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CHAPTER 1

Elementary Diophantine approximation

1.1. Very well approximable numbers

Diophantine approximation is originally concerned with the approximation of
real numbers by rational numbers or, more generally, the approximations of points
in Rd by points with integer coordinates. The first result on this topic is due to
Dirichlet and is a simple consequence of the pigeon-hole principle. In the statement,
| · |∞ stands for the supremum norm in Rd.

Theorem 1.1 (Dirichlet, 1842). Let us consider a point x ∈ Rd. Then, for any
integer Q > 1, the system {

1 ≤ q < Qd

|qx− p|∞ ≤ 1/Q

admits a solution (p, q) in Zd × N.

Proof. As mentioned above, this is an illustration of the pigeon-hole principle.
Let us consider the points

0, 1, {x}, {2x}, . . . , {(Qd − 1)x},

where { · } denotes the coordinate-wise fractional part, and 1 is the point whose all
coordinates are equal to one. These points all lie in the unit cube [0, 1]d, which we
may decompose as the disjoint union over u1, . . . , ud ∈ {0, . . . , Q− 1} of the cubes

d∏
i=1

[
ui
Q
,
ui + 1

Q

〉
,

where 〉 stands for the symbol ] if ui = Q − 1, and for the symbol ) otherwise; in
other words, the interval is closed if and only if ui = Q− 1.

There are Qd such subcubes, and Qd+1 points. Thus, the pigeon-hole principle
ensures that there is at least one subcube that contains two of the points. As a
result, there exist either two integers distinct integers r1 and r2 between zero and
Qd−1 such that {r1x} and {r2x} are in the same subcube, or one integer r2 between
one and Qd − 1 such that {r2x} and 1 belong to the same subcube. In both cases,
we deduce that there exist two integers r1 and r2 satisfying 0 ≤ r1 < r2 < Qd, and
two points with integers coordinates s1 and s2 in Zd such that

|(r1x− s1)− (r2x− s2)|∞ ≤
1

Q
.

The result now follows from letting q = r2 − r1 and p = s2 − s1. �

Theorem 1.1 means that the d real numbers x1, . . . , xd may simultaneously
be approximated at a distance at most 1/Q by d rational numbers with common
denominator an integer less than Qd, namely, the rationals p1/q, . . . , pd/q. In what
follows, Pd is the set defined by

Pd = {(p, q) ∈ Zd × N | gcd(p, q) = 1},

5



6 1. ELEMENTARY DIOPHANTINE APPROXIMATION

where gcd(p, q) denotes the greatest common divisor of q and all the coordinates of
the integer point p.

Corollary 1.1. For any point x ∈ Rd \ Qd, there exist infinitely many pairs
(p, q) ∈ Pd such that ∣∣∣∣x− p

q

∣∣∣∣
∞
<

1

q1+1/d
.

Proof. For any point x ∈ Rd \Qd, let us consider the set

Ex =

{
(p, q) ∈ Pd

∣∣∣∣∣
∣∣∣∣x− p

q

∣∣∣∣
∞
<

1

q1+1/d

}
and, for any integer Q > 1, the set

Ex(Q) =

{
(p, q) ∈ Zd × N

∣∣∣∣∣ q < Qd and |qx− p|∞ ≤
1

Q

}
.

Theorem 1.1 ensures that the sets Ex(Q) are all nonempty. Moreover, the mapping
(p, q) 7→ (p, q)/ gcd(p, q) sends the sets Ex(Q) into Ex, and reduces the value of
|qx− p|∞. Thus,

inf
(p,q)∈Ex

|qx− p|∞ ≤ inf
(p,q)∈Ex(Q)

|qx− p|∞ ≤
1

Q
.

Letting Q→∞, we deduce that the infimum of |qx−p|∞ over (p, q) ∈ Ex vanishes.
Since x has no rational coordinates, this implies that Ex is necessarily infinite. �

Corollary 1.1 ensures that for any point x ∈ Rd, the Diophantine inequality
|x− p/q|∞ < 1/q1+1/d holds infinitely often. In other words, the set

Jd,τ =

{
x ∈ Rd

∣∣∣∣∣
∣∣∣∣x− p

q

∣∣∣∣
∞
<

1

qτ
for i.m. (p, q) ∈ Zd × N

}
(1)

is equal to the whole space Rd as soon as τ ≤ 1 + 1/d. In the above formula,
i.m. stands for “infinitely many”. Note that the mapping τ 7→ Jd,τ is nonincreasing;
this enables us to introduce the following definition.

Definition 1.1. Let us consider a point x ∈ Rd\Qd. The irrationality exponent
of x is defined by

τ(x) = sup{τ ∈ R | x ∈ Jd,τ} ≥ 1 +
1

d
. (2)

The point x is called very well approximable if its irrationality exponent satisfies

τ(x) > 1 +
1

d
.

The set of very well approximable points is denoted by Welld.

It is clear from the above definition that the irrationality exponent reflects the
quality with which the points in Rd \ Qd are approximated by those with ratio-
nal coordinates: the higher the exponent, the better the approximation. Besides,
observe that the set of very well approximable points satisfies

Welld = (Rd \Qd) ∩
⋃

τ>1+1/d

Jd,τ . (3)

The main purpose of the metric theory of Diophantine approximation is then
to describe the size properties of sets such as Jd,τ , or generalizations thereof, in
the case of course where they do not coincide with the whole space Rd. To this
purpose, the most basic tool, but also the less precise one, is the Lebesgue measure.
As regards the specific case of the sets Jd,τ , and their companion set Welld, we
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plainly have the following result. The Lebesgue measure in Rd is denoted by Ld in
what follows; we refer to Section 2.5 for its construction and its main properties.

Proposition 1.1. The set Welld of very well approximable points has Lebesgue
measure zero, that is,

Ld(Welld) = 0.

Equivalently, we also have

∀τ > 1 +
1

d
Ld(Jd,τ ) = 0.

Proof. The proof is elementary, and amounts to using an appropriate covering
of the set Jd,τ . To be specific, for any integer Q ≥ 1, we have

Jd,τ ∩ [0, 1]d ⊆
⋃
q≥Q

⋃
p∈{0,...,q}d

B∞

(
p

q
,

1

qτ

)
,

where B∞(x, r) denotes the open ball centered at x with radius r, in the sense of
the supremum norm. As a result,

Ld(Jd,τ ∩ [0, 1]d) ≤
∑
q≥Q

(q + 1)d
(

2

qτ

)d
The above series clearly converges when τ > 1 + 1/d. Letting Q → ∞, we deduce
that the Lebesgue measure of Jd,τ ∩ [0, 1]d vanishes. The set Jd,τ being invariant
under the action of Zd, its Lebesgue measure thus vanishes in the whole space.

To establish that the set Welld has Lebesgue measure zero as well, it suffices to
observe that the union in (3) may be indexed by a countable dense subset of values
of τ , because of the monotonicity of the sets Jd,τ with respect to τ . More precisely,
letting for instance τn = (1 + 1/d) + 1/n, we may write that

Ld(Welld) ≤ Ld
( ∞⋃
n=1

Jd,τn

)
≤
∞∑
n=1

Ld(Jd,τn) = 0.

Finally, knowing that Welld has Lebesgue measure zero, we can easily recover
the fact that the sets Jd,τ , for τ > 1 + 1/d, all have Lebesgue measure zero as well.
It suffices to make use of (3) again, and to recall that the set Qd of points with
rational coordinates is countable and therefore Lebesgue null. �

It readily follows from Proposition 1.1 that, in the sense of Lebesgue measure,
the irrationality exponent is minimal almost everywhere, that is,

for Ld-a.e. x ∈ Rd \Qd τ(x) = 1 +
1

d
, (4)

where a.e. means “almost every”. Moreover, as shown by Proposition 1.1, describing
the size of the sets Jd,τ in terms of Lebesgue measure only is not very precise, as
we just have the following dichotomy:{

τ ≤ 1 + 1/d =⇒ Ld(Rd \ Jd,τ ) = 0

τ > 1 + 1/d =⇒ Ld(Jd,τ ) = 0.

A standard way of giving a more precise description is then to compute the Haus-
dorff dimension of the set Jd,τ ; this will be performed in Section 3.1 below.
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1.2. Continued fractions

Throughout this section, we consider the one-dimensional case, thus assuming
that d = 1. In that situation, we know from Corollary 1.1 that an arbitrary irra-
tional number x may be approximated with precision at most 1/q2 by a sequence
of rationals p/q; the optimal rational approximates p/q of x may then be computed
through the continued fraction algorithm that we now discuss. The material de-
veloped in this section is very classical; our main references are [24, Chapter 3]
and [55, Chapter 1].

1.2.1. Continued fraction expansions.
1.2.1.1. Synthesis: from partial quotients to continued fractions. Let a0 be a

nonnegative integer and, for any n ∈ N, let an be a positive integer. The continued
fraction associated with the sequence (an)n≥0 is defined by

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

. (5)

At the moment, this definition is purely formal; we shall give it a rigorous sense
later, see (12). In addition, we shall consider the finite fraction associated with the
integers a0, . . . , an, namely,

[a0; a1, a2, . . . , an] = a0 +
1

a1 +
1

a2 + . . .+
1

an−1 +
1

an

. (6)

In particular, using the above notation, we clearly have, for any choice of the
integers a0, . . . , an,

[a0; a1, a2, . . . , an] = a0 +
1

[a1; a2, . . . , an]
.

The integers an are called the partial quotients of the continued fraction. Moreover,
the irreducible rational numbers pn/qn defined by

pn
qn

= [a0; a1, a2, . . . , an] (7)

are called the convergents of the continued fraction. The next lemma gives an
expression of the numerator and the denominator of the convergents in terms of
the partial quotients.

Lemma 1.1. For any nonnegative integer a0, and any sequence of positive in-
tegers a1, a2, . . ., the irreducible rational numbers pn/qn defined by (7) satisfy

∀n ≥ 0

(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
. (8)

with the convention that p−1 = 1, q−1 = 0, p0 = a0 and q0 = 1.

Proof. The lemma may be proven by induction. In view of the adopted
conventions, the formula (8) is clearly true for n = 0. Moreover, let us assume
that (8) holds up to n = m, regardless of the choice of the m+1 integers a0, . . . , am.
Then, let us consider m + 2 integers denoted by a0, . . . , am+1; we need to prove
that (8) holds for these integers, and for n = m+ 1.
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To this end, let us apply (8) to the m+ 1 integers a1, . . . , am+1. Thus,(
p p′

q q′

)
=

(
a1 1
1 0

)
· · ·
(
am+1 1

1 0

)
.

where p/q and p′/q′ respectively denote the irreducible rational numbers equal to
[a1; a2, . . . , am+1] and [a1; a2, . . . , am]. On the one hand, we deduce that(

a0 1
1 0

)
· · ·
(
am+1 1

1 0

)
=

(
a0 1
1 0

)(
p p′

q q′

)
=

(
a0p+ q a0p

′ + q′

p p′

)
.

On the other hand, a0p+ q and p are coprime, and their quotient is equal to

a0p+ q

p
= a0 +

q

p
= a0 +

1

[a1; a2, . . . , am+1]
= [a0; a1, . . . , am+1].

Likewise, a0p
′ + q′ and p′ are coprime and their quotient is equal to the frac-

tion [a0; a1, . . . , am]. This means that (8) holds for n = m + 1, with the integers
a0, . . . , am+1. �

It directly follows from (8) that for any integer n ≥ 0,(
pn+1 pn
qn+1 qn

)
=

(
pn pn−1

qn qn−1

)(
an+1 1

1 0

)
,

from which we deduce the next recursive formulas for the convergents:{
pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1.
(9)

In particular, since an ≥ 1 for all n ≥ 1, it is easy to establish by induction that the
numerators pn and the denominators qn of the convergents are at least 2(n−2)/2, for
all integers n ≥ 1. Furthermore, taking the determinant in (8), we readily obtain

pnqn−1 − pn−1qn = (−1)n+1, (10)

so that
pn
qn
− pn−1

qn−1
=

(−1)n+1

qn−1qn
. (11)

As a result, the convergents pn/qn have a finite limit when n→∞, namely,

[a0; a1, a2, . . . , an] =
pn
qn
−−−−→
n→∞

a0 +

∞∑
n=0

(−1)n

qnqn+1
. (12)

This means that the formula (5) is not merely formal, but defines a true real number
that corresponds to

x = [a0; a1, a2, a3, . . .] = a0 +

∞∑
n=0

(−1)n

qnqn+1
.

Then, [a0; a1, a2, a3, . . .] is called the continued fraction expansion of x.
Note that the above series converges because it satisfies the alternating series

test. Indeed, it is clear that the sequence (qnqn+1)n≥0 monotonically diverges to

infinity. (In fact, the series is also absolutely convergent, since qnqn+1 ≥ 2n−3/2

for all n ≥ 1.) Thus, the even terms p2m/q2m increase to x, while the odd terms
p2m+1/q2m+1 decrease to x, and moreover

∀n ≥ 0

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1
≤ 1

q2
n

, (13)

where the latest inequality is due to the fact that the sequence (qn)n≥0 is nonde-
creasing. This means that the convergents of the continued fraction expansion of
x yield a sequence of irreducible rational numbers pn/qn that approximate x with
an error smaller than 1/q2

n. This is clearly in accordance with Theorem 1.1.



10 1. ELEMENTARY DIOPHANTINE APPROXIMATION

Note in passing that x is necessarily irrational. As a matter of fact, let us
assume that x can be written as an irreducible fraction of the form p/q. Then,

∀n ≥ 0 |pqn − pnq| <
q

qn
.

Thus, as qn → ∞, the integer pqn − pnq necessarily vanishes for n large enough.
In view of the coprimeness of p and q, and that of pn and qn, this implies that
pn = p and qn = q for n large enough, which contradicts the fact that qn →∞. We
shall show in Section 1.2.1.2 below that, conversely, any irrational real number has
a continued fraction expansion, and this expansion is unique.

1.2.1.2. Analysis: continued fraction expansion of an irrational number. Let us
begin by establishing the uniqueness of the continued fraction expansion; this is the
purpose of the next proposition.

Proposition 1.2. The following mapping is injective:

N0 × NN −→ (0,∞)

(an)n≥0 7−→ [a0; a1, a2, a3, . . .].

Proof. Note that a continued fraction expansion is clearly always positive,
and recall the inductive relation

[a0; a1, a2, a3, . . .] = a0 +
1

[a1; a2, a3, . . .]
= a0 +

1

a1 +
1

[a2; a3, . . .]

Thus, letting x denote the left-hand side above, we have

a0 < x < a0 +
1

a1
≤ a0 + 1,

so that x uniquely determines a0. Applying the above argument to

[a1; a2, a3, . . .] =
1

x− a0
,

we deduce that x also uniquely determines a1. We can clearly iterate this procedure;
this shows that x uniquely determines all the integers an. �

The procedure employed in the above proof suggests a way of computing the
continued fraction expansion of a given irrational number. Let us first consider
the irrational numbers between zero and one. Specifically, let us define the set
X = [0, 1) \Q and the mapping T from X onto itself given by

T (x) =

{
1

x

}
(14)

for all x ∈ X. The mapping T is called the Gauss map, or continuous fraction
map. The Gauss map enables one to compute the continued fraction expansion of
an irrational number in X. As a matter of fact, for any irrational number x ∈ X
and any integer n ≥ 1, let us define

an(x) =

⌊
1

Tn−1(x)

⌋
, (15)

where b · c denotes integer part. Moreover, for any sequence (an)n≥1 of positive
integers, let

[a1, a2, . . .] = [0; a1, a2, . . .] ;

this is merely the continued fraction defined by (5) with partial quotient a0 equal
to zero, and thus belonging to [0, 1). We then have the following result.
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Proposition 1.3. For any irrational number x ∈ X, we have the following
continued fraction expansion

x = [a1(x), a2(x), . . .].

Proof. Let us prove by induction on n ≥ 0 that for any irrational x ∈ X,

[a1(x), . . . , a2n(x)] < x < [a1(x), . . . , a2n+1(x)]. (16)

When n = 0, this amounts to proving that 0 < x < 1/a1(x), which readily follows
from the definition of a1(x). Let us suppose that the result holds for a given integer
n ≥ 0 and for all x ∈ X. Then, applying this result to T (x) instead of x, we obtain
in particular

T (x) < [a1(T (x)), . . . , a2n+1(T (x))],

which gives
1

x
− a1(x) < [a2(x), . . . , a2(n+1)(x)],

that is,

x > [a1(x), . . . , a2(n+1)(x)] ;

this is the lower bound in (16) with n+ 1 instead of n. Replacing x by T (x) again
in the above inequality, and repeating the procedure, we also get

x < [a1(x), . . . , a2(n+1)+1(x)],

which is the upper bound in (16) with n+ 1 instead of n. Finally, (16) holds for all
n ≥ 0 and all x ∈ X. To conclude, it suffices to recall that the both bounds in (16)
both converge to the continued fraction [a1(x), a2(x), . . .]. �

We may now give the continued fraction expansion of an irrational number that
does not necessarily belong to the interval [0, 1). If x denotes a positive irrational
number, its fractional part {x} then belongs to X, and we may extend (15) by
letting

an(x) = an({x})
for any integer n ≥ 1. In addition, let us define a0(x) as the integer part bxc. We
now deduce that

x = bxc+ {x} = a0(x) + [a1(x), a2(x), . . .] = [a0(x); a1(x), a2(x), . . .], (17)

as an immediate consequence of Proposition 1.3.

1.2.2. Implications for Diophantine approximation.
1.2.2.1. Better rational approximants. Let x be an irrational number with con-

tinued fraction expansion [a0; a1, a2, . . .] as above and let pn/qn denote the corre-
sponding convergents, defined by (7). Due to (13) and in accordance with Theo-
rem 1.1, these convergents yield a sequence of irreducible rational numbers pn/qn
that approximate x with an error smaller than 1/q2

n. This property can be improved
by the next two results.

Proposition 1.4 (Vahlen, 1895). Let x be an irrational number with continued
fraction expansion [a0; a1, a2, . . .], and let pn/qn denote the corresponding conver-
gents. For any fixed integer n ≥ 0, at least one among the two convergents pn/qn
and pn+1/qn+1 satisfies ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
.
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Proof. We begin by observing that∣∣∣∣pn+1

qn+1
− x
∣∣∣∣+

∣∣∣∣x− pn
qn

∣∣∣∣ =

∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ . (18)

In fact, as the convergents tend to the limit x in an alternating manner, the three
terms above all have the same sign, so that we can remove the absolute values
around them, thus ending with a trivial equality. Using (11) and the fact that
uv < (u2 + v2)/2 for any distinct real numbers u and v, we deduce that∣∣∣∣pn+1

qn+1
− x
∣∣∣∣+

∣∣∣∣x− pn
qn

∣∣∣∣ =
1

qnqn+1
<

1

2q2
n+1

+
1

2q2
n

,

and the result follows. �

Before stating the second improvement on the approximation property (13),
let us point out a useful relationship between a given continued fraction expansion
x = [a0; a1, a2, . . .] and its n-th tail defined by xn = [an; an+1, an+2, . . .]. For any
k ≥ 0, Lemma 1.1 ensures that(

pn+k

qn+k

)
=

(
a0 1
1 0

)
· · ·
(
an 1
1 0

)(
an+1 1

1 0

)
· · ·
(
an+k 1

1 0

)(
1
0

)
=

(
pn pn−1

qn qn−1

)(
pk−1(xn+1) pk−2(xn+1)
qk−1(xn+1) qk−2(xn+1)

)(
1
0

)
,

where pk(xn+1)/qk(xn+1) denotes the k-th convergent to the (n + 1)-th tail. It
follows that

pn+k

qn+k
=
pnpk−1(xn+1) + pn−1qk−1(xn+1)

qnpk−1(xn+1) + qn−1qk−1(xn+1)
.

Letting k go to infinity, we finally deduce that

x =
pnxn+1 + pn−1

qnxn+1 + qn−1
. (19)

This formula will come into play in the proof of the following improvement on (13).

Proposition 1.5 (Borel, 1903). Let x be an irrational number with continued
fraction expansion [a0; a1, a2, . . .], and let pn/qn denote the corresponding conver-
gents. For any fixed integer n ≥ 0, at least one among the three convergents pn/qn,
pn+1/qn+1 and pn+2/qn+2 satisfies∣∣∣∣x− p

q

∣∣∣∣ < 1√
5q2

.

Proof. Let xn+1 denote the (n+1)-th tail of the continued fraction expansion
of x. Then, owing to (10) and (19), we have

qnx− pn = qn
pnxn+1 + pn−1

qnxn+1 + qn−1
− pn =

(−1)n

qnxn+1 + qn−1
. (20)

As a consequence, letting βn denote the ratio qn−1/qn, we have

qn|qnx− pn| =
1

xn+1 + βn
.

The proof now reduces to establishing that at least one among the three real num-
bers xn+1 + βn, xn+2 + βn+1 and xn+3 + βn+2 is larger than

√
5.

Let us assume that xn+1 + βn and xn+2 + βn+1 are both bounded above by√
5. Note that xn+1 = an+1 + 1/xn+2 and, in view of (9),

1

βn+1
=
qn+1

qn
=
an+1qn + qn−1

qn
= an+1 + βn, (21)
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from which we deduce that 1/xn+2 + 1/βn+1 = xn+1 + βn. The supposed bounds
on xn+1 + βn and xn+2 + βn+1 then imply that

1 = xn+2 ·
1

xn+2
≤
(√

5− βn+1

)(√
5− 1

βn+1

)
,

which means that the polynomial Z2 −
√

5Z + 1 takes a nonpositive value when
evaluated at βn+1. In particular, βn+1 is larger than or equal to the smallest root of
this polynomial. However, βn+1 is rational, so the inequality is strict, specifically,

βn+1 >

√
5− 1

2
.

Likewise, assuming that xn+2 + βn+1 and xn+3 + βn+2 are both bounded above by√
5 leads to the same lower bound on βn+2. Using (21) with n + 1 instead of n,

along with the above bounds, we then conclude that

1 ≤ an+2 =
1

βn+2
− βn+1 <

2√
5− 1

−
√

5− 1

2
= 1,

which is a contradiction. �

The next result shows that, conversely, an approximation result that beats (13)
is necessarily realized by some convergent.

Proposition 1.6 (Legendre). Let x be an irrational real number with con-
tinued fraction expansion [a0; a1, a2, . . .], and let pn/qn denote the corresponding
convergents. Then, for any pair of coprime integers (p, q) ∈ P1,∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
=⇒ ∃n ≥ 0

p

q
=
pn
qn
.

Proof. Let (p, q) denote a pair in P1 such that |x − p/q| < 1/(2q2). Then,
there exist ε ∈ {−1, 1} and θ ∈ (0, 1/2) such that

x− p

q
=
εθ

q2
.

Moreover, it is easy to prove by induction on q that the rational number p/q has
exactly two finite continued fraction expansions, specifically,

p

q
= [c0; c1, . . . , ck] = [c0; c1, . . . , ck−1, ck − 1, 1],

with ck ≥ 2 unless k is equal to zero, in which case p/q is an integer. Among these
two representations, we may thus privilege that with odd length if ε = 1, and that
with even length if ε = −1. This yields a decomposition of the form

p

q
= [b0; b1, . . . , bn],

where b0 ∈ N0, a1, . . . , an ∈ N and n ≥ 0 is such that (−1)n = ε. For k ∈ {0, . . . , n},
let rk/sk denote the convergents corresponding to the above continued fraction
expansion. In particular, rn/sn = p/q. As x is irrational, we may define

ω =
rn−1 − sn−1x

snx− rn
.

Then, let us observe that, in view of (10),

εθ

s2
n

=
εθ

q2
= x− p

q
=
rnω + rn−1

snω + sn−1
− rn
sn

=
(−1)n

sn(snω + sn−1)
.

Solving for ω, we infer that

ω =
1

θ
− sn−1

sn
> 2− 1 = 1.
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Furthermore, note that ω is irrational, so we may consider its continued fraction
expansion, specifically,

ω = [bn+1; bn+2, . . .].

Since ω is larger than one, all its partial quotients are positive. This means that we
may concatenate the continued fraction expansion of p/q with that of ω, thereby
recovering x. As a matter of fact, owing to (19), we have

[b0; b1, . . . , bn, bn+1, . . .] =
rnω + rn−1

snω + sn−1
= x.

As x is irrational, its continued fraction expansion is unique, see Proposition 1.2.
In particular, bk = ak for all k ∈ {0, . . . , n}, so that p/q = rn/sn = pn/qn. �

1.2.2.2. The golden ratio and Hurwitz’s theorem. The most simple example of
continued fraction expansion is certainly that of the golden ratio

φ =
1 +
√

5

2
. (22)

It is clear that φ − 1 is equal to 1/φ and belongs to the interval (0, 1). Thus the
partial quotients of the golden ratio are all equal to one, that is, its continued
fraction expansion is given by

φ = [1; 1, 1, . . .] = 1 +
1

1 +
1

1 + . . .

.

Moreover, in view of (9) and the initial value of the convergents pn/qn, one easily
checks that pn = fn+2 and qn = fn+1 for all n ≥ 0, where (fn)n≥0 denotes the
Fibonacci sequence, defined by the recursive relation fn+2 = fn+1 + fn, along with
the initial terms f0 = 0 and f1 = 1. It is then straightforward to establish Binet’s
formula, namely,

∀n ≥ 0 fn =
φn − (−φ)−n√

5

Hence, the convergents pn/qn to the golden ratio φ satisfy

qn(qnφ− pn) = fn+1(fn+1φ− fn+2) =
1√
5

(
(−1)n +

1

φ2n

)
.

As a consequence, we end up with

φ− pn
qn
∼ (−1)n√

5q2
n

(23)

as n → ∞. The next result shows that the same property holds for any irrational
number whose continued fraction expansion is ultimately constant equal to one.

Proposition 1.7. Given a0 ∈ N0 and (a1, . . . , ak) ∈ Nk, let x denote the
irrational number with continued fraction expansion [a0; a1, . . . , ak, 1, 1, . . .], and let
pn/qn denote the corresponding convergents. Then, as n goes to infinity,

x− pn
qn
∼ (−1)n√

5q2
n

.

Proof. We adopt the same notations as in the proof of Proposition 1.5. In
particular, recall that (20) yields

(−1)n

qn(qnx− pn)
= xn+1 + βn,
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where xn+1 is (n + 1)-th tail of the continued fraction expansion of x, and βn is
the ratio qn−1/qn. Note that xn+1 is equal to the golden ratio φ when n ≥ k.
Furthermore, βn satisfies

1

βn
=

qn
qn−1

= [an; an−1, . . . , ak+1, ak, . . . , a1, a0] = [1; 1, . . . , 1︸ ︷︷ ︸
n−k times

, ak, . . . , a1, a0],

so that 1/βn is between the two convergents of the form [1; 1, . . . , 1] whose lengths
are n− k − 1 and n− k. These convergents both tend to φ as n→∞. Finally,

xn+1 + βn −−−−→
n→∞

φ+
1

φ
=
√

5,

and the announced result follows. �

The above results lead to the following optimal refinement of the corollary to
Dirichlet’s theorem, namely, Corollary 1.1 in the one-dimensional case.

Theorem 1.2 (Hurwitz, 1891). For any irrational number x, there are infin-
itely many pairs (p, q) ∈ P1 such that∣∣∣∣x− p

q

∣∣∣∣ < 1√
5q2

.

Moreover, this property does not hold when
√

5 is replaced by any larger constant.

Proof. The first part of the theorem readily follows from applying Proposi-
tion 1.5 to the absolute value of x. In order to prove the optimality of the constant,
let us assume that the inequality holds for all irrational number x and infinitely
many pairs (p, q) ∈ P1, with

√
5 replaced by some larger constant A. In particular,

applying this to the golden ratio yields an infinite number of coprime integers p and
q such that |φ− p/q| < 1/(Aq2). However, A is larger than two, so Proposition 1.6
ensures that p/q is a convergent to φ. Thus, there exists an increasing sequence
(nk)k≥1 of nonnegative integers such that∣∣∣∣φ− pnk

qnk

∣∣∣∣ < 1

Aq2
nk

for all k ≥ 1; this contradicts (23). �

For any real number x, let us define the exponent

κ(x) = lim inf
q→∞

q ‖qx‖ , (24)

where ‖y‖ denotes the distance from a real y to the integers, that is, the infimum
of |y − p| over all p ∈ Z. Note that κ(x) clearly vanishes when x is rational; we
shall see in Section 1.3 that this exponent also characterizes the badly approximable
numbers. Moreover, Theorem 1.2 implies that κ(x) is bounded above by 1/

√
5, and

its proof shows that the bound is attained by the golden ratio. Thus,

sup
x∈R

κ(x) =
1√
5
.

In fact, Proposition 1.7 shows that the irrational numbers with continued fraction
expansion ultimately equal to one also satisfy (23); this implies that they also attain
the above bound. Furthermore, Hurwitz showed that the bound is attained by
these numbers only; in fact, every irrational number x with infinitely many partial
quotients strictly greater than one satisfies κ(x) ≤ 1/

√
8, see [55, Theorem 6C].
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1.2.2.3. Optimality of the convergents. The convergents pn/qn yield the optimal
rational approximants to the irrational number x in the sense of Theorem 1.3 below.
The proof of this result calls upon the following simple lemma.

Lemma 1.2. Let x be an irrational number with continued fraction expansion
[a0; a1, a2, . . .], and let pn/qn denote the corresponding convergents. Then, the se-
quence (|qnx− pn|)n≥0 is decreasing.

Proof. In view of (11) and (13), we can deduce from (18) that

1

qnqn+1
>

∣∣∣∣x− pn
qn

∣∣∣∣ > 1

qnqn+1
− 1

qn+1qn+2
=

qn+2 − qn
qnqn+1qn+2

=
an+2

qnqn+2
;

the latest equality follows from the recursive formula for qn. As an+2 is greater
than or equal to one, this readily implies that

1

qn+2
< |qnx− pn| <

1

qn+1
. (25)

The result follows. �

We are now in position to show the optimality of the rational approximants
supplied by the convergents.

Theorem 1.3 (Lagrange, 1770). Let x be an irrational number with continued
fraction expansion [a0; a1, a2, . . .], and let pn/qn denote the corresponding conver-
gents. Then, for any integer n ≥ 1 and any pair (p, q) ∈ P1 such that 0 < q ≤ qn,

p

q
=
pn
qn

or |qnx− pn| < |qx− p|.

In the latter case, we also have∣∣∣∣x− pn
qn

∣∣∣∣ < ∣∣∣∣x− p

q

∣∣∣∣ .
Proof. We begin by dealing with the elementary case where q = qn. In that

situation, if p/q 6= pn/qn, we deduce from (13) and the fact that qn+1 ≥ 2 that∣∣∣∣x− p

q

∣∣∣∣ ≥ ∣∣∣∣pq − pn
qn

∣∣∣∣− ∣∣∣∣x− pn
qn

∣∣∣∣ ≥ 1

qn
− 1

qnqn+1
≥ 1

2qn
≥ 1

qnqn+1
>

∣∣∣∣x− pn
qn

∣∣∣∣ ,
which gives |qx− p| > |qnx− pn|.

Let us now assume that qn−1 < q < qn. There are two integers a and b in Z
such that (

pn pn−1

qn qn−1

)(
a
b

)
=

(
p
q

)
.

Indeed, the above matrix has integer-valued entries and determinant ±1, so its
inverse exists and also has integer-valued entries. Note that the integers a and
b are nonvanishing, as we would have q ∈ {qn−1, qn} otherwise. Moreover, q =
aqn + bqn−1 < qn, so that a and b must be of opposite signs. This is also the case
of qnx− pn and qn−1x− pn−1, because the convergents tend to x in an alternating
manner. Thus, the products a(qnx− pn) and b(qn−1x− pn−1) are of the same sign;
their sum is equal to qx− p, and is also of the same sign. Therefore,

|qx− p| = |a(qnx− pn)|+ |b(qn−1x− pn−1)| > |qnx− pn|.

Thus, we have proven the result for any integer n ≥ 1 and any integers p and q
such that gcd(p, q) = 1 and qn−1 < q ≤ qn.
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Now, let us assume that n ≥ 1 is fixed, and that qm < q ≤ qm+1 for some
integer m ∈ {0, . . . , n− 1}. Then, applying what precedes with m+ 1 instead of n,
we deduce that for any integer p such that gcd(p, q) = 1, we have either

p

q
=
pm+1

qm+1
or |qm+1x− pm+1| < |qx− p|.

Given that 0 ≤ m+ 1 < n, we now deduce from Lemma 1.2 that

|qnx− pn| < |qm+1x− pm+1| ≤ |qx− p|.
Finally, it remains to address the case where q = q0 = 1. If q1 = 1, then we

may use the beginning of the present proof to infer that

p 6= p1 =⇒ |qx− p| > |q1x− p1|,
so the result holds for n = 1. In particular, regardless of the value of p, the large
inequality holds and Lemma 1.2 implies that for n ≥ 2 and for any p,

|qx− p| ≥ |q1x− p1| > |qnx− pn|.
If q1 > 1, then for any integer p 6= p0, making use of (13), we have

|qx− p| ≥ |p− p0| −
∣∣∣∣x− p0

q0

∣∣∣∣ > 1− 1

q1
≥ 1

2
≥ 1

q1
>

∣∣∣∣x− p0

q0

∣∣∣∣ = |q0x− p0|,

so that regardless of the value of p, the left-hand side is greater than or equal to
the right-hand side. The result follows from Lemma 1.2. �

1.2.2.4. Characterization of the irrationality exponent. Recall that, according
to Definition 1.1, the irrationality exponent of an irrational real number x is defined
as the supremum of all reals τ such that the inequality |x−p/q| < q−τ has infinitely
many solutions (p, q) ∈ Z × N. In addition, due to Corollary 1.1, the irrationality
exponent of an irrational number is bounded below by two. The following result
shows that the irrationality exponent directly depends on the growth rate of the
denominators of the convergents.

Proposition 1.8. Let x be an irrational number with convergents pn/qn. Then,
the irrationality exponent of x satisfies

τ(x) = 1 + lim sup
n→∞

log qn+1

log qn
.

Proof. The right-hand side is clearly bounded below by two. Thus, in order
to prove the upper bound on τ(x), we may assume that τ(x) > 2. Then, for any real
number τ strictly between two and τ(x), there are infinitely many pairs (p, q) ∈ P1

such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

qτ
≤ 1

2q2
.

Owing to Proposition 1.6, each of these rationals p/q actually corresponds to a
convergent pn/qn. Now, it follows from (11), (13) and (18) that

1

qτn
>

∣∣∣∣x− pn
qn

∣∣∣∣ > 1

qnqn+1
− 1

qn+1qn+2
≥ 1

2qnqn+1
.

For the last inequality, we used the fact that qn+2 ≥ 2qn, owing to (9). We straight-
forwardly infer that

τ < 1 +
log 2 + log qn+1

log qn
for infinitely many integers n ≥ 1, from which we deduce that τ(x)− 1 is bounded
above by the upper limit of log qn+1/ log qn.

For the lower bound, let us consider a real number τ such that τ − 1 is smaller
than the aforementioned upper limit. Then, one easily checks that qn+1 > qτ−1

n
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for infinitely many integers n ≥ 1. We finally make use of (13) to conclude that
τ ≤ τ(x), and the result follows. �

Thanks to the recursive relation on the denominators of the convergents, we
may give an alternate expression to that given above, specifically,

τ(x) = 2 + lim sup
n→∞

log an+1

log qn
.

This is actually a direct consequence of Proposition 1.8, together with the observa-
tion that qn+1 is between an+1qn and 2an+1qn, owing to (9).

1.3. Badly approximable points

1.3.1. Definition and first properties. This section is devoted to the study
of a class of points that are very particular from the perspective of Diophantine
approximation: the badly approximable points, which are defined as follows.

Definition 1.2. A point x ∈ Rd is called badly approximable if the following
condition is satisfied:

∃ε > 0 ∀(p, q) ∈ Zd × N
∣∣∣∣x− p

q

∣∣∣∣
∞
≥ ε

q1+1/d
.

The set of badly approximable points is denoted by Badd. In dimension d = 1, the
badly approximable points are called badly approximable numbers.

As the name seems to indicate, the elements of Badd are badly approximated by
the points with rational coordinates. Indeed, the irrationality exponent, introduced
by Definition 1.1, satisfies

∀x ∈ Badd τ(x) = 1 +
1

d
.

This means that the points in Badd attain the bound imposed by Dirichlet’s theorem
and its corollary, that is, Theorem 1.1 and Corollary 1.1. In other words,

Badd ⊆ (Rd \Qd) \Welld, (26)

where Welld denotes the set of points that are very well approximable, see Defi-
nition 1.1. Due to Proposition 1.1, the set in the right-hand side of (26) has full
Lebesgue measure in Rd \Qd. The badly approximable points thus supply specific
examples of points for which the typical property (4) holds.

Turning our attention to the left-hand side of (26), we now establish the fol-
lowing result. Its proof relies on the corollary to Dirichlet’s theorem, along with
general tools from measure theory that are presented in Chapter 4; we postpone
it to Section 1.3.2 for the sake of clarity. The one-dimensional case may also be
settled with the help of continued fractions, as detailed in Section 1.3.3.

Proposition 1.9. The set Badd of badly approximable points has Lebesgue
measure zero, that is,

Ld(Badd) = 0.

The above measure theoretic considerations directly imply that the inclusion
in (26) is strict. As a matter of fact, Lebesgue-almost every point in the set Rd \Qd
is neither very well nor badly approximable. The next step in the description of
the size properties of the set Badd would be to consider its Hausdorff dimension;
this will be discussed in Sections 3.3 and 12.2.
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1.3.2. Size properties. This section details the proof of Proposition 1.9. We
begin by observing that the set of badly approximable points satisfies

Rd \ Badd ⊇
⋂
ε>0

J̃d,ε, (27)

where J̃d,ε denotes the set obtained when replacing by ε/q1+1/d the approximation
radii 1/qτ in the definition (1) of the set Jd,τ . To be more specific,

J̃d,ε =

{
x ∈ Rd

∣∣∣∣∣
∣∣∣∣x− p

q

∣∣∣∣
∞
<

ε

q1+1/d
for i.m. (p, q) ∈ Zd × N

}
.

It is clear that the mapping ε 7→ J̃d,ε is nondecreasing, so that the intersection
in (27) may be taken on a sequence of positive values of ε that converge to zero,
such as εn = 1/n for instance. In order to show that Badd has Lebesgue measure
zero, it thus suffices to prove that

∀ε > 0 Ld(Rd \ J̃d,ε) = 0. (28)

As a matter of fact, assuming that (28) holds, we would then be able to write that

Ld(Badd) ≤ Ld
( ∞⋃
n=1

Rd \ J̃d,εn

)
≤
∞∑
n=1

Ld(Rd \ J̃d,εn) = 0,

which would directly lead to Proposition 1.9. The proof now reduces to establish-
ing (28). To proceed, we begin by remarking that this assertion holds for ε = 1. In
fact, the corollary to Dirichlet’s theorem, namely, Corollary 1.1 implies that

J̃d,1 = Jd,1+1/d = Rd. (29)

In view of the monotonicity of the sets J̃d,ε with respect to ε, the assertion also
holds a fortiori for ε > 1.

The remaining case in which ε ∈ (0, 1) may be settled by means of general
measure theoretic tools for sets of limsup type that are detailed in Chapter 4.
Specifically, Proposition 4.4 therein directly leads to the following weaker statement.
Recall that the limsup of a sequence (En)n≥1 of subsets of Rd is defined by

lim sup
n→∞

En =

∞⋂
m=1

∞⋃
n=m

En,

and consists of the points that belong to infinitely many sets of the form En.

Lemma 1.3. Let us consider a sequence (xn)n≥1 in Rd and a sequence (rn)n≥1

in (0, 1] such that for every integer m ≥ 1, only finitely many indices n ≥ 1 satisfy
both |xn|∞ < m and rn > 1/m. Then,

Rd = lim sup
n→∞

B∞(xn, rn) =⇒ ∀c > 0 Ld
(
Rd \ lim sup

n→∞
B∞(xn, c rn)

)
= 0.

It is clear that the sets J̃d,ε fit nicely in the setting supplied by Lemma 1.3. In
fact, letting (pn, qn)n≥1 denote an enumeration of the countable set Zd × N, and

then defining xn = pn/qn and rn = 1/q
1+1/d
n , we easily see that for any ε > 0,

J̃d,ε = lim sup
n→∞

B∞(xn, ε rn).

Moreover, as a result of (29), the above limsup set coincides with the whole space
Rd when ε = 1, so that the assumptions of the lemma are fulfilled by the sequences

(xn)n≥1 and (rn)n≥1. We may conclude that all the sets J̃d,ε have full Lebesgue
measure in Rd. This leads to (28), and thus to Proposition 1.9.



20 1. ELEMENTARY DIOPHANTINE APPROXIMATION

1.3.3. Link with continued fractions. We assume in this section that the
dimension d of the ambient space is equal to one. For any real number x, recall
that the exponent κ(x) is defined by (24). This exponent characterizes the badly
approximable numbers: Definition 1.2 directly ensures that

x ∈ Bad1 ⇐⇒ κ(x) > 0. (30)

Moreover, we showed in Section 1.2.2.2 that κ(x) is bounded above by 1/
√

5, and
the bound is attained by the irrational numbers whose continued fraction expansion
is ultimately equal to one, so in particular by the golden ratio φ defined by (22).
These numbers may therefore be seen as the “most badly” approximable one.

The emblematic example of the golden ratio hints at the following characteri-
zation of the badly approximable numbers in terms of the partial quotients of their
continued fraction expansion.

Proposition 1.10. Let x be a positive irrational real number with continued
fraction expansion [a0; a1, a2, . . .]. Then,

x ∈ Bad1 ⇐⇒ sup
n≥0

an <∞.

Proof. Let us assume that x is badly approximable. Then, for some ε > 0
and all n ≥ 0, the corresponding convergents pn/qn satisfy

ε

q2
n

≤
∣∣∣∣x− pn

qn

∣∣∣∣ < 1

qnqn+1
≤ 1

an+1q2
n

in view of (9) and (13). This implies that the partial quotients an+1 are bounded
by 1/ε for all n ≥ 0.

Conversely, let us assume that the partial quotients are bounded by some real
M > 0. Then, making use of (13) again, we see that qn+1 ≤ (M + 1)qn for all
n ≥ 0. Now, let us consider a pair (p, q) ∈ P1. By virtue of the optimality of the
convergents, combined with (25), we have∣∣∣∣x− p

q

∣∣∣∣ ≥ ∣∣∣∣x− pn
qn

∣∣∣∣ > 1

qnqn+2
≥ 1

(M + 1)4q2
n−1

>
1

(M + 1)4q2

if n is chosen in such a way that qn−1 < q ≤ qn, see Theorem 1.3. Thus, the number
x is badly approximable. �

The previous proposition yields a description of the size of the set of badly
approximable numbers in terms of cardinality.

Corollary 1.2. There exist continuum many badly approximable numbers,
and there exist continuum many numbers that are not badly approximable. In other
words, the sets Bad1 and R \ Bad1 have cardinality equal to that of R.

The results of Section 3.2 give the asymptotic behavior of the continued fraction
expansion of typical irrational numbers. In particular, Proposition 3.3 ensures that
for Lebesgue-almost every irrational number, the mean of the n first partial quo-
tients tends to infinity as n→∞. The partial quotients thus grow typically some-
what fast to infinity and, from this perspective, the badly approximable numbers
behave very peculiarly. This observation implies that the set Bad1 has Lebesgue
measure zero. We therefore recover Proposition 1.9 in the one-dimensional case.

1.4. Quadratic irrationals

Recall that a quadratic irrational is an irrational real number x such that
there are integers a, b and c with ax2 + bx + c = 0, or equivalently such that
Q(x) is a field extension of degree two over Q. The golden ratio defined by (22)
provides a simple example of quadratic irrational, and also happens to supply the
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most simple example of continued fraction expansion that is ultimately periodic.
This coincidence is actually emblematic of a result due to Euler and Lagrange
that characterizes the quadratic irrationals in terms of the partial quotients of
their continued fraction expansion. In order to state this result, let us begin by a
definition.

Definition 1.3. A continued fraction is eventually periodic if there are integers
m ≥ 0 and k ≥ 1 such that an+k = an for all integers n ≥ m. Such a continued
fraction is written

[a0; a1, . . . , am−1, am, . . . , am+k−1].

The aforementioned characterization of the quadratic irrationals is then given
by the following result.

Theorem 1.4 (Euler, 1737; Lagrange, 1770). Let x be an irrational positive
real number. Then, the continued fraction expansion of x is ultimately periodic if
and only if x is a quadratic irrational.

Proof. The first proof of the direct part is due to Euler. Let us assume that
x has a strictly periodic continued fraction expansion, namely, x = [a0; a1, . . . , ak].
As a consequence, the (k + 1)-th tail of the continued fraction expansion of x is
equal to x itself, and (19) implies that

x =
pkx+ pk−1

qkx+ qk−1
,

so that x is a root of the polynomial qkZ
2 + (qk−1 − pk)Z − pk−1, and is therefore

a quadratic irrational. Note in passing that the discriminant of this polynomial is
equal to (pk + qk−1)2 + 4(−1)k owing to (10), and thus cannot be a perfect square;
this is compatible with the fact that x is irrational.

Let us now consider the general case in which x has a continued fraction ex-
pansion that is periodic only ultimately. Then, the continued fraction expansion
of x is of the form [a0; a1, . . . , am−1, am, . . . , am+k−1]. In particular, its m-th tail
xm has a strictly periodic continued fraction expansion, thereby being a quadratic
irrational. By virtue of (19) again, we have

x =
pm−1xm + pm−2

qm−1xm + qm−2
,

which proves that the two field extensions Q(x) and Q(xm) coincide. In particular,
Q(x) is of degree two over Q, so that x is a quadratic irrational.

The converse part is more difficult and was first established by Lagrange. Let
us suppose that x is a quadratic irrational. Then, x is a root of a polynomial
R0 = α0Z

2 +β0Z+γ0 with coefficients α0, β0 and γ0 in Z, and with a discriminant
δ = β2

0 − 4α0γ0 that cannot be a perfect square. Moreover, letting xn denote
the n-th tail of the continued fraction expansion of x, we see again that the two
field extensions Q(x) and Q(xn) coincide, so that xn is a root of a polynomial
Rn = αnZ

2 + βnZ + γn of the above form.
It is possible to choose these polynomials in such a way that they satisfy a

simple recurrence relation. Since xn = an + 1/xn+1, we see that

x2
n+1Rn

(
an +

1

xn+1

)
= (a2

nαn + anβn + γn)x2
n+1 + (2anαn + βn)x)n+ 1 + αn

vanishes, so that we may assume that the coefficients of the polynomial Rn+1 are
obtained from those of Rn thanks to the following relations:

αn+1 = a2
nαn + anβn + γn

βn+1 = 2anαn + βn

γn+1 = αn.
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In particular, these relations imply that the integer β2
n − 4αnγn does not depend

on n. As a result, all the polynomials Rn have discriminant δ, which cannot be a
perfect square. Thus, αn 6= 0 for all integers n ≥ 0.

Let us assume that there exists an integer m ≥ 0 such that αn is positive for
any n ≥ m. As an is also positive, it follows from the above recurrence relations
that the sequence (βn)n≥m is increasing, and furthermore that the three integers
αn, βn and γn are simultaneously positive for n large enough. This contradicts the
fact that xn is a positive root of Rn. We deduce that there is an infinite subset N
of N such that αn−1αn < 0 for all n ∈ N . In that case, we see that

0 ≤ β2
n < δ and 0 < −4αnγn ≤ δ.

This gives a bound on the coefficients of the polynomial Rn when n ∈ N , namely,

|βn| <
√
δ and max{|αn|, |γn|} ≤

δ

4
.

This means that when the index n runs through the infinite set N , there are
only finitely many different polynomials Rn. As a consequence, there is at least a
polynomial that is chosen infinitely often. In particular, there are three integers
n1 < n2 < n3 for which the polynomials Rn1

, Rn2
and Rn3

coincide. Thus, xn1
,

xn2
and xn3

are a root of the same polynomial. Since a quadratic polynomial has at
most two zeros, we deduce that at least two among these three numbers coincide.
This ensures that the continued fraction expansion of x is ultimately periodic. �

Thanks to Proposition 1.10, one easily checks that Theorem 1.4 leads to the
following corollary.

Corollary 1.3. Any quadratic irrational is badly approximable.

1.5. Inhomogeneous approximation

Inhomogeneous Diophantine approximation usually refers to the approximation
of points in Rd by the system obtained by the points of the form (p+ α)/q, where
as usual p is an integer point, and q is a positive integer, and where α is a point in
Rd that is fixed in advance. When α is equal to zero, one obviously recovers the
situation discussed in Section 1.1, which is referred to as the homogeneous one.

In this context, a point α being fixed arbitrarily in Rd, the analog of the set
Jd,τ defined by (1) is now the set

Jαd,τ =

{
x ∈ Rd

∣∣∣∣∣
∣∣∣∣x− p+ α

q

∣∣∣∣
∞
<

1

qτ
for i.m. (p, q) ∈ Zd × N

}
. (31)

Proposition 1.1 may straightforwardly be extended to the inhomogeneous setting.
Specifically, one easily checks that the Lebesgue measure of the set Jαd,τ vanishes for

any real number τ > 1 + 1/d. Some more work is required to show that, just as in
the homogeneous setting, the set Jαd,τ has full Lebesgue measure in the whole space

Rd in the opposite case; this will actually appear in the statement of Corollary 7.1.
A much more precise description of the size of the set Jαd,τ will in fact be given in
this statement, and subsequently in that of Corollary 10.3 as well.

1.5.1. A theorem of Khintchine. The main purpose of this section is to
establish the following result due to Khintchine [39], which in some sense comple-
ments Dirichlet’s theorem, namely, Theorem 1.1. Our proof sticks to Khintchine’s
method very closely, but we find it valuable to detail the arguments anyway, because
Khintchine’s original paper [39] is written in German.
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Theorem 1.5. Let us consider a point x ∈ Rd and assume that there exists a
real number γ > 0 such that for any integer Q > 1, the system{

1 ≤ q < γQd

|qx− p|∞ ≤ 1/Q

admits no solution (p, q) in Zd ×N. Then, there exists a real number Γ > 0, which
depends on γ and d only, such that for any point α ∈ Rd and any integer Q > 1,
the system {

1 ≤ q < ΓQd

|qx− p− α|∞ ≤ 1/Q

admits a solution (p, q) in Zd × N.

The remainder of this section is devoted to establishing Theorem 1.5. Let us
begin by introducing some notations. Let us consider a point x in Rd and an integer
Q > 1. Theorem 1.1 ensures that the system{

1 ≤ q < Qd

|qx− p|∞ ≤ 1/Q

admits a solution (p, q) in Zd × N ; we assume that q is minimal. Combined with
the assumption that bears on x in the statement of Theorem 1.5, this implies that

gcd(p, q) = 1 and q ≥ γQd.
In particular, γ is necessarily smaller than one. Now, for any i ∈ {1, . . . , d}, let pi
denote the i-th coordinate of p, and let ei, p

′
i and q′i be the integers defined by

ei = gcd(pi, q)

pi = eip
′
i

q = eiq
′
i.

In addition, since p′i and q′i are coprime, p′i is invertible modulo q′i, and we may find
an integer bi such that {

p′ibi = 1 mod q′i
gcd(ei, bi) = 1.

As a matter of fact, the solutions of the first equation are of the form bi = b∗i + zq′i,
for z ∈ Z, when b∗i is already a solution. The fact that one of these solutions also
satisfies the second condition is a plain consequence of the following fact.

Lemma 1.4. Let b and c be two integers in Z with gcd(b, c) = 1. Then,

∀a ∈ Z ∃z ∈ Z gcd(a, b+ zc) = 1.

Proof. When a divides c, we have gcd(a, b) = 1, and the result clearly holds.
In the opposite case, let n denote the product of the prime numbers that divide a
and do not divide c. Clearly, the integers c and n are coprime, so there exists an
integer z ∈ Z such that

zc = 1− b mod n.

Let us consider a prime divisor ` of a, and let us observe that ` - zc+ b. When ` - c,
this comes from the fact that ` | n. When ` | c, this is because ` - b. Finally, no
prime divisor of a divides zc+ b, and the result follows. �

On top of that, let E denote the product of the integers ei, that is,

E = e1 . . . ed.

We observe that E | qd−1. Indeed, since qd = Eq′1 . . . q
′
d, it suffices to show that

q | q′1 . . . q′d. Let us consider a prime number ` and an integer s ≥ 1 such that `s | q.
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The components of p are mutually coprime with q, so we must have ` - pi for some
i. As ei | pi, we necessarily have ` - ei as well. Since q = eiq

′
i, we deduce that `s

divides q′i, thereby dividing q′1 . . . q
′
d. It follows that q | q′1 . . . q′d, and therefore that

E | qd−1. We may thus introduce the integer

c =
qd−1

E
.

Following the lines of Khintchine’s original proof, We now state and establish
a series of lemmas.

Lemma 1.5. Let us consider d integers n1, . . . , nd ∈ Z, with each ni being less
than ei in absolute value, and let us further assume that

n1b1q
′
1 = . . . = ndbdq

′
d mod q.

Then, the integers n1, . . . , nd are all equal to zero.

Proof. The assumption of the lemma directly yields

n1b1q
′
1q
d−1 = . . . = ndbdq

′
dq
d−1 mod qd.

We have qd = Eq′1 . . . q
′
d, and ei = q/q′i for each integer i, so that

n1b1
E

e1
= . . . = ndbd

E

ed
mod E.

Let us consider an integer i ∈ {1, . . . , d}. We may obviously exclude the trivial case
where ei is equal to one. Thus, assuming that ei > 1, we may consider a prime
number ` and an integer s ≥ 1 such that `s | ei. Since q and the coordinates of p
are mutually coprime, there exists an integer i′ 6= i such that ` - ei′ . We have

nibiei′ = ni′bi′ei mod eiei′ ,

so that `s divides nibiei′ . Moreover, as bi and ei are coprime, the prime number
` cannot divide bi. It does not divide ei′ either, so we deduce that `s | ni. The
previous analysis implies that the integer ni is a multiple of ei, and the result follows
from the assumption that it is smaller than ei in absolute value. �

Lemma 1.6. There exist a real number C0 > 0 and an integer Q0 ≥ 1 that

depend on γ and d only such that if Q > Q0, then there are 2d2 integers x
(k)
i and

y
(k)
i , for i, k ∈ {1, . . . , d}, such that the following conditions hold simultaneously:

(1) for any k ∈ {1, . . . , d},

x
(k)
1 b1 = . . . = x

(k)
d bd mod q ;

(2) for any i, k ∈ {1, . . . , d},

x
(k)
i = y

(k)
i mod q′i ;

(3) there exists an integer a ≥ 1 such that

∆ =

∣∣∣∣∣∣∣∣
y

(1)
1 · · · y

(1)
d

...
...

y
(d)
1 · · · y

(d)
d

∣∣∣∣∣∣∣∣ = ac ;

(4) for any i, k ∈ {1, . . . , d},

|y(k)
i | ≤ C0

q(d−1)/d

ei
.

Specifically, one may choose C0 as the (d−1)-th power of an arbitrary integer larger
than 2(d− 1)/γ1/d, and Q0 as any integer larger than C0/γ

1/d.
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Proof. Let C denote an arbitrary integer larger than 2(d − 1)/γ1/d, and let
C0 = Cd−1. Moreover, let Q0 denote an arbitrary integer larger than C0/γ

1/d. We
assume throughout the proof that the condition Q > Q0 is verified.

Then, let us consider 2d integers zi and ji satisfying the conditions

0 ≤ zi ≤ C0
q(d−1)/d

ei
and 0 ≤ ji < ei,

for i ∈ {1, . . . , d}, and let us then define

ui = jiq
′
i + zi.

We obviously have ei possible values for the integer ji, and bC0q
(d−1)/d/eic+ 1 for

zi. Moreover, note that Q > Q0 > C0/γ
1/d and q ≥ γQd, so that q > Cd0 . This

implies that the maximal possible value for zi is smaller than q′i, and thus that the
set of all possible values of the d-tuple (u1, . . . , ud) has cardinality equal to

d∏
i=1

(
ei

(⌊
C0q

(d−1)/d

ei

⌋
+ 1

))
> Cd0 q

d−1.

Let U denote this set, and let Φ be the mapping defined on U by

Φ(u1, . . . , ud) = (u1b1 − u2b2, . . . , u1b1 − udbd) mod q. (32)

The mapping Φ sends the set U to a subset of (Z/qZ)d−1. Therefore, the preimage
sets Φ−1({f}), for f ∈ (Z/qZ)d−1, form a partition of U . As a result,

Cd0 q
d−1 < #U =

∑
f∈(Z/qZ)d−1

#Φ−1({f}) ≤ qd−1 max
f∈(Z/qZ)d−1

#Φ−1({f}).

Consequently, there necessarily exists an element in (Z/qZ)d−1 whose preimage has

cardinality larger than Cd0 . Thus, we can find Cd0 +1 distinct d-tuples (u
(k)
1 , . . . , u

(k)
d ),

with k ∈ {0, . . . , Cd0}, whose images under the mapping Φ coincide. The correspond-

ing values for the integers zi and ji are denoted by z
(k)
i and j

(k)
i , respectively.

We consider in Zd the vectors y(k) = (y
(k)
1 , . . . , y

(k)
d ) defined by y

(k)
i = z

(k)
i −z

(0)
i .

Note that there are Cd0 + 1 such vectors, and that the null vector is obtained for k
equal to zero. Let us assume that these vectors span a linear subspace of dimension
at most d − 1, so that they all lie in a hyperplane with normal vector denoted by
(a1, . . . , ad). Without loss of generality, we may assume that |ai|/ei is maximal
when i = 1. We may thus write the equation of the hyperplane in the form

e1y1 =

d∑
i=2

νieiyi,

where the real numbers νi are bounded above by one in absolute value.
Recalling that C is the positive integer for which C0 = Cd−1, we may split

each interval [0, C0q
(d−1)/d/ei] into Cd disjoint subintervals with common length

q(d−1)/d/(Cei). Accordingly, the rectangle formed by the product of these intervals
over all i ∈ {2, . . . , d} may be partitioned into Cd0 disjoint rectangles. The Cd0 + 1

points (z
(k)
2 , . . . , z

(k)
d ) are all contained in the large rectangle. The pigeon-hole

principle then ensures that at least two points lie in the same smaller rectangle.
These points correspond to two distinct choices of the index k and, for simplicity,
their components are denoted by z′i and z′′i , respectively. We thus have

∀i ∈ {2, . . . , d} |z′i − z′′i | ≤
q(d−1)/d

Cei
.
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It is clear that the corresponding components y′i and y′′i satisfy the same inequalities

because they are equal to z′i − z
(0)
i and z′′i − z

(0)
i , respectively. In addition, as the

points y′ and y′′ both belong to the aforementioned hyperplane, we have

e1|y′1 − y′′1 | ≤
d∑
i=2

|νi| ei |y′i − y′′i | ≤
d∑
i=2

ei
q(d−1)/d

Cei
=
d− 1

C
q(d−1)/d.

We finally deduce that

∀i ∈ {1, . . . , d} |y′i − y′′i | ≤
d− 1

C
· q

(d−1)/d

ei
. (33)

Let us suppose that all the differences y′i − y′′i vanish, i.e. that the points z′

and z′′ coincide. As the corresponding d-tuples (u′1, . . . , u
′
d) and (u′′1 , . . . , u

′′
d) have

the same image under the mapping Φ, we have for any index i ∈ {2, . . . , d},
u′1b1 − u′ibi = u′′1b1 − u′′i bi mod q, (34)

that is,

(j′1q
′
1 + z′1)b1 − (j′iq

′
i + z′i)bi = (j′′1 q

′
1 + z′′1 )b1 − (j′′i q

′
i + z′′i )bi mod q.

As a consequence, making use of the assumption that the points z′ and z′′ are the
same, we deduce that

(j′1 − j′′1 )q′1b1 = . . . = (j′d − j′′d )q′dbd mod q.

However, every integer j′i− j′′i is smaller than ei in absolute value, so we may apply
Lemma 1.5 to conclude that it is equal to zero. This is a contradiction because the
points u′ and u′′ were chosen to be distinct. Thus, all the differences y′i−y′′i cannot
vanish simultaneously.

Moreover, we also deduce from (34) that there is an integer g such that{
(u′1 − u′′1)b1 = . . . = (u′d − u′′d)bd = g mod q

−q ≤ 2g < q.

As a result, for each fixed i, since q′i divides q and bi is the inverse of p′i modulo q′i,
we infer that

gp′i = (u′i − u′′i )bip
′
i = (j′i − j′′i )bip

′
iq
′
i + (z′i − z′′i )bip

′
i = y′i − y′′i mod q′i.

This plainly means that gp′i is equal to y′i−y′′i +niq
′
i for some integer ni ∈ Z, which

directly leads to∣∣∣∣g piq − ni
∣∣∣∣ =

ei
q
|gp′i − niq′i| =

ei
q
|y′i − y′′i | ≤

d− 1

Cq1/d
,

thanks to (33). Meanwhile, we know that |qxi − pi| is bounded above by 1/Q. It
then follows from the triangle inequality that

|gxi − ni| ≤ |g|
∣∣∣∣xi − pi

q

∣∣∣∣+

∣∣∣∣g piq − ni
∣∣∣∣ ≤ |g|qQ +

d− 1

Cq1/d
≤
(

1

2
+

d− 1

Cγ1/d

)
1

Q
,

where the latter inequality is due to the fact that |g| ≤ q/2 and q ≥ γQd. We now
recall that the integer C is larger than 2(d − 1)/γ1/d ; this implies that the upper
bound above is at most 1/Q, specifically,

|gx− n|∞ ≤
1

Q
.

Along with the fact that |g| is smaller than q, this contradicts the minimality of q,
unless the integer g vanishes. Thus, the only possibility is that g is equal to zero,
which means that

∀i ∈ {1, . . . , d} (u′i − u′′i )bi = 0 mod q.
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Given that q′i divides q and is coprime with bi, we deduce that the integers u′i and
u′′i coincide modulo q′i. The integers y′i and y′′i share the same property, specifically,

y′i = z′i − z
(0)
i = u′i − u

(0)
i = u′′i − u

(0)
i = z′′i − z

(0)
i = y′′i mod q′i.

On top of that, (33) implies that |y′i − y′′i | is smaller than q′i. In fact, this holds
because q is large enough, specifically,

q1/d ≥ γ1/dQ > γ1/dQ0 > C0 ≥
d− 1

C
.

We deduce that the differences y′i−y′′i are all equal to zero, a contradiction with what
precedes. This means that the vectors y(k) cannot belong to a common hyperplane,
and thus that they span the whole space Rd.

The upshot is that d of the vectors y(k) are linearly independent; up to reorder-
ing, we may assume that these vectors are those indexed by k ∈ {1, . . . , d} and that
their determinant ∆ is positive. These vectors satisfy the condition (4) appearing
in the statement of the lemma, because of the bounds on the integers zi. We now

define x
(k)
i as being equal to u

(k)
i −u

(0)
i for any indices i and k in {1, . . . , d}, so that

x
(k)
i = (j

(k)
i q′i + z

(k)
i )− (j

(0)
i q′i + z

(0)
i ) = z

(k)
i − z(0)

i = y
(k)
i mod q′i,

i.e. the condition (2) is verified. Furthermore, the vectors (u
(k)
1 , . . . , u

(k)
d ) were

chosen in such a way that they have the same image under the mapping Φ. In
particular, for any i ∈ {2, . . . , d} and any k ∈ {1, . . . , d},

u
(k)
1 b1 − u(k)

i bi = u
(0)
1 b1 − u(0)

i bi mod q,

which directly leads to the condition (1).

The discriminant ∆ of the integers y
(k)
i is a positive integer but, in order to

obtain the condition (3), it remains to prove that ∆ is a multiple of the integer

c. Let us consider the integers t
(k)
i = eiy

(k)
i , and let ∆′ denote their discriminant.

Clearly, ∆′ is equal to E∆, so it suffices to establish that qd−1 | ∆′. This is the
purpose of the remainder of the proof.

Given four indices i, i′, k, k′ ∈ {1, . . . , d}, the condition (1) gives{
eiei′x

(k)
i x

(k′)
i′ bi = eiei′x

(k)
i′ x

(k′)
i′ bi′ mod qeiei′x

(k′)
i′

eiei′x
(k′)
i x

(k)
i′ bi = eiei′x

(k′)
i′ x

(k)
i′ bi′ mod qeiei′x

(k)
i′ .

(35)

Let us consider a prime number ` and an integer s ≥ 1 such that `s | q, and

let r denote the maximal integer satisfying `r | t(k)
i for all i, k ∈ {1, . . . , d}. The

condition (2), combined with the fact that q is equal to eiq
′
i, gives

t
(k)
i = eiy

(k)
i = eix

(k)
i mod q. (36)

Case where r ≤ s. We see that `r divides both t
(k)
i and q, which itself divides

t
(k)
i − eix(k)

i . Thus, `r divides eix
(k)
i for any choice of i and k. This means that

qei`
r divides both qeiei′x

(k′)
i′ and qeiei′x

(k)
i′ , and taking the two equations in (35)

modulo qei`
r, we deduce that

eiei′x
(k)
i x

(k′)
i′ bi = eiei′x

(k)
i′ x

(k′)
i′ bi′ = eiei′x

(k′)
i′ x

(k)
i′ bi′ = eiei′x

(k′)
i x

(k)
i′ bi mod qei`

r,

so that
eiei′bi(x

(k)
i x

(k′)
i′ − x

(k′)
i x

(k)
i′ ) = 0 mod qei`

r. (37)

We now observe that bi is coprime with qei`
r. As a matter of fact, assuming

that this does not hold, let us consider a prime number n that divides both bi
and qei`

r. Since bi and ei are coprime, n does not divide ei, and thus necessarily
divides q`r. Furthermore, if n is different from `, it then divides q = eiq

′
i, thereby

necessarily dividing q′i. This is impossible because bi and q′i are coprime. Hence,
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the prime number n is equal to `. As a consequence, `s divides q and is coprime
with ei, so it must divide q′i. This means that n divides both bi and q′i, which is
impossible because these two integers are coprime. Finally, bi is invertible modulo
qei`

r, a multiple of `s+r, and we may thus deduce from (37) that

eiei′(x
(k)
i x

(k′)
i′ − x

(k′)
i x

(k)
i′ ) = 0 mod `s+r. (38)

Now, starting from (36) again, up to replacing i and k by i′ and k′, respectively,

and recalling that the integer `r divides both t
(k′)
i′ and eix

(k)
i , we also have{

t
(k)
i t

(k′)
i′ = eix

(k)
i t

(k′)
i′ mod q`r

t
(k′)
i′ eix

(k)
i = eiei′x

(k)
i x

(k′)
i′ mod q`r,

from which we directly infer that

t
(k)
i t

(k′)
i′ = eiei′x

(k)
i x

(k′)
i′ mod `s+r.

We may obviously exchange the rôle of k and k′ and deduce a similar equality.
Combined with (38), this leads to

t
(k)
i t

(k′)
i′ = t

(k′)
i t

(k)
i′ mod `s+r.

Since all the integers t
(k)
i are divisible by `r, they may be written in the form

t
(k)
i = `rv

(k)
i for some integer v

(k)
i . The previous equation thus gives

v
(k)
i v

(k′)
i′ − v

(k′)
i v

(k)
i′ = 0 mod `s−r. (39)

The determinant of the integers v
(k)
i is denoted by ∆′′, and is thus equal to

`−dr∆′. The maximality of r ensures that there is a pair (ι, κ) of indices in {1, . . . , d}
such that the integer v

(κ)
ι is not divisible by `. We now transform the discriminant

∆′′ as follows: for each index i 6= ι, we replace the i-th column by its product

by v
(κ)
ι , minus v

(κ)
i times the ι-th column. Hence, if i 6= ι, the coefficient v

(k)
i is

replaced by v
(k)
i v

(κ)
ι − v(κ)

i v
(k)
ι which, in view of (39), may be written in the form

`s−rw
(k)
i for some w

(k)
i ∈ Z. The newly obtained discriminant is thus equal to both

(v
(κ)
ι )d−1∆′′ and `(s−r)(d−1)∆′′′, where ∆′′′ denotes the discriminant of the matrix

formed by the integers w
(k)
i , for i 6= ι, and the integers v

(k)
ι . In particular, (v

(κ)
ι )d−1

divides `(s−r)(d−1)∆′′′ and, since ` - v(κ)
ι , we deduce that (v

(κ)
ι )d−1 divides ∆′′′,

i.e. that ∆′′′ may be written in the form (v
(κ)
ι )d−1m for some m ∈ Z. Finally,

∆′ = `dr∆′′ = `dr
`(s−r)(d−1)

(v
(κ)
ι )d−1

∆′′′ = `(d−1)s+rm,

from which we conclude that (`s)d−1 divides ∆′.

Case where r > s. In that situation, all the integers t
(k)
i are divisible by `s, so

that their discriminant ∆′ is clearly divisible by (`s)d−1.
The previous analysis shows that for any prime number ` and any integer s ≥ 1

such that `s | q, we have (`s)d−1 | ∆′. It follows that qd−1 | ∆′ as required, and the
condition (3) readily follows. �

Lemma 1.7. Let us consider 2d2 integers x
(k)
i and y

(k)
i , for i, k ∈ {1, . . . , d},

such the conditions (1) and (2) of the statement of Lemma 1.6 hold, such that the
condition (3) holds with a > 1, and such that for any i, k ∈ {1, . . . , d},

|y(k)
i | ≤ λi with 0 < λi <

q′i
d
.

Then, there are 2d2 integers x̄
(k)
i and ȳ

(k)
i , for i, k ∈ {1, . . . , d}, that satisfy the

aforementioned conditions (1) and (2), and also the following conditions:
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(3’) there exists an integer ā ∈ {1, . . . , a− 1} such that

∆̄ =

∣∣∣∣∣∣∣∣
ȳ

(1)
1 · · · ȳ

(1)
d

...
...

ȳ
(d)
1 · · · ȳ

(d)
d

∣∣∣∣∣∣∣∣ = āc ;

(4’) for any i, k ∈ {1, . . . , d},

|ȳ(k)
i | ≤ dλi.

Proof. The vectors y(1), . . . , y(d) form a sublattice La of Zd with dimension
equal to d. Its fundamental domain, i.e. the half-open parallelepiped spanned by
these vectors, is denoted by Ja. The Lebesgue measure of Ja is the fundamental
volume of the lattice and is equal to ∆ = ac. The index of La in Zd is the cardinality
of the quotient Zd/La ; it is equal to ∆ and also gives the number of points in Zd
that belong to Ja, see e.g. [58, Lecture V] for details.

Let us then consider the set A formed by the 2d-tuples (j1, . . . , jd, y1, . . . , yd)
with (y1, . . . , yd) ∈ Ja ∩ Zd and ji ∈ {0, . . . , ei − 1} for each index i. The mapping
Ψ defined on A by

Ψ(j1, . . . , jd, y1, . . . , yd) = (j1q
′
1 + y1, . . . , jdq

′
d + yd) (40)

is one-to-one. Indeed, let us assume that j′iq
′
i + y′i = j′′i q

′
i + y′′i for all i, for two

distinct 2d-tuples. There necessarily exists an index m for which j′m 6= j′′m, as
otherwise the two 2d-tuples would coincide. Consequently,

|y′m − y′′m| = |j′m − j′′m|q′m ≥ q′m.
Given that (y′1, . . . , y

′
d) and (y′′1 , . . . , y

′′
d ) both belong to the parallelepiped Ja, the

distance between y′m and y′′m is bounded above by the diameter of the projection of
Ja onto the m-th axis. Hence,

|y′m − y′′m| ≤ |y(1)
m |+ . . .+ |y(d)

m | ≤ dλm < q′m,

thereby giving a contradiction. The mapping Ψ being one-to-one, its image A′ has
cardinality equal to that of A, namely,

#A′ = #A = e1 . . . ed ·#(Ja ∩ Zd) = E∆ = Eac = aqd−1.

In particular, since the integer a is greater than one, the set A′ has cardinality
larger than that of (Z/qZ)d−1, namely, qd−1. Thus, the mapping Φ defined on A′

as in (32) cannot be one-to-one. This means that there exist two distinct d-tuples
(x′1, . . . , x

′
d) and (x′′1 , . . . , x

′′
d) in A′ such that for any index i ∈ {2, . . . , d},

x′1b1 − x′ibi = x′′1b1 − x′′i bi mod q.

Naturally, the corresponding 2d-tuples in A are denoted by (j′1, . . . , j
′
d, y
′
1, . . . , y

′
d)

and (j′′1 , . . . , j
′′
d , y
′′
1 , . . . , y

′′
d ), respectively. For any i, we then define

ui = x′i − x′′i
`i = j′i − j′′i
vi = y′i − y′′i

and we point out that {
u1b1 = . . . = udbb mod q

|`1| < e1, . . . , |`d| < ed.
(41)

Now fix an index k ∈ {1, . . . , d}. Since the vector y′ = (y′1, . . . , y
′
d) belongs to

Ja, the parallelepiped spanned by the vectors y(1), . . . , y(k−1), y′, y(k+1), . . . , y(d) is
included in the parallelepiped Ja. By a volume comparison argument, we deduce
that the determinant obtained when replacing the k-th line of ∆ by (y′1, . . . , y

′
d)
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belongs to the interval [0,∆). A similar argument holds for y′′ = (y′′1 , . . . , y
′′
d ).

The difference of the two determinants obtained in this manner is thus less than
∆ in absolute value; it is denoted by ∆(k) and is equal to the Lebesgue measure of
the parallelepiped spanned by the vectors y(1), . . . , y(k−1), v, y(k+1), . . . , y(d), where
v stands for (v1, . . . , vd). As in the proof of Lemma 1.6, we observe that ∆(k) is
a multiple of c, i.e. there exists an integer a(k) such that ∆(k) = a(k)c. Up to
exchanging the rôle of y′ and y′′, we may assume that a(k) ≥ 0. Furthermore,
∆(k) = a(k)c is smaller than ∆ = ac, so that a(k) < a.

Let us now assume that the determinant ∆(k) vanishes regardless of the value
of k. Expanding ∆(k) along the k-th line, we get

0 = ∆(k) =

d∑
i=1

viY
(k)
i ,

where Y
(k)
i denotes the (k, i)-cofactor in ∆, i.e. that in the same position as y

(k)
i .

As a consequence of Cramer’s rule, the determinant of the integers Y
(k)
i is equal

to ∆d−1, and is therefore positive. It follows that all the integers vi vanish. Thus,
ui = `iq

′
i for all i, so that

`1q
′
1b1 = . . . = `dq

′
dbb mod q.

Applying Lemma 1.5 with the help of (41), we deduce that all the integers `i
vanish as well. Finally, the integers ui are all equal to zero. This contradicts the
distinctness of the d-tuples (x′1, . . . , x

′
d) and (x′′1 , . . . , x

′′
d), and means that one of the

determinants ∆(k) is nonvanishing. Without loss of generality, we may thus assume
that ∆(1) > 0. In particular, a(1) > 0.

To conclude, we define as follows the 2d2 integers x̄
(k)
i and ȳ

(k)
i announced in

the statement of the lemma:
x̄

(k)
i = x

(k)
i if k ≥ 2

x̄
(1)
i = ui

ȳ
(k)
i = y

(k)
i if k ≥ 2

ȳ
(1)
i = vi

The conditions (1) and (2) obviously hold for k ≥ 2. When k is equal to one, the
condition (1) follows from (41) above, and the condition (1) is due to the simple
observation that ui and vi coincide modulo q′i for any index i. On top of that,

let us remark that the determinant ∆̄ of the integers ȳ
(k)
i defined above is equal

to ∆(1) ; the condition (3’) thus holds with ā = a(1). It remains to establish the
condition (4’). The case where k ≥ 2 is elementary since we then have

|ȳ(k)
i | = |y

(k)
i | ≤ λi ≤ dλi

for all index i. To deal with the case where k = 1, we use of the fact that the vector
v joins two points that belong to the parallelepiped Ja. Thus, its component satisfy

|ȳ(1)
i | = |vi| ≤ |y

(1)
i |+ . . .+ |y(d)

i | ≤ dλi (42)

for all i, as announced. �

Lemma 1.8. There exist a real number C1 > 0 and an integer Q1 ≥ 1 that
depend on γ and d only such that if Q > Q1, then for any integers m2, . . . ,md,
there are 2d integers x∗i and y∗i , for i ∈ {1, . . . , d}, such that the following conditions
hold simultaneously:

(1”) for any i ∈ {2, . . . , d},
x∗1b1 − x∗i bi = mi mod q ;
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(2”) for any i ∈ {1, . . . , d}, there exists an integer ji ∈ {0, . . . , ei−1} such that

x∗i = jiq
′
i + y∗i ;

(4”) for any i ∈ {1, . . . , d},

|y∗i | ≤ C1
q(d−1)/d

ei
.

Specifically, one may choose C1 as being equal to C0d
Cd0 d

d/2

, and Q1 as any integer
larger than C1/γ

1/d.

Proof. Let C1 = C0d
Cd0 d

d/2

, and let Q1 denote an arbitrary integer larger
than C1/γ

1/d. We assume throughout the proof that Q > Q1. In particular, Q is

larger than Q0, so we may start from the 2d2 integers x
(k)
i and y

(k)
i that are obtained

with the help of Lemma 1.6. Each integer eiy
(k)
i is bounded above by C0q

(d−1)/d in

absolute value, so that the Euclidean norm of the vector (e1y
(k)
1 , . . . , edy

(k)
d ) satisfies

|(e1y
(k)
1 , . . . , edy

(k)
d )|2 ≤ d1/2 |(e1y

(k)
1 , . . . , edy

(k)
d )|∞ ≤ C0d

1/2q(d−1)/d.

Moreover, the determinant of the integers eiy
(k)
i is equal to E∆, which is itself

equal to aqd−1. We then deduce from Hadamard’s inequality that

aqd−1 = |E∆| ≤
d∏
k=1

|(e1y
(k)
1 , . . . , edy

(k)
d )|2 ≤ Cd0dd/2qd−1.

It follows that the integer a is smaller than or equal to Cd0d
d/2. Along with the

assumption that Q > Q1, this yields

q1/d ≥ γ1/dQ > γ1/dQ1 > C1 = C0d
Cd0 d

d/2

≥ C0d
a ≥ C0d. (43)

We now consider for each index i the real number λi defined by

λi = C0
q(d−1)/d

ei
= q′i

C0

q1/d
.

By virtue of (43), each λi is smaller than q′i/d. If a > 1, we may therefore apply

Lemma 1.7 to the integers x
(k)
i and y

(k)
i , with the above values for the parameters

λi. We end up with other integers x̄
(k)
i and ȳ

(k)
i such that the condition (3) holds

with a replaced by some other integer ā ∈ {1, . . . , a − 1}. We may in fact apply
Lemma 1.7 iteratively, thereby decreasing the value of a up to one, provided that
the parameters λi remain sufficiently small. Specifically, we apply this lemma at
most a − 1 times; this may be done if the initial values of the parameters satisfy
λi < q′i/d

a for all i, a requirement that is guaranteed by (43). The upshot is that we

may assume that a = 1 in what follows, up to multiplying by dC
d
0 d
d/2−1 the upper

bound appearing in the condition (4). Thus, we may finally consider 2d2 integers

x
(k)
i and y

(k)
i that satisfy the conditions (1) and (2), the condition (3) with a = 1,

and the condition (4) with C0 replaced by C0d
Cd0 d

d/2−1 = C1/d.
We now proceed as in the proof of Lemma 1.7, except that a = 1 and the

bounds λi on the integers y
(k)
i satisfy

λi =
C1

d
· q

(d−1)/d

ei
<
q′i
d
. (44)

Specifically, we consider the parallelepiped J1 spanned by the vectors y(1), . . . , y(d),
and we also consider the corresponding set A′. Here, the integers a(k) satisfy

0 ≤ a(k) < a = 1.
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Thus, all the determinants ∆(k) necessarily vanish. This implies that the mapping
Φ defined on the set A′ as in (32) is one-to-one. Also, again because a = 1, we have

#A′ = qd−1 = #(Z/qZ)d−1.

We deduce that the mapping Φ is a bijection from A′ onto (Z/qZ)d−1. As a conse-
quence, for every integers m2, . . . ,md in Z,

∃!(x1, . . . , xd) ∈ A′ Φ(x1, . . . , xd) = (m2, . . . ,md) mod q. (45)

Furthermore, as shown in the proof of Lemma 1.7, the mapping Ψ defined on the
set A by (40) is a bijection onto A′. Hence,

∃!(j1, . . . , jd, y1, . . . , yd) ∈ A Ψ(j1, . . . , jd, y1, . . . , yd) = (x1, . . . , xd). (46)

To conclude, it suffices to define x∗i = xi and y∗i = yi for all indices i. In fact, the
conditions (1”) and (2”) follow straightforwardly from (45) and (46), respectively.
The condition (4”) is a direct consequence of the approach developed in the proof of
Lemma 1.7, along with the values (44) of the bounds λi. More precisely, the point
(y∗1 , . . . , y

∗
d) belonging to the parallelepiped J1, its i-th component is bounded by dλi

in absolute value, in a way similar to (42), and the condition (4”) finally holds. �

Lemma 1.9. There exists a real number C2 > 0 that depends on γ and d only
such that

max
1≤i≤d

ei ≤ C2 q
(d−1)/d.

Specifically, we may choose C2 as any real number larger than 2γ(1−d)/d.

Proof. Let us fix an arbitrary real number C2 > 2γ(1−d)/d and let us suppose
that the reverse inequality em > C2 q

(d−1)/d holds for some index m. Thus,

Qd−1 ≤
(
q

γ

)(d−1)/d

<
em
C2
· C2

2
=
em
2
.

We now consider the point (q′mx1, . . . , q
′
mxm−1, q

′
mxm+1, . . . , q

′
mxd) in Rd−1 and

apply Dirichlet’s theorem, that is, Theorem 1.1. Accordingly, we infer the existence
of an integer k and a (d−1)-tuple of integers (n1, . . . , nm−1, nm+1, . . . , nd) such that

1 ≤ k < Qd−1 and ∀i 6= m |kq′mxi − ni| ≤
1

Q
.

In addition, regarding the m-th component, we have

|kq′mxm − kp′m| =
k

em
|qxm − pm| ≤

k

emQ
<
Qd−1

emQ
<

1

2Q
.

Therefore, letting nm stand for the product kp′m, and letting n denote as usual the
d-tuple (n1, . . . , nd), we end up with

|kq′mx− n|∞ ≤
1

Q
.

The minimality of the integer q implies that it is less than or equal to kq′m, so that
k is bounded below by em. This contradicts the fact that k < Qd−1 < em/2, and
the result follows. �

We are now in position to finish the proof of Theorem 1.5. We thus consider a
point α = (α1, . . . , αd) in Rd, and for any index i, we define

si = bq′iαic =

⌊
q

ei
αi

⌋
.

Given that p′i and q′i are coprime, there exists an integer ri such that

p′iri = si mod q′i.
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We then define mi = ri − r1 for any i ∈ {2, . . . , d}. We assume that Q > Q1, so as
to apply Lemma 1.8. Therefore, we obtain 2d integers x∗i and y∗i , for i ∈ {1, . . . , d},
such that the conditions (1”), (2”) and (4”) hold simultaneously. In particular, the
condition (1”) implies that for any i ∈ {2, . . . , d},

x∗1b1 − x∗i bi = ri − r1 mod q, (47)

so that the value of x∗i bi + ri modulo q does not depend on the choice of i. This
common value is denoted by k and taken in {0, . . . , q − 1}. Therefore, using the
fact that q′i divides q, we get

p′ik = p′i(x
∗
i bi + ri) = p′ibix

∗
i + p′iri = x∗i + si = y∗i + si mod q′i.

Note that the last equality above follows directly from the condition (2”). In view
of the condition (4”), this implies that there exists an integer yi such that

|p′ik − q′iyi − si| = |y∗i | ≤ C1
q(d−1)/d

ei
.

Consequently, due to the definition of the integers si, we get

|p′ik − q′iyi − q′iαi| ≤ |p′ik − q′iyi − si|+ |si − q′iαi| ≤ 1 + C1
q(d−1)/d

ei
.

Multiplying by ei and making use of Lemma 1.9, we obtain

|pik − qyi − qαi| = ei|p′ik − q′iyi − q′iαi| ≤ ei + C1 q
(d−1)/d ≤ (C1 + C2)q(d−1)/d.

Using the approximation property satisfied by the rational number pi/q with respect
to the real number xi, we deduce that

|kxi − yi − αi| ≤
∣∣∣∣kpiq − yi − αi

∣∣∣∣+ k

∣∣∣∣xi − pi
q

∣∣∣∣ ≤ C1 + C2

q1/d
+

k

qQ
,

and consequently that

|kx− y − α|∞ <
C1 + C2 + 1

q1/d
. (48)

To conclude, we consider an integerQ > 1, and we suppose thatQ is sufficiently
large to ensure that the above arguments may be applied with Q = bC3Qc+1, where
C3 stands for (C1 + C2 + 1)/γ1/d. To be more specific, we assume that Q > Q1

or, equivalently, that Q ≥ Q1, where Q1 = dQ1/C3e and d · e denotes the ceiling
function. Recalling that γQd ≤ q < Qd and that k < q, and defining y as the
d-tuple of integers (y1, . . . , yd), we may then write that{

1 ≤ k < Qd ≤ (2C3)dQd

|kx− y − α|∞ ≤ (C1 + C2 + 1)q−1/d ≤ C3Q
−1 ≤ Q−1.

In the opposite case where Q ≤ Q1, we apply what precedes with Q = bC3Q1c+ 1,
and we therefore obtain{

1 ≤ k < Qd1 ≤ (2C3Q1)d < (C3 +Q1)dQd

|kx− y − α|∞ ≤ (C1 + C2 + 1)q−1/d ≤ C3Q
−1
1 ≤ Q−1

1 ≤ Q−1.

We thus finally see that the conclusion of Theorem 1.5 holds with the real number
Γ being equal for instance to the maximum of (2C3)d and (C3 +Q1)d, a value that
depends on γ and d only.
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1.5.2. A companion result. Inspecting the proof of Theorem 1.5, we may
easily establish the next complementary result, which will be called upon in the
proof of Theorem 7.3. For any point x ∈ Rd and any integer Q > 1, let us define

q(x,Q) = inf

{
q ∈ N

∣∣∣∣∣ |qx− p|∞ ≤ 1

Q
for some p ∈ Zd

}
.

It follows from Dirichlet’s theorem that q(x,Q) is finite; in fact, q(x,Q) is less than
Qd, see Theorem 1.1 above.

Proposition 1.11. For any real number γ ∈ (0, 1), there exist a real number
Γ∗ > 1 and an integer Q∗ ≥ 1, both depending on γ and d only, such that the
following property holds: for any points x and α in Rd and for any integer Q > Q∗,

q(x,Q) ≥ γQd =⇒ ∃(p, q) ∈ Zd × N

{
q(x,Q) ≤ q < 2q(x,Q)

|qx− p− α|∞ ≤ Γ∗/q(x,Q)1/d.

Proof. It suffices to recast the last part of the proof of Theorem 1.5. Indeed,
assuming that Q > Q1 and applying Lemma 1.8, we ended up therein with (47),
and then with some crucial integer k, that will play the rôle of q in the statement of
Proposition 1.11. Note that k is determined modulo q(x,Q) so, instead of choosing
this integer between zero and q(x,Q) − 1 as in the proof of Theorem 1.5, we may
choose it between q(x,Q) and 2q(x,Q) − 1. The required approximation property
is then a reformulation of (48). This means in particular that the real number Γ∗
corresponds to the term C1 + C2 + 1 in the proof of Theorem 1.5, and that the
integer Q∗ may be chosen to be equal to Q1. �

1.5.3. Converse to the theorem. Khintchine actually showed in [39] that
Theorem 1.5 gives a characterization of the uniform inhomogeneous approximation.
As a matter of fact, it is quite easy to establish the following converse result.

Proposition 1.12. Let us consider a point x ∈ Rd and let us assume that there
exists a real number Γ > 0 such that for any point α ∈ Rd and any integer Q > 1,
the system {

1 ≤ q < ΓQd

|qx− p− α|∞ ≤ 1/Q

admits a solution (p, q) in Zd × N. Then, there exists another real number γ > 0
such that for any integer Q > 1, the system{

1 ≤ q < γQd

|qx− p|∞ ≤ 1/Q

admits no solution (p, q) in Zd × N.

Proof. We argue by contradiction. Thus, for any real number ε > 0, there
exists an integer Q > 1, and a pair (p, q) ∈ Zd × N satisfying

1 ≤ q < εd(d+2)Qd and |qx− p|∞ ≤
1

Q
.

Now, letting B∞(x, r) denote the closed ball centered at x with radius r, in the
sense of the supremum norm, we define the set

Mε =

q⋃
k=1

⋃
y∈Zd

B∞

(
k
p

q
+ y,

2ε

q1/d

)
.
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We assume from now on that ε is smaller than 1/12. For each integer k, there are
at most 3d points y in Zd for which the above closed ball meets the cube [0, 1)d.
This means that the volume occupied in the unit cube by the set Mε satisfies

Ld([0, 1)d ∩Mε) ≤ 3dq

(
4ε

q1/d

)d
= (12ε)d < 1.

We may therefore consider a point α in the unit cube [0, 1)d that does not belong
to the set Mε. We also introduce the integer Q = dq1/d/εe. The point α verifies∣∣∣∣α− kpq − y

∣∣∣∣
∞
>

2ε

q1/d

for all points y ∈ Zd and all integers k ∈ {1, . . . , q}. In addition, if the integer k is
smaller than Qd/(2dε), then it is a fortiori smaller than q/εd+1, so that∣∣∣∣kx− kpq

∣∣∣∣
∞

=
k

q
|qx− p|∞ <

k

q
· ε

d+2

q1/d
<

ε

q1/d
.

We thus built the point α and the integer Q in such a way that for any point y in
Zd and any positive integer k smaller than Qd/(2dε), we have

|kx− y − α|∞ >
ε

q1/d
≥ 1

Q
.

We deduce that Γ must be larger than 1/(2dε). However, the above arguments are
valid for arbitrarily small values of ε. This leads to a contradiction. �

Among Khintchine’s works, Theorem 1.5 and its converse, namely, Proposi-
tion 1.12 may be regarded as an anticipation of his deep transference principle that
relates homogeneous and inhomogeneous problems, see e.g. [16, Chapter V].





CHAPTER 2

Hausdorff measures and dimension

The material discussed in this section is standard; our main references are [29,
Chapters 2 and 4] and [46, Chapter 4], as well as [51]. The notion of Hausdorff
dimension relies on that of Hausdorff measure; the first definitions and properties of
Hausdorff measures were established by Carathéodory (1914) and Hausdorff (1919).
Throughout this section, we restrict our attention to the space Rd, even if the
discussed notions may be defined in more general metric spaces.

2.1. Outer measures and measurability

Before dealing with Hausdorff measures, we introduce general definitions and
establish standard results from geometric measure theory. We shall not follow
here the standard approach that originates in the work of Radon and consists in
defining measures on prespecified σ-fields. Instead, our viewpoint is that initiated
by Carathéodory: considering outer measures on all the subsets of the space Rd,
and then discussing further measurability properties of the subsets. The collection
of all subsets of Rd is denoted by P(Rd).

Definition 2.1. A function µ : P(Rd) → [0,∞] is called an outer measure if
the following conditions are fulfilled:

(1) µ(∅) = 0;
(2) for any sets E1 and E2 in P(Rd),

E1 ⊆ E2 =⇒ µ(E1) ≤ µ(E2) ;

(3) for any sequence (En)n≥1 in P(Rd),

µ

( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ(En).

Hence, outer measures are defined on the whole collection P(Rd). However,
they will enjoy further properties when restricted to the subcollection formed by
the sets that are measurable.

Definition 2.2. Let µ be an outer measure. Then, a set E in P(Rd) is called
µ-measurable if for all sets A and B in P(Rd),{

A ⊆ E
B ⊆ Rd \ E

=⇒ µ(A tB) = µ(A) + µ(B).

The collection of all µ-measurable sets is denoted by Fµ.

The two sets A and B arising in the above definition are said to be separated
by the set E. Thus, a set E is µ-measurable if the outer measure µ is additive on
sets that are separated by E. Let us also mention that it suffices to consider the
case in which the sets A and B have finite µ-mass, and to prove that µ(A ∪ B) is
bounded below by the sum of µ(A) and µ(B).

37
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The connection with the standard approach of measures on σ-fields is then
given by the following result. In its statement, we say that a set N ∈ P(Rd) is
µ-negligible if its measure vanishes, namely, µ(N) = 0.

Theorem 2.1. Let µ be an outer measure, and let Fµ denote the collection of
all µ-measurable sets. Then, the following properties hold:

(1) the collection Fµ is a σ-field of Rd;
(2) every µ-negligible set in P(Rd) belongs to Fµ;
(3) for any sequence (En)n≥1 of disjoint sets in Fµ, we have

µ

( ∞⊔
n=1

En

)
=

∞∑
n=1

µ(En).

Proof. We begin by establishing (2). To proceed, let us consider a set N in
P(Rd) such that µ(N) = 0. Then, for any sets A ⊆ N and B ⊆ Rd \N , we have

µ(B) ≤ µ(A ∪B) ≤ µ(A) + µ(B) ≤ µ(N) + µ(B) = µ(B),

from which we deduce that µ(A ∪ B) is equal to the sum of µ(A) and µ(B). This
implies that N belongs to Fµ.

In particular, as the empty set is µ-negligible, it belongs to the collection Fµ.
Furthermore, the definition of a µ-measurable set is symmetric, in such a way that
if a set E belongs to Fµ, then its complement Rd \ E belongs to Fµ as well.

Let us now consider two sets E1 and E2 in Fµ and show that their union E1∪E2

belongs to Fµ. To this purpose, let A and B denote two sets with finite µ-mass
that satisfy A ⊆ E1 ∪ E2 and B ⊆ Rd \ (E1 ∪ E2). Now, remark that the two sets
A ∩ E1 and (A ∪ B) ∩ (Rd \ E1) are separated by the measurable set E1 and that
their union reduces to A ∪B. Hence,

µ(A ∪B) = µ(A ∩ E1) + µ((A ∪B) ∩ (Rd \ E1)).

Moreover, the sets A ∩ (Rd \ E1) and B are separated by the measurable set E2,
and their union is equal to the set whose measure corresponds to the second term
above. Therefore,

µ(A ∪B) = µ(A ∩ E1) + µ(A ∩ (Rd \ E1)) + µ(B).

However, the sets arising in the first two terms are clearly separated by E1 and
their union is equal to A, so the sum of these two terms reduces to µ(A). This
means that E1 ∪ E2 is µ-measurable.

Now, let us consider a sequence (En)n≥1 of disjoint sets in Fµ, and let us show
that their union, denoted by E, belongs to the collection Fµ, and that the formula
in (3) holds. To proceed, let A denote a subset of E and let B denote a subset of its
complement Rd\E. Fixing an integer m ≥ 1 and applying what precedes iteratively
to the sets E1, . . . , Em, we infer that the union of these sets is µ-measurable, so

µ(A ∪B) ≥ µ

((
A ∩

m⊔
n=1

En

)
∪B

)
= µ

(
A ∩

m⊔
n=1

En

)
+ µ(B),

because the aforementioned union separates its intersection with the set A from
the set B. Furthermore, the set Em is disjoint from the sets E1, . . . , Em−1 and is
µ-measurable, so the first term in the right-hand side is equal to

µ

((
A ∩

m−1⊔
n=1

En

)
t (A ∩ Em)

)
= µ

(
A ∩

m−1⊔
n=1

En

)
+ µ(A ∩ Em).
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Iterating this procedure, we infer that this term is equal to the sum of µ(A ∩ En)
over all n ∈ {1, . . . ,m}. Thus, letting m go to infinity, we end up with

µ(A ∪B) ≥
∞∑
n=1

µ(A ∩ En) + µ(B) ≥ µ

(
A ∩

∞⊔
n=1

En

)
+ µ(B) = µ(A) + µ(B),

from which we derive that the set E is µ-measurable. Furthermore, letting B be
the empty set, we readily deduce that

µ(A) =

∞∑
n=1

µ(A ∩ En) ; (49)

the formula in (3) now follows from choosing A to be equal to the whole set E.
In order to establish (1), it remains to show that when (En)n≥1 is a sequence

of sets in Fµ that are not necessarily disjoint, the union of these sets also belongs to
Fµ. Given an integer m ≥ 1, what precedes ensures that the union E1∪ . . .∪Em−1

is µ-measurable, as well as the set

Em ∩

(
Rd \

m−1⋃
n=1

En

)
= Rd \

(
(Rd \ Em) ∪

m−1⋃
n=1

En

)
.

Here, we adopt the convention that the union is equal to the empty set if m is equal
to one. When m varies, the latter sets form a sequence of disjoint measurable sets,
and what precedes implies that their union, which coincides with the union of the
original sets En, belongs to Fµ. �

Theorem 2.1 helps clarifying the connection between the standard viewpoint,
and the approach of outer measures that we adopt here. To be specific, this result
ensures that the restriction of an outer measure µ to the σ-field Fµ is a measure
in the usual sense of for instance [61, Chapter 1]. Conversely, let us consider a
measure ν defined on some σ-field F of subsets of Rd. We may extend ν to the
whole collection P(Rd) by letting

ν∗(E) = inf
F∈F
F⊇E

ν(F ) (50)

for any set E ∈ P(Rd). This way, we obtain an outer measure, and the σ-field of
all ν∗-measurable sets contains the original σ-field F . This is indeed a particular
case of a more general construction that we now present.

2.2. From premeasures to outer measures: the abstract viewpoint

Rather than just building an outer measure as the extension of a usual measure,
we shall explain how to obtain an outer measure starting from a function defined
on a class of subsets of Rd.

Definition 2.3. A premeasure is a function of the form ζ : C → [0,∞], where
C is a collection of subsets of Rd containing the empty set, that satisfies ζ(∅) = 0.

The construction makes use of the standard notion of covering. Given a set E
in P(Rd) and a collection C of subsets of Rd containing the empty set, recall that
a sequence of sets (Cn)n≥1 in C is called a covering of E if

E ⊆
∞⋃
n=1

Cn.

Note that this definition encompasses the case of coverings by finitely many sets,
as we can choose the sets Cn to be empty when n is large enough. The next result
gives a general method to build an outer measure starting from a premeasure.
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Theorem 2.2. Let C be a collection of subsets of Rd containing the empty set,
and let ζ be a premeasure defined on C. Then, the function ζ∗ defined on P(Rd) by

ζ∗(E) = inf
E⊆

⋃
n Cn

Cn∈C

∞∑
n=1

ζ(Cn) (51)

is an outer measure. Here, the infimum is taken over all coverings of the set E by
sequences (Cn)n≥1 of sets that belong to C.

Proof. It is clear from the definition that ζ∗ is a function defined on P(Rd)
with values in [0,∞]. Moreover, as the empty set belongs to the collection C, it can
be used to cover itself, so that ζ∗(∅) ≤ ζ(∅) = 0. In addition, if two subsets E1 and
E2 of Rd are such that E1 ⊆ E2, then any covering of E2 is also a covering of E1,
so that ζ∗(E1) ≤ ζ∗(E2).

The only nontrivial property is thus the subadditivity of ζ∗. To prove this fact,
let us consider a sequence (En)n≥1 of subsets of Rd, and let E denote their union.
We may clearly assume that the sum of the ζ∗-masses of the sets En is finite. In
particular, every set En has finite measure, so that if some real ε > 0 is fixed in
advance, we have

∞∑
m=1

ζ(Cnm) ≤ ζ∗(En) + ε2−n

for some covering (Cnm)m≥1 of the set En by sets from the collection C. Then, the
doubly-indexed sequence (Cnm)m,n≥1 clearly forms a covering of the set E by sets
from the collection C. Hence,

ζ∗(E) ≤
∞∑
n=1

∞∑
m=1

ζ(Cnm) ≤
∞∑
n=1

(
ζ∗(En) + ε2−n

)
≤

( ∞∑
n=1

ζ∗(En)

)
+ ε,

and the result follows by letting ε go to zero. �

The next result is elementary and shows that the above procedure is “closed”,
in the sense that it leaves the outer measures unchanged.

Proposition 2.1. Let µ be an outer measure. Then, µ may be seen as a
premeasure on P(Rd) and the outer measure µ∗ defined via (51) coincides with µ.

Proof. Let E denote a subset of Rd. Covering the set E by itself and the
empty set, we infer that µ∗(E) ≤ µ(E). Conversely, let us observe that for any
covering (Cn)n≥1 of the set E by subsets of Rd,

µ(E) ≤ µ

( ∞⋃
n=1

Cn

)
≤
∞∑
n=1

µ(Cn).

Taking the infimum over all the possible coverings in the right-hand side, we deduce
that µ(E) ≤ µ∗(E). �

The next result now gives a rigorous justification to the remarks that we made
around the formula (50) above. In particular, we shall show that if ν∗ is defined
through (51), then it actually takes the simpler form (50).

Proposition 2.2. Let ν be a measure defined on a σ-field F of subsets of
Rd. Then, ν may be seen as a premeasure on F and the outer measure ν∗ defined
via (51) satisfies the following properties:

(1) the σ-field Fν∗ of all ν∗-measurable sets contains F ;
(2) the restriction of ν∗ to the σ-field F coincides with ν;
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(3) the formula (50) holds, namely,

ν∗(E) = inf
F∈F
F⊇E

ν(F )

for any set E ∈ P(Rd), and the infimum is attained.

Proof. Let us consider a subset E of Rd and a covering (Fn)n≥1 of the set E
by sets belonging to the σ-field F . Then, the union F of the sets Fn belongs to F ,
as well as the sets Gn = Fn \ (F1 ∪ . . . ∪ Fn−1). The latter sets form a partition of
F and each of them is included in the corresponding set Fn, so that

∞∑
n=1

ν(Fn) ≥
∞∑
n=1

ν(Gn) = ν

( ∞⋃
n=1

Gn

)
= ν(F ).

Taking the infima above, we deduce that ν∗(E) is bounded below by the infimum
of ν(F ) over all sets F ∈ F such that F ⊇ E.

Conversely, let us consider a set F ∈ F satisfying F ⊇ E. Covering the set E by
F and the empty set, we infer that ν∗(E) ≤ ν(F ). We may now take the infimum
over all sets F . Combined with what precedes, this ensures that (50) holds.

Moreover, (50) ensures that there exists a sequence (Fn)n≥1 of supersets of
E that belong to F and satisfy ν(Fn) ≤ ν∗(E) + 1/n for all n ≥ 1. Now, the
intersection F of these sets belongs to F and contains E, so that

ν∗(E) ≤ ν(F ) ≤ ν(Fn) ≤ ν∗(E) +
1

n

for all n ≥ 1. Letting n go to infinity, we deduce that ν∗(E) = ν(F ), so that
the infimum in (50) is attained. Besides, note that (50) also ensures that ν∗(E)
coincides with ν(E) when E belongs to F .

It remains to establish that any set F in F is ν∗-measurable. To proceed, let
us consider a subset A of F and a subset B of Rd \ F . As the infimum is attained
in (50), there exists a superset G of A∪B that belongs to the σ-field F and satisfies
ν∗(A ∪ B) = ν(G). Then, the sets F ∩G and (Rd \ F ) ∩G are disjoint, belong to
F , and contain the sets A and B, respectively. Hence,

ν∗(A) + ν∗(B) ≤ ν(F ∩G) + ν((Rd \ F ) ∩G) = ν(G) = ν∗(A ∪B),

from which we deduce that F is ν∗-measurable. �

Note that the restriction of an outer measure µ to the σ-field Fµ of its measur-
able sets is a measure in the classical sense. It is then natural to ask whether we
can recover the outer measure µ by applying the above procedure to its restriction.
This will not happen in general, except if the outer measure µ is regular in the
following sense.

Definition 2.4. An outer measure µ on Rd is said to be regular if for any set
E ∈ P(Rd), there exists a set F ∈ Fµ such that

E ⊆ F and µ(E) = µ(F ).

Using the terminology of this definition, we may deduce from Proposition 2.2
that for any measure ν defined on a σ-field F , the outer measure ν∗ defined via (51)
is regular. Indeed, given a set E ∈ P(Rd), Proposition 2.2(3) ensures that there
exists a set F ∈ F such that E ⊆ F and ν∗(E) = ν(F ), which coincides with ν∗(F )
by virtue of Proposition 2.2(2). The above discussion can be summarized in the
following statement.

Proposition 2.3. Let µ be an outer measure, and let ν denote the restriction
of µ to the σ-field Fµ of its measurable sets. Then, ν may be seen as a premeasure
on Fµ and the outer measure ν∗ defined via (51) satisfies the following properties:
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(1) the outer measure ν∗ is regular;
(2) all µ-measurable sets are ν∗-measurable, that is, Fµ ⊆ Fν∗ ;
(3) all ν∗-measurable sets of finite ν∗-mass are µ-measurable;
(4) ν∗ coincides with µ if and only if µ is regular.

Proof. To begin with, Theorem 2.1 ensures that ν is a measure on the σ-field
Fµ. Then, as already mentioned above, Proposition 2.2 ensures that the outer
measure ν∗ is regular, coincides with ν on Fµ, and satisfies

ν∗(E) = inf
F∈Fµ
F⊇E

ν(F )

for any set E ∈ P(Rd), where the infimum is attained. Moreover, Proposition 2.2
also ensures that Fµ ⊆ Fν∗ .

Conversely, let us now consider a set E in Fν∗ and assume that E has finite
ν∗-mass. Then, as the infimum above is attained, there exists a set F ∈ Fµ that
contains E and satisfies ν(F ) = ν∗(E), the latter quantity being equal to ν∗(F )
because ν∗ and ν coincide on Fµ. We deduce that

ν∗(E) = ν∗(F ) = ν∗(F \ E) + ν∗(E).

Given that ν∗(E) is finite, it follows that F \E is ν∗-negligible. Thus, using again
the fact that the above infimum is attained, we infer that there exists a set G ∈ Fµ
that contains F \ E and satisfies ν(G) = ν∗(E \ F ) = 0. Since ν coincides with
the outer measure µ on Fµ, we see that µ(E \ F ) ≤ µ(G) = ν(G) = 0. Thus, the
set E \ F is µ-negligible, and is therefore µ-measurable, by virtue of Theorem 2.1.
Recalling that F is µ-measurable, we conclude that E is µ-measurable as well.

Finally, if µ coincides with ν∗, then it is necessarily regular, because ν∗ is so.
Conversely, if µ is regular, then

µ(E) = inf
F∈Fµ
F⊇E

µ(F ) = inf
F∈Fµ
F⊇E

ν(F ) = ν∗(E)

for any set E ∈ P(Rd), so that the outer measures µ and ν∗ coincide. �

2.3. Further properties of measurable sets

Let us now mention some useful properties satisfied by the measurable sets.

Proposition 2.4. Let µ denote an outer measure on Rd and let (Fn)n≥1 be a
nondecreasing sequence of subsets of Rd. The following properties hold:

(1) if the sets Fn are µ-measurable and E is an arbitrary subset of Rd, then

µ

(
E ∩

∞⋃
n=1

↑ Fn

)
= lim
n→∞

↑ µ(E ∩ Fn) ;

(2) if the outer measure µ is regular, then

µ

( ∞⋃
n=1

↑ Fn

)
= lim
n→∞

↑ µ(Fn).

Proof. Let us begin by assuming that the sets Fn are µ-measurable and that
E is a set in P(Rd). Given that the sequence (Fn)n≥1 is nondecreasing, we obtain
a sequence (Gn)n≥1 of disjoint µ-measurable sets simply by letting G1 = F1 and
Gn = Fn \ Fn−1 for any integer n ≥ 2. Then, for any subset A of the union of the
sets Gn, it follows from (49) that µ(A) is the sum of µ(A ∩ Gn) over all n ≥ 1.
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Thus, on the one hand, choosing A to be the intersection of the set E with the
union of all the sets Fn, we deduce that

µ

(
E ∩

∞⋃
n=1

↑ Fn

)
=

∞∑
n=1

µ(E ∩Gn)

On the other hand, fixing an integer m ≥ 1 and letting A be the intersection of E
with the union of the sets G1, . . . , Gm, we get

m∑
n=1

µ(E ∩Gn) = µ

(
E ∩

m⊔
n=1

Gn

)
= µ(E ∩ Fm).

The first part of the result then follows from letting m go to infinity.
Let us now drop the measurability assumption on the sets Fn and suppose

instead that the outer measure µ is regular. First, it is clear that the µ-mass of
every single set Fn is bounded by that of the union of these sets. Thus,

lim
n→∞

↑ µ(Fn) ≤ µ

( ∞⋃
n=1

↑ Fn

)
. (52)

For the reverse inequality, let us observe that for any integer n ≥ 1, the regularity
of µ ensures the existence of a µ-measurable superset Hn of Fn that has the same µ-
mass. Then, the monotonicity of the sequence (Fn)n≥1 implies that Fn ⊆ In ⊆ Hn

for all n, where In is defined as the intersection over all m ≥ n of the sets Hm.
Now, observe that (In)n≥1 is a nondecreasing sequence of µ-measurable sets, each
of them having the same µ-mass as its counterpart in the original sequence (Fn)n≥1.
As a consequence, the first part of the proof above ensures that

µ

( ∞⋃
n=1

↑ Fn

)
≤ µ

( ∞⋃
n=1

↑ In

)
= lim
n→∞

↑ µ(In) = lim
n→∞

↑ µ(Fn),

and the result follows. �

Proposition 2.5. Let µ denote an outer measure on Rd and let (Fn)n≥1 be a
nonincreasing sequence of µ-measurable sets. Then, for any subset E of Rd such
that µ(E ∩ Fn) <∞ for some integer n ≥ 1,

µ

(
E ∩

∞⋂
n=1

↓ Fn

)
= lim
n→∞

↓ µ(E ∩ Fn).

Proof. Let m denote an integer for which µ(E ∩ Fm) is finite. Then, let us
consider the sets Gn = Fm \ Fm+n, for n ≥ 1; they form a nondecreasing sequence
of µ-measurable sets to which we may apply Proposition 2.4(1), thereby getting

µ

(
E ∩

∞⋃
n=1

↑ Gn

)
= lim
n→∞

↑ µ(E ∩Gn)

Now, the subsequence (Fn)n≥m+1 is formed of µ-measurable sets, and the set E∩Fm
has finite µ-mass, so that the left-hand side of this equality is equal to

µ

(
E ∩ Fm \

∞⋂
n=m+1

↓ Fn

)
= µ(E ∩ Fm)− µ

(
E ∩ Fm ∩

∞⋂
n=m+1

↓ Fn

)
.

Likewise, its right-hand side is the limit as n goes to infinity of

µ(E ∩ Fm \ Fn) = µ(E ∩ Fm)− µ(E ∩ Fm ∩ Fn).

It is now plain that the above equalities lead to desired result. �
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2.4. From premeasures to outer measures: the metric viewpoint

We explained in Section 2.2 how to build an outer measure starting from a
premeasure defined on a class of subsets of Rd. Let us now present another way of
extending a premeasure into an outer measure, by taking additionally into account
the metric structure of the ambiant space Rd. Accordingly, the next result is the
counterpart of Theorem 2.2. The diameter of an arbitrary set E ∈ P(Rd) is denoted
by |E| in what follows.

Theorem 2.3. Let C be a collection of subsets of Rd containing the empty set,
and let ζ be a premeasure defined on C. Then, the function ζ∗ defined on P(Rd) by

ζ∗(E) = lim
δ↓0
↑ ζδ(E) with ζδ(E) = inf

E⊆
⋃
n Cn

Cn∈C,|Cn|≤δ

∞∑
n=1

ζ(Cn) (53)

is an outer measure. Here, the infimum is taken over all coverings of the set E by
sequences (Cn)n≥1 of sets belonging to C with diameter at most δ.

Proof. The result follows straightforwardly from Theorem 2.2, combined with
a simple observation. As a matter of fact, for any fixed δ > 0, Theorem 2.2 implies
that ζδ is an outer measure, namely, that obtained from the restriction of the
premeasure ζ to the collection of sets in C whose diameter is at most δ. It now
suffices to observe that ζ∗ may also be written as the supremum over all δ > 0 of
the outer measures ζδ, and make use of the obvious fact that the supremum of an
arbitrary family of outer measures is also an outer measure. �

Let us mention that it is obvious from (51) and (53) that for any premeasure
ζ and any subset E of Rd, we have ζ∗(E) ≤ ζδ(E) for all δ > 0; thus, taking the
limit as δ goes to zero, we deduce that

∀E ⊆ Rd ζ∗(E) ≤ ζ∗(E). (54)

The main advantage of the above construction over that given by Theorem 2.2
is that one does not need to check whether two given disjoint sets are measurable
when intending to apply the additivity property of the outer measure ζ∗ to their
union. Thus, ζ∗ falls into the category of metric outer measures that we now define.

Definition 2.5. An outer measure µ on Rd is said to be metric if for all sets
A and B in P(Rd) \ {∅},

d(A,B) > 0 =⇒ µ(A tB) = µ(A) + µ(B).

In the previous definition, d(A,B) denotes the distance between the sets A and
B, that is, the infimum of |a − b| over all a ∈ A and b ∈ B. When this distance
is positive, the sets are said to be positively separated. The previous remark now
takes the form of the following precise result.

Proposition 2.6. For any choice of the premeasure ζ, the outer measure ζ∗
defined via (53) is metric.

Proof. Let us consider two nonempty subsets A and B of Rd, and let us
assume that d(A,B) > 0. As ζ∗ is an outer measure, it suffices to prove that the sum
of the ζ∗-masses of these sets A and B is at most the ζ∗-mass of their union, which
we may assume to be finite. For any ε, δ1, δ2 > 0, letting δ = min{δ1, δ2,d(A,B)/2},
we deduce from (53) that there exists a sequence (Cn)n≥1 of sets in C with diameter
at most δ such that

A tB ⊆
∞⋃
n=1

Cn and

∞∑
n=1

ζ(Cn) ≤ ζ∗(A tB) + ε.
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Note that none of the sets Cn can intersect both A and B. Indeed, in that situation,
there would exist two points a ∈ A ∩ Cn and b ∈ B ∩ Cn, which would lead to

2|a− b| ≤ 2|Cn| ≤ 2δ ≤ d(A,B) ≤ |a− b|,

a contradiction with the disjointness of the sets A and B. As a consequence, letting
An = Cn if Cn intersects A and An = ∅ otherwise, and letting Bn = Cn if Cn
intersects B and Bn = ∅ otherwise, we have

∞∑
n=1

ζ(Cn) ≥
∞∑
n=1

ζ(An) +

∞∑
n=1

ζ(Bn).

Moreover, one easily checks that (An)n≥1 and (Bn)n≥1 are two sequences of sets
in C with diameter at most δ1 and δ2, respectively, that cover the sets A and B,
respectively. Thus, we end up with

ζ∗(A tB) + ε ≥ ζδ1(A) + ζδ2(B).

We conclude by letting δ1, δ2 and ε go to zero. �

On account of the fact that the outer measures of the form ζ∗ are metric, we
may now state an analogue of Proposition 2.4 where the measurability assumptions
are replaced by positive separateness conditions.

Proposition 2.7. Let ζ∗ be the outer measure defined in terms of a given
premeasure ζ through (53), and let (En)n≥1 denote a nondecreasing sequence of
subsets of Rd. If d(En,Rd \ En+1) is positive for any integer n ≥ 1, then

ζ∗

( ∞⋃
n=1

↑ En

)
= lim
n→∞

↑ ζ∗(En).

Proof. It is clear that (52) holds for the sets En. We thus need to prove the
reverse inequality, and we may assume that the sequence (ζ∗(En))n≥1 is bounded.
Now, let us consider the sets F1 = E1 and Fn = En \En−1 for all n ≥ 2. Then, for
any integer n ≥ 1, the set F1 t F3 t . . . t F2n−1 is included in E2n−1 and the set
F2n+1 is included in Rd \ E2n, so that

d(F1 t F3 t . . . t F2n−1, F2n+1) ≥ d(E2n−1,Rd \ E2n) > 0.

By virtue of Proposition 2.6, the outer measure ζ∗ is metric, and therefore

ζ∗(F1 t F3 t . . . t F2n+1) = ζ∗(F1 t F3 t . . . t F2n−1) + ζ∗(F2n+1).

Iterating this procedure, we readily deduce that

N∑
n=1

ζ∗(F2n−1) = ζ∗

(
N⊔
n=1

F2n−1

)
≤ ζ∗(E2N−1).

We may obviously apply the same ideas to the sets Fn, for the even values of n,
thereby inferring that

N∑
n=1

ζ∗(F2n) = ζ∗

(
N⊔
n=1

F2n

)
≤ ζ∗(E2N ).

Recalling that the sequence (ζ∗(En))n≥1 is bounded, we deduce that the series∑
n ζ∗(Fn) converges. Now, for all N ≥ 1, we have

ζ∗

( ∞⋃
n=1

↑ En

)
= ζ∗

(
EN t

∞⊔
n=N+1

Fn

)
≤ ζ∗(EN ) +

∞∑
n=N+1

ζ∗(Fn),

and the desired inequality follows from letting N go to infinity. �
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We are now in position to state the main result concerning the outer measures
of the form ζ∗, namely, that the Borel sets are measurable. The Borel σ-field is
denoted by B in what follows.

Theorem 2.4. Let ζ∗ be the outer measure obtained from a given premeasure
ζ through (53). Then, the Borel subsets of Rd are ζ∗-measurable, that is, B ⊆ Fζ∗ .

Proof. We know from Theorem 2.1(1) that the ζ∗-measurable subsets of Rd
form a σ-field denoted by Fζ∗ . In order to show that the Borel σ-field is included
in Fζ∗ , it thus suffices to establish that every closed subset of Rd is ζ∗-measurable.

Given a closed subset F of Rd, let us consider two sets A and B in P(Rd) that
are included in F and Rd \ F , respectively. We may suppose that A and B are
nonempty. Now, for any integer n ≥ 1, let Bn denote the set of points b ∈ B such
that d({b}, F ) > 1/n. The sets Bn clearly form a nondecreasing sequence of subsets
of B. Moreover, if b denotes a point in B, then d({b}, F ) is positive, because the
set F is closed and cannot contain b. Thus, the point b belongs to Bn for n large
enough. It follows that

B =

∞⋃
n=1

↑ Bn.

For any integer n ≥ 1, let us consider two points b ∈ Bn and c ∈ Rd \Bn+1. Then,
the distance between the point c and the set F is at most 1/(n+ 1), so that there
exists a point f ∈ F satisfying |c− f | ≤ 2/(2n+ 1). Hence,

|b− c| ≥ |b− f | − |c− f | ≥ d({b}, F )− |c− f | > 1

n
− 2

2n+ 1
=

1

n(2n+ 1)
> 0.

We may thus conclude that the distance between the sets Bn and Rd \ Bn+1 is
positive, regardless of the value of n. The sets A tBn satisfy the same property:

d(A tBn,Rd \ (A tBn+1)) ≥ min{d(A,Rd \Bn+1),d(Bn,Rd \Bn+1)} > 0,

where the distance between A and Bn+1 is clearly positive in view of the definition
of Bn+1 and the fact that A is contained in F . This means that we may apply
Proposition 2.7 to the sequence of sets (AtBn)n≥1, as well as to the mere sequence
(Bn)n≥1, thereby obtaining

ζ∗(A tB) = lim
n→∞

↑ ζ∗(A tBn) = ζ∗(A) + lim
n→∞

↑ ζ∗(Bn) = ζ∗(A) + ζ∗(B).

Here, we also used the fact that the outer measure ζ∗ is metric: this enabled us to
write the ζ∗-mass of the union of the sets A and Bn as the sum of their ζ∗-masses,
because the distance separating them is positive. We may thus conclude that the
set F is ζ∗-measurable. �

2.5. Lebesgue measure

The general theory developed in Sections 2.2 and 2.4 may be applied to define
the important example of Lebesgue measure and recover its main properties. The
starting point is the premeasure υ defined on the open rectangles of Rd by

υ

(
d∏
i=1

(ai, bi)

)
=

d∏
i=1

(bi − ai) (55)

for any choice of points (a1, . . . , ad) and (b1, . . . , bd) in the space Rd such that the
condition ai ≤ bi holds for any i ∈ {1, . . . , d}.
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Definition 2.6. Let υ be the premeasure defined by (55) on the open rectan-
gles of Rd. The d-dimensional Lebesgue outer measure Ld is the outer measure on
P(Rd) defined with the help of (51) from the premeasure υ, namely,

Ld = υ∗.

The d-dimensional Lebesgue measure, still denoted by Ld, is then the restriction of
this outer measure to the σ-field of its measurable sets.

A noteworthy property that readily follows from Definition 2.6 is that the
Lebesgue outer measure is translation invariant and homogeneous of degree d under
dilations. We also observe that, according to this definition, the Lebesgue outer
measure is obtained through (51). It is therefore an outer measure, as its name
suggests, as a consequence of Theorem 2.2. However, as shown by the next result,
the Lebesgue outer measure may also been obtained recovered with the help of (53).
It will thus satisfy the additional metric properties discussed in Section 2.4.

Proposition 2.8. The Lebesgue outer measure Ld coincides with the outer
measure defined on P(Rd) from the premeasure υ with the help of (53), that is,

Ld = υ∗.

Proof. In view of (54), we already know that Ld(E) is smaller than or equal
to υ∗(E), for any subset E of Rd. In order to prove the reverse inequality, we may
clearly assume that Ld(E) is finite and, given a real number ε > 0, consider a
sequence (Cn)n≥1 of open rectangles such that

E ⊆
∞⋃
n=1

Cn and

∞∑
n=1

υ(Cn) ≤ Ld(E) + ε.

A real number δ > 0 being fixed, we now need to derive from the sequence (Cn)n≥1

a covering of the set E with open rectangles with diameter at most δ.
To proceed, we shall make use of the following elementary observation. We

consider an open rectangle R that is determined by two points (a1, . . . , ad) and
(b1, . . . , bd) in Rd. For any integer q ≥ 1 and any real number η > 0, the set R is
clearly contained in the union of the open rectangles

Rp =

d∏
i=1

(
ai +

pi − 1

q
(bi − ai), ai +

pi + η

q
(bi − ai)

)
,

where p = (p1, . . . , pd) ranges in the set {1, . . . , q}d. Letting c denote a positive real
number such that |x| ≤ c |x|∞ for all x ∈ Rd, we see that the diameter of each set
Rp satisfies

|Rp| ≤ c
1 + η

q
|b− a|∞ ≤ δ,

where the last inequality holds for an appropriate choice of q and η. Furthermore,
turning our attention to the premeasure υ, we have∑

p∈{1,...,q}d
υ(Rp) = qd

d∏
i=1

(
1 + η

q
(bi − ai)

)
= (1 + η)dυ(R),

a value that may be arbitrarily close to υ(R) if η is sufficiently small.
The upshot is that every rectangle Cn may be covered by finitely many open

rectangles Cn,1, . . . , Cn,mn with diameter at most δ and such that

mn∑
m=1

υ(Cn,m) ≤ υ(Cn) + ε 2−n.
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Collecting all the rectangles Cn,m, we obtain a covering of the set E with sets of
diameter bounded above by δ, and therefore

υδ(E) ≤
∞∑
n=1

mn∑
m=1

υ(Cn,m) ≤
∞∑
n=1

(υ(Cn) + ε 2−n) ≤ Ld(E) + 2ε,

where υδ is defined as in (53). We conclude by letting δ, and then ε, go to zero. �

It follows from Proposition 2.8 that the Lebesgue outer measure enjoys all the
properties presented in Section 2.4. For instance, Theorem 2.4 ensures that the
Borel subsets of Rd are measurable with respect to the Lebesgue outer measure.
Equivalently, the Lebesgue measure is well defined on Borel sets.

We finish this discussion of Lebesgue measure by a simple expected result that
however does not follow from the general theory presented in the previous sections.

Proposition 2.9. For any open rectangle R of Rd,

Ld(R) = υ(R).

Proof. Clearly, Definition 2.6 ensures that Ld(R) is bounded above by υ(R)
for any open rectangle R. For the reverse inequality, we consider a closed hyper-
rectangle S delimited by two points (a1, . . . , ad) and (b1, . . . , bd) satisfying ai < bi
for all i ∈ {1, . . . , d}, namely,

S =

d∏
i=1

[ai, bi].

We further consider a covering (Cn)n≥1 of the rectangle S composed of open rect-
angles. The set S is compact and the sets Cn are open, so there exists a finite
subset N of N such that the rectangles Cn, for n ∈ N , cover and intersect the set
S. Defining R = intS, the interior of S, we then observe that for each n ∈ N , the
intersection set R ∩ Cn is a nonempty open rectangle; its endpoints are denoted
by (an,1, . . . , an,d) and (bn,1, . . . , bn,d). For each i, we introduce a nondecreasing
rearrangement of the real numbers an,i and bn,i, specifically,

ai = c1,i ≤ . . . ≤ c2q,i = bi,

where q denotes the cardinality of the index set N .
Then, for each integer point p = (p1, . . . , pd) in the set {1, . . . , 2q − 1}d, let us

examine the open rectangle

Rp =

d∏
i=1

(cpi,i, cpi+1,i).

When Rp is nonempty, its midpoint lies in R, therefore belonging to some open
rectangle Cn, with n ∈ N . However, the above rearrangement procedure guarantees
that the whole rectangle Rp is actually contained in the intersection R∩Cn. Thus,
any Rp is fully contained in some R∩Cn. Moreover, for the same reason, the value
assigned by the premeasure υ to the set R ∩ Cn coincides with the sum of those
assigned to the sets Rp that it contains:

υ(R ∩ Cn) =
∑

p∈{1,...,2q−1}d
Rp⊆R∩Cn

υ(Rp).
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These observations enable us to deduce that
∞∑
n=1

υ(Cn) ≥
∑
n∈N

υ(R ∩ Cn) =
∑
n∈N

∑
p∈{1,...,2q−1}d
Rp⊆R∩Cn

υ(Rp)

≥
∑

p∈{1,...,2q−1}d

d∏
i=1

(cpi+1,i − cpi,i) =

d∏
i=1

(c2q,i − c1,i) =

d∏
i=1

(bi − ai).

Taking the infimum over all coverings (Cn)n≥1 in the left-hand side, we deduce that

Ld(S) ≥
d∏
i=1

(bi − ai).

Finally, if R denotes a nonempty open rectangle determined by two points
(a1, . . . , ad) and (b1, . . . , bd), it is clear that the closed rectangle Sη delimited by
the points (a1 + η, . . . , ad + η) and (b1 − η, . . . , bd − η) is contained in R, with
the proviso that the positive parameter η is sufficiently small. As Ld is an outer
measure, we deduce from what precedes that

Ld(R) ≥ Ld(Sη) ≥
d∏
i=1

(bi − ai − 2η).

The right-hand side clearly tends to υ(R) as η → 0, and the result follows. �

A simple consequence of Proposition 2.9 is that if R is the closed rectangle
determined by the points (a1, . . . , ad) and (b1, . . . , bd), then we have

R =

d∏
i=1

[ai, bi] and Ld(R) =

d∏
i=1

(bi − ai). (56)

In fact, on the one hand, R obviously contains its interior, denoted by intR, which
is the open rectangle delimited by the same endpoints. For any η > 0, on the other
hand, R is also included in the open rectangle Rη that is delimited by the points
(a1−η, . . . , ad−η) and (b1 +η, . . . , bd+η). Consequently, in view of Proposition 2.9
and the fact that Ld is an outer measure, we get

υ(intR) = Ld(intR) ≤ Ld(R) ≤ Ld(Rη) = υ(Rη),

from which we straightforwardly deduce that

d∏
i=1

(bi − ai) ≤ Ld(R) ≤
d∏
i=1

(bi − ai + 2η),

and the right-hand side coincides with the left-hand side when we take the limit as
η goes to zero. Note that the same result also holds if R is, for instance, a half-open
rectangle of Rd.

2.6. Hausdorff measures

2.6.1. Definition and main properties. As shown by Proposition 2.14 be-
low, the Lebesgue measure discussed in Section 2.5 falls into the category of Haus-
dorff measures that we now present. To begin with, the Hausdorff measures are
obtained by applying Theorem 2.3 to the premeasures that are defined in terms of
the class of gauge functions.

Definition 2.7. A gauge function is a function g defined on [0,∞] which is
nondecreasing in a neighborhood of zero and satisfies the conditions

lim
r→0

g(r) = g(0) = 0 and g(∞) =∞.
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The convention that gauge functions take an infinite value at infinity has very
little importance and is only aimed at lightening some of the statements below. Note
in addition that we do not exclude a priori the possibility that a gauge function
assigns an infinite value to some positive real numbers.

Definition 2.8. Let g◦|·| be a shorthand for the premeasure defined on P(Rd)
by E 7→ g(|E|). For any gauge function g, the Hausdorff g-measure Hg is the outer
measure on P(Rd) defined with the help of (53) from the premeasure g◦|· |, namely,

Hg = (g ◦ | · |)∗.

In view of this definition, the properties obtained in Section 2.4 are satisfied
by the Hausdorff measures. In particular, it readily follows from Theorem 2.4 that
the Borel subsets of Rd are measurable with respect to the Hausdorff measures. It
is also important and useful to remark that the Hausdorff measures are translation
invariant. Besides, for any real number δ > 0, we shall also use the outer measures

Hgδ = (g ◦ | · |)δ
defined by (53) in terms of the premeasure g ◦ | · |. Note that they are indeed outer
measures as a result of Theorem 2.2.

2.6.2. Normalized gauge functions. We shall hardly be interested in the
precise value of the Hausdorff g-measure of a set, but only in its finiteness or its
positiveness. Thus, it will be useful to compare the Hausdorff g-measures with
simpler objects obtained for instance by making further assumptions on the gauge
function g or the form of the coverings. This is the purpose of the next two results.
The first statement calls upon the following notion of normalized gauge functions.

Definition 2.9. For any gauge function g, we consider the function gd defined
for all real numbers r > 0 by

gd(r) = rd inf
0<ρ≤r

g(ρ)

ρd
, (57)

along with gd(0) = 0 and gd(∞) = ∞ ; the function gd is then called the d-
normalization of g. Moreover, we say that a gauge function is d-normalized if
it coincides with its d-normalization in a neighborhood of zero.

The next result shows that the Hausdorff measure associated with some gauge
function is comparable with the measure associated with its d-normalization.

Proposition 2.10. For any gauge function g, the function gd defined above is
a gauge function for which the mapping r 7→ gd(r)/r

d is nonincreasing on (0,∞).
Moreover, there exists a real number κ ≥ 1 such that for any gauge function g and
any subset E of Rd,

Hgd(E) ≤ Hg(E) ≤ κHgd(E).

Proof. First, it is obvious from (57) that the mapping r 7→ gd(r)/r
d is non-

increasing on (0,∞), and that

∀r > 0 0 ≤ gd(r) ≤ g(r), (58)

which ensures the right-continuity at zero of gd. Let us show that gd is nondecreas-
ing in a neighborhood of the origin. Recall that g is nondecreasing on the interval
[0, ε] for some ε > 0. Now, if 0 ≤ r < r′ ≤ ε, then we have gd(r) ≤ gd(r′), because

gd(r) ≤ r′d inf
0<ρ≤r

g(ρ)

ρd
and gd(r) ≤ g(r) ≤ inf

r<ρ≤r′
g(ρ) ≤ r′d inf

r<ρ≤r′
g(ρ)

ρd
.
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To show that the Hausdorff measures Hg and Hgd are comparable, let us con-
sider a real c ≥ 1 such that |x|∞/c < |x| < c|x|∞ for all x ∈ Rd \ {0}, and a subset
E of Rd. We shall show that

Hgd(E) ≤ Hg(E) ≤ (4c2)dHgd(E).

The leftmost inequality clearly follows from the definition of the Hausdorff mea-
sures, along with (58). In order to show the rightmost inequality, let us consider
a sequence (Cn)n≥1 of sets in P(Rd) with diameter at most some δ ∈ (0, ε] and
such that E ⊆

⋃
n Cn. If the set Cn has positive diameter, then there exists a real

ρn ∈ (0, |Cn|] such that

|Cn|d
g(ρn)

ρnd
≤ gd(|Cn|) + δ2−n,

and there exists a point xn ∈ Cn, so that Cn ⊆ B∞(xn, c|Cn|). Furthermore, the
latter ball is covered by mn = d2c2|Cn|/ρned closed cubes with sidelength ρn/c,
denoted by Kn,1, . . . ,Kn,mn . Hence,

δ +

∞∑
n=1

gd(|Cn|) ≥
∑
n≥1
|Cn|>0

|Cn|d
g(ρn)

ρnd
≥ 1

(4c2)d

∑
n≥1
|Cn|>0

mng(ρn)

≥ 1

(4c2)d

 ∑
n≥1
|Cn|=0

g(|Cn|) +
∑
n≥1
|Cn|>0

mn∑
m=1

g(|Kn,m|)

 ≥ Hgδ(F )

(4c2)d
,

and the desired inequality follows from taking the infimum over all the sequences
(Cn)n≥1, and finally letting δ go to zero. �

2.6.3. Net measures. The second statement shows that we may restrict our
attention to coverings with dyadic cubes when estimating Hausdorff measures of
sets. The main advantage of working with coverings by dyadic cubes is that they
may easily be reduced to coverings by disjoint cubes; this is due to the fact that two
dyadic cubes are either disjoint or contained in one another. Recall that a dyadic
cube is a set of the form

λ = 2−j(k + [0, 1)d),

with j ∈ Z and k ∈ Zd. We also adopt the convention that the empty set is a
dyadic cube. The collection of all dyadic cubes, including the empty set, is denoted
by Λ. Given a gauge function g, let us consider the premeasure that maps each set
λ in Λ to g(|λ|), and which is denoted by g ◦ | · |Λ for brevity. Then, Theorem 2.3
enables us to introduce the outer measure

Mg = (g ◦ | · |Λ)∗, (59)

and the results of Section 2.4 show in particular that the Borel sets are measurable
with respect to Mg; this outer measure is usually termed as a net measures. Fur-
thermore, for any real δ > 0, let Mg

δ stand for the outer measure (g ◦ | · |Λ)δ that
is defined as in (53).

Proposition 2.11. There exists a real κ′ ≥ 1 such that for any gauge function
g and any subset E of Rd,

Hg(E) ≤Mg(E) ≤ κ′Hg(E).

Proof. The leftmost inequality is clear, because a cover by dyadic cubes is a
particular case of a cover by arbitrary sets. To prove the rightmost inequality, let us
consider a real c ≥ 1 such that |x|∞/c < |x| < c|x|∞ for all x ∈ Rd \ {0}, and a real
ε > 0 such that g is nondecreasing on [0, ε], just as in the proof of Proposition 2.10.
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Then, let E denote a subset of Rd and let (Cn)n≥1 be a sequence of sets in P(Rd)
with diameter at most some δ ∈ (0, ε] and such that E ⊆

⋃
n Cn.

If the set Cn has positive diameter, then it contains a point xn, so that Cn
is contained in the ball B∞(xn, c|Cn|). Furthermore, the latter ball is covered by
b4c2cd dyadic cubes with sidelength 2−jn , where jn is the only integer satisfying
2−jn ≤ |Cn|/c < 2−jn+1; the cubes are denoted by λn,1, . . . , λn,b4c2cd . Furthermore,
if the diameter of Cn vanishes, then this set is either empty or reduced to a singleton
{xn}. In the first case, we let λn = ∅. In the second case, we let λn be an arbitrary
dyadic cube with sidelength at most εn that contains xn, where εn is chosen small
enough to ensure that cεn ≤ ε and g(cεn) ≤ δ2−n. As a consequence,

Mg
δ(E) ≤

∑
n≥1
|Cn|>0

b4c2cd∑
m=1

g(|λn,m|) +
∑
n≥1
|Cn|=0

g(|λn|)

≤ (4c2)d
∑
n≥1
|Cn|>0

g(|Cn|) +
∑
n≥1

#Cn=1

δ2−n ≤ (4c2)d
∞∑
n=1

g(|Cn|) + δ,

and the result follows from taking the infimum over all the sequences (Cn)n≥1, and
letting δ tend to zero. �

Note that Proposition 2.11 may be straightforwardly extended to coverings by
m-adic cubes. Such a generalization will be used in Section 3.4.

2.6.4. Further properties. In the same vein, we may derive from the relative
behavior at zero of two given gauge functions g and h a comparison between the
corresponding Hausdorff measures. This is the purpose of the next result.

Proposition 2.12. For any gauge functions g and h and for any set E ⊆ Rd,(
lim inf
r→0

g(r)

h(r)

)
Hh(E) ≤ Hg(E) ≤

(
lim sup
r→0

g(r)

h(r)

)
Hh(E),

except if the lower or upper bound is of the indeterminate form 0 ·∞, in which case
the corresponding inequality has no meaning.

Proof. Let us consider a sequence (Cn)n≥1 of subsets of Rd with diameter at
most some δ > 0, and let us assume that E ⊆

⋃
n Cn. Then, it is clear that(

inf
0<r≤δ

g(r)

h(r)

) ∞∑
n=1

h(|Cn|) ≤
∞∑
n=1

g(|Cn|) ≤
(

sup
0<r≤δ

g(r)

h(r)

) ∞∑
n=1

h(|Cn|),

and we conclude by taking the infima over (Cn)n≥1 and letting δ tend to zero. �

Let us now explain how the Hausdorff measures behave when taking the image
of the set of interest under a mapping that satisfies a form of Lipschitz condition.

Proposition 2.13. Let V be a nonempty open subset of Rd and let f be a map-
ping defined on V with values in Rd′ . Let us assume that there exists a continuous
increasing function ϕ defined on the interval [0,∞) such that ϕ(0) = 0 and

∀x, y ∈ V |f(x)− f(y)| ≤ ϕ(|x− y|).

Then, for any gauge function g, the function g ◦ ϕ−1 may be extended to a gauge
function, and for any subset E of V ,

Hg◦ϕ
−1

(f(E)) ≤ Hg(E).
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Proof. First, note that g ◦ ϕ−1 is nondecreasing on an interval of the form
[0, ε]. As usual, let us consider a sequence (Cn)n≥1 of subsets of Rd with diameter
at most a given δ > 0 for which ϕ(δ) ≤ ε, and such that E ⊆

⋃
n Cn. Thus, the

image set f(E) is covered by the sets f(Cn ∩ V ). In addition,

|f(Cn ∩ V )| = sup
x,y∈Cn∩V

|f(x)− f(y)| ≤ sup
x,y∈Cn∩V

ϕ(|x− y|) ≤ ϕ(|Cn|)

for every integer n ≥ 1, from which it follows that

Hg◦ϕ
−1

ϕ(δ) (f(E)) ≤
∞∑
n=1

g ◦ ϕ−1(|f(Cn ∩ V )|) ≤
∞∑
n=1

g(|Cn|),

and we conclude again by taking the infimum on (Cn)n≥1 and the limit as the
parameter δ tends to zero. �

Proposition 2.13 is typically applied to mappings f that are Lipischitz, or even
uniform Hölder, on an open set V ; the function ϕ is therefore of the form r 7→ Crα.

2.6.5. Connection with Lebesgue measure. Finally, it is important to ob-
serve that the Lebesgue measure Ld, already discussed in Section 2.5, is a particular
example of Hausdorff measure.

Proposition 2.14. There exists a real number κ′′ > 0 such that for any set B
in the Borel σ-field B,

Hr 7→r
d

(B) = κ′′Ld(B). (60)

Proof. Letting c denote a positive real such that |x|∞/c ≤ |x| ≤ c|x|∞ for

all x ∈ Rd, one easily checks that Mr 7→rd([0, 1)d) ≤ cd. Using Proposition 2.11,

we infer that Hr 7→rd([0, 1)d) ≤ cd. Conversely, let us consider a sequence (λn)n≥1

of dyadic cubes with diameter at most a given δ > 0 such that [0, 1)d ⊆
⋃
n λn.

Therefore, as (56) holds for half-open rectangles, we have

1 = Ld([0, 1)d) ≤
∞∑
n=1

Ld(λn) ≤ cd
∞∑
n=1

|λn|d ;

taking the infimum over all sequences (λn)n≥1 and the limit as δ goes to zero, we

thus deduce that Mr 7→rd([0, 1)d) ≥ c−d. Using Proposition 2.11 and the notations

therein, we now infer that Hr 7→rd([0, 1)d) ≥ c−d/κ′. It follows that

κ′′ = Hr 7→r
d

([0, 1)d) ∈ (0,∞).

Given that the Lebesgue measure of the unit cube is equal to one, we deduce
that (60) holds when the Borel set B is equal to the unit cube [0, 1)d.

Let us now consider an integer j ≥ 0. The unit cube is the disjoint union of
the dyadic cubes of the form 2−j(k + [0, 1)d) with k ∈ {0, . . . , 2j − 1}d. By virtue

of Theorem 2.4, these dyadic cubes are measurable with respect to Hr 7→rd , so that

Hr 7→r
d

([0, 1)d) =
∑

k∈{0,...,2j−1}d
Hr 7→r

d

(2−j(k + [0, 1)d)).

Due to the translation invariance of the Hausdorff measure Hr 7→rd , the value of the
summand in the right-hand side does not depend on the value of k. We deduce
that for any dyadic cube λ ⊆ [0, 1)d with sidelength 2−j , we have

Hr 7→r
d

(λ) = κ′′2−dj = κ′′Ld(λ).

The latter equality is due to the obvious fact that the dyadic cube λ has Lebesgue
measure equal to 2−dj , see the discussion at the end of Section 2.5. The upshot is
that (60) holds when the set B is an arbitrary dyadic subcube of [0, 1)d.
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Finally, in view of Theorem 2.4, we obtain two finite measures on the unit

cube [0, 1)d by restricting the outer measures κ′′Ld and Hr 7→rd to the Borel sets
therein. Moreover, the above discussion shows that these two measures coincide
on the dyadic subcubes of [0, 1)d, which form a π-system that generate the Borel
sets. We deduce from the uniqueness of extension lemma that the measures κ′′Ld
and Hr 7→rd agree on the Borel subsets of [0, 1)d, see e.g. [61, Lemma 1.6(a)]. By
translation invariance and countable additivity on measurable sets, we conclude
that (60) holds on all the Borel subsets of Rd. �

If the space Rd is endowed with the Euclidean norm, it can be shown that the
constant κ′′ arising in the statement of Proposition 2.14 is given by

κ′′ =

(
4

π

)d/2
γd with γd = Γ

(
d

2
+ 1

)
=


(
d

2

)
! if d is even

d!
√
π

2d
(
d−1

2

)
!

if d is odd,

where Γ denotes the gamma function, see [51, pp. 56–58] for a detailed proof.
Furthermore, the ideas developed in the proof of Proposition 2.14 also lead to

the following noteworthy result for general Hausdorff measures.

Proposition 2.15. Let g denote a gauge function, and let `g be the parameter
defined in [0,∞] by the formula

`g = lim inf
r→0

g(r)

rd
. (61)

Then, depending on the value of `g, one of the three following situations occurs:

(1) if `g =∞, then for any Borel subset B of Rd,

Ld(B) > 0 =⇒ Hg(B) =∞ ;

(2) if `g ∈ (0,∞), then there exists a real number κg > 0 such that for any
Borel subset B of Rd,

Hg(B) = κg Ld(B) ;

(3) if `g = 0, then the outer measure Hg is equal to zero.

Proof. Let gd denote the d-normalization, defined by (57), of the gauge func-
tion g. Thanks to Proposition 2.10, we know that gd is a gauge function for which
the mapping r 7→ gd(r)/r

d is nonincreasing on the interval (0,∞), and that there
exists a real number κ ≥ 1 independent on g such that for any Borel set B ∈ B,

Hgd(B) ≤ Hg(B) ≤ κHgd(B). (62)

On top of that, let us observe that gd(r)/r
d tends to `g when r goes to zero. Hence,

Proposition 2.12 implies that we also have

Hgd(B) = `gHr 7→r
d

(B),

except if the right-hand side is of the indeterminate form 0 · ∞. Letting κ′′ denote
the positive real number appearing in (60), we deduce from Proposition 2.14 that,
except in the aforementioned indeterminate case, we further have

Hgd(B) = κ′′`gLd(B). (63)

This directly yields (1). As a matter of fact, if the parameter `g is infinite and
B denotes a set in the Borel σ-field B, we then have

Ld(B) > 0 =⇒ Hg(B) ≥ Hgd(B) =∞.
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In order to prove (2) and (3), let us assume that the parameter `g is finite.
Then, the Hg-mass of the unit cube [0, 1)d, denoted by κg, is finite as well. Indeed,
applying (62) and (63) to the unit cube, we get

κg = Hg([0, 1)d) ≤ κHgd([0, 1)d) = κκ′′`gLd([0, 1)d) = κκ′′`g <∞.

Moreover, if `g vanishes, then κg vanishes as well. The countable subadditivity and
the translation invariance of the outer measure Hg imply that the whole space Rd
has zero Hg-mass. This means that (3) holds. To establish (2), let us suppose that,
in addition to being finite, the parameter `g is positive. Applying (62) and (63) to
the unit cube, we also get

κg = Hg([0, 1)d) ≥ Hgd([0, 1)d) = κ′′`gLd([0, 1)d) = κ′′`g > 0.

Hence, κg is both positive and finite. We now proceed as in the proof of Proposi-
tion 2.14. The measurability of the dyadic cubes with respect to Hg and the trans-
lation invariance of that outer measure imply that for any dyadic cube λ ⊆ [0, 1)d,

Hg(λ) = κgLd(λ).

Using the uniqueness of extension lemma just as in the proof of Proposition 2.14,
we may conclude that the measures κgLd and Hg agree on the Borel subsets of
[0, 1)d, and finally that (2) holds. �

Note that, in the first case addressed by Proposition 2.15, the statement may
be applied to nonempty open sets. As a consequence, when `g is infinite, we have

∀U 6= ∅ open Hg(U) =∞.

This follows from the obvious fact that nonempty open sets are Borel and have
nonvanishing Lebesgue measure.

2.7. Hausdorff dimension

The Hausdorff measures associated with general gauge functions enable to give
a precise description of the size of a subset of Rd. However, it is arguably more
intuitive, and often sufficient, to restrict to a specific class of gauge functions,
namely, the power functions r 7→ rs, for s > 0. This approach gives rise to the
notion of Hausdorff dimension.

For these particular gauge functions, we use the notation Hs instead of Hr 7→rs ,
for brevity, and we call this outer measure the s-dimensional Hausdorff measure.
It is clear that the gauge function r 7→ rs is normalized if and only if s ≤ d; when
s is larger than d, the corresponding d-normalization is the zero function and, on
account of Proposition 2.10, the s-dimensional Hausdorff measure is constant equal
to zero. Furthermore, it is convenient to define H0 as the outer measure obtained
by applying Theorem 2.3 to the premeasure that maps a given subset of Rd to one
if the set is nonempty and to zero otherwise; it is then easy to see that H0 coincides
with the counting measure # on Rd.

Specializing Proposition 2.12 to the power gauge functions, it is easy to observe
that for any nonempty subset E of Rd, there exists a critical value s0 ∈ [0, d] such
that for all s ≥ 0, {

s < s0 =⇒ Hs(E) =∞
s > s0 =⇒ Hs(E) = 0.

Note however that one cannot conclude in general as regards the exact value of
Hs0(E) : it may well be zero, infinite, or both positive and finite. In the latter case,
E is called an s0-set. We may now define the notion of Hausdorff dimension.
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Definition 2.10. The Hausdorff dimension of a nonempty subset E of Rd is
defined by the formula

dimHE = sup{s ∈ [0, d] | Hs(E) =∞} = inf{s ∈ [0, d] | Hs(E) = 0},

with the convention that the supremum and the infimum are equal to zero and d,
respectively, if the inner sets are empty. Moreover, we adopt the convention that
the Hausdorff dimension of the empty set is equal to −∞.

We may in fact specialize to the power gauge functions the results of Section 2.6,
thereby obtaining the following proposition.

Proposition 2.16. Hausdorff dimension satisfies the following properties.

(1) Monotonicity: for any subsets E1 and E2 of Rd,

E1 ⊆ E2 =⇒ dimHE1 ≤ dimHE2.

(2) Countable stability: for any sequence (En)n≥1 of subsets of Rd,

dimH

∞⋃
n=1

En = sup
n≥1

dimHEn.

(3) Countable sets: if a subset E of Rd is both nonempty and countable, then
dimHE = 0.

(4) Sets with positive Lebesgue measure: if a subset E of Rd has positive
Lebesgue measure, then dimHE = d.

(5) Action of uniform Hölder mappings: let V be an open subset of Rd and

let f : V → Rd′ be a mapping such that

∃c, α > 0 ∀x, y ∈ V |f(x)− f(y)| ≤ c|x− y|α ;

then, for any subset E of V ,

dimH f(E) ≤ 1

α
dimHE.

(6) Invariance under bi-Lipschitz mappings: let V be an open subset of Rd
and let f : V → Rd′ be a bi-Lipschitz mapping with constant cf ≥ 1, i.e. a
mapping such that

∀x, y ∈ V |x− y|
cf

≤ |f(x)− f(y)| ≤ cf |x− y| ; (64)

then, for any subset E of V ,

dimH f(E) = dimHE.

(7) Differentiable manifolds: if M is a C1-submanifold of Rd with dimension
m, then dimHM = m.

Proof. All these properties basically follow from the definition of Hausdorff
dimension, along with the properties of Hausdorff measures obtained in Section 2.6.
Specifically, the monotonicity property (1) follows from the monotonicity property
of the outer measures Hs. The countable stability property (2) is due to the mono-
tonicity and the countable additivity of the outer measures Hs. Then, (3) results
from the countable stability of Hausdorff dimension, along with the obvious fact
that singletons have dimension zero. Now, Proposition 2.14 ensures that a sub-
set of Rd with positive Lebesgue measure also has positive Hd-mass; this leads
to (4). Finally, (5) follows from specializing Proposition 2.13 to the power gauge
functions, (6) is a plain consequence of (5), and (7) is a corollary of (4) and (6). �
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UsingMs as a shorthand for the net measuresMr 7→rs introduced in Section 2.6
and obtained when restricting to coverings by dyadic cubes, we directly deduce from
Proposition 2.11 that the Hausdorff dimension of a nonempty subset E of Rd is also
characterized by the formula

dimHE = sup{s ∈ [0, d] | Ms(E) =∞} = inf{s ∈ [0, d] | Ms(E) = 0}.

Finally, let us mention for completeness thatM0 is defined just asH0, and coincides
with the counting measure on Rd.

2.8. Upper bounds on Hausdorff dimensions for limsup sets

Deriving upper bounds on Hausdorff dimensions or, more generally, obtaining
an upper bound on the Hausdorff measure of a set is usually elementary: it suffices
to make use a well chosen covering of the set. There is a situation that we shall
often encounter where the choice of the covering is natural: when the set under
study is a limsup of simpler sets, such as balls for instance.

Lemma 2.1. Let (En)n≥1 be a sequence of subsets of Rd, and let

E = lim sup
n→∞

En.

Then, for any gauge function g, the following implication holds:

∞∑
n=1

g(|En|) <∞ =⇒ Hg(E) = 0.

In particular, the Hausdorff dimension of E satisfies

dimHE ≤ inf

{
s ∈ [0, d]

∣∣∣∣∣
∞∑
n=1

|En|s <∞

}
.

Proof. Let us consider a real δ > 0 and a gauge function g such that the series∑
n g(|En|) converges. In particular, g(|En|) tends to zero as n→∞; thus, unless

g is the zero function in a neighborhood of the origin, in which case the result is
trivial, we deduce that |En| ≤ δ for all n larger than some integer n0 ≥ 1. We then
choose an integer m > n0 and cover E by the sets En, for n ≥ m, thereby obtaining

Hgδ(E) ≤
∞∑
n=m

g(|En|).

The series being convergent, the right-hand side tends to zero as m goes to infinity,
and the result follows from letting δ tend to zero. Finally, the upper bound on the
Hausdorff dimension is a plain consequence of specializing the above result to the
power gauge functions. �

A typical application of Lemma 2.1 is the derivation of an upper bound on the
Hausdorff dimension of the set Jd,τ , see Section 3.1. Recall that this set is defined
by (1) and consists of the points that are approximable at rate at least τ by the
points with rational coordinates.

Lemma 2.1 may also be used to compute an upper bound on the Hausdorff
dimension of a very classical fractal set: the middle-third Cantor set, denoted by
K. There are several ways of defining this set; the most condensed one is certainly
to write K as the image of the symbolic set {0, 1}N under the mapping

(uj)j≥1 7→
∞∑
j=1

2uj3
−j ,
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which amounts to saying that a real number between zero and one belongs to K if
and only if the digits in its 3-adic expansion are all equal to zero or two. Another
way, which is probably more suitable for dimension estimates, is to write

K =

∞⋂
j=0

↓
⊔

u∈{0,1}j
Iu. (65)

Here, Iu denotes the closed interval with left endpoint 2u1/3 + . . . + 2uj/3
j and

length 3−j , if u is the word u1 . . . uj in {0, 1}j . For consistency, we adopt the
convention that the set {0, 1}0 contains only one element, the empty word ∅, and
that the set I∅ is equal to the whole interval [0, 1].

The upper bound on the dimension of K that results from Lemma 2.1 is then
given by the following statement.

Proposition 2.17. The middle-third Cantor set satisfies

dimH K ≤ log 2

log 3
.

Proof. Note that every point of the Cantor set K belongs to one of the inter-
vals Iu with u ∈ {0, 1}j , for every integer j ≥ 0. In particular, K may be seen as
the limsup of the intervals Iu. Applying Lemma 2.1, we are reduced to inspecting
the convergence of the series

∑
j 2j(3−j)s, and the result follows.

Note that this upper bound may be obtained more directly by covering the
Cantor set K by the intervals Iu, for u ∈ {0, 1}j , and then by letting j tend to
infinity. This method also yields an upper bound on the s-dimensional Hausdorff
measure of K at the critical value s = log 2/ log 3. To be precise, the aforementioned
covering implies that for δ > 0 and j ≥ 0 such that 3−j ≤ δ,

Hsδ(K) ≤ 2j(3−j)s = 1.

Taking the limit as δ → 0, we deduce that Hs(K) ≤ 1. �

We shall exhibit below a lower bound on the Hausdorff dimension of K that
matches the upper bound given by Proposition 2.17.

2.9. Lower bounds on Hausdorff dimensions

2.9.1. The mass distribution principle. Whereas deriving upper bounds
on Hausdorff dimensions often amounts to finding appropriate coverings, a standard
way of establishing lower bounds is to build a clever outer measure on the set under
study. This remark is embodied by the next simple, but crucial, result.

Lemma 2.2 (mass distribution principle). Let E be a subset of Rd and let µ
be an outer measure on Rd such that µ(E) > 0. Let us assume that there exist a
gauge function g and two real numbers c, δ0 > 0 such that for any subset C of Rd
with diameter at most δ0,

µ(C) ≤ c g(|C|).

Then, the set E has positive Hausdorff g-mass, specifically,

Hg(E) ≥ µ(E)

c
> 0.

In particular, if g is the power function r 7→ rs for some s ∈ (0, d], then the
s-dimensional Hausdorff measure of E is positive, and dimHE ≥ s.
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Proof. Let us consider a real δ ∈ (0, δ0] and a sequence (Cn)n≥1 of subsets of
the space Rd with diameter at most δ that satisfies E ⊆

⋃
n Cn. Then,

µ(E) ≤ µ

( ∞⋃
n=1

Cn

)
≤
∞∑
n=1

µ(Cn) ≤ c
∞∑
n=1

g(|Cn|),

and the result follows as usual from taking the infimum over all sequences (Cn)n≥1

and letting δ go to zero. �

Let us apply Lemma 2.2 to derive a lower bound on the Hausdorff dimension of
the Cantor set K; this will complement Proposition 2.17 above in an optimal way.

Proposition 2.18. The middle-third Cantor set satisfies

dimH K ≥ log 2

log 3
.

Proof. Let C denote the collection formed by the empty set and all the in-
tervals Iu, for u ∈ {0, 1}j and j ≥ 0. We define a premeasure ζ on C by letting
ζ(∅) = 0, and ζ(Iu) = 2−j if the word u has length j. Theorem 2.2 enables us to
extend via the formula (51) the premeasure ζ to an outer measure ζ∗ on all the
subsets of R. One then easily checks that the function µ that maps a subset E of
R to the value ζ∗(E ∩K) is also an outer measure.

Given a subset C of R with diameter at most one, we now derive an appropriate
upper bound on µ(C). We may clearly assume that C∩K is nonempty, as otherwise
µ(C) vanishes. Moreover, if C has positive diameter, there is a unique integer j ≥ 0
such that 3−(j+1) ≤ |C| < 3−j . The intervals Iu, for u ∈ {0, 1}j , are separated by a
distance at least 3−j . Hence, the set C intersects only one of these intervals, which
is denoted by I(C). Therefore, C ∩K is included in I(C), so that

µ(C) = ζ∗(C ∩K) ≤ ζ(I(C)) = 2−j = (3−j)s ≤ 3s|C|s = 2|C|s,

where s is equal to log 2/ log 3. The same bound holds when C has diameter zero.
Actually, in that case, C is reduced to a single point in K. For each integer j ≥ 0,
there is a unique u ∈ {0, 1}j such that this point belongs to Iu, so that

µ(C) = ζ∗(C ∩K) ≤ ζ(Iu) = 2−j −−−→
j→∞

0.

To conclude, it suffices to observe that µ(K) is at least one. Indeed, thanks to
Lemma 2.2, this implies that Hs(K) ≥ 1/2, which eventually leads to the result.

For completeness, let us briefly explain why µ(K) is at least one. Let us consider
a sequence (Cn)n≥1 in C such that K ⊆

⋃
n Cn. Since the intervals Iu are either

disjoint or included in one another, there exists a subset N of N such that the sets
Cn, for n ∈ N , are disjoint intervals that still cover the set K. Moreover, if Cn
has length 3−j , let C ′n denote the open interval formed by the points at a distance
less than 3−(j+1) from Cn. One easily checks that the open intervals C ′n are also
disjoint and cover K. By compactness of the latter set, we can extract from N a
finite subset N ′ such that the intervals C ′n, for n ∈ N ′, cover K. However, for these
values of n, we have K∩C ′n = K∩Cn, by disjointness of the sets C ′n. It follows that
K is covered by the finitely many intervals Cn, for n ∈ N ′. Among these intervals,
let us pick one that has minimal diameter and that is denoted by Cn1 . Then, there
necessarily exists an index n2 ∈ N ′ such that Cn2 is the “neighbor” of Cn1 in the
Cantor set construction: Cn1

and Cn2
have same length, 3−j say, and are separated

by a distance equal to 3−j . Thus, Cn1
tCn2

is included in a set D ∈ C with length
equal to 3−(j−1). Along with the set D, the sets Cn, for n ∈ N ′ \ {n1, n2}, cover
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K. Moreover, ζ(Cn1
) + ζ(Cn2

) and ζ(D) are both equal to 2−(j−1), so that∑
n∈N ′

ζ(Cn) = ζ(D) +
∑

n∈N ′\{n1,n2}

ζ(Cn).

We can repeat this procedure until ending with the trivial covering of the Cantor
set K by the whole interval [0, 1], thereby deducing that

∞∑
n=1

ζ(Cn) ≥
∑
n∈N ′

ζ(Cn) = ζ([0, 1]) = 1.

Taking the infimum in the left-hand side, we conclude that ζ∗(K) ≥ 1. Besides, it
is clear that ζ∗(K) ≤ ζ([0, 1]) = 1. Therefore, the µ-mass of the Cantor set K is in
fact equal to one. �

Propositions 2.17 and 2.18 together imply that the Hausdorff dimension of the
middle-third Cantor set K is equal to s = log 2/ log 3. Inspecting the proofs also
shows that 1/2 ≤ Hs(K) ≤ 1. One can actually prove that the exact value matches
the upper bound, i.e. is equal to one.

2.9.2. The general Cantor construction. The above approach may be ex-
tended to a natural generalization of the middle-third Cantor set. It is convenient
to assume that the construction is indexed by a tree, that is, a subset T of the set

U =

∞⋃
j=0

Nj

such that the three following properties hold:

• The empty word ∅ belongs to T .
• If the word u = u1 . . . uj is not empty and belongs to T , then the word
π(u) = u1 . . . uj−1 also belongs to T ; this word is the parent of u.

• For every word u in T , there exists an integer ku(T ) ≥ 0 such that the
word uk belongs to T if and only if 1 ≤ k ≤ ku(T ); the number of children
of u in T is then equal to ku(T ).

Let us recall here that, in accordance with a convention adopted previously, the set
N0 arising in the definition of U is reduced to the singleton {∅}; the empty word
∅ clearly corresponds to the root of the tree.

To each element u of the tree T , we may then associate a compact subset Iu of
Rd, and a possibly infinite nonnegative value ζ(Iu). Defining in addition ζ(∅) = 0,
we thus obtain a premeasure ζ on the collection C formed by the empty set together
with all the sets Iu. We assume these objects are compatible with the tree structure,
in the sense that for every u ∈ T ,

Iu ⊇
ku(T )⊔
k=1

Iuk and ζ(Iu) ≤
ku(T )∑
k=1

ζ(Iuk). (66)

In particular, nodes u ∈ T such that ku(T ) vanishes, i.e. childless nodes, are not
excluded a priori but the corresponding sets necessarily satisfy ζ(Iu) = 0. More
generally, ζ(Iu) surely vanishes when the subtree of T formed by the descendants
of u is finite; this is easily seen by induction on the height of this subtree.

Thanks to Theorem 2.2, we may then extend the premeasure ζ to an outer
measure ζ∗ on all the subsets of Rd through the formula (51). This finally enables
us to consider the limiting set

K =

∞⋂
j=0

↓
⊔

u∈T∩Nj
Iu, (67)
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together with the outer measure µ that maps a set E ⊆ Rd to the value ζ∗(E ∩K).
If the tree T is finite, it is clear that K is empty and µ is the zero measure, and so
the construction is pointless. The next result discusses the basic properties of K
and µ in the opposite situation.

Lemma 2.3. Let us assume that the tree T is infinite. Then, K is a nonempty
compact subset of I∅. Moreover, the outer measure µ has total mass µ(K) = ζ(I∅).

Proof. Let us assume that the tree T is infinite. Then, K is the intersection
of a nonincreasing nested sequence of nonempty compact sets, and is therefore itself
nonempty by virtue of Cantor’s intersection theorem.

Moreover, the set K is clearly included in the initial compact set I∅. It follows
that the total mass of µ satisfies

µ(Rd) = µ(K) = ζ∗(K) ≤ ζ(I∅).

In order to establish the reverse inequality, let us consider a sequence (Cn)n≥1

in C such that K ⊆
⋃
n Cn. We may now follow essentially the proof of Propo-

sition 2.18. Indeed, as the compact sets Iu are either disjoint or included in one
another, there exists a subset N of N such that the sets Cn indexed by n ∈ N are
disjoint, have a nonempty intersection with K and still cover this set. Moreover, if
Cn is a compact indexed by a node in T ∩ Nj with j ≥ 1, let us define C ′n as the
open set formed by the points at a distance less than min{ε1, . . . , εj}/3 from Cn,
where

εj = min
u,v∈T∩Nj

u6=v

d(Iu, Iv) > 0. (68)

In the trivial case where Cn is merely equal to I∅, we choose C ′n to be an arbitrary
open superset of Cn. We do the same thing if ε1 = . . . = εj = ∞, which means
that Cn is a compact set indexed by the word 1 . . . 1 with length j, and that the
tree begins by a single spine connecting the root ∅ to the node encoded by the
above word. Now that the open sets C ′n, for n ∈ N , are properly defined, one easily
checks that they are disjoint and cover K. The latter set being compact, we may
extract from N a finite subset N ′ such that the sets C ′n, for n ∈ N ′, still cover K.
However, for these values of n, we have K ∩ C ′n = K ∩ Cn. It follows that K is
covered by the finitely many compacts Cn, for n ∈ N ′.

Among these sets, we choose one that is indexed by a node with maximal
generation in the tree T ; this node is denoted by u∗. Then, the siblings of u∗ in
the tree T are of the form π(u∗)k with 1 ≤ k ≤ ku∗(T ). If a set of the form Iπ(u∗)k

intersects K, then it must intersect a unique set Cn0
with n0 ∈ N ′. The generation

of Cn0
cannot be larger than that of u∗, i.e. that of π(u∗)k, so that Cn0

contains
Iπ(u∗)k. Moreover, the latter inclusion cannot be strict, as otherwise Cn0 would also
contain Iu∗ , which would contradict the disjointness of the sets Cn, for n ∈ N ′. It
follows that the sets Iπ(u∗)k that exhibit a nonempty intersection with K may be
written in the form Cn1

, . . . , Cni with n1, . . . , ni ∈ N ′. In the opposite case where
Iπ(u∗)k ∩ K = ∅, then the subtree of T formed by the descendants of π(u∗)k is
necessarily finite and, as a result of a remark made right after (66), this demands
that ζ(Iπ(u∗)k) = 0. Therefore, using (66), we end up with

∑
n∈N ′

ζ(Cn) =

kπ(u∗)(T )∑
k=1

ζ(Iπ(u∗)k) +
∑

n∈N ′\{n1,...,ni}

ζ(Cn)

≥ ζ(Iπ(u∗)) +
∑

n∈N ′\{n1,...,ni}

ζ(Cn),

together with the fact that the sets Cn, for n ∈ N ′ \ {n1, . . . , ni}, combined with
the set Iπ(u∗) cover K. We can finally replicate this procedure until obtaining the
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trivial covering of the set K by the initial compact I∅. This leads to
∞∑
n=1

ζ(Cn) ≥
∑
n∈N ′

ζ(Cn) ≥ ζ(I∅).

Taking the infimum in the left-hand side, we conclude that ζ∗(K) ≥ ζ(I∅). �

Let us remark that the second condition in (66) may easily be replaced by an
equality if necessary. Indeed, it suffices to replace ζ by the premeasure ξ defined
on C by ξ(I∅) = ζ(I∅) and the recurrence relation

ξ(Iuk) =
ζ(Iuk)

ku(T )∑
l=1

ζ(Iul)

ξ(Iu),

for u ∈ T and k ∈ {1, . . . , ku(T )}. When the denominator vanishes, the numerator
vanishes as well, and we adopt the convention that the quotient is zero. Note that
the premeasure thus obtained bounds ζ from below.

Under further conditions on the compact sets Iu, we may use Lemma 2.2,
i.e. the mass distribution principle, in order to derive a lower bound on the Haus-
dorff dimension of the limiting set K. This is the purpose of the next result. In its
statement, (εj)j≥1 is the sequence given by (68) and (mj)j≥1 is defined by

mj = min
u∈T∩Nj−1

ku(T ), (69)

thereby indicating the smallest number of children among the nodes of the tree at
a given generation.

Lemma 2.4. Let us assume that the sequence (εj)j≥1 is decreasing and that the
sequence (mj)j≥1 is positive. Then,

dimHK ≥ lim inf
j→∞

log(m1 . . .mj−1)

− log(m
1/d
j εj)

.

Proof. We may assume that the right-hand side in the formula is positive.
Indeed, the integers mj being positive, the tree T is infinite, and Lemma 2.3 ensures
that the set K is nonempty, thereby having dimension at least zero.

Moreover, note that the sequence (εj)j≥1 necessarily converges to zero and
thus, as the right-hand side in the formula is positive, that the sequence (mj)j≥1

has infinitely many terms larger than one. As a matter of fact, let us assume by
contradiction the existence of a real δ > 0 such that εj ≥ δ for all j ≥ 1. Since the
previous sequence is decreasing, for each j ≥ 0, there exists a node u ∈ T ∩Nj such
that ku(T ) ≥ 2 and the sets Iu1, . . . , Iuku(T ) are separated by a distance at least
εj+1. Hence, Iu \ (Iu1 t . . . t Iuku(T )) contains an open ball with diameter δ. We
thus obtain infinitely many disjoint balls with diameter δ that are included in I∅,
which contradicts the boundedness of this set.

Let us now consider the premeasure ζ defined recursively on the collection C
by ζ(I∅) = 1 and

∀u ∈ T \ {∅} ζ(Iu) =
ζ(Iπ(u))

kπ(u)(T )
.

It is clear that ζ satisfies (66), and that in fact equality holds therein. We may
thus consider the outer measure µ defined on K as above. By Lemma 2.3 again,
its total mass is equal to one.

Now, let C denote a subset of Rd such that C ∩ K 6= ∅ and 0 < |C| < ε1/2.
Then, C is contained in a closed ball B with diameter twice that of C, namely,
|B| = 2|C| < ε1. Let j denote the unique integer such that εj ≤ |B| < εj−1. There
exists a node u∗ ∈ T ∩Nj−1 such that B ∩ Iu∗ 6= ∅, and this node is unique because
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the compact sets of the (j − 1)-th generation are separated by a distance at least
εj−1. Therefore, the set B ∩K is covered by the sets Iu∗k that intersect B, so that

µ(B) = ζ∗(B ∩K) ≤
∑

1≤k≤ku∗ (T )

B∩Iu∗k 6=∅

ζ(Iu∗k) =
ζ(Iu∗)

ku∗(T )
#χB ,

where χB denotes the set of k ∈ {1, . . . , ku∗(T )} such that B intersects Iu∗k. For
k in this set, let xk denote a point lying in B and Iu∗k simultaneously. Thus, the
open balls with radius εj/2 centered at xk, for k ∈ χB , are disjoint and all included
in the ball obtained by doubling B. This leads to∑

k∈χB

Ld
(

B
(
xk,

εj
2

))
≤ Ld(B(x, |B|)),

where x denotes the center of B. We deduce that, in addition to being bounded
above by ku∗(T ), the cardinality of the set χB is also at most (2|B|/εj)d. Hence,
for any real number s ∈ [0, d],

µ(B) ≤ ζ(Iu∗)

ku∗(T )
(ku∗(T ))1−s/d

((
2|B|
εj

)d)s/d
= 2s|B|s ζ(Iu∗)

ku∗(T )s/dεsj
.

In view of the relationship between the set C and the ball B, and the definition of
the integers mj , we infer that

µ(C)

|C|s
≤ 4s

m1 . . .mj−1(m
1/d
j εj)s

.

If s is smaller than the lower bound given in the statement of the lemma, then the
right-hand side is bounded above by 4s for j large enough. Thus, letting κ denote
the supremum over j ≥ 1 of this right hand-side, we have κ <∞ and therefore

µ(C) ≤ κ|C|s

for all subsets C of Rd such that C ∩K 6= ∅ and 0 < |C| < ε1/2. Now, if C does
not intersect K, the latter bound still holds in an obvious manner since µ(C) must
vanish. Finally, the bound also holds when C intersects K and has diameter zero,
because µ(C) vanishes as well. Indeed, C ∩K is then reduced to a singleton {x},
which is covered by a nested sequence of compact sets Iu, so that

µ(C) = ζ∗({x}) ≤ sup
u∈T∩Nj

ζ(Iu) ≤ 1

m1 . . .mj
,

which goes to zero as j →∞, because mj must be at least two for infinitely many
values of j. We conclude using the mass distribution principle, see Lemma 2.2. �

2.10. Iterated function systems

We now turn our attention to a class of fractal sets that satisfy a kind of
selfsimilarity property, meaning that the sets locally look like the global object.
We shall eventually derive upper and lower bounds on the Hausdorff dimension of
these sets. Let F denote a closed subset of Rd. A mapping f : F → F is called a
contraction if

∃c ∈ (0, 1) ∀x, y ∈ F |f(y)− f(x)| ≤ c |y − x|. (70)

From its very definition, a contraction is clearly continuous. Furthermore, we call
an iterated function system any finite collection {f1, . . . , fm} of contractions with
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cardinality m ≥ 2. As shown by the next statement, any such iterated function
system determines a unique attractor, that is, a nonempty compact K ⊆ F with

K =

m⋃
k=1

fk(K).

To establish this result, we endow the collection C(F ) of all nonempty compact
subsets of F with the Hausdorff metric defined by

δ(A,B) = inf{δ > 0 |A ⊆ Bδ and B ⊆ Aδ},
where Aδ denotes the δ-neighborhood of the set A, that consists of the points x ∈ F
such that d(x,A) ≤ δ. Let us mention that C(F ) is a complete metric space.

Proposition 2.19. Let us consider an iterated function system {f1, . . . , fm}
on a closed set F ⊆ Rd. Then, the system has a unique attractor, denoted by K.
More precisely, letting f be the mapping that sends a set A ∈ C(F ) to

f(A) =

m⋃
k=1

fk(A),

and choosing A to be stable under each contraction fk, we have

K =

∞⋂
j=0

↓ f j(A),

where f j denotes the j-th iterate of the mapping f .

Proof. Note that f maps C(F ) to itself, and that a set in C(F ) is an attractor
if and only if it is a fixed point of the mapping f . Then, if A and B are two
nonempty compact subsets of F , we have

δ(f(A), f(B)) ≤ max
1≤k≤m

δ(fk(A), fk(B)) ≤ δ(A,B) max
1≤k≤m

ck, (71)

where ck comes from (70) for the contraction fk. Thus, f is a contraction on the
complete metric space C(F ). The Banach fixed point theorem now ensures that
f admits a unique fixed point, i.e. the iterated function system admits a unique
attractor, denoted by K. Moreover, K may be obtained as the limit as j → ∞ of
the j-th iterate of an arbitrary set A ∈ C(F ). In particular, if A is stable under
each fk, then it is stable under f , that is, f(A) ⊆ A. Hence, the sets f j(A) form
a nonincreasing sequence of compacts, and one easily checks that their intersection
coincides with K.

Note that we can always find a set A ∈ C(F ) that is A is stable under each fk.
If F itself is compact, then we can obviously pick A = F . Otherwise, letting x0

denote an arbitrary point in F , we can choose A = F ∩ B(x0, r) for r sufficiently
large. Indeed, if x ∈ F ∩ B(x0, r), then

|fk(x)− x0| ≤ |fk(x)− fk(x0)|+ |fk(x0)− x0| ≤ ckr + |fk(x0)− x0| ≤ r
if r is large enough to ensure that the latter inequality holds for all k. Again, the
sets f j(A) are nonincreasing, and their intersection is a fixed point of f . This gives
a more constructive proof of the existence of the attractor. The uniqueness may
then be recovered by means of (71). �

The simplest example of attractor is certainly the middle-third Cantor set K,
already dealt with in Sections 2.8 and 2.9. As a matter of fact, it is easy to deduce
from (65) that K is the attractor of the iterated function system {f1, f2} formed
by the two contracting similarity transformations from [0, 1] to itself defined by

f1(x) =
x

3
and f2(x) =

x+ 2

3
. (72)
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We refer for instance to [29, Chapter 9] for other classical examples of fractal sets
obtained through iterated function systems, like the Sierpiński triangle or the Koch
curve and its generalizations.

Our purpose is now to give some estimates on the Hausdorff dimension of an
attractor K. The next result gives an upper bound and holds in a general setting.

Proposition 2.20. Let K denote the attractor of an iterated function system
{f1, . . . , fm} defined on a closed set F ⊆ Rd, and let s be a positive real such that

m∑
k=1

csk = 1, (73)

where ck comes from (70) for the contraction fk. Then, the Hausdorff s-dimensional
measure of the set K is finite, and in particular dimHK ≤ s.

Proof. As usual for upper bounds, the proof reduces to finding an appropriate
covering of the attractor K. Thanks to Proposition 2.19, we know that K is covered
by the sets f j(K) for all j ≥ 0. Moreover, f j(K) is the union over all integers
k1, . . . , kj between one and m of the sets fk1

◦ . . . ◦ fkj (K). These sets satisfy

|fk1 ◦ . . . ◦ fkj (K)| ≤ ck1 . . . ckj |K|,
so that for all δ > 0 and for all j large enough,

Hsδ(K) ≤
∑

1≤k1,...,kj≤m

|fk1 ◦ . . . ◦ fkj (K)|s ≤ |K|s
∑

1≤k1,...,kj≤m

(ck1 . . . ckj )
s = |K|s.

Letting δ go to zero, we deduce that Hs(K) is bounded above by |K|s, which is
finite because K is compact. Therefore, K has Hausdorff dimension at most s. �

Obtaining a lower bound on the Hausdorff dimension of the attractor is less
straightforward and requires additional assumptions. The classical setting consists
in assuming that the contractions fk that form the iterated function system are
similarity transformations, i.e. satisfy the condition

∃ck ∈ (0, 1) ∀x, y ∈ F |fk(y)− fk(x)| = ck |y − x|
instead of the mere (70), and then supposing that the open set condition holds,
namely, that there exists a nonempty bounded open subset V of F such that

V ⊇
m⊔
k=1

fk(V ).

It is known from Proposition 2.19 that the attractor K is the union of its images
fk(K) under the contractions. The open set condition roughly means that these
components fk(K) do not overlap too much, and that the union is nearly disjoint.
Following this intuition and exploiting the fact that the contractions fk are simi-
larities, a nonrigorous heuristic approach then consists in writing that

Hs(K) =

m∑
k=1

Hs(fk(K)) = Hs(K)

m∑
k=1

csk,

so that the only plausible value for the Hausdorff dimension is the solution of (73).
It is actually possible to make this approach correct, and to prove that, under the
above assumptions, the Hausdorff s-dimensional measure of K is both positive and
finite, so that in particular dimHK = s, where s solves (73). We refer for example
to [29, Theorem 9.3] for a precise statement and a detailed proof.

In the number-theoretic applications that we shall discuss in Section 3.3 below,
the contractions that form the iterated function system are not similarity transfor-
mations, and the aforementioned classical setting is therefore irrelevant. Instead,
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we shall call upon the following result that applies to quite general contractions,
but relies on a stronger assumption than the open set condition.

Proposition 2.21. Let us consider an iterated function system {f1, . . . , fm}
defined on a closed set F ⊆ Rd and satisfying

∀k ∈ {1, . . . ,m} ∃bk ∈ (0, 1) ∀x, y ∈ F |fk(y)− fk(x)| ≥ bk |y − x|,
and let s be a positive real such that

m∑
k=1

bsk = 1.

Let us assume that the attractor, denoted by K, of the iterated function system
{f1, . . . , fm} verifies

K =

m⊔
k=1

fk(K). (74)

Then, the Hausdorff s-dimensional measure of the set K is positive, and in partic-
ular dimHK ≥ s.

Proof. We are in the setting of the general Cantor construction introduced
in Section 2.9.2. Here, the construction is indexed by the m-ary tree Tm formed by
the words of finite length over the alphabet {1, . . . ,m}, the compact sets are

Iu = fu1
◦ . . . ◦ fuj (K)

for any word u = u1 . . . uj , and the associated premeasure ζ is defined by

ζ(Iu) = (bu1 . . . buj )
s,

in addition to ζ(∅) = 0. In accordance with the standard conventions, we have in
particular I∅ = K and ζ(I∅) = 1, where ∅ denotes the empty word, which repre-
sents the root of the tree. The compatibility conditions (66) are plainly satisfied.
Indeed, for any word u = u1 . . . uj and any integer k between one and m, we have

fu1
◦ . . . ◦ fuj (K) =

m⊔
k=1

fu1
◦ . . . ◦ fuj ◦ fk(K) ;

the union is disjoint due to (74) and the injectivity of the contractions. Thus,
every compact set Iu is the disjoint union of the sets Iuk indexed by its children.
Moreover, the choice of s ensures that

ζ(Iu) = (bu1
. . . buj )

s =

m∑
k=1

(bu1
. . . buj bk)s =

m∑
k=1

ζ(Iuk).

Now, thanks to Proposition 2.19, the limiting compact set defined by (67) coincides
with the attractor K. We then use Theorem 2.2 to extend via the formula (51) the
premeasure ζ to an outer measure ζ∗ on all the subsets of Rd. The function µ that
maps a subset E of Rd to the value ζ∗(E ∩ K) is an outer measure as well, and
Lemma 2.3 implies that µ has total mass equal to µ(K) = ζ(I∅) = 1.

With a view to applying the mass distribution principle, let us estimate the
µ-mass of sets in terms of their diameter. We begin by considering the closed balls
B(x, r) with x ∈ K and r ∈ (0, ε), where

ε = min
1≤k<k′≤m

d(fk(K), fk′(K)) > 0 ;

note that two distinct compact sets fk(K) are positively separated because they
are disjoint. According to (67), for every integer j ≥ 0, there exists a unique word
u(j) with length j such that x belongs to the set Iu(j) . Necessarily, the parent of the
node u(j+1) is the node u(j) ; in addition to the fact that 0 < bk < 1 for all k, this
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ensures that the sequence (ρj)j≥0 defined by ρj = εb
u

(j)
1
. . . b

u
(j)
j

is decreasing and

converges to zero (again, due to the standard conventions, ρ0 = ε). In particular,
there exists a unique integer j ≥ 1 such that ρj ≤ r < ρj−1.

For this choice of the integer j, let us write u as a shorthand for u(j), and
let us consider another word v with length j. Let w denote the closest common
ancestor of u and v, and let l denote the length of w. Let x and y belong to Iu
and Iv, respectively. In particular, x belongs to Iwul+1

, so there exists a unique
x′ ∈ ful+1

(K) such that x = fw1
◦ . . . ◦ fwl(x′). Likewise, y is in Iwvl+1

, and there
is a unique y′ ∈ fvl+1

(K) such that y = fw1
◦ . . . ◦ fwl(y′). Thus,

|x− y| = |fw1 ◦ . . . ◦ fwl(x′)− fw1 ◦ . . . ◦ fwl(y′)| ≥ bw1 . . . bwl |x′ − y′|.

As ul+1 and vl+1 are distinct, the distance between x′ and y′ is at least ε. Taking
the infimum over x and y in the left-hand side, we finally deduce that

d(Iu, Iv) ≥ εbw1
. . . bwl ≥ εbu1

. . . buj−1
= ρj−1.

The latter inequality holds because the word w is a prefix of u1 . . . uj−1 = u(j−1),
and the reals bk are again strictly between zero and one. The upshot is that the set
B(x, r) ∩K is contained in no other component of K of the j-th generation than
Iu. Indeed, should v be another word with length j such that B(x, r) ∩ Iv 6= ∅, the
distance between Iu and Iv would be at most r, while the above ensures that this
distance is at least ρj−1 ; this would eventually lead to ρj−1 ≤ r, in contradiction
with the choice of j with respect to r. We infer that

µ(B(x, r)) = ζ∗(K ∩ B(x, r)) ≤ ζ(Iu) = (bu1
. . . buj )

s =
(ρj
ε

)s
≤ rs

εs
.

Now, let C be a subset of Rd with diameter less than ε. If C does not intersect
the attractor K, then the µ-mass of C obviously vanishes. Otherwise, there exists
a point x ∈ C ∩K, and the set C is plainly included in the closed ball centered at
x with diameter |C|. Therefore,

µ(C) ≤ µ(B(x, |C|)) ≤ |C|
s

εs
.

Lemma 2.2, namely, the mass distribution principle finally ensures that the attrac-
tor K has positive Hausdorff s-dimensional measure. In particular, its Hausdorff
dimension is bounded below by s. �

Let us mention that the middle-third Cantor set K clearly falls into the above
setting. Indeed, as mentioned previously, K is the attractor of the system formed
by the two contractions f1 and f2 defined by (72), and these contractions clearly
meet the requirements of Propositions 2.20 and 2.21 with all the parameters bk and
ck being equal to 1/3. Moreover, (74) holds for the set K together with the two
contractions f1 and f2. We deduce that the Hausdorff s-dimensional measure of
K is both positive and finite if s is a solution of the equation 2(1/3)s = 1, i.e. if
s = log 2/ log 3. We conclude that this value of s is the Hausdorff dimension of K,
thus recovering Propositions 2.17 and 2.18.

2.11. Connection with local density expressions

We end this chapter with a remarkable link between the Hausdorff dimension of
a set and the local density properties of the measures that it supports. To proceed,
we need the following classical covering lemma due to Vitali. In the statement, if
B denotes an open ball of Rd, then 5B stands for the open ball concentric to B
with radius five times that of B.
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Lemma 2.5 (Vitali’s covering lemma). Let C denote an arbitrary collection of
open balls of Rd such that

δC = sup
B∈C
|B| <∞.

Then, there exists a countable subcollection C′ of disjoint balls in C such that⋃
B∈C

B ⊆
⋃
B∈C′

5B.

Proof. The proof makes a thorough use of the Hausdorff maximal principle.
For any integer j ≥ 0, let Cj denote the subcollection of C formed by the balls B

with diameter satisfying δC2
−(j+1) < |B| ≤ δC2

−j . We now define recursively a
sequence of subcollections C′j of Cj in the following manner. To begin with, C′0 is
any maximal collection of disjoint balls in C0. Then, for any j ≥ 0, assuming that
C′0, . . . , C′j have been defined, we decide that C′j+1 is any maximal disjoint collection
among the balls B ∈ Cj+1 such that B ∩ B′ = ∅ for every ball B′ in C′0 ∪ . . . ∪ C′j .
The union, denoted by C′, of the collections C′j over j ≥ 0 is therefore a countable
collection of disjoint balls in C.

It remains to prove the covering property. Let us consider a ball B ∈ C. There
is an index j ≥ 0 such that B ∈ Cj . The maximality of C′j ensures that there
exists a ball B′ in C′0 ∪ . . .∪C′j that intersects B. The diameter of B′ is larger than

δC2
−(j+1), while that of B is bounded above by δC2

−j ; we deduce that |B| < 2|B′|.
Thus, the ball B is clearly contained in 5B′, and the result follows. �

Now, let us consider an outer measure µ for which the Borel subsets of Rd are
measurable, i.e. such that B ⊆ Fµ. For any real s ≥ 0, we define the upper s-density
of the outer measure µ at a given point x ∈ Rd by

Θ
s
(µ, x) = lim sup

r→0

µ(B(x, r))

rs
.

It is useful to observe that the function x 7→ Θ
s
(µ, x) is Borel-measurable, see [46,

Remark 2.10] for details. The connection with Hausdorff measures is given by the
following result.

Proposition 2.22. Let µ be an outer measure on Rd for which the Borel sets
are measurable, let F be a Borel subset of Rd, and let c be a positive real.

(1) If Θ
s
(µ, x) < c for all x ∈ F , then Hs(F ) ≥ µ(F )/c.

(2) If Θ
s
(µ, x) > c for all x ∈ F , then Hs(F ) ≤ 10sµ(Rd)/c.

Proof. In order to prove (1), let us consider a real number δ > 0 and the
subset of F defined by

Fδ = {x ∈ F | µ(B(x, r)) < c rs for all r ∈ (0, δ]}.

In view of [46, Remark 2.10], this is a Borel subset of F . Now, let (Cn)n≥1 denote
a sequence of sets in P(Rd) with diameter at most δ/2 and such that F ⊆

⋃
n Cn.

In particular, the sets Cn cover the set Fδ. If n is such that Fδ ∩ Cn contains a
point denoted by x, then it is clear that for any ε ∈ (0, δ/2], the open ball centered
at x with radius |Cn|+ ε contains the set Cn. Thus, by definition of Fδ, we have

µ(Cn) ≤ µ(B(x, |Cn|+ ε)) < c(|Cn|+ ε)s.

Letting ε go to zero, we deduce that µ(Cn) is merely less than c |Cn|s. As a
consequence, the µ-mass of the set Fδ satisfies

µ(Fδ) ≤
∑

Fδ∩Cn 6=∅

µ(Cn) ≤ c
∞∑
n=1

|Cn|s.
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Taking the infimum over all sequences (Cn)n≥1 in the right-hand side, we deduce
that µ(Fδ) ≤ cHsδ/2(F ). Since the outer measures Hsδ/2 increase to Hs as δ goes

to zero, we have µ(Fδ) ≤ cHs(F ). To conclude, it suffices to make use of Propo-
sition 2.4(1) and to observe that (F1/m)m≥1 is a nondecreasing sequence of Borel
sets whose union is equal to the whole set F .

We now establish (2). To this purpose, let us consider a real δ > 0 and the
collection C of open balls defined by

C = {B(x, r), x ∈ F and r ∈ (0, δ] such that µ(B(x, r)) > c rs}
Then, the set F is covered by the balls in C. We may apply Lemma 2.5 to obtain
a countable subcollection C′ of disjoint balls in C such that the enlarged balls 5B,
for B ∈ C′, still cover the set F . These balls have diameter at most 10δ, so

Hs10δ(F ) ≤
∑
B∈C′

|5B|s = 5s
∑
B∈C′

|B|s < 10s

c

∑
B∈C′

µ(B′) ≤ 10s

c
µ(Rd),

where the last inequality follows from the disjointness of the balls B in C′, and the
fact that these balls are µ-measurable. �

Although Proposition 2.22 has many various applications, we shall not actually
use this result as is in what follows. More specifically, when studying frequencies of
digits in base m expansions, we shall use a variant of Proposition 2.22 where open
balls are replaced by m-adic intervals, see Section 3.4.





CHAPTER 3

First applications in metric number theory

3.1. The Jarńık-Besicovitch theorem

We shall apply the methods introduced in Sections 2.8 and 2.9 to determine
the Hausdorff dimension of the set Jd,τ defined by (1) and formed by the points
that are approximable at rate at least τ by the points with rational coordinates.
Recall that this set is equal to the whole space Rd when τ ≤ 1 + 1/d, so that we
may suppose that we are in the opposite case. The dimension of Jd,τ was obtained
by Jarńık in 1929 and, independently, Besicovitch in 1934, see [7, 36].

Theorem 3.1 (Jarńık, Besicovitch). For any real number τ > 1 + 1/d, the
Hausdorff dimension of the set Jd,τ is given by

dimH Jd,τ =
d+ 1

τ
.

The remainder of this section is devoted to the proof of Theorem 3.1; we shall
establish the upper and the lower bound separately. We refer to Section 4.3 for
another proof of this theorem, and a refinement thereof, based on the general theory
of homogeneous ubiquitous systems.

3.1.1. Upper bound on the dimension of Jd,τ . The upper bound may be
obtained by using Lemma 2.1. Indeed, the set Jd,τ may be written in the form

Jd,τ =
⋃
k∈Zd

(k + J ′d,τ ) with J ′d,τ =

∞⋂
Q=1

∞⋃
q=Q

⋃
p∈{0,...,q}d

B∞

(
p

q
,

1

qτ

)
.

The set J ′d,τ may be seen as the limsup of the balls B∞(p/q, q−τ ), for p ∈ {0, . . . , q}d
and q ≥ 1. In view of Lemma 2.1, for any gauge function g such that the series∑
q(q+ 1)dg(2q−τ ) converges, the Hausdorff g-mass of J ′d,τ vanishes. The subaddi-

tivity of the outer measure Hg then ensures that the same property holds for the
whole set Jd,τ . Note that, owing to Proposition 2.10, we can assume that the gauge
function g is normalized, in which case the criterion boils down to the convergence
of the slightly simpler series

∑
q q

dg(q−τ ). Specializing to the power gauge func-

tions, we end up with examining the convergence of the series
∑
q q

d−τs, so that
the upper bound holds.

3.1.2. Lower bound on the dimension of Jd,τ . It suffices to give, for any
σ > τ , a lower bound on the Hausdorff dimension of the set J ′′d,σ defined by

J ′′d,σ = lim sup
q→∞

⋃
p∈{1,...,q−1}d

Bσp,q with Bσp,q = B∞

(
p

q
,

1

qσ

)
,

because J ′′d,σ is clearly a subset of Jd,τ . Instead of the open balls B∞(p/q, q−τ ), we
choose to work with the closed balls Bσp,q because we want to use some of them as
the compact sets arising in the Cantor construction detailed in Section 2.9.2. To
develop this construction here, we will call upon the next lemma.

71
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Lemma 3.1. Let C be a closed subcube of [0, 1]d with sidelength l and let n be
an integer such that ld+1n ≥ 215d. Let Qn denote the set of all integers q satisfying
2−6dn ≤ q ≤ 2dn. Then, there exists a set Sσn (C) ⊆ Zd × Qn with cardinality at

least 2−18d2

ldnd+1 such that the balls Bσp,q, for (p, q) ∈ Sσn (C), are included in C

and separated by a distance larger than n−1−1/d.

Proof. Throughout the proof, we endow the space Rd with the supremum
norm. We shall work with two parameters α, β > 1 whose precise values will be
tuned up later. Let us consider the subset C ′ of C formed by the points that are
at a distance at least αn−1−1/d from Rd \C. It is easily seen that C ′ is a cube with
sidelength l − 2αn−1−1/d, with the proviso that this value is nonnegative. Hence,

Ld(C ′) = (l − 2αn−1−1/d)d+,

where ( · )+ denotes the positive part function.
Furthermore, for each point x ∈ C, let q(x) denote the minimal value of q ∈ N

such that |qx − p|∞ ≤ n−1/d for some p ∈ Zd. Theorem 1.1, namely, Dirichlet’s
theorem ensures that q(x) is less than dn1/ded, which is clearly bounded above
by 2dn. Let us now consider the set C ′′ formed by the points x ∈ C such that
q(x) < n/β. Then, C ′′ is covered by the closed balls with curvature qn1/d centered
at the rational points p/q within distance 1/q of the cube C and with denominator
q < n/β. For any fixed choice of q, there are at most (ql+ 3)d such points. Hence,

Ld(C ′′) ≤
∑
q<n/β

(ql + 3)d
(

2

qn1/d

)d
=

2d

n

∑
q<1/l

(
l +

3

q

)d
+

∑
1/l≤q<n/β

(
l +

3

q

)d
≤ 2d

n

(
4d

l
+ (4l)d

n

β

)
= 8dld

(
1

β
+

1

ld+1n

)
.

We now define Qn as the set of all integers q satisfying n/β ≤ q ≤ 2dn,
and subsequently Sσn (C) as any set of pairs (p, q) ∈ Zd × Qn indexing a maximal
collection of rational points p/q with denominator in Qn that are at a distance at
least (β/n)1+1/d from the complement of C and are separated from each other by a
distance at least 3(β/n)1+1/d. We readily see that for any pair (p, q) ∈ Sσn (C), the
ball Bσp,q is contained in C because its radius q−σ is at most (β/n)1+1/d, which is a

lower bound on the distance between its center and Rd \ C. Moreover, for another
pair (p′, q′) ∈ Sσn (C), the balls Bσp,q and Bσp′,q′ are clearly separated by a distance

at least (β/n)1+1/d, because their radius are at most (β/n)1+1/d and their center
are at a distance at least 3(β/n)1+1/d. Given that β > 1, the balls are therefore
separated by a distance larger than n−1−1/d.

It remains us to derive the required lower bound on the cardinality of Sσn (C),
and to adjust the values of the parameters α and β accordingly. For any point
x ∈ C ′ \ C ′′, we have q(x) ∈ Qn, so that there exists a rational point p/q with
denominator in Qn for which∣∣∣∣x− p

q

∣∣∣∣
∞
≤ 1

qn1/d
≤ βn−1−1/d.

In particular, since x is at a distance at least αn−1−1/d from the complement of C,
the rational point p/q is surely at a distance at least (α− β)n−1−1/d from Rd \ C.
If we assume in addition that α − β ≥ β1+1/d, then p/q must be within distance
3(β/n)1+1/d from a point p′/q′ of the above collection, in view of the maximality
property. Hence, by virtue of the triangle inequality,∣∣∣∣x− p′

q′

∣∣∣∣
∞
≤
∣∣∣∣x− p

q

∣∣∣∣
∞

+

∣∣∣∣pq − p′

q′

∣∣∣∣
∞
≤ βn−1−1/d + 3

(
β

n

)1+1/d

≤ 3αn−1−1/d.
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Thus, the set C ′ \C ′′ is covered by the closed balls with radius 3αn−1−1/d centered
at the rational points indexed by Sσn (C). In particular,

Ld(C ′ \ C ′′) ≤ (6α)d

nd+1
#Sσn (C).

In the meantime, the Lebesgue measure of C ′ \ C ′′ is bounded below by

Ld(C ′)− Ld(C ′′) ≥ (l − 2αn−1−1/d)d+ − 8dld
(

1

β
+

1

ld+1n

)
,

from which we deduce a lower bound on the cardinality of Sσn (C). It remains
to adjust the parameters α and β in such a way that this bound is of the order
of ldnd+1. It actually suffices to choose any real β ≥ 24d+2, and then any real
α ≥ β(1 + β1/d), and finally to impose that ld+1n ≥ 4α to obtain that

8d
(

1

β
+

1

ld+1n

)
≤ 1

2d+1
and 1− 2α

ln1+1/d
≥ 1− 2α

ld+1n
≥ 1

2
,

and then that the cardinality of Sσn (C) is bounded below by ldnd+1/((6α)d2d+1).
We get the bounds of the statement of the lemma by choosing specifically α = 213d

and β = 26d, imposing that ld+1n ≥ 215d, and noting that (6α)d2d+1 ≤ 218d2

. �

We may now proceed with the general Cantor construction leading to the lower
bound on the Hausdorff dimension of J ′′d,σ. Lemma 3.1 will play a pivotal rôle
in the construction. We introduce several constants whose specific value, though
unimportant, will guarantee that this lemma may be applied throughout the proof.
First, let us define

κ = 2(σ(d+1)+14)d−1 and κ′ = 2d−(18+σ)d2

.

The choice of the constants κ and κ′ ensures that for any positive integers m and
n and for any integer q ∈ Qn,

m ≥ κnσ(d+1) =⇒
(

2

qσ

)d+1

m ≥ 215d

md+1 >
nσd

κ′
=⇒ 2−18d2

(
2

qσ

)d
md+1 > 1.

(75)

Here, Qn is the set of all integers q satisfying 2−6dn ≤ q ≤ 2dn, in accordance with
the statement of Lemma 3.1. We then fix an integer n1 such that

n1 > max{215d, 218d2/(d+1), 2(6dσ+1)d/(dσ−d−1)}. (76)

The choice of n1 ensures in particular that for all integers n ≥ n1 and q ∈ Qn,

2

qσ
< n−1−1/d. (77)

To begin with the construction, the unit cube [0, 1]d is chosen to be the compact
set I∅ indexed by the root of the underlying tree. Thanks to (76), we may apply
Lemma 3.1 to this cube and the integer n1, thus getting a set Sσn1

(I∅) contained in

Zd ×Qn1
with cardinality at least c1 such that the balls Bσp,q, for (p, q) ∈ Sσn1

(I∅),
are included in I∅ and separated by a distance larger than d1, where

c1 = 2−18d2

nd+1
1 > 1 and d1 = n

−1−1/d
1 .

Accordingly, we choose the balls Bσp,q, for (p, q) ∈ Sσn1
(I∅), to be the compact sets

Ik indexed by the children of the root. In particular, k∅(T ) is equal to #Sσn1
(I∅).
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Note that each set Ik is in fact a closed subcube of [0, 1]d with sidelength equal
to 2/qσ for some q ∈ Qn1

. In view of (75), we may then apply Lemma 3.1 to each
of these cubes and an arbitrary integer

n2 > max

{
κn

σ(d+1)
1 ,

(
nσd

κ′

)1/(d+1)
}

This yields subsets Sσn2
(I1), . . . ,Sσn2

(Ik∅(T )) of Zd × Qn2
with cardinality at least

c2 such that for each k, the balls Bσp,q, for (p, q) ∈ Sσn2
(Ik), are included in Ik and

separated by a distance larger than d2, where

c2 = κ′ nd+1
2 n−dσ1 > 1 and d2 = n

−1−1/d
2 .

It is then natural to choose the balls Bσp,q, for (p, q) ∈ Sσn2
(Iu1

), to be the compact
sets Iu1u2

indexed by the children of a node u1 ∈ {1, . . . , k∅(T )}.
We may obviously repeat this procedure ad infinitum. We thus obtain a se-

quence (nj)j≥1 of integers and a family of closed cubes (Iu)u∈T indexed by a tree
T such that the following properties hold for any integer j ≥ 1:

• we have nj+1 > κn
σ(d+1)
j ;

• for each node u ∈ T ∩ Nj , the cube Iu is a closed ball of the form Bσp,q
with (p, q) ∈ Sσnj (Iπ(u)) ;

• there are at least cj = κ′nd+1
j n−dσj−1 > 1 siblings at the j-th generation;

• the distance between the cubes indexed by two distinct nodes of the j-th

generation is larger than dj = n
−1−1/d
j .

Note that we adopt here the convention that n0 = 21/σ−d for the sake of consistency.
Moreover, we recall for completeness that the initial cube is merely I∅ = [0, 1]d.

It is clear that each point of the limiting compact set K belongs to infinitely
many balls Bσp,q, and therefore K is included in J ′′d,σ. Moreover, we are in the
setting of Lemma 2.4 with

mj = min
u∈T∩Nj−1

ku(T ) ≥ cj > 1 and εj = min
u,v∈T∩Nj

u6=v

d(Iu, Iv) > dj .

In particular, the sequence (εj)j≥1 is decreasing, as a consequence of (77). Applying
Lemma 2.4, we end up with

dimHK ≥ lim inf
j→∞

log(m1 . . .mj−1)

− log(m
1/d
j εj)

≥ lim inf
j→∞

log(c1 . . . cj−1)

− log(c
1/d
j dj)

.

It remains to elucidate the lower limit appearing in the right-hand side. At each
step of the above construction, the integer nj may be chosen arbitrarily large: in

particular, we may assume that nj+1 ≥ njj for all j ≥ 0. The numerator in the
previous formula, namely,

(d+ 1)

j−1∑
k=1

log nk − dσ
j−2∑
k=0

log nk + (j − 1) log κ′

is therefore equivalent to (d + 1) log nj−1 as j goes to infinity. Furthermore, the
denominator is equal to

−1

d
log κ′ + σ log nj−1.

We conclude that the lower limit is equal to (d+ 1)/σ, and the lower bound on the
dimension of Jd,τ follows from letting σ tend to τ .

As shown above, the lower bound relies heavily on Lemma 3.1, which enables
one to perform the general Cantor construction. In dimension d = 1, it is possible
to use a variant form of this lemma that is slightly weaker but also much easier to
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establish. This method is used in Falconer’s book [29] and we reproduce it here
for the sake of completeness. In the next statement, Πn denotes the set of primes
numbers between n+ 1 and 2n.

Lemma 3.2. Let I be a closed subinterval of [0, 1] with length l and let n be a
positive integer. Then, there exists a set Sσn (I) ⊆ Z × Πn with cardinality at least
(ln− 3)#Πn such that the intervals Bσp,q, for (p, q) ∈ Sσn (I), are included in I and

separated by a distance larger than (2n)−2 − 2n−σ.

Proof. If the interval I has length l ∈ (0, 1], then it may be written in the
form x + [0, l] for some point x ∈ [0, 1 − l]. A pair (p, q) ∈ Z × Πn is such that
Bσp,q ⊆ I as soon as p is between qx+ 1 and q(x+ l)− 1, a condition that is verified
by at least lq − 3 integers p. Thus, the total number of pairs (p, q) ∈ Z× Πn such
that Bσp,q ⊆ I is at least (ln − 3)#Πn. To conclude, it suffices to observe that if
(p, q) and (p′, q′) are two distinct pairs in Z×Πn, then∣∣∣∣pq − p′

q′

∣∣∣∣ =
|pq′ − p′q|

qq′
≥ 1

qq′
≥ 1

4n2
,

which gives the required lower bound on the distance between Bσp,q and Bσp′,q′ . �

We may then use the previous lemma instead of Lemma 3.1 to develop the
general Cantor construction in the one-dimensional case. The appropriate estimates
on the minimal distance dj between the intervals of the construction follow from
the obvious fact that (2n)−2 − 2n−σ is larger than (3n)−2 for n large enough,
because σ > 2. The estimates on the minimal number of siblings cj at the j-th
generation call upon the prime number theorem, according to which #Πn is larger
than n/(2 log n) for all n sufficiently large. Despite additional logarithmic terms,
this yields the same lower bound on the Hausdorff dimension of J1,τ , namely, 2/τ .

3.2. Typical behavior of continued fraction expansions

3.2.1. The Gauss measure. We adopt the notations of Section 1.2.1.2 for
the set X of all irrational numbers between zero and one, and for the Gauss map
T thereon. The Gauss measure is then the probability measure µ on X defined by

µ(A) =
1

log 2

∫
A

dx

1 + x

for any Borel subset A of X. The relationship between the Gauss measure and the
Gauss map is stated in the following lemma.

Lemma 3.3 (Gauss, 1845). The Gauss map preserves the Gauss measure.

Proof. The sets [0, s] ∩X, for s ∈ (0, 1), form a π-system that generates the
Borel subsets of X. By the uniqueness of extension lemma, it suffices to show that
the measure µ and its pushforward under the mapping T , namely, µ ◦ T−1 agree
on that π-system, see e.g. [61, Lemma 1.6(a)]. Hence, let us show that for any
s ∈ (0, 1), the sets T−1([0, s] ∩X) and [0, s] ∩X have the same measure. We have

T−1([0, s] ∩X) =
{
x ∈ X

∣∣ 0 < T (x) ≤ s
}

=

∞⊔
n=1

([
1

s+ n
,

1

n

)
∩X

)
,
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and the union in the right-hand side is disjoint. Therefore, the countable additivity
of the measure µ implies that

µ(T−1([0, s] ∩X)) =
1

log 2

∞∑
n=1

∫ 1
n

1
s+n

dx

1 + x

=
1

log 2

∞∑
n=1

(
log

(
1 +

1

n

)
− log

(
1 +

1

s+ n

))

=
1

log 2

∞∑
n=1

(
log
(

1 +
s

n

)
− log

(
1 +

s

n+ 1

))
=

log(1 + s)

log 2
= µ([0, s] ∩X),

and the result follows. �

3.2.2. Ergodicity of the Gauss map. With the help of the results of Sec-
tion 1.2.1.2, observe that the following diagram commutes:

NN σ //

��

NN

��
X

T // X.

The Gauss map may thus be represented as the shift σ on the symbolic space NN.
Moreover, for any vector a = (a1, . . . , an) ∈ Nn, let us consider the subset I(a) of
X defined by

I(a) =
{

[b1, b2, . . .]
∣∣ b1 = a1, . . . , bn = an

}
. (78)

If n is equal to zero, we adopt the convention that Nn is reduced to the singleton {∅}
formed by the empty word, and that I(∅) is equal to the whole set X. Each set I(a)
can be seen as either a cylinder in the symbolic space NN or the intersection of the
set X with an interval. To be more precise, we have the following characterization
of the sets I(a).

Lemma 3.4. For any integer n ≥ 0, any vector a = (a1, . . . , an) ∈ Nn and any
irrational real x ∈ X,

x ∈ I(a) ⇐⇒ x =
pn + pn−1T

n(x)

qn + qn−1Tn(x)
,

where pn−1/qn−1 and pn/qn are defined by (7) with a0 = 0. Moreover, we adopt
the same conventions as in the statement of Lemma 1.1 when n = 0.

Proof. Let pn(x)/qn(x) denote the convergents of the continued fraction ex-
pansion of x. Using (19) and noting that the (n+1)-th tail of the continued fraction
expansion of x coincides with 1/Tn(x), we have

x =
pn(x) + pn−1(x)Tn(x)

qn(x) + qn−1(x)Tn(x)
.

If the irrational number x belongs to the set I(a), we therefore have

x =
pn + pn−1T

n(x)

qn + qn−1Tn(x)
.

Note that the right-hand side is a monotonic function of Tn(x). Thus, if conversely
the latter equality holds, then x is between the rationals

pn
qn

= [a1, . . . , an] and
pn + pn−1

qn + qn−1
= [a1, . . . , an−1, an + 1].
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Let us show by induction on n that this implies that x ∈ I(a). First, note that the
result is a tautology if n = 0. Besides, if these bounds on x hold, then 1/x − a1

is between [a2, . . . , an] and [a2, . . . , an−1, an + 1]. This means that a1(x) = a1 and
that T (x) = 1/x− a1. Applying the induction hypothesis to T (x), we deduce that
T (x) ∈ I(a2, . . . , an), so that ak+1(x) = ak(T (x)) = ak+1 for all k ∈ {2, . . . , n}. As
a result, x belongs to I(a). �

The above lemma will be called upon in the proof of the main result of this
section, namely, the ergodicity of the Gauss map.

Theorem 3.2. The Gauss map T is ergodic on X with respect to the Gauss
measure µ, that is, for any Borel subset A of X,

T−1(A) = A =⇒ µ(A) ∈ {0, 1}.

Proof. The main part of the proof consists in establishing that for any integer
n ≥ 0, any vector a = (a1, . . . , an) ∈ Nn and any Borel subset A of X,

1

4
µ(A)µ(I(a)) log 2 ≤ µ(T−n(A) ∩ I(a)) ≤ 8µ(A)µ(I(a)) log 2, (79)

where I(a) is the subset of X defined by (78). Note that the Borel sets A for
which (79) holds clearly form a monotone class; the monotone class theorem then
ensures that it suffices to prove (79) for A = [α, β]∩X with 0 < α < β < 1, see for
instance [24, Appendix A].

Applying Lemma 3.4 and observing that y 7→ (pn + pn−1y)/(qn + qn−1y) is
a continuous and monotonic mapping on the interval (0, 1), we infer that the set
T−n([α, β] ∩X) ∩ I(a) is an interval with endpoints

pn + pn−1α

qn + qn−1α
and

pn + pn−1β

qn + qn−1β
.

As a consequence, its Lebesgue measure satisfies

L1(T−n([α, β] ∩X) ∩ I(a)) =

∣∣∣∣pn + pn−1α

qn + qn−1α
− pn + pn−1β

qn + qn−1β

∣∣∣∣
=

β − α
(qn + qn−1α)(qn + qn−1β)

.

Furthermore, the Lebesgue measure of the set I(a) is obtained by choosing above α
and β to be equal to zero and one, respectively. Also, note that the ratio between
the Lebesgue measure of a subset of X and its Gauss measure is between log 2 and
2 log 2. Therefore,

log 2

2
≤ µ(T−n([α, β] ∩X) ∩ I(a))

µ([α, β] ∩X)µ(I(a))
· (qn + qn−1α)(qn + qn−1β)

qn(qn + qn−1)
≤ 4 log 2.

However, given that 0 < α < β < 1 and qn ≥ qn−1, it is easily seen that

1

2
≤ (qn + qn−1α)(qn + qn−1β)

qn(qn + qn−1)
≤ 2.

We finally deduce that (79) holds for A = [α, β] ∩ X, and the monotone class
argument ensures that (79) still holds for an arbitrary Borel subset A of X.

Let us now suppose that A is invariant under the action of the Gauss map, that
is, T−1(A) = A. Then, (79) reduces to

1

4
µ(A)µ(I(a)) log 2 ≤ µ(A ∩ I(a)) ≤ 8µ(A)µ(I(a)) log 2, (80)
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for any vector a = (a1, . . . , an) of positive integers. Note that the sets I(a), for
a ∈ Nn, form a partition of the set X and their diameter satisfies

|I(a)| = L1(I(a)) =
1

qn(qn + qn−1)
≤ 22−n,

because qn is at least 2(n−2)/2; these sets thus generate the Borel σ-field on X. The
monotone class theorem then ensures that (80) still holds when I(a) is replaced by
an arbitrary Borel subset B of X. In particular, choosing B to be the set X \A, we
readily deduce that either µ(A) or µ(X \A) vanishes. The ergodicity of the Gauss
map with respect to the Gauss measure follows. �

3.2.3. Almost sure results. The ergodicity of the Gauss map, combined
with Birkhoff’s pointwise ergodic theorem, enables one to deduce well known prop-
erties on the distribution of the digits arising in the continued fraction expansion
of almost every irrational number. Let us begin by recalling the statement of the
ergodic theorem; we refer for instance to [24, Chapter 2] for details and a proof.

Theorem 3.3 (Birkhoff). Let (X,F , µ, T ) be a measure-preserving dynamical
system, and assume that T is ergodic. Then, for any function f ∈ L1(µ),

1

n

n−1∑
j=0

f(T j(x)) −−−−→
n→∞

∫
X

f dµ ;

convergence holds µ-almost everywhere and in L1(µ).

Let us begin by a result on the frequencies of the partial quotients of a typical
irrational number.

Proposition 3.1. For Lebesgue-almost every x = [a1, a2, . . .] in X, a given
digit b ≥ 1 appears with a frequency satisfying

lim
n→∞

1

n
#{j ≤ n | aj = b} =

2 log(b+ 1)− log b− log(b+ 2)

log 2
.

Proof. For every irrational number x = [a1, a2, . . .] in X, the digit b appears
in the first n digits with frequency equal to

1

n
#{j ≤ n | aj = b} =

1

n

n−1∑
j=0

1[ 1
b+1 ,

1
b ]

(T j(x)).

Owing to Theorem 3.3, this converges µ-almost everywhere to

µ

([
1

b+ 1
,

1

b

])
=

1

log 2

∫ 1
b

1
b+1

dy

1 + y
=

2 log(b+ 1)− log b− log(b+ 2)

log 2
.

The result follows from the fact that the Gauss measure and the Lebesgue measure
are absolutely continuous with respect to one another. �

We now study the asymptotic behavior of the product of the partial quotients
of a typical irrational number.

Proposition 3.2. For Lebesgue-almost every x = [a1, a2, . . .] in X, we have

lim
n→∞

(a1a2 . . . an)1/n =

∞∏
b=1

(
(b+ 1)2

b(b+ 2)

) log b
log 2

.
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Proof. We begin by observing that log aj = f(T j−1(x)) for any integer j ≥ 1,
where f is the function defined on X by

f =

∞∑
b=1

1[ 1
b+1 ,

1
b ]

log b. (81)

One easily checks that f is in L1(µ); as a matter of fact,∫
X

f dµ =

∞∑
b=1

µ

([
1

b+ 1
,

1

b

])
log b =

∞∑
b=1

log b

log 2
log

(
1 +

1

b(b+ 2)

)
<∞.

Theorem 3.3 then ensures that for µ-almost every x ∈ X,

1

n

n∑
j=1

log aj =
1

n

n−1∑
j=0

f(T j(x)) −−−−→
n→∞

∫
X

f dµ.

The result follows from composing with the exponential function in the above limit,
using the previous computation for the integral of f with respect to µ, and observing
that the Gauss measure and the Lebesgue measure have the same null sets. �

The limiting value arising in the statement of Proposition 3.2 is called Khint-
chine’s constant, and is approximately equal to 2.685452001.

Let us now turn our attention to the asymptotic behavior of the sums of the
typical partial quotients. In the proof, it is tempting to apply Theorem 3.3 to the
exponential of the function f defined by (81). However, this function fails to be
integrable, and the above approach has to be refined.

Proposition 3.3. For Lebesgue-almost every x = [a1, a2, . . .] in X, we have

lim
n→∞

1

n
(a1 + a2 + . . .+ an) =∞.

Proof. Let g denote the function exp ◦f , where f denotes the function defined
by (81). Note that

1

n

n∑
j=1

aj =
1

n

n−1∑
j=0

g(T j(x)) ;

however, the function g is not integrable, so that we cannot apply Theorem 3.3
directly. We first need to truncate the function g, namely, to fix an integer N ≥ 1
and to consider the function gN = min{g,N}. The function gN clearly belongs to
L1(µ), so Theorem 3.3 implies that for µ-almost every x ∈ X,

lim inf
n→∞

1

n

n−1∑
j=0

g(T j(x)) ≥ lim
n→∞

1

n

n−1∑
j=0

gN (T j(x)) =

∫
X

gNdµ =

N∑
b=1

b

log 2
log

(b+ 1)2

b(b+ 2)
.

The result follows from the fact that the right-hand side tends to infinity as N →∞,
and again that the Gauss and Lebesgue measures share the same null sets. �

We now study the typical behavior of the denominators of the convergents.
This is somewhat more difficult than the previous results that were straightforward
applications of Birkhoff’s ergodic theorem.

Proposition 3.4. For Lebesgue-almost every x in X, the denominator of the
convergents satisfy

lim
n→∞

1

n
log qn(x) =

π2

12 log 2
.
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Proof. First, note that the convergents pn(x)/qn(x) of the continued fraction
expansion [a1, a2, . . .] of x satisfy

pn(x)

qn(x)
=

1

a1 + [a2, . . . , an]
=

1

a1 +
pn−1(T (x))

qn−1(T (x))

=
qn−1(T (x))

pn−1(T (x)) + a1qn−1(T (x))
;

since the numerator and the denominator of the convergents are coprime, the left-
hand side and the right-hand side are in their irreducible form, so that in particular
pn(x) = qn−1(T (x)). As a consequence, applying this with n − j instead of n and
T j(x) instead of x, we have

n−1∑
j=0

log
pn−j(T

j(x))

qn−j(T j(x))
=

n−1∑
j=0

log qn−(j+1)(T
j+1(x))− log qn−j(T

j(x))

= log q0(Tn(x))− log qn(x) = − log qn(x).

Thus, we may write − log qn(x) = Sn(x)−Rn(x), where

Sn(x) =
n−1∑
j=0

log T j(x) and Rn(x) =
n−1∑
j=0

(
log T j(x)− log

pn−j(T
j(x))

qn−j(T j(x))

)
.

Since the logarithm is integrable with respect to the Gauss measure, Theorem 3.3
ensures that for µ-almost every x in X,

Sn(x)

n
−−−−→
n→∞

∫
X

log xµ(dx) =
1

log 2

∫ 1

0

log x

1 + x
dx = − π2

12 log 2
.

As the Gauss and Lebesgue measures share the same null sets, the above conver-
gence result also holds Lebesgue-almost everywhere. For completeness, let us recall
that the above integral may be computed as follows:

−
∫ 1

0

log x

1 + x
dx =

∫ 1

0

log(1 + x)

x
dx =

∫ 1

0

∞∑
n=0

(−1)n

n+ 1
xn dx =

∞∑
n=1

(−1)n−1

n2
=
π2

12
.

To conclude, we shall show that (Rn(x))n≥1 is a bounded sequence for every
x ∈ X. To this purpose, observe that the convergents satisfy∣∣∣∣ x

pk(x)/qk(x)
− 1

∣∣∣∣ =
qk(x)

pk(x)

∣∣∣∣x− pk(x)

qk(x)

∣∣∣∣ ≤ 1

pk(x)qk+1(x)
.

Recall that the numerator and the denominator of the n-th convergent are both at
least 2(n−2)/2 for all n ≥ 1. Thus, pk(x)qk+1(x) ≥ 2k−3/2 for all k ≥ 1. However,
this bound can easily be improved when k is equal to one or two: specifically,
p1(x)q2(x) ≥ 2 and p2(x)q3(x) ≥ 3. As a consequence, the right-hand side above
cannot be larger than 1/2. Given that the positive function u 7→ log u/(u − 1) is
bounded above by 2 log 2 on the interval [2,∞), we deduce that∣∣∣∣log x− log

pk(x)

qk(x)

∣∣∣∣ ≤ 2 log 2

∣∣∣∣ x

pk(x)/qk(x)
− 1

∣∣∣∣ ≤ 25/2−k log 2

for all x ∈ X and all k ≥ 1. This readily implies that for every x in X,

|Rn(x)| ≤
n−1∑
j=0

∣∣∣∣log T j(x)− log
pn−j(T

j(x))

qn−j(T j(x))

∣∣∣∣ ≤ n−1∑
j=0

25/2−(n−j) log 2 ≤ 25/2 log 2,

so that (Rn(x))n≥1 is a bounded sequence, as announced previously. �

The exponential of the limiting value obtained in Proposition 3.4 is called Lévy’s
constant, and is approximately equal to 3.2758229187. It is therefore the almost
sure limit of qn(x)1/n as n goes to infinity.
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The last result gives the asymptotic behavior of the error made when replacing
a typical irrational number by the convergents of its continued fraction expansion.

Corollary 3.1. For Lebesgue-almost every x in X, the convergents satisfy

lim
n→∞

1

n
log

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ = − π2

6 log 2
.

Proof. This directly follows from Proposition 3.4, along with the fact that

log qn + log qn+1 < − log

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ < log qn + log qn+2,

as a consequence of (25). �

3.3. Prescribed continued fraction expansions

3.3.1. An emblematic example. The theory of iterated function systems
introduced in Section 2.10 allows us to study the Hausdorff dimension of certain
sets of positive real numbers that are defined through conditions on the contin-
ued fraction expansions. Rather than developing a systematic theory, we content
ourselves with discussing the following emblematic example.

Given an integer m ≥ 2 and using the notation (17) for the continued fraction
expansion of a positive irrational real number, we may consider the set

Km =
{
x ∈ [0,∞) \Q

∣∣ an(x) ∈ {1, . . . ,m} for all n ≥ 0
}
.

Equivalently, the set Km is formed by the positive irrational real numbers with all
partial quotients between one and m. The following result makes the connection
with the iterated function systems, which enables us to give a nontrivial lower
bound on the Hausdorff dimension of the set Km.

Proposition 3.5. The set Km is the attractor of the iterated function system
{f1, . . . , fm} formed by the contractions defined by fa(x) = a + 1/x, for x in the
closed interval Fm = [αm,mαm], where

αm =
1

2
+

√
1

4
+

1

m
.

Moreover, the Hausdorff dimension of the attractor Km satisfies

logm

2 log(mαm)
≤ dimHKm ≤ 1.

Proof. For every number x ∈ Km, the partial quotient a0(x) coincides with
the integer part bxc and is between one and m. This means that the set Km is
contained in the interval [1,m + 1]. We may actually be slightly more precise by
observing that the continued fraction [a0; a1, a2, a3, . . .] defined by (5) is a nonde-
creasing function of the partial quotients a2n and a nonincreasing function of the
partial quotients a2n+1. Thus, the infimum and the supremum of the set Km are
respectively attained by the continued fractions

[1;m, 1,m, . . .] = αm and [m; 1,m, 1, . . .] = mαm.

As a consequence, the set Km is included in the closed interval Fm = [αm,mαm],
which is clearly a proper subinterval of (1,m+ 1).

Moreover, it is clear that the mappings fa are differentiable on Fm and share
the same derivative at every point x, namely, f ′a(x) = −1/x2. Consequently, we
have

∀x ∈ Fm
1

m2α2
m

≤ |f ′a(x)| ≤ 1

α2
m

.
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The mean value theorem then ensures that the mappings fa fall into the setting of
Propositions 2.20 and 2.21 with

ba =
1

m2α2
m

and ca =
1

α2
m

. (82)

In particular, these mappings are contractive. Moreover, one easily checks that
the interval Fm contains the disjoint union of its images under the mappings fa.
As shown by Proposition 2.19, there is a unique attractor to the iterated function
system {f1, . . . , fm}. Recall that the attractor is a compact subset of Fm that
coincides with the union of its images under the mappings fa ; in view of the
previous remark, the union must be disjoint, and the attractor thus satisfies (74).
This means that we may apply Propositions 2.20 and 2.21 in order to derive upper
and lower bounds on the Hausdorff dimension of the attractor.

The point is that the attractor of the iterated function system {f1, . . . , fm} is
precisely the set Km defined above, as we now explain. In view of Proposition 2.19,
the attractor is the intersection over all integers j ≥ 0 of the sets f j(Fm), where
f is the mapping that sends a nonempty compact subset of Fm to the union of its
images under the contractions fa. Moreover, for every integer j ≥ 1 and every point
x ∈ f j(Fm), there exists a point x′ ∈ Fm and a j-tuple (a0, . . . , aj−1) of integers
between one and m such that

x = fa0 ◦ . . . ◦ faj−1(x′) = [a0; a1, a2, . . . , aj−1, x
′],

using a notation that naturally extends (6) to the case where the last partial quo-
tient is replaced by a real number larger than one. We may now follow the lines
of the proof of Proposition 1.2 to deduce that an(x) = an ∈ {1, . . . ,m} for all n
between zero and j− 1. Hence, every point in the attractor belongs to the set Km.
Conversely, if an irrational number x belongs to Km, then its partial quotients an
are all between one and m, so that for any integer j ≥ 0,

x = [a0; a1, a2, . . .] = fa0
◦ . . . ◦ faj−1

([aj ; aj+1, aj+2, . . .]),

from which we deduce that x belongs to f j(Fm), and thus to the attractor of the
iterated function system formed by the contractions fa.

Now, applying Propositions 2.20 and 2.21, we infer that the Hausdorff dimen-
sion of the attractor Km is bounded by the positive real numbers βm and γm that

satisfy the equations bβm1 + . . . + bβmm = 1 and cγm1 + . . . + cγmm = 1, respectively,
where the coefficients ba and ca are given by (82). Straightforward computations
then yield

βm =
logm

2 log(mαm)
and γm =

logm

2 logαm
.

The lower bound given by βm may not be accurate, but is at least nontrivial.
Unfortunately, the upper bound supplied by γm is useless: as easily seen, γm is
larger than one for any integer m ≥ 2. We can therefore just conclude with the
bounds given in the statement of the proposition. �

The bounds on the Hausdorff dimension of Km supplied by Proposition 3.5
are not very accurate, but there is a simple trick to improve them: it suffices to
remark that Km is also the attractor of the iterated function system formed by the
m2 contractions fa ◦ fa′ , for a and a′ between one and m. Using the mean value
theorem again, it is possible to prove that these contractions fall into the setting of
Propositions 2.20 and 2.21 with (82) replaced by the appropriate values of ba and ca.
It is even possible to use higher order iterates of the contractions fa so as to refine
the bounds on the Hausdorff dimension of the attractor Km, see [29, Example 9.8]
for details. This way, it is possible to show that the Hausdorff dimension of K2 is
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approximately equal to 0.531280506, see [29, Example 10.2]. Finally, we also refer
to [31, Section 9.1] for possible generalizations of the above problem.

3.3.2. Link with badly approximable numbers. Using Proposition 3.5,
one can easily obtain a lower bound on the Hausdorff dimension of the set Bad1

of badly approximable numbers introduced in Section 1.3. Indeed, recall from
Proposition 1.10 that a positive irrational real number is badly approximable if
and only if the sequence of its partial quotients is bounded. This means that

∞⋃
m=1

↑ Km ⊆ Bad1.

The lower bound on the dimension of Km that is supplied by Proposition 3.5 clearly
tends to one half as m goes to infinity. This directly leads to the following result.

Corollary 3.2. The Hausdorff dimension of the set of badly approximable
numbers satisfies

1

2
≤ dimH Bad1 ≤ 1.

We shall dramatically improve this result in Section 12.2 and show that the
Hausdorff dimension of the set Bad1 of badly approximable numbers is actually
equal to one, see Corollary 12.1 for a precise statement. Let us recall in passing
that, as shown by Proposition 1.9 and Corollary 1.2, the set Bad1 has cardinality
equal to that of R but has Lebesgue measure zero.

3.4. Frequencies of digits

Let us consider an integer m ≥ 2 and a real number x ∈ [0, 1). It is well known
that if x is not a m-adic number, i.e. a rational number with denominator of the
form mj for some integer j ≥ 0, then x may be written in a unique manner as

x =

∞∑
j=1

xjm
−j , (83)

where (xj)j≥1 is a sequence of digits between zero and m − 1. The m-adic num-
bers have two representations: one that we choose to privilege, where the digits
eventually vanish, and another one where they are eventually equal to m− 1.

The frequency with which a given digit b appears among the first j digits of x
is then given by

fj(b, x) =
1

j
#{i ∈ {1, . . . , j} | xi = b}.

A classical result due to Borel asserts that Lebesgue-almost every real number is
normal to the base m, that is, the asymptotic frequencies of the digits are all the
same. More rigorously, this means that the set

Fp =

{
x ∈ [0, 1)

∣∣∣∣∣ lim
j→∞

fj(b, x) = pb for all b ∈ {0, . . . ,m− 1}

}
has full Lebesgue measure in the interval [0, 1) when the components of the vector
p = (p0, . . . , pm−1) are all equal to 1/m. This is a plain consequence of Borel’s
strong law of large numbers, but we will also recover this result from the analysis
below. Moreover, it follows that Lebesgue-almost every real number is normal to
all bases, i.e. is normal to the base m for all m ≥ 2.

We shall determine the size of the set Fp in terms of Hausdorff dimension for
every choice of the probability vector p. Recall that a probability vector is one for
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which all the components are between zero and one, and have a sum equal to one.
Moreover, the Shannon entropy (based on natural logarithms) is defined by

H(p) = −
m−1∑
b=0

pb log pb, (84)

with the convention that 0 log 0 vanishes. The next result shows that the Hausdorff
dimension of the set defined above is a simple function of the Shannon entropy.

Proposition 3.6. For every integer m ≥ 2 and every probability vector p with
m components,

dimH Fp =
H(p)

logm
.

The rest of this section is devoted to the proof of Proposition 3.6. Though a
standard and natural approach relies on probabilistic methods, see e.g. [29, Propo-
sition 10.1], we provide here a proof that is based solely on analytic and measure
theoretic tools, thus being more consistent with the viewpoint of these notes.

We begin by letting Bp denote the set of all digits b in {0, . . . ,m−1} such that
pb > 0. We suppose that the set Bp is not reduced to a singleton. The opposite
case is elementary and will be discussed briefly at the very end of the proof.

Now, on the one hand, let us consider the subintervals of [0, 1) that may be
written in the form

Iu = u1m
−1 + . . .+ ujm

−j + [0,m−j),

where u = u1 . . . uj is a word of finite length over the alphabet {0, . . . ,m− 1}. We
endow the collection of all m-adic intervals, along with the empty set, with the
premeasure ζp defined by

ζp(Iu) = pu1
pu2

. . . puj .

In particular, recalling that ∅ denotes the empty word, I∅ is the whole interval
[0, 1) and its ζp-mass is equal to one. Note that ζp(Iu) clearly vanishes as soon as
the word u has at least a letter that does not belong to the set Bp. With the help of
Theorem 2.2, we may extend the premeasure ζp to an outer measure ζ∗p on all the
subsets of R through the formula (51). We may then consider the outer measure
µp that maps a subset E of R to the value ζ∗p (E ∩ [0, 1)).

On the other hand, for any b ∈ Bp, let us consider the mapping χp,b defined on
the interval [0, 1) by

χp,b(t) = p0 + . . .+ pb−1 + pbt.

It is clear that the ranges of the mappings χp,b form a partition of the whole interval
[0, 1) by consecutive subintervals. Thus, any point ξ in [0, 1) belongs to a unique
interval of the form χp,ξp,1([0, 1)), where ξp,1 is an integer in Bp. Iterating this
procedure, we end up with a sequence (ξp,j)j≥1 of integers in Bp such that

ξ ∈ χp,ξp,1 ◦ . . . ◦ χp,ξp,j ([0, 1)) (85)

for all j ≥ 1, and this sequence is unique. It will be useful to remark that the
mapping ξ 7→ (ξp,j)j≥1 is nondecreasing when the sequence space is endowed with
the lexicographic order. Moreover, note that the intervals that appear in (85) have
length pξp,1 . . . pξp,j . Given that the set Bp is not reduced to a singleton, all the
reals pb are less than one, so the previous length tends to zero as j goes to infinity.
Thus, for any given sequence (ξp,j)j≥1, there is at most one possible value of ξ
satisfying (85). In other words, the mapping ξ 7→ (ξp,j)j≥1 is injective. Finally, we
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may define in terms of the sequence (ξp,j)j≥1 the real number

hp(ξ) =

∞∑
j=1

ξp,jm
−j . (86)

We thus obtain a mapping hp from [0, 1) to [0, 1]. The next lemma gives a connection
between the outer measure µp, the mapping hp and the Lebesgue measure L1.

Lemma 3.5. For any m-adic interval Iu,

µp(Iu) = ζp(Iu) = L1(h−1
p (Iu)).

Proof. Let us consider a real ξ ∈ [0, 1) such that hp(ξ) is an m-adic number.
The integers ξp,j are eventually equal to zero or eventually equal to m− 1. There
is therefore only a countable number of possible values for the sequence (ξp,j)j≥1,
and any such sequence corresponds to at most one value of ξ, because the mapping
ξ 7→ (ξp,j)j≥1 is injective. We deduce that there are at most countably many reals
ξ in [0, 1) such that hp(ξ) is an m-adic number.

When computing the Lebesgue measure of the set of all reals ξ ∈ [0, 1) such
that hp(ξ) ∈ Iu, we may therefore assume that hp(ξ) is not an m-adic number. This
means that (86) is the base m expansion of hp(ξ). As a result, in view of (85),

hp(ξ) ∈ Iu ⇐⇒ u = ξp,1 . . . ξp,j ⇐⇒ ξ ∈ χp,u1 ◦ . . . ◦ χp,uj ([0, 1)).

This readily implies that

L1(h−1
p (Iu)) = L1(χp,u1 ◦ . . . ◦ χp,uj ([0, 1))) = pu1pu2 . . . puj = ζp(Iu).

This value is obviously an upper bound on µp(Iu). To show that equality
holds, let us consider a sequence (Cn)n≥1 of m-adic intervals such that Iu ⊆

⋃
n Cn.

Applying what precedes to these intervals, we have

∞∑
n=1

ζp(Cn) =

∞∑
n=1

L1(h−1
p (Cn)) ≥ L1

(
h−1
p

( ∞⋃
n=1

Cn

))
≥ L1(h−1

p (Iu)).

Taking the infimum over all sequences (Cn)n≥1 in the left-hand side, we deduce
that µp(Iu) is at least L1(h−1

p (Iu)), and the result follows. �

The next crucial lemma indicates that the range of the mapping hp essentially
charges the set Fp under study.

Lemma 3.6. The set h−1
p (Fp) has full Lebesgue measure in [0, 1).

Proof. For any probability vector q = (q0, . . . , qm−1), let us now consider the
mapping gp,q defined on the interval [0, 1) by

gp,q(ξ) = lim
j→∞

↑ χq,ξp,1 ◦ . . . χq,ξp,j (0),

where (ξp,j)j≥1 is the sequence that is defined above in terms of the real number
ξ. Note that the limit always exists because the involved sequence is nondecreasing
and bounded; this is due to the obvious fact that every mapping χq,b is increasing.
Furthermore, note that the mapping gp,q is nondecreasing. It is therefore differen-
tiable at Lebesgue almost every point of [0, 1), see e.g. [32, p. 358]. As a result,
there exists a subset Ξp,q of [0, 1) with full Lebesgue measure on which the mapping
gp,q is differentiable. Let us consider a point ξ in Ξp,q. Then, the derivative of gp,q
at ξ exists and is equal to the limiting rate of change of gp,q on any sequence of
intervals that shrink to ξ, see [32, p. 345]. Now, for any integer j ≥ 1, the point ξ is
between χp,ξp,1 ◦. . . χp,ξp,j (0) and χp,ξp,1 ◦. . . χp,ξp,j (1), and the value of the function
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gp,q at these two points is equal to χq,ξp,1 ◦ . . . χq,ξp,j (0) and χq,ξp,1 ◦ . . . χq,ξp,j (1),
respectively. The corresponding rate of change is therefore equal to

|χq,ξp,1 ◦ . . . χq,ξp,j ([0, 1))|
|χp,ξp,1 ◦ . . . χp,ξp,j ([0, 1))|

=
qξp,1 . . . qξp,j
pξp,1 . . . pξp,j

=
∏
b∈Bp

(
qb
pb

)jfp,j(b,ξ)
,

and tends to g′p,q(ξ) as j goes to infinity. Here, fp,j(b, ξ) is the frequency with which
b appears among the first j terms of the sequence (ξp,j)j≥1, that is,

fp,j(b, ξ) =
1

j
#{i ∈ {1, . . . , j} | ξp,j = b}.

Finally, taking logarithms and dividing by j, we deduce that

∀ξ ∈ Ξp,q lim sup
j→∞

∑
b∈Bp

fp,j(b, ξ) log
qb
pb
≤ 0.

We now fix an integer b0 ∈ Bp and a positive real λ. Recall that all the reals pb
are less than one, so up to choosing λ close enough to one, we obtain a probability
vector q by letting qb0 = 1 − λ(1 − pb0), along with qb = λpb if b 6= b0. Using the
notation Ξb0,λp for the set Ξp,q, we then have

∀ξ ∈ Ξb0,λp lim sup
j→∞

fp,j(b0, ξ) log

(
1 +

1− λ
λpb0

)
≤ − log λ.

Remark that the logarithm in the left-hand side is positive when λ is less than
one, and is negative when λ is larger than one. Moreover, the ratio of the two
logarithms tends to pb0 when λ tends to one. Considering two sequences (λk)k≥1

and (λk)k≥1 that increase and decrease to one, respectively, and letting Ξb0p denote

the intersection of all the corresponding sets Ξ
b0,λk
p and Ξb0,λkp , we deduce that

∀ξ ∈ Ξb0p lim
j→∞

fp,j(b0, ξ) = pb0 .

To conclude, let Ξp denote the intersection over b0 ∈ Bp of the sets Ξb0p ; this
set has full Lebesgue measure in [0, 1). Given ξ ∈ Ξp, the reals ξp,j cannot be
eventually equal to zero or eventually equal to m − 1 ; indeed, otherwise, the set
Bp would be reduced to the singleton {0} or the singleton {m − 1}. Thus, (86) is
the base m expansion of hp(ξ), so that in particular fj(b, hp(ξ)) = fp,j(b, ξ) for all
j ≥ 1 and all b ∈ {0, . . . ,m− 1}. Consequently, hp(ξ) belongs to Fp, and we finally
have Ξp ⊆ h−1

p (Fp). �

For any real x ∈ [0, 1) and any integer j ≥ 0, let Ij(x) denote the unique m-adic
interval with length m−j that contains x. The next result gives an estimate of the
scaling behavior of the outer measure µp on the set Fp.

Lemma 3.7. For any real x ∈ Fp,

lim
j→∞

logµp(Ij(x))

log |Ij(x)|
=

H(p)

logm
.

Proof. As Bp is not reduced to a singleton, x is surely not an m-adic number.
Hence, the interval Ij(x) is clearly equal to Ix1...xj , where (xj)j≥1 is the sequence
of m-ary digits of x that is defined by (83). Lemma 3.5 now gives

logµp(Ij(x))

log |Ij(x)|
= − 1

j logm

j∑
i=1

log pxi = − 1

logm

∑
b∈Bp

fj(b, x) log pb,

and the result readily follows. �
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We may now finish the proof with the help of Proposition 2.22 and a variant
thereof. To be specific, let us consider a point x ∈ [0, 1), an integer j ≥ 1 and
a positive real s. The open interval centered at x with radius m−j contains the
m-adic interval Ij(x), so that

µp((x−m−j , x+m−j))

m−sj
≥ µp(Ij(x))

|Ij(x)|s
.

By virtue of Lemma 3.7, this ratio tends to infinity as j goes to infinity when s
is larger than H(p)/ logm and x belongs to Fp. We infer that the upper s-density

of the outer measure µp at any point x ∈ Fp satisfies Θ
s
(µ, x) = ∞. In view of

Proposition 2.22(2), we get Hs(Fp) ≤ 10sµp(R)/c for all c > 0. We finally deduce
that the Hausdorff dimension of Fp is bounded above by H(p)/ logm.

For the lower bound on the dimension, we use Lemma 3.7 again to show that

lim
j→∞

µp(Ij(x))

|Ij(x)|s
= 0

when s is less than H(p)/ logm and x belongs to Fp. Moreover, recall that Propo-
sition 2.11 may easily be extended to coverings by m-adic cubes, specifically, the
Hausdorff s-dimensional measures are comparable with those obtained by means
of such coverings. Thus, using a variant of Proposition 2.22(1) where coverings
by arbitrary sets are replaced by coverings by m-adic intervals, we may show that
Hs(Fp) ≥ µp(Fp)/c for all c > 0. Meanwhile, it follows from Lemmas 3.5 and 3.6
that µp(Fp) ≥ L1(h−1

p (Fp)) = 1. We deduce that the set Fp has Hausdorff dimen-
sion at least H(p)/ logm.

It remains to deal with the degenerate situation where the set Bp is reduced
to a singleton {b}, where b is an integer between zero and m − 1. In that case,
we assume that the ζp-mass of every m-adic interval is equal to one. It is then
clear that the outer measure µp verifies the same property, and that Lemma 3.7
still holds. Proceeding as above, we deduce that the Hausdorff dimension of Fp is
at most zero. Equality obviously holds because the set Fp is nonempty; indeed, it
contains for instance the real number

∑∞
j=2 bm

−j = b/(m(m− 1)).





CHAPTER 4

Homogeneous ubiquity and dimensional results

The purpose of this chapter is to present an abstract setting into which the
Jarńık-Besicovitch theorem, that is, Theorem 3.1 fits naturally. The first step is
to identify an appropriate notion of approximation system to generalize the com-
bination of the approximating points p/q with the approximating radii 1/q2, or
more generally 1/qτ , that come into play in the homegeneous approximation prob-
lem. The second step is to introduce natural generalizations of the sets Jd,τ defined
by (1. The third step is finally to provide optimal upper and lower bounds on the
Hausdorff dimension of these generalized sets. As explained hereunder, through the
remarkable notion of ubiquity, an a priori lower bound on the Hausdorff dimen-
sion can be derived from the sole knowledge that one of the sets has full Lebesgue
measure. Thanks to ubiquity, the difficult lower bound in the Jarńık-Besicovitch
theorem will in fact quite amazingly be a straightforward consequence of a simple
result, namely, Dirichlet’s theorem.

Let us mention here that we do not need to specify the norm | · | the space Rd
is endowed with. In fact, Proposition 4.4 below implies that the notions considered
in this chapter do not depend on the chosen norm; let us recall in passing that this
is also the case of Hausdorff dimension.

Definition 4.1. Let I be a countably infinite index set. We say that a family
(xi, ri)i∈I of elements of Rd × (0,∞) is an approximation system if

sup
i∈I

ri <∞ and ∀m ∈ N #

{
i ∈ I

∣∣∣∣∣ |xi| < m and ri >
1

m

}
<∞.

The emblematic example of approximation system to have in mind, and which
indeed makes the connection with the Jarńık-Besicovitch theorem, consists of the
family formed by the pairs (p/q, 1/q2), for p ∈ Zd and q ∈ N. We shall discuss many
other examples in Chapters 6 and 7. Replacing the system supplied by the rational
points by an arbitrary approximation system (xi, ri)i∈I , the set Jd,τ defined by (1)
may thus be generalized into

Ft =
{
x ∈ Rd

∣∣ |x− xi| < rti for i.m. i ∈ I
}
, (87)

where t ≥ 1. Moreover, extending the Jarńık-Besicovitch theorem will then cor-
respond to determining the Hausdorff dimension of the set Ft under appropriate
assumptions on (xi, ri)i∈I .

Note that if x belongs to the set Ft, then there exists an injective sequence
(in)n≥1 of indices in I such that |x − xin | < rtin for all integers n ≥ 1. Let us
assume in addition that the family (xi, ri)i∈I is an approximation system. Then,
for any real number ε > 0 and any integer n ≥ 1 such that rin > ε, we have

|xin | ≤ |x|+ |x− xin | < |x|+ sup
i∈I

rti .

Thus, letting m denote an integer larger than both 1/ε and the right-hand side
above, we deduce that |xin | < m and rin > 1/m, which means that there are
only finitely many possible values of the integer n when ε is given. We readily

89
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deduce that, as n →∞, rin tends to zero and xin tends to x. The point x is thus
approximated by the sequence (xin)n≥1 at a rate given by the sequence (rtin)n≥1 ;
this justifies the terminology of the previous definition. Moreover, it is obvious and
useful to remark that, up to extracting, we may suppose that the latter sequence
is decreasing without losing the approximation property.

Our purpose is now to give an upper and a lower bound on the Hausdorff
dimension of the set Ft defined by (87) when (xi, ri)i∈I is a given approximation
system. We shall subsequently extend the upcoming results in the direction of
large intersection properties and Hausdorff measures associated with general gauge
functions, see Chapters 5, 8 and 9.

4.1. Upper bound on the Hausdorff dimension

As suggested by the preceding discussion, the set Ft defined by (87) may essen-
tially be seen as a limsup set, thereby falling in the setting deal with in Section 2.8.
More precisely, for any bounded open subset U of Rd, let

IU = {i ∈ I | xi ∈ U}. (88)

If a given point x belongs to Ft ∩ U , the above remark ensures that there exists a
sequence (in(x))n≥1 of indices in I such that xin(x) tends to x as n → ∞. As the
set U is open, the indices in(x) thus belong to IU for n sufficiently large. On top
of that, for any real number ε > 0, we have

#{i ∈ IU | ri > ε} ≤ #

{
i ∈ I

∣∣∣∣∣ |xi| < m and ri >
1

m

}
<∞

for m large enough. We may thus find an enumeration (in)n≥1 of the set IU such
that the sequence (rin)n≥1 is nonincreasing and tends to zero at infinity. We finally
end up with an approximate local expression of the set Ft as a limsup set, namely,

Ft ∩ U ⊆ lim sup
n→∞

B(xin , r
t
in) ⊆ Ft ∩ U, (89)

where U stands for the closure of the open set U .
In view of Section 2.8, it is thus natural to examine the convergence of the

series
∑
n |B(xin , r

t
in

)|s, where s is a real parameter in the interval [0, d]. To be
more specific, making a convenient change of variable, this amounts to considering
the infimum of all s such that the series

∑
i∈IU r

s
i is convergent. Note that this

infimum is clearly a nondecreasing function of U . In order to cover the case where
U is unbounded, and maybe also obtain a better value in the bounded case, we
finally introduce the exponent

sU = inf
U=

⋃
` U`

sup
`≥1

inf

s > 0

∣∣∣∣∣ ∑
i∈IU`

rsi <∞

 , (90)

where the infimum is taken over all sequences (U`)`≥1 of bounded open sets whose
union is equal to U . Our approach thus leads to the following statement.

Proposition 4.1. For any approximation system (xi, ri)i∈I , any open subset
U of Rd and any real number t ≥ 1,

dimH(Ft ∩ U) ≤ sU
t
.

Proof. Let (U`)`≥1 denote a sequence of bounded open sets whose union is
equal to U . For any integer ` ≥ 1, the open set U` is bounded, so the inclusions (89)
are valid. As a consequence, if s denotes a positive real number such that the sum∑
i∈IU`

rsi is finite, we may apply Lemma 2.1 with the gauge function r 7→ rs/t,
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thereby deducing that the set Ft∩U` has dimension at most s/t. We conclude thanks
to the countable stability of Hausdorff dimension, namely, Proposition 2.16(2). �

In most situations, the näıve bound supplied by Proposition 4.1 gives the exact
value of the Hausdorff dimension, and moreover the parameter sU does not depend
on the choice of the open set U . This happens for instance when the approximation
system are derived from eutaxic sequences or optimal regular systems; these two
notions are discussed in Chapters 6 and 7, respectively.

4.2. Lower bound on the Hausdorff dimension

Our goal is now to establish a lower bound on the Hausdorff dimension of the
set Ft defined by (87) under the following simple assumption on the underlying
approximation system (xi, ri)i∈I .

Definition 4.2. Let I be a countably infinite index set, let (xi, ri)i∈I be an
approximation system in Rd × (0,∞) and let U be a nonempty open subset of
Rd. We call (xi, ri)i∈I a homogeneous ubiquitous system in U if the set F1 has full
Lebesgue measure in U , i.e.

for Ld-a.e. x ∈ U ∃ i.m. i ∈ I |x− xi| < ri.

Note that we do not impose that all the points xi belong to the open set U . Ac-
tually, the approximation system is usually fixed at the beginning, and the open set
is then allowed to change so that one can examine local approximation properties.
Moreover, the fact that a given approximation system (xi, ri)i∈I is homogeneously
ubiquitous ensures that the approximating points xi are well spread, in accordance
with the corresponding approximation radii ri. The following remarkable result,
due to Jaffard [34], shows that this assumption suffices to establish an a priori
lower bound on the Hausdorff dimension of the sets Ft.

Theorem 4.1. Let (xi, ri)i∈I be a homogeneous ubiquitous system in some
nonempty open subset U of Rd. Then, for any real number t > 1,

dimH(Ft ∩ U) ≥ d

t
.

More precisely, the set Ft ∩ U has positive Hausdorff measure with respect to the
gauge function r 7→ rd/t| log r|.

Combining Theorem 4.1 with Proposition 4.1 above, we remark that if (xi, ri)i∈I
is a homogeneous ubiquitous system in U , then the parameter sU defined by (90)
is necessarily bounded below by d. We also readily deduce the following result.

Corollary 4.1. Let (xi, ri)i∈I be a homogeneous ubiquitous system in some
nonempty open subset U of Rd. Let us assume that sU ≤ d. Then, for any t > 1,

dimH(Ft ∩ U) =
d

t
.

Again, an emblematic situation where this holds is when the approximation
system are issued from eutaxic sequences or optimal regular systems, see Chapters 6
and 7. The remainder of this section is devoted to the proof of Theorem 4.1. We
thus fix a homogeneous ubiquitous system (xi, ri)i∈I and a nonempty open subset U
of Rd. We may obviously assume that U has diameter at most one. Consequently,
the index set IU defined by (88) admits an enumeration (in)n≥1 such that the
sequence (rin)n≥1 is nonincreasing and tends to zero at infinity.
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4.2.1. A covering lemma. The proof of Theorem 4.1 calls upon a simple
result in the spirit of Vitali’s covering lemma, that is, Lemma 2.5 but with an
additional measure theoretic flavor.

Lemma 4.1. For any nonempty open subset V of U and any real number ρ > 0,
there exists a finite subset I(V, ρ) of IU such that ri ≤ ρ for all i ∈ I(V, ρ), and⊔

i∈I(V,ρ)

B(xi, ri) ⊆ V and
∑

i∈I(V,ρ)

Ld(B(xi, ri)) ≥
Ld(V )

2 · 3d
.

Proof. Let us consider a real number ρ > 0. Then, there exists an integer
nρ ≥ 1 such that rin ≤ ρ for all integers n ≥ nρ. We observe that (xin , rin)n≥nρ is
a homogeneous ubiquitous system in U . As a consequence, every nonempty open
set V ⊆ U necessarily contains a closed ball of the form B(xin , rin), for n ≥ nρ.
Indeed, any such open set V contains an open ball of the form B(x0, r0), and the
smaller ball B(x0, r0/2) contains a point x that belongs to infinitely many open
balls of the form B(xin , rin) with n ≥ nρ ; choosing n so large that rin is smaller
than r0/4, we may use the point x to ensure that

B(xin , rin) ⊆ B(x0, r0) ⊆ V.

Therefore, if V denotes a nonempty open subset of U , we can define

n1 = min
{
n ≥ nρ

∣∣ B(xin , rin) ⊆ V
}
.

For any integer K ≥ 1, the same argument allows us to define in a recursive manner

nK+1 = min

{
n > nK

∣∣∣∣∣ B(xin , rin) ⊆ V \
K⋃
k=1

B(xink , rink )

}
.

We thus obtain a increasing sequence of positive integers (nK)K≥1. Then, recalling
that the radii rin monotonically tend to zero as n→∞, we infer that

V ∩ lim sup
n→∞

B(xin , rin) ⊆
∞⋃
k=1

B(xink , 3rink ). (91)

Indeed, if x belongs to the set in the left-hand side of (91), we necessarily have
x ∈ B(xin , rin) ⊆ V for some sufficiently large integer n ≥ n1. Letting K denote
the unique integer such that nK ≤ n < nK+1, we deduce from the mere definition
of nK+1 that the ball B(xin , rin) meets at least one of the balls B(xink , rink ), for

k ∈ {1, . . . ,K}, at some point denoted by y. Hence,

|x− xink | ≤ |x− xin |+ |xin − y|+ |y − xink | ≤ rin + rin + rink ≤ 3rink ,

where the latter bound results from the fact that n ≥ nK ≥ nk and that the radii
are nonincreasing. We deduce that x belongs to the right-hand side of (91)

Finally, since (xin , rin)n≥1 is a homogeneous ubiquitous system in U , the left-
hand side of (91) has Lebesgue measure equal to Ld(V ). Consequently, along
with (91), the subadditivity and dilation behavior of Lebesgue measure imply that

Ld(V ) ≤ Ld
( ∞⋃
k=1

B(xink , 3rink )

)
≤ 3d

∞∑
k=1

Ld(B(xink , rink )).

For K large enough, the K-th partial sum of the series appearing in the right-hand
side thus exceeds Ld(V )/(2 · 3d). To conclude, it remains to define I(V, ρ) as the
set of all indices ink , for k ∈ {1, . . . ,K}. �
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4.2.2. The ubiquity construction. After fixing a real number t > 1, the
proof of Theorem 4.1 now consists in applying Lemma 4.1 repeatedly in order to
build a generalized Cantor set that is embedded in the set Ft ∩U , together with an
appropriate outer measure thereon. We shall ultimately apply the mass distribution
principle, namely, Lemma 2.2 to this outer measure. To this end, we shall need an
estimate on the mass of balls, i.e. on the scaling properties of the outer measure.

The construction is modeled on that presented in Section 2.9.2; recall that it
is indexed by a tree T and consists of a collection of compact sets (Iu)u∈T and a
companion premeasure ζ such that the compatibility conditions (66) hold. However,
we need to be more precise in the present construction, and we actually require the
following more specific conditions:

(0) every node in the indexing tree T has at least one child, that is,

min
u∈T

ku(T ) ≥ 1 ;

(1) the compact set I∅ indexed by the root of the tree is a closed ball contained
in U with diameter in (0, 1) and

ζ(I∅) = |I∅|d/t log
1

|I∅|
; (92)

(2) for every node u ∈ T \ {∅}, there exists an index iu ∈ IU such that

Iu = Btu ⊂ Bu ⊆ Iπ(u) ;

(3) for every node u ∈ T \ {∅}, we have simultaneously

|Bu| ≤ 2 exp

(
−2 · 6d

t
|Iπ(u)|d(1/t−1)−1

)
,

in addition to both⊔
v∈Su

Bv ⊆ Iπ(u) and
∑
v∈Su

Ld(Bv) ≥
Ld(Iπ(u))

2 · 3d
;

(4) for every node u ∈ T \ {∅}, the premeasure ζ satisfies

ζ(Iu) =
Ld(Bu)∑

v∈Su
Ld(Bv)

ζ(Iπ(u)).

In the above conditions, Su denotes the set formed by a given node u and its
siblings, namely, the nodes v ∈ T such that π(v) = π(u). Moreover, the sets Bu
and Btu are the closed balls defined by

Bu = B(xiu , riu) and Btu = B

(
xiu ,

rtiu
2

)
. (93)

In addition, let us recall that π(u) denotes the parent of a given node u, and ku(T )
is the size of its progeny. Also, note that the compatibility conditions (66) easily
result from (0–4) above; we even have equality in the compatibility condition that
concerns the premeasure ζ. Lastly, it is useful to remark that the ball Bu involved
in the construction all have diameter at most one, since they are included in U .

The construction is performed inductively on the generation of the indexing
tree. In order to guarantee (1), we begin the construction by considering an arbi-
trary closed ball with diameter in (0, 1) that is contained in the nonempty open set
U ; this ball is the compact set I∅ indexed by the root of the tree. We also define
ζ(I∅) by (92), in addition to the compulsory condition ζ(∅) = 0.

Furthermore, let us assume that the tree, the compact sets and the companion
premeasure have been defined up to a given generation j in such a way that the
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conditions (0–4) above hold; we now build the tree, the compacts and the premea-
sure at the next generation j + 1 in the following manner. For each node u of the
j-th generation, we apply Lemma 4.1 to the interior of Iu and the real number

ρu = exp

(
−2 · 6d

t
|Iu|d(1/t−1)−1

)
;

the resulting finite subset of IU is denoted by I(int Iu, ρu). We then decide that
the progeny of the node u in the tree T has cardinality ku(T ) equal to that of
I(int Iu, ρu). Furthermore, we let iuk, for k ∈ {1, . . . , ku(T )}, denote the elements
of I(int Iu, ρu). Making use of the notation (93), we therefore have

ku(T )⊔
k=1

Buk ⊆ int Iu ⊆ Iu and

ku(T )∑
k=1

Ld(Buk) ≥ L
d(Iu)

2 · 3d
.

On top of that, the radii of the balls Buk are bounded above by ρu. Using the
notation (93) again, we also define the compact sets Iuk as being equal to the
closed balls Btuk, for k ∈ {1, . . . , ku(T )}. This way, the condition (0) is satisfied
by the nodes of the j-th generation, and the conditions (2–3) hold for those of the
(j + 1)-th generation. Finally, for k ∈ {1, . . . , ku(T )}, we define

ζ(Iuk) =
Ld(Buk)

ku(T )∑
l=1

Ld(Bul)
ζ(Iu),

so that (4) holds for the nodes of the (j + 1)-th generation. Finally, the above
procedure clearly implies that every node of the tree has at least one child, i.e. the
condition (0) holds.

4.2.3. Scaling properties of the premeasure. The next result gives an
upper bound on the premeasure ζ in terms of the diameters of sets.

Lemma 4.2. For any node u ∈ T ,

ζ(Iu) ≤ |Iu|d/t log
1

|Iu|
. (94)

Proof. Let us prove (94) by induction on the length of the word u ∈ T . First,
equality holds when u is the empty word, due to the mere value of ζ(I∅) determined
by (92). Moreover, if we consider a node u ∈ T \ {∅} and if we assume that (94)
holds for its parent node π(u), then the conditions (2–4) yield

ζ(Iu) ≤ 2 · 3dLd(Bu)
ζ(Iπ(u))

Ld(Iπ(u))
= 2 · 6d|Iu|d/t

ζ(Iπ(u))

|Iπ(u)|d

≤ 2 · 6d|Iu|d/t|Iπ(u)|d(1/t−1) log
1

|Iπ(u)|
.

Finally, in view of the restriction on the diameter of the ball Bu imposed by the
condition (3) and the obvious fact that log(1/r) ≤ 1/r for all r > 0, we have

|Iπ(u)|d(1/t−1) log
1

|Iπ(u)|
≤ |Iπ(u)|d(1/t−1)−1 ≤ t

2 · 6d
log

2

|Bu|
=

1

2 · 6d
log

1

|Iu|
,

which leads to (94) for the node u itself. �
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4.2.4. The limiting outer measure and its scaling properties. With the
help of Theorem 2.2, we may extend as usual the premeasure ζ to an outer measure
ζ∗ on all the subsets of Rd through the formula (51). We may also consider the
limiting compact set K defined by (67), in addition to the outer measure µ that
maps a set E ⊆ Rd to the value ζ∗(E ∩K). The tree T considered here is infinite,
so Lemma 2.3 shows that K is a nonempty compact subset of I∅. Moreover, the
outer measure µ has total mass µ(K) = ζ(I∅). The next result shows that K is
included in Ft ∩ U as required.

Proposition 4.2. The compact set K is contained in the intersection Ft ∩U .
As a consequence,

µ(Ft ∩ U) = µ(K) = ζ(I∅) = |I∅|d/t log
1

|I∅|
.

Proof. On the one hand, we already mentioned that K ⊆ I∅ ⊆ U . On the
other hand, if a point x belongs to K, then there exists a sequence (ξj)j≥1 of
positive integers such that x ∈ Iξ1...ξj for all j ≥ 1. Hence, the point x belong
to the infinitely many nested balls Btξ1...ξj ⊆ B(xiξ1...ξj , r

t
iξ1...ξj

), and so ultimately

belongs to the set Ft. �

Thanks to Lemma 4.2, we may now derive an upper bound on the µ-mass of
sufficiently small closed balls Rd.

Proposition 4.3. For any closed ball B of Rd with diameter less than e−d/t,

µ(B) ≤ 2 · 12d|B|d/t log
1

|B|
.

Proof. We may obviously assume that the ball B intersects the compact set
K, as otherwise µ(B) clearly vanishes. Besides, if the ball B intersects only one
compact set Iu at each generation, then there exists a sequence (ξj)j≥1 of positive
integers such that B ∩K ⊆ Iξ1...ξj for all j ≥ 1, so that

µ(B) = ζ∗(B ∩K) ≤ ζ(Iξ1...ξj ) ≤ |Iξ1...ξj |d/t log
1

|Iξ1...ξj |
−−−→
j→∞

0,

thanks to Lemma 4.2. The upshot is that we may suppose in what follows that
there exists a node u ∈ T such that the ball B intersects the compact set Iu, and
at least two compacts indexed by the children of u. We further assume that u has
minimal length, which in fact ensures its uniqueness.

The easy case is when the diameter of the ball B exceeds that of the compact
set Iu ; indeed, as the intersection set B ∩K is covered by the sole Iu, we may then
deduce from Lemma 4.2 that

µ(B) = ζ∗(B ∩K) ≤ ζ(Iu) ≤ |Iu|d/t log
1

|Iu|
≤ |B|d/t log

1

|B|
.

Note that the latter inequality holds because |B| is small enough to ensure that the
considered function of the diameter is nondecreasing.

Let us now deal with the opposite case in which |B| is smaller than |Iu|. Let K
denote the set of all integers k between one and ku(T ) such that the compact set
Iuk intersects the ball B. The proof calls upon the next simple volume estimate.

Lemma 4.3. For any integer k ∈ K,

Ld(B ∩Buk) ≥ L
d(Buk)

4d
.



96 4. HOMOGENEOUS UBIQUITY

Proof. For any distinct k and k′ in K, the balls Buk and Buk′ are disjoint,
so the distance between their center is larger than the sum of their radii; indeed,
otherwise, we would have

riuk′xiuk + riukxiuk′
riuk + riuk′

∈ Buk ∩Buk′ .

Furthermore, let yk denote a point that belongs to both Iuk and B. The previous
fact and the triangle inequality yield

riuk + riuk′ < |xiuk′ − xiuk |

≤ |xiuk′ − yk′ |+ |xiuk − yk|+ |yk′ − yk| ≤
rtiuk + rtiuk′

2
+ |yk′ − yk|,

from which we deduce a lower bound on the distance between yk and yk′ , and in
fact a lower bound on the diameter of the ball B, namely,

|B| ≥ |yk′ − yk| ≥ riuk + riuk′ −
rtiuk + rtiuk′

2
≥ riuk −

rtiuk
2
.

Letting x0 and r0 denote the center and the radius of the ball B, respectively, and
letting sk denote half the right-hand side above, we deduce that r0 ≥ sk.

Let us assume that the distance between xiuk and x0 is smaller than r0 − sk.
Thus, the closed ball B(xiuk , sk) is included in both B and Buk, so that

Ld(B ∩Buk) ≥ Ld(B(xiuk , sk)) =

(
sk
riuk

)d
Ld(Buk),

in view of the dilation behavior of Lebesgue measure. In the opposite case, thanks
to the triangle inequality, we have

r0 − sk ≤ |xiuk − x0| ≤ |xiuk − yk|+ |yk − x0| ≤
rtiuk

2
+ r0 = r0 + riuk − 2sk.

We may thus consider the barycenter defined by

mk = λkxiuk + (1− λk)x0 with λk =
r0 − sk
|xiuk − x0|

∈ [0, 1].

It is clear that the distance between mk and x0 is equal to r0 − sk. Likewise, the
distance between mk and xiuk satisfies

|mk − xiuk | = (1− λk)|xiuk − x0| = |xiuk − x0| − r0 + sk ≤ riuk − sk.

We deduce that the closed ball B(mk, sk) is contained in both B and Buk, which
gives as above

Ld(B ∩Buk) ≥ Ld(B(mk, sk)) =

(
sk
riuk

)d
Ld(Buk).

The result follows from the fact that the radius of the ball Buk is at most one. �

The previous lemma enables us to estimate the µ-mass of the ball B. Indeed,
the ball intersects the compact set K inside the compact sets Iuk, for k ∈ K, so the
conditions (3) and (4) yield

µ(B) = ζ∗(B ∩K)

≤
∑
k∈K

ζ(Iuk) =
∑
k∈K

Ld(Buk)
ku(T )∑
l=1

Ld(Bul)
ζ(Iu) ≤ 2 · 3d ζ(Iu)

Ld(Iu)

∑
k∈K

Ld(Buk).
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Now, applying Lemma 4.3 and making use of the disjointness of the balls Buk, we
infer that

µ(B) ≤ 2 · 12d
ζ(Iu)

Ld(Iu)

∑
k∈K

Ld(B ∩Buk) ≤ 2 · 12d
ζ(Iu)

Ld(Iu)
Ld(B).

Combining the condition (2), the definition (93) of the balls Btu and the bound on
the ζ-mass of Iu given by Lemma 4.2, we deduce that

µ(B) ≤ 2 · 12d|B|d|Iu|d(1/t−1) log
1

|Iu|
≤ 2 · 12d|B|d/t log

1

|B|
.

For the latter bound, we have the fact that t > 1 and |Iu| > |B|. We conclude by
combining this bound with the one obtained in the previous easier case. �

To finish the proof of Theorem 4.1, it remains to apply the mass distribution
principle, namely, Lemma 2.2. In fact, any bounded subset C of Rd may be em-
bedded in a closed ball B with radius equal to |C|. If we assume in addition that
|C| < e−d/t/2, the ball B has diameter less than e−d/t, and Proposition 4.3 gives

µ(C) ≤ µ(B) ≤ 2 · 12d|B|d/t log
1

|B|
≤ 2 · 12d2d/t|C|d/t log

1

|C|
.

Letting g denote the gauge function r 7→ rd/t| log r|, the mass distribution principle
and Proposition 4.2 finally ensure that

Hg(Ft ∩ U) ≥ µ(Ft ∩ U)

2 · 12d2d/t
=

g(|I∅|)
2 · 12d2d/t

> 0,

from which we deduce that the set Ft ∩ U has Hausdorff dimension at least d/t.

4.3. Application to the Jarńık-Besicovitch theorem

We already studied the Hausdorff dimension of the set Jd,τ formed by the
points that are approximable at rate at least τ by the points with rational coordi-
nates, see (1) for the exact definition of this set. Specifically, the Jarńık-Besicovitch
theorem discussed in Section 3.1 asserts that for any real τ > 1 + 1/d,

dimH Jd,τ =
d+ 1

τ
,

see Theorem 3.1 for the precise statement. Also, let us recall that the set Jd,τ
coincides with the whole space Rd when τ ≤ 1+1/d, as a consequence of Dirichlet’s
theorem, see Corollary 1.1.

The general theory discussed above enables us to give an alternative proof of the
Jarńık-Besicovitch theorem. Indeed, the set Jd,1+1/d coincides with the whole Rd,
so it obviously has full measure therein, namely, for Lebesgue-almost every x ∈ Rd,
there are infinitely many pairs (p, q) ∈ Zd × N such that |x − p/q|∞ < q−1−1/d.
This means that the family (p/q, q−1−1/d)(p,q)∈Zd×N is a homogeneous ubiquitous

system in Rd. Besides, for any integer M ≥ 1 and any real number s > 0, note that∑
(p,q)∈Zd×N

p/q∈B∞(0,M)

(q−1−1/d)s =

∞∑
q=1

q−(1+1/d)s#(Zd ∩ B∞(0, qM)).

The cardinality appearing in the sum is of the order of (qM)d, up to numerical
constants. Hence, the critical value s for the convergence of the series is that for
which (1 + 1/d)s− d is equal to one. We deduce that for any open subset U of Rd,
the parameter sU defined by (90) is bounded above by d. We are now in position
to apply Corollary 4.1. After fixing a real number τ > 1 + 1/d and observing that
the approximation radii q−τ in the definition of Jd,τ may be written in the form
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(q−1−1/d)t with t = τd/(d+ 1) > 1, we deduce from the aforementioned result that
for any nonempty open subset U of Rd,

dimH(Jd,τ ∩ U) =
d

t
=
d+ 1

τ
, (95)

thereby obtaining a local version of the Jarńık-Besicovitch theorem.
We can relate this result with the notion of irrationality exponent, supplied by

Definition 1.1. In fact, for any real number τ ≥ 1 + 1/d,

Jd,τ \Qd ⊆ {x ∈ Rd \Qd | τ(x) ≥ τ} =
⋂
τ ′<τ

↓ Jd,τ ′ \Qd.

Due to (95) and the fact that the set Qd has Hausdorff dimension zero, we deduce
that for any nonempty open subset U of Rd,

dimH{x ∈ U \Qd | τ(x) ≥ τ} =
d+ 1

τ
.

Theorem 4.1 gives actually a slightly more precise result, specifically, letting gτ
denote the gauge function r 7→ r(d+1)/τ | log r|, we have

Hgτ ({x ∈ U \Qd | τ(x) ≥ τ}) ≥ Hgτ (Jd,τ ∩ U) > 0.

This allows us to determine the Hausdorff dimension of the set of points with
irrationality exponent exactly equal to τ . As a matter of fact, let us observe that

{x ∈ Rd \Qd | τ(x) = τ} = {x ∈ Rd \Qd | τ(x) ≥ τ} \
⋃
τ ′>τ

↑ Jd,τ ′ . (96)

Moreover, thanks to Proposition 2.12, we have for τ ′ > τ and ε > 0 small enough
to ensure that (d+ 1)/τ − ε is larger than (d+ 1)/τ ′,

Hgτ (Jd,τ ′) ≤
(

lim sup
r→0

gτ (r)

r(d+1)/τ−ε

)
H(d+1)/τ−ε(Jd,τ ′) = 0

The mapping τ ′ 7→ Jd,τ ′ is nonincreasing, so the union in (96) may be written
as a countable one, and Proposition 2.4(1) implies that its Hausdorff gτ -measure
vanishes. We deduce that

dimH{x ∈ U \Qd | τ(x) = τ} =
d+ 1

τ
.

Indeed, the set in the left-hand side of (96) has positive gτ -measure in U .

4.4. Behavior under uniform dilations

The next useful result shows that multiplying all the approximation radii by
a common positive factor does not alter the property of being a homogeneous
ubiquitous system. In particular, this implies that this property is independent on
the choice of the norm the space Rd is endowed with.

Proposition 4.4. Let (xi, ri)i∈I be a homogeneous ubiquitous system in some
nonempty open subset U of Rd. Then, for any real number c > 0, the family
(xi, c ri)i∈I is also a homogeneous ubiquitous system in U .

Proof. The family (xi, c ri)i∈I is clearly an approximation system, so it re-
mains to show that the set Rc of all points x ∈ Rd such that |x − xi| < c ri for
infinitely many indices i ∈ I has full Lebesgue measure in U . This is obvious if
c ≥ 1, because Rc contains R1, which has full Lebesgue measure in U . We may
thus restrict our attention to the case in which c < 1.

Let V be a nonempty bounded open subset of U and let j be a positive integer.
By Lemma 4.1, there is a finite subset Ij = I(V, 2−j) of I such that the balls
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B(xi, ri) are disjoint, contained in V , with radius at most 2−j , and a total Lebesgue
measure at least Ld(V )/(2 · 3d). In particular,

Rc ∩ V ⊇ lim sup
j→∞

⊔
i∈Ij

B(xi, c ri) =

∞⋂
j=1

↓
∞⋃
j′=j

⊔
i∈Ij′

B(xi, c ri).

The open set V is bounded, thereby having finite Lebesgue measure. Hence, Propo-
sition 2.5 ensures that

Ld(Rc ∩ V ) ≥ lim
j→∞

↓ Ld
 ∞⋃
j′=j

⊔
i∈Ij′

B(xi, c ri)


≥ lim sup

j→∞

∑
i∈Ij

Ld(B(xi, c ri)) ≥
cd Ld(V )

2 · 3d
.

Let us assume that Ld(U \Rc) is positive. Then Ld(Um \Rc) is positive for m
large enough, where Um denotes the set U ∩ (−m,m)d. Furthermore, there exists
a compact subset K of Rc ∩ Um such that

Ld((Rc ∩ Um) \K) <
cd Ld(Um \Rc)

2 · 3d
,

see for instance [46, Theorem 1.10]. Applying what precedes to the bounded open
set V = Um \K, we obtain

Ld(Rc ∩ (Um \K)) ≥ cd Ld(Um \K)

2 · 3d
≥ cd Ld(Um \Rc)

2 · 3d
,

and we end up with a contradiction. Hence, Rc has full Lebesgue measure in U . �





CHAPTER 5

Large intersection properties

5.1. The large intersection classes

The classes of sets with large intersection were introduced by Falconer [26, 28].
They are composed of subsets of Rd with Hausdorff dimension at least a given s
satisfying the remarkable counterintuitive property that countable intersections of
the sets also have Hausdorff dimension at least s. This is in stark contrast with, for
instance, the case of two affine subspaces with dimension s1 and s2, respectively,
where the intersection is generically expected to have dimension s1 + s2 − d. The
aforementioned classes are formally defined as follows. Recall that a Gδ-set is one
that may be written as the intersection of a countable sequence of open sets.

Definition 5.1. For any real number s ∈ (0, d], the class Gs(Rd) of sets with
large intersection in Rd with dimension at least s is the collection of all Gδ-subsets
F of Rd such that

dimH

∞⋂
n=1

ςn(F ) ≥ s

for any sequence (ςn)n≥1 of similarity transformations of Rd.

As shown later in these notes, numerous examples of sets with large intersection
arise in metric number theory. Let us point out that the middle-third Cantor set
K gives a typical example of set that is not with large intersection. Indeed, letting
ς denote the mapping that sends a real number x to (x+ 1)/3, we readily observe
that K ∩ ς(K) is reduced to the points 1/3 and 2/3, thereby having Hausdorff
dimension zero, whereas the Cantor set K itself has dimension equal to log 2/ log 3,
see Propositions 2.17 and 2.18. More generally, the attractors of iterated function
systems that are discussed in Section 2.10 do not satisfy the large intersection
property.

As mentioned above, the main property of the large intersection classes Gs(Rd)
are their stability under countable intersections; remarkably, they are also stable
under bi-Lipischitz transformations, i.e. mappings satisfying (64). This is the pur-
pose of the next statement.

Theorem 5.1. For any real number s ∈ (0, d], the class Gs(Rd) is closed under
countable intersections and bi-Lipschitz transformations of Rd.

The proof of Theorem 5.1 being quite long, we postpone it to Section 5.3 so as
not to interrupt the flow of the presentation. Combined with the definition of the
classes Gs(Rd) given above, Theorem 5.1 directly yields the following maximality
property with respect to countable intersections and similarities.

Corollary 5.1. For any real number s ∈ (0, d], the class Gs(Rd) is the max-
imal class of Gδ-subsets of Rd with Hausdorff dimension at least s that is closed
under countable intersections and similarity transformations.

We now give several characterizations of the classes Gs(Rd). Some of them
are expressed in terms of outer net measures that are obtained by restricting to

101
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coverings by dyadic cubes. More precisely, let us recall from Section 2.6.3 that a
dyadic cube is either the empty set or a set of the form λ = 2−j(k + [0, 1)d), with
j ∈ Z and k ∈ Zd, and that the collection of all dyadic cubes is denoted by Λ. For
any real number s ∈ (0, d], let us consider the premeasure, denoted by | · |sΛ, that
maps a given λ ∈ Λ to |λ|s. Then, as in Section 2.6.3, Theorem 2.3 allows us to
consider the net measure

Ms = (| · |sΛ)∗

defined by (53). In view of Proposition 2.11, this outer measure is comparable with
the s-dimensional Hausdorff measure, in the sense that

Hs(E) ≤Ms(E) ≤ κHs(E)

for any subset E of Rd and for some real number κ ≥ 1. In addition, Theorem 2.2
enables us to introduce the outer measure

Ms
∞ = (| · |sΛ)∗ (97)

that is defined by (51), and thus corresponds to coverings by dyadic cubes of arbi-
trary diameter. It is clear that the outer measures Ms

∞ bound the net measures
Ms from below. Hence, for any subset E of Rd,

Ms
∞(E) > 0 =⇒ dimHE ≥ s. (98)

Moreover, it is useful to observe that theMs
∞-mass of the dyadic cubes may easily

be expressed in terms of their diameters. This is the purpose of the next lemma.

Lemma 5.1. For any real number s ∈ (0, d] and any dyadic cube λ ∈ Λ,

Ms
∞(λ) =Ms

∞(intλ) = |λ|s.

Proof. Given that Ms
∞ is an outer measure and that the considered dyadic

cube λ may obviously be covered by itself, we directly infer that

Ms
∞(intλ) ≤Ms

∞(λ) ≤ |λ|s.

In order to show that equality holds, let us consider a dyadic covering (λn)n≥1 of
the interior of λ. If λ is contained in some cube λn0 , then we clearly have

|λ|s ≤ |λn0 |s ≤
∞∑
n=1

|λn|s.

Otherwise, all the cubes λn are either disjoint from, or included inside, the cube λ.
Thus, we may consider the subset N of N formed by the integers n ≥ 1 for which
λn is contained in λ. The cubes λn, for n ∈ N , still cover the interior of λ and have
a smaller diameter, so that

∞∑
n=1

|λn|s ≥
∑
n∈N
|λn|s−d|λn|d ≥ |λ|s−d

∑
n∈N

κ′dLd(λn) ≥ |λ|s−dκ′dLd(intλ) = |λ|s,

where κ′ is the diameter of the unit cube of Rd, and only depends on the norm the
space Rd is endowed with. We deduce the required inequality by finally taking the
infimum over all coverings (λn)n≥1. �

We can now enumerate the properties that characterize the large intersection
classes; note that the formulations given by Falconer [28] are slightly erroneous and
one has to consider the corrected versions below, where s denotes a real number in
the interval (0, d] and F is a subset of Rd :
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(1) for any nonempty open subset U of Rd and any sequence (fn)n≥1 of bi-
Lipschitz transformations from U to Rd, we have

dimH

∞⋂
n=1

f−1
n (F ) ≥ s ;

(2) for any sequence (ςn)n≥1 of similarity transformations of Rd, we have

dimH

∞⋂
n=1

ςn(F ) ≥ s ;

(3) for any positive real number t < s and any dyadic cube λ ∈ Λ,

Mt
∞(F ∩ λ) =Mt

∞(λ) ;

(4) for any positive real number t < s and any open subset V of Rd,

Mt
∞(F ∩ V ) =Mt

∞(V ) ;

(5) for any positive real number t < s, there exists a real number c ∈ (0, 1]
such that for any dyadic cube λ ∈ Λ,

Mt
∞(F ∩ λ) ≥ cMt

∞(λ) ;

(6) for any positive real number t < s, there exists a real number c ∈ (0, 1]
such that any open subset V of Rd,

Mt
∞(F ∩ V ) ≥ cMt

∞(V ).

Note that the property (2) coincides with the definition of the large intersection
class Gs(Rd) under the assumption that F is a Gδ-set. The next result details the
logical relationships between the previous properties, and in fact implies that they
give equivalent characterizations of the large intersection classes.

Theorem 5.2. Let us consider a real number s ∈ (0, d] and a subset F of Rd.

• The following implications hold:

(1) =⇒ (2) =⇒ (3) ⇐⇒ (4) =⇒ (5) ⇐⇒ (6).

• If F is a Gδ-set, then the properties (1–6) are all equivalent, and charac-
terize the class Gs(Rd).

Just as that of Theorem 5.1, the proof of Theorem 5.2 is quite long and thus
postponed to Section 5.3 for the sake of clarity. Note that the characterizations (5)
and (6) still hold when changing the norm on Rd ; the large intersection classes
are thus independent on the choice of the norm the space Rd is endowed with.
Hereunder are several other noteworthy properties of these classes.

Proposition 5.1. The large intersection classes Gs(Rd), for s ∈ (0, d], satisfy
all the following properties.

(1) Any Gδ-subset of Rd that contains a set in the class Gs(Rd) also belongs
to the class Gs(Rd).

(2) The mapping s 7→ Gs(Rd) is nonincreasing.
(3) The class Gs(Rd) is the intersection over t < s of the classes Gt(Rd).

(4) For any sets F ∈ Gs(Rd) and F ′ ∈ Gs′(Rd′), the product set F×F ′ belongs

to the class Gs+s′(Rd+d′).

Proof. We only need to detail the proof of the last property, because the
others readily follow from Definition 5.1. To proceed, let us consider two sets
F ∈ Gs(Rd) and F ′ ∈ Gs′(Rd′), a real number ε > 0 and a dyadic cube of Rd+d′

that is written in the form λ×λ′, where λ is a dyadic cube of Rd and λ′ is a dyadic
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cube of Rd′ . It is clear that (F × F ′) ∩ (λ × λ′) is equal to (F ∩ λ) × (F ′ ∩ λ′).
Moreover, it follows from [27, Theorem 5.8] that

Ms+s′−ε
∞ ((F ∩ λ)× (F ′ ∩ λ′)) ≥ cMs−ε/2

∞ (F ∩ λ)Ms′−ε/2
∞ (F ′ ∩ λ′),

for some real constant c > 0. Using the property (3) of Theorem 5.2, together with
Lemma 5.1, we deduce that

Ms+s′−ε
∞ ((F × F ′) ∩ (λ× λ′)) ≥ c |λ|s−ε/2 |λ′|s

′−ε/2

= c c′ |λ× λ′|s+s
′−ε =Ms+s′−ε

∞ (λ× λ′),

where c′ is a positive real number that depends on the norms the spaces Rd, Rd′

and Rd+d′ are endowed with. We conclude that F×F ′ belongs to Gs+s′(Rd+d′). �

Finally, note that a set with large intersection is necessarily dense in the whole
space Rd. This is easily seen for instance by considering the characterization (3)
of the large intersection classes given by Theorem 5.2, and by making use of
Lemma 5.1. However, in some applications, the considered sets are thought of
satisfying a large intersection property in some nonempty open subset U of Rd,
but fail to be dense in the whole space Rd itself. We therefore need to introduce
localized versions of the large intersection classes. In that situation, the use of
similarity transformations is not suitable anymore; a convenient way of proceeding
is thus to adjust the characterization (4) of the large intersection classes given by
Theorem 5.2 in the following manner.

Definition 5.2. For any real number s ∈ (0, d] and any nonempty open subset
U of Rd, the class Gs(U) of sets with large intersection in U with dimension at least
s is the collection of all Gδ-subsets F of Rd such that

Mt
∞(F ∩ V ) =Mt

∞(V )

for any positive real number t < s and any open subset V of U .

Obviously, thanks to Theorem 5.2, the class Gs(U) defined above coincides with
the initial class Gs(Rd) introduced in Definition 5.1 when the open set U is equal
to the whole space Rd. We also directly obtain the following result; the second
statement therein follows from (98), whereas the first one is proven in Section 5.3.

Theorem 5.3. Let s ∈ (0, d] and let U be a nonempty open subset of Rd. Then:

(1) the class Gs(U) is closed under countable intersections;
(2) for any set F ∈ Gs(U) and any nonempty open set V ⊆ U ,

dimH(F ∩ V ) ≥ s.

In view of the previous result, the large intersection property is actually a
combination of a density property with a measure theoretic aspect. In that spirit,
Theorem 5.1 may be thought of as a Hausdorff dimensional analog of the Baire
category theorem.

5.2. Other notions of dimension

The sets with large intersection also display a remarkable behavior with re-
spect to packing dimension. Let us explain how this notion of dimension, due to
Tricot [60], is defined. First, given a gauge function g, we define on the collection
of all subsets F of Rd the packing g-premeasure by

P g(F ) = lim
δ↓0
↓ P gδ (F ) with P gδ (F ) = sup

∞∑
n=1

g(|Bn|),
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where the supremum is taken over all sequences (Bn)n≥1 of disjoint closed balls of
Rd centered in the set F and with diameter less than δ. The premeasures P g are
only finitely subadditive; it is thus more convenient to work with the corresponding
packing g-measure, defined by

Pg = (P g)∗

as in the formula (51), which is an outer measure on Rd, as a consequence of
Theorem 2.2. It is actually possible to show that the Borel subsets of Rd are
Pg-measurable, see [46, Chapter 5] for details.

The definition of packing dimension is then very similar to that of Hausdorff
dimension, namely, Definition 2.10. Specifically, when the gauge function g is of
the form r 7→ rs with s > 0, it is customary to use Ps as a shorthand for Pg, and
the packing dimension of a nonempty set F ⊆ Rd is defined by

dimP F = sup{s ∈ (0, d) | Ps(F ) =∞} = inf{s ∈ (0, d) | Ps(F ) = 0}, (99)

with the convention that sup ∅ = 0 and inf ∅ = d. When the set F is empty, we
adopt the convention that the packing dimension is equal to −∞. Moreover, one
recovers the upper box-counting dimension dimBE by considering the premeasures
P s instead of Ps in the latter formula.

The packing dimension of sets with large intersection is discussed in the next
statement, which may be seen as an analog of Theorem 5.3(2), which deals with
Hausdorff dimension.

Proposition 5.2. Let s ∈ (0, d] and let U be a nonempty open subset of Rd.
Then, for any set F ∈ Gs(U) and for any nonempty open set V ⊆ U ,

dimP(F ∩ V ) = d.

In other words, a set with large intersection has maximal packing dimension
in any nonempty open set; the same property obviously holds for box-counting
dimensions as well, because sets with large intersection are dense. Again, for the
sake of clarity, the proof of Proposition 5.2 is postponed to Section 5.3.

5.3. Proof of the main results

5.3.1. Ancillary lemmas. The proofs make use of several technical lemmas
concerning the outer measures Ms

∞ that we now state and establish.

Lemma 5.2. Let us consider two real numbers s ∈ (0, d] and c ∈ (0, 1], a subset
F of Rd, and an open subset V of Rd. Suppose that there is a δ > 0 such that

Ms
∞(F ∩ λ) ≥ cMs

∞(λ)

for all dyadic cubes λ ∈ Λ with diameter at most δ that are contained in V . Then,

Ms
∞(F ∩ V ) ≥ cMs

∞(V ).

Proof. Let Λδ(V ) denote the collection of all dyadic cubes with diameter at
most δ that are contained in V , and that are maximal for this property. Clearly,
these cubes are disjoint and their union is equal to the whole open set V . Let us
now consider a dyadic covering (λn)n≥1 of the set F ∩ V . Two dyadic cubes are
either disjoint or included in one another, so there exists a subset N of N such that
the cubes λn, for n ∈ N , are disjoint and still cover F ∩ V .

Moreover, for any cube λ ∈ Λδ(V ), let N (λ) denote the set of all n ∈ N such
that λn ⊆ λ. If N (λ) 6= ∅, then the cubes λn, for n ∈ N (λ), cover F ∩ λ, so that∑

n∈N (λ)

|λn|s ≥Ms
∞(F ∩ λ) ≥ cMs

∞(λ) = c |λ|s,
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where the last equality follows from Lemma 5.1. In addition, the sets N (λ) are
disjoint. Hence, letting N ′ denote the complement of their union in N , we have

∞∑
n=1

|λn|s ≥
∑
n∈N ′

|λn|s +
∑

λ∈Λδ(V )

∑
n∈N (λ)

|λn|s ≥
∑
n∈N ′

|λn|s +
∑

λ∈Λδ(V )

N(λ)6=∅

c |λ|s. (100)

On top of that, let λ denote a cube in Λδ(V ) for which the index set N (λ) is
empty. The intersection F ∩ λ cannot be empty and is covered by the sets λn, for
n ∈ N . Thus, there is an integer n0 ∈ N such that the cubes λ and λn0

intersect.
Necessarily, λ is a proper subcube of λn0

, and the index n0 belongs to N ′. This
means that the cubes λn, for n ∈ N ′, together with the cubes λ ∈ Λδ(V ) such that
N (λ) 6= ∅ form a covering of the open set V . Hence, the right-hand side of (100) is
bounded below by cMs

∞(V ), and the result follows. �

Lemma 5.3. Let us consider two real numbers s ∈ (0, d] and c ∈ (0, 1], a subset
F of Rd, and an open subset V of Rd. Let us suppose that

Ms
∞(F ∩ λ) ≥ cMs

∞(λ)

for all dyadic cubes λ ∈ Λ that are contained in V . Then,

Mt
∞(F ∩ λ) =Mt

∞(λ)

for all dyadic cubes λ ∈ Λ that are contained in V and all real numbers t ∈ (0, s).

Proof. Let us consider a dyadic cube λ contained in V with sidelength 2−j ,
and a dyadic covering (λn)n≥1 of the set F ∩λ. Again, two dyadic cubes are either
disjoint or included in one another, so there exists a subset N of N such that the
cubes λn, for n ∈ N , are disjoint, included in λ, and still cover F ∩ λ. Moreover,
let j′ denote an integer such that 2−(s−t)j′ ≤ c 2−(s−t)j .

Note that j′ ≥ j, so the cube λ may be written as the union of 2j
′−j disjoint

subcubes with sidelength 2−j
′
. Let M denote the collection of these subcubes. As

in the proof of Lemma 5.2, for any cube µ ∈ M, let N (µ) denote the set of all
indices n ∈ N such that λn ⊆ µ. In that situation,

|λn|t ≥ |µ|t−s|λn|s = (κ′ 2−j
′
)t−s|λn|s ≥

1

c
(κ′ 2−j)t−s|λn|s =

1

c
|λ|t−s|λn|s

where κ′ is the diameter of the unit cube of Rd, as in the proof of Lemma 5.1.
Moreover, if N (µ) 6= ∅, then the cubes λn, for n ∈ N (µ), cover F ∩ µ, so that∑

n∈N (µ)

|λn|t ≥
1

c
|λ|t−s

∑
n∈N (µ)

|λn|s

≥ 1

c
|λ|t−sMs

∞(F ∩ µ) ≥ |λ|t−sMs
∞(µ) = |λ|t−s|µ|s,

where the last equality follows again from Lemma 5.1. Furthermore, let N ′ denote
the complement of the union of the sets N (µ) in N . If n belongs to N ′, then

|λn|t ≥ |λ|t−s|λn|s,

and λn admits a proper subcube µ ∈ M. In fact, otherwise, all the cubes in M would
be disjoint from λn ; this is impossible because λn is inside λ, which is covered by
the cubes in M.

This means in particular that the cubes λn, for n ∈ N ′, along with the cubes
µ ∈ M for which N (µ) 6= ∅ form a covering of the cube λ. Hence, using also the
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disjointness of the index sets N (µ), we infer that
∞∑
n=1

|λn|t ≥
∑
n∈N ′

|λn|t +
∑
µ∈M

∑
n∈N (µ)

|λn|t

≥ |λ|t−s

∑
n∈N ′

|λn|s +
∑
µ∈M
N(µ)6=∅

|µ|s

 ≥ |λ|t−sMs
∞(λ) = |λ|t.

Here again, the last equality follows from Lemma 5.1. We conclude by taking the
infimum over all coverings in the left-hand side above. �

Lemma 5.4. Let U be a nonempty open subset of Rd and let f be a bi-Lipschitz
mapping from U to Rd with constant cf ≥ 1, see (64). Let us consider two real
numbers s ∈ (0, d] and c ∈ (0, 1] and a subset F of Rd, and suppose that

Ms
∞(F ∩ V ) ≥ cMs

∞(V )

for any open subset V of Rd. Then, for any open subset V of U ,

Ms
∞(f−1(F ) ∩ V ) ≥ c

(3cf )2d
Ms
∞(V ).

Proof. The statement is clearly invariant under a change of norm, so we may
assume throughout the proof that the space Rd is endowed with the supremum
norm | · |∞. Let us begin by observing that a Lipschitz mapping g : U → Rd with
constant k ≥ 1 satisfies

Ms
∞(g(A)) ≤ (3k)dMs

∞(A) (101)

for any subset A of U . Indeed, if (λn)n≥1 denotes a covering of the set A, then
g(A) is covered by the image sets g(λn), and each of these sets is itself covered by
(dke+ 1)d dyadic cubes with diameter equal to that of the initial cube λn.

Consequently, if V denotes an open subset of U , the set f(V ) is an open subset
of Rd, and we have

Ms
∞(V ) ≤ (3cf )dMs

∞(f(V ))

≤ (3cf )d

c
Ms
∞(F ∩ f(V )) ≤ (3cf )2d

c
Ms
∞(f−1(F ) ∩ V ),

which gives the required estimate. �

Lemma 5.5. Let U be a nonempty subset of Rd and let s ∈ (0, d]. Let us
consider a sequence (Fk)k≥1 of Gδ-subsets of Rd such that

Ms
∞(Fk ∩ V ) =Ms

∞(V )

for any k ≥ 1 and any open subset V of U . Then, for any open subset V of U ,

Ms
∞

( ∞⋂
k=1

Fk ∩ V

)
≥ 3−dMs

∞(V ).

Proof. Throughout the proof, when V is an open set and δ is a positive real
number, Vδ denotes the inner δ-parallel body of V , namely, the open set

Vδ = {x ∈ V | d(x,Rd \ V ) > δ} (102)

formed by the points in V at a distance larger than δ from its complement.
Let us first assume that the sets Fk are open and form a nonincreasing sequence.

Let V be a bounded open subset of U and let ε > 0. We then define inductively
a sequence (Vk)k≥0 of open subsets of V and a sequence (δk)k≥1 of positive real
numbers by letting V0 = V and

∀k ≥ 1 Vk = (Fk ∩ Vk−1)δk ,
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where the real numbers δk are chosen in such a way that

∀k ≥ 1 Ms
∞(Vk) >Ms

∞(V )− ε.

The existence of δk is a consequence of the fact that Proposition 2.4(2) holds for the
outer measure Ms

∞ even if it need not be regular, see [51, Theorem 52]. Indeed,
the sets (Fk ∩ Vk−1)δ are nonincreasing with respect to δ and their union is equal
to the whole set Fk ∩ Vk−1, so the previous remark ensures that

lim
δ↓0
↑ Ms

∞((Fk ∩ Vk−1)δ) =Ms
∞(Fk ∩ Vk−1) =Ms

∞(Vk−1).

The last equality follows from the hypothesis on the set Fk. As a consequence, it
is possible to choose δk appropriately if the set Vk−1 has been chosen so. Remark
that (Vk)k≥1 is a nonincreasing sequence of compact subsets of V , and that each

compact set Vk is contained in the corresponding set Fk.
Let (λn)n≥1 denote a covering of the intersection of the compact sets Vk by

dyadic cubes. We have
∞⋂
k=1

↓ Vk ⊆
∞⋃
n=1

λn ⊆
∞⋃
n=1

int(3λn),

where 3λn denotes the union formed by λn and the adjacent dyadic cubes. By
compactness, there exists an integer k ≥ 1 such that the set Vk is contained in the
right-hand side above. Hence, Vk is covered by the dyadic cubes that belong to
3λn, for n ≥ 1. We deduce that

Ms
∞(V )− ε <Ms

∞(Vk) ≤
∞∑
n=1

3d|λn|s.

Taking the infimum over all dyadic coverings in the right-hand side, we end up with

Ms
∞(V )− ε ≤ 3dMs

∞

( ∞⋂
k=1

↓ Vk

)
≤ 3dMs

∞

( ∞⋂
k=1

Fk ∩ V

)
.

By letting the parameter ε go to zero, we thus settle the case where the sets Fk are
open and nonincreasing, and the open set V is bounded.

In order to drop the boundedness assumption on V , one may use the analog
of Proposition 2.4(2) for the outer measure Ms

∞. To get rid of the assumption on
the sets Fk, it suffices to observe the intersection of any sequence of Gδ-sets may
be written as the intersection of a nonincreasing sequence of open sets. �

5.3.2. Proof of Theorem 5.2. We may now establish the various relation-
ships between the properties (1–6) involved in the statement of Theorem 5.2.

5.3.2.1. Proof that (1) implies (2). This follows from the observation that the
inverse of a similarity transformation of Rd is a bi-Lipschitz mapping.

5.3.2.2. Proof that (2) implies (3). Arguing by contradiction, we assume that
there are two reals t ∈ (0, s) and c ∈ [0, 1) and a dyadic cube λ ∈ Λ such that

Mt
∞(F ∩ λ) < cMt

∞(λ) = c |λ|t.

Here again, the last equality is due to Lemma 5.1. As a result, there exists a dyadic
covering (λn)n≥1 of the intersection set F ∩ λ for which the total sum of |λn|t is
smaller than c |λ|t. Furthermore, there is a subset N of N such that the cubes λn,
for n ∈ N , are disjoint and included in λ, and still cover F ∩ λ. For any integer
n ∈ N , let ςn denote the natural affine mapping that sends λ onto λn. This is a
similarity transformation of Rd and it is easy to check that for any set A ⊆ λ,

Mt
∞(ςn(A)) ≤

(
|λn|
|λ|

)t
Mt
∞(A). (103)
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Furthermore, let us consider a point x ∈ λ that belongs to all the image sets
ςn1
◦ . . . ◦ ςnk , for any choice n1, . . . , nk of integers in N , and any integer k ≥ 0. In

particular, for k = 0, this means that the point x is in F ∩ λ, thereby belonging
to some dyadic cube λn1 , with n1 ∈ N . We can then write x in the form ςn1(x1)
for some x1 ∈ λ. Applying the above hypothesis with k = 1, we observe that x1

necessarily belongs to F as well. Thus, x1 belongs to some dyadic cube λn2
, with

n2 ∈ N . Iterating these arguments, we deduce that there exists a sequence (nk)k≥1

of integers in N and a sequence (xk)k≥0 of points in F ∩ λ such that x0 = x and
xk−1 = ςnk(xk) for all k ≥ 1. As a consequence,

∞⋂
k=1

⋂
n1,...,nk∈N

ςn1 ◦ . . . ◦ ςnk(F ) ∩ λ ⊆
⋃

(nk)k≥1∈NN

∞⋂
k=1

ςn1 ◦ . . . ◦ ςnk(F ∩ λ).

On top of that, using the countable subadditivity of the outer measure Mt
∞

and applying (103) multiple times, we infer that for any integer k ≥ 1,

Mt
∞

 ⋃
n1,...,nk∈N

ςn1 ◦ . . . ◦ ςnk(F ∩ λ)

 ≤ ∑
n1,...,nk∈N

Mt
∞(ςn1 ◦ . . . ◦ ςnk(F ∩ λ))

≤
∑

n1,...,nk∈N

|λn1 |t . . . |λnk |t

|λ|kt
Mt
∞(F ∩ λ)

=

(
1

|λ|t
∑
n∈N
|λn|t

)k
Mt
∞(F ∩ λ)

≤ ckMt
∞(F ∩ λ),

from which we readily deduce that

Mt
∞

 ∞⋂
k=1

⋂
n1,...,nk∈N

ςn1 ◦ . . . ◦ ςnk(F ) ∩ λ

 ≤ inf
k≥1

ckMt
∞(F ∩ λ) = 0.

Finally, Theorem 2.2 enables us to consider the outer measure Ht∞ = (| · |t)∗
defined by (51) and corresponding to coverings by sets of arbitrary diameter. How-
ever, it is clear that this outer measure bounds Mt

∞ from below, so that

Ht∞

 ∞⋂
k=1

⋂
n1,...,nk∈N

ςn1
◦ . . . ◦ ςnk(F ) ∩ λ

 = 0.

Now, let (τp)p≥1 denote a sequence of translations for which the image sets τp(λ),
for p ≥ 1, form a partition of the whole space Rd. We have for each p ≥ 1,

Ht∞

 ∞⋂
k=1

⋂
n1,...,nk∈N

τp ◦ ςn1
◦ . . . ◦ ςnk(F ) ∩ τp(λ)

 = 0,

which directly gives

Ht∞

 ∞⋂
p=1

∞⋂
k=1

⋂
n1,...,nk∈N

τp ◦ ςn1
◦ . . . ◦ ςnk(F )

 = 0. (104)

Note that we can replace the outer measure Ht∞ by the Hausdorff t-dimensional
measure Ht in (104). As a matter of fact, any subset A of Rd may clearly be written
as a countable union over p ≥ 1 of sets Ap with diameter at most a given δ > 0.
Let us assume in addition that Ht∞(A) vanishes. Then, for each integer p ≥ 1, it
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is clear that Ht∞(Ap) vanishes as well, so that there exists a covering (Cp,n)n≥1 of
the set Ap with

∞∑
n=1

|Cp,n|t ≤ ε 2−p,

where ε is a positive real number fixed in advance. Up to replacing the sets Cp,n
by their intersection with Ap, we may assume that their diameter is at most δ.
Thus, considering the sets Cp,n altogether, we obtain a covering of A with sets with
diameter at most δ, thereby inferring that

Htδ(A) ≤
∞∑
p=1

∞∑
n=1

|Cp,n|t ≤
∞∑
p=1

ε 2−p = ε.

Letting δ, and then ε, go to zero, we deduce that the Hausdorff t-dimensional
measure of the set A is equal to zero.

We conclude that the set under study in (104) has Hausdorff dimension bounded
above by t, and therefore smaller than s. As the mappings τp ◦ ςn1

◦ . . . ◦ ςnk form
a countable sequence of similarity transformations, this contradicts (2).

5.3.2.3. Proof that (3) is equivalent to (4), which implies (5), which itself is
equivalent to (6). This follows straightforwardly from Lemma 5.1, together with
the observation that the interior of a dyadic cube λ is an open set with the same
Mt
∞-mass than λ itself, by virtue of Lemma 5.2.

5.3.2.4. Proof that (6) implies (1) for Gδ-sets. Let us assume that F is a Gδ-
set satisfying (6), and let (fn)n≥1 denote a sequence of bi-Lipschitz transformations
defined on a nonempty open set U . For each n ≥ 1, let cn denote a constant such
that fn satisfies (64). Let t denote a positive real number smaller than s. Lemma 5.4
ensures that for any t′ ∈ (t, s), there is a real number c ∈ (0, 1] such that for any
open subset V of U ,

Mt′

∞(f−1
n (F ) ∩ V ) ≥ c

(3cn)2d
Mt′

∞(V ).

Applying this estimate to the interior of dyadic cubes and making use of Lemma 5.1,
we get for every dyadic cube λ contained in U ,

Mt′

∞(f−1
n (F ) ∩ λ) ≥Mt′

∞(f−1
n (F ) ∩ intλ)

≥ c

(3cn)2d
Mt′

∞(intλ) =
c

(3cn)2d
Mt′

∞(λ).

Then, it follows from Lemma 5.3 that for every dyadic cube λ contained in U ,

Mt
∞(f−1

n (F ) ∩ λ) =Mt
∞(λ),

and Lemma 5.2 now ensures that this also holds when λ is replaced by an arbitrary
open subset of U in the above equality. Finally, Lemma 5.5 ensures that

Mt
∞

( ∞⋂
n=1

f−1
n (F ) ∩ U

)
≥ 3−dMt

∞(U) > 0.

To conclude, it remains to use (98) to deduce that the intersection of the sets
f−1
n (F ) has Hausdorff dimension at least t, and to let t tend to s.

5.3.3. Proof of Theorem 5.1. This is a direct consequence of Theorem 5.2.
We deal with the stability under countable intersections and that under bi-Lipschitz
mappings separately.
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5.3.3.1. Stability under countable intersections. Let (Fn)n≥1 denote a sequence
of sets in the class Gs(Rd). When t is a real number in (0, s), the characterization (4)
of this class ensures that all the sets Fn have maximal Mt

∞-mass in all the open
subsets of Rd. Lemma 5.5 implies that

Mt
∞

( ∞⋂
n=1

Fn ∩ V

)
≥ 3−dMt

∞(V )

for any open subset V of Rd, and the characterization (6) shows that the intersection
of the sets Fn belongs to the class Gs(Rd).

5.3.3.2. Stability under bi-Lipschitz mappings. Let F be a set in the class
Gs(Rd) and let f denote a bi-Lipschitz mapping defined on Rd. Again, when
t ∈ (0, s), the characterization (4) of this class ensures that the set F has max-
imal Mt

∞-mass in all the open subsets of Rd. Lemma 5.4 then shows that for any
open subset V of Rd,

Mt
∞(f−1(F ) ∩ V ) ≥ M

t
∞(V )

(3cf )2d
,

where cf is a constant associated with f as in (64). We conclude that f−1(F ) is in
Gs(Rd) thanks to the characterization (6) of this class.

5.3.4. Proof of Theorem 5.3(1). The proof is parallel to that of the stability
under countable intersections of the classes Gs(Rd) given in Section 5.3.3.1. It
suffices to replace the characterization (4) of the class Gs(Rd) by the definition of
the generalized classes Gs(U), namely, Definition 5.2. As above, we then apply
Lemma 5.5. Finally, we obtain an analog of the characterization (6) of the large
intersection classes by applying Lemma 5.3.

5.3.5. Proof of Proposition 5.2. When the open set U is equal to the whole
space Rd, the result was obtained by Falconer in [28], see Theorem D(b) therein.
We thus refer to that paper for the proof in the case where U = Rd, and we content
ourselves here with extending Falconer’s result to arbitrary nonempty open sets U .

Let us consider a set F ∈ Gs(U), a nonempty open set V ⊆ U , and an arbitrary
nonempty dyadic cube λ0 contained in V . We write λ0 in the form 2−j0(k0 +[0, 1)d)
with j0 ∈ Z and k0 ∈ Zd, and we define

F̃ =
⊔
k∈Zd

(k2−j0 + (F ∩ intλ0)).

The fact that F is a Gδ-subset of Rd implies that F̃ is a Gδ-set as well. Furthermore,
for any dyadic cube λ with diameter at most that of λ0, there exists a unique integer
point k ∈ Zd such that λ is contained in k2−j0 + λ0, so that

F̃ ∩ λ = (k2−j0 + (F ∩ intλ0)) ∩ λ.

With the help of (101), we deduce that for any t ∈ (0, s),

Mt
∞(F̃ ∩ λ) ≥ 3−dMt

∞(F ∩ intλ0 ∩ (−k2−j0 + λ))

≥ 3−dMt
∞(F ∩ int(−k2−j0 + λ))

= 3−dMt
∞(int(−k2−j0 + λ)) = 3−dMt

∞(λ).

The last equality is due to Lemma 5.1. The previous one holds because the interior
of −k2−j0 +λ is an open subset of U , and the set F is in Gs(U). Finally, Lemmas 5.2

and 5.3 enable us to deduce that F̃ ∈ Gs(Rd), from which it follows that

dimP(F ∩ V ) ≥ dimP(F ∩ λ0) ≥ dimP(F ∩ intλ0) = dimP(F̃ ∩ intλ0) = d.
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This results from applying [28, Theorem D(b)] to the set with large intersection

F̃ and the open set intλ0, and from the packing counterpart of the monotonicity
property satisfied by Hausdorff dimension, see Proposition 2.16(1).

5.4. Connection with ubiquitous systems and
application to the Jarńık-Besicovitch theorem

We showed in Chapter 4 that if (xi, ri)i∈I denotes a homogeneous ubiquitous
system in some nonempty open subset U of Rd, then for any real number t > 1, the
set Ft defined by (87) has Hausdorff dimension at least d/t in the set U , that is,

dimH(Ft ∩ U) ≥ d

t
,

see Theorem 4.1. The purpose of this section is to show that the set Ft belongs to
the large intersection classes given by Definition 5.2.

Theorem 5.4. Let (xi, ri)i∈I be a homogeneous ubiquitous system in some
nonempty open subset U of Rd. Then, for any real number t > 1,

Ft ∈ Gd/t(U).

Proof. As mentioned in Sections 4.4 and 5.1, neither the notion of homoge-
neous ubiquitous system nor the large intersection classes depend on the choice of
the norm. For convenience, we assume throughout the proof that the space Rd is
endowed with the supremum norm; the diameter of a set E is denoted by |E|∞.

Let us consider two real numbers α ∈ (0, 1) and s ∈ (0, d/t), and a nonempty
dyadic cube λ ⊆ U with diameter at most one. Dilating the closure of λ around
its center, we obtain a closed ball B with diameter α|λ|∞ that is contained in the
interior of λ. We can reproduce the proof of Theorem 4.1 with U being the interior
of λ and I∅ being the ball B. We thus obtain an outer measure µ supported in
Ft ∩ intλ with total mass given by (92) and such that Proposition 4.3 holds.

Moreover, let (λn)n≥1 denote a covering of the set Ft ∩ intλ by dyadic cubes.
As already observed multiple times, there exists a subset N of N such that the
cubes λn, for n ∈ N , are disjoint and contained in λ, and still cover intλ. If we
assume in addition that the latter set has diameter less than e−d/t/2, we see that
every cube λn with n ∈ N is included in a closed ball Bn with radius equal to
|λn|∞, and thus diameter smaller than e−d/t. Applying Proposition 4.3, we get

µ(λn) ≤ µ(Bn) ≤ 2 · 12d|Bn|d/t∞ log
1

|Bn|∞
≤ 2 · 12d2d/t|λn|d/t∞ log

1

|λn|∞
.

Arguing as in the proof of the mass distribution principle, i.e. Lemma 2.2, we get

(α|λ|∞)d/t log
1

α|λ|∞
= |I∅|d/t∞ log

1

|I∅|∞
= µ(Ft ∩ intλ)

≤ 2 · 12d2d/t
∞∑
n=1

|λn|d/t∞ log
1

|λn|∞
.

We then use the fact that the function r 7→ rd/t−s log(1/r) is nondecreasing near
zero. Specifically, if the diameter of λ is less than e−t/(d−st), we have

|λn|d/t∞ log
1

|λn|∞
= |λn|s∞|λn|d/t−s∞ log

1

|λn|∞
≤ |λn|s∞|λ|d/t−s∞ log

1

|λ|∞
for all n ≥ 1. Combining this observation with the previous bound, and then taking
the infimum over all dyadic coverings, we obtain

Ms
∞(Ft ∩ λ) ≥Ms

∞(Ft ∩ intλ) ≥ αd/t log(α|λ|∞)

2 · 12d2d/t log |λ|∞
|λ|s∞,
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with the proviso that the diameter of λ is smaller than δs,t, defined as the minimum

of e−d/t/2 and e−t/(d−st). Now, thanks to Lemma 5.1, we may replace |λ|s∞ by
Ms
∞(λ). Hence, letting α tend to one, we end up with

Ms
∞(Ft ∩ λ) ≥ Ms

∞(λ)

2 · 12d2d/t

for any dyadic cube λ ⊆ U with diameter smaller than δs,t. The restriction on the
diameter may easily be removed. Indeed, if λ is an arbitrary dyadic cube contained
in U , applying Lemma 5.2 to its interior, and then Lemma 5.1 again, we get

Ms
∞(Ft ∩ λ) ≥Ms

∞(Ft ∩ intλ) ≥ M
s
∞(intλ)

2 · 12d2d/t
=
Ms
∞(λ)

2 · 12d2d/t

for all real numbers s ∈ (0, d/t) and all dyadic cubes λ ⊆ U . Finally, Lemma 5.3
implies that for all such s and λ, we have in fact

Ms
∞(Ft ∩ λ) =Ms

∞(λ).

The result follows from another utilization of Lemma 5.2. �

As an immediate application, let us show that the set Jd,τ defined by (1) is
a set with large intersection. Recall that Jd,τ is formed by the points that are
approximable at rate at least τ by those with rational coordinates. Moreover, a
plain consequence of Dirichlet’s theorem implies that this set coincides with the
whole space Rd when τ ≤ 1 + 1/d, see Corollary 1.1. We also already established
that Jd,τ has Hausdorff dimension (d+1)/τ in the opposite case where τ > 1+1/d ;
this follows from the Jarńık-Besicovitch theorem discussed in Section 3.1.

We even refined this theorem in Section 4.3 above, starting from the following
two observations: the family (p/q, q−1−1/d)(p,q)∈Zd×N is a homogeneous ubiquitous

system in the whole space Rd ; for this system, the sets Ft defined by (87) coincide
with the sets Jd,τ , with the proviso that the parameters are such that t = τd/(d+1).
Thanks to Theorem 5.4, the same observations lead to the following statement.

Corollary 5.2. For any real number τ > 1 + 1/d, the set Jd,τ belongs to the

class G(d+1)/τ (Rd), i.e. is a set with large intersection in the whole space Rd with
dimension at least (d+ 1)/τ .

This result was already obtained by Falconer [28]. Combined with Proposi-
tion 5.2, this shows in particular that the set Jd,τ has packing dimension equal to
d in every nonempty open subset of Rd. For the sake of completeness, let us point
out that in the opposite case where τ ≤ 1 + 1/d, the set Jd,τ clearly belongs to the
class Gd(Rd) because it coincides with the whole space Rd itself.





CHAPTER 6

Eutaxic sequences

The notion of eutaxic sequence was introduced by Lesca [43] and subsequently
studied by Reversat [49]. It provides a nice setting to the study of Diophantine
approximation properties, and we shall indeed use it in this chapter to analyze the
approximation by fractional parts of sequences and by random sequences of points.
With this notion, the emphasis is put on the sequence (xn)n≥1 of approximating
points in Rd, and one is ultimately interested in its uniform approximation behavior
with respect to all possible sequences (rn)n≥1 of approximation radii.

Let us assume that the series
∑
n r

d
n converges. It is clear that the set of all

points x ∈ Rd for which

∃ i.m. n ≥ 1 |x− xn| < rn (105)

has Lebesgue measure zero; this may indeed be deduced from applying Lemma 2.1
with the gauge function r 7→ rd, which essentially yields the Lebesgue measure, in
view of Proposition 2.14. Note that in that situation, we may rearrange the points
in such a way that the sequence (rn)n≥1 is nonincreasing and converges to zero.
Now, eutaxy comes into play when one assumes that the series

∑
n r

d
n is divergent,

or equivalently that (rn)n≥1 belongs to the collection Pd of real sequences that is
defined by the following condition:

(rn)n≥1 ∈ Pd ⇐⇒


∀n ≥ 1 rn+1 ≤ rn
lim
n→∞

rn = 0

∞∑
n=1

rdn =∞.

(106)

As detailed hereunder, eutaxy will occur when (105) is satisfied by Lebesgue-almost
every point of some open set of interest.

6.1. Definition and link with approximation

6.1.1. Sequencewise eutaxy. The simplest notion of eutaxy is obtained
when specifying a sequence (rn)n≥1 in Pd and deciding on whether or not Lebesgue-
almost every point may be approximated within distance rn by some sequence of
points xn under consideration.

Definition 6.1. Let U be a nonempty open subset of Rd, and let (rn)n≥1 be
a sequence in Pd. A sequence (xn)n≥1 of points in Rd is called eutaxic in U with
respect to (rn)n≥1 if the following condition holds:

for Ld-a.e. x ∈ U ∃ i.m. n ≥ 1 |x− xn| < rn.

The notion of eutaxic sequence is naturally connected with those of approxi-
mation system and homogeneous ubiquitous system introduced by Definitions 4.1
and 4.2, respectively. However, the idea here is to restrict to families indexed by the
positive integers, and to put a stress on the points xn rather, to ultimately obtain
uniform properties with respect to the sequence of radii rn, see Section 6.1.2. The
connection between the various notions is formalized by the next statement. We

115
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omit its proof because the result readily follows from the definitions of the various
involved notions, namely, Definitions 4.1, 4.2 and 6.1.

Proposition 6.1. Let U be a nonempty open subset of Rd, let (rn)n≥1 be a
sequence in Pd, and let (xn)n≥1 be a sequence of points in Rd. Then,

(1) the family (xn, rn)n≥1 is an approximation system;
(2) the family (xn, rn)n≥1 is a homogeneous ubiquitous system in U if and

only if the sequence (xn)n≥1 is eutaxic in U with respect to (rn)n≥1.

Combining Proposition 6.1 with Proposition 4.4, we easily observe that a se-
quence (xn)n≥1 is eutaxic with respect to (rn)n≥1 if and only if it is eutaxic with
respect to (c rn)n≥1, for any fixed real number c > 0. Thus, the fact that a sequence
is eutaxic does not depend on the choice of the norm on the space Rd.

Besides, Proposition 6.1 invites us to consider the problem of the approximation
within distances rn by the points xn. Accordingly, the sets Ft defined by (87) in
the general setting are now given by

Ft =
{
x ∈ Rd

∣∣ |x− xn| < rtn for i.m. n ≥ 1
}
, (107)

and their size and large intersection properties may be studied by specializing the
results of Chapters 4 and 5. This results in the next statement.

Theorem 6.1. Let (xn)n≥1 be a sequence of points in Rd that is eutaxic in
some nonempty open subset U of Rd, with respect to some sequence (rn)n≥1 in Pd.
We assume further that the series

∑
n r

s
n is convergent for all s > d. Then, for any

real number t ≥ 1,

dimH(Ft ∩ U) =
d

t
and Ft ∈ Gd/t(U).

Proof. The convergence assumption on the series
∑
n r

s
n implies that the pa-

rameter sU defined by (90) is bounded above by d regardless of the choice of the
open set U . Moreover, the family (xn, rn)n≥1 is a homogeneous ubiquitous system
in U , by virtue of Proposition 6.1. Therefore, we may apply Corollary 4.1, and de-
duce that the set Ft ∩U has Hausdorff dimension equal to d/t for any real number
t > 1. For the same reason, due to Theorem 5.4, the set Ft belongs to the large
intersection class Gd/t(U). Finally, the result clearly holds for t = 1, because the
set F1 has full Lebesgue measure in U . �

6.1.2. Uniform eutaxy. Rather than the sequencewise, the notion of uni-
form eutaxy is the one that was introduced by Lesca [43] and subsequently studied
by Reversat [49]. Uniform eutaxy is obtained when sequencewise eutaxy holds
regardless of the choice of the sequence (rn)n≥1 in the collection Pd.

Definition 6.2. Let U be a nonempty open subset of Rd. A sequence (xn)n≥1

of points in Rd is called uniformly eutaxic in U if the following condition holds:

∀(rn)n≥1 ∈ Pd for Ld-a.e. x ∈ U ∃ i.m. n ≥ 1 |x− xn| < rn.

As regards the aforementioned approximation problem, we may improve The-
orem 6.1 when the eutaxy property of the underlying sequence (xn)n≥1 is uniform.
Specifically, as shown by the next result, we may slightly relax the condition on the
sequence (rn)n≥1 that comes into play in the definition (107) of the sets Ft, and
obtain the same size and large intersection properties.

Theorem 6.2. Let (xn)n≥1 be a sequence of points in Rd that is uniformly
eutaxic in some nonempty open subset U of Rd, and let (rn)n≥1 be a nonincreasing
sequence of positive real numbers such that{

s < d =⇒
∑
n r

s
n =∞

s > d =⇒
∑
n r

s
n <∞.

(108)
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Then, for any real number t ≥ 1,

dimH(Ft ∩ U) =
d

t
and Ft ∈ Gd/t(U).

Proof. The proof is an adaptation of that of Theorem 6.1. Again, due to the
convergence assumption on the series, the parameter sU defined by (90) is bounded
above by d. The upper bound on the Hausdorff dimension then follows directly from

Proposition 4.1. Furthermore, for any s ∈ (0, d), the sequence (r
s/d
n )n≥1 belongs

to Pd, so Proposition 6.1 implies that (xn, r
s/d
n )n≥1 is a homogeneous ubiquitous

system in U . Therefore, for any t ≥ 1, we may apply Theorems 4.1 and 5.4 with the
approximation radii raised to the power dt/s > 1 instead of t, thereby obtaining

dimH(Ft ∩ U) ≥ s

t
and Ft ∈ Gs/t(U).

The required lower bound on the Hausdorff dimension clearly follows from letting
s tend to d. The large intersection property follows the fact that the class Gd/t(U)
is the intersection over s ∈ (0, d) of the classes Gs/t(U), see Definition 5.2. �

It is clear that Theorem 6.2 may be extended to a wider range of sequences of
approximating radii than those satisfying (108). More precisely, let us consider a
nonincreasing sequence r = (rn)n≥1 of positive real numbers such that{

s < sr =⇒
∑
n r

s
n =∞

s > sr =⇒
∑
n r

s
n <∞.

(109)

for some positive real number sr. We may thus apply Theorem 6.2 with the sequence

(r
sr/d
n )n≥1, because it satisfies (108). Performing the appropriate change of variable,

we deduce a description of the size and large intersection properties of the sets Ft
corresponding to the original sequence r = (rn)n≥1 ; specifically,

dimH(Ft ∩ U) =
sr

t
and Ft ∈ Gsr/t(U)

for any real t ≥ sr/d. Besides, note that all the sets Ft, for t < sr/d, have Hausdorff
dimension d and belong to the class Gd(U), because they contain Fsr/d.

6.2. Criteria for uniform eutaxy

6.2.1. A sufficient condition for uniform eutaxy. We now establish a
criterion implying the uniform eutaxy of a sequence of points. This criterion is
expressed in terms of the dyadic cubes of Rd. Let us recall from Section 2.6.3 that
a dyadic cube is either the empty set or a set of the form

λ = 2−j(k + [0, 1)d),

with j ∈ Z and k ∈ Zd, and that the collection of all dyadic cubes is denoted by
Λ. Moreover, the generation of such a dyadic cube λ, i.e. the integer j, is denoted
by 〈λ〉. Finally, for any point x ∈ Rd and any integer j ∈ Z, there exists a unique
dyadic cube with sidelength 2−j that contains x ; this cube is denoted by λj(x).

Let us now fix a sequence (xn)n≥1 of points in Rd. For any nonempty dyadic
cube λ ∈ Λ and any integer j ≥ 0, let us define a collection M((xn)n≥1;λ, j) of
dyadic cubes by the following condition:

λ′ ∈ M((xn)n≥1;λ, j) ⇐⇒


λ′ ⊆ λ
〈λ′〉 = 〈λ〉+ j

xn ∈ λ′ for some n ≤ 2d〈λ
′〉.

It will be clear from the context what underlying sequence (xn)n≥1 is considered,
and there should be no confusion if we decide to write M(λ, j) as a shorthand for
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M((xn)n≥1;λ, j). It is obvious that the cardinality of the set M(λ, j) is bounded
above by 2dj . When it is bounded below by a fraction of 2dj , the sequence (xn)n≥1

is uniformly eutaxic, as shown by the following criterion.

Theorem 6.3. Let U be a nonempty open subset of Rd and let (xn)n≥1 be a
sequence of points in Rd. Let us assume that

for Ld-a.e. x ∈ U lim inf
j0,j→∞

2−dj#M((xn)n≥1;λj0(x), j) > 0. (110)

Then, the sequence (xn)n≥1 is uniformly eutaxic in U .

The remainder of this section is devoted to the proof of Theorem 6.3. It relies
on the next useful measure-theoretic lemma that is excerpted from Sprindžuk’s
book [59] and that we establish first.

Lemma 6.1. Let µ be an outer measure on Rd such that µ(Rd) is finite, and
let (En)n≥1 be a sequence of µ-measurable sets such that

∞∑
n=1

µ(En) =∞. (111)

Then, the set of points that belong to infinitely many sets En satisfies

µ

(
lim sup
n→∞

En

)
≥ lim sup

N→∞

(
N∑
n=1

µ(En)

)2

N∑
m=1

N∑
n=1

µ(Em ∩ En)

.

Proof. We begin by writing the limsup set under examination in the form

lim sup
n→∞

En =

∞⋂
M=1

↓
∞⋃

n=M

En.

Letting FNM denote the union of the sets En over all integers n ∈ {M, . . . , N}, and
using Proposition 2.5, we deduce that

µ

(
lim sup
n→∞

En

)
≥ lim
M→∞

↓ lim
N→∞

↑ µ(FNM ).

The µ-mass of the union set FNM may be estimated thanks to the second-moment
method. To be specific, the Cauchy-Schwarz inequality gives(∫

Rd
1FNM (y)

N∑
n=M

1En(y)µ(dy)

)2

≤ µ(FNM )

∫
Rd

(
N∑

n=M

1En(y)

)2

µ(dy).

The left-hand side above is clearly equal to the square of the sum over all integers
n ∈ {M, . . . , N} of the µ-masses of the sets En, and is therefore equivalent to(

N∑
n=1

µ(En)

)2

as N goes to infinity and M remains fixed, due to (111). Likewise, the integral in
the right-hand side coincides with the sum over all integers m,n ∈ {M, . . . , N} of
the µ-masses of the sets Em ∩ En, which is equal to

N∑
m=1

N∑
n=1

µ(Em ∩ En) + O

(
N∑
n=1

µ(En)

)
.

The result follows from combining all the previous estimates, and using (111) again
in order to get rid of the remainder term above. �
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We are now in position to detail the proof of Theorem 6.3. The fact that a
sequence is uniformly eutaxic clearly does not depend on the choice of the norm; we
thus assume throughout the proof that Rd is equipped with the supremum norm.
Let us consider a nonempty open subset U of Rd and a sequence (xn)n≥1 of points in
Rd such that (110) holds for Lebesgue-almost every x ∈ U . Our goal is to establish
that for any sequence (rn)n≥1 chosen in advance in Pd, the set F1, i.e. the set Ft
obtained by choosing t = 1 in (107), has full Lebesgue measure in U . To proceed,
let U∗ denote the set of all points x in U such that (110) holds and none of the
coordinates of x is a dyadic number. Then, U∗ has full Lebesgue measure in U .
Furthermore, for any x ∈ U∗, there exist a real number α(x) > 0 and an integer
j(x) ≥ 0 such that

∀j0, j ≥ j(x) #M(λj0(x), j) ≥ α(x) 2dj .

The proof now reduces to showing that there is a real number κ > 0 such that

∀j0 ≥ j(x) Ld(F1 ∩ λj0(x)) ≥ κα(x)2Ld(λj0(x)). (112)

Indeed, (112) implies that the density of the set F1 at the point x is positive.
Therefore, if this holds for any x in U∗, then the Lebesgue density theorem shows
that Lebesgue-almost every point of U∗ belongs to F1, see [46, Corollary 2.14]. As
a result, F1 has full Lebesgue measure in U .

It now remains to show that any point x in U∗ satisfies (112). For any fixed
integer j0 ≥ j(x), we begin by observing that for any integer j ≥ j(x), there exists

a set Sj(x, j0) ⊆ {1, . . . , 2d(j0+j)} with:

• #Sj(x, j0) ≥ α(x) 2d(j−1) ;
• xn ∈ λj0(x) for any n ∈ Sj(x, j0) ;

• |xn − xn′ |∞ ≥ 2−(j0+j) for any distinct n, n′ ∈ Sj(x, j0).

Indeed, for each β ∈ {0, 1}d, let us consider the cubes in M(λj0(x), j) of the form

2−(j0+j)(k+[0, 1)d), where the coordinates of k are equal to those of β modulo two.
For a suitable β, there are at least 2−d #M(λj0(x), j) such cubes. The result then

follows from the observation that these cubes are at a distance at least 2−(j0+j) of
each other and that each cube contains at least a point xn with n ≤ 2d(j0+j).

Then, let us define r̃n = min{rn, 1/(2n1/d)} for each n ≥ 1. We thereby obtain
another sequence (r̃n)n≥1 in Pd. Indeed, otherwise, the sequence (r̃dn)n≥1 would be
nonincreasing and have a finite sum, so that nr̃dn would tend to zero as n goes to
infinity. Thus, r̃n would be equal to rn for n large enough and the series

∑
n r

d
n

would converge, contradicting the assumption that (rn)n≥1 belongs to Pd. Now,
for any integer j ≥ j(x), let us consider the set

Vj(x, j0) =
⋃

n∈Sj(x,j0)

B∞(xn, ρj0+j),

where ρj is a shorthand for r̃2dj . Since the sequence (r̃n)n≥1 is nonincreasing and
converges to zero, all the points in the limsup of these sets, except maybe those

forming the sequence (xn)n≥1, belong to both the closure of λj0(x) and the set F̃1

obtained by replacing rn by r̃n in the definition of F1. Therefore,

Ld
(

lim sup
j→∞

Vj(x, j0)

)
≤ Ld

(
F̃1 ∩ λj0(x)

)
≤ Ld(F1 ∩ λj0(x)).

Hence, to obtain (112), it suffices to provide an appropriate lower bound on the
Lebesgue measure of the limsup of the sets Vj(x, j0). This may be done with the
help of Lemma 6.1. In fact, the sets Vj(x, j0) are all contained in the closure of the
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cube λj0(x), so that we may apply this lemma with the restriction of the Lebesgue
measure to this closed cube. The resulting lower bound yields

Ld(F1 ∩ λj0(x)) ≥ lim sup
J→∞

(
J∑

j=j(x)

Ld(Vj(x, j0))

)2

J∑
j=j(x)

J∑
j′=j(x)

Ld(Vj(x, j0) ∩ Vj′(x, j0))

. (113)

However, we need to make sure that Lemma 6.1 may be applied, i.e. we need
to check the divergence condition

∞∑
j=j(x)

Ld(Vj(x, j0)) =∞. (114)

To this end, we observe that for any j ≥ j(x) and any distinct n and n′ in Sj(x, j0),
the two open balls with common radius ρj0+j and center xn and xn′ , respectively,
are disjoint. Otherwise, any point y in their intersection would satisfy

|xn − xn′ |∞ ≤ |y − xn|∞ + |y − xn′ |∞ < 2ρj0+j ≤ 2−(j0+j),

which would contradict the third property of the set Sj(x, j0) given above. As a
result, the balls forming the set Vj(x, j0) are disjoint, so that

Ld (Vj(x, j0)) = (2ρj0+j)
d #Sj(x, j0) ≥ α(x) 2dj ρdj0+j . (115)

In order to derive (114), we finally use the fact that the sequence (r̃n)n≥1 is nonin-
creasing, as this enables us to write that

2dj0(2d − 1)

∞∑
j=j(x)

2dj ρdj0+j ≥
∞∑

j=j0+j(x)

2d(j+1)−1∑
n=2dj

r̃dn =∞. (116)

To obtain (112), and thus complete the proof, it suffices to combine the lower
bound (113) with the following inequality that holds for any integer J sufficiently
large and that we now establish:

J∑
j=j(x)

J∑
j′=j(x)

Ld (Vj(x, j0) ∩ Vj′(x, j0)) ≤ 2d(j0+4)

α(x)2

 J∑
j=j(x)

Ld (Vj(x, j0))

2

. (117)

Let us consider two integers j and j′ such that j(x) ≤ j < j′. With a view to giving
an upper bound on the Lebesgue measure of the intersection of the sets Vj(x, j0)
and Vj′(x, j0), let us observe that for any integer n ∈ Sj(x, j0),

B∞(xn, ρj0+j) ∩ Vj′(x, j0) =
⋃

n′∈Sj′ (x,j0)

(B∞(xn, ρj0+j) ∩ B∞(xn′ , ρj0+j′)) .

The points xn′ , with n′ ∈ Sj′(x, j0) such that this last intersection is nonempty, all
lie in the open ball with center xn and radius 2ρj0+j . Moreover, there are at most

(2j0+j′+2ρj0+j + 2)d cubes with generation j0 + j′ that intersect this ball and each
of them contains at most one of the points xn′ . Thus,

Ld(B∞(xn, ρj0+j) ∩ Vj′(x, j0)) ≤ (2j0+j′+2ρj0+j + 2)d(2ρj0+j′)
d

≤ 23d−1ρdj0+j′(1 + 2d(j0+j′+1)ρdj0+j).

Along with the fact that there are at most 2dj integers in Sj(x, j0), this yields

Ld (Vj(x, j0) ∩ Vj′(x, j0)) ≤ 2d(j+3)−1ρdj0+j′(1 + 2d(j0+j′+1)ρdj0+j).
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As a consequence, for any integer J ≥ j(x), the left-hand side of (117) is at most

2d
J∑

j=j(x)

2djρdj0+j + 23d
∑
j,j′

2djρdj0+j′ + 24d
∑
j,j′

2d(j0+j+j′)ρdj0+jρ
d
j0+j′ ,

where the second and third sums are both over the integers j and j′ that satisfy
j(x) ≤ j < j′ ≤ J . Note that the second sum is equal to

J∑
j′=j(x)+1

2dj
′
ρdj0+j′

j′−1∑
j=j(x)

2d(j−j′) ≤ 1

2d − 1

J∑
j′=j(x)+1

2dj
′
ρdj0+j′ ,

and the third sum is obviously smaller than half the sum bearing on all the integers
j and j′ between j(x) and J . Thus, the left-hand side of (117) is at most

(
2d +

23d

2d − 1

)
2−dj0

J∑
j=j(x)

2d(j0+j)ρdj0+j + 24d−12−dj0

 J∑
j=j(x)

2d(j0+j)ρdj0+j

2

.

In view of (116), the first sum tends to infinity as J → ∞, thereby being larger
than one, and thus smaller than its square, for J large enough. The left-hand side
of (117) is therefore bounded above by

2−d(j0−4)

 J∑
j=j(x)

2d(j0+j)ρdj0+j

2

,

for any integer J sufficiently large, and this bound leads to the right-hand side
of (117) with the help of (115). The proof of Theorem 6.3 is complete.

6.2.2. A necessary condition for uniform eutaxy. It is not known whether
Theorem 6.3 also yields a necessary condition for uniform eutaxy. However, note
that the sufficient condition (110) clearly holds if

inf
λ∈Λ\{∅}
λ⊆U

lim inf
j→∞

2−dj#M((xn)n≥1;λ, j) > 0. (118)

Moreover, it is plain that this stronger assumption fails when the liminf vanishes
for some nonempty dyadic cube λ. The next result shows that, in this situation,
the sequence under consideration cannot be uniformly eutaxic.

Theorem 6.4. Let U be a nonempty open subset of Rd and let (xn)n≥1 be a
sequence of points in Rd. Let us assume that

∃λ ∈ Λ \ {∅}

{
λ ⊆ U
lim inf
j→∞

2−dj#M((xn)n≥1;λ, j) = 0.

Then, the sequence (xn)n≥1 is not uniformly eutaxic in U .

Proof. As in the proof of Theorem 6.3, we endow Rd with the supremum
norm. Let us consider an integer j ≥ 0 and, on the one hand, let us define the set

Uj =
⋃

n≤2d(〈λ〉+j)
xn∈λ

B∞(xn, 2
−(〈λ〉+j)). (119)

If λ′ is a nonempty dyadic subcube of λ, let λ̃′ stand for the open cube concentric
with λ′ with triple sidelength. If moreover λ′ has generation 〈λ〉 + j and contains
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some point xn, then λ̃′ contains the ball in (119) that is centered at this xn. Hence,

Uj =
⋃
λ′⊆λ

〈λ′〉=〈λ〉+j

⋃
n≤2d〈λ′〉
xn∈λ′

B∞(xn, 2
−〈λ′〉) ⊆

⋃
λ′∈M(λ,j)

λ̃′,

from which it directly follows that

Ld(Uj) ≤ 3d2−d(〈λ〉+j)#M(λ, j).

On the other hand, let us consider the set U ′j obtained by replacing in (119) the
condition xn ∈ λ by the conjunction of the fact that xn 6∈ λ and that the open
ball with center xn and radius 2−(〈λ〉+j) meets the cube λ. In that case, the ball
actually meets the boundary of the cube λ. This means that each point of U ′j is

within distance 21−(〈λ〉+j) from this boundary, and thus

Ld(U ′j) ≤ (2−〈λ〉 + 22−(〈λ〉+j))d − (2−〈λ〉 − 22−(〈λ〉+j))d

≤ 23−d〈λ〉−j
d−1∑
`=0

(1 + 22−j)d−1−`(1− 22−j)` ≤ 5d23−d〈λ〉−j ,

with the proviso that j ≥ 2. As a consequence, summing the two above upper
bounds and letting j go to infinity, we deduce that

lim inf
j→∞

Ld
λ ∩ 2d(〈λ〉+j)⋃

n=1

B∞(xn, 2
−(〈λ〉+j))

 ≤ 3d2−d〈λ〉 lim inf
j→∞

2−dj#M(λ, j),

because the set in the left-hand side is contained in the union of Uj and U ′j .
We now make use of the assumption bearing on the cube λ, namely, that

the lower limit in the right-hand side vanishes. Thus, we may find an increasing
sequence (jm)m≥1 of nonnegative integers such that j1 = 0 and for all m ≥ 1,

Ld
λ ∩ 2d(〈λ〉+jm+1)⋃

n=2d(〈λ〉+jm)+1

B∞(xn, 2
−(〈λ〉+jm+1))

 ≤ 2−m.

For simplicity, we define nm = 2d(〈λ〉+jm) for all m ≥ 1, and also n0 = 0. We then
consider the unique sequence (rn)n≥1 such that

∀m ≥ 0 ∀n ∈ {nm + 1, . . . , nm+1} rn = n
−1/d
m+1 .

Clearly, this sequence is nonincreasing and converges to zero. Moreover, for any
integer m ≥ 0,

nm+1∑
n=nm+1

rdn = 1− nm
nm+1

≥ 1− 2−d,

so that the series
∑
n r

d
n is divergent. We may therefore conclude that the sequence

(rn)n≥1 belongs to the collection Pd.
On top of that, for any integer m ≥ 1, we have

Ld
λ ∩ ∞⋃

n=nm+1

B∞(xn, rn)

 ≤ ∞∑
m=m

Ld
(
λ ∩

nm+1⋃
n=nm+1

B∞(xn, n
−1/d
m+1 )

)
.

By definition of the integers nm, the summand in the right-hand side is bounded
above by 2−m, so that the whole sum is bounded by 2−m+1. The left-hand side
thus converges to zero when m tends to infinity. We deduce that

Ld
(
λ ∩ lim sup

n→∞
B∞(xn, rn)

)
≤ inf
m≥1
Ld
(
λ ∩

∞⋃
n=m

B∞(xn, rn)

)
= 0,
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which implies that the sequence (xn)n≥1 cannot be uniformly eutaxic in U . �

6.3. Fractional parts of linear sequences

We shall show in this section that the fractional parts of linear sequences yield
emblematic examples of eutaxic sequences. Recall that {x} stands for coordinate-
wise fractional part of the point x ∈ Rd, and belongs to the unit cube [0, 1)d. The
sequences that we consider throughout are of the form ({nx})n≥1 with x in Rd.

6.3.1. Uniform distribution modulo one. We shall invoke below a well
known property satisfied by the sequences ({nx})n≥1, specifically, they derive from
sequences (nx)n≥1 that are uniformly distributed in the sense of the next definition.

Definition 6.3. A sequence (xn)n≥1 of points in Rd is uniformly distributed
modulo one if for any points (a1, . . . , ad) and (b1, . . . , bd) in [0, 1)d such that ai ≤ bi
for all i ∈ {1, . . . , d}, we have

lim
N→∞

1

N
#

{
n ∈ {1, . . . , N}

∣∣∣∣∣ {xn} ∈
d∏
i=1

[ai, bi)

}
=

d∏
i=1

(bi − ai).

It is easy to remark that the notion is unchanged if the point (a1, . . . , ad) is
chosen to be equal to zero in the above definition. When trying to prove that
a sequence is uniformly distributed modulo one, we may call upon the following
criterion due to Weyl, see e.g. Theorems 1.4 and 1.19 in [17].

Theorem 6.5 (Weyl’s criterion). For any sequence (xn)n≥1 of points in Rd,
the following assertions are equivalent:

(1) the sequence (xn)n≥1 is uniformly distributed modulo one;
(2) for any nonnegative Zd-periodic Riemann-integrable function f defined on

Rd, the following limit holds:

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1)d

f(x) dx ; (120)

(3) for any complex-valued Zd-periodic continuous function f defined on Rd,
the limit (120) holds;

(4) for every vector q ∈ Zd \ {0},

lim
N→∞

1

N

N∑
n=1

e2ıπq·xn = 0.

Proof. We begin by proving that (1) entails (2), and that (2) itself implies (3).

By linearity, it follows directly from (1) that (120) holds for f(x) = f̃({x}), where f̃
is step function defined on [0, 1)d, i.e. a conical combination of indicator functions

of half-open rectangles contained in [0, 1)d. Let us now suppose that f(x) = f̃({x}),
where f̃ is a nonnegative Riemann-integrable function defined on [0, 1)d. Then, for

all ε > 0, there are two step functions f̃1 and f̃2 such that f̃1 ≤ f̃ ≤ f̃2 and∫
[0,1)d

(f̃2(x)− f̃1(x)) dx < ε.

Observing that (120) holds for f̃1({x}), we infer that∫
[0,1)d

f(x) dx− ε ≤
∫

[0,1)d
f̃1(x) dx = lim

N→∞

1

N

N∑
n=1

f̃1({xn}) ≤ lim inf
N→∞

1

N

N∑
n=1

f(xn).
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Similarly, since (120) holds for f̃2({x}) as well, we also get

lim sup
N→∞

1

N

N∑
n=1

f(xn) ≤
∫

[0,1)d
f(x) dx+ ε.

It is now clear that the function f satisfies (120) too, i.e. that (2) is valid. Further-
more, this result may straightforwardly be extended to complex-valued Zd-periodic
functions, and (3) subsequently follows from the simple observation that continuous
functions are Riemann-integrable.

Conversely, we observe that the indicator function of a subrectangle of [0, 1)d

may be sandwiched between two continuous functions whose integrals are arbitrarily
close. Thus, the above approach may be adapted to establish that (3) implies (1).

Finally, specializing (3) to complex exponential functions, we readily obtain (4).
Conversely, (4) implies by linearity that (120) holds for all trigonometric polynomi-
als, and the Stone-Weierstrass theorem allows us to extend this property to general
complex-valued Zd-periodic functions, thereby obtaining (3). �

Applying Theorem 6.5 to the sequences (nx)n≥1 leads to the following state-
ment. The proof is elementary and left to the reader.

Theorem 6.6. Let us consider a point x = (x1, . . . , xd) in Rd. Then, the
sequence (nx)n≥1 is uniformly distributed modulo one if and only if the real numbers
1, x1, . . . , xd are linearly independent over Q.

It is clear from Definition 6.3 that if a sequence (xn)n≥1 of points in Rd is
uniformly distributed modulo one, then the reduced sequence ({xn})n≥1 is dense
in [0, 1)d. Therefore, the above theorem enables us to recover a classical result due
to Kronecker concerning the density of the sequence ({nx})n≥1. One thus may
regard Theorem 6.6 as a measure theoretic analog of Kronecker’s result.

Theorem 6.7 (Kronecker). Let us consider a point x = (x1, . . . , xd) in Rd.
Then, the sequence ({nx})n≥1 is dense in the unit cube [0, 1)d if and only if the real
numbers 1, x1, . . . , xd are linearly independent over Q.

Proof. If the real numbers 1, x1, . . . , xd are linearly independent over Q, the
result is due to Theorem 6.6 and the observation that follows its statement. In the
opposite case, there exist mutually coprime integers r, s1, . . . , sd with

s1x1 + . . .+ sdxd = r.

Hence, for any integer n ≥ 1, the coordinates of the point {nx} satisfy

s1{nx1}+ . . .+ sd{nxd} = nr − s1bnx1c − . . .− sdbnxdc ∈ Z.

This means in particular that the point {nx} lies in some hyperplane with normal
vector s = (s1, . . . , sd) whose distance to the origin is an integer multiple of the
inverse of the Euclidean norm of s. Only finitely many such hyperplanes intersect
the cube [0, 1)d, so the sequence ({nx})n≥1 is clearly not dense in [0, 1)d. �

The badly approximable points will play a particularly important rôle when
studying uniform eutaxy properties in Section 6.3.3 below. Hence, it is worth
pointing out now a simple connection with linear independence over the rationals.
In accordance with Section 1.3 where it is defined, the set of badly approximable
points is denoted by Badd in what follows.

Lemma 6.2. Let us consider a point x = (x1, . . . , xd) in Badd. Then, the real
numbers 1, x1, . . . , xd are linearly independent over Q.
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Combining this result with Theorems 6.6 and 6.7, we directly deduce that when
x is a badly approximable point, the sequence (nx)n≥1 is uniformly distributed
modulo one, and the reduced sequence ({nx})n≥1 is dense in the unit cube [0, 1)d.
We shall establish hereafter that the latter sequence is in fact uniformly eutaxic in
the open cube (0, 1)d : this is Kurzweil’s theorem, see Theorem 6.9.

The proof of Lemma 6.2 makes use of several notations that we now introduce.
The distance to the nearest integer point is defined by

‖z‖ = inf
p∈Zd

|z − p|∞ (121)

for every point z in Rd. This enables us to extend the definition (24) of the exponent
κ to the higher-dimensional case. Specifically, if x is in Rd, we define

κ(x) = lim inf
q→∞

q1/d ‖qx‖ . (122)

If the point x has rational coordinates, then κ(x) clearly vanishes. Otherwise, we
may use the corollary to Dirichlet’s theorem, that is, Corollary 1.1 to prove that κ(x)
is bounded above by one. Finally, similarly to (30), the exponent κ characterizes
the badly approximable points, namely,

x ∈ Badd ⇐⇒ κ(x) > 0. (123)

Now that these notations are set, we may detail the proof of the lemma.

Proof of Lemma 6.2. We argue by contradiction. Let us assume the exis-
tence of integers r, s1, . . . , sd that do not vanish simultaneously and satisfy

s1x1 + . . .+ sdxd = r.

Up to rearranging the coordinates of x and multiplying the above equation by minus
one, we may assume that sd ≥ 1. Now, given q in N and p = (p1, . . . , pd−1) in Zd−1,
we define q′ = sdq, as well as p′i = sdpi for i ∈ {1, . . . , d− 1} and

p′d = rq − s1p1 − . . .− sd−1pd−1.

If the index i is different from d, it is clear that q′xi − p′i is equal to sd(qxi − pi).
Moreover, concerning the d-th coordinate, we have

q′xd − p′d = s1(p1 − qx1) + . . .+ sd−1(pd−1 − qxd−1).

Letting | · |1 stand as usual for the taxicab norm and letting s denote the d-tuple
(s1, . . . , sd), we infer that

max
i∈{1,...,d}

|q′xi − p′i|∞ ≤ |s|1 max
i∈{1,...,d−1}

|qxi − pi|∞.

Taking the infimum over all (d − 1)-tuples p, we deduce that ‖sdqx‖ is bounded
above by |s|1 times ‖q(x1, . . . , xd−1)‖, from which it follows that

(sdq)
1/d ‖sdqx‖ ≤

|s|1s1/d
d

q1/(d(d−1))

(
q1/(d−1) ‖q(x1, . . . , xd−1)‖

)
.

Since κ(x1, . . . , xd−1) is bounded above by one, there is an infinite set of integers
q on which the term in parentheses in the above right-hand side is bounded. As
this term is then divided by q1/(d(d−1)), the latter upper bound implies that κ(x)
vanishes, thereby contradicting the fact that x is badly approximable. �
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6.3.2. Sequencewise eutaxy. We now turn our attention to the eutaxy of
the fractional parts of linear sequences, and its consequences in terms of Diophan-
tine approximation. We start with the sequencewise version of that notion. The
main result is then the following.

Theorem 6.8. Let (rn)n≥1 be a sequence in Pd. Then, for Ld-almost every
point x ∈ Rd, the sequence ({nx})n≥1 is eutaxic in (0, 1)d with respect to (rn)n≥1.

Proof. As mentioned above, changing the norm does not alter the notion
of eutaxy, so we assume for convenience that the space Rd is endowed with the
supremum norm. For any integer n ≥ 1 and any point p ∈ Zd, we consider the set

Un,p =
{

(x, y) ∈ Rd × Rd
∣∣ |y − nx− p|∞ < rn

}
.

Such an integer n being fixed, the union over all points p ∈ Zd of the sets Un,p is
then denoted by Vn. We also consider the two sets defined by

S = [0, 1)d × [0, 1)d and L = [0, 1)d × Rd.

Now, it is elementary to observe that (x, y) belongs to Un,p if and only if
(x, y− p) belongs to Un,0. Moreover, the sequence (rn)n≥1 converges to zero, so we
may assume that rn ≤ 1/2, up to choosing n sufficiently large. This guarantees the
disjointness of the sets Un,p, for p ranging in Zd, and enables us to write that

L2d(S ∩ Vn) =
∑
p∈Zd

L2d(S ∩ Un,p) =
∑
p∈Zd

L2d(Sp ∩ Un,0) = L2d(L ∩ Un,0),

where Sp stands for the product of the cubes [0, 1)d and −p + [0, 1)d. The last
equality is due to the observation that the set L is the disjoint union of the sets Sp.
Likewise, we have

L2d(S ∩ Vm ∩ Vn) =
∑
p∈Zd

L2d(S ∩ Vm ∩ Un,p)

=
∑
p∈Zd

L2d(Sp ∩ Vm ∩ Un,0) = L2d(L ∩ Vm ∩ Un,0).

Here, we used the additional observation that the set Vm is invariant under the
translations of the form (x, y) 7→ (x, y − p), where p is in the set Zd.

In order to compute the Lebesgue measure of the set L∩Un,0, we consider two
points x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, and we remark that

(x, y) ∈ L ∩ Un,0 ⇐⇒ ∀i ∈ {1, . . . , d}

{
0 ≤ xi < 1

|yi − nxi| < rn.

For each index i, the pairs (xi, yi) for which the latter condition holds form a set
with Lebesgue measure clearly equal to 2rn. Therefore,

L2d(L ∩ Un,0) = (2rn)d.

In a similar fashion, the Lebesgue measure of the set L∩Vm∩Un,0 may be determined
by observing that

(x, y) ∈ L ∩ Vm ∩ Un,0 ⇐⇒ ∀i ∈ {1, . . . , d} ∃pi ∈ Z


0 ≤ xi < 1

|yi −mxi − pi| < rm

|yi − nxi| < rn.

We assume again that m is large enough to ensure that rm ≤ 1/2, and we also
assume that n > m. Then, for every index i, the set of pairs (xi, yi) for which the
latter condition holds is the disjoint union of n−m+ 1 sets, each corresponding to
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a specific value of pi in {0, . . . , n −m}. If 0 < pi < n −m, the corresponding sets
are parallelograms that are defined by the vectors

2rn
n−m

(1,m) and
2rm
n−m

(1, n),

and that may be deduced from one another with the help of the translation by
vector (1, n)/(n − m). The area of each of these parallelograms is thus given by
the determinant of the above vectors, namely, 4rmrn/(n − m). Besides, when pi
is equal to zero and to n −m, we obtain the two halves of a parallelogram of the
previous form. Finally, the total Lebesgue measure of the n−m+ 1 disjoint sets is
equal to 4rmrn. We deduce that

n > m =⇒ L2d(L ∩ Vm ∩ Un,0) = (4rmrn)d.

The upshot is that for all integers m and n sufficiently large to ensure that rm
and rn are both bounded above by 1/2, we have

L2d(S ∩ Vn) = (2rn)d and L2d(S ∩ Vm ∩ Vn) = (4rmrn)d.

Moreover, in the opposite case where rn > 1/2, it is clear that the set Vn coincides
with the whole space Rd × Rd. Therefore, we may drop the assumption on the
integers m and n, up to replacing rn by r̃n = min{rn, 1/2} in the above formula
and replacing rm by a similar value r̃m. In particular, we have

L2d(S ∩ Vm ∩ Vn) = L2d(S ∩ Vm) · L2d(S ∩ Vn)

for all integers m,n ≥ 1. Moreover, given that the sequence (rn)n≥1 belongs to the
collection Pd, we also have

∞∑
n=1

L2d(S ∩ Vn) =

∞∑
n=1

(2r̃n)d =∞.

The hypotheses of Lemma 6.1 are thus satisfied by the restriction of the Lebesgue
measure to the set S, along with the sequence of sets (Vn)n≥1. Applying this lemma,
we conclude that

L2d

(
S ∩ lim sup

n→∞
Vn

)
≥ lim sup

N→∞

(
N∑
n=1
L2d(S ∩ Vn)

)2

N∑
m=1

N∑
n=1
L2d(S ∩ Vm ∩ Vn)

= 1 = L2d(S).

As the sets Vn are invariant under the translations of the form (x, y) 7→ (x+p, y+q),
where p and q are in the set Zd, we deduce that

L2d

(
R2d \ lim sup

n→∞
Vn

)
= 0.

This means in particular that for Lebesgue-almost every point x ∈ Rd, the set

Yx = {y ∈ (0, 1)d | (x, y) ∈ Vn for i.m. n ≥ 1}
has full Lebesgue measure in (0, 1)d. Now, given a real number ε ∈ (0, 1/2), let us
consider a point y belonging to both Yx and (ε, 1− ε)d. Then, for infinitely many
integers n ≥ 1, there exists a point pn ∈ Zd such that (x, y) ∈ Un,pn , that is,

|y − nx− pn|∞ < rn.

Letting b · c stand for the coordinate-wise floor function and letting h denote the
point in Rd with all coordinates equal to 1/2, we have

|bnxc+ pn|∞ ≤ |y − nx− pn|∞ + |{nx} − h|∞ + |y − h|∞

< rn +
1

2
+

(
1

2
− ε
)

= 1− ε+ rn < 1.
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The last inequality holds for n large enough, because the sequence (rn)n≥1 converges
to zero. In that situation, the point pn is necessarily equal to −bnxc. Hence,

Yx ∩ (ε, 1− ε)d ⊆
{
y ∈ (0, 1)d

∣∣ |y − {nx}|∞ < rn for i.m. n ≥ 1
}
.

The set in the left-hand side has Lebesgue measure equal to (1 − 2ε)d. We may
then let ε tend to zero, thereby concluding that the set in the right-hand side has
Lebesgue measure equal to one. �

We may now apply Theorem 6.1 to the example supplied by Theorem 6.8. Here,
the formula (107) for the sets Ft gives rise to the sets

Ft(x) =
{
y ∈ Rd

∣∣ |y − {nx}| < rtn for i.m. n ≥ 1
}
,

where x is chosen according to the Lebesgue measure. Due to the aforementioned
results, we then know that for any sequence (rn)n≥1 in Pd such that

∑
n r

s
n con-

verges for all s > d, and for Lebesgue-almost every point x ∈ Rd, we have both

dimH(Ft(x) ∩ U) =
d

t
and Ft(x) ∈ Gd/t(U) (124)

for any real number t ≥ 1 and for any nonempty open subset U of (0, 1)d. In
the context of metric Diophantine approximation, it is customary to recast such a
result with the help of the distance to the nearest integer point defined by (121).
We may now easily deduce the next result from (124).

Corollary 6.1. Let (rn)n≥1 be a sequence in Pd such that
∑
n r

s
n converges

for all s > d. For any real number t ≥ 1, let us define the set

F ′t (x) =
{
y ∈ Rd

∣∣ ‖y − nx‖ < rtn for i.m. n ≥ 1
}
.

Then, for Lebesgue-almost every point x ∈ Rd,

∀t ≥ 1 dimH F
′
t (x) =

d

t
.

Proof. One easily checks that for all x ∈ Rd and t > 1, the set F ′t (x) contains
the set Ft(x) ∩ (0, 1)d. The lower bound on the dimension then readily follows
from (124). For the upper bound, we begin by observing that the sets F ′t (x) are
invariant under the translations by vectors in Zd. It thus suffices to consider their
intersection with the unit cube [0, 1)d. However, we clearly have

F ′t (x) ∩ [0, 1)d ⊆ lim sup
n→∞

⋃
p∈{−1,0,1}d

B∞({nx}+ p, rtn),

and we conclude with the help of Lemma 2.1. �

An emblematic particular case is obtained by letting the sequence of approxi-
mating radii be given by rn = n−1/d. This sequence clearly satisfies the assump-
tions of Corollary 6.1 and, up to a simple change of parameter, we deduce that for
Lebesgue-almost every point x ∈ Rd and for every real number σ ≥ 1/d,

dimH

{
y ∈ Rd

∣∣∣∣∣ ‖y − nx‖ < 1

nσ
for i.m. n ≥ 1

}
=

1

σ
. (125)

In the one-dimensional setting, this result is well known, and even holds when x is
an arbitrary irrational real number, see [11].
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6.3.3. Uniform eutaxy: Kurzweil’s theorem. Regarding the uniform eu-
taxy of the sequences ({nx})n≥1, the main result is Theorem 6.9 below, which was
first obtained by Kurzweil [42] and subsequently recovered by Lesca [43]. For the
sake of completeness, let us mention in addition that Kurzweil also obtained in [42]
an extension of Theorem 6.9 that deals with linear forms.

Theorem 6.9 (Kurzweil). For any point x in Rd, the sequence ({nx})n≥1 is
uniformly eutaxic in (0, 1)d if and only if x is badly approximable.

In order to let the reader compare this result with Theorem 6.8, it is worth
mentioning some metric properties of the set Badd of badly approximable points
defined in Section 1.3. Specifically, Proposition 1.9 therein shows that Badd has
Lebesgue measure zero. Moreover, Corollary 12.1 ensures that this set has Haus-
dorff dimension d in any nonempty open subset of Rd.

The proof of Theorem 6.9 is postponed to the end of this section, and will make
use of Propositions 6.2 and 6.3 below. These two propositions are more general than
Theorem 6.9 in the sense that they concern fractional parts of the form {anx},
where an is the general term of an increasing sequence of positive integers. Such a
sequence (an)n≥1 being given, we define its lower asymptotic density by

δ((an)n≥1) = lim inf
N→∞

1

N
#{n ≥ 1 | an ≤ N}. (126)

Moreover, we shall also use the exponent κ defined by (122), and we shall accord-
ingly endow the space Rd with the supremum norm, which has no influence on the
notion of eutaxy, as already observed above. Finally, let us recall that the expo-
nent κ characterizes the badly approximable points, see (123). We then have the
following result, established by Reversat [49].

Proposition 6.2. Let us consider an increasing sequence (an)n≥1 of positive
integers with positive lower asymptotic density, and a point x = (x1, . . . , xd) in Rd
such that the real numbers 1, x1, . . . , xd are linearly independent over Q. Then, for
any nonempty dyadic subcube λ of [0, 1)d,

lim inf
j→∞

2−dj#M(({anx})n≥1;λ, j) ≤ 480d
(

κ(x)

δ((an)n≥1)

)d/(d+1)

.

Proof. If δ denotes a positive real number smaller than δ((an)n≥1), then we
have an ≤ n/δ for any sufficiently large integer n. Moreover, given κ > κ(x), we
know that there exists an infinite set Q ⊆ N such that ‖qx‖ ≤ κ/q1/d for all q ∈ Q.
We now fix a nonempty dyadic cube λ contained in [0, 1)d, an integer q ∈ Q and
an integer j ≥ 0 satisfying

cd/(d+1) 2d(〈λ〉+j) ≤ q ≤ cd/(d+1) 2d(〈λ〉+j+1), (127)

where c is a positive parameter that will be tuned up at the end of the proof.
Let us consider an integer m ≤ 2d(〈λ〉+j) such that {amx} ∈ λ. We decompose

the integer am in the form hq + r with h ∈ N0 and r ∈ {1, . . . , q}. If the integer q
is sufficiently large, the integer j is large as well and we may assume that

hq ≤ am ≤ a2d(〈λ〉+j) ≤
2d(〈λ〉+j)

δ
and 2j−1 ≥ κ

δc
.

As a consequence,

‖rx− amx‖ = ‖hqx‖ ≤ h ‖qx‖ ≤ κ hq

q1+1/d
≤ κ

δc
2−(〈λ〉+j) ≤ 2−(〈λ〉+1).

Letting yλ denote the center of the cube λ, we deduce that for some point p in Zd,

|{rx} − p− yλ|∞ ≤ |{rx} − {amx} − p|∞ + |{amx} − yλ|∞ ≤ 2−〈λ〉.
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We conclude that {rx} belongs to U(λ), the set of points y in [0, 1)d that are within
distance 2−〈λ〉 from yλ + Zd. Therefore, the integer r is positive, bounded above
by cd/(d+1) 2d(〈λ〉+j+1), and verifies {rx} ∈ U(λ) ; we define R(λ, j) as the set of all
integers that satisfy these three properties.

Furthermore, let λ′ be the dyadic subcube of λ with generation 〈λ〉 + j that
contains the point {amx}. We consider another integer m′ ≤ 2d(〈λ〉+j) such that
am′ may be written in the form h′q + r for some nonnegative integer h′. We have

‖amx− am′x‖ = ‖(h− h′)qx‖ ≤ |h− h′| ‖qx‖ ≤ κmax{hq, h′q}
q1+1/d

≤ κ

δc
2−(〈λ〉+j).

Thus, letting yλ′ denote the center of the subcube λ′, we observe that there exists
a point p in Zd such that

|{am′x} − p− yλ′ |∞ ≤ |{am′x} − {amx} − p|∞ + |{amx} − yλ′ |∞

≤
(
κ

δc
+

1

2

)
2−(〈λ〉+j).

This means that {am′x} belongs to a closed ball centered at p+yλ′ with radius the
right-hand side above, that is denoted by ρ. Note that the number of dyadic cubes
with generation 〈λ〉 + j that are required to cover this ball is bounded above by
((2ρ)2〈λ〉+j + 2)d. In addition, it is easily seen that there are at most 5d possible
values for p, because the points {am′x} and yλ′ both belong to the unit cube. We
conclude that the number of dyadic subcubes of λ with generation 〈λ〉+j that may
contain {am′x} is bounded above by

5d((2ρ)2〈λ〉+j + 2)d = 10d
(

3

2
+
κ

δc

)d
.

The upshot is that for every choice of r, the above value gives an upper bound
on the number of dyadic subcubes of λ with generation 〈λ〉 + j that contain at
least one point of the form {amx}, where m ≤ 2d(〈λ〉+j) and am = hq + r for some
nonnegative integer h. Recalling that r necessarily belongs to the set R(λ, j) when
such an integer am exists, we deduce that

#M(λ, j) ≤ 10d
(

3

2
+
κ

δc

)d
#R(λ, j).

This inequality is valid for infinitely many values of j, namely, for every integer j
satisfying (127) for some q ∈ Q. It follows that

lim inf
j→∞

2−dj#M(λ, j) ≤ 10d
(

3

2
+
κ

δc

)d
lim sup
j→∞

2−dj#R(λ, j). (128)

Given that the real numbers 1, x1, . . . , xd are linearly independent over Q, we
may conclude with the help of Theorem 6.6. Accordingly, the sequence (rx)r≥1 is
uniformly distributed modulo one, so that

#R(λ, j) ∼ bcd/(d+1) 2d(〈λ〉+j+1)cLd(U(λ)) as j →∞.

One easily check that the set U(λ) has Lebesgue measure at most 6d2−d〈λ〉. Hence,
the limsup in (128) is bounded above by 12dcd/(d+1). We deduce that

lim inf
j→∞

2−dj#M(λ, j) ≤ 120dcd/(d+1)

(
3

2
+
κ

δc

)d
.

We conclude by choosing c = 2κ/δ, and then by letting δ and κ go to δ((an)n≥1)
and κ(x), respectively. �
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The next result is a converse to Proposition 6.2 above. While the statement of
Proposition 6.2 involves the exponent κ defined by (122), we rather consider here
the exponent κ∗ defined by

κ∗(x) = inf
q∈N

q1/d ‖qx‖

for all x in Rd. Clearly, κ∗(x) is bounded above by κ(x). Moreover, κ(x) and κ∗(x)
are positive on the same set of values of x, namely, the set of badly approximable
points. This means that κ∗ satisfies a property similar to (123), specifically, this
exponent also characterizes the badly approximable points:

x ∈ Badd ⇐⇒ κ∗(x) > 0. (129)

In connection with distributions modulo one, the statement below also calls upon
the limiting ratios defined by

ρ((xn)n≥1;λ) = lim inf
N→∞

1

N
#{n ∈ {1, . . . , N} | {xn} ∈ λ} (130)

when (xn)n≥1 denotes a sequence of points in Rd and λ is a nonempty dyadic
subcube of [0, 1)d. As a direct consequence of Definition 6.3, each of these limiting
ratios is equal to Ld(λ) if the sequence (xn)n≥1 is uniformly distributed modulo
one. Again, the following result is due to Reversat [49].

Proposition 6.3. Let (an)n≥1 be an increasing sequence of positive integers
and let x be a point in Rd. Then, for any nonempty dyadic subcube λ of [0, 1)d,

lim inf
j→∞

2−dj#M(({anx})n≥1;λ, j) ≥ κ∗(x)dδ((an)n≥1)

2dLd(λ)
ρ((anx)n≥1;λ).

Proof. We may obviously assume that κ∗(x) and δ((an)n≥1) are both positive.

If κ is a positive real number smaller than κ∗(x), it is clear that ‖qx‖ > κ/q1/d

for all integers q ≥ 1. Furthermore, if δ denotes a positive real number smaller
than δ((an)n≥1), we know that the inequality an ≤ n/δ holds for n large enough.
We now consider a nonempty dyadic subcube λ of [0, 1)d, an integer j ≥ 0, and a
dyadic cube λ′ in the collection M(λ, j). In particular, the cube λ′ contains a point
of the form {amx} for some integer m ≤ 2d(〈λ〉+j). If m′ denotes another integer
bounded above by 2d(〈λ〉+j) and for which {am′x} belongs to λ′ as well, then

|{amx} − {am′x}|∞ ≥ ‖(am − am′)x‖ >
κ

|am − am′ |1/d
≥ κ δ1/d

2〈λ〉+j
.

The last bound holds for j sufficiently large, because the positive integers am and
am′ are then both bounded above by 2d(〈λ〉+j)/δ. We may naturally decompose the
cube λ′ as the disjoint union of d1/(κ δ1/d)ed half-open subcubes with sidelength
equal to 2−(〈λ〉+j)/d1/(κ δ1/d)e. Moreover, if we consider any of these subcubes,
the above inequalities imply that at most one integer m ≤ 2d(〈λ〉+j) can be such
that the point {amx} lies in the cube. So, there can be no more than d1/(κ δ1/d)ed
integers m ≤ 2d(〈λ〉+j) for which {amx} is in λ′. As a consequence,

#{m ≤ 2d(〈λ〉+j) | {amx} ∈ λ} ≤
⌈

1

κ δ1/d

⌉d
#M(λ, j),

from which we readily deduce that

2−dj#M(λ, j) ≥ κdδ

2dLd(λ)
2−d(〈λ〉+j)#{m ≤ 2d(〈λ〉+j) | {amx} ∈ λ}.

The result follows in a straightforward manner by letting j tend to infinity, and
then by letting κ and δ go to κ∗(x) and δ((an)n≥1), respectively. �
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We are now in position to explain how to deduce Theorem 6.9 from the two
propositions above, together with the necessary and sufficient conditions for eutaxy
expressed by Theorems 6.3 and 6.4.

Proof of Theorem 6.9. The idea is to apply Propositions 6.2 and 6.3 to the
sequence (n)n≥1, which is increasing and has lower asymptotic density equal to one.
Let us first assume that the point x is not badly approximable, and let x1, . . . , xd
denote its coordinates. If the real numbers 1, x1, . . . , xd are linearly dependent over
the rationals, it follows from Kronecker’s theorem, namely, Theorem 6.7 that the
sequence ({nx})n≥1 is not dense in [0, 1)d. This sequence is thus clearly not eutaxic
in (0, 1)d. Now, if the above real numbers are linearly independent over Q, we may
apply Proposition 6.2, thereby inferring that for any point x in Rd and for any
nonempty dyadic subcube λ of [0, 1)d,

lim inf
j→∞

2−dj#M(({nx})n≥1;λ, j) ≤ 480dκ(x)d/(d+1).

Since x is not badly approximable, the exponent κ(x) vanishes by virtue of (123).
The left-hand side above thus vanishes as well, and Theorem 6.4 ensures that the
sequence ({nx})n≥1 is not uniformly eutaxic in (0, 1)d.

Conversely, let us assume that x is badly approximable. Lemma 6.2 ensures that
the real numbers 1, x1, . . . , xd are linearly independent over Q. We then deduce from
Theorem 6.6 that the sequence (nx)n≥1 is uniformly distributed modulo one, so
that for any nonempty dyadic subcube λ of [0, 1)d, the limiting ratio ρ((nx)n≥1;λ)

defined by (130) is equal to Ld(λ). Applying Proposition 6.3, we thus infer that

lim inf
j→∞

2−dj#M(({nx})n≥1;λ, j) ≥ 2−dκ∗(x)d.

Finally, in view of (129), the exponent κ∗(x) is positive, and we conclude with the
help of Theorem 6.3 that the sequence ({nx})n≥1 is uniformly eutaxic in (0, 1)d. �

In the vein of Corollary 6.1 and the discussion that precedes its statement, an
interesting application is the study of the Diophantine approximation properties of
the sequence ({nx})n≥1 when x is a badly approximable point. That sequence being
uniformly eutaxic, we end up with a much stronger result than Corollary 6.1, and
actually a full and complete description of the size and large intersection properties
of the sets Ft(x) and F ′t (x) considered at the end of Section 6.3.2. We refer to
Section 10.1.1 for precise statements.

6.4. Fractional parts of other sequences

6.4.1. Sequencewise eutaxy. Theorem 6.8 may be extended to the case in
which the underlying sequence is driven by a nonconstant polynomial with integer
coefficients. In fact, Schmidt [52] established the following result.

Theorem 6.10. Let P be a nonconstant polynomial with coefficients in Z and
let (rn)n≥1 be a sequence in Pd. Then, for Lebesgue-almost every point x ∈ Rd, the
sequence ({P (n)x})n≥1 is eutaxic in (0, 1)d with respect to (rn)n≥1.

Subsequently, Philipp [48] showed that, in dimension one, the above property
still holds when the polynomial is replaced by the exponential function to a given
integer base b ≥ 2 ; this is related with the base b expansion of real numbers.

Theorem 6.11. Let us consider an integer b ≥ 2 and a sequence (rn)n≥1 in Pd.
Then, for Lebesgue-almost every point x ∈ R, the sequence ({bnx})n≥1 is eutaxic
in (0, 1) with respect to (rn)n≥1.
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Philipp showed that this property also holds for x in a Lebesgue-full subset of
the interval [0, 1) when the multiplication by bn is replaced by the n-th iterate of
either of the following mappings: the Gauss map for continued fractions defined
by (14); the θ-adic expansion map x 7→ {θx}, where θ > 1. We refer to [48] for
precise statements. In all those cases, we may reproduce the approach developed
in Section 6.3.2 so as to obtain dimensional results analogous to Corollary 6.1.

6.4.2. Uniform eutaxy. The uniform analogs of Theorems 6.10 and 6.11
need not be valid, because the Lebesgue-null set of points x on which each of these
results may fail depends on the choice of the sequence (rn)n≥1, and there are of
course uncountably many sequences in Pd. In that direction, we have however the
following one-dimensional statement, obtained by Reversat [49].

Theorem 6.12. Let (an)n≥1 be a sequence of positive real numbers such that
the series

∑
n an/an+1 converges. Then, for Lebesgue-almost every x in R, the

sequence ({anx})n≥1 is uniformly eutaxic in (0, 1).

With a view to establishing Theorem 6.12, we begin by deriving a simple es-
timate on integrals of products of fractional parts. To be specific, for any r-tuple
a = (a1, . . . , ar) of positive real numbers and any r-tuple I = (I1, . . . , Ir) of intervals
contained in the unit interval [0, 1), we define

Pa,I(x) =

r∏
s=1

1Is({asx}). (131)

We then integrate the function Pa,I over bounded intervals of the real line. The
next lemma gives an upper bound on the resulting integrals, under the assumption
that the lengths of the r intervals forming I are bounded away from zero.

Lemma 6.3. Let a = (a1, . . . , ar) denote an r-tuple of positive real numbers,
and let I = (I1, . . . , Ir) denote an r-tuple of subintervals of [0, 1) satisfying

∃δ > 0 ∀s ∈ {1, . . . , r} |Is| ≥ δ.

Then, for any bounded subinterval I0 of R, we have∫
I0

Pa,I(x) dx ≤
(
|I0|+

2

a1

)
·

(
r∏
s=1

|Is|

)
·

(
r−1∏
s=1

(
1 +

2as
δas+1

))
.

Proof. Without loss of generality, we may assume that the interval I0 is of
the form [u, v], with u < v. Then, a simple change of variable implies that∫

I0

Pa,I(x) dx =
1

a1

∫ a1v

a1u

Pa/a1,I(x) dx.

The interval onto which the integral in right-hand side is computed is obviously
covered by the intervals of the form [p, p+1), where p is an integer between da1ue−1
and ba1vc. If x belongs to such an interval, we have

Pa/a1,I(x) = 1I1({x})
r∏
s=2

1Is

({
as
a1
x

})
= 1p+I1(x)Pa′,I′(x),

where p + I1 denotes the interval obtained by adding p to the elements of I1, and
where a′ and I ′ stand for the (r − 1)-tuples (a2/a1, . . . , ar/a1) and (I2, . . . , Ir),
respectively. As a consequence,∫ p+1

p

Pa/a1,I(x) dx ≤
∫
p+I1

Pa′,I′(x) dx ≤ sup
I′1⊆R
|I′1|=|I1|

∫
I′1

Pa′,I′(x) dx,
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where the supremum is taken over all subintervals I ′1 of R whose length is equal to
that of I1. Summing the above estimate over all integers p between da1ue − 1 and
ba1vc, we straightforwardly deduce that∫

I0

Pa,I(x) dx ≤
(
|I0|+

2

a1

)
sup
I′1⊆R
|I′1|=|I1|

∫
I′1

Pa′,I′(x) dx. (132)

We may now conclude by induction on the integer r. Indeed, if the result holds
for all appropriate (r − 1)-tuples, then the integral in the right-hand side satisfies∫

I′1

Pa′,I′(x) dx ≤
(
|I ′1|+

2

a2/a1

)
·

(
r∏
s=2

|Is|

)
·

(
r−1∏
s=2

(
1 +

2as/a1

δas+1/a1

))

=

(
1 +

2a1

|I1|a2

)
·

(
r∏
s=1

|Is|

)
·

(
r−1∏
s=2

(
1 +

2as
δas+1

))
,

which yields the required upper bound because |I1| is bounded below by δ. It finally
remains to observe that when r is equal to one, (132) reduces to∫

I0

1I1({a1x}) dx ≤
(
|I0|+

2

a1

)
|I1|,

so that the required upper bound also holds in that case. �

The above ancillary lemma being proven, we are now in position to detail the
proof of Theorem 6.12.

Proof of Theorem 6.12. Given that the series
∑
n an/an+1 is convergent,

for any integer j ≥ 0, we may find an integer nj ≥ 0 satisfying

Snj =

∞∑
n=nj+1

an
an+1

≤ 2−j−2. (133)

Now, let us consider a dyadic interval λ ⊆ [0, 1), a real number α ∈ (0, 1) and an
integer j ≥ 0. Let us assume that a real number x satisfies

#M(({anx})n≥1;λ, j) ≤ α 2j . (134)

This means that the first 2〈λ〉+j points {anx} all belong to either the comple-
ment in [0, 1) of the interval λ, or some union of bα 2jc dyadic subintervals of λ
with generation equal to 〈λ〉+j. Letting λ1, . . . , λ2〈λ〉−1 denote the dyadic intervals
with the same generation as λ, excluding λ itself, and letting λ′1, . . . , λ

′
bα 2jc denote

such subintervals of λ, we have in particular

{an〈λ〉+1x}, . . . , {a2〈λ〉+jx} ∈ λ1 t . . . t λ2〈λ〉−1 t λ′1 t . . . t λ′bα 2jc,

where the index n〈λ〉 is defined by (133). This means that, from now on, we forget
the first n〈λ〉 points of the sequence and we assume that j is large enough to ensure

that 2〈λ〉+j is greater than n〈λ〉. The intervals λ1, . . . , λ2〈λ〉−1 and λ′1, . . . , λ
′
bα 2jc

form a collection that is denoted by M. Moreover, these intervals are disjoint and
their union is denoted by U . It will be useful to observe that, accordingly,

1U =
∑
J∈M

1J and L1(U) =
∑
J∈M

|J |.

Now, for any bounded interval I0, adopting the notation (131) and letting a
stand for the tuple formed by the real numbers an〈λ〉+1, . . . , a2〈λ〉+j , we get∫

I0

2〈λ〉+j∏
n=n〈λ〉+1

1U ({anx}) dx =
∑
I

∫
I0

Pa,I(x) dx. (135)
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where the sum is over all choices of tuples of intervals In〈λ〉+1, . . . , I2〈λ〉+j within
the collection M. Observing that each of these intervals has length bounded below
by 2−〈λ〉−j , we may then use Lemma 6.3 to infer that the integral of the function
Pa,I over the interval I0 is bounded above by(

|I0|+
2

an〈λ〉+1

)
·

 2〈λ〉+j−1∏
n=n〈λ〉+1

(
1 + 2〈λ〉+j+1 an

an+1

) ·
 2〈λ〉+j∏
n=n〈λ〉+1

|In|

 .

Summing over all possible choices of I and then factorizing, we straightforwardly
deduce that the expression in (135) is smaller than or equal to(

|I0|+
2

an〈λ〉+1

)
·

 2〈λ〉+j−1∏
n=n〈λ〉+1

(
1 + 2〈λ〉+j+1 an

an+1

) · (L1(U))2〈λ〉+j−n〈λ〉 .

This upper bound consists of three factors. The third one may easily be estimated
after observing that

L1(U) = |λ1|+ . . .+ |λ2〈λ〉−1|+ |λ′1|+ . . .+ |λ′bα 2jc|

= (2〈λ〉 − 1)2−〈λ〉 + bα 2jc2−〈λ〉−j ≤ exp(−(1− α)2−〈λ〉).

Here, we have used the obvious fact that 1 + z ≤ ez for every real z. Combining
this inequality with (133), we may also deal with the second factor, specifically,

2〈λ〉+j−1∏
n=n〈λ〉+1

(
1 + 2〈λ〉+j+1 an

an+1

)
≤ exp

2〈λ〉+j−1∑
n=n〈λ〉+1

2〈λ〉+j+1 an
an+1

≤ exp(2〈λ〉+j+1Sn〈λ〉) ≤ exp(2j−1).

On top of that, note that the condition (134) introduced in the first place implies
the choice of bα 2jc dyadic subintervals of λ with generation equal to 〈λ〉+j, among
a total of 2j possible intervals. We deduce that the set of all x ∈ I0 for which the
condition (134) holds has Lebesgue outer measure bounded above by(

2j

bα 2jc

)
·

(
|I0|+

2

an〈λ〉+1

)
· exp(2j−1) · exp(−(1− α)(2j − n〈λ〉2−〈λ〉)).

By virtue of Stirling’s formula, the logarithm of the involved binomial coefficient
is equivalent to H(α) 2j as j goes to infinity, where H(α) is a shorthand for the
Shannon entropy of the probability vector (α, 1 − α), as defined by (84). As a
consequence, defining

mj(λ, I0, α) = L1({x ∈ I0 |#M(({anx})n≥1;λ, j) ≤ α 2j}),

we readily see that

lim sup
j→∞

1

2j
logmj(λ, I0, α) ≤ H(α) + α− 1

2
.

Clearly, the right-hand side vanishes for a unique value of α ∈ (0, 1), denoted
by α0, and it is negative when α < α0. In that case, we may conclude with the
help of the Borel-Cantelli lemma. Indeed, for any j0 sufficiently large, we have

L1

(
lim sup
j→∞

{x ∈ I0 |#M(({anx})n≥1;λ, j) ≤ α 2j}
)
≤
∞∑
j=j0

mj(λ, I0, α),

and the right-hand side tends to zero as j0 goes to infinity, because the series is
convergent when α < α0. Making the interval I0 increase to the whole real line,
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and the real number α increase to the critical value α0 along countable sequences,
we deduce that for Lebesgue-almost every x ∈ R,

lim inf
j→∞

2−j#M(({anx})n≥1;λ, j) ≥ α0.

As there are countably many dyadic intervals, it follows that for Lebesgue-almost
every x ∈ R, the sequence ({anx})n≥1 satisfies (118) with U = (0, 1). Hence, the
weaker condition (110) is also verified and we conclude thanks to Theorem 6.3. �

Note that Theorem 6.12 does not apply to the case where an = bn, which corre-
sponds to the b-adic expansion of real numbers, simply because the corresponding
series

∑
n an/an+1 does not converge. In fact, the hypothesis of Theorem 6.12 is

satisfied if the sequence (an)n≥1 grows superexponentially fast, such as for instance

when an = n(1+ε)n for some ε > 0, or when an = bn
2

for some b > 1.
Furthermore, we may combine Theorem 6.12 with the approach that we devel-

oped at the end of Section 6.3.2 above. This results in the following dimensional
statement, in the vein of Corollary 6.1.

Corollary 6.2. Let (an)n≥1 be a sequence of positive real numbers such that
the series

∑
n an/an+1 converges, and let (rn)n≥1 be a sequence in P1 such that the

series
∑
n r

s
n converges for all s > 1. For any real number t ≥ 1, let us define

F ′t (x) =
{
y ∈ R

∣∣ ‖y − anx‖ < rtn for i.m. n ≥ 1
}
,

Then, for Lebesgue-almost every point x ∈ R,

∀t ≥ 1 dimH F
′
t (x) =

1

t
.

In particular, if the approximating radii are given by rn = 1/n, we end up with
the following result: for Lebesgue-almost every x ∈ R and for every σ ≥ 1,

dimH

{
y ∈ R

∣∣∣∣∣ ‖y − anx‖ < 1

nσ
for i.m. n ≥ 1

}
=

1

σ
.

The tools introduced in the following chapters will enable us to substantially
refine Corollary 6.2. In particular, Corollary 10.2 will give a precise and complete
description of the size and large intersection properties of a family of sets that
includes the above sets F ′t (x). Let us also mention that a challenging problem is to
understand how the Hausdorff dimension of sets of the form F ′t (x) behaves when
one considers their intersection with a given compact set. We do not address this
problem here, and we refer to [15] for precise statements and motivations.

6.5. Random eutaxic sequences

The ideas pertaining in the proof of Theorem 6.12 above are in fact of a proba-
bilistic nature. First, the proof calls upon the Borel-Cantelli lemma. Moreover, the
ancillary lemma used therein, namely, Lemma 6.3 may actually be recast in terms
of the correlations between the random variables {anX}, where X is uniformly dis-
tributed in the unit interval [0, 1). This entices us to consider probabilistic models
of eutaxic sequences. The simplest model consists of a sequence of points that are
independently and uniformly distributed in some nonempty bounded open subset
of Rd. We shall also consider a model that is related with Poisson point processes.
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6.5.1. Independent and uniform points. We consider a sequence (Xn)n≥1

of points that are independently and uniformly distributed in a nonempty bounded
open set U ⊆ Rd. Hence, the random points Xn are stochastically independent and
distributed according to the normalized Lebesgue measure Ld( · ∩ U)/Ld(U). For
any sequence (rn)n≥1 in Pd and any point x in U , we have

P(x ∈ B(Xn, rn)) =
Ld(U ∩ B(x, rn))

Ld(U)
=
Ld(B(0, 1))

Ld(U)
rdn

for n sufficiently large. Hence, the Borel-Cantelli lemma ensures that the inequality
|x − Xn| < rn holds infinitely often with probability one. By virtue of Tonelli’s
theorem, this implies that the sequence (Xn)n≥1 is almost surely eutaxic in U with
respect to (rn)n≥1. Note that the almost sure event on which this property holds
may depend on the sequence (rn)n≥1. In order to show that the sequence (Xn)n≥1

is uniformly eutaxic in U , we need to develop the following additional arguments
that are due to Reversat [49], and were already used in the proof of Theorem 6.12.

Theorem 6.13. Let (Xn)n≥1 be a sequence of random points distributed inde-
pendently and uniformly in a nonempty bounded open subset U of Rd. Then, with
probability one, the sequence (Xn)n≥1 is uniformly eutaxic in U .

Proof. Let us consider a dyadic cube λ ⊆ U , a real number α ∈ (0, 1) and an
integer j ≥ 0, and let us suppose that the condition

#M((Xn)n≥1;λ, j) ≤ α 2dj (136)

holds. Then, the first 2d(〈λ〉+j) points Xn are contained in either the complement
in Rd of the cube λ, or the union of bα 2djc subcubes of λ with generation 〈λ〉+ j,
denoted by λ′1, . . . , λ

′
bα 2djc. Each point Xn is uniformly distributed in U , so that

P(Xn ∈ (Rd \ λ) t λ′1 t . . . t λ′bα 2djc) = 1− 2−d〈λ〉

Ld(U)
+ bα 2djc2

−d(〈λ〉+j)

Ld(U)
.

Moreover, combining the fact that the points Xn are independent with the obvious
bound 1 + z ≤ ez, for z in R, we deduce that

P(X1, . . . , X2d(〈λ〉+j) ∈ (Rd \ λ) t λ′1 t . . . t λ′bα 2djc) ≤ exp

(
− 1− α
Ld(U)

2dj
)
.

As a consequence, taking into account all the possible choices for the subcubes
λ′1, . . . , λ

′
bα 2djc that result from the assumption (136), we conclude that

P(#M((Xn)n≥1;λ, j) ≤ α 2dj) ≤
(

2dj

bα 2djc

)
exp

(
− 1− α
Ld(U)

2dj
)
.

We now follow the lines of the proof of Theorem 6.12. The binomial coefficient
above may again be estimated with the help of Stirling’s formula: its logarithm
is equivalent to H(α) 2dj as j goes to infinity, where H(α) denotes the Shannon
entropy of the probability vector (α, 1− α), as defined by (84). Hence,

lim sup
j→∞

1

2dj
logP(#M((Xn)n≥1;λ, j) ≤ α 2dj) ≤ H(α)− 1− α

Ld(U)
.

The right-hand side vanishes for a unique value of α ∈ (0, 1), that is denoted
by α0. Furthermore, the right-hand side is negative when α < α0, and the Borel-
Cantelli lemma ensures that almost surely, the condition (136) is satisfied for finitely
many values of j only. Hence, for every dyadic cube λ ⊆ U and every α ∈ (0, α0),

a.s. lim inf
j→∞

2−dj#M((Xn)n≥1;λ, j) ≥ α.

We may let α tend to α0 along a countable sequence, and the limiting value α0 does
not depend on the choice of the dyadic cube λ. In addition, there are countably
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many dyadic cubes contained in U . The upshot is that the sequence (Xn)n≥1

verifies (118) with probability one. Therefore, the weaker condition (110) is also
satisfied almost surely, and we may conclude with the help of Theorem 6.3. �

Blending Theorem 6.13 with Theorem 6.2, we get a first description of the size
and large intersection properties of the random sets Ft defined for all t ≥ 1 by

Ft =
{
x ∈ Rd

∣∣ |x−Xn| < rtn for i.m. n ≥ 1
}
, (137)

which is how (107) becomes in the present situation. More precisely, Theorems 6.2
and 6.13 directly lead to the following statement.

Corollary 6.3. With probability one, for any nonincreasing sequence of pos-
itive real numbers (rn)n≥1 satisfying{

s < d =⇒
∑
n r

s
n =∞

s > d =⇒
∑
n r

s
n <∞,

the following properties hold for all t ≥ 1 :

dimH(Ft ∩ U) =
d

t
and Ft ∈ Gd/t(U). (138)

Note that the almost sure event on which the previous statement holds does
not depend on the choice of the sequence (rn)n≥1. This is due to the fact that
the almost sure eutaxy of the sequence (Xn)n≥1 in the open set U is of uniform
type. Furthermore, recall that we may easily extend Theorem 6.2 to sequences
of approximating radii r = (rn)n≥1 satisfying (109) for some positive real number
sr, instead of the mere (108). The same remark clearly applies to Corollary 6.3.
Finally, restricting to power functions for the approximating radii, we have

a.s. ∀c > 0 ∀σ ≥ 1

d
dimH

{
x ∈ Rd

∣∣∣∣∣ |x−Xn| <
c

nσ
for i.m. n ≥ 1

}
=

1

σ
.

This follows from (138) with rn = (c1/σ/n)1/d and t = σd. We thereby extend a
result due to Fan and Wu [30], who addressed the case where d = 1 and U = (0, 1).

The above study is related with the famous problem regarding random coverings
of the circle raised in 1956 by Dvoretzky [23]. We now restrict our attention to
the one-dimensional case. As mentioned above, the fact that a sequence (rn)n≥1

belongs to P1 implies, through a simple application of the Borel-Cantelli lemma
and Tonelli’s theorem, that with probability one, Lebesgue-almost every point x of
(0, 1) is covered by the open interval centered at Xn with radius rn, i.e. satisfies
|x − Xn| < rn, for infinitely many integers n ≥ 1. Dvoretzky’s question can then
be recast as follows: find a necessary and sufficient condition on the sequence
(rn)n≥1 to ensure that with probability one, every point of the open unit interval
(0, 1) satisfies the previous property. The problem raised the interest of many
mathematicians such as Billard, Erdős, Kahane and Lévy, and was finally solved in
1972 by Shepp [56] who discovered that the condition is

∞∑
n=1

1

n2
exp(2(r1 + . . .+ rn)) =∞.

This criterion is very subtle in the sense that constants do matter: when rn is of
the specific form c/n with c > 0, the condition is satisfied if and only if c ≥ 1/2.
We refer to [21] and the references therein for more information on this topic.

We shall come back to the above random covering problem in Section 11.1 and
give therein further results on the size and large intersection properties of the sets
Ft, thus improving on Corollary 6.3.
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6.5.2. Poisson point measures. Comparable results may be obtained when
the approximating points and the approximation radii are distributed according to a
Poisson point measure. We begin by briefly recalling some basic facts about Poisson
measures; we refer to e.g. [40, 47] for additional details. The theory may be nicely
developed for instance in locally compact topological spaces with a countable base.
If S denotes such a topological space, we call a point measure on S any nonnegative
measure $ on S that may be written as a sum of Dirac point masses, namely,

$ =
∑
n∈N

δsn with sn ∈ S,

and that assigns a finite mass to each compact subset of S. Note that the above
points sn need not be distinct, but the index set N is necessarily countable. The set
of all point measures may be endowed with the σ-field generated by the mappings
$ 7→ $(F ), where F ranges over the Borel subsets of S. Naturally, a random point
measure on S is then a measurable mapping Π defined on some abstract probability
space and valued in the measurable space of point measures. One can show that
the probability distribution of such a random point measure Π is characterized by
the distributions of all the random vectors of the form (Π(E1), . . . ,Π(En)), where
the sets E1, . . . , En range over any fixed class of relatively compact Borel subsets
of S that is closed under finite intersections and generate the Borel σ-field on S.
This enables us to now introduce our main definition.

Definition 6.4. Let S be a locally compact topological space with a countable
base, and let π be a positive Radon measure thereon. There exists a random point
measure Π on S such that the following two properties hold:

• for every Borel subset E of S, the random variable Π(E) is Poisson dis-
tributed with parameter π(E) ;

• for all Borel subsets E1, . . . , En of S that are pairwise disjoint, the random
variables Π(E1), . . . ,Π(En) are independent.

The random point measure Π is called a Poisson point measure with intensity π,
and its law is uniquely determined by the above two properties.

Note that we adopt the usual convention that a Poisson random variable with
infinite parameter is almost surely equal to ∞. In addition to the aforementioned
characterization, the distribution of a random point measure Π is also determined
by its Laplace functional, namely, the mapping defined by the formula

LΠ(f) = E
[
exp

(
−
∫
S

f(s) Π(ds)

)]
,

where f is any nonnegative Borel measurable function defined on S. Thus, Π is a
Poisson point measure with intensity π if and only if for any such f ,

LΠ(f) = exp

(
−
∫
S

(1− e−f(s))π(ds)

)
.

Throughout the remainder of this section, we shall restrict our attention to
Poisson point measures on the interval (0, 1], the product space (0, 1] × Rd, or
subsets thereof. Let R be defined as the collection of all positive Radon measures
ν on the interval (0, 1] such that ν has infinite total mass and

∀ρ ∈ (0, 1] Φν(ρ) = ν([ρ, 1]) <∞. (139)

The function Φν is then clearly nonincreasing on (0, 1]. Moreover, at any given ρ,
it is left-continuous with a finite right-limit, namely,

Φν(ρ+) = ν((ρ, 1]).
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Extending this notation to the case where ρ vanishes, we get that Φν(0+) is infinite
because ν has infinite total mass. On top of that, given some nonempty open subset
U of Rd, we may consider on the product space

U+ = (0, 1]× U
a Poisson point measure, denoted by Π, with intensity ν ⊗ Ld( · ∩ U). When the
intensity measure has infinite total mass, the corresponding Poisson measure must
almost surely have infinite total mass as well. As a result, there exists a sequence
(Rn, Xn)n≥1 of random pairs in U+ such that with probability one,

Π =

∞∑
n=1

δ(Rn,Xn).

Our aim is now to study the approximation problem that results from distributing
the approximating points and approximation radii according to the pairs (Rn, Xn).
To be specific, in accordance with (107) again, we consider the random sets

Ft =
{
y ∈ Rd

∣∣ |y −Xn| < Rtn for i.m. n ≥ 1
}
, (140)

for t ≥ 1. Note that the Poisson point measure Π offers us an alternate way of
defining the above sets. Indeed, Ft is also the set of points y in Rd such that∫

U+

1{|y−x|<rt}Π(dr, dx) =

∞∑
n=1

1{|y−Xn|<Rtn} =∞.

The main result of this section is the following analog of Corollary 6.3 for the
random sets Ft that are now under investigation.

Theorem 6.14. Let ν be a measure in R, let U be a nonempty open subset of
Rd, and let Π be a Poisson point measure on U+ with intensity ν ⊗Ld( · ∩U). For
any real number t ≥ 1, let us define

Ft =

{
y ∈ Rd

∣∣∣∣∣
∫
U+

1{|y−x|<rt}Π(dr, dx) =∞

}
. (141)

Let us assume that the measure ν satisfies the following integrability condition:
s < d =⇒

∫
(0,1]

rs ν(dr) =∞

s > d =⇒
∫

(0,1]

rs ν(dr) <∞.
(142)

Then, with probability one, for all t ≥ 1,

dimH(Ft ∩ U) =
d

t
and Ft ∈ Gd/t(U).

One may easily extend Theorem 6.14 to the more general case where d is re-
placed by some positive real number sν in the integrability condition (142). Indeed,
for any real number α > 0, the image Πα of the Poisson point measure Π under
the mapping (r, x) 7→ (rα, x) is a Poisson point measure on U+ with intensity
να⊗Ld( · ∩U), where να is the image of the measure ν under the mapping r 7→ rα.

Moreover, for each t > 0, the set F
(α)
t obtained when replacing Π by Πα in (141)

coincides with the original set Fαt corresponding to the Poisson point measure Π.
Choosing α = sν/d, we easily check that the measure να belongs to R and satis-
fies (142). We may then apply Theorem 6.14 to the corresponding Poisson point
measure Πα, thereby deducing that with probability one, for all t ≥ 1,

dimH(F
(α)
t ∩ U) =

d

t
and F

(α)
t ∈ Gd/t(U).
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Performing a simple change of variable, we may transfer this statement to the
original sets Ft, and thus conclude that with probability one, for all t ≥ sν/d,

dimH(Ft ∩ U) =
sν
t

and Ft ∈ Gsν/t(U).

On top of that, with probability one, all the sets Ft, for t < sν/d, have Hausdorff
dimension d and belong to the class Gd(U) ; this easily follows from the observation
that they all contain the set Fsν/d.

The remainder of this section is devoted to establishing Theorem 6.14. We shall
call upon a series of basic results that we now state and prove. The first lemma
discusses how the sets Ft defined by (141) become distributed when one takes their
intersection with an arbitrary nonempty bounded open subset of U .

Lemma 6.4. Let ν be a measure in R, let U be a nonempty open subset of
Rd, and let Π be a Poisson point measure on U+ with intensity ν ⊗ Ld( · ∩ U).
Moreover, let V be a nonempty bounded open subset of U . For any real number
t ≥ 1, in addition to the set Ft given by (141), we define the set

FVt =

{
y ∈ Rd

∣∣∣∣∣
∫
V+

1{|y−x|<rt}Π(dr, dx) =∞

}
. (143)

Then, the following properties hold:

(1) the restriction Π( · ∩V+) is a Poisson point measure on V+ with intensity

ν ⊗ Ld( · ∩ V ) ;

(2) with probability one, for any real number t ≥ 1,

Ft ∩ V ⊆ FVt ⊆ Ft ∩ V .

Proof. The proof of (1) is easily obtained by computing the Laplace functional
of the random point measure Π( · ∩ V+). In order to establish (2), we define V1

as the set of points x in U such that d(x, V ) < 1, and we observe that for any
ρ ∈ (0, 1], the random variable Π([ρ, 1]× V1) is Poisson distributed with parameter
Φν(ρ)Ld(V1). This parameter is finite by virtue of (139) and the boundedness of
V . Therefore, Π([ρ, 1]× V1) is almost surely finite. However, this random variable
is a monotonic function of ρ. We deduce that the probability that all the values
Π([ρ, 1]×V1), for ρ ∈ (0, 1], are simultaneously finite is equal to one. From now on,
we assume that the corresponding almost sure event holds.

Let us consider a point y in Ft ∩ V . Given that the set V is open, it contains
the open ball B(y, δ) for some δ > 0. Let us consider a pair (r, x) in U+ satisfying
|y−x| < rt. Then, this pair actually belongs to V+ when r < δ1/t, and to [δ1/t, 1]×V1

otherwise. As a consequence,

∞ =

∫
U+

1{|y−x|<rt}Π(dr, dx) ≤
∫
V+

1{|y−x|<rt}Π(dr, dx) + Π([δ1/t, 1]× V1).

On the almost sure event that we considered, the second term in the right-hand
side of the above inequality is finite. It follows that the first term is infinite, i.e. the
point y belongs to the set FVt .

Conversely, let us consider a point y in FVt . Given that V+ is contained in U+,
the point y is then automatically in Ft. In order to show that y also belongs to the
closure of V , it suffices to consider an arbitrary real number δ > 0 and to prove
that the ball B(y, δ) meets V . If (r, x) denotes a pair V+ with |y − x| < rt, we
remark that the point x belongs to the aforementioned ball if r < δ1/t, and simply
to the set V1 otherwise. Accordingly,

∞ =

∫
V+

1{|y−x|<rt}Π(dr, dx) ≤ Π((0, 1]× (B(y, δ) ∩ V )) + Π([δ1/t, 1]× V1).
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Again, the second term in the right-hand side is finite, so the first term is infinite,
which means in particular that the sets B(y, δ) and V intersect. �

Lemma 6.4 above will enable us to reduce the proof of Theorem 6.14 to the case
of bounded open subsets of U . The advantage of working with bounded sets is that,
with the help of the next lemma, we will be able to use a convenient representation
of the Poisson point measure Π.

Lemma 6.5. Let ν be a measure in the collection R, and let U be a nonempty
bounded open subset of the space Rd.

(1) Let NU denote a Poisson point measure on the interval (0, 1] with intensity

νU = Ld(U) ν.

Then, there exists a nonincreasing sequence (Rn)n≥1 of positive random
variables that converges to zero such that with probability one,

NU =

∞∑
n=1

δRn . (144)

(2) Let (Xn)n≥1 be a sequence of random variables that are independently and
uniformly distributed in U , and are also independent on NU . Then,

NU
+ =

∞∑
n=1

δ(Rn,Xn) (145)

is a Poisson point measure on U+ with intensity ν ⊗ Ld( · ∩ U).

Proof. In order to prove (1), we begin by observing that the Poisson point
measure NU must have infinite total mass with probability one, because its intensity
νU has infinite total mass too. Thus, there is a sequence (Rn)n≥1 of positive random
variables such that (144) holds. However, the assumption (139) implies that

∀ρ > 0 E[#{n ≥ 1 |Rn ≥ ρ}] = E[NU ([ρ, 1])] = ΦνU (ρ) <∞.
Thus, (Rn)n≥1 converges to zero with probability one. Now, up to rearranging the
terms, we can assume that this sequence is nonincreasing and still verifies (144).

The property (2) may be established by computing the Laplace functional of the
random point measure NU

+. Let f denote a nonnegative Borel measurable function
defined on U+. Then, we have

LNU+
(f) = E

[
exp

(
−
∞∑
n=1

f(Rn, Xn)

)]
= E

[ ∞∏
n=1

(∫
U

e−f(Rn,x) dx

Ld(U)

)]
.

The right-hand side may be rewritten as the Laplace functional of the random point
measure NU evaluated at the nonnegative Borel measurable function

r 7→ − log

∫
U

e−f(r,x) dx

Ld(U)
.

Since NU is a Poisson point measure with intensity νU , we finally deduce that for
every nonnegative Borel measurable function f defined on the set U+, we have

LNU+
(f) = exp

(
−
∫
U+

(1− e−f(r,x)) νU (dr)⊗ dx

Ld(U)

)
,

from which we may determine the law of the random point measure NU
+. �

The representation supplied by Lemma 6.5 calls upon a sequence of independent
uniform random points. In view of Theorem 6.13, it thus establishes a connection
with eutaxy that we shall exploit in the upcoming proof of Theorem 6.14.
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Proof of Theorem 6.14. We begin by assuming that the open set U is
bounded, thereby finding ourselves into the convenient setting of Lemma 6.5. The
random point measures Π and NU

+, appearing in the statement of Theorem 6.14
and that of Lemma 6.5, respectively, share the same distribution: both are Poisson
point measures on U+ with intensity ν⊗Ld( · ∩U). We may therefore assume that
Π is replaced by NU

+ in the definition (141) of the random sets Ft under investiga-
tion. Equivalently, we may define the sets Ft through the formula (140), where the
points Xn and the radii Rn are those given by Lemma 6.5.

Now, we infer from Theorem 6.13 that with probability one, the sequence
(Xn)n≥1 is almost surely uniformly eutaxic in U . On top of that, evaluating the
Laplace functional of the Poisson point measure NU at the functions r 7→ θ rs, for
all positive values of s and θ, we get

E

[
exp

(
−θ

∞∑
n=1

Rsn

)]
= exp

(
−Ld(U)

∫
(0,1]

(1− e−θ r
s

) ν(dr)

)
.

Since ν is in the collection R and satisfies the integrability condition (142), the
integral in the right-hand side is infinite if s < d. The expectation in the left-hand
side is thus equal to zero, which means that the series

∑
nR

s
n diverges almost surely.

Furthermore, using twice the obvious fact that 1− e−z ≤ z for all real numbers z,
we deduce from the above equality that

E

[
1

θ

(
1− exp

(
−θ

∞∑
n=1

Rsn

))]
≤ Ld(U)

∫
(0,1]

rs ν(dr),

where the right-hand side is finite if s > d. However, as θ goes to zero, the random
variable in the expectation monotonically tends to the sum

∑
nR

s
n. We deduce from

the monotone convergence theorem that this sum has finite expectation if s > d,
thereby being finite almost surely. As a consequence, with probability one, (Rn)n≥1

is a nonincreasing sequence of positive real numbers satisfying (108), i.e. such that
the series

∑
nR

s
n is divergent for all s < d, and convergent for all s > d. Finally, it

follows from Theorem 6.2 that with probability one, for any real number t ≥ 1,

dimH(Ft ∩ U) =
d

t
and Ft ∈ Gd/t(U).

The result is thus proven in the case where the open set U is bounded.
Let us drop the boundedness assumption on U . In order to recover the previous

case, we consider a sequence (U (`))`≥1 of bounded open subsets of U such that

U =

∞⋃
`=1

↑ U (`) with U (`) ⊆ U (`+1).

For instance, we may define these sets through inner parallel bodies as in (102) ;
specifically, the sets

U (`) = {x ∈ U ∩ B(0, `) | d(x,Rd \ (U ∩ B(0, `))) > 1/`} (146)

are easily seen to verify the above properties. There is an integer `0 ≥ 1 such
that the set U (`0) is nonempty. Each subsequent set U (`) is therefore a nonempty
bounded open set, and we may deduce from Lemma 6.4(1) that the restriction

Π( · ∩ U (`)
+ ) is a Poisson point measure on U

(`)
+ with intensity ν ⊗ Ld( · ∩ U (`)). It

follows from the bounded case that the corresponding approximation sets, defined
as in (143), are such that with probability one, for any t ≥ 1 and any ` ≥ `0,

dimH(FU
(`)

t ∩ U (`)) =
d

t
and FU

(`)

t ∈ Gd/t(U (`)).
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On top of that, combining Lemma 6.4(2) with the properties of the sets U (`), we
observe that for any real number t ≥ 1,
∞⋃
`=`0

↑ (Ft ∩ U (`)) ⊆
∞⋃
`=`0

↑ FU
(`)

t ⊆
∞⋃
`=`0

↑ (Ft ∩ U (`)) ⊆
∞⋃
`=`0

↑ (Ft ∩ U (`+1)), (147)

where the leftmost and the rightmost sets are both equal to Ft ∩ U . In particular,
due to Proposition 2.16(2), we deduce that

dimH(Ft ∩ U) = dimH

∞⋃
`=`0

↑ FU
(`)

t = sup
`≥`0

dimH(FU
(`)

t ∩ U (`)) =
d

t
.

In order to prove that each set Ft belongs to the large intersection class Gd/t(U),
Definition 5.2 requires us to show that it is a Gδ-subset of Rd and that for any

positive real number s < d/t and any open subset Ũ of U ,

Ms
∞(Ft ∩ Ũ) =Ms

∞(Ũ)

The first property follows straightforwardly from (140). Moreover, as regards the
second property, Lemma 5.2 implies that it suffices to establish the above equality

for all dyadic cubes contained in U rather than for all such open sets Ũ . Specifically,
since there are countably many such cubes, it suffices to fix a nonempty dyadic cube
λ ⊆ U and to prove that with probability one, for all t ≥ 1 and s ∈ (0, d/t),

Ms
∞(Ft ∩ λ) =Ms

∞(λ).

This property follows from the bounded case. Indeed, since the interior of the cube λ
is a nonempty bounded open subset of U , what precedes ensures that almost surely,
for every t ≥ 1, the set F intλ

t defined as in (143) belongs to the class Gd/t(intλ).
Hence, making also use of Lemmas 5.1 and 6.4, we deduce that for all s ∈ (0, d/t),

Ms
∞(Ft ∩ λ) ≥Ms

∞(F intλ
t ∩ intλ) =Ms

∞(intλ) =Ms
∞(λ),

which gives the required result. �

Much more precise results, actually a full and complete description of the size
and large intersection properties of Poisson random coverings, will be given in Sec-
tion 11.2. Besides, in the spirit of Dvoretzky’s covering problem briefly discussed in
Section 6.5.1, one may ask for a necessarily and sufficient condition on the measure
ν to ensure that with probability one, all the points of the open set U are covered
by the Poisson distributed balls, i.e. that the set F1 obtained by choosing t = 1
in (141) contains the whole open set U almost surely. This problem was posed by
Mandelbrot [45] and solved by Shepp [57] in dimension d = 1 when the open set U
is equal to the whole real line. We refer to [8] and the references therein for further
results in that direction.



CHAPTER 7

Optimal regular systems

The notion of optimal regular system was introduced by Baker and Schmidt [1],
and subsequently refined by Beresnevich [3]. These systems result from the combi-
nation of a countably infinite subset A of Rd with a height function H : A → (0,∞).
As we shall explain below, they encompass many relevant examples arising in the
metric theory of Diophantine approximation. On top of that, they naturally give
rise to uniformly eutaxic sequences; we shall thus be able to apply Theorem 6.2
to determine the basic size and large intersection properties of the set Ft defined
by (107) when the considered sequences result from an optimal regular system.

However, in the metric theory of Diophantine approximation, the notion of
optimal regular system is usually employed without a detour to eutaxic sequences.
In that spirit, considering such a system (A, H), we shall replace the set F1 obtained
by letting t = 1 in (107) by the set

Fϕ =
{
x ∈ Rd

∣∣ |x− a| < ϕ(H(a)) for i.m. a ∈ A
}

(148)

associated with some positive nonincreasing continuous function ϕ defined on the
interval [0,∞), and more generally the sets Ft by the sets Fϕt obtained by replacing
the function ϕ by its t-th power in (148). The pair (A, H) has to be admissible, in
the sense that the following condition holds:

∀m ∈ N #
{
a ∈ A

∣∣ |a| < m and H(a) ≤ m
}
<∞. (149)

In order to justify this admissibility condition, we may point out that if ϕ also tends
to zero at infinity, then (149) implies that the family (a, ϕ(H(a)))a∈A of elements
of Rd × (0,∞) is an approximation system in the sense of Definition 4.1.

The relationship with Diophantine approximation is discussed more thoroughly
in Section 7.2. Examples of optimal regular systems include the points with ratio-
nal coordinates and the real algebraic numbers of bounded degree associated with
suitable height functions. They will be dealt with in Sections 7.3 and 7.4, along
with their implications in the metric theory of Diophantine approximation.

7.1. Definition and connection with eutaxy

Our purpose now is to define the notion of optimal regular system, and to
discuss the link with eutaxic sequences.

Definition 7.1. Let A be a countably infinite subset of Rd, let H : A → (0,∞)
be a height function, and let U be a nonempty open subset of Rd.

(1) The pair (A, H) is called a regular system in U if it is admissible and if
one may find a real number κ > 0 such that for any open ball B ⊆ U ,
there is a real number hB > 0 such that for all h > hB , there exists a
subset AB,h of A ∩B with

#AB,h ≥ κ|B|dhd

∀a ∈ AB,h H(a) ≤ h

∀a, a′ ∈ AB,h a 6= a′ =⇒ |a− a′| ≥ 1/h.

145
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(2) The pair (A, H) is called an optimal system in U if it is admissible and
if for any open ball B, there exist two real numbers κ′B > 0 and h′B > 0
such that for all h > h′B ,

#{a ∈ A ∩ U ∩B |H(a) ≤ h} ≤ κ′B hd. (150)

Throughout what follows, we shall freely employ the notations of Definition 7.1
without necessarily reintroducing them. It is elementary to remark that any regular
system in U is also regular in every nonempty open subset of U ; the same observa-
tion holds for the optimality property. Moreover, when the set U is bounded, the
next lemma shows that any regular system therein may be enumerated monoton-
ically with respect to the height function. The resulting enumerations will play a
key rôle in the connection between optimal regular systems and eutaxic sequences.

Lemma 7.1. Let U be a nonempty bounded open subset of Rd, and let (A, H)
denote a regular system in U . Then, there exists an enumeration (an)n≥1 of the
set A ∩ U such that H(an) monotonically tends to infinity as n→∞.

Proof. On the one hand, the regularity property of the system (A, H) ensures
that the set A∩U is countably infinite. On the other hand, as the set U is bounded,
it is contained in the open ball B(0,m), for m sufficiently large, and the admissibility
condition (149) implies that for any h > 0, only finitely many points in A∩U have
height bounded above by h. We deduce the existence of an increasing sequence
(hj)j≥1 of nonnegative integers with initial term zero and such that all the sets

Aj = {a ∈ A ∩ U | hj < H(a) ≤ hj+1}

are both nonempty and finite. For each integer j ≥ 1, we write the elements of the

set Aj in the form a
(j)
1 , . . . , a

(j)
#Aj

, in such a way that

H(a
(j)
1 ) ≤ . . . ≤ H(a

(j)
#Aj

).

It is clear that for any integer n ≥ 1, there is a unique pair of integers (j, k), with
j ≥ 1 and k ∈ {1, . . . ,#Aj}, such that

n = #A1 + . . .+ #Aj−1 + k.

We then define an as being equal to a
(j)
k , and it is elementary to check that the

sequence (an)n≥1 fulfills the conditions of the lemma. �

Any sequence (an)n≥1 resulting from Lemma 7.1 will be called a monotonic
enumeration of the regular system (A, H) in the set U . We now present the first
part of the connection between optimal regular systems and eutaxic sequences.

Proposition 7.1. Let U be a nonempty bounded open subset of Rd, let (A, H)
be an optimal regular system in U , and let (an)n≥1 denote a monotonic enumeration
of (A, H) in U . Then, the sequence (an)n≥1 is uniformly eutaxic in U . In fact,

inf
λ∈Λ\{∅}
λ⊆U

lim inf
j→∞

2−dj#M((an)n≥1;λ, j) > 0. (151)

Proof. The set U being bounded, it is contained in some open ball B. We
consider a real number γ ∈ (0, 1) such that κ′Bγ ≤ |[0, 1)d|d, and a nonempty dyadic
cube λ contained in U . Observe that there exists an open ball B′ ⊆ λ satisfying
|B′| = |λ|. Then, let j be a nonnegative integer so large that

h = γ1/d 2j

|λ|
> max{h′B , hB′}.
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The choice of h ensures that any dyadic subcube λ′ of λ with generation equal
to 〈λ〉 + j cannot contain more than one point of the set AB′,h. Otherwise, we
would have two distinct points in AB′,h at a distance bounded above by

|λ′| = 2−j |λ| = γ1/d

h
<

1

h
,

which would contradict the third property satisfied by AB′,h. Moreover, every point
contained in AB′,h has height bounded above by h and belongs to the set A ∩ U ,
thereby being of the form an for some n ≥ 1. The monotonicity of the enumeration
implies that n is actually bounded above by

#{a ∈ A ∩ U ∩B |H(a) ≤ h} ≤ κ′B hd = κ′B

(
γ1/d 2j

|λ|

)d
≤
(
|[0, 1)d| 2

j

|λ|

)d
,

so that n ≤ 2d(〈λ〉+j). Lastly, all the points of AB′,h are contained in B′, and thus
belong to some dyadic subcube of λ with generation 〈λ〉+ j. We deduce that

#M((an)n≥1;λ, j) ≥ #AB′,h ≥ κ|B′|dhd = κ

(
|λ|γ1/d 2j

|λ|

)d
= κγ2dj ,

and we end up with (151) by letting j tend to infinity. Hence, the sequence (an)n≥1

satisfies the condition (118), and so the weaker condition (110) holds as well. The
uniform eutaxy of the sequence thus follows from Theorem 6.3. �

Further investigating the connection between optimal regular systems and eu-
taxic sequences, we now give a converse result to Proposition 7.1. We start from the
property (151) that already appeared in the statement of this proposition and is in
fact stronger than uniform eutaxy. This means that we assume that the sequence
under consideration satisfies a condition of the form (118). As already observed,
this condition implies the sufficient condition (110) that guarantees uniform eutaxy.

Proposition 7.2. Let U be a nonempty open subset of Rd, and let (an)n≥1

denote a sequence of points contained in U . We assume that (151) holds, so that in
particular (an)n≥1 is uniformly eutaxic in U . Moreover, let A denote the collection
of all values an, for n ≥ 1. We endow A with the height function H defined by

H(a) = inf{n ≥ 1 | a = an}1/d.

Then, the pair (A, H) is an optimal regular system in the open set U .

Proof. For any open ball B and any real number h > 0, it is clear that a
point a ∈ A ∩ U ∩ B satisfying H(a) ≤ h is among the points a1, . . . , abhdc. This
proves that the pair (A, H) is admissible, and is in fact an optimal system in U .

Let us now establish that (A, H) is a also a regular system in U . Throughout,
c denotes a real number such that |x|∞/c ≤ |x| ≤ c|x|∞ for all x in Rd. Let B be
a nonempty open ball contained in U , and let λB denote a nonempty dyadic cube
contained in B with minimal generation. One easily checks that |B| ≤ 6c 2−〈λB〉.
Moreover, there is an integer j(λB) ≥ 0 such that

∀j ≥ j(λB) #M((an)n≥1;λB , j) ≥ α 2d(j−1),

where α denotes the left-hand side of (151). Thus, just as in the proof of Theo-
rem 6.3, detailed in Section 6.2.1, we infer that for any integer j ≥ j(λB), there

exists a set Sj(λB) ⊆ {1, . . . , 2d(〈λB〉+j)} satisfying the following properties:

• #Sj(λB) ≥ α 2d(j−2) ;
• an ∈ λB for any n ∈ Sj(λB) ;

• |an − an′ |∞ ≥ 2−(〈λB〉+j) for any distinct n, n′ ∈ Sj(λB).
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For any real number h larger than c 2〈λB〉+j(λB), letting j be equal to the integer
blog2(h/c)c−〈λB〉, where log2 is the base two logarithm, we have j ≥ j(λB). Hence,
we may define AB,h as the collection of all points an, for n in Sj(λB). It is then
straightforward to check that AB,h is a subset of A ∩B such that

#AB,h = #Sj(λB) ≥ α 2d(j−2) ≥ α|B|dhd/(48c2)d

∀a ∈ AB,h H(a) ≤ (2d(〈λB〉+j))1/d ≤ h/c ≤ h

∀a, a′ ∈ AB,h a 6= a′ =⇒ |a− a′| ≥ 2−(〈λB〉+j)/c ≥ 1/h,

and we deduce that the pair (A, H) is a regular system in the set U . �

Combining Propositions 7.1 and 7.2, we may finally deduce that, rather than
being equivalent to uniform eutaxy, the notion of optimal regular system is essen-
tially comparable with the stronger condition (151).

7.2. Approximation by optimal regular systems

Proposition 7.1 can be combined with Theorem 6.2 to determine the basic size
and large intersection properties of the set Ft defined by (107) when the considered
sequences result from an optimal regular system. However, as mentioned at the be-
ginning of Section 7.1, we shall follow the common practice from metric Diophantine
approximation and state our results without a detour to eutaxic sequences. Thus,
given an optimal regular system (A, H), we replace the set F1 obtained by letting
t = 1 in (107) by the set Fϕ defined by (148), and more generally the sets Ft by
the sets Fϕt obtained when replacing ϕ by its t-th power. The basic size and large
intersection properties of the sets Fϕt are given by the next result.

Theorem 7.1. Let ϕ denote a positive nonincreasing continuous function de-
fined on the interval [0,∞), and let Iϕ be the integral defined by

Iϕ =

∫ ∞
0

ηd−1ϕ(η)d dη. (152)

Moreover, let U denote a nonempty open subset of Rd, and let (A, H) denote an
optimal regular system in U .

(1) The set Fϕ has full, or zero, Lebesgue measure in the open set U according
to whether the integral Iϕ diverges, or converges, respectively.

(2) Let us assume that the function ϕ tends to zero at infinity and that the
integral Iϕ diverges. Then, the family (a, ϕ(H(a)))a∈A is a homogeneous
ubiquitous system in U .

(3) Let us assume that the positive powers of the function ϕ are such that{
t < 1 =⇒ Iϕt =∞
t > 1 =⇒ Iϕt <∞

Then, for any real number t ≥ 1,

dimH(Fϕt ∩ U) =
d

t
and Fϕt ∈ Gd/t(U).

Proof. The open set U may clearly be written as a countable union of open
balls Bn. For instance, we can consider the open balls contained in U , with center
in Qd and radius in Q ∩ (0,∞). We deduce that

Ld(U \ Fϕ) ≤
∞∑
n=1

Ld(Bn \ Fϕ) and Ld(Fϕ ∩ U) ≤
∞∑
n=1

Ld(Fϕ ∩Bn).

As a consequence, the proof of (1) reduces to establishing the next property:
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(1’) For any open ball B contained in U , the set Fϕ has full, or zero, Lebesgue
measure in B according to whether Iϕ diverges, or converges, respectively.

We begin by proving (1’) in the divergence case. If B denotes a nonempty
open ball contained in U , the pair (A, H) is also an optimal regular system in B,
so Lemma 7.1 enables us to consider a monotonic enumeration of (A, H) in B,
denoted by (an)n≥1. Then, it is clear that Fϕ contains the set FBϕ defined by

FBϕ =
{
x ∈ Rd

∣∣ |x− an| < rn for i.m. n ≥ 1
}
, (153)

where rn = ϕ(H(an)) for any n ≥ 1. By virtue of Proposition 7.1, the sequence
(an)n≥1 is uniformly eutaxic in B. Moreover, the sequence (rn)n≥1 is in Pd when
the integral Iϕ diverges, see below. It follows that for Lebesgue-almost every x in
B, there are infinitely many integers n ≥ 1 such that |x− an| < rn. Hence, the set
FBϕ has full Lebesgue measure in B, owing to (153). The same property thus holds
for the set Fϕ as well, and we deduce (1’) in the divergence case.

The fact that (rn)n≥1 is in Pd when Iϕ diverges may be proven as follows.
First, we may clearly assume that the function ϕ converges to zero at infinity; the
result is elementary otherwise. Let ζ be the premeasure defined on the intervals of
the form (h, h′), with 0 < h ≤ h′ <∞, by the formula ζ((h, h′)) = ϕ(h)d − ϕ(h′)d,
and let ζ∗ be the outer measure defined by (53). It follows from Theorem 2.4 that
the Borel sets contained in (0,∞) are ζ∗-measurable. The resulting Borel measure
is called the Lebesgue-Stieltjes measure associated with the monotonic function ϕd,
and we may integrate locally bounded Borel-measurable functions with respect to
that measure. Adapting the proof of Proposition 2.8, we remark that the above
outer measure ζ∗ is also equal to the outer measure ζ∗ defined by (51). We may
also adapt the proof of Proposition 2.9 in order to prove that ζ∗ coincides with
the premeasure ζ on the intervals where it is defined. Combining this observation
with Proposition 2.4(1) and the fact that ϕ tends to zero at infinity, we deduce in
particular that ζ∗([h,∞)) = ϕ(h)d for any real number h > 0. Accordingly, using
Tonelli’s theorem and the regularity of the system, we have

∞∑
n=1

rdn =

∞∑
n=1

∫ ∞
0

1{H(an)≤h} ζ∗(dh) =

∫ ∞
0

#{n ≥ 1 |H(an) ≤ h} ζ∗(dh)

≥
∫ ∞

0

κ|B|dhd ζ∗(dh) +

∫ hB

0

(
#{n ≥ 1 |H(an) ≤ h} − κ|B|dhd

)
ζ∗(dh)︸ ︷︷ ︸

R

= κ|B|d
∫ ∞

0

∫ h

0

d ηd−1 dη ζ∗(dh) +R = κd|B|d
∫ ∞

0

ηd−1ζ∗([η,∞)) dη +R

= κd|B|dIϕ +R,

which proves that (rn)n≥1 belongs to Pd when Iϕ is divergent.
We now prove (1’) in the convergence case, using the above notations in addition

to those of Definition 7.1. Note that the intersection Fϕ ∩ B is contained in the
set FBϕ defined by (153). Indeed, let x denote a point in this intersection. The
ball B being open, it contains a ball B′ of the form B(x, r) for a sufficiently small
r > 0. Moreover, the function ϕ necessarily tends to zero at infinity, in view of the
convergence of the integral Iϕ. This means that ϕ(h) ≤ r for any real number h
larger than some h0. Now, there exists an infinite subset Ax of A formed by points
a satisfying |x − a| < ϕ(H(a)). In particular, all these points belong to the open
ball centered at x with radius ϕ(0), so that

{a ∈ Ax |H(a) ≤ h0} ⊆
{
a ∈ A

∣∣ |a| < |x|+ ϕ(0) and H(a) ≤ h0

}
.
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The latter set is finite in view of the admissibility condition (149). It follows that
infinitely many points a in the set Ax have height larger than h0, thereby satisfying
ϕ(H(a)) ≤ r. All these points thus belong to the ball B′, and must then be of the
form an for some integer n ≥ 1. We deduce that x belongs to the set FBϕ .

Furthermore, due to (153), the set FBϕ is covered by the open balls centered
at an with radius rn, for n starting from any fixed n0 ≥ 1. Adapting the proof of
Proposition 1.1, we get

Ld(Fϕ ∩B) ≤ Ld(FBϕ ) ≤
∞∑

n=n0

Ld(B(an, rn)) = Ld(B(0, 1))

∞∑
n=n0

rdn.

The convergence part of (1’) now follows from letting n0 go to infinity and observing
that the series appearing in the above bound is convergent when the integral Iϕ
is convergent. As a matter of fact, reproducing the above reasoning and using the
optimality of the system, we obtain

∞∑
n=1

rdn =

∫ ∞
0

#{n ≥ 1 |H(an) ≤ h} ζ∗(dh)

≤
∫ ∞

0

κ′Bh
d ζ∗(dh) +

∫ h′B

0

(
#{n ≥ 1 |H(an) ≤ h} − κ′Bhd

)
ζ∗(dh)︸ ︷︷ ︸

R′

= κ′BdIϕ +R′.

Owing to the admissibility condition (149), there are finitely many points an with
height bounded above by h′B , so that the integral R′ is finite. Finally, the series∑
n r

d
n converges when the integral Iϕ does.

Let us turn our attention to (2). As mentioned at the beginning of Section 7.1,
if ϕ tends to zero at infinity, the admissibility condition (149) implies that the
family (a, ϕ(H(a)))a∈A is an approximation system in the sense of Definition 4.1.
Now, if the integral Iϕ diverges, it follows from (1) that the set Fϕ has full Lebesgue
measure in U . The definition (148) of this set, and that of a homogeneous ubiquitous
system, i.e. Definition 4.2, then straightforwardly lead to (2).

In order to establish (3), let us assume that the integral Iϕt diverges for t < 1,
and converges for t > 1. We consider a nonempty open ball B ⊆ U and we adopt
the same notations as in the proof of (1’). The above arguments imply that

Fϕt ∩B ⊆ FBϕt ⊆ Fϕt , (154)

where FBϕt denotes the set obtained by raising rn to the power t in (153). Moreover,

in view of the hypotheses on the integrals Iϕt , the sequence (rn)n≥1 satisfies (108),
i.e. the series

∑
n r

s
n diverges when s < d, and converges when s > d. Recalling

that (an)n≥1 is uniformly eutaxic in B, we deduce from Theorem 6.2 that

dimH(FBϕt ∩B) =
d

t
and FBϕt ∈ Gd/t(B).

To conclude, recall that U may be written as a countable union of open balls Bn.
Combining Proposition 2.16(2) with (154), we get

dimH(Fϕt ∩ U) = sup
n≥1

dimH(Fϕt ∩Bn) = sup
n≥1

dimH(FBnϕt ∩Bn) =
d

t
.

Furthermore, according to Definition 5.2, proving that Fϕt belongs to the large

intersection class Gd/t(U) amounts to establishing that

Ms
∞(Fϕt ∩ V ) =Ms

∞(V ) (155)
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for any positive real number s < d/t and any open subset V of U . To this purpose,
let us consider a dyadic cube λ ∈ Λ contained in V . Thanks to (154), we have

Ms
∞(Fϕt ∩ λ) ≥Ms

∞(FBϕt ∩ intλ) =Ms
∞(intλ) =Ms

∞(λ).

where B denotes an arbitrary open ball sandwiched between λ and V . Here, we
have combined Lemma 5.1 together with the fact that FBϕt belongs to Gd/t(B). It

finally suffices to apply Lemma 5.2 to obtain (155). �

7.3. Application to homogeneous and inhomogeneous approximation

A simple example of optimal regular system is supplied by the points with ra-
tional coordinates; this corresponds to the classical problem of homogeneous Dio-
phantine approximation. We now detail this example, as well as its inhomogeneous
counterpart. We shall then state the corresponding metric results obtained by fur-
ther applying Theorem 7.1, namely, a famous theorem by Khintchine [38] and an
inhomogeneous analog of Theorem 3.1, i.e. the Jarńık-Besicovitch theorem.

7.3.1. Homogeneous approximation. In order to study the regularity and
the optimality of the set Qd of all points with rational coordinates, we first endow
it with the appropriate height function, specifically,

Hd(a) = inf{q ∈ N | qa ∈ Zd}1+1/d. (156)

The regularity and optimality properties of the resulting pair are in fact reminiscent
of the statement of Lemma 3.1, which was crucial when establishing the lower
bound in the Jarńık-Besicovitch theorem, see Section 3.1.2. Accordingly, an easy
adaptation of the proof of that lemma leads to the next statement.

Theorem 7.2. The pair (Qd, Hd) is an optimal regular system in Rd.

Proof. When the open set U is equal to the whole space Rd in Definition 7.1,
one easily checks that the notion of optimal regular system does not depend on the
choice of the norm. We thus choose to work with the supremum norm.

Establishing the optimality of the system is rather elementary. Indeed, let B
denote the open ball with center x and radius r, and let a be a point in Qd ∩ B
with height at most h. We write a in the form p/q, with p ∈ Zd and q ∈ N as small
as possible. As a result, the height Hd(a) is equal to q1+1/d, which means that q is
bounded above by hd/(d+1). Moreover, the number of possible values for the point
p is not greater than (2rq+ 1)d. This follows from a volume comparison argument,
along with the observation that the open balls with radius 1/(2q) centered at the
points p′/q ∈ B, with p′ ∈ Zd, are disjoint and contained in the open ball with
center x and radius r + 1/(2q). Hence,

#{a ∈ Qd ∩B |Hd(a) ≤ h} ≤
∑

1≤q≤hd/(d+1)

(2rq + 1)d

≤ hd/(d+1)(2rhd/(d+1) + 1)d ≤ (4r)dhd,

where the last bound holds for h ≥ (2r)−1−1/d.
The proof of the regularity of the system is parallel to that of Lemma 3.1, and

is in fact less technical. For any point y in Rd, let q(y) denote the minimal value
of the integer q ≥ 1 for which

∃p ∈ Zd |qy − p|∞ ≤
1

bh1/(d+1)c
.

Dirichlet’s theorem, namely, Theorem 1.1, ensures that q(y) ≤ hd/(d+1). Actually,
this holds if h is large enough to guarantee that bh1/(d+1)c is larger than one, i.e. if

h ≥ 2d+1, (157)
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a condition that we assume from now on. Moreover, the minimality of q(y) implies
that the integer q(y) and the coordinates of the corresponding integer point p are
mutually coprime. In particular,

Hd

(
p

q(y)

)
= q(y)1+1/d ≤ h. (158)

Now, some parameters γ and δ being fixed in (0, 1), let B′ denote the open
ball concentric with B, with radius δ times that of B, and let B′′ be the subset
of B′ formed by the points y such that q(y) < γhd/(d+1). The set B′′ is covered
by the closed balls with radius 2/(qh1/(d+1)) centered at the rational points p/q
within distance 1/q of the ball B′ and with denominator q < γhd/(d+1). For any
fixed choice of q, there are at most (2qδr + 3)d such points. Hence, the Lebesgue
measure of the set B′′ is at most∑

1≤q<γhd/(d+1)

(2qδr + 3)d
(

4

qh1/(d+1)

)d
=

4d

hd/(d+1)

∑
1≤q<γhd/(d+1)

(
2δr +

3

q

)d
.

In order to derive an upper bound on the sum in the right-hand side, we first
consider the case in which q < 3/(2δr). In that situation, the summand is clearly
bounded by 6d. In the opposite case, the summand is bounded by (4δr)d. Thus,

Ld(B′′) ≤ 3 · 24d

2δrhd/(d+1)
+ (16δr)dγ.

We may now define AB,h as any maximal collection of points in Qd ∩ B with
height at most h and separated from each other by a distance at least 1/(γh), so in
particular at least 1/h. It remains us to establish a lower bound on the cardinality of
AB,h, and to tune up the parameters γ and δ appropriately. Any point y ∈ B′ \B′′
is such that q(y) is between γhd/(d+1) and hd/(d+1), so there exists an integer point
p in Zd such that the rational point p/q(y) satisfies∣∣∣∣y − p

q(y)

∣∣∣∣
∞
≤ 1

q(y)bh1/(d+1)c
≤ 1

γhd/(d+1)bh1/(d+1)c
≤ 2

γh
.

In particular, since y is in the ball B′, the rational point p/q(y) belongs to the ball
B if the following condition holds:

2

γh
+ δr ≤ r. (159)

In that situation, the point p/q(y) is in Qd ∩ B and has height at most h, in view
of (158). Therefore, the collection AB,h being maximal, it must contain a point
p′/q′ located at a distance less than 1/(γh) from p/q(y). Hence,∣∣∣∣y − p′

q′

∣∣∣∣
∞
≤
∣∣∣∣y − p

q(y)

∣∣∣∣
∞

+

∣∣∣∣ p

q(y)
− p′

q′

∣∣∣∣
∞
<

2

γh
+

1

γh
≤ 3

γh
.

It follows that the set B′ \ B′′ is covered by the open balls with radius 3/(γh)
centered at the points in AB,h. As a consequence,

(2δr)d − 3 · 24d

2δrhd/(d+1)
− (16δr)dγ ≤ Ld(B′ \B′′) ≤

(
6

γh

)d
#AB,h,

from which we deduce that

#AB,h
|B|dhd

≥
(
γδ

6

)d(
1− 8dγ − 3 · 12d

2(δr)d+1hd/(d+1)

)
. (160)

To conclude, it remains to adjust the values of the parameters γ and δ ap-
propriately, and to specify how large h must be chosen in order to ensure that
all the conditions above hold, in particular that (160) holds with a constant in
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the right-hand side. In fact, we choose γ smaller than 8−d, and δ arbitrarily, and
we require that h is large enough to ensure that (157) and (159) both hold, and
that (160) holds with a constant in the right-hand side. More specifically, we may
define γ = 2−3d−1 and δ = 1/2, and then assume that

h ≥ max

{
2d+1,

23(d+1)

r
,

(
23d+23d+1

rd+1

)1+1/d
}
.

As required, this ensures that (157) and (159) are both satisfied, and that (160)
holds with constant 2−3d(d+1)−2 ·3−d in the right-hand side. This finally proves the
regularity of the system (Qd, Hd) of points with rational coordinates. �

7.3.2. Inhomogeneous approximation. Theorem 7.2 may be extended to
the inhomogeneous case presented in Section 1.5 and obtained by shifting the ap-
proximating rational points p/q with the help of a chosen value α in Rd. To be
specific, the approximation is realized by the points that belong to the collection

Qd,α =

{
p+ α

q
, (p, q) ∈ Zd × N

}
Obviously, when α vanishes, we recover the set Qd of points with rational coordi-
nates. The collection Qd,α is endowed with the height function Hα

d defined by

Hα
d (a) = inf{q ∈ N | qa− α ∈ Zd}1+1/d.

Again, when α is zero, we get the height function Hd introduced in the above homo-
geneous case. We then have the following generalization of Theorem 7.2. The proof
is essentially due to Bugeaud [12] and relies on an inhomogeneous approximation
result derived in Section 1.5 above, specifically, Proposition 1.11.

Theorem 7.3. For any point α in Rd, the pair (Qd,α, Hα
d ) is an optimal regular

system in Rd.

Proof. The proof is, to a certain extent, a generalization of that detailed in
the homogeneous case. In particular, the optimality of the system (Qd,α, Hα

d ) may
straightforwardly be established by adapting the arguments developed in the proof
of Theorem 7.2, so we shall only detail the proof of the regularity.

On a more technical note, it is convenient here again to endow Rd with the
supremum norm. For any point y in Rd, we slightly modify the definition of the
integer q(y) coming into play in the homogeneous case: this is now the minimal
value of the integer q ≥ 1 for which

∃p ∈ Zd |qy − p|∞ ≤
1

b2−1/dh1/(d+1)c
.

Dirichlet’s theorem then shows that 2q(y) is bounded above by hd/(d+1), with the
proviso that the following condition holds:

h ≥ 2(d+1)2/d. (161)

We assume from now on that this condition is satisfied. We consider an open ball
B in Rd, two parameters γ and δ in (0, 1), and then another ball B′, exactly as in
the proof of Theorem 7.2. We shall however slightly modify the definition of the
set B′′ : this is now the set of points y in B′ such that 2q(y) < γhd/(d+1). Adapting
the arguments developed in the proof of Theorem 7.2, we observe that

Ld(B′′) ≤ 3 · 24d

δrhd/(d+1)
+ (16δr)dγ.
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Finally, we define AB,h as any maximal collection of points belonging to the set
Qd,α ∩ B with height at most h and separated from each other by a distance at
least (2/γ)1+1/d/h, thus in particular at least 1/h.

We now search for an appropriate lower bound on the cardinality of AB,h. Note
that each point y in the set B′ \B′′ satisfies

q(y) ≥ γ

2
hd/(d+1) ≥ γb2−1/dh1/(d+1)cd.

This suggests us to apply Proposition 1.11 to the integer b2−1/dh1/(d+1)c, the point
α, and each point y in the set B′ \ B′′. We thereby infer the existence of two real
numbers Γ∗ and H∗, both larger than one and depending on γ and d only, such
that the condition

h > H∗ (162)

implies that for each point y in the set B′ \B′′, there is a pair (p, q) in Zd×N with

q(y) ≤ q < 2q(y) and |qy − p− α|∞ ≤
Γ∗

q(y)1/d
.

In that situation, we straightforwardly deduce that∣∣∣∣y − p+ α

q

∣∣∣∣
∞
≤ Γ∗
q(y)1+1/d

≤ Γ∗
h

(
2

γ

)1+1/d

.

Given that the point y is in the ball B′, this means in particular that the point
(p+ α)/q belongs to the set Qd,α ∩B if the following condition holds:

Γ∗
h

(
2

γ

)1+1/d

+ δr ≤ r. (163)

On top of that, we observed previously that 2q(y) is bounded above by hd/(d+1),
so we deduce that this point satisfies

Hα
d

(
p+ α

q

)
≤ q1+1/d < (2q(y))1+1/d ≤ h.

Since the collection AB,h is maximal, it contains a point (p′ + α)/q′ located at a

distance smaller than (2/γ)1+1/d/h from (p+ α)/q, so that∣∣∣∣y − p′ + α

q′

∣∣∣∣
∞
≤
∣∣∣∣y − p+ α

q

∣∣∣∣
∞

+

∣∣∣∣p+ α

q
− p′ + α

q′

∣∣∣∣
∞
<

Γ∗ + 1

h

(
2

γ

)1+1/d

.

Hence, the set B′ \B′′ is covered by the open balls centered at the points in AB,h
with radius the right-hand side above. Adapting the arguments of the homogeneous
case, and making use of the fact that Γ∗ is larger than one, we obtain

(2δr)d − 3 · 24d

δrhd/(d+1)
− (16δr)dγ ≤ Ld(B′ \B′′) ≤

(
4Γ∗
h

)d(
2

γ

)d+1

#AB,h,

from which we deduce that

#AB,h
|B|dhd

≥
(

δ

4Γ∗

)d (γ
2

)d+1
(

1− 8dγ − 3 · 12d

(δr)d+1hd/(d+1)

)
. (164)

To conclude, we choose γ smaller than 8−d, and δ arbitrarily, and we require that h
is large enough to ensure that (161), (162) and (163) all hold, and that (164) holds
with a constant that depends on d in the right-hand side. �

Combining Proposition 7.1 and Theorem 7.3, we directly get the following prop-
erty: for any nonempty bounded open subset U of Rd, any monotonic enumeration
of the optimal regular system (Qd,α, Hα

d ) in the set U is uniformly eutaxic. In
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particular, the arguably most natural enumeration of the rational numbers that are
strictly between zero and one, namely, the sequence

1

2
,

1

3
,

2

3
,

1

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
,

1

6
,

5

6
,

1

7
,

2

7
,

3

7
,

4

7
,

5

7
,

6

7
, . . .

is uniformly eutaxic in the open interval (0, 1).

7.3.3. Metrical implications for general approximating functions. We
may use Theorem 7.3 in conjunction with Theorem 7.1 in order to describe the basic
size and large intersection properties of the set

Qα
d,ψ =

{
x ∈ Rd

∣∣∣∣∣
∣∣∣∣x− p+ α

q

∣∣∣∣
∞
< ψ(q) for i.m. (p, q) ∈ Zd × N

}
, (165)

where ψ denotes a positive nonincreasing continuous function that is defined on the
interval [0,∞). When ψ(q) coincides with q−τ for all q ≥ 1 and some τ > 0, we
clearly recover the set Jαd,τ defined by (31). Moreover, in the homogeneous case,
i.e. when the point α is equal to the origin, we end up with the emblematic set Jd,τ
defined by (1) and whose Hausdorff dimension is given by Theorem 3.1, i.e. the
Jarńık-Besicovitch theorem. Among other results, we shall therefore extend this
theorem to the more general set Qα

d,ψ. This is the purpose of the next statement.

Theorem 7.4. Let α be a point in Rd and let ψ denote a positive nonincreasing
continuous function defined on the interval [0,∞).

(1) The set Qα
d,ψ has full, or zero, Lebesgue measure in Rd according to

whether the integral Id,ψ diverges, or converges, respectively, where

Id,ψ =

∫ ∞
0

qdψ(q)d dq.

(2) Let us assume that the integral Id,ψ is convergent. Then, the parameter

θd,ψ = lim sup
q→∞

(d+ 1) log q

− logψ(q)

is bounded above by d. Moreover, if the parameter θd,ψ is positive, then
the set Qα

d,ψ satisfies

dimH Qα
d,ψ = θd,ψ and Qα

d,ψ ∈ Gθd,ψ (Rd).

Proof. To establish (1), we observe that the set Qα
d,ψ coincides with the set

Fϕ defined by (148) when the function ϕ satisfies ϕ(η) = ψ(ηd/(d+1)) for all η ≥ 0,
and the underlying system (A, H) is equal to (Qd,α, Hα

d ), which is optimal and
regular in the whole space Rd by virtue of Theorem 7.3. Applying Theorem 7.1(1)
and making the obvious change of variable, we deduce that the set Qα

d,ψ has full, or

zero, Lebesgue measure in the whole space Rd according to whether the following
integral diverges, or converges, respectively:

Iϕ =

∫ ∞
0

ηd−1ϕ(η)d dη =

(
1 +

1

d

)∫ ∞
0

qdψ(q)d dq =

(
1 +

1

d

)
Id,ψ.

With a view to proving (2), we begin by using the monotonicity of the function
ψ in order to remark that for all positive real numbers s and Q,∫ ∞

0

qdψ(q)s dq ≥
∫ Q

Q/2

qdψ(q)s dq ≥ ψ(Q)s
(
Q

2

)d+1

.

When s is equal to d, the integral in the left-hand side is finite because it coincides
with Id,ψ. This implies that the function ψ converges to zero at infinity, and in fact
that the parameter θd,ψ is bounded above by d.



156 7. OPTIMAL REGULAR SYSTEMS

Let us suppose that s < θd,ψ. One may find a real number ε > 0 and a real
sequence (Qn)n≥1 going to infinity such that ψ(Qn)s+ε is larger than 1/Qd+1

n for
all n ≥ 1. The above inequalities then yield∫ ∞

0

qdψ(q)s dq ≥ ψ(Qn)s
(
Qn
2

)d+1

> 2−(d+1)Q(d+1)ε/(s+ε)
n .

Letting n → ∞, we deduce that the integral in the left-hand side diverges. This
means that the integral Id,ψs/d diverges, where ψs/d denotes the function ψ raised
to the power s/d. Conversely, if s > θd,ψ, there is a real number ε > 0 such that
ψ(Q)s−ε is smaller than 1/Qd+1 for all Q sufficiently large; this readily implies that
the integral Id,ψs/d is convergent. The upshot is that{

s < θd,ψ =⇒ Id,ψs/d =∞
s > θd,ψ =⇒ Id,ψs/d <∞.

It remains to perform a simple change of function to exactly recover the setting of
Theorem 7.1(3). To be specific, assuming that θd,ψ > 0, we raise ψ to the power
θd,ψ/d, and we let ψ∗ denote the resulting function. As in the proof of (1), the set

Qα
d,ψ∗

then coincides with the set Fϕ∗ obtained for ϕ∗(η) = ψ∗(η
d/(d+1)). Observing

that the integrals Id,ψt∗ and Iϕt∗ share the same convergence properties, we get{
t < 1 =⇒ Iϕt∗ =∞
t > 1 =⇒ Iϕt∗ <∞.

(166)

We may now apply Theorem 7.1(3), thereby deducing that for any t ≥ 1, the set
Fϕt∗ has Hausdorff dimension d/t and belongs to the class Gd/t(Rd). Finally, when
t is equal to d/θd,ψ, the set Fϕt∗ is equal to the set Qα

d,ψ, and the result follows. �

Theorem 7.4(1) is essentially due to Khintchine [38] in the homogeneous case,
and to Schmidt [52] in the general case. Note that the original proofs, however,
do not call upon the methods that we develop here. Moreover, Theorem 7.4(2)
follows from more general results from Jarńık [37] and Bugeaud [12] that address
the homogeneous, and the inhomogeneous case, respectively. These more general
results will be presented in Section 10.2 below.

7.3.4. An inhomogeneous Jarńık-Besicovitch theorem. As an immedi-
ate consequence of Theorem 7.4, we deduce the basic size and large intersection
properties of the set Jαd,τ defined by (31). This corresponds to the case where the

approximation function ψ is of the form q 7→ q−τ on the interval [1,∞), for some
positive real number τ . Observe that the integral Id,ψ arising in the statement of
Theorem 7.4 converges if and only if τ > 1 + 1/d. Furthermore, the parameter
θd,ψ is clearly equal to (d + 1)/τ . Specializing Theorem 7.4 to this situation, we
therefore end up with the next result.

Corollary 7.1. For any point α in Rd and any real parameter τ , the set
Jαd,τ defined by (31) has full, or zero, Lebesgue measure in Rd according to whether

τ ≤ 1 + 1/d, or not, respectively. Moreover, in the latter situation, we have

dimH J
α
d,τ =

d+ 1

τ
and Jαd,τ ∈ G(d+1)/τ (Rd).

Obviously, the set Jαd,τ is also a set with large intersection when τ ≤ 1 + 1/d.

To be specific, Jαd,τ belongs to the class Gd(Rd), just as any Lebesgue-full Gδ-set.
Furthermore, in the homogeneous case where α vanishes, we obviously recover the
introductory set Jd,τ defined by (1). Recall that its Hausdorff dimension is equal
to (d+1)/τ , due to the Jarńık-Besicovitch theorem, and that it even belongs to the
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large intersection class G(d+1)/τ (Rd), see Theorem 3.1 and Corollary 5.2. We may
thus see Corollary 7.1 as an extension of these results to the inhomogeneous case.

Remarkably, the large intersection property allows us to consider countably
many values of the parameter α and to study the size of the intersection of the
corresponding sets Jαd,τ , for possibly different values of the parameter τ . Indeed,

let (αn)n≥1 be a sequence of points in Rd, and let (τn)n≥1 be a sequence of real
numbers. We begin by assuming that the supremum

τ∗ = sup
n≥1

τn

is both finite and larger than 1 + 1/d. Thanks to Proposition 5.1(2) and Corol-
lary 7.1, we know that each Jαnd,τn is a set with large intersection in Rd with dimension

at least min{(d + 1)/τn, d}, and thus belongs to the class G(d+1)/τ∗(Rd). In view
of Theorem 5.1, the latter class is closed under countable intersections, thereby
containing the intersection of the sets Jαnd,τn . In particular, this intersection has

dimension at least (d+ 1)/τ∗. The matching upper bound being a straightforward
consequence of Proposition 2.16(1), i.e. the monotonicity property of Hausdorff
dimension, we deduce that

dimH

∞⋂
n=1

Jαnd,τn =
d+ 1

τ∗
.

When τ∗ is bounded above by 1 + 1/d, the above intersection has Hausdorff di-
mension equal to d. Indeed, Corollary 7.1 ensures that all the sets Jαnd,τn have full

Lebesgue measure in Rd, and so has their intersection. In the remaining case where
τ∗ is infinite, one may show that the intersection has Hausdorff dimension equal to
zero; this will follow from more precise results established in Section 10.2.2.

7.3.5. Connection with fractional parts of linear sequences. Finally,
Theorem 7.4 also enables us to recover the fact that the fractional parts of almost
all linear sequences are eutaxic in the unit cube (0, 1)d, see Theorem 6.8. Let us
consider a sequence (rn)n≥1 in the collection Pd. The sequence (rn/n)n≥1 is both
positive and nonincreasing, so we may find a positive nonincreasing continuous
function ψ defined on the interval [0,∞) that coincides with this sequence on the
positive integers. Hence, the integral Id,ψ on which relies Theorem 7.4(1) satisfies

Id,ψ =

∫ ∞
0

qdψ(q)d dq ≥
∞∑
n=1

(n− 1)dψ(n)d = 2−d
∞∑
n=2

rdn =∞.

We deduce that the sets Qy
d,ψ, defined as in (165) for all points y in Rd, have full

Lebesgue measure in Rd. In particular, if y belongs to the unit cube (0, 1)d, then
Ld-almost every point x in Rd satisfies

|nx− (pn + y)|∞ < nψ(n) = rn

with some integer point pn, for infinitely many integers n ≥ 1. For convenience, we
work here and below with the supremum norm; recall from Section 6.1.1 that this
choice does not alter the notion of eutaxy. Letting h = (1/2, . . . , 1/2), we have

|bnxc − pn|∞ ≤ |nx− (pn + y)|∞ + |{nx} − h|∞ + |y − h|∞ < rn +
1

2
+ |y − h|∞

The right-hand side is smaller than one for n sufficiently large, because the sequence
(rn)n≥1 converges to zero. The point pn is then necessarily equal to bnxc. We
deduce that for all y ∈ (0, 1)d and for Ld-almost all x ∈ Rd, the inequality

|y − {nx}|∞ < rn
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holds for infinitely many integers n ≥ 1. This holds a fortiori for Ld-almost every
point y. Tonelli’s theorem finally allows us to exchange the order of y and x, thus
concluding that for Ld-almost every x ∈ Rd, the sequence ({nx})n≥1 is eutaxic in
the cube (0, 1)d with respect to the sequence (rn)n≥1. This is exactly Theorem 6.8.

7.4. Application to the approximation by algebraic numbers

We now turn our attention to the examples supplied by the real algebraic num-
bers and the real algebraic integers. Our treatment will be somewhat brief, as for
instance we shall not detail all the proofs; for further details, we refer to the seminal
paper by Baker and Schmidt [1], subsequent important works by Beresnevich [2]
and Bugeaud [9], and the references therein. We shall show that the algebraic num-
bers and integers lead to optimal regular systems, and we shall state the metrical
results obtained from subsequently applying Theorem 7.1.

The collection of all real algebraic numbers is denoted by A. The näıve height
of a number a in A, denoted by H(a), is the maximum of the absolute values of the
coefficients of its minimal defining polynomial over Z. Moreover, the set of all real
algebraic numbers with degree at most n is denoted by An. Baker and Schmidt [1]
proved that the set An, endowed with the height function

a 7→ H(a)n+1

(max{1, log H(a)})3n2 ,

forms a regular system. The trouble is that, due to the logarithmic term, this
height function does not lead to the best possible metrical statements. However,
Beresnevich proved that the height function

Hn(a) =
H(a)n+1

(1 + |a|)n(n+1)
, (167)

where there is no logarithmic term, is actually convenient. We shall therefore
privilege the following statement when deriving metrical results underneath.

Theorem 7.5 (Beresnevich). For any integer n ≥ 1, the pair (An, Hn) is an
optimal regular system in R.

It is elementary to check that (An, Hn) is an optimal system. Establishing the
regularity is much more difficult and relies on a fine knowledge of the distribution of
real algebraic numbers; we refer to [2] for a detailed proof. Note that A1 obviously
coincides with the set Q of rational numbers. Moreover, writing an element a in A1

in the form p/q for two coprime integers p and q, the latter being positive, we have

H1(a) =
H(a)2

(1 + |a|)2
=

max{|p|, q}2

(1 + |a|)2
=

(
max{1, |a|}

1 + |a|

)2

q2,

so that H1(a) is between q2/4 and q2. Hence, the height of a, viewed as an algebraic
number with degree one, is comparable with its height when regarded as a rational
point of the real line, see (156).

We shall now combine Theorem 7.5 with Theorem 7.1, in order to describe
the basic size and large intersection properties of sets that arise naturally when
studying the approximation of real numbers by real algebraic numbers. For any
positive nonincreasing continuous function ψ defined on [0,∞), let us define

An,ψ =
{
x ∈ R

∣∣ |x− a| < ψ(H(a)) for i.m. a ∈ An
}
. (168)

The elementary size and large intersection properties of the set An,ψ are detailed
in the next statement, which should be thought of as an analog of Theorem 7.4 to
the present situation.
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Theorem 7.6. Let n be a positive integer and let ψ denote a positive nonin-
creasing continuous function defined on the interval [0,∞).

(1) The set An,ψ has full, or zero, Lebesgue measure in R according to whether
the integral In,ψ diverges, or converges, respectively, where

In,ψ =

∫ ∞
0

hnψ(h) dh.

(2) Let us assume that the integral In,ψ is convergent. Then, the parameter

θn,ψ = lim sup
h→∞

(n+ 1) log h

− logψ(h)

is bounded above by one. Moreover, if the parameter θn,ψ is positive, then
the set An,ψ satisfies

dimH An,ψ = θn,ψ and An,ψ ∈ Gθn,ψ (R).

Proof. In order to prove (1), we begin by observing that the set An,ψ may be
approximated with the help of the sets Fϕ defined by (148) when the underlying
system (A, H) is equal to (An, Hn) and the function ϕ is chosen appropriately.
Indeed, for any integer k ≥ 1, let ϕk denote the function defined for all η ≥ 0 by
ϕk(η) = ψ(k η1/(n+1)). Note that, the larger k, the smaller Fϕk . We then have

∞⋂
k=1

↓ Fϕk ⊆ An,ψ ⊆ Fϕ1
. (169)

Indeed, let x denote a point in the left-hand side and let k be chosen as any integer
larger than or equal to (1 + |x|+ ψ(0))n. Since the point x belongs to the set Fϕk ,
there are infinitely many points a in An such that

|x− a| < ϕk(Hn(a)) = ψ(kHn(a)1/(n+1))

However, the function ψ is nonincreasing and the integer k is bounded below by
(1 + |x|+ ψ(0))n, and thus by (1 + |a|)n. Hence, we have

|x− a| < ψ((1 + |a|)nHn(a)1/(n+1)) = ψ(H(a))

for infinitely many points a in An, so that x is in An,ψ. Furthermore, in that
situation, since the inequality |x− a| < ψ(H(a)) holds for infinitely many points a
in An, we deduce that

|x− a| < ψ(H(a)) = ψ((1 + |a|)nHn(a)1/(n+1)) ≤ ψ(Hn(a)1/(n+1)) = ϕ1(Hn(a)),

again because the function ψ is nonincreasing, so that the point x belongs to the
set Fϕ1

in the right-hand side of (169).
We may now finish the proof of (1). Thanks to (169), it suffices to prove that

the set Fϕ1 has Lebesgue measure zero in R when the integral In,ψ converges, and
that all the sets Fϕk , for k ≥ 1, have full Lebesgue measure in R when the integral
diverges. However, a simple change of variable implies that

Iϕk =

∫ ∞
0

ϕk(η) dη =
n+ 1

kn+1

∫ ∞
0

hnψ(h) dh =
n+ 1

kn+1
In,ψ, (170)

so we conclude with the help of Theorem 7.1(1) and the fact that (An, Hn) is an
optimal regular system in R by virtue of Theorem 7.5.

Let us now turn our attention to the proof of (2). We suppose that the integral
In,ψ is convergent. Then, adapting the proof of Theorem 7.4(2), we easily establish
that θn,ψ is bounded above by one, and that{

s < θn,ψ =⇒ In,ψs =∞
s > θn,ψ =⇒ In,ψs <∞.
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As a consequence, if θn,ψ is positive, then (166) holds here as well for ϕ∗ = ϕ
θn,ψ
k ,

where k denotes an arbitrary positive integer. Applying Theorem 7.1(3), we infer
that for any t ≥ 1, the set Fϕt∗ has Hausdorff dimension 1/t and belongs to the

class G1/t(R). Choosing t = 1/θn,ψ, we deduce that all the sets Fϕk have Hausdorff
dimension θn,ψ and belongs to the class Gθn,ψ (R). We conclude with the help
of (169). Indeed, on the one hand, the set An,ψ is contained in the set Fϕ1 , thereby
having Hausdorff dimension at most θn,ψ. On the other hand, the set An,ψ is a
Gδ-set that contains the intersection over all k ∈ N of the sets Fϕk , which all belong
to the class Gθn,ψ (R). Hence, Theorem 5.1 and Proposition 5.1(1) imply that the
set An,ψ also belongs to Gθn,ψ (R). In particular, its dimension is at least θn,ψ. �

Theorem 7.6(1) is due to Beresnevich [2] and the dimensional result in Theo-
rem 7.6(2) was obtained by Baker and Schmidt [1]. We shall give a more precise de-
scription of the size and large intersection properties of the set An,ψ in Section 10.3
below. We shall also discuss therein the connection with Koksma’s classification of
real transcendental numbers.

Let us mention that Bugeaud [9] obtained an analog of Theorem 7.5 for the
set of real algebraic integers, that is, the real algebraic numbers whose minimal
defining polynomial over Z is monic. In what follows, A′ denotes the subset of A
formed by the real algebraic integers, and A′n denotes the intersection A′∩An, that
is, the set of all real algebraic integers with degree at most n.

Theorem 7.7 (Bugeaud). For any integer n ≥ 2, the pair (A′n, Hn−1) is an
optimal regular system in R.

Combining Theorem 7.7 with the above methods, we may describe the elemen-
tary size and large intersection properties of the set A′n,ψ defined as that obtained

when replacing An by A′n in (168), namely,

A′n,ψ =
{
x ∈ R

∣∣ |x− a| < ψ(H(a)) for i.m. a ∈ A′n
}
.

To be precise, adapting the proof of Theorem 7.6, one easily checks that for any
integer n ≥ 2 and any positive nonincreasing continuous function ψ defined on the
interval [0,∞), the set A′n,ψ has full, or zero, Lebesgue measure in R according to
whether the integral

In−1,ψ =

∫ ∞
0

hn−1ψ(h) dh

diverges, or converges, respectively. Moreover, if the latter integral is convergent,
then the set A′n,ψ has Hausdorff dimension equal to

θn−1,ψ = lim sup
h→∞

n log h

− logψ(h)
,

provided that this parameter is positive, and moreover it belongs to the large in-
tersection class Gθn−1,ψ (R).



CHAPTER 8

Transference principles

8.1. Mass transference principle

We begin by recalling the main results of Chapter 4, and shedding new light
thereon. Let I be a countably infinite index set, let (xi, ri)i∈I be an approximation
system in the sense of Definition 4.1, and let Ft be the sets defined by (87), namely,

Ft =
{
x ∈ Rd

∣∣ |x− xi| < rti for i.m. i ∈ I
}
.

Moreover, let U denote a nonempty open subset of Rd. According to Definition 4.2,
the family is a homogeneous ubiquitous system in U if the set F1 has full Lebesgue
measure in U . In that situation, Theorem 4.1 shows that for any real number t > 1,

dimH(Ft ∩ U) ≥ d

t
.

In fact, the set Ft ∩ U has positive Hausdorff measure with respect to the gauge
function r 7→ rd/t| log r|. Thus, the mere fact that the set F1 has full Lebesgue
measure in U yields an a priori lower bound on the Hausdorff dimension of the sets
Ft, which are smaller than F1 when t is larger than one.

We adopt a new perspective on this result by considering from now on that the
set defined by

F((xi, ri)i∈I) =
{
x ∈ Rd

∣∣ |x− xi| < ri for i.m. i ∈ I
}

(171)

is that on which we seek an estimate on the size. In the above notations, this
set coincides with the set F1. However, for any real number t ≥ 1, this set also

coincides with the set Ft associated with the underlying family (xi, r
1/t
i )i∈I , which

is an approximation system as well. In that new situation, Theorem 4.1 ensures

that if the family (xi, r
1/t
i )i∈I is a homogeneous ubiquitous system in U , that is, if

for Ld-a.e. x ∈ U ∃ i.m. i ∈ I |x− xi| < r
1/t
i , (172)

then the set F((xi, ri)i∈I) has positive Hausdorff measure in the open set U with
respect to the gauge function r 7→ rd/t| log r|, so in particular

dimH(F((xi, ri)i∈I) ∩ U) ≥ d

t
.

A further way to recast this result is to let g denote the gauge function r 7→ rd/t,
to rewrite the assumption (172) in the form

Ld(U \ F((xi, g(ri)
1/d)i∈I)) = 0, (173)

where the involved set is defined as in (171), and to reinterpret the conclusion as the
fact that the set F((xi, ri)i∈I) has positive Hausdorff measure in U with respect to
the gauge function r 7→ g(r)| log r|. Note that the gauge function g is d-normalized
in the sense of Definition 2.9, because g coincides on the interval (0,∞) with its
d-normalization gd, defined by (57). Thus, the condition (173) still holds when g
is replaced by gd. In that situation, the approximation system (xi, ri)i∈I will be
called g-ubiquitous, in accordance with the following definition.

161
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Definition 8.1. Let I be a countably infinite index set, let (xi, ri)i∈I be an
approximation system in Rd × (0,∞), let g be a gauge function and let U be a
nonempty open subset of Rd. We say that (xi, ri)i∈I is a homogeneous g-ubiquitous
system in U if the following condition holds:

Ld(U \ F((xi, gd(ri)
1/d)i∈I)) = 0.

The latter condition means that for Lebesgue-almost every point x in the open
set U , the inequality |x − xi| < gd(ri)

1/d holds for infinitely many indices i in I.
Hence, the previous definition may be seen as an extension of that of a homogeneous
ubiquitous system. In fact, according to Definitions 4.2 and 8.1, respectively, an
approximation system is a homogeneous ubiquitous system in some nonempty open
set U if and only if it is homogeneously ubiquitous in U with respect to any gauge
function whose d-normalization is r 7→ rd.

Remarkably, Beresnevich and Velani [5] managed to extend the above approach
to any gauge function g, and also improved the above conclusion. Specifically, they
established the following mass transference principle for the sets defined by (171).

Theorem 8.1 (Beresnevich and Velani). Let I be a countably infinite index set,
let (xi, ri)i∈I be an approximation system in Rd× (0,∞), let g be a gauge function
and let U be a nonempty open subset of Rd. If (xi, ri)i∈I is a homogeneous g-
ubiquitous system in U , then for every nonempty open subset V of U ,

Hg(F((xi, ri)i∈I) ∩ V ) = Hg(V ).

A few words on the proof. Some of the ideas supporting Theorem 8.1 are
similar to those developed in the proof of Theorem 4.1 above. However, Theorem 4.1
being essentially concerned with Hausdorff dimension only, its proof does not require
as high much accuracy as in the proof of Theorem 8.1, where Hausdorff measures
associated with arbitrary gauge functions are considered. The proof of Theorem 8.1
is therefore somewhat technically involved. Consequently, we omit it from these
notes, and we refer the reader to Beresnevich and Velani’s paper [5].

We just mention that Theorem 8.1 is a straightforward consequence of The-
orem 2 in [5], except that Beresnevich and Velani only considered d-normalized
functions. However, this assumption may easily be removed with the help of
Propositions 2.10 and 2.15. Indeed, let us suppose that Theorem 8.1 holds for
d-normalized gauge functions. Then, let g be an arbitrary gauge function such
that the approximation system (xi, ri)i∈I is homogeneously g-ubiquitous in U . It
is clear from Definition 8.1 that the system is also gd-ubiquitous, where gd denotes
the d-normalization of g. Applying Theorem 8.1 to the d-normalized gauge function
gd, we infer that for every nonempty open subset V of U ,

Hgd(F((xi, ri)i∈I) ∩ V ) = Hgd(V ).

Thanks to Proposition 2.10, we may then compare the Hausdorff measures Hgd and
Hg, thereby deducing that

Hg(F((xi, ri)i∈I) ∩ V ) ≥ H
g(V )

κ
,

where κ is given by Proposition 2.10. There are now essentially three different
possible situations, depending on the value of the parameter `g defined by (61).
The case where `g vanishes is trivial: Proposition 2.15(3) ensures that the Haudorff
measure Hg vanishes, and the conclusion of Theorem 8.1 clearly holds. Now, if `g
is infinite, then Proposition 2.15(1) ensures that Hg(V ) is infinite, and so that

Hg(F((xi, ri)i∈I) ∩ V ) = Hg(V ) =∞.
In the remaining case where `g is both positive and finite, we have gd(r) ≤ 2`gr

d for
all r > 0, so that the approximation system (xi, ri)i∈I is homogeneously ubiquitous
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in U with respect to the gauge function r 7→ 2`gr
d. By virtue of Proposition 4.4,

we may remove the constant 2`g in that property, specifically, (xi, ri)i∈I is ho-
mogeneously ubiquitous in U with respect to r 7→ rd. This means that the set
F((xi, ri)i∈I) has full Lebesgue measure in U . We conclude with the help of Propo-
sition 2.15(2), which ensures that Hg is a multiple of the Lebesgue measure. �

Theorem 8.1 is remarkable because of its universality. It can in fact be applied
to many approximation systems arising in metric number theory and probability;
we shall give several examples in Chapters 10 and 11. However, our approach relies
on the notion of describability introduced in Chapter 9, and at heart on the large
intersection transference principle discussed in Section 8.2. Hence, the mass trans-
ference will never be used per se in what follows. The general philosophy behind
this result is that it enables one to automatically convert a property concerning
the Lebesgue measure of a limsup of balls to a property concerning the Hausdorff
measure of a similar set where the balls are dilated. This leads in particular to a
full description of the size properties of limsup of balls for which the description of
the Lebesgue measure is known.

8.2. Large intersection transference principle

The purpose of this section is to give an analog of the mass transference princi-
ple for large intersection properties. In the spirit of Theorem 8.1, this result leads
to a very precise description of the large intersection properties of a limsup of balls
in terms of arbitrary gauge functions. Accordingly, we first need to introduce large
intersection classes that are associated with arbitrary gauge functions, thereby gen-
eralizing the original classes introduced by Falconer and presented in Section 5.1.
We adopt the same viewpoint as in the definition of the localized classes Gs(U),
namely, Definition 5.2. In particular, the generalized classes are defined with the
help of outer net measures; these are built in terms of general gauge functions and
coverings by dyadic cubes.

8.2.1. Net measures revisited. We recall from Section 2.6.3 that a dyadic
cube is either the empty set or a set of the form λ = 2−j(k+[0, 1)d), with j ∈ Z and
k ∈ Zd, and that the collection of all dyadic cubes is denoted by Λ. We restrict our-
selves to gauge functions that are d-normalized in the sense of Definition 2.9. Under
this assumption, the resulting outer net measures satisfy additional properties that
are in fact necessary to an appropriate definition of the generalized classes.

If g denotes a d-normalized gauge function, the set of all real numbers ε > 0
such that g is nondecreasing on [0, ε] and r 7→ g(r)/rd is nonincreasing on (0, ε]
is nonempty. We may thus define εg as the supremum of this set, and next Λg as
the collection of all dyadic cubes with diameter less than εg. We then consider the
premeasure g ◦ | · |Λg that sends each set λ in Λg to g(|λ|), and Theorem 2.2 allows
us to define similarly to (51) the outer measure

Mg
∞ = (g ◦ | · |Λg )∗

resulting from coverings by dyadic cubes with diameter less than εg.
The outer measureMg

∞ provides a lower bound on the corresponding net mea-
sure Mg, which is defined by (59) and is comparable with the Hausdorff measure
Hg, see Proposition 2.11. As a consequence, there is a real number κ ≥ 1 indepen-
dent on g such that for any set E ⊆ Rd,

κHg(E) ≥Mg
∞(E). (174)

Recall that the outer net measuresMs
∞, defined by (97) for s ∈ (0, d], played a

crucial rôle in the characterization of Falconer’s classes and the definition of their lo-
calized counterparts Gs(U), see Theorem 5.2 and Definition 5.2, respectively. These
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outer measures are actually an instance of the above construction. Specifically, for
any s ∈ (0, d], the gauge function r 7→ rs is clearly d-normalized and the parameter
εr 7→rs is infinite. Hence, the collection Λr 7→rs coincides with the whole Λ, from
which it follows that Mr 7→rs

∞ is merely equal to Ms
∞. The outer measures Mg

∞
thus extend naturally those used in Chapter 5 ; this hints at why they will play a
key rôle in the definition of the generalized large intersection classes.

Finally, it is useful to point out that the value in each dyadic cube of the
Mg
∞-mass of Lebesgue-full sets has a very simple expression.

Lemma 8.1. For any d-normalized gauge function g, any dyadic cube λ in Λg,
and any subset F of Rd, the following implication holds:

Ld(λ \ F ) = 0 =⇒ Mg
∞(F ∩ λ) = g(|λ|).

Proof. The proof borrows some ideas from that of Lemma 5.1. First, the
intersection set F ∩ λ is obviously covered by the sole cube λ, so that

Mg
∞(F ∩ λ) ≤ g(|λ|).

In order to prove the reverse inequality, let us consider a covering (λn)n≥1 of the
intersection set F ∩λ by dyadic cubes with diameter less than εg. If λ is contained
in some cube λn0

, the fact that g is nondecreasing on [0, εg) implies that

g(|λ|) ≤ g(|λn0
|) ≤

∞∑
n=1

g(|λn|).

Otherwise, we observe that the cubes λn ⊂ λ suffice to cover the set F ∩ λ. Along
with the fact that the mapping r 7→ g(r)/rd is nonincreasing on (0, εg), this yields

∞∑
n=1

g(|λn|) ≥
∑
n≥1
λn⊂λ

g(|λn|)
|λn|d

|λn|d ≥
g(|λ|)
|λ|d

∑
n≥1
λn⊂λ

|λn|d =
g(|λ|)
|λ|d

κ′d
∑
n≥1
λn⊂λ

Ld(λn)

≥ g(|λ|)
|λ|d

κ′dLd(F ∩ λ) =
g(|λ|)
|λ|d

κ′dLd(λ) = g(|λ|).

Here, κ′ stands for the diameter of the unit cube of Rd, which depends on the choice
of the norm. We conclude by taking the infimum over all coverings (λn)n≥1. �

The previous result may be used to express the Mg
∞-mass of dyadic cubes in

terms of their diameters. As a matter of fact, using the notations of Lemma 8.1, if
the set F is chosen to be the cube λ itself, or its interior, we get

Mg
∞(λ) =Mg

∞(intλ) = g(|λ|), (175)

a formula which extends Lemma 5.1 to any d-normalized gauge function. Likewise,
all the ancillary lemmas from Section 5.3.1 may be extended to such gauge functions;
we refer to [18] for precise statements, see in particular Lemmas 10 and 12 therein.

8.2.2. Generalized large intersection classes. We are now in position to
define the large intersection classes that are associated with general gauge functions.
We defined those classes in [18], and we refer to that paper for all the proofs and
details that are missing in the presentation below. As mentioned above, there is a
lineage with the definition of the localized classes Gs(U), see Definition 5.2.

We write h ≺ g to indicate that two d-normalized gauge functions g and h are
such that the quotient h/g monotonically tends to infinity at zero, that is,

h ≺ g ⇐⇒ lim
r↓0
↑ h(r)

g(r)
=∞.
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This means essentially that h increases faster than g near the origin. Note that g
may vanish in a neighborhood of zero; in that situation, we adopt the convention
that h ≺ g for any choice of h, even if h also vanishes near zero.

Definition 8.2. For any gauge function g and any nonempty open subset U
of Rd, the class Gg(U) of sets with large intersection in U with respect to g is the
collection of all Gδ-subsets F of Rd such that

Mh
∞(F ∩ V ) =Mh

∞(V ) (176)

for any d-normalized gauge function h satisfying h ≺ gd, where gd denotes the
d-normalization of g defined by (57), and for any open subset V of U .

Note that the class Gg(U) associated with a given gauge function g coincides
with that associated with its d-normalization, namely, the class Ggd(U). One may
therefore restrict oneself to d-normalized gauge functions when studying large inter-
section properties. Moreover, if two gauge functions are such that their respective
d-normalizations match near the origin, the corresponding classes coincide.

With a view to detailing the connection with the localized classes Gs(U), we
associate with any gauge function g the following dimensional parameter sg.

Definition 8.3. Let g be a gauge function with d-normalization denoted by
gd. The dimension of the gauge function g is the parameter defined by

sg = sup {s ∈ (0, d] | (r 7→ rs) ≺ gd} ,
with the convention that the supremum is equal to zero if the inner set is empty.

Obviously, we have sg = min{s, d} if the gauge function g is of the form r 7→ rs,
with s > 0. The relationship between the generalized classes Gg(U) and the original
classes Gs(U) is now detailed in the next statement.

Proposition 8.1. For any gauge function g with dimension satisfying sg > 0
and for any nonempty open subset U of Rd, the following inclusion holds:

Gg(U) ⊆ Gsg (U).

In particular, for any set F in Gg(U) and for any nonempty open set V ⊆ U ,

dimH(F ∩ V ) ≥ sg and dimP(F ∩ V ) = d.

Moreover, the left-hand inequality above still holds if sg vanishes.

Proof. Let us assume that sg is positive and let us consider a set F in the
class Gg(U). First, F is a Gδ-subset of Rd. Then, for any s ∈ (0, sg), we have
(r 7→ rs) ≺ gd, and Definition 8.2 implies that

Mr 7→rs
∞ (F ∩ V ) =Mr 7→rs

∞ (V )

for any open subset V of U . Recalling that the outer measure Mr 7→rs
∞ is identical

to the outer measure Ms
∞ defined by (97), we deduce from Definition 5.2 that the

set F belongs to the original localized class Gsg (U).
Moreover, applying Theorem 5.3 and Proposition 5.2, we deduce that the set

F has Hausdorff dimension at least sg and packing dimension equal to d in every
nonempty open subset V of U . Finally, in view of Definition 8.2, any set in the
class Gg(U) has to be dense in U . Therefore, the Hausdorff dimension of F ∩ V is
necessarily bounded below by zero, that is, by sg when this value vanishes. �

Choosing U equal to the whole space Rd, we clearly deduce from Proposition 8.1
a statement bearing on Falconer’s original classes Gs(Rd). In addition, as easily seen
for instance musing on the examples discussed in Chapters 10 and 11, the inclusion
appearing in the statement of Proposition 8.1 is strict.
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Let us now briefly discuss the case in which the gauge function g has a d-
normalization gd that vanishes in a neighborhood of zero. The d-normalized gauge
function that is constant equal to zero is denoted by 0 ; let us mention in passing
that its dimension clearly satisfies s0 = d.

Proposition 8.2. For any nonempty open set U ⊆ Rd, the large intersection
class G0(U) is formed by the Gδ-subsets of Rd with full Lebesgue measure in U .

Proof. Let us consider a Gδ-subset F of Rd with full Lebesgue measure in U .
Lemma 8.1, combined with (175), ensures that for any d-normalized gauge function
g and any dyadic cube λ in Λg that is contained in U ,

Mg
∞(F ∩ λ) = g(|λ|) =Mg

∞(λ).

We finally conclude that F belongs to the class G0(U) thanks to the extension of
Lemma 5.2 to arbitrary d-normalized gauge functions, see [18, Lemma 10].

Conversely, let us consider a set F in the class G0(U). First, F is necessarily
a Gδ-set. Moreover, we know that (176) holds in particular for the d-normalized
gauge function r 7→ rd and for all open balls B(x, r) contained in U . Using (174)
and (176), and letting κ′′ be the constant appearing in Proposition 2.14, we get

κκ′′Ld(F ∩ B(x, r)) = κHd(F ∩ B(x, r)) ≥Md
∞(F ∩ B(x, r)) =Md

∞(B(x, r)).

We consider a nonempty dyadic cube λ with minimal generation that is contained
in B(x, r), and we know from the proof of Proposition 7.2 that |λ| ≥ c r for some
c > 0 depending on the choice of the norm only. Lemma 5.1 then yields

Md
∞(B(x, r)) ≥Md

∞(λ) = |λ|d ≥ cdrd =
cd

Ld(B(0, 1))
Ld(B(x, r)),

where the last equality follows from fact that the Lebesgue measure is translation
invariant and homogeneous with degree d with respect to dilations. Hence,

Ld(F ∩ B(x, r))

Ld(B(x, r))
≥ cd

κκ′′Ld(B(0, 1))
> 0

for any open ball B(x, r) contained in U . It follows from the Lebesgue density
theorem that F has full Lebesgue measure in U , see [46, Corollary 2.14]. �

The various remarkable properties of the large intersection classes Gg(U) nat-
urally extend those satisfied by Falconer’s classes, see Section 5.1. We begin by
stating the properties that follow immediately from the definition. The next result
may be seen as a partial analog of Proposition 5.1 ; in its statement, G stands for
the collection of all gauge functions.

Proposition 8.3. Let g be a gauge function with d-normalization denoted by
gd, and let U be a nonempty open subset of Rd.

(1) Any Gδ-subset of Rd that contains a set in Gg(U) also belongs to Gg(U).
(2) The following equalities hold:

Gg(U) =
⋂
V open
∅6=V⊆U

Gg(V ) and Gg(U) =
⋂
h∈G
hd≺gd

Gh(U).

A few words on the proof. All the properties are essentially immediate
from the definition of the generalized large intersection classes, and the proof is
therefore omitted here. We just mention as a hint to the interested reader that if
g and h denote two d-normalized gauge functions such that h ≺ g, then

√
gh is a

d-normalized gauge function that satisfies h ≺
√
gh ≺ g. �

The next result extends Theorem 5.1 to the large intersection classes Gg(U),
thereby showing that they enjoy the same stability properties as Falconer’s classes.
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Theorem 8.2. Let g be a gauge function with d-normalization denoted by gd
and with dimension denoted by sg, and let U be a nonempty open subset of Rd. The
following properties hold:

(1) the class Gg(U) is closed under countable intersections;
(2) for any bi-Lipschitz transformation f : U → Rd and any set F ⊆ Rd,

F ∈ Gg(f(U)) =⇒ f−1(F ) ∈ Gg(U) ;

(3) for any set F in the class Gg(U) and for every gauge function h,

hd ≺ gd =⇒ Hh(F ∩ U) = Hh(U).

A few words on the proof. The result corresponds to Theorem 1 in [18],
so we refer to that paper for the whole proof. Let us just mention that the statement
in [18] only addresses the d-normalized gauge functions g for which the parameter
`g defined by (61) is positive. In that situation, note that the Hausdorff h-measure
of the set F ∩U that appears in (3) is actually infinite, as a consequence of Propo-
sitions 2.12 and 2.15. Furthermore, the normalization assumption made in [18]
may easily be dropped with the help of Proposition 2.10. In addition, Theorem 8.2
clearly holds for `g = 0. Indeed, in that situation, the gauge function gd vanishes
near zero and Proposition 8.2 ensures that the class Gg(U) is formed by the Gδ-sets
with full Lebesgue measure in U . All the properties are thus satisfied, even (3)
which may be obtained with the help of Propositions 2.12 and 2.15. �

A plain consequence of Theorem 8.2 is that if (Fn)n≥1 is a sequence of sets in
Gg(U) and if h is a gauge function, then

hd ≺ gd =⇒ Hh
( ∞⋂
n=1

Fn ∩ U

)
= Hh(U). (177)

Thanks to Proposition 2.15, the latter equality may be rewritten in various al-
ternate forms depending on the value of the parameter `h defined as in (61). In
addition, (177) implies that the intersection of all the sets Fn has Hausdorff dimen-
sion bounded below by sg, and this bound is clearly attained if one of the sets has
Hausdorff dimension at most sg.

8.2.3. The transference principle. Now that the classes associated with
arbitrary gauge functions have been defined, we may state the large intersection
analog of Theorem 8.1, specifically, the mass transference principle dealt with in Sec-
tion 8.1. While the latter result discusses the size properties of the set F((xi, ri)i∈I)
defined by (171), the next statement concerns its large intersection properties.

Theorem 8.3. Let I be a countably infinite set, let (xi, ri)i∈I be an approxi-
mation system in Rd × (0,∞), let g be a gauge function and let U be a nonempty
open subset of Rd. If (xi, ri)i∈I is a homogeneous g-ubiquitous system in U , then

F((xi, ri)i∈I) ∈ Gg(U).

A few words on the proof. The result is a straightforward consequence of
Theorem 2 in [18] ; we refer to that paper for a comprehensive proof. Similarly to
the mass transference principle, some ideas supporting Theorem 8.3 are analogous
to those developed in the proof of Theorem 4.1 above, and also that of Theorem 5.4
which is more specifically concerned with large intersection properties. �

Just as the mass transference principle extends Theorem 4.1 to arbitrary Haus-
dorff measures, the above large intersection transference principle may be seen as an
extension of Theorem 5.4. As a matter of fact, let (xi, ri)i∈I denote a homogeneous
ubiquitous system in U in the sense of Definition 4.2. Thus, for any real number
t > 1, the family (xi, r

t
i)i∈I is homogeneously ubiquitous in U with respect to the
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gauge function r 7→ rd/t. Theorem 8.3 then ensures that the set Ft defined by (87)
is a set with large intersection in U with respect to the same gauge function. This
gauge function clearly has dimension equal to d/t, so we deduce with the help of
Corollary 8.1 that the set Ft belongs to Falconer’s class Gd/t(U), which is exactly
the conclusion of Theorem 5.4.

Furthermore, the large intersection transference principle nicely complements
the mass transference principle: under similar hypotheses, it shows that the size
properties of sets of the form (171) are in fact stable under countable intersections
and bi-Lipschitz mappings. Also, due to Proposition 8.3(2) and Theorem 8.2(3), it
implies that for any gauge function h and any nonempty open set V ⊆ U ,

hd ≺ gd =⇒ Hh(F((xi, ri)i∈I) ∩ V ) =∞ = Hh(V ).

Note that the last equality follows from Proposition 2.15(1), because h(r)/rd nec-
essarily tends to infinity as r goes to zero. Unfortunately, we may not apply this
with h being equal to g, thereby failing narrowly to recover the conclusion of the
mass transference principle, specifically,

Hg(F((xi, ri)i∈I) ∩ V ) = Hg(V ).

However, we may often in practice circumvent this problem and, through the no-
tion of describability introduced in Chapter 9, the large intersection transference
principle will be sufficient to describe both size and large intersection properties of
limsup of balls for which the description of the Lebesgue measure is known. We
shall apply this principle to the many examples studied in Chapters 10 and 11.



CHAPTER 9

Describable sets

Our purpose is to combine the mass and the large intersection principles dis-
cussed in Sections 8.1 and 8.2, respectively, and place them in a wider setting that
we now define. This framework aims at describing in a complete and precise manner
the size and large intersection properties of various subsets of Rd that are derived
from eutaxic sequences and optimal regular systems, thereby being relevant to the
applications already discussed in Chapters 6 and 7.

Note that the size and large intersection properties of Lebesgue-full sets are
easily described as follows. Let E be a Borel subset of Rd and let U be a nonempty
open subset of Rd. If E has full Lebesgue measure in U , then Proposition 2.15
ensures that for any gauge function g and any nonempty open set V ⊆ U ,

Hg(E ∩ V ) = Hg(V ).

Furthermore, under the stronger assumption that E admits a Gδ-subset with full
Lebesgue measure in U , Propositions 8.2 and 8.3(2) imply that for any gauge func-
tion g and any nonempty open set V ⊆ U ,

∃F ∈ Gg(V ) F ⊆ E.

The above description of the size and large intersection properties of Lebesgue-full
sets being both precise and complete, we shall exclude such sets from our analysis.

Our framework will enable us to achieve a similar description for some Lebesgue-
null sets. The collection of all Borel subsets of Rd that are Lebesgue-null in the
open set U is denoted by Z(U), specifically,

Z(U) = {E ∈ B | Ld(E ∩ U) = 0},

where B is the Borel σ-field, in accordance with the notation initiated in Section 2.4.
The starting point is the notion of majorizing and minorizing collections of gauge
functions that we now introduce.

9.1. Majorizing and minorizing gauge functions

Let E be a set in Z(U). On the one hand, Proposition 2.15 ensures that for
any gauge function g,

`g <∞ =⇒ Hg(E ∩ U) = 0,

where `g is defined by (61). Studying what happens for the other gauge functions,
namely, those belonging to the set

G∞ = {g ∈ G | `g =∞}

gives rise to the following notion of majorizing gauge function.

Definition 9.1. Let U be a nonempty open subset of Rd and let E be a set
in Z(U). We say that a gauge function g ∈ G∞ is a majorizing for E in U if

Hg(E ∩ U) = 0.

Such gauge functions form the majorizing collection of E in U , denoted by M(E,U).

169
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It is plain from Proposition 2.10 that a gauge function g ∈ G∞ is majorizing
for E in U if and only if its d-normalization gd satisfies the same property. Also,
as a simple example, let us point out that

E ∩ U countable =⇒ M(E,U) = G∞, (178)

because a countable set has Hausdorff g-measure zero for any gauge function g.
On the other hand, Proposition 8.2 shows that a Gδ-subset of Rd with Lebesgue

measure zero in U cannot belong to the large intersection class G0(U), and therefore
cannot belong to any of the classes Gg(U) for which `g = 0. Similarly to the previous
definition, looking at the other gauge functions, specifically, those in the set

G∗ = {g ∈ G | `g ∈ (0,∞]}

results in the following notion of minorizing gauge function.

Definition 9.2. Let U be a nonempty open subset of Rd and let E be a set
in Z(U). We say that a gauge function g ∈ G∗ is a minorizing for E in U if

∃F ∈ Gg(U) F ⊆ E.

Such gauge functions form the minorizing collection of E in U , denoted by m(E,U).

Similarly to what happens for majorizing gauge functions, a gauge function
g ∈ G∗ is minorizing for E in U if and only if gd is; this follows from Defini-
tion 8.2. Moreover, if E is a Gδ-set for which g is minorizing in U , it follows from
Proposition 8.3(1) that E belongs to the class Gg(U). Finally, we now have

E ∩ U countable =⇒ m(E,U) = ∅, (179)

because the existence of a minorizing gauge function requires that E is dense in U .
We now detail the basic properties of the majorizing and minorizing collections.

As shown by the next result, their structure is reminiscent of that of two intervals
of the real line whose intersection is at most a singleton.

Proposition 9.1. Consider a nonempty open set U ⊆ Rd, a set E in Z(U),
and two gauge functions g and h with d-normalizations such that gd ≺ hd. Then,{

g ∈M(E,U) =⇒ h ∈M(E,U) \m(E,U)

h ∈ m(E,U) =⇒ g ∈ m(E,U) \M(E,U).

Proof. Let us suppose that g is majorizing for E in U . By virtue of Proposi-
tion 2.10, the same property holds for its d-normalization gd. Proposition 2.12 then
ensures that hd is also majorizing. We conclude by Proposition 2.10 again that h
is majorizing as well. Furthermore, if h were minorizing, hd would be minorizing
too, and Theorem 8.2(3) would finally contradict the fact that gd is majorizing.

Assume now that h is minorizing for E in U . Proposition 8.3(2) shows that g
is also minorizing. Finally, Theorem 8.2(3), combined with Proposition 2.15 and
the fact that `g is infinite, implies that g cannot be majorizing. �

The next result enlightens the monotonicity properties of M(E,U) and m(E,U)
when regarded as two functions defined on the set of pairs (E,U) such that U is a
nonempty open subset of Rd and E is a set in Z(U).

Proposition 9.2. The majorizing and minorizing collections satisfy the fol-
lowing monotonicity properties:

(1) the mappings E 7→M(E,U) and U 7→M(E,U) are both nonincreasing;
(2) the mappings E 7→ m(E,U) and U 7→ m(E,U) are nondecreasing and

nonincreasing, respectively.
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Proof. The properties on the majorizing collection hold because Hausdorff
measures are outer measure. Moreover, E 7→ m(E,U) is nondecreasing because of
Definition 9.2, and U 7→ m(E,U) is nonincreasing due to Proposition 8.3(2). �

Let us now turn our attention to the behavior under countable unions and
intersections of the majorizing and minorizing collections.

Proposition 9.3. Let us consider a nonempty open subset U of Rd. Then, for
any sequence (En)n≥1 in the collection Z(U),

M

( ∞⋃
n=1

En, U

)
=

∞⋂
n=1

M(En, U) and m

( ∞⋂
n=1

En, U

)
=

∞⋂
n=1

m(En, U).

Proof. The property satisfied by the majorizing collection results from the
fact that Hausdorff measures are outer measure. The property concerning the
minorizing collection is a consequence of the stability under countable intersections
of the generalized large intersection classes, see Theorem 8.2(1). �

9.2. Openness

With a view to pursuing our investigation of the majorizing and minorizing
collections, we need to introduce a definition concerning subsets of gauge functions;
the chosen terminology should not refer to any topological property but only comes
from the aforementioned analogy with intervals of the real line.

We begin by remarking that for any d-normalized gauge function g ∈ G∗, we
may build a d-normalized gauge function g ∈ G∗ satisfying g ≺ g by simply letting

g(r) =
√
g(r).

Studying whether this property holds for given subsets of G∗ yields the notion of
left-openness. Here and below, Gd is the collection of d-normalized gauge functions.

Definition 9.3. Let H denote a subset of G∗. We say that the collection H is
left-open if the following property holds:

∀g ∈ Gd ∩ H ∃g ∈ Gd ∩ H g ≺ g.

The whole collection G∗ is thus left-open. With a view to defining the symmet-
rical notion of right-openness, we begin by observing that if a d-normalized gauge
function g ∈ G∗ satisfies `g <∞, then no d-normalized gauge function g ∈ G∗ can
satisfy g ≺ g. To cope with this issue, we just exclude these gauge functions g, thus
restricting ourselves to the set G∞. Indeed, if g is a d-normalized gauge function
in G∞, we get a d-normalized gauge function g ∈ G∞ with g ≺ g by defining

g(r) = rd/2
√
g(r).

Proceeding as above and considering a similar property for various subsets of G∞,
we end up with the notion of right-openness.

Definition 9.4. Let H denote a subset of G∞. We say that the collection H
is right-open if the following property holds:

∀g ∈ Gd ∩ H ∃g ∈ Gd ∩ H g ≺ g.

Clearly, the above constructions ensure that the collection G∞ is both left-
open and right-open. The connexion with majorizing and minorizing collections
comes from the following observation that may easily be established by combining
Proposition 9.1 with the previous arguments: a majorizing collection is always right-
open and a minorizing collection is always left-open. The next result shows that
further properties arise when these collections are both left-open and right-open.
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Proposition 9.4. Let us consider a nonempty open subset U of Rd and a set
E belonging to the collection Z(U).

(1) If the collection M(E,U) is left-open, then for any gauge function g in
M(E,U) and for any nonempty open subset V of U ,

∀F ∈ Gg(V ) F 6⊆ E,
and as a consequence,

M(E,U) ⊆ G∗ \m(E,U).

(2) If the collection m(E,U) ∩G∞ is right-open, then for any gauge function
g in m(E,U) ∩G∞ and for any nonempty open subset V of U ,

Hg(E ∩ V ) =∞,
and as a consequence,

m(E,U) ⊆ G∗ \M(E,U).

Proof. To establish the first property, let us consider a majorizing gauge
function g. Since gd is also majorizing, the left-openness ensures that there is a
majorizing gauge function g ∈ Gd such that g ≺ gd. Now, given a nonempty open
set V ⊆ U , let us assume that E contains a set F ∈ Gg(V ). By Theorem 8.2(3) and
Proposition 2.15, the set F has infinite Hausdorff g-measure in V , which contradicts
the fact that g is majorizing. Hence, E cannot contain any set in Gg(V ). Choosing
V equal to U , we deduce that g is not minorizing.

Similar arguments lead to the second property. Specifically, if g denotes a gauge
function in m(E,U)∩G∞, its d-normalization gd belongs to the same collection and
the right-openness yields a minorizing gauge function g ∈ Gd ∩ G∞ with gd ≺ g.
The class Gg(U) thus contains a set F ⊆ E. Now, let V be a nonempty open
subset of U . Proposition 8.3(2) shows that F is in the class Gg(V ). Theorem 8.2(3)
and Proposition 2.15 then imply that F has infinite Hausdorff gd-measure in V .
Finally, the set E has infinite Hausdorff g-measure in V , owing to Proposition 2.10.
Choosing V = U , we conclude that g is not majorizing. �

As a consequence of Proposition 9.4, if either of the collections M(E,U) and
m(E,U) ∩G∞ is simultaneously left-open and right-open, then

M(E,U) ∩m(E,U) = ∅,
meaning that no gauge function can be majorizing and minorizing at the same time.
Under the stronger assumption that both collections are left-open and right-open
simultaneously, Propositions 2.15 and 9.4 directly yield the next statement.

Corollary 9.1. Consider a nonempty open set U ⊆ Rd and a set E ∈ Z(U),
and assume that M(E,U) and m(E,U) ∩ G∞ are both left-open and right-open.
Then, for any gauge function g ∈ G∗ and any nonempty open set V ⊆ U ,{

g ∈M(E,U) ∪ (G∗ \G∞) =⇒ Hg(E ∩ V ) = 0

g ∈ m(E,U) ∩G∞ =⇒ Hg(E ∩ V ) =∞
and {

g ∈M(E,U) =⇒ ∀F ∈ Gg(V ) F 6⊆ E

g ∈ m(E,U) =⇒ ∃F ∈ Gg(V ) F ⊆ E.

We shall thus be able to describe precisely the size and large intersection prop-
erties of a given set E, once we know which gauge functions are majorizing and
which are minorizing. Hence, an important question is to determine whether all
gauge functions are either majorizing or minorizing for E.
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9.3. Describability

In the ideal situation where we know that every gauge function is either ma-
jorizing or minorizing, the description of the size and large intersection properties
of a set will be both precise and complete; we shall then say that the set if fully
describable. A further question is to establish a criterion to determine whether
a given gauge function is majorizing or minorizing; this will lead to the notions
of n-describable and s-describable sets that are detailed afterward. As shown in
Sections 9.4 and 9.5, these notions are naturally connected with those of eutaxic
sequence and optimal regular system.

9.3.1. Fully describable set. To be more specific, we define the notion of
fully describable set in the following manner.

Definition 9.5. Let U be a nonempty open subset U of Rd and let E be a set
in Z(U). We say that the set E is fully describable in U if

G∞ ⊆M(E,U) ∪m(E,U),

that is, if every gauge function g for which `g is infinite is either majorizing or
minorizing in U for the set E.

Obviously, the notion of fully describable set is only relevant to the setting of
sets with large intersection. For instance, the middle-third Cantor set K has pos-
itive Hausdorff measure in the dimension s = log 2/ log 3, see the proof of Propo-
sition 2.18. Thus, the gauge function r 7→ rs cannot be majorizing for K in (0, 1).
Furthermore, as already observed in Section 5.1, the set K cannot contain any
set with large intersection. In particular, the previous gauge function cannot be
minorizing either. Hence, the Cantor set K is not fully describable in (0, 1).

If U denotes again an arbitrary nonempty open subset of Rd, we already dis-
cussed a trivial example of fully describable set in U , namely, the Borel subsets E
of Rd for which the intersection E ∩ U is a countable set. We have indeed

G∞ = M(E,U) ∪m(E,U),

as an immediate consequence of (178) and (179). Another situation where full
describability arises is discussed in the next statement.

Proposition 9.5. Let U be a nonempty open subset of Rd and let E be a set
in Z(U). Then, the following implication holds:

m(E,U) \G∞ 6= ∅ =⇒

{
M(E,U) = ∅

m(E,U) = G∗.

In particular, if there exists a minorizing gauge function g such that `g is finite,
then the set E is fully describable in U .

Proof. Let g denote a minorizing gauge function for which `g is finite. Since
g is minorizing, `g is also necessarily positive, so the d-normalization gd satisfies

gd(r) ∼ `g rd as r → 0. (180)

Let us now consider a gauge function h such that h ≺ (r 7→ rd). We already
observed that the mapping h defined by

h(r) = rd/2
√
h(r)

is a gauge function satisfying the condition h ≺ h ≺ (r 7→ rd). The quotient h/gd
tends to infinity at zero. Adapting the proof of Proposition 2.10, it is straightfor-

ward to check that the function h̃ defined by

h̃(r) = gd(r) inf
0<ρ≤r

h(ρ)

gd(ρ)
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for all r > 0, along with h̃(0) = 0 and h̃(∞) =∞, is a d-normalized gauge function

that is bounded above by h and satisfies h̃ ≺ gd. On top of that, as g is minorizing,
there exists a subset F of E in the class Gg(U). In view of Definition 8.2 and (175),
this implies that for any dyadic cube λ in Λh̃ that is contained in U ,

Mh
∞(F ∩ λ) ≥Mh̃

∞(F ∩ intλ) =Mh̃
∞(intλ) = h̃(|λ|).

Furthermore, owing to (180), we know that gd(r)/r
d is between `g/2 and 2`g when

r is small enough. In that situation, h̃(r) is clearly bounded below by hd(r)/4,
where hd denotes the d-normalization of h. This coincides with h(r)/4 again if r is
sufficiently small, because the gauge function h is d-normalized. As a consequence,
for any dyadic cube λ ⊆ U whose diameter is small enough, we have

Mh
∞(F ∩ λ) ≥ 1

4
h(|λ|) =

1

4
Mh
∞(λ),

where the last equality follows from (175). Thanks to the respective extensions
of Lemmas 5.2 and 5.3 to arbitrary gauge functions, namely, Lemmas 10 and 12
in [18], we deduce that for any open set V ⊆ U ,

Mh
∞(F ∩ V ) =Mh

∞(V ).

This means that F is a set with large intersection in U with respect to the gauge
function r 7→ rd, and more generally with respect to all gauge functions in G∗.
Therefore, all these gauge functions are minorizing for E in U .

Finally, m(E,U) ∩G∞ coincides with the whole G∞, thereby being both left-
open and right-open. Proposition 9.4 then ensures the disjointness of the majorizing
and minorizing collections, which means that M(E,U) must be empty. �

9.3.2. n-describable sets. We now single out an important category of fully
describable sets; they are characterized by the existence of a simple criterion to
decide whether a given gauge function is majorizing or minorizing. This criterion
is expressed in terms of integrability properties with respect to a given measure n
that belongs to the collection R defined in Section 6.5.2.

Let us recall that R is the collection of all positive Radon measures n on the
interval (0, 1] such that n has infinite total mass and (139) holds, namely, the proper
subintervals of the form [r, 1] all have finite mass. It is worth pointing out here that
the d-normalization gd of an arbitrary gauge function g is always Borel measurable
and bounded on (0, 1]. Also, we shall use the notation

〈n, gd〉 =

∫
(0,1]

gd(r) n(dr)

and we shall in fact restrict our attention to certain measures in R only, namely,
those belonging to the subcollection

Rd = {n ∈ R | 〈n, r 7→ rd〉 <∞}. (181)

For any n in R, the gauge functions g 6∈ G∗ clearly satisfy 〈n, gd〉 < ∞. If
n is in Rd, this property actually holds for all gauge functions g 6∈ G∞. Indeed,
the parameter `g is then finite, so that gd(r) ≤ `g r

d for all r ∈ (0, 1]. The finite-
ness of 〈n, gd〉 therefore remains undecided only if g is in G∞ ; this motivates the
introduction of the set

G(n) = {g ∈ G∞ | 〈n, gd〉 =∞},

along with its complement in G∞, which is denoted by G(n){.
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Definition 9.6. Let U be a nonempty open subset of Rd, let E be a set in
Z(U), and let n be a measure in Rd. We say that the set E is n-describable in U if

M(E,U) = G(n){ and m(E,U) ∩G∞ = G(n),

or equivalently if for any gauge function g in G∞,{
g ∈M(E,U) ⇐⇒ 〈n, gd〉 <∞

g ∈ m(E,U) ⇐⇒ 〈n, gd〉 =∞.

It is clear from the definition that if E denotes n-describable set in U , then E
is fully describable in U and the majorizing and minorizing collections are disjoint.
We know that this situation occurs when either of the collections M(E,U) and
m(E,U) ∩ G∞ is simultaneously left-open and right-open. The following lemma
actually implies that both collections are left-open and right-open at the same
time, which will enable us to subsequently apply Corollary 9.1. It also entails that
m(E,U)∩G∞ is nonempty, meaning that E contains a set with large intersection.

Lemma 9.1. For any measure n in Rd, the following properties hold:

(1) the set G∗ \G(n) is left-open;
(2) the set G(n) is right-open and nonempty.

In particular, if a set E is n-describable in U , then both collections M(E,U) and
m(E,U) ∩G∞ are simultaneously left-open and right-open.

Proof. In order to prove (1), let us consider a d-normalized gauge function
g ∈ G∗ such that 〈n, gd〉 <∞. We may build a decreasing sequence (rn)n≥1 of real
numbers in (0, εg), with εg being defined in Section 8.2.1, such that for all n ≥ 2,

g(rn) ≤ g(rn−1) e−1/n and

∫
0<r≤rn−1

g(r) n(dr) ≤ 1

(n+ 1)3
.

Note that the sequence (rn)n≥1 necessarily converges to zero. Indeed, g(rn) tends
to zero as n goes to infinity, and the function g is nonvanishing and continuous on
(0, εg). Then, for any n ≥ 2 and any r ∈ (rn, rn−1], let us define

ξ(r) = n+
log g(rn−1)− log g(r)

log g(rn−1)− log g(rn)
.

The function ξ is nonincreasing and continuous on (0, r1], goes to infinity at zero,
and is such that ξ(r) ∈ [n, n+ 1] for all r ∈ (rn, rn−1] et n ≥ 2. We now define

g(r) = g(r)ξ(r)

for all r ∈ (0, r1]. Then, for n ≥ 2 and rn < r ≤ r′ ≤ rn−1, the difference g(r′)−g(r)
vanishes if g(r′) = g(r). Otherwise, it is equal to

g(r′)ξ(r′)− g(r)ξ(r) = (ξ(r′)− ξ(r))g(r) + ξ(r′)(g(r′)− g(r))

≥ (g(r′)− g(r))n

1−
log g(r′)

g(r)

g(r′)
g(r) − 1

· 1

n log g(rn−1)
g(rn)

 ≥ 0.

As a consequence, the function g is nondecreasing on each interval (rn, rn−1]. Since
it is continuous on (0, r1], it is nondecreasing on that whole interval. Furthermore,∫

0<r≤r1
g(r) n(dr) =

∞∑
n=2

∫
rn<r≤rn−1

g(r)ξ(r) n(dr)

≤
∞∑
n=2

(n+ 1)

∫
0<r≤rn−1

g(r) n(dr) ≤
∞∑
n=2

1

(n+ 1)2
<∞.
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In particular, g tends to zero at the origin. We thus extend it to a gauge function
such that 〈n, gd〉 is finite by defining for instance g(r) = g(r1) for all r > r1, as well
as g(∞) =∞. Finally, g/g = ξ monotonically tends to infinity at zero, so that g is
d-normalized and satisfies g ≺ g.

To prove the right-openness in (2), let us suppose that g ∈ G∞ and 〈n, gd〉 =∞.
Let us define r1 = εg/2, and also θ(r) = g(r)/rd for all r ∈ (0, r1]. The function θ
is nonincreasing on (0, r1] and tends to infinity at zero. For any n ≥ 2, there exists
an rn ∈ (0, rn−1) with

θ(rn) ≥ θ(rn−1) e and

∫
rn<r≤rn−1

g(r) n(dr) ≥ 1.

The sequence (rn)n≥1 is decreasing and converges to zero, because θ(rn) tends to
infinity as n goes to infinity and because the function θ is continuous on (0, r1]. For
any n ≥ 2 and any r ∈ (rn, rn−1], let us then define

ξ(r) = n+
log θ(r)− log θ(rn−1)

log θ(rn)− log θ(rn−1)
.

We thus obtain a function ξ which is nonincreasing, continuous and positive on
(0, r1], tends to infinity at zero and satisfies ξ(r) ≤ n+ 1 for all r ∈ (rn, rn−1]. Let
us define g(r) = g(r)/ξ(r) for all r ∈ (0, r1] and extend g to a gauge function by
letting for instance g(r) = g(r1) for all r > r1, as well as g(0) = 0 and g(∞) =∞.

When n ≥ 2 and rn < r ≤ r′ ≤ rn−1, the difference g(r)/rd − g(r′)/r′d vanishes if
θ(r′) = θ(r), and otherwise is equal to

θ(r)

ξ(r)
− θ(r′)

ξ(r′)
=

(θ(r)− θ(r′))ξ(r′) + θ(r′)(ξ(r′)− ξ(r))
ξ(r)ξ(r′)

≥ θ(r)− θ(r′)
ξ(r)ξ(r′)

n

1−
log θ(r)

θ(r′)

θ(r)
θ(r′) − 1

· 1

n log θ(rn)
θ(rn−1)

 ≥ 0.

Therefore, the mapping r 7→ g(r)/rd is continuous at rn and nonincreasing on
the interval (rn, rn−1] for all n ≥ 2, which implies that g is a d-normalized gauge
function. Moreover, g/g coincides with ξ near zero, so that g ≺ g. Finally,∫

0<r≤r1
g(r) n(dr) =

∞∑
n=2

∫
rn<r≤rn−1

g(r)

ξ(r)
n(dr)

≥
∞∑
n=2

1

n+ 1

∫
rn<r≤rn−1

g(r) n(dr) ≥
∞∑
n=2

1

n+ 1
=∞,

from which it follows that 〈n, g
d
〉 is infinite. To conclude, it remains to mention that

g belongs to G∞; this easily follows from the observation that g(rn)/rdn is equal to

θ(rn)/n, which is bounded below by en−1/n for all n ≥ 1.
The nonemptyness in (2) may be established by formally replacing the gauge

function g above by 1, the indicator function of the interval (0, 1]. Indeed, although
1 is not a gauge function in the strict sense, it still verifies the next two properties
that were crucial in the previous construction: the mapping r 7→ 1(r)/rd monoton-
ically tends to infinity at zero; the integral of 1 with respect to the measure n is
infinite. Note that the latter holds because n belongs to the collection R. We may
therefore reproduce the above approach, and we end up with a gauge function g in
G∞ such that 〈n, g

d
〉 is infinite. �

As mentioned above, Lemma 9.1 enables us to apply Corollary 9.1 to the n-
describable sets. This boils down to the next statement, which gives a complete
and precise description of the size and large intersection properties of those sets.
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Theorem 9.1. Let U be a nonempty open subset of Rd, let E be a set in Z(U),
and let n be a measure in Rd. Let us assume that E is n-describable in U . For any
nonempty open set V ⊆ U , the following properties hold:

(1) for any gauge function g ∈ G \G(n),{
Hg(E ∩ V ) = 0

∀F ∈ Gg(V ) F 6⊆ E
(2) for any gauge function g ∈ G(n),{

Hg(E ∩ V ) =∞

∃F ∈ Gg(V ) F ⊆ E ;

Proof. The property (2) results directly from combining of Lemma 9.1 and
Corollary 9.1. This is also the case of (1) when the gauge function g is in G∞. It
remains us to prove (1) when g is not in G∞. Given that E ∈ Z(U), Proposition 2.15
leads to the first part of (1), and Proposition 8.2 implies the second part in the
situation where `g vanishes. Finally, if g is in G∗, Lemma 9.1 ensures that there
is a d-normalized gauge function g ≺ gd for which 〈n, g〉 < ∞. Necessarily, g is in
G∞, thus verifying (1). Hence, E∩V has Hausdorff g-measure zero, and we deduce
from Theorem 8.2(3) the second part of (1) for the initial gauge function g. �

In the vein of (142), we may associate with every measure in the collection Rd a
parameter that characterizes its integrability properties at the origin. Specifically,
for every measure n in Rd, let us define the exponent

sn = sup{s ∈ (0, d] | (r 7→ rs) ∈ G(n)} = inf{s ∈ (0, d] | (r 7→ rs) 6∈ G(n)}. (182)

Note that the right-most set contains d, so that its infimum is well defined. The
left-most set may however be empty and, in that situation, we adopt the convention
that its supremum is equal to zero. By way of illustration, note that (142) implies
that the above exponent sn is equal to d. Restricting Theorem 9.1 to the gauge
functions r 7→ rs, we directly obtain the following dimensional statement.

Corollary 9.2. Let U be a nonempty open subset of Rd, let E be a set in
Z(U), and let n be a measure in Rd. Let us assume that E is n-describable in U .
Then, for any nonempty open set V ⊆ U ,

dimH(E ∩ V ) = sn.

Let us assume that sn > 0. Then, for any nonempty open set V ⊆ U ,

dimP(E ∩ V ) = d.

Moreover, if E is a Gδ-set, it belongs to the large intersection class Gsn(U).

Proof. Let us assume that sn < d. We deduce from Theorem 9.1(1) that
E ∩ V has Hausdorff s-dimensional measure zero, for any s ∈ (sn, d]. Hence, this
set has Hausdorff dimension at most sn. Obviously, this bound still holds if sn = d.

If the parameter sn is positive, Theorem 9.1(2) implies that for any s ∈ (0, sn),
there exists a subset Fs of E that belongs to the generalized class Gr 7→rs(V ). Propo-
sition 8.1 then ensures that each set Fs belongs to the original class Gs(V ) and that
its intersection with the open set V has Hausdorff dimension at least s and packing
dimension equal to d. It follows that E∩V has Hausdorff dimension at least sn and
packing dimension equal to d. Furthermore, if E is a Gδ-set itself, we choose V = U
above and deduce from Proposition 8.3(1) that the set E belongs to all the classes
Gs(U), for s ∈ (0, sn). In view of Definition 5.2, this implies that E ∈ Gsn(U).

Finally, note that the lower bound on the Hausdorff dimension of E ∩ V still
holds when sn vanishes. Indeed, by Lemma 9.1(2), there is a gauge function in
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G(n). Applying Theorem 9.1(2) with such a gauge function, we infer that E ∩ V is
nonempty, thus having nonnegative Hausdorff dimension. �

9.3.3. s-describable sets. This section is parallel to previous one. We con-
sider another category of fully describable sets where we have at hand a criterion
to decide whether a gauge function is majorizing or minorizing. This criterion is
now expressed in terms of growth rates at the origin.

As a motivation, let us consider the measures ns defined for s ∈ [0, d) by

ns(dr) =
dr

rs+1
. (183)

It is elementary to check that each measure ns belongs to the collection Rd, and
that the associated exponent given by (182) is equal to s. In particular, in view of
Corollary 9.2, every ns-describable set has Hausdorff dimension equal to s. More-
over, note that the mapping s 7→ G(ns) is nondecreasing.

The new category of fully describable sets that we introduce hereafter may be
obtained by considering countable intersections of ns-describable set. Let U be a
nonempty open subset of Rd, let (En)n≥1 be a sequence of sets in Z(U), and let E
denote the intersection of the sets En. Propositions 9.2 and 9.3 show that

m(E,U) =

∞⋂
n=1

m(En, U) and M(E,U) ⊇
∞⋃
n=1

M(En, U). (184)

Let us suppose the existence of a sequence (sn)n≥1 of real numbers in [0, d) such
that each set En is nsn -describable in U . Definition 9.6 implies that

m(En, U) ∩G∞ = G(nsn) and M(En, U) = G(nsn){. (185)

It follows that the minorizing collection of E in U coincides on G∞ with the inter-
section of the collections G(nsn), and the majorizing collection of E in U contains
the complement in G∞ of the latter intersection.

This entails in particular that the set E is fully describable. This also prompts
the study of countable intersections of sets of the form G(ns). Those sets being
monotonic with respect to the parameter s, we end up with an intersection set that
is either of the previous form G(ns), or of a new form G(s), where s is some real
number in [0, d). The latter sets are the subsets of G∞ defined by the condition

g ∈ G(s) ⇐⇒ ∀s > s gd(r) 6= o(rs) as r → 0,

and are linked with the former through the statement of Lemma 9.2 below. Note
that gd(r) 6= o(rd) for any g ∈ G∞. So, in the previous condition, the only rel-
evant values of s are those in (s, d). Moreover, the mapping s 7→ G(s) is clearly

nondecreasing. Finally, the complement in G∞ of G(s) is denoted by G(s){.

Lemma 9.2. For any real number s ∈ [0, d), we have

G(s) =
⋂

s∈(s,d)

↓ G(ns).

Proof. Let g be a gauge function in G∞. If g is not in G(s), then we have
gd(r) ≤ c rs0 for all r ∈ (0, 1], and some s0 ∈ (s, d) and some c > 0. Thus,

〈ns, gd〉 =

∫
(0,1]

gd(r) ns(dr) ≤ c
∫

(0,1]

rs0−s−1 dr

for every s ∈ (s, d), and the latter integral is finite if s < s0. It follows that g does
not belong to any of the sets G(ns) with s ∈ (s, s0).
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Conversely, let us assume that g is not in G(ns) for some s ∈ (s, d). We deduce
from the monotonicity properties satisfied by gd that for any real number r ∈ (0, 1],

〈ns, gd〉 ≥
∫ r

r/2

gd(ρ)

ρd
ρd−s−1 dρ ≥ gd(r)

rd

∫ r

r/2

ρd−s−1 dρ =
1− 2s−d

d− s
· gd(r)
rs

.

The finiteness of the left-hand side entails that gd(r) = O(rs) as r goes to zero. As
a consequence, the gauge function g cannot belong to G(s). �

As we now explain, the sets G(s) play a pivotal rôle in the definition of the new
category of fully describable sets.

Definition 9.7. Let U be a nonempty open subset of Rd, let E be a set in
Z(U), and let s be in [0, d). We say that the set E is s-describable in U if

M(E,U) = G(s){ and m(E,U) ∩G∞ = G(s).

Similarly to what happens for n-describable sets, it is clear that s-describable
sets are fully describable, with disjoint majorizing and minorizing collections. More-
over, we have the following analog of Lemma 9.1.

Lemma 9.3. For any real number s ∈ [0, d), the following properties hold:

(1) the set G∗ \G(s) is left-open;
(2) the set G(s) is right-open and nonempty.

In particular, if a set E is s-describable in U , then both collections M(E,U) and
m(E,U) ∩G∞ are simultaneously left-open and right-open.

Proof. The left-openness of the set G∗ \ G(s) is inherited from that of the
sets G∗ \G(n), for n ∈ Rd. Indeed, if g is d-normalized gauge function in G∗ \G(s),
Lemma 9.2 ensures that g 6∈ G(ns) for some s ∈ (s, d). By Lemma 9.1(1), there
is a d-normalized gauge function g in G∗ \ G(ns) such that g ≺ g. By Lemma 9.2
again, g does not belong to G(s), and we end up with (1).

Furthermore, let us recall that the mapping s 7→ G(ns) is nondecreasing.
Thanks to Lemma 9.2, we deduce that G(s) contains G(ns). Lemma 9.1(2) shows
that the latter set is nonempty, so the former is nonempty as well.

Finally, the right-openness property in (2) follows from the fact that, if g is
a d-normalized gauge function in G(s), letting g(r) = g(r)/ log(g(r)/rd) yields as
required a d-normalized gauge function in G(s) such that g ≺ g. �

Owing to Lemma 9.3, if a set E is s-describable in U , then m(E,U) ∩ G∞ is
nonempty, so E necessarily contains a set with large intersection. Furthermore,
both M(E,U) and m(E,U) ∩ G∞ are left-open and right-open at the same time.
We may thus apply Corollary 9.1, and deduce the following complete and precise
description of the size and large intersection properties of the set E.

Theorem 9.2. Let U be a nonempty open subset of Rd, let E be a set in Z(U),
and let s be in [0, d). Let us assume that E is s-describable in U . For any nonempty
open set V ⊆ U , the following properties hold:

(1) for any gauge function g ∈ G \G(s),{
Hg(E ∩ V ) = 0

∀F ∈ Gg(V ) F 6⊆ E

(2) for any gauge function g ∈ G(s),{
Hg(E ∩ V ) =∞

∃F ∈ Gg(V ) F ⊆ E ;
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Theorem 9.2 above may be regarded as an analog of Theorem 9.1, and may
be established by easily adapting the proof of the latter result. The proof is there-
fore omitted here. We just mention that one needs to use Lemma 9.3 instead of
Lemma 9.1 whenever necessary, and that Corollary 9.1 is crucial in that proof too.

For all s ∈ (0, d] and s ∈ [0, d), one easily checks that the gauge function r 7→ rs

belongs to the set G(s) if and only if s ≤ s. Therefore, restricting Theorem 9.2 to
these specific gauge functions leads to the following dimensional statement which
is parallel to Corollary 9.2. Again, the proof is very similar to that of the latter
result; for that reason, it is left to the reader.

Corollary 9.3. Let U be a nonempty open subset of Rd, let E be a set in
Z(U), and let s be in [0, d). Let us assume that E is s-describable in U . Then, for
any nonempty open set V ⊆ U ,

dimH(E ∩ V ) = s with Hs(E ∩ V ) =∞.

Let us assume that s > 0. Then, for any nonempty open set V ⊆ U ,

dimP(E ∩ V ) = d.

Moreover, there exists a subset of E in the large intersection class Gs(U). In par-
ticular, if E is a Gδ-set itself, it belongs to the latter class.

We finish by going back to the motivational example supplied by the intersec-
tion of the nsn -describable sets En. As shown below, the set G(s) actually arises
under the assumption that the infimum of the real numbers sn is not attained.

Proposition 9.6. Let U be a nonempty open subset of Rd and, for each n ≥ 1,
let En be a set in Z(U) that is nsn-describable in U for some sn ∈ [0, d). Letting

E =

∞⋂
n=1

En and s = inf
n≥1

sn,

we then have the following dichotomy:

• if the infimum is attained at some n0, then E is nsn0
-describable in U ;

• if the infimum is not attained, then E is s-describable in U .

Proof. To begin with, we learn from (184) and (185) that the minorizing and
majorizing collections of E in U satisfy

m(E,U) ∩G∞ =

∞⋂
n=1

G(nsn) and M(E,U) ⊇ G∞ \
∞⋂
n=1

G(nsn). (186)

If the infimum is attained at a given integer n0, the intersection over all n ≥ 1 of
the sets G(nsn) coincides with the sole G(nsn0

), so that

m(E,U) ∩G∞ = G(nsn0
) and M(E,U) ⊇ G(nsn0

){.

In particular, we deduce from Lemma 9.1(2) that the collection m(E,U) ∩ G∞ is
right-open. Proposition 9.4(2) then yields

G∞ \M(E,U) ⊇ m(E,U) ∩G∞ = G(nsn0
).

It follows that the majorizing collection M(E,U) is equal to the whole G(nsn0
){.

As a consequence, the set E is nsn0
-describable in U .

The proof is very similar in the opposite situation where the infimum is not
attained. Indeed, using the monotonicity of the mapping s 7→ G(ns) and combining
Lemma 9.2 with (186), we now get

m(E,U) ∩G∞ = G(s) and M(E,U) ⊇ G(s){.
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We deduce from Lemma 9.3(2) that m(E,U) ∩ G∞ is right-open, and then from
Proposition 9.4(2) that the majorizing collection M(E,U) is equal to the whole

G(s){. Hence, the set E is s-describable in U . �

Slightly modifying the above approach leads to another situation where s-
describable sets arise naturally. Given a real number s ∈ [0, d) and a nonempty
open set U , we consider a sequence (Es)s∈(s,d) of sets in Z(U), and we assume
that the mapping s 7→ Es is increasing and that each set Es is ns-describable in U .
We then choose in the interval (s, d) an arbitrary decreasing sequence (sn)n≥1 that
converges to s. The monotonicity of the sets Es with respect to s implies that their
intersection is equal to that of the sets Esn . Moreover, the latter sets fall into the
above setting because the infimum of the real numbers sn is not attained. Hence,
the intersection over all s ∈ (s, d) of the sets Es is s-describable in U .

9.4. Link with eutaxic sequences

Eutaxic sequences were defined and thoroughly studied in Chapter 6. Our
purpose is now to show that the limsup sets that are naturally associated with such
sequences fall into the category of fully describable sets. The analysis below heavily
relies on the large intersection transference principle presented in Section 8.2.

Let (xn)n≥1 be a sequence of points in Rd and let (rn)n≥1 be a nonincreasing
sequence of positive real numbers that converges to zero. It is clear that the family
(xn, rn)n≥1 is an approximation system in the sense of Definition 4.1 ; this naturally
prompts us to consider the associated limsup set defined as in (171), namely,

F((xn, rn)n≥1) =
{
x ∈ Rd

∣∣ |x− xn| < rn for i.m. n ≥ 1
}
.

This set is unchanged if we remove a finite number of initial terms xn and rn, so
there is no loss in generality in assuming that the real numbers rn are in (0, 1].

Lemma 2.1 shows that for any gauge function g such that the series
∑
n gd(rn)

is convergent, the set F((xn, rn)n≥1) has Hausdorff gd-measure equal to zero. Here,
gd denotes as usual the d-normalization of the gauge function g. Proposition 2.10
allows us to transfer the previous property to the Hausdorff g-measure itself. As a
consequence, for any gauge function g, the following implication holds:

∞∑
n=1

gd(rn) <∞ =⇒ Hg(F((xn, rn)n≥1)) = 0. (187)

Let us now recast this elementary result in terms of majorizing gauge functions. In
what follows, r is a shorthand for (rn)n≥1, and nr is the measure in R defined by

nr =

∞∑
n=1

δrn . (188)

We further assume that the series
∑
n r

d
n is convergent, or equivalently that nr

belongs to Rd, so as to ensure that the above limsup set has Lebesgue measure
zero in Rd. The previous result then yields the next statement.

Proposition 9.7. Let (xn)n≥1 be a sequence in Rd and let (rn)n≥1 be a non-
increasing sequence of real numbers in (0, 1] such that

∑
n r

d
n converges. Then,

F((xn, rn)n≥1) ∈ Z(Rd) and M(F((xn, rn)n≥1),Rd) ⊇ G(nr)
{.

Eutaxy will lead to a natural converse of that result. To be specific, when U
denotes a nonempty open subset of Rd, we recall from Definition 6.2 that a sequence
(xn)n≥1 in Rd is uniformly eutaxic in U if for any sequence (rn)n≥1 in the set Pd
defined by (106), the following condition holds:

for Ld-a.e. x ∈ U ∃ i.m. n ≥ 1 |x− xn| < rn.
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Transferring this property to the present setting, this means that the following
implication holds:

∞∑
n=1

rdn =∞ =⇒ Ld(U \ F((xn, rn)n≥1)) = 0. (189)

The trick is now to replace rn by gd(rn)1/d in (189), if g denotes the gauge function
under consideration. In fact, since the real numbers rn are nonincreasing and tend
to zero, the real numbers gd(rn)1/d tend to zero as well and, at least for n sufficiently
large, are also nonincreasing. The limsup set F((xn, rn)n≥1) being unchanged when
removing initial terms, we end up with the implication

∞∑
n=1

gd(rn) =∞ =⇒ Ld(U \ F((xn, gd(rn)1/d)n≥1)) = 0.

In other words, the divergence assumption bearing on g implies that the approx-
imation system (xn, rn)n≥1 is homogeneously g-ubiquitous in U in the sense of
Definition 8.1. We are now in position to apply the large intersection transference
principle, namely, Theorem 8.3. Accordingly, we deduce that

∞∑
n=1

gd(rn) =∞ =⇒ F((xn, rn)n≥1) ∈ Gg(U).

Again, this result may be recast in terms of minorizing gauge functions. We have
indeed the following statement.

Proposition 9.8. Let U be a nonempty open subset of Rd, let (xn)n≥1 be a
sequence in Rd that is uniformly eutaxic in U , and let (rn)n≥1 be a nonincreasing
sequence of real numbers in (0, 1] such that

∑
n r

d
n converges. Then,

F((xn, rn)n≥1) ∈ Z(U) and m(F((xn, rn)n≥1), U) ⊇ G(nr).

Combining Propositions 9.7 and 9.7, we infer that the set F((xn, rn)n≥1) is fully
describable in U , under the assumptions that the sequence (xn)n≥1 is uniformly
eutaxic in U and the series

∑
n r

d
n converges. The next lemma will actually help us

obtain a more precise statement.

Lemma 9.4. Let U be a nonempty open subset of Rd, let E be a set in Z(U),

and let H be a subset of G∞ with complement denoted by H{. Let us assume that:

• a gauge function g ∈ G∞ is in H if and only if its d-normalization gd is;
• the collections m(E,U) and M(E,U) contain H and H{, respectively;

• the collection H is right-open, or the collection H{ is left-open.

Then, the following equalities hold:

M(E,U) = H{ and m(E,U) ∩G∞ = H,

Proof. To begin with, let us assume for instance that the collection H is right-
open. Let us consider a gauge function g in M(E,U), and assume by contradiction

that g does not belong to H{. Then, gd belongs to H, and the right-openness
assumption ensures the existence of a d-normalized gauge function g ∈ H with
gd ≺ g. Since H is contained in m(E,U), the gauge function g is minorizing for E in
U , meaning that E admits a subset F in the class Gg(U). Owing to Theorem 8.2(3)
and Proposition 2.15, the set F has infinite Hausdorff gd-measure in U . We deduce
with the help of Proposition 2.10 that E has infinite Hausdorff g-measure in U ,
thereby contradicting the fact that g is majorizing for E in U .

The case where H{ is left-open is treated similarly. To be specific, let us consider
a gauge function g in m(E,U)∩G∞, and suppose by contradiction that g 6∈ H. Thus,

gd ∈ H{, and there is a d-normalized gauge function g ∈ H{ such that g ≺ gd. The
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gauge function g is then in M(E,U). By Theorem 8.2(3) and Proposition 2.15
again, this contradicts the fact that gd is minorizing for E in U . �

In view of Propositions 9.7 and 9.8, and under the assumptions that the se-
quence (xn)n≥1 is uniformly eutaxic in U and the series

∑
n r

d
n converges, we may

apply Lemma 9.4 to the set F((xn, rn)n≥1), along with the collection G(nr). We
end up with the next statement.

Theorem 9.3. Let U be a nonempty open subset of Rd, let (xn)n≥1 be a se-
quence in Rd that is uniformly eutaxic in U , and let (rn)n≥1 be a nonincreasing
sequence of real numbers in (0, 1] such that the series

∑
n r

d
n converges. Then, the

set F((xn, rn)n≥1) is nr-describable in U .

This means that we may eventually apply Theorem 9.1 to the set F((xn, rn)n≥1),
thereby obtaining a complete and precise description of its size and large intersec-
tion properties. We may also apply Corollary 9.2 if only a dimensional result is
needed. This will enable us to revisit in Chapters 10 and 11 the examples of eu-
taxic sequences already presented in Chapter 6 and to shed light on the size and
large intersection properties of the associated limsup sets.

Let us finally recall from completeness that when the sequence (xn)n≥1 is uni-
formly eutaxic in U and the series

∑
n r

d
n diverges, the set F((xn, rn)n≥1) has full

Lebesgue measure in U , see for instance (189). As explained at the beginning of
this chapter, its size and large intersection properties are then trivial. This remark
remains also valid when the sequence (rn)n≥1, while still being nonincreasing, does
not converge to zero. In fact, the sequence (rn)n≥1 is not in Pd anymore, which pre-
vents us from applying (189) directly. However, as already observed in Section 6.2.1,
the sequence defined by r̃n = min{rn, 1/(2n1/d)} for each n ≥ 1 is necessarily in
Pd. Applying (189) to this sequence, we deduce that the smaller set F((xn, r̃n)n≥1)
has full Lebesgue measure in U , and thus F((xn, rn)n≥1) as well.

9.5. Link with optimal regular systems

The notion of optimal regular system is the purpose of Chapter 7, and is closely
related with the notion of eutaxic sequence discussed in Section 9.4 above. Hence,
we may anticipate that optimal regular systems also share interesting connections
with the material discussed in the present chapter.

We recall from Definition 7.1 that an optimal regular system results from com-
bining a countably infinite set A ⊆ Rd with a height function H : A → (0,∞). In
the context of Diophantine approximation, the sets that are naturally associated
with such a system are of those the form (148), namely,

Fϕ =
{
x ∈ Rd

∣∣ |x− a| < ϕ(H(a)) for i.m. a ∈ A
}
,

where ϕ is a positive nonincreasing continuous function defined on [0,∞). A first
description of the size and large intersection properties of those sets is given by
Theorem 7.1. In particular, if U is a nonempty open subset of Rd, and (A, H) is
an optimal regular system in U , then the set Fϕ has full Lebesgue measure in U if
the integral defined by (152), namely,

Iϕ =

∫ ∞
0

ηd−1ϕ(η)d dη

diverges. The size and large intersection properties of the set Fϕ being trivial in
that situation, we may rule out this situation in what follows.

Accordingly, we assume from now on that the integral Iϕ is convergent. Since
the function ϕ is nonincreasing, it necessarily tends to zero at infinity. Hence,
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the admissibility condition (149) entails that the family (a, ϕ(H(a)))a∈A is an ap-
proximation system in the sense of Definition 4.1. Moreover, we necessarily have
ϕ(h) ≤ 1 for h large enough, and arguing as in the proof of the convergence case of
Theorem 7.1(1), we see that Fϕ is left unchanged when replacing ϕ by its minimum
with the fonction that is constant equal to one on [0,∞). As a result, there is no
loss in generality in assuming hereafter that the function ϕ is valued in (0, 1].

We then associate with the function ϕ the measure nϕ characterized by the
condition that for any nonnegative Borel measurable function f defined on (0, 1],∫

(0,1]

f(r) nϕ(dr) =

∫ ∞
0

ηd−1f(ϕ(η)) dη. (190)

It is clear that the measure nϕ belongs to the collection R. Moreover, the finiteness
assumption on the integral Iϕ is equivalent to the fact that nϕ belongs to Rd. Our
purpose is to establish an analog of Theorem 9.3 for optimal regular systems; the
measure nϕ will in fact play the rôle of nr in the present analysis.

We begin by studying the majorizing collection of Fϕ in U . The next statement
may be seen as a natural counterpart of Proposition 9.7 in the present setting.

Proposition 9.9. Let U be a nonempty open subset of Rd, let (A, H) be an op-
timal regular system in U , and let ϕ be a positive nonincreasing continuous function
defined on [0,∞), valued in (0, 1] and such that Iϕ converges. Then,

Fϕ ∈ Z(U) and M(Fϕ, U) ⊇ G(nϕ){.

Proof. To begin with, the set Fϕ has Lebesgue measure zero in U owing
to Theorem 7.1(1). Furthermore, learning from the proof of this theorem, let us
disclose and exploit the limsup structure of the set Fϕ. In fact, for any nonempty
open ball B ⊆ U , the pair (A, H) is also an optimal regular system in B, and
Lemma 7.1 yields a monotonic enumeration, denoted by (an)n≥1, of (A, H) in B.
Then, Fϕ ∩B is contained in the set FBϕ defined by (153), namely,

Fϕ ∩B ⊆ FBϕ =
{
x ∈ Rd

∣∣ |x− an| < rn for i.m. n ≥ 1
}
,

where rn = ϕ(H(an)) for any n ≥ 1. Combining Lemma 2.1 and Proposition 2.10,
we deduce that for any gauge function g,

∞∑
n=1

gd(rn) <∞ =⇒ Hg(Fϕ ∩B) = 0.

Now, the gauge function gd is nondecreasing on the interval [0, εgd), where εgd
is defined in Section 8.2.1, so we may consider a function g̃ that is nondecreas-
ing on [0,∞) and coincides with gd on [0, εgd). Still reasoning as in the proof of
Theorem 7.1(1), we define a premeasure ζ by ζ((h, h′)) = g̃(ϕ(h))− g̃(ϕ(h′)) when
0 < h ≤ h′ < ∞, and then consider the outer measure ζ∗ given by (53). We end
up with a Borel measure on (0,∞) such that ζ∗([h,∞)) = g̃(ϕ(h)) for any h > 0.
Thanks to Tonelli’s theorem and the optimality of the underlying system, we have

∞∑
n=1

g̃(rn) =

∫ ∞
0

#{n ≥ 1 |H(an) ≤ h} ζ∗(dh)

≤
∫ ∞

0

κ′Bh
d ζ∗(dh) +

∫ h′B

0

(
#{n ≥ 1 |H(an) ≤ h} − κ′Bhd

)
ζ∗(dh)︸ ︷︷ ︸

R′

= κ′Bd

∫ ∞
0

ηd−1g̃(ϕ(η)) dη +R′ = κ′Bd

∫
(0,1]

g̃(r) nϕ(dr) +R′,
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where κ′B and h′B are given by Definition 7.1. Given that ϕ tends to zero at infnity,
we may replace the function g̃ by the gauge function gd in the left-most and the
right-most sides without altering the convergent or divergent nature of the involved
series or integral. As a consequence,∫

(0,1]

gd(r) nϕ(dr) <∞ =⇒ Hg(Fϕ ∩B) = 0.

We may finally replace the ball B above by the whole open set U , because the
Hausdorff g-measure is an outer measure and every open set may be written as a
countable union of inside open balls. �

Let us now naturally turn our attention to the minorizing collection of Fϕ in
U . The counterpart of Proposition 9.8 is the following result.

Proposition 9.10. Let U be a nonempty open subset of Rd, let (A, H) be
an optimal regular system in U , and let ϕ be a positive nonincreasing continuous
function defined on [0,∞), valued in (0, 1] and such that Iϕ converges. Then,

Fϕ ∈ Z(U) and m(Fϕ, U) ⊇ G(nϕ).

Proof. Given g ∈ G(nϕ), the idea is basically to apply Theorem 7.1(1) with

the function h 7→ gd(ϕ(h))1/d, denoted for short by g
1/d
d ◦ ϕ, instead of ϕ. This

new function might not be continuous and nonincreasing on the whole interval
[0,∞), but surely satisfies these properties on the closed right-infinite interval
formed by the real numbers h ≥ 0 such that ϕ(h) ≤ εgd/2. Therefore, letting

ϕ̃(h) = gd(min{ϕ(h), εgd/2})1/d, we obtain a function that is continuous and non-
increasing on the whole [0,∞) and matches the function of interest near infinity.

Since the gauge function g is in G(nϕ), the integral Iϕ̃ is divergent. We deduce
from Theorem 7.1(1) that the set Fϕ̃ has full Lebesgue measure in U , and thus that
the larger set F

g
1/d
d ◦ϕ has full Lebesgue measure in U as well. As a consequence,

the approximation system (a, ϕ(H(a)))a∈A is homogeneously g-ubiquitous in U .
We conclude that the set Fϕ belongs to the class Gg(U) by means of the large
intersection transference principle, namely, Theorem 8.3. �

Finally, if the assumptions of Propositions 9.7 and 9.8 are satisfied, these results
ensure that we may apply Lemma 9.4 to the set Fϕ and the collection G(nϕ). This
readily gives the next statement.

Theorem 9.4. Let U be a nonempty open subset of Rd, let (A, H) be an optimal
regular system in U , and let ϕ be a positive nonincreasing continuous function
defined on [0,∞), valued in (0, 1] and such that the integral Iϕ converges. Then,
the set Fϕ is nϕ-describable in U .

Subsequently applying Theorem 9.1 to the set Fϕ, we may obtain a complete
and precise description of its size and large intersection properties. Also, if only
a dimensional result is needed, it is possible and sufficient to use Corollary 9.2.
We shall employ these ideas in Chapter 10 so as to revisit the examples from
Diophantine approximation presented in Chapter 7.





CHAPTER 10

Applications to metric Diophantine approximation

Our aim is to review most of the examples from metric Diophantine approxima-
tion studied hitherto, and to complete the analysis of their size and large intersection
properties in light of the theory of describable sets introduced in Chapter 9.

10.1. Approximation by fractional parts of sequences

10.1.1. Linear sequences. This section should be seen as a followup to Sec-
tions 6.1.2 and 6.3.3. Let us begin by recalling that Kurzweil’s theorem, namely,
Theorem 6.9 ensures that for any point x ∈ Rd, the sequence ({nx})n≥1 of frac-
tional parts is uniformly eutaxic in the open cube (0, 1)d if and only if x is a badly
approximable point.

Let us place ourselves in that situation and let us consider a nonincreasing
sequence r = (rn)n≥1 of positive real numbers. Our aim is to detail the size and
large intersection properties of the set

Fr(x) =
{
y ∈ Rd

∣∣ |y − {nx}| < rn for i.m. n ≥ 1
}
.

We may rule out the case in which the series
∑
n r

d
n diverges. Indeed, as observed

at the end of Section 9.4, the eutaxy of the sequence ({nx})n≥1 then implies that
this set has full Lebesgue measure in (0, 1)d, so that its size and large intersection
properties are trivially described.

As a consequence, we assume throughout that the series
∑
n r

d
n converges. In

particular, (rn)n≥1 converges to zero and, as the set Fr(x) is unchanged when
removing a finite number of initial terms, there is no loss of generality in assuming
that the real numbers rn are in (0, 1]. We may then define a real number sr in the
interval [0, d] through the condition (109), namely,{

s < sr =⇒
∑
n r

s
n =∞

s > sr =⇒
∑
n r

s
n <∞.

If sr is positive, the discussion that follows the statement of Theorem 6.2 implies
that the set Fr(x) belongs to the class Gsr((0, 1)d) and actually has Hausdorff di-
mension equal to sr in (0, 1)d. The ideas developed in Chapters 8 and 9 enable us to
optimally refine this result without even requiring that sr is positive. In particular,
Section 9.4 suggests that we introduce the measure in Rd given by (188), that is,

nr =

∞∑
n=1

δrn ,

and Theorem 9.3 therein leads straightforwardly to the next statement.

Theorem 10.1. For any point x in Badd and for any nonincreasing sequence
r = (rn)n≥1 in (0, 1] such that

∑
n r

d
n is finite, Fr(x) is nr-describable in (0, 1)d.

We may recast this result with the help of the distance to the nearest integer
point defined by (121), thus considering instead of Fr(x) the companion set

F ′r(x) =
{
y ∈ Rd

∣∣ ‖y − nx‖ < rn for i.m. n ≥ 1
}
.

187
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The resulting statement bearing on this set is the following one. Note that the
describability property is now valid on the whole space Rd instead of the mere open
unit cube (0, 1)d ; this is because the companion set F ′r(x) may basically be seen as
the initial set Fr(x), along with its images under all translations by vectors in Zd.

Corollary 10.1. For any point x in Badd and for any nonincreasing sequence
r = (rn)n≥1 in (0, 1] such that

∑
n r

d
n is finite, F ′r(x) is nr-describable in Rd.

Proof. Let us consider a gauge function g in G(nr), a d-normalized gauge
function h satisfying h ≺ gd, and a nonempty dyadic cube λ in the collection Λh
introduced in Section 8.2.1. We also assume that λ has diameter at most that of the
unit cube [0, 1)d, which is equal to one because we work with the supremum norm
when considering the distance to the nearest integer point. Thus, λ is included in
a dyadic cube of the form k+ [0, 1)d for some integer point k ∈ Zd. Now, it is clear
that the companion set F ′r(x) contains the image of the initial set Fr(x) under the
translation by vector k. Also, note that (101) remain valid for such translations,
along with the net measures associated with general gauge functions. Hence,

Mh
∞(F ′r(x) ∩ λ) ≥Mh

∞(k + (Fr(x) ∩ (−k + λ))) ≥ 3−dMh
∞(Fr(x) ∩ (−k + λ)).

In addition, the interior of −k + λ is contained in the open unit cube (0, 1)d, and
Theorem 10.1 implies that Fr(x) satisfies a large intersection property with respect
to g in the latter open cube. Hence,

Mh
∞(Fr(x) ∩ int(−k + λ)) =Mh

∞(int(−k + λ)) =Mh
∞(λ),

where the last equality is due to (175). We deduce that the set F ′r(x) belongs to
the class Gg(Rd) by making make use of Lemmas 10 and 12 in [18], namely, the
natural extension of Lemmas 5.2 and 5.3 to general gauge functions. Therefore,

m(F ′r(x),Rd) ⊇ G(nr).

Conversely, we recall from the proof of Corollary 6.1 that the set F ′r(x) is
invariant under the translations by vectors in Zd, and that

F ′r(x) ∩ [0, 1)d ⊆ lim sup
n→∞

⋃
p∈{−1,0,1}d

B∞({nx}+ p, rn).

Therefore, in the same vein as (187), we deduce from Lemma 2.1 and Proposi-
tion 2.10 that the set F ′r(x) has Hausdorff g-measure zero for any gauge function g
for which the series

∑
n gd(rn) converges. This means that

M(F ′r(x),Rd) ⊇ G(nr)
{.

To conclude, it suffices to apply Lemma 9.4. �

A simple example is obtained by assuming that the sequence r is defined by
rn = n−σ for all n ≥ 1, and for a fixed σ > 1/d. Indeed, one then easily checks that
the set G(nr) coincides with the set G(n1/σ), where the measure n1/σ is defined as
in (183). If the point x is badly approximable, we thus deduce from Corollary 10.1
that the set of all points y ∈ Rd such that

‖y − nx‖ < 1

nσ
for i.m. n ≥ 1

is n1/σ-describable in Rd, thereby ending up with a major improvement on (125).
As a typical application, we may describe the size and large intersection prop-

erties of the intersection of countably many sets of the form F ′r(x). Specifically,
for each integer m ≥ 1, let us consider a badly approximable point xm and a
nonincreasing sequence rm = (rm,n)n≥1 in (0, 1] such that

∑
n r

d
m,n is finite. This

enables us to define the intersection, denoted by F ′ for simplicity, of all the sets
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F ′rm(xm), for m ≥ 1. Then, similarly to (186), we may combine Corollary 10.1 with
Propositions 9.2 and 9.3 to infer that

m(F ′,Rd) ∩G∞ =

∞⋂
m=1

G(nrm) and M(F ′,Rd) ⊇ G∞ \
∞⋂
m=1

G(nrm).

In particular, the set F ′ is fully describable in Rd. Further assumptions on the
sequences rm can then enable us to make the intersection of the sets G(nrm) more
explicit, and then get more comprehensive results. For instance, if the measures nrm

are all of the form (183), then Proposition 9.6 implies that F ′ is either ns-describable
for some s ∈ [0, d), or s-describable for some s ∈ [0, d). In the particular case where
rm,n = n−σm for all n ≥ 1 and some σm > 1/d, we established above that each set
F ′rm(xm) is n1/σm -describable in Rd. According to Proposition 9.6, we conclude that
the set F ′ is either n1/σ∗ -describable or (1/σ∗)-describable, depending respectively
on whether or not the supremum, denoted by σ∗, of all parameters σm is attained.

10.1.2. Sequences with very fast growth. This section is a sequel to Sec-
tion 6.4.2. Since it is parallel to the previous one, some details will be omitted from
the presentation below. We consider throughout a sequence (an)n≥1 of positive real
numbers such that

∞∑
n=1

an
an+1

<∞,

which is the case for instance when the sequence grows superexponentially fast.
We recall from Theorem 6.12 that for Lebesgue-almost every x in R, the sequence
({anx})n≥1 is uniformly eutaxic in (0, 1).

Given a nonincreasing sequence r = (rn)n≥1 of positive real numbers, the set
initially studied in Section 10.1.1 now becomes

Fr(x) =
{
y ∈ R

∣∣ |y − {anx}| < rn for i.m. n ≥ 1
}
.

As above, our purpose is to describe the size and large intersection properties of
this set, and we may again assume throughout that the series

∑
n rn converges and

that the real numbers rn are all in (0, 1]. We then introduce the measure in Rd
given by (188), and readily deduce the next statement from Theorem 9.3.

Theorem 10.2. For Lebesgue-almost every real number x and for any nonin-
creasing sequence r = (rn)n≥1 in (0, 1] such that

∑
n rn is finite, the set Fr(x) is

nr-describable in (0, 1).

Note that this result is analogous to Theorem 10.1. We now rephrase it by
means of the distance to the nearest integer point defined by (121), thereby dealing
with the companion set

F ′r(x) =
{
y ∈ R

∣∣ ‖y − anx‖ < rn for i.m. n ≥ 1
}
.

The statement bearing on this set is the following analog of Corollary 10.1.

Corollary 10.2. For Lebesgue-almost every real number x and for any non-
increasing sequence r = (rn)n≥1 in (0, 1] such that

∑
n rn is finite, the set F ′r(x) is

nr-describable in R.

The above corollary may be deduced from Theorem 10.2 by simply adapting
the arguments employed to deduce Corollary 10.1 from Theorem 10.1. The proof
is thus a simple modification of that of Corollary 10.1, and is left to the reader.
Finally, note that Corollary 10.2 is a substantial improvement on Corollary 6.2,
which only addressed dimensional properties. Moreover, in the particular case
where rn = n−σ for all n ≥ 1 and some fixed σ > 1, we deduce from Corollary 10.1
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that for Lebesgue-almost every real number x and for every σ > 1, the set of all
points y ∈ R such that

‖y − anx‖ <
1

nσ
for i.m. n ≥ 1

is n1/σ-describable in Rd. We may then consider countable intersections of such
sets, in the same vein as at the end of Section 10.1.1.

10.2. Homogeneous and inhomogeneous approximation

10.2.1. General describability statement. This section is a continuation
of Sections 7.3.1–7.3.3. Let us recall that the inhomogeneous Diophantine approx-
imation problem consists in approximating the points in Rd by the points that
belong to the collection

Qd,α =

{
p+ α

q
, (p, q) ∈ Zd × N

}
,

where α is a point that is fixed in advance in Rd. When α vanishes, Qd,α is obviously
equal to the set Qd of points with rational coordinates, and the problem reduces to
the homogeneous one. The collection Qd,α is endowed with the height function

Hα
d (a) = inf{q ∈ N | qa− α ∈ Zd}1+1/d.

Then, we know from Theorem 7.3 that the pair (Qd,α, Hα
d ) is an optimal regular

system in Rd. The material developed in Section 9.5 will then enable us to complete
the description of the size and large intersection properties of the set Qα

d,ψ that was

initiated by Theorem 7.4. Let us recall that this set is defined by (165), namely,

Qα
d,ψ =

{
x ∈ Rd

∣∣∣∣∣
∣∣∣∣x− p+ α

q

∣∣∣∣
∞
< ψ(q) for i.m. (p, q) ∈ Zd × N

}
,

where ψ is a positive nonincreasing continuous function defined on [0,∞). More-
over, Theorem 7.4(1) shows that Qα

d,ψ has full Lebesgue measure in Rd when

Id,ψ =

∫ ∞
0

qdψ(q)d dq

is a divergent integral. As explained at the beginning of Chapter 9, the description
of the size and large intersection properties of the set Qα

d,ψ is then elementary. We
therefore exclude this situation and assume throughout that Id,ψ is convergent. As
the function ψ is nonincreasing, it then necessarily tends to zero at infinity. The
set Qα

d,ψ is clearly left unchanged if we remove a finite number of possible values

for q, so there is no loss in generality in assuming that ψ is valued in (0, 1].
Furthermore, we learn from the proof of Theorem 7.4 that the set Qα

d,ψ coincides

with the set defined by (148), namely,

Fϕ =
{
x ∈ Rd

∣∣ |x− a| < ϕ(H(a)) for i.m. a ∈ A
}
,

where ϕ is the function given by ϕ(η) = ψ(ηd/(d+1)) for all η ≥ 0, and (A, H) is
equal to the optimal regular system (Qd,α, Hα

d ). The convergence of Id,ψ is then
equivalent to that of the integral Iϕ defined by (152) converges. The approach
developed in Section 9.5 then invites us to consider the measure nϕ defined in Rd
by (190). However, as we want to express our results in terms of ψ rather than ϕ,
we preferably introduce another measure nd,ψ in Rd, defined through the condition∫

(0,1]

f(r) nd,ψ(dr) =

∫ ∞
0

qdf(ψ(q)) dq
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for any nonnegative Borel measurable function f defined on (0, 1]. This yields
an equivalent formulation because the sets G(nd,ψ) and G(nϕ) coincide. Applying
Theorem 9.4, we end up with the next substantial improvement on Theorem 7.4.

Theorem 10.3. Let α be a point in Rd and let ψ denote a positive nonincreasing
continuous function defined on [0,∞), valued in (0, 1] and such that the integral Id,ψ
converges. Then, the set Qα

d,ψ is nd,ψ-describable in Rd.

In the spirit of the end of Section 10.1.1, a possible application is then to
consider a sequence (αn)n≥1 of points in Rd, and to use Theorem 10.3 in conjunction
with the appropriate formulation of (186) in order to describe the size and large
intersection properties of the intersection over all n ≥ 1 of the sets Qαn

d,ψ. The same

ideas may be put into practice by considering a sequence (ψn)n≥1 of approximating
functions and analyzing the intersection over all n ≥ 1 of the sets Qα

d,ψn
. It is even

possible to mix these two approaches by considering the intersection of a doubly
indexed sequence of sets of the form Qαm

d,ψn
.

In view of Theorem 9.1, we may readily deduce from Theorem 10.3 a complete
description of the size and large intersection properties of the set Qα

d,ψ. In partic-

ular, we infer that for any gauge function g and any nonempty open set V ⊆ Rd,

Hg(Qα
d,ψ ∩ V ) =

∞ if
∑
q q

dgd(ψ(q)) =∞

0 if
∑
q q

dgd(ψ(q)) <∞.

Note that we also used the elementary fact that a gauge function g belongs to
the set G(nd,ψ) if and only if its d-normalization gd is such that the above series
diverges; this follows from the monotonicity of ψ and that of gd near the origin. We
thus recover the extension established by Bugeaud [12] of a classical statement due
to Jarńık [37]. Likewise, Theorems 9.1 and 10.3 allow us to recover the description
of the large intersection properties of the set Qα

d,ψ that was obtained in [18].

10.2.2. The inhomogeneous Jarńık-Besicovitch theorem revisited. As
in Section 7.3.4, let us focus on the particular case where the function ψ is of the
form q 7→ q−τ on the interval [1,∞), for some positive real number τ . Then, Qα

d,ψ

reduces to the set defined by (31), namely,

Jαd,τ =

{
x ∈ Rd

∣∣∣∣∣
∣∣∣∣x− p+ α

q

∣∣∣∣
∞
<

1

qτ
for i.m. (p, q) ∈ Zd × N

}
.

When α vanishes, the above set reduces to the introductory set Jd,τ defined by (1)
and corresponding to the homogeneous setting. We complete the definition of the
function ψ by assuming that it is constant equal to one on the interval [0, 1]. One
easily checks that {

Id,ψ <∞ ⇐⇒ τ > 1 + 1/d

G(nd,ψ) = G(n(d+1)/τ ),

where the measure n(d+1)/τ is defined as in (183). Theorem 10.3 then leads to the
next major improvement on Corollary 7.1.

Corollary 10.3. For any point α ∈ Rd and any real parameter τ > 1 + 1/d,
the set Jαd,τ is n(d+1)/τ -describable in Rd.

Going back to the application mentioned at the end of Section 7.3.4, let us
consider a sequence (αn)n≥1 of points in Rd, and a sequence (τn)n≥1 of real numbers
with supremum denoted by τ∗. Under the assumption that τ∗ is finite, we proved
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in Section 7.3.4 that

dimH

∞⋂
n=1

Jαnd,τn = min

{
d+ 1

τ∗
, d

}
.

This was a consequence of the large intersection property satisfied by the sets Jαnd,τn
that was expressed by Corollary 7.1. We now derive a full description of the size and
large intersection properties of the intersection of the sets Jαnd,τn . Our analysis also
covers the case in which τ∗ is infinite that was left open at the end of Section 7.3.4.
Note that we rule out, as trivial, the case where τ∗ is bounded above by 1 + 1/d,
because the intersection of the sets Jαnd,τn then has full Lebesgue measure in Rd, as
a consequence of Corollary 7.1.

Corollary 10.4. Given a sequence (αn)n≥1 of points in Rd and a sequence
(τn)n≥1 of real numbers, let us consider

Jd,∗ =

∞⋂
n=1

Jαnd,τn and τ∗ = sup
n≥1

τn > 1 + 1/d.

Then, the set Jd,∗ is either n(d+1)/τ∗-describable or ((d + 1)/τ∗)-describable in Rd
depending on whether or not the supremum τ∗ is attained, respectively.

Proof. Let N be the set of all integers n ≥ 1 such that τn > 1 + 1/d. Our
assumption on τ∗ implies that N is nonempty. Moreover, τ∗ is also the supremum
of τn over n ∈ N . Now, Proposition 9.2 yields on the one hand

M(Jd,∗,Rd) ⊇M

( ⋂
n∈N

Jαnd,τn ,R
d

)
.

On the other hand, let us consider a gauge function g that is minorizing in Rd for
the intersection over n ∈ N of the sets Jαnd,τn . Due to Corollary 7.1, the intersection

over n ∈ N \ N of these sets has full Lebesgue measure in Rd. By Propositions 8.2
and 8.3(2), any gauge function is minorizing in Rd for this set, and so is g in
particular. This shows with Theorem 8.2(1) that g is minorizing for Jd,∗. Hence,

m(Jd,∗,Rd) ⊇ m

( ⋂
n∈N

Jαnd,τn ,R
d

)
.

Proposition 9.6 and Corollary 10.3 enable us to appropriately express the right-
hand side of either of the two above inclusions in terms of either G(n(d+1)/τ∗) or
G((d + 1)/τ∗), depending on whether or not the supremum τ∗ is attained, respec-
tively. To conclude, it suffices to invoke Lemma 9.4, along with Lemma 9.1(2) in
the first case, and Lemma 9.3(2) in the second. �

Where τ∗ is infinite, we deduce from Corollary 10.4 that the intersection of the
sets Jαnd,τn is 0-describable in Rd. By Corollary 9.3, its Hausdorff dimension is thus
equal to zero, as announced without proof at the end of Section 7.3.4.

10.2.3. Inhomogeneous Liouville points. Note that the mapping τ 7→ Jαd,τ
is decreasing. In the spirit of the end of Section 9.3.3, this prompts us to introduce

Lαd =
⋂

τ>1+1/d

↓ Jαd,τ .

The monotonicity property satisfied by the sets Jαd,τ shows that Lαd coincides for
instance with the intersection over all n ≥ 1 of the sets Jαd,n. Moreover, each of

these sets is n(d+1)/n-describable in Rd, as a consequence of Corollary 10.3. We
are in the setting of Proposition 9.6, with the infimum being equal to zero and not
being attained. This yields the next statement.
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Corollary 10.5. For any point α ∈ Rd, the set Lαd is 0-describable in Rd.

The complete description of the size and large intersection properties of the set
Lαd then follows from Theorem 9.2. Moreover, we deduce from Corollary 9.3 that
this set has Hausdorff dimension equal to zero and packing dimension equal to d in
every nonempty open subset of Rd.

Let us now establish a connection between the set Lαd and a natural extension to
the inhomogeneous and multidimensional setting of the notion of Liouville number.

Definition 10.1. Let α be a point in Rd. A point x in Rd is called α-Liouville
if x does not belong to Qd,α and if for any integer n ≥ 1, there exists an integer
q ≥ 1 and a point p ∈ Zd such that∣∣∣∣x− p+ α

q

∣∣∣∣
∞
<

1

qn
.

For α = 0 and d = 1, we obviously recover the condition that defines Liouville
numbers. Excluding the points in Qd,α from this definition is analogous to excluding
the irrationals from the classical definition of Liouville numbers. In fact, this ensures
that for each integer n ≥ 1, there are infinitely many pairs (p, q) such that the above
inequality holds. As a consequence, the set of α-Liouville points in Rd is equal to
the set Lαd \ Qd,α. As shown by the next statement, removing the points in Qd,α
does not alter the describability properties of the set Lαd .

Corollary 10.6. For any point α in Rd, the set Lαd \ Qd,α of all α-Liouville
points in Rd is 0-describable in Rd.

Proof. The set Rd \Qd,α is clearly a Lebesgue-full Gδ-subset of Rd. Owing to
Propositions 8.2 and 8.3(2), it thus belongs to the class G0(Rd), and in fact to all the
classes Gg(Rd), for g in G. In conjunction with Proposition 9.2 and Corollary 10.5,
this implies that

m(Lαd \Qd,α,Rd) ∩G∞ = m(Lαd ,Rd) ∩G∞ = G(0).

In addition, the same results straightforwardly show that

M(Lαd \Qd,α,Rd) ⊇M(Lαd ,Rd) = G(0){.

We conclude with the help of Lemmas 9.3(2) and 9.4. �

Let us mention a noteworthy consequence of Corollary 10.6. Let us consider
an arbitrary gauge function g in G(0). Then, Theorem 9.2 shows that the set of all
α-Liouville points in Rd, namely, Lαd \ Qd,α belongs to the large intersection class
Gg(Rd). Now, for any given point x in Rd, the mapping y 7→ x − y is obviously
bi-Lipschitz. We deduce from Theorem 8.2(1–2) that the set

(Lαd \Qd,α) ∩ (x− (Lαd \Qd,α))

also belongs to the class Gg(Rd). As a result, there are uncountably many ways of
writing a give point x in Rd as the sum of two α-Liouville points. This substantially
improves on a result by Erdős [25] according to which any real number may be
written as a sum of two Liouville numbers. Of course, many variations are possible
as one may freely replace y 7→ x− y above by any bi-Lipschitz mapping, or even a
countable number thereof.

Finally, let us also point out that the set of Liouville numbers, i.e. the set L0
d

in the above notations, also comes into play in the theory of dynamical systems,
especially in the study of the homeomorphisms of the circle, see [19] for details.
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10.3. Approximation by algebraic numbers

10.3.1. General describability statement. The purpose of this section is
to continue the analysis initiated in Section 7.4. Let us recall that the collection of
all real algebraic numbers is denoted by A, the näıve height of a number a in A is
denoted by H(a), and the set of all real algebraic numbers with degree at most n
is denoted by An. Moreover, a result due to Beresnevich shows that for any n ≥ 1,
the pair (An, Hn) is an optimal regular system in R, where the appropriate height
function is given by (167), that is,

Hn(a) =
H(a)n+1

(1 + |a|)n(n+1)
,

see Theorem 7.5. This result already enabled us to describe the elementary size
and large intersection properties of the set defined by (168), specifically,

An,ψ =
{
x ∈ R

∣∣ |x− a| < ψ(H(a)) for i.m. a ∈ An
}
,

where ψ is any positive nonincreasing continuous function defined on [0,∞), see
Theorem 7.6 for a precise statement. In particular, we recovered a result due to
Beresnevich [2], according to which the set An,ψ has full Lebesgue measure in R
when the integral

In,ψ =

∫ ∞
0

hnψ(h) dh

is divergent. The situation is now parallel to studied in Section 10.2. To be spe-
cific, the description of the size and large intersection properties of the set An,ψ is
trivial when In,ψ diverges, and so we rule out this situation. Assuming that In,ψ
is convergent, we infer that ψ tends to zero at infinity. Finally, as the set An,ψ is
unchanged when assuming that the height of the approximating algebraic numbers
exceeds a fixed threshold, we are further allowed to restrict our attention to the
case in which ψ is valued in (0, 1].

Accordingly, we assume from now on that the integral In,ψ is convergent and
that the function ψ is valued in the interval (0, 1]. The proof of Theorem 7.6 informs
us that An,ψ is very close to sets of the form (148), namely,

Fϕ =
{
x ∈ Rd

∣∣ |x− a| < ϕ(H(a)) for i.m. a ∈ A
}
,

when the underlying optimal regular system (A, H) is equal to (An, Hn) and the
function ϕ is well chosen. In fact, (169) shows that

∞⋂
k=1

↓ Fϕk ⊆ An,ψ ⊆ Fϕ1 ,

where ϕk(η) = ψ(k η1/(n+1)) for any real number η ≥ 0 and any integer k ≥ 1. We
deduce from Propositions 9.2 and 9.3 that

M(An,ψ,Rd) ⊇M(Fϕ1
,Rd) and m(An,ψ,Rd) ⊇

∞⋂
k=1

m(Fϕk ,Rd). (191)

Our intent is now to apply Theorem 9.4 to all the sets Fϕk , so as to obtain a simple
expression for the majorizing and minorizing collections that come into play here.
We first need to mention that the integrals Iϕk defined as in (152), namely,

Iϕk =

∫ ∞
0

ϕk(η) dη

are all convergent; in view of (170), this property is indeed equivalent to the con-
vergence of the integral In,ψ. Moreover, we are enticed to introduce in R1 the
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measures nϕk defined as in (190). However, similarly to Section 10.2, our results
will be stated in terms of ψ, so we rather introduce the measure nn,ψ satisfying∫

(0,1]

f(r) nn,ψ(dr) =

∫ ∞
0

hnf(ψ(h)) dh

for any nonnegative Borel measurable function f defined on (0, 1]. A change of
variable as in (170) shows that all the sets G(nϕk) coincide with G(nn,ψ). Applying
Theorem 9.4, we deduce that for any k ≥ 1, the set Fϕk is nn,ψ-describable in Rd.
Then, making use of (191), we end up with

M(An,ψ,Rd) ⊇ G(nn,ψ){ and m(An,ψ,Rd) ⊇ G(nn,ψ),

and it suffices to invoke Lemmas 9.3(2) and 9.4 to secure the following major im-
provement on Theorem 7.6.

Theorem 10.4. Let n be a positive integer and let ψ denote a positive nonin-
creasing continuous function defined on [0,∞), valued in (0, 1] and such that the
integral In,ψ converges. Then, the set An,ψ is nn,ψ-describable in R.

Combined with Theorem 9.1, the previous result yields a complete description
of the size and large intersection properties of the set An,ψ. In particular, we
recover the characterization of the Hausdorff g-measure of the set An,ψ, for any
gauge function g, that was obtained independently by Beresnevich, Dickinson and
Velani [4], and by Bugeaud [10]. To be specific, for any gauge function g and any
nonempty open set V ⊆ R,

Hg(An,ψ ∩ V ) =

∞ if
∑
h h

ng1(ψ(h)) =∞

0 if
∑
h h

ng1(ψ(h)) <∞.

We also used here the obvious fact that g ∈ G(nn,ψ) if and only if the above series
diverges, owing to the monotonicity of ψ and that of g1 near the origin. Similarly,
we recover in addition the complete description of the large intersection properties
of the set An,ψ that was obtained in [18].

10.3.2. Koksma’s classification of real transcendental numbers. Let
us now concentrate on the case in which the function ψ is of the form h 7→ h−ω−1

on the interval [1,∞), for some real number ω > −1. In order to stress on the rôle
of ω and ensure some coherence with Koksma’s notations, the set An,ψ is denoted
by K∗n,ω in what follows, namely,

K∗n,ω =
{
x ∈ R

∣∣ |x− a| < H(a)−ω−1 for i.m. a ∈ An
}
.

Furthermore, to complete the definition of ψ, we suppose that it is constant equal
to one on the interval [0, 1]. We then clearly have{

In,ψ <∞ ⇐⇒ ω > n

G(nn,ψ) = G(n(n+1)/(ω+1)),

where the measure n(n+1)/(ω+1) is again defined as in (183). We then readily deduce
the next statement from Theorems 7.6(1) and 10.4.

Corollary 10.7. For any integer n ≥ 1 and any real parameter ω > −1, the
following properties hold:

(1) if ω ≤ n, then the set K∗n,ω has full Lebesgue measure in R ;
(2) if ω > n, then the set K∗n,ω is n(n+1)/(ω+1)-describable in R.
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This result will be used to comment on a classification of real transcendental
numbers that is due to Koksma [41] and that we now present. First, it is clear that
the mapping ω 7→ K∗n,ω is nonincreasing; for every real number x, we thus naturally
introduce the exponent

ω∗n(x) = sup{ω > −1 | x ∈ K∗n,ω}.

Note that when n = 1 and x is irrational, one essentially recovers the irra-
tionality exponent defined by (2). Indeed, as observed in Section 7.4, the set A1

coincides with Q, and writing an element a ∈ A1 in the form p/q for two coprime
integers p and q, the latter being positive, we have H(a) = max{|p|, q}. It is then
easy to check that for all ω > 0,

K∗1,ω ⊆ J1,ω+1 \Q ⊆
⋂
ε>0

↓ K∗1,ω−ε,

and therefore that for any irrational number x,

ω∗1(x) = τ(x)− 1.

Koksma introduced a classification of the real transcendental numbers x which
is based on the way the exponents ω∗n(x) evolve as n grows. This amounts to
studying how the quality with which a real number x is approximated by algebraic
numbers behaves when their degree is allowed to increase. Specifically, let us define

ω∗(x) = lim sup
n→∞

ω∗n(x)

n
.

Koksma classifies the real transcendental numbers x according to whether or not
ω∗(x) is finite, see [13, Section 3.3]. In the first situation, that is, if ω∗(x) is finite,
he calls x an S∗-number. Besides, let us mention that a result due to Wirsing [62]
shows that a real number x is transcendental if and only if ω∗(x) is positive, see [13].

As we now explain, Corollary 10.7 entails that Lebesgue-almost every real num-
ber x is an S∗-number satisfying ω∗n(x) = n for every n ≥ 1. In fact, for any real

parameter ω > 0, let K̂∗n,ω denote the set of all real numbers x for which the
exponent ω∗n(x) is bounded below by (n+ 1)ω − 1. Observing that

K̂∗n,ω =
⋂

ω′<(n+1)ω−1

↓ K∗n,ω′ ,

we deduce from Corollary 10.7 that the set K̂∗n,ω has full Lebesgue measure in R
when ω ≤ 1, and Lebesgue measure zero otherwise.

Our aim is now to describe the size and large intersection properties of the

set K̂∗n,ω. As usual, we may exclude the trivial case in which this set has full
Lebesgue measure, and therefore suppose that ω > 1. Due to the monotonicity
of the mapping ω′ 7→ K∗n,ω′ , we may assume in the above intersection that ω′

ranges over a sequence of real numbers strictly between n and (n + 1)ω − 1 that
monotonically tends to the latter value. In view of Corollary 10.7, we fall into the
setting of Proposition 9.6 in the case where the infimum is not attained. We end
up with the next result.

Corollary 10.8. For any integer n ≥ 1 and any real parameter ω > 1, the

set K̂∗n,ω is (1/ω)-describable in R.

In order to make the connection with Koksma’s classification, we need to con-
sider all the integers n simultaneously. Accordingly, let us introduce the set

K̂∗ω =

∞⋂
n=1

K̂∗n,ω.
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When ω ≤ 1, what precedes ensures that K̂∗ω has full Lebesgue measure in R,
and its size and large intersection properties are trivially described. Let us assume
oppositely that ω > 1. Combining Corollary 10.8 with Propositions 9.2 and 9.3, we
straightforwardly establish that

M(K̂∗ω,R) ⊇ G(1/ω){ and m(K̂∗ω,R) ⊇ G(1/ω).

Applying Lemmas 9.3(2) and 9.4, we eventually get the following result.

Corollary 10.9. For any ω > 1, the set K̂∗ω is (1/ω)-describable in R.

Again, combining this result with Theorem 9.2, we obtain a complete and

precise description of the size and large intersection properties of the set K̂∗ω, thereby
recovering results previously established in [14, 18]. One may also use Corollary 9.3

if only dimensional results are desired. In particular, we observe that the set K̂∗ω
has Hausdorff dimension equal to 1/ω. We thus recover a seminal result established
by Baker and Schmidt [1].

The connection with Koksma’s classification now consists in making the obvious
remark that for any real parameter ω > 0, the set

Ω∗ω = {x ∈ R | ω∗(x) ≥ ω}

contains K̂∗ω. In particular, we recover the fact that Ω∗ω has full Lebesgue measure
in R when ω ≤ 1. As regards size and large intersection properties, the opposite
case is richer and is covered by the next result.

Theorem 10.5. For any real parameter ω > 1, the set Ω∗ω of all real numbers
x such that ω∗(x) ≥ ω is (1/ω)-describable in R.

Proof. First, since the set Ω∗ω contains K̂∗ω, we deduce from Proposition 9.2
and Corollary 10.9 that

m(Ω∗ω,R) ⊇ m(K̂∗ω,R) ⊇ G(1/ω).

Furthermore, let us consider a sequence (ω′m)m≥1 of real numbers strictly between
one and ω that monotonically tends to the latter value. We clearly have

Ω∗ω ⊆
∞⋂
m=1

∞⋃
n=1

K∗n,(n+1)ω′m−1.

By virtue of Propositions 9.2 and 9.3, and also Corollary 10.7, this entails that

M(Ω∗ω,R) ⊇
∞⋃
m=1

∞⋂
n=1

M(K∗n,(n+1)ω′m−1,R) =

∞⋃
m=1

G(n1/ω′m
){.

Indeed, each set K∗n,(n+1)ω′m−1 is n1/ω′m
-describable in R. We finally infer from

Lemma 9.2 that the right-hand side is equal to G(1/ω){, and we conclude thanks
to Lemmas 9.3(2) and 9.4. �

It is possible to formally let ω tend to infinity in Theorem 10.5. This amounts
to considering the intersection of the sets Ω∗ω, in conjunction with the observation
that the intersection of the sets G(1/ω) reduces to the set G(0). Using the methods
developed up to now, the reader should easily prove the next result.

Corollary 10.10. The set Ω∗∞ of all real numbers x such that ω∗(x) =∞ is
0-describable in R.

Note that, referring to Koksma’s classification, the set Ω∗∞ consists of the tran-
scendental numbers x that are not S∗-numbers; they are call either T ∗-numbers
or U∗-numbers, depending respectively on whether ω∗n(x) is finite for all n ≥ 1, or
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infinite for from some n onwards. Let us finally mention that Koksma’s classifica-
tion is very close to that previously introduced by Mahler [44] and for which large
intersection properties also come into play, see [13, 18] for details.

10.3.3. The case of algebraic integers. As explained at the end of Sec-
tion 7.4, a result due to Bugeaud [9] shows that for any integer n ≥ 2, the pair
(A′n, Hn−1) is an optimal regular system in R, where A′n denotes the set of all real
algebraic integers with degree at most n, and the height function Hn−1 is defined
as in (167), see Theorem 7.7. Combining this result with the above methods, we
may obtain an analog of Theorem 10.4 for the set obtained when replacing An by
A′n in (168), namely,

A′n,ψ =
{
x ∈ R

∣∣ |x− a| < ψ(H(a)) for i.m. a ∈ A′n
}
.

To be specific, we already observed in Section 7.4 that the set A′n,ψ has full Lebesgue
measure in R when the integral In−1,ψ is divergent. This case being trivial as regards
size and large intersection properties, we rather assume that In−1,ψ is convergent.
Then, adapting the methods leading to Theorem 10.4, we end up with the fact that
the set A′n,ψ is nn−1,ψ-describable in R.



CHAPTER 11

Applications to random coverings problems

Similarly to Chapter 10, the purpose of this chapter is to review some examples
introduced before and, using the machinery of describable sets introduced in Chap-
ter 9, to give a precise and complete description of the size and large intersection
properties of the involved sets. We focus here on the examples from probability
theory studied essentially in Section 6.5.

11.1. Uniform random coverings

This section is a sequel to Section 6.5.1. Throughout, U denotes a nonempty
bounded open subset of Rd and (Xn)n≥1 denotes a sequence of points that are
independently and uniformly distributed in U . Let us recall from Theorem 6.13 that
with probability one, the sequence (Xn)n≥1 is uniformly eutaxic in U . Moreover,
let us consider a nonincreasing sequence r = (rn)n≥1 of positive real numbers. We
wish to detail the size and large intersection properties of the random set

Fr =
{
x ∈ Rd

∣∣ |x−Xn| < rn for i.m. n ≥ 1
}
.

Note that this set is equal to that obtained when choosing t = 1 in (137). As
usual, we exclude the case in which the above set has full Lebesgue measure in U ,
because the size and large intersection properties are then trivial. As mentioned
in Section 6.5.1, this case is obtained when the series

∑
n r

d
n diverges, as a simple

consequence of the Borel-Cantelli lemma and Tonelli’s theorem.
We therefore suppose from now on that the series

∑
n r

d
n converges. We see

that the sequence (rn)n≥1 then converges to zero and that the set Fr is unaltered
when removing a finite number of initial terms. Without loss of generality, we thus
also assume from now on that the real numbers rn all belong to (0, 1]. The material
of Section 9.4 prompts us to consider the measure in Rd given by (188), namely,

nr =

∞∑
n=1

δrn .

In the present situation, Theorem 9.3 turns into the following result.

Theorem 11.1. Almost surely, for any nonincreasing sequence r = (rn)n≥1 in
the interval (0, 1] such that

∑
n r

d
n converges, the set Fr is nr-describable in U .

In combination with Theorem 9.1, the above result yields a precise and complete
description of the size and large intersection properties of the random set Fr ; such
a description was first obtained in [21]. Furthermore, as far as dimensional results
are concerned, Corollary 9.2 is sufficient. By way of illustration, let us apply this
result here. Note that the exponent associated with the measure nr through (182)
is nothing but the critical exponent sr for the convergence of the series

∑
n r

s
n that

is defined in the interval [0, d] through the condition (109), namely,{
s < sr =⇒

∑
n r

s
n =∞

s > sr =⇒
∑
n r

s
n <∞.

199
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Corollary 9.2 now implies that almost surely, for any nonempty open set V ⊆ U ,
dimH(Fr ∩ V ) = sr

dimP(Fr ∩ V ) = d

Fr ∈ Gsr(V ),

where the last two properties are valid under the additional assumption that sr is
positive. We thus recover a property briefly mentioned after Corollary 6.3.

11.2. Poisson random coverings

This section is a follow-up to Section 6.5.2. Given a measure ν ∈ R and a
nonempty open set U ⊆ Rd, we consider on U+ = (0, 1] × U a Poisson point
measure Π with intensity ν ⊗ Ld( · ∩ U), and furthermore the set

Fν =

{
y ∈ Rd

∣∣∣∣∣
∫
U+

1{|y−x|<r}Π(dr, dx) =∞

}
.

Note that this set is equal to that obtained when letting t = 1 in (141). We use
here the notation Fν to stress the dependence on ν. Of course, there is no loss in
generality in assuming that t = 1, because replacing rt by r amounts to replacing
ν by its pushforward under the mapping r 7→ rt, and our analysis will be valid for
all measures ν. Our main result is the following full and precise description of the
size and large intersection properties of the set Fν . We recall from (181) that the
measure ν belongs to Rd if and only if

〈ν, r 7→ rd〉 =

∫
(0,1]

rd ν(dr) <∞.

Theorem 11.2. For any measure ν ∈ R and a nonempty open set U ⊆ Rd,
the following properties hold:

• if ν 6∈ Rd, then the set Fν almost surely has full Lebesgue measure in U ;
• if ν ∈ Rd, then the set Fν is almost surely ν-describable in U .

Before establishing Theorem 11.2, let us make some comments. The description
of the size and large intersection properties of the set Fν follows indeed from the
combination of that result with Theorem 9.1. As usual, if one is only interested
in dimensional results, Corollary 9.2 is enough, and actually implies that with
probability one, for any nonempty open set V ⊆ U ,

dimH(Fν ∩ V ) = sν

dimP(Fν ∩ V ) = d

Fν ∈ Gsν (V ),

where the last two properties hold if sν is positive. We thus recover a result shortly
mentioned after the statement of Theorem 6.14. Here, the exponent sν is defined
by the following integrability condition:

s < sν =⇒
∫

(0,1]

rs ν(dr) =∞

s > sν =⇒
∫

(0,1]

rs ν(dr) <∞.

Let us mention in passing that, as already observed in Section 6.5.2 and as suggested
by the last property, Fν is almost surely a Gδ-subset of Rd.

With that level of generality, Theorem 11.2 does not appear anywhere in the
literature. However, in dimension d = 1, results of the same flavor have been ob-
tained in [20] with a view to studying the singularity sets of Lévy processes. Similar
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results are also used in [22] to perform the multifractal analysis of multivariate ex-
tensions of Lévy processes; this also corresponds to the case where d = 1, but the
approximating points are replaced by Poisson distributed hyperplanes.

The remainder of this section is devoted to the proof of Theorem 11.2. Since
it is quite long, we split it into several parts.

11.2.1. Reduction to the bounded case. We begin by reducing the study
to the case in which the ambient open set is bounded. To this end, we adopt a
strategy similar to that employed in the proof of Theorem 6.14. Specifically, for
any bounded open subset of U , let us introduce the set

FVν =

{
y ∈ Rd

∣∣∣∣∣
∫
V+

1{|y−x|<r}Π(dr, dx) =∞

}
defined by restriction from Fν as in (143), and let us recall from Lemma 6.4(1) that
Π( · ∩V+) is a Poisson point measure on V+ with intensity ν⊗Ld( · ∩V ). Moreover,
for any integer ` ≥ 1, the sets U (`) defined by (146), namely,

U (`) = {x ∈ U ∩ B(0, `) | d(x,Rd \ (U ∩ B(0, `))) > 1/`}
form a nondecreasing sequence of bounded open sets with union equal to U , and
we get from (147) that

Fν ∩ U =

∞⋃
`=1

↑ (FU
(`)

ν ∩ U (`)). (192)

In addition, there exists an integer `0 ≥ 1 such that U (`0) is nonempty, and in fact
all the subsequent sets U (`) are nonempty as well.

Let us assume that Theorem 11.2 holds for bounded open sets, and let us begin
by supposing that the measure ν is not inRd. Then, for any ` ≥ `0, with probability

one, the set FU
(`)

ν is Lebesgue-full in U (`). We readily deduce from (192) and the
basic properties of Lebesgue measure that Fν is almost surely Lebesgue-full in U .

Let us now suppose that ν is in Rd. Then, for any ` ≥ `0, with probability one,

any gauge function in G(ν){ is majorizing for FU
(`)

ν in U (`). Hence, with probability
one, for any such gauge function g, we have

Hg(Fν ∩ U) ≤
∞∑
`=`0

Hg(FU
(`)

ν ∩ U (`)) = 0,

because of (192) and the fact that the Hausdorff g-measure is an outer measure. In
other words, we have established that

a.s. M(Fν , U) ⊇ G(ν){.

Furthermore, we also know that for any ` ≥ `0, with probability one, any gauge

function in G(ν) is minorizing for FU
(`)

ν in U (`). Thus, with probability one, for

any such gauge function g, each set FU
(`)

ν with ` ≥ `0 belongs to the class Gg(U (`)).
By Definition 8.2, this means that for any d-normalized gauge function h ≺ gd and

any open set Ũ ⊆ U , we have

Mh
∞(FU

(`)

ν ∩ U (`) ∩ Ũ) =Mh
∞(U (`) ∩ Ũ),

because U (`) ∩ Ũ is then an open subset of U (`). The sets in the right-hand side

are nondecreasing with respect to ` and their union is equal to Ũ . Owing to (192),
the sets in the left-hand side satisfy the same monotonicity property, with an union

equal to Fν ∩ Ũ . We now use the fact that Proposition 2.4(2) holds for the outer
measureMh

∞ even if it need not be regular, see [51, Theorem 52]. We end up with

Mh
∞(Fν ∩ Ũ) =Mh

∞(Ũ).
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We have thus proved that with probability one, for any gauge function g in G(ν),
the set Fν belongs to the large intersection class Gg(U). As a result,

a.s. m(Fν , U) ⊇ G(ν).

To conclude that the set Fν is almost surely ν-describable in U , it suffices to apply
Lemmas 9.1(2) and 9.4. The upshot is that we may assume in what follows that
the open set U that comes into play in the statement of Theorem 11.2 is bounded.

11.2.2. Integrability with respect to a Poisson measure. The proof will
make a crucial use of the following result on the integrability of gauge functions
with respect to Poisson random measures.

Lemma 11.1. Let ν be a measure in Rd, let U be a nonempty bounded open
subset of Rd, and let NU denote a Poisson point measure on the interval (0, 1] with
intensity equal to Ld(U) ν. Then, with probability one,

NU ∈ Rd and G(NU ) = G(ν).

In order to establish Lemma 11.1, let us begin by proving that NU is in Rd
with probability one. We observe that NU must have finite total mass almost surely,
because its intensity has infinite total mass, since ν is in Rd. Moreover, evaluating
the Laplace functional of NU at the functions r 7→ θ rd, for all θ > 0, we get

E

[
exp

(
−θ
∫

(0,1]

rd NU (dr)

)]
= exp

(
−Ld(U)

∫
(0,1]

(1− e−θ r
d

) ν(dr)

)
.

We obviously have 1 − e−z ≤ z for all z ∈ R. Using this bound twice, we deduce
from the above equality that

E

[
1

θ

(
1− exp

(
−θ
∫

(0,1]

rd NU (dr)

))]
≤ Ld(U)

∫
(0,1]

rd ν(dr).

Given that ν belongs to Rd, the right-hand side is finite. In addition, as θ goes to
zero, the random variable in the expectation monotonically tends to the integral of
r 7→ rd with respect to NU . We deduce from the monotone convergence theorem
that this integral has finite expectation. Hence, with probability one,∫

(0,1]

rd NU (dr) <∞ and ∀ρ ∈ (0, 1] ΦNU (ρ) = NU ([ρ, 1]) <∞. (193)

As a consequence, the Poisson point measure NU is almost surely in Rd. It remains
to prove that the two sets G(NU ) and G(ν) coincide with probability one. As we
now show, this follows from the next property:

a.s. ΦNU (ρ) ∼ Ld(U) Φν(ρ) as ρ→ 0, (194)

where Φν(ρ) is equal to ν([ρ, 1]), as defined by (139).
Let us suppose that (194) holds and let us consider a gauge function g in G∞

with d-normalization denoted by gd as usual. The function gd is nondecreasing and
continuous near zero, but need not satisfy this property on the whole interval [0, 1].
However, gd clearly coincides near zero with some function denoted by g̃ which is
both nondecreasing and continuous on the whole [0, 1]. Moreover, due to (139) and
the observation that gd is bounded on (0, 1], we have

g ∈ G(ν) ⇐⇒
∫

(0,1]

g̃(r) ν(dr) =∞.

Also, on the almost sure event on which (193) holds, the above characterization
remains valid if ν is replaced by the Poisson point measure NU .
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Now, similarly to the proof of Theorem 7.1, let us introduce the Lebesgue-
Stieltjes measure associated with the monotonic function g̃. Specifically, let ζ be
the premeasure satisfying ζ((r, r′]) = g̃(r′) − g̃(r) when 0 ≤ r ≤ r′ ≤ 1, and let ζ∗
be the outer measure defined by (53). Theorem 2.4 shows that the Borel sets con-
tained in (0, 1] are ζ∗-measurable, and we may thus integrate locally bounded Borel-
measurable functions with respect to ζ∗. Adapting the proof of Proposition 2.9 and
using Proposition 2.4(1), one may prove that ζ∗ coincides with the premeasure ζ
on the intervals where it is defined, and in particular that ζ∗((0, r]) = g̃(r) for any
real number r ∈ (0, 1]. Using Tonelli’s theorem, we deduce that∫

(0,1]

g̃(r) ν(dr) =

∫
(0,1]

Φν(ρ) ζ∗(dρ),

and that the same property holds when ν is replaced by NU . As a consequence,
the sets G(NU ) and G(ν) coincide with probability one if (194) holds.

It remains us to establish (194). To proceed, let us introduce the countable set
D0 of all real numbers r ∈ (0, 1] such that ν({r}) ≥ 1, and also its complement in
(0, 1], denoted by D1. Then, for all ` ∈ {0, 1} and ρ ∈ (0, 1], let

Φν,`(ρ) = ν(D` ∩ [ρ, 1]) and ΦNU ,`(ρ) = NU (D` ∩ [ρ, 1]).

Note that there necessarily exists an index ` such that ν(D`) is infinite. Moreover,
if ν(D`) is finite, Φν,`(ρ) tends to a finite limit as ρ goes to zero, and ΦNU ,`(ρ) as
well, with probability one. Hence, the proof reduces to showing that for any index
` ∈ {0, 1} such that ν(D`) is infinite, we have

a.s. ΦNU ,`(ρ) ∼ Ld(U) Φν,`(ρ) as ρ→ 0. (195)

For any ξ > 0 and any ρ > 0 small enough to ensure that Φν,`(ρ) > 0, we assert
that the following bound holds:

P
(∣∣∣∣ ΦNU ,`(ρ)

Ld(U) Φν,`(ρ)
− 1

∣∣∣∣ ≥ ξ) ≤ 2 exp

(
− 3ξ2

2ξ + 6
Ld(U) Φν,`(ρ)

)
. (196)

This is indeed a consequence of Bernstein’s inequality for integrals with respect
to compensated Poisson point measures. To be specific, if S is a locally compact
topological space with a countable base, π is a positive Radon measure thereon,
and Π is a Poisson point measure with intensity π, then for any real-valued Borel
measurable function f defined on S such that

M = sup
S
|f | and V =

∫
S

f2 dπ

are both positive and finite, we have for all positive values of ξ,

P
(∣∣∣∣∫

S

f dΠ−
∫
S

f dπ

∣∣∣∣ ≥ ξ) ≤ 2 exp

(
− 3ξ2

2Mξ + 6V

)
.

The above bound may be obtained for instance with the help of [33, Corollary 5.1]
or [50, Proposition 7].

Let us consider a decreasing enumeration (an)n≥1 of D0, and let us suppose
that ν(D0) is infinite. The sequence (an)n≥1 then necessarily converges to zero. In
addition, (196) implies that for all integers m,n ≥ 1,

P
(∣∣∣∣ ΦNU ,0(an)

Ld(U) Φν,0(an)
− 1

∣∣∣∣ ≥ 1

m

)
≤ 2 exp

(
− 3Ld(U)n

(6m+ 2)m

)
, (197)

because Φν,0(an) = ν({a1, . . . , an}) ≥ n. Summing these inequalities over n for
each fixed value of m, we infer from the Borel-Cantelli lemma that for any integer
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m ≥ 1, with probability one, for all n large enough,

1− 1

m
≤

ΦNU ,0(an)

Ld(U) Φν,0(an)
≤ 1 +

1

m
. (198)

For any real number ρ ∈ (0, 1], let n(ρ) stand for the number of integers n ≥ 1 such
that an ≥ ρ. Note that Φν,0(ρ) coincides with Φν,0(an(ρ)), and the same property

holds when ν is replaced by NU . Hence, if ρ is sufficiently close to zero, we may
replace an by ρ is the above inequalities. As a result,

a.s. ∀m ≥ 1 lim sup
ρ→0

∣∣∣∣ ΦNU ,0(ρ)

Ld(U) Φν,0(ρ)
− 1

∣∣∣∣ ≤ 1

m
,

and we obtain (195) for ` = 0 by letting m→∞.
Let us now assume that ν(D1) is infinite. For each integer n ≥ 1, let us define

ρn = sup
{
ρ ∈ (0, 1]

∣∣ Φν,1(ρ) ≥ n
}
.

We thus obtain a nonincreasing sequence in (0, 1) that converges to zero. In ad-
dition, Φν,1(ρn) ≥ n for all n ≥ 1. Applying (196) again, we infer that the
bounds (197) still hold when an is replaced by ρn, and ΦNU ,0 and Φν,0 are re-
placed by ΦNU ,1 and Φν,1, respectively. Using the Borel-Cantelli lemma, we deduce
likewise that (198) holds when the same substitutions are performed. On top of
that, by definition of D1 and ρn, we have

n ≤ Φν,1(ρn) = ν(D1 ∩ {ρn}) + lim
ρ↓ρn

↑ Φν,1(ρ) ≤ 1 + n.

Making use of the monotonicity of ΦNU ,1 and Φν,1, we conclude that with proba-
bility one, for all n large enough and all ρ ∈ [ρn+1, ρn],

n

n+ 2

(
1− 1

m

)
≤

ΦNU ,1(ρ)

Ld(U) Φν,1(ρ)
≤ n+ 2

n

(
1 +

1

m

)
,

and finally that (195) holds for ` = 1. The proof of Lemma 11.1 is complete.

11.2.3. Proof in the bounded case. It remains us to establish Theorem 11.2
in the case where the open set U is bounded. Given a measure ν inR, let NU denote
a Poisson point measure on (0, 1] with intensity Ld(U) ν. Lemma 6.5(1) ensures
the existence of a nonincreasing sequence (Rn)n≥1 of positive random variables that
converges to zero such that (144) holds with probability one, namely,

a.s. NU =

∞∑
n=1

δRn .

Moreover, let (Xn)n≥1 be a sequence of random variables that are independently
and uniformly distributed in U , and are also independent on NU . Lemma 6.5(2)
now implies that the random point measure defined on U+ by (145), specifically,

NU
+ =

∞∑
n=1

δ(Rn,Xn)

is Poisson distributed with intensity ν ⊗ Ld( · ∩ U). Hence, the random point
measures Π and NU

+ share the same law. The upshot is that we may assume that Π

is replaced by NU
+ in the definition of the random set Fν . This enables us to write

this set in the alternate form

Fν =
{
y ∈ Rd

∣∣ |y −Xn| < Rn for i.m. n ≥ 1
}
.

On top of that, Theorem 6.13 ensures that with probability one, the sequence
(Xn)n≥1 is almost surely uniformly eutaxic in U .
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Evaluating the Laplace functional of the Poisson point measure NU at the
function r 7→ rd, we obtain

E

[
exp

(
−
∞∑
n=1

Rdn

)]
= exp

(
−Ld(U)

∫
(0,1]

(1− e−r
d

) ν(dr)

)
.

Therefore, if the measure ν is not in Rd, the integral in the right-hand side is
infinite, so that the expectation in the left-hand side vanishes. This means that the
series

∑
nR

d
n diverges almost surely, and thus that the sequence (Rn)n≥1 belongs

to the set Pd characterized by (106). By Definition 6.2, the set Fν almost surely
has full Lebesgue measure in U .

Lastly, let us deal with the case where ν belongs to Rd. We infer from
Lemma 11.1 that with probability one, the Poisson point measure NU belongs
to Rd, so that the series

∑
nR

d
n converges. Applying Theorem 9.3, we then deduce

that with probability one, the set Fν is NU -describable in U . However, Lemma 11.1
ensures that the sets G(NU ) and G(ν) coincide almost surely. It follows that Fν is
almost surely ν-describable in U .





CHAPTER 12

Schmidt’s game and badly approximable points

12.1. Schmidt’s game

We shall study the following game introduced by Schmidt [55]. Let us consider
two real numbers α, β ∈ (0, 1) and a subset S of Rd. Two players, called Alice and
Bob, successively choose nested closed balls of Rd, namely,

B1 ⊇ A1 ⊇ B2 ⊇ A2 ⊇ . . .

with the condition that for any integer i ≥ 1,

|Ai| = α|Bi| and |Bi+1| = β|Ai|.

Alice picks the balls Ai and Bob chooses the balls Bi. Within this setting, Cantor’s
intersection theorem ensures that intersections

⋂
iAi and

⋂
iBi are both reduced

to the same nonempty compact set with diameter zero, a singleton denoted by {ω}.
Alice wins the game if ω belongs to S, and Bob wins the game otherwise. The
question now is to determine whether or not, depending on the choice of the initial
set S, there exists a strategy that Alice can follow in order to be surely the winner,
no matter how Bob plays.

More formally, for any closed ball D of Rd and any real number ρ ∈ (0, 1),
let Dρ(D) denote the collection of all closed balls D′ ⊆ D such that |D′| = ρ|D|.
For any integer i ≥ 1, let Fρ,i be the set of all functions f defined on the i-tuples
(D1, . . . , Di) of closed balls of Rd for which f(D1, . . . , Di) ∈ Dρ(Di). The strategies
that Alice can follow are defined in the next manner.

Definition 12.1. Let α and β be two real numbers in (0, 1) and let S be a
subset of Rd.

• We call an α-strategy any sequence of functions (fi)i≥1 such that fi ∈ Fα,i
for any integer i ≥ 1.

• An α-strategy (fi)i≥1 is called (α, β;S)-winning if for all sequences (Ai)i≥1

and (Bi)i≥1 of closed balls of Rd,[
∀i ≥ 1

{
Ai = fi(B1, . . . , Bi)

Bi+1 ∈ Dβ(Ai)

]
=⇒

∞⋂
i=1

Ai =

∞⋂
i=1

Bi ⊆ S.

• The set S is called (α, β)-winning if there exists an α-strategy that is
(α, β;S)-winning.

• The set S is called α-winning if it is (α, β)-winning for all β ∈ (0, 1).

Within this formalism, a game then corresponds to the choice oftwo sequences
(Ai)i≥1 and (Bi)i≥1 of closed balls of Rd such that Ai ∈ Dα(Bi) et Bi+1 ∈ Dβ(Ai)
for all i ≥ 1. An α-strategy represents the way with which Alice will choose the balls
Ai given the balls B1, . . . , Bi previously chosen by Bob. If S is an (α, β)-winning
set, and if (fi)i≥1 denotes an α-strategy that is (α, β;S)-winning, then Alice will
always win if she systematically picks the balls Ai in the form fi(B1, . . . , Bi).

The following notion of chain, which keeps track of the balls chosen by Bob,
will also play a useful rôle in the sequel.

207
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Definition 12.2. Let (Bi)i≥1 denote a sequence of closed balls of Rd with
positive diameter and let (fi)i≥1 be an α-strategy.

• For any integer j ≥ 1, we say that (B1, . . . , Bj) is an (f1, . . . , fj)-chain if
for all i ∈ {1, . . . , j − 1},

Bi+1 ∈ Dβ(fi(B1, . . . , Bi)). (199)

• We say that (Bi)i≥1 is an (fi)i≥1-chain if (199) holds for any j ≥ 1.

It is clear from the above definitions that if the α-strategy (fi)i≥1 is (α, β;S)-
winning, then the intersection of any (fi)i≥1-chain is a singleton contained in S.
Moreover, if (Bi)i≥1 denotes an (fi)i≥1-chain, then |Bi+1| = αβ|Bi| for all i ≥ 1.

In the case where α ≤ 1/2, there exists α-winning sets that do not coincide
with the whole Rd, see for instance the important example of badly approximable
points discussed in Section 12.2 below. However, it is quite intuitive that α-winning
sets have to be somewhat large. This intuition is confirmed by the following result.

Theorem 12.1. Let α be a real number in (0, 1), and let S be an α-winning
subset of Rd. Then, for any nonempty open subset U of Rd,

dimH(S ∩ U) = d.

Proof. Let β ∈ (0, 1/2) and let m denote the maximal number of disjoint
closed balls with radius 2β that may be included in the closed unit ball of Rd. One
easily checks that κ ≤ (2β)dm ≤ 1 for some real κ ∈ (0, 1) that depends on the
norm the space Rd is endowed with. Moreover, the set S is (α, β)-winning, so there
exists an α-strategy (fi)i≥1 that is (α, β;S)-winning.

The proof makes use of the setting of the general Cantor construction intro-
duced in Section 2.9.2. The construction is indexed by the m-ary tree Tm formed
by the words of finite length over the alphabet {1, . . . ,m}. We define as follows a
collection (Iu)u∈Tm of closed balls of Rd satisfying the following properties:

• for any u in Tm, the balls Iu1, . . . , Ium are disjoint and included in Iu ;
• for any integer j ≥ 1 and for any distinct u and v in {1, . . . ,m}j , the

distance between Iu and Iv is at least (αβ)j |I∅| ;
• for any sequence (ξi)i≥1 of integers between one and m, the sequence

(Iξ1...ξi)i≥1 is an (fi)i≥1-chain.

We proceed by induction on the height of the tree. First, the ball I∅ indexed
by the root is an arbitrary closed ball with positive diameter that is contained in
U . Second, the ball I∅ contains m disjoint closed balls with diameter 2αβ|I∅|. The
balls concentric to them with half their radius are denoted by I1, . . . , Im ; they have
diameter αβ|I∅| and are separated by a distance at least αβ|I∅| as well. It is clear
that each of these balls forms an (f1)-chain; in fact, every closed ball of Rd is an
(f1)-chain. Then, let us consider an integer j ≥ 1 and let us assume that the balls
Iu, for u ∈ Tm with length at most j, have been defined appropriately. In particular,
the set Aj = fj(Iu1

, . . . , Iu) is a closed ball of Rd with diameter α|Iu|. Therefore, it
contains m disjoint closed balls with diameter 2αβ|Iu|, so that we can find m balls,
denoted by Iu1, . . . , Ium, in the collection Dβ(Aj) that are separated by a distance
at least αβ|Iu|. For each k, the (j + 1)-tuple (Iu1

, . . . , Iu, Iuk) is an (f1, . . . , fj+1)-
chain. This implies in particular that αβ|Iu| = (αβ)j |Iu1 | = (αβ)j+1|I∅|. We thus
have built appropriately the balls indexed by the words with length j + 1.

Now, given that the α-strategy (fi)i≥1 is (α, β;S)-winning, the limiting com-
pact set K defined by (67) is contained in S. Indeed, for any point x in K, there
exists a sequence (ξi)i≥1 in {1, . . . ,m} such that x belongs to the ball Iξ1...ξi for
any i ≥ 1 ; since these balls form an (fi)i≥1-chain, their intersection is a singleton
contained in S, and this singleton is necessarily equal to {x}.
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Here, the sequence (εj)j≥1 defined by (68) is given by εj = (αβ)j |I∅| for all
j ≥ 1, and the sequence (mj)j≥1 defined by (69) is constant equal to m. In
particular, the sequence (εj)j≥1 is decreasing and the sequence (mj)j≥1 is positive.
We may therefore apply Lemma 2.4; this yields the lower bound

dimHK ≥ lim inf
j→∞

log(m1 . . .mj−1)

− log(m
1/d
j εj)

.

Recalling that K is included in S ∩U and replacing εj and mj by the above values,
we deduce that

dimH(S ∩ U) ≥ lim inf
j→∞

log(mj−1)

− log(m1/d(αβ)j |I∅|)
=

logm

| log(αβ)|
.

We conclude by recalling that m ≥ κ(2β)−d, and finally by letting the parameter
β go to zero. �

12.2. The set of badly approximable numbers

We consider in this section an emblematic example of winning set: the set,
denoted by Bad1, of badly approximable numbers that we defined in Section 1.3.
The main result is the following, and is proven at the end of this section.

Theorem 12.2. The set Bad1 is (α, β)-winning for any pair (α, β) of real
numbers in (0, 1) satisfying 2α < 1 + αβ.

Combined with Theorem 12.1, the above result directly enables us to determine
the value of the Hausdorff dimension of the set of badly approximable numbers,
thereby obtaining a definitive improvement on Corollary 3.2.

Corollary 12.1. For any nonempty open subset U of R, the badly approx-
imable numbers that belong to U form a set with Hausdorff dimension satisfying

dimH(Bad1 ∩ U) = 1.

Proof. If α denotes a real number in the interval (0, 1/2], then for any real
β in (0, 1), we have 2α ≤ 1 < 1 + αβ, so that the set Bad1 is (α, β)-winning, by
virtue of Theorem 12.2. We deduce that the set Bad1 is α-winning. Its Hausdorff
dimension is therefore equal to one, as a consequence of Theorem 12.1. �

Corollary 12.1 may be extended to badly approximable points, that is, to the
d-dimensional setting. In fact, a result of Schmidt [54] shows that the Hausdorff
dimension of the set Badd is equal to d.

The remainder of this section is now devoted to the proof of Theorem 12.2. Let
us consider two real numbers α and β in the interval (0, 1), and let us assume that
γ = 1 + αβ − 2α is positive. For any real number ` > 0, let us define

δ(`) =
γ

4
min

{
`, (αβ)2 γ

4

}
.

First reduction of the problem. The proof of Theorem 12.2 reduces to that of
the following statement.

Proposition 12.1. The exists an α-strategy (fi)i≥1 such that for all sequences
(Ai)i≥1 and (Bi)i≥1 of nonempty closed intervals of R satisfying

|B1| ≤
αβγ

4
and ∀i ≥ 1

{
Ai = fi(B1, . . . , Bi)

Bi+1 ∈ Dβ(Ai),
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the intersections
⋂
iAi and

⋂
iBi are both reduced to the same singleton {ω}, where

ω is such that

∀(p, q) ∈ Z× N
∣∣∣∣ω − p

q

∣∣∣∣ > δ(|B1|)
q2

. (200)

In order to explain how Theorem 12.2 derives from Proposition 12.1, let us
consider an α-strategy (fi)i≥1 satisfying the property given in the latter statement.
We built another α-strategy (f∗i )i≥1 as follows. Let us fix an integer i ≥ 1 and an
i-tuple (I1, . . . , Ii) of closed intervals of R. In the situation where the condition

|Ii| = αβ|Ii−1| = . . . = (αβ)i−1|I1| ≤
αβγ

4
(201)

holds, we let j denote the smallest positive integer such that |Ij | ≤ αβγ/4, so that
j is necessarily less than or equal to i, and we define

f∗i (I1, . . . , Ii) = fi−j+1(Ij , . . . , Ii).

Otherwise, we decide that f∗i (I1, . . . , Ii) is an arbitrary element of Dα(Ii), e.g. the
interval concentric to Ii with length α times that of Ii.

Let us show that the α-strategy (f∗i )i≥1 is (α, β; Bad1)-winning. Let us consider
two sequences (Ai)i≥1 and (Bi)i≥1 of closed intervals of R such that for all i ≥ 1,

Ai = f∗i (B1, . . . , Bi) and Bi+1 ∈ Dβ(Ai). (202)

We need to show that the intersection of the intervals Ai or, equivalently, that of
the intervals Bi is contained in the set Bad1 of badly approximable numbers. To
proceed, we may obviously assume that the intervals Ai and Bi are nonempty; the
aforementioned intersection is thus reduced to a singleton {ω}. We now observe
that (Bi)i≥1 is an (fi)i≥1-chain. In particular, |Bi| = (αβ)i−1|B1| for all i ≥ 1.
Letting j denote the smallest positive integer such that |Bj | ≤ αβγ/4, we deduce
that (201) is satisfied by the intervals B1, . . . , Bi as soon as i ≥ j. As a consequence,

in view of (202), the intervals Aji = Aj+i−1 and Bji = Bj+i−1 verify for all i ≥ 1,

Aji = fi(B
j
1, . . . , B

j
i ) and Bji+1 ∈ Dβ(Aji ),

in addition to |Bj1| ≤ αβγ/4. Applying Proposition 12.1, we deduce that ω sat-

isfies (200) with δ(|Bj1|), that is, δ(|Bj |) instead of δ(|B1|) in the bound. How-
ever, these two values coincide. Clearly, this is the case if |B1| ≤ αβγ/4, because
j = 1 then. Moreover, in the opposite situation, the minimality of j ensures that
|Bj | > (αβ)2γ/4, so that

δ(|Bj |) =
γ

4
min

{
|Bj |, (αβ)2 γ

4

}
=
γ

4
min

{
|B1|, (αβ)2 γ

4

}
= δ(|B1|).

As a consequence, ω satisfies (200). As a consequence, ω is badly approximable,
i.e. belongs to the set Bad1.

Since the α-strategy (f∗i )i≥1 is (α, β; Bad1)-winning, the set Bad1 is (α, β)-
winning, and Theorem 12.2 holds. We are thus reduced to establishing Proposi-
tion 12.1.

Second reduction of the problem. To proceed with the proof of Proposition 12.1,
let us consider the unique integer t ≥ 1 such that

αβγ

2
≤ (αβ)t <

γ

2
,

along with the unique positive real number R such that R2(αβ)t = 1, and let us
introduce the following definition.
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Definition 12.3. Let us consider an integer k ≥ 0 and a real number ` in
(0, αβγ/4]. A nonempty closed interval I of R is called (k, `)-appropriate if its
length satisfies |I| = R−2k` and if the following holds:

∀x ∈ I ∀(p, q) ∈ P1 q < Rk =⇒
∣∣∣∣x− p

q

∣∣∣∣ > δ(`)

q2
.

It is elementary and useful to observe that any closed interval I with length in
(0, αβγ/4] is (0, |I|)-appropriate. The proof of Proposition 12.1 now relies on the
following result.

Proposition 12.2. For any integer k ≥ 0 and any real ` ∈ (0, αβγ/4], there are
some functions g`kt+1, . . . , g

`
(k+1)t in Fα,1, . . . ,Fα,t, respectively, such that for any

nonempty closed intervals Akt+1, . . . , A(k+1)t and Bkt+1, . . . , B(k+1)t+1 satisfying

∀i ∈ {kt+ 1, . . . , (k + 1)t}

{
Ai = g`i (Bkt+1, . . . , Bi)

Bi+1 ∈ Dβ(Ai),
(203)

the following implication holds:

Bkt+1 is (k, `)-appropriate =⇒ B(k+1)t+1 is (k + 1, `)-appropriate.

As a matter of fact, Proposition 12.2 yields functions g`i which enables us to
define an α-strategy (fi)i≥1 by

fi(I1, . . . , Ii) = g
εk(|Ikt+1|)
i (Ikt+1, . . . , Ii)

for any integer i ≥ 1 and any i-tuple (I1, . . . , Ii) of closed intervals of R. Here, k is
the unique integer such that i = kt+ r for some r ∈ {1, . . . , t}, and

εk(l) = min

{
R2kl,

αβγ

4

}
.

Note that the function g
εk(|Ikt+1|)
i belongs to Fα,r, so that fi belongs to Fα,i as

required. Let us now consider two sequences (Ai)i≥1 and (Bi)i≥1 of nonempty
closed intervals with

|B1| ≤
αβγ

4
and ∀i ≥ 1

{
Ai = fi(B1, . . . , Bi)

Bi+1 ∈ Dβ(Ai),

In particular, for any integer k ≥ 0, the interval Bkt+1 has length (αβ)kt times
that of the interval B1. Thus, εk(|Bkt+1|) is constant equal to |B1|. We deduce
that (203) holds for all k ≥ 0, with ` equal to |B1|. On top of that, the interval B1 is
(0, |B1|)-appropriate. Applying Proposition 12.2 with ` = |B1|, we may thus prove
by induction on the integer k ≥ 0 that each interval Bkt+1 is (k, |B1|)-appropriate.
As a consequence, the intersection {ω} of the intervals Bi satisfies the following
property for every integer k ≥ 0, every integer q ∈ {1, . . . , Rk − 1} and every
integer p ∈ Z,

gcd(p, q) = 1 =⇒
∣∣∣∣ω − p

q

∣∣∣∣ > δ(|B1|)
q2

.

This readily implies (200), and we conclude that Proposition 12.1 holds. We are
thus finally reduced to proving Proposition 12.2.

End of the proof. In order to establish Proposition 12.2, let us consider an inte-
ger k ≥ 0, a real number ` ∈ (0, αβγ/4], some functions g`kt+1, . . . , g

`
(k+1)t belonging

to Fα,1, . . . ,Fα,t, respectively, and some nonempty closed intervalsAkt+1, . . . , A(k+1)t
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and Bkt+1, . . . , B(k+1)t+1 satisfying (203). Let us also assume that Bkt+1 is (k, `)-
appropriate. Furthermore, let us introduce the set

U `k =
⋃

(p,q)∈P1
Rk≤q<Rk+1

[
p

q
− δ(`)

q2
,
p

q
+
δ(`)

q2

]
, (204)

and let us assume that the interval B(k+1)t+1 does not meet the set U `k. Thus,

for every pair of coprime integers (p, q) such that Rk ≤ q < Rk+1, any point in
B(k+1)t+1 is at a distance larger than δ(`)/q2 from the rational number p/q. As the
interval Bkt+1 is (k, `)-appropriate and contains B(k+1)t+1, this actually holds for

every positive integer q less than Rk+1. Moreover, the length of B(k+1)t+1 is (αβ)t

times that of Bkt+1 ; we deduce that this interval is (k + 1, `)-appropriate.
It thus suffices to find a strategy that forces the interval B(k+1)t+1 to fit into

Bkt+1 \U `k. To proceed, let us study the intersection set Bkt+1 ∩U `k more precisely.
Recall that the set U `k is a union of intervals that are indexed by pairs of integers;
let us assume that there are two distinct pairs (p, q) and (p′, q′) such that the
corresponding intervals meet the set Bkt+1 at some point x and some point x′,
respectively. Then, on the one hand,∣∣∣∣pq − p′

q′

∣∣∣∣ =
|pq′ − p′q|

qq′
≥ 1

qq′
> R−2(k+1) = (αβ)tR−2k,

because the aforementioned pairs are formed by coprime integers. On the other
hand, the triangle inequality yields∣∣∣∣pq − p′

q′

∣∣∣∣ ≤ ∣∣∣∣x− p

q

∣∣∣∣+

∣∣∣∣x′ − p′

q′

∣∣∣∣+ |x− x′| ≤ δ(`)

q2
+
δ(`)

q′2
+ |Bkt+1|

≤ 2

(
αβγ

4

)2

R−2k + (αβ)kt` ≤ αβγ

4

(
αβγ

2
+ 1

)
R−2k <

αβγ

2
R−2k.

These bounds are due to the fact that δ(`) ≤ (αβγ/4)2 and that γ ≤ 2. We
directly deduce that (αβ)t < αβγ/2, which contradicts the choice of the integer t.
This means that, among the intervals that compose the set U `k, at most one can
meet the set Bkt+1. As a consequence, the intersection set Bkt+1∩U `k is a (possibly
empty) closed interval with diameter at most 2δ(`)R−2k.

Let bkt+1 denote the center of the interval Bkt+1. If we assume furthermore
that the interval Bkt+1 ∩U `k is nonempty and centered at the left of bkt+1, then its
right bound is at most

bkt+1 +
|Bkt+1 ∩ U `k|

2
≤ bkt+1 + δ(`)R−2k = bkt+1 +

δ(`)

`
|Bkt+1| ≤ bkt+1 +

γ

4
|Bkt+1|,

from which we directly deduce that

Bkt+1 ∩ U `k ⊆ Bkt+1 ∩
(
−∞, bkt+1 +

γ

4
|Bkt+1|

]
.

Now, let h+ be the function in Fα,1 which maps every interval of the form
[c−ρ, c+ρ], with c ∈ R and ρ > 0, to the interval [c+(1−2α)ρ, c+ρ]. We suppose
that Ai = h+(Bi) for all i ∈ {kt+ 1, . . . , (k+ 1)t}. The interval Bkt+2 is contained
in h+(Bkt+1), so its left bound satisfies

bkt+2 −
|Bkt+2|

2
≥ bkt+1 + (1− 2α)

|Bkt+1|
2

.

Moreover, the length of Bkt+2 is αβ times that of Bkt+1. As a consequence,

bkt+2 ≥ bkt+1 + (1− 2α)
|Bkt+1|

2
+ αβ

|Bkt+1|
2

= bkt+1 +
γ

2
|Bkt+1|.
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The choice of the function h+ implies that the center of each interval Bi+1 is
necessarily on the right of that Bi. In particular, b(k+1)t+1 is larger than or equal
to bkt+2, and the above lower bound on bkt+2 implies that the left bound of the
interval B(k+1)t+1 satisfies

b(k+1)t+1 −
|B(k+1)t+1|

2
≥ bkt+1 +

γ

2
|Bkt+1| −

(αβ)t

2
|Bkt+1| > bkt+1 +

γ

4
|Bkt+1|,

which finally yields

B(k+1)t+1 ⊆ Bkt+1 ∩
(
bkt+1 +

γ

4
|Bkt+1|,∞

)
.

Thanks to the previous analysis, we may now explain how to establish Propo-
sition 12.2. First, when I is a nonempty bounded interval, we let c(I) denote its
center. Concerning the empty set, we adopt the arbitrary convention that c(∅)
is equal to ∞. The situation detailed above thus corresponds to the case where
c(Bkt+1 ∩ U `k) ≤ c(Bkt+1), and the relevant function is therefore h+. A similar
approach can be developed in the case where c(Bkt+1 ∩ U `k) > c(Bkt+1), i.e. if the
interval Bkt+1 ∩U `k is either empty or centered on the right of bkt+1. In that situa-
tion, the relevant function is the function h− in Fα,1 which sends every interval of
the form [c− ρ, c+ ρ], with c ∈ R and ρ > 0, to the interval [c− ρ, c− (1− 2α)ρ]. It
is now natural to define the functions g`kt+1, . . . , g

`
(k+1)t as follows: for any integer

i ∈ {1, . . . , t} and for any i-tuple of intervals (I1, . . . , Ii),

g`kt+i(I1, . . . , Ii) = 1{c(I1∩U`k)≤c(I1)}h
+(Ii) + 1{c(I1∩U`k)>c(I1)}h

−(Ii).

It is clear that each function g`kt+i belongs to Fα,i. Moreover, for any nonempty
closed intervals Akt+1, . . . , A(k+1)t and Bkt+1, . . . , B(k+1)t+1 such that (203) holds,
it results from the previous analysis that the interval B(k+1)t+1 cannot meet the set

U `k, thereby being (k+1, `)-appropriate. This finishes the proof of Proposition 12.2,
and in fact of Theorem 12.2.





Bibliography

[1] A. Baker and W. Schmidt. Diophantine approximation and Hausdorff dimension. Proc. Lon-
don Math. Soc. (3), 21:1–11, 1970.

[2] V. Beresnevich. On approximation of real numbers by real algebraic numbers. Acta Arith.,

90(2):97–112, 1999.
[3] V. Beresnevich. Application of the concept of regular systems of points in metric number

theory. Vests̄ı Nats. Akad. Navuk Belarus̄ı Ser. F̄ız.-Mat. Navuk, 1:35–39, 2000.

[4] V. Beresnevich, D. Dickinson, and S. Velani. Measure theoretic laws for limsup sets. Mem.
Amer. Math. Soc., 179(846):1–91, 2006.

[5] V. Beresnevich and S. Velani. A mass transference principle and the Duffin-Schaeffer conjec-

ture for Hausdorff measures. Ann. of Math. (2), 164(3):971–992, 2006.
[6] V. Beresnevich, V. Bernik, M. Dodson, and S. Velani. Classical metric Diophantine approx-

imation revisited. In Analytic number theory, pages 38–61. Cambridge Univ. Press, Cam-

bridge, 2009.
[7] A. Besicovitch. Sets of fractional dimensions (IV): on rational approximation to real numbers.

J. London Math. Soc. (2), 9:126–131, 1934.
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[36] V. Jarńık. Diophantischen Approximationen und Hausdorffsches Mass. Mat. Sb., 36:371–381,

1929.
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