Proposition 9.5 would provide a point p ∈ U (with p /∈ Cy) such that
γ−1(Cp) is not connected. Since both paths γ1 and γ2 are monotonous, this
forces both γ−11 (Cp) and γ−12 (Cp) to be non-empty. Hence the stratum Cp,
which is connected, would intersect two distinct connected components of
U \ Cy. This is a contradiction.

2. We now assume that x lies in between y and z. Since the path
γ2 is monotonous, Lemma 9.4 ensures that there exists t0 ∈ [0, 1] with
γ2(t0) ∈ Cx. Choose a path γ3 : [0, 1] → Cx from x to γ2(t0). Then, the
concatenated path (γ2)|[t0,1] ∗ γ3 joins x to z and is monotonous.
In case z lies in between x and y, the proof is similar.

3. We now proceed with the last configuration, where none of the points
x, y, z lies in between the other two. We want to produce a monotonous
path from x to z.
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Figure 13: A piecewise-monotonous path yields a monotonous one (1 and 2)

As above, we will construct our monotonous path from x to z by cutting
out a subpath of γ2∗γ1, and replacing it by a shortcut that lies in a stratum.
Lemma 9.4 ensures that

J1 := {s ∈ [0, 1] | ∃t ∈ [0, 1] with Cγ1(s) = Cγ2(t)}

is a sub-interval of [0, 1] containing 1 and that

J2 := {t ∈ [0, 1] | ∃s ∈ [0, 1] with Cγ1(s) = Cγ2(t)}

is a sub-interval containing 0. Define T1 = inf J1 and T2 = sup J2.
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Figure 14: A piecewise-monotonous path yields a monotonous one (3)

Since the normal disk Dx depends continuously on x ∈ U (see Proposi-
tion 5.2), it follows that Dγ1(T1) = Dγ2(T2), so that Cγ1(T1) = Cγ2(T2). Let
now γ3 be a path drawn in the stratum Cγ1(T1), and that goes from γ1(T1)
to γ2(T2). The choice of T1 and T2 and Proposition 9.5 ensure that the path
µ := γ2|[T2,1] ∗ γ3 ∗ γ1|[0,T1], that goes from x to z, is monotonous. �
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