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Abstract : The present paper starts with the group of all germs of analytic
self-mappings of R ;o and concerns itself with its successive closures under
(i) fractional iteration (ii) conjugation (iii) the solving of general composition
equations.

Rather than attempting a systematic treatment, we focus on the typical
difficulties attendant upon these extensions. On the formal side, power series
make way first for transseries, then for ultraseries, involving finite resp. trans-
finite iterates of the exponential. On the analysis side, the first casualties are
convergence and analyticity: from the start, we have to face generic resur-
gence (multicritical but of a weakly polarising type) and, further down the
road, generic cohesiveness (a natural and very inclusive extension of Denjoy
quasi-analyticity).

Nevertheless, none of these complications destroys the bi-constructive cor-
respondence between the formal objects (series, transseries, ultraseries) and
the geometric germs. We describe, and illustrate on numerous examples,
the apparatus required for upholding this correspondence: mainly accelero-
summation, which uses convolution-respecting integral transforms to ascend
from one critical Borel plane to the next, and the so-called display, a semi-
algebraic construct that supplements the genuine variable with a host of
pseudo-variables and encapsulates in highly convenient form all the informa-
tion about the resurgence pattern and Stokes constants of a given germ.

We also devote three sections to the (non-linear) iso-differential operators
which, on top of their surprising algebraic properties, are uniquely adapted
to germ composition, the analysis of deep convexity, and the description of
the universal asymptotics of very slow- or fast-growing germs.

Lastly, we reflect on the seemingly unsurmountable indeterminacy inher-
ent in the choice of transfinite exponential iterates, and on the implications of
that indeterminacy for the natural growth scale (- by which we mean, roughly



speaking, the ultimate extension' of our groups of non-oscillating germs -):
far from being the quintessential continuum that one would expect, the nat-
ural growth scale — on the formal as on the analysis side, in the large as well
as locally — displays a granular, almost fractal-like structure.?
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1 Program: exploring/completing the natu-
ral growth scale.

1.1 Groups of real germs. Successive extensions.

The present paper purports to investigate the various groups G®* of one-
dimensional real germ mappings (for technical convenience, near +oo rather
than +0) that can be obtained by starting from some elementary germ group
G and then imposing closure under the resolution of various types of composi-
tion equations or systems — mainly the following four types 7; of increasingly
general equations (where f denotes the unknown):

for=fr (p/q € Q) (fractional iteration)  (T7)
fofi=faof (conjugation) (T2)
id= f" o f,o---0 f™Mof (n; e N)  (positive composition) (Tz)
id=f"of,o---0f™of (n; € Z)  (general composition) (Tz)

As it happens, neither the general shape of the ultimate group extensions G
nor the sort of difficulties to arise along the way, significantly depend on the
initial group G, whether that be the group G,,, of all invertible real analytic
germs f:x — cox + Y, c, w7 "(co > 0) at +o0, or the group G :=< T, E >
generated by the unit shift 7" := z — 2z + 1 and the exponential E := exp, or
even the group G :=< T > generated by the sole unit shift and its twins (as
defined in §13)! All these constructions result in kindred groups G™*, each of
which can serve as a fairly satisfactory model for what we may call the natural
growth scale. On the other hand, complicating all these constructions but
also providing for excitement and surprises, two main difficulties will keep
arising: the omnipresence of divergence and the unavoidability of very fast-
growing germs.>

1.2 Non-oscillation and comparability.

We shall be working in a setting completely ‘free of oscillations’; in the sense
that our initial groups G as well as their extensions G** shall contain only
pair-wise comparable germs. The corresponding (strict) order will systemat-
ically be noted < :

{f <g} = {f(x) <g(x), for z large enough} (1.1)

3and of course of the very slow-growing reciprocal germs.



Moreover, the groups themselves and their extensions are going to be pair-
wise compatible, in the sense that they will generate over-groups:

G1,Gy — <Gy,Gy> — <GP G > < <Gy,Gy > (1.2)

in which the order < still holds.*

1.3 Divergence: resurgent or/and cohesive.

Divergence, in this context, can only be of two sorts, resurgent or cohesive,
and it has the saving grace of being always resummable: it complicates but
does not destroy the connexion between our germs f as geometric objects,
and their formal counterparts f as power series - or series of a far more
general nature®.

Resurgence, whether mono- or polycritical (i.e. forcing us to go through
one or several intermediary models to perform resummation), always results
in germs f that are real-analytic on some tapering complex neighbourhood
of ..., +oo[. In resurgence’s wake come the so-called alien derivations and,
dual to them, the pseudo-variables, which together generate a rich, flexible,
and very useful algebraic-analytic apparatus.

Cohesiveness®, on the other hand, is closely related with the frequent
occurrence of finitely (resp. transfinitely) iterated exponentials in the for-
mal objects f, which then assume the form of transseries (resp. ultraseries).
These generalised series f converge absolutely” on some strictly real neigh-
bourhood of +c0, and their sums f belong to a remarkable class of quasi-
analytic functions — the so-called ‘cohesive’ class COHES.

1.4 The ‘display’ and its many uses.

To each resurgent germ f there corresponds an object, noted Dpl f (‘display’
of f), that involves the variable proper, but also a huge number of so-called
pseudo-variables. The ‘display’ has many uses. Firstly, it carries all the local
information about f, including its Stokes contants or holomorphic invariants.
Secondly, it is the key to a complete understanding of the relation (upset by
resurgence) between the formal and the geometric side, i.e. between the

4As the sequel will make clear, this is only a small part of what we mean when saying
that the extensions do not depend too much on the initial groups.

Snamely, transseries or ultraseries — see below.

6cohesiveness stricto sensu, i.e. non-analytic cohesiveness.

Teither directly, if they carry only convergent power series, or indirectly, after the
divergent-resurgent power series they carry (tucked away within the exponential towers)
have been separately resummed.



(trans-)series f and the germs f. Thirdly, any relation R(f1,.y fn) = id
between germs immediately extends to an identity R(Dpl fi, ..., Dpl f,) = id
between their displays, unchanged in outward form but implying a much
stronger set of constraints. This is hugely useful for establishing all sorts of
transcendence and independence theorems.

1.5 Extensions: exponential or ultra-exponential.

We cannot have stability under 77, 75 (see §1.1), let alone under 73, 7y, with-
out introducing very fast or slow growing germs. There are actually two steps
here.

(i) In the first step, we are content with introducing finite iterates of the
exponential and logarithm:

E,=E" L,=L" (E:=exp, L:=1log) (1.3)

On the formal side, this leads to so-called transseries, and on the geometric
side to analysable germs.

(ii) The second step has us introduce even more exotic newcomers, namely the
transfinite iterates F, and L,, with an iteration order o running through the
semi-open transfinite interval [w, w”[, where w stands for the first inaccessible
ordinal. It is in fact enough to define the ultraexponentials £, = E,» and
their reciprocals, the ultralogarithms L, := L,n. They are required to verify

E=FE=exp ; En(x+1) =exp(Epi(x)) (1.4)
Liy:=L=log ; —1+L,(z)=L,1(log(x)) (1.5)

These relations, though not fully determining &, and L,,, yet suffice to rigidly
constrain their growth regimen.

Even on the formal side, this leads to serious complications. It forces us to
consider so-called wultraseries, which, unlike the more manageable transseries,
admit not one but several competing canonical forms (yet remain pairwise
comparable).

While transseries suffice for most purposes of non-oscillating asymptotics,
in particular in differential calculus, ultraseries cannot be avoided if we de-
mand closure under all composition equations 73, 7j.

1.6 Functional incarnation of transfinite arithmetics.

Having got hold of a system — any system — of ultraexponentials and ul-
tralogarithms, we easily define the corresponding general transfinite iterates
E, and L, (o < w”). We can then replace the slow-growing L, by suitable

b}



equivalence classes [L,] so defined as to remove the indeterminacy inherent
in the construction of the ultralogarithms. Next, we find that composition
naturally carries over to the classes [L,], giving rise to a semi-group [LL], with
transfinite iteration itself smoothly extending to [L]. As it turns out, this
double structure on [L] exactly reflects the semi-ring structure of the trans-
finite interval [1,w*[, with its non-commutative addition, non-commutative
multiplication, and semi-distributivity.®

1.7 Iso-differential operators and convexity.

We shall require a special class of operators, the so-called iso-differential
operators Dnl™:

Dot f o= [ [(Do™ f) with Do) f o= (=1)" 0™ log(1/f') ~ (1.6)

7

They are indexed by non-ordered sequences of positive integers {n} and span
a bialgebra ISO which is far better suited to germ composition and to the
description of fast/slow germs than the larger bialgebra DIFF spanned by
the ordinary differential operators D{"}:

D) fo= T (nse Ne) (1.7)

DIFF and ISO both possess non-cocommutative co-products, respectively o
and Y, that reflect their action on germ composition o. They also possess
(quite distinct) commutative products, respectively . and x. The bialgebra
IS0 owes its name to the fact that its operators® have a double homogeneous-
ness, measured by an ‘sodegree’ |n| := > n; simultaneously stable under o
and x.

It is also useful to embed ISO into a vaster bialgebra *ISO spanned by
operators Dé™ which are no longer strictly differential and whose indices
<n> are now ordered integer sequences. On *ISO, both product and co-
product assume much simpler expressions. Moreover, ISO and *ISO possess,
as co-algebras, positive cones ISO™ and ISO™ with bases Da™ and Da™
rich in unexpected algebraic-combinatorial properties and leading to a new
notion of iso-convezxity better adapted to germ compostion than ordinary
convexity. To sum up, we have these four structures:

ISO < 'SO ; ISO0T < HSO" (1.8)

8Thus, a logical-mathematical structure, which when first introduced met with fierce
resistance on account of its supposedly ethereal character, reveals itself to be isomorphic
to a very natural structure, firmly anchored in concrete, down-to-earth analysis.

9unlike those of DIFF.




1.8 Universal asymptotics of fast/slow germs.

With their natural adequation to germ composition, the iso-differential op-
erators enlarge the circle of operations and equations at our disposal for
carrying out group extensions G — G®*. But their main utility lies in this:
any iso-differential operator D acting on any ultra-slow germ L (say, on any
transfinite iterate of L) produces a germ D.L whose natural asymptotic ex-
pansion depends on D alone, not on £.1°

1.9 Stubborn indeterminacy in the realisation of ultra-
exponentials.

The system (1.4)-(1.5) determines each pair (L, &,) in terms of (£,,—1,E,-1),
but only up to pre- resp. post-composition by a 1-periodic germ P.!! That,
plus the fact, just mentioned, of all ultra slow/fast germs sharing a univer-
sal asymptotics, dashes all hope of selecting a privileged solution (L,,&,)
based purely on real-asymptotic criteria. On the other hand, the possibil-
ity, however remote, cannot be dismissed off hand that one of these systems
might possess extensions to the complex domain so regular or so distinctive
as to single it (that system) out as clearly ‘optimal’. To further complicate
the picture, we shall find that all the ‘reasonable’ candidates for the first
non-elementary pair (£1,&;)'? are extremely close to one another. So the
question is still open, and likely to remain so for quite a while.

1.10 Spirit of this paper: exploratory rather than sys-
tematic.

The present investigation is unapologetically exploratory in spirit and method.
We isolate each of the main difficulties, describe in detail the methods for
overcoming them (they involve a lot of fancy machinery), outline the unex-
pected features (there are quite a few of them), and illustrate everything on
a series of select examples. But we do not attempt an exhaustive descrip-
tion of all possible extensions G®** of all possible germ groups G, especially
where so doing would force us to grapple with the most general transseries or
ultraseries. One excuse for this caution or restraint is that we are handling
here an inflatable subject-matter and venturing into almost limitless terri-
tory, where exhaustive all too easily rhymes with ezhausting, and thorough

10Tt is only the trans-asymptotic part of D.L that depends on L.
' More precisely, a germ P that commutes with the unit shift 7.
2derived from the pair (Lo, &) = (L, E).



implies unreadable'.

But there is another reason, which is the danger of diminishing returns.
Indeed, the extensions G™* that we get by imposing full closure under 7;-74
(and under iso-differential equations for good measure), though huge, are also
in a sense sparsely populated. They do not seem, for the moment at least, to
contain all that many native germs of intrinsic interest, by which we mean
remarkable germs arising naturally and directly within the new framework, as
opposed to germs obtained by solving composition equations with external,
pre-extension data.

To put it bluntly: these extensions, though huge, have a wasteland qual-
ity about them. They exhibit low biodiversity, compared with, say, classical
complex analysis with its wealth of ‘special functions’. This applies in par-
ticular to the rarefied ultra-exponential range, which would be hardest and
most unrewarding to map out down to the last details and which for that
reason shall receive here only a sketchy treatment.

2 Tools: resurgence, acceleration, cohesive-
ness, analysability.

This section presents - mainly for perspective and to settle notations - a very
cursory survey of resurgence theory and its basic tools.

2.1 Resurgent functions. The three models.

Resurgent ‘functions’ live simultaneously in three models:

(i) in the formal model, as formal power series @(z) or series of a more general
type (here the tilda always stands for ‘formal’),

(ii) in the convolutive model, as analytic germs ¢((¢) defined near the origin 0,

of C, := C — {0}; admitting an endless analytic continuation (usually highly
ramified) laterally along any finite, finitely punctured broken line; possessing
at most a discrete configuration of singular points w; and growing at most
exponentially when ¢ goes to oo radially or ultimately radially,*

(iii) in the geometric model(s), as analytic germs ¢g(z) defined in certain
sectorial neighbourhoods |arg(z™') — 0| < € + 7/2 and admitting there $(2)

13Cf Voltaire: “The secret of being a bore is to tell everything”.
i e. following a broken line whose last segment is infinite.



as asymptotic series.
?(2) e ©vo(2) z-plane (multiplication)
Fig. 2.1 B\, Ly
?(0) ¢-plane (convolution)

Despite its auxiliary character, the convolutive model or ‘Borel plane’'® is

where most obstacles to resummation assume tangible form in the shape
of singular points w ultimately responsible for the divergence of @(z), and
where these obstacles can be overcome. The product there is the finite-path
convolution (2.1), unambiguously defined for small values of ¢, and then
extended in the large by analytic continuation:

¢
31+ 32)(C) = j 31(C1) * Ba(C—C1) dCy (2.1)

Together, the formal model (our starting point) and the geometric models
(our end goal) constitute the multiplicative models, where the product is
ordinary multiplication. We go from one model to the next via algebra
homomorphisms.

The first of these is the Borel transform B. It acts term-wise and turns
any power series @(z) with coefficient growth of type Gevrey 1 into a power
series ¢(¢) with non-zero radius of convergence

B : 27— (" T(0) (o ¢ —N) (2.2)
B : 2" 6™ (ne N, § = Dirac) (2.3)

B 3z2)=Yanz" = B =) a,¢""/(n—1)! (2.4)

The second transform is the Laplace transform L or, for distinctiveness, Ly:

Lo: 2(Q) — wo(Z):L 0095(06_“6% (arg ¢ = 0) (2.5)

Here are some elementary identities for future use:

32@1-@2'—%/0;1*952 (2 6)
B:03(2) » 0@(Q) = —CB(O)  (0:=d/da) (2.7)
Biip(z)=p(z+7) = B(C) = exp(— vw(o (2.8)
B:p(2) = (poh)(2) =1 (¢) = (B R)(C) =1 (CO)+) W™ (¢) - 00 (2.9)

This last identity (2.9) can be resorted to each time we must post—compose
something by h = id + h with h(z) = o(1).

15¢

plane’ is here something of a misnomer, since the functions $(¢) usually live on highly
ramified Riemann surfaces over the ‘Borel plane’, or over a finite sector | arg(¢ —6)| < 46,
or even over the positive real axis R*.



Minors and majors.

The convolution integral (2.1) makes sense only if each factor ¢;({) is radially
integrable at 0,. When this is not the case, the germs ¢(¢) — the so-called
minors — have to be supplemented by companion germs, the so-called majors,
which are defined only modulo the space REG of regular germs at 0,. They
relate to the minors according to the formula:

B(0) = —— (Be™0) — Be ™)) (C near 0,) (2.10)

27

Magjor convolution (compatible with minor convolution but of wider scope)
is given by the rule:

B v 3O = — | &) Ealc—c) da (2.11)

N 211 Z(¢u)

)

with I(C,u)=[%{+e_2u,%(+e+?u] 0<(<u<1l)

The definition makes good sense, since the small path Z((, u) keeps clear of
0. and since, modulo REG, the integral on the left-hand side of (2.11) does
not depend on the choice of w.

2.2 Convolution preserving averages.

Whenever the axis arg ( = 6 of Laplace integration carries singularities, the
multivalued integrand @({) must be replaced by a univalued average p @((),
so that the resummation scheme of Fig. 2.1 becomes:

~ B~ ~ c

Pz) — B > wp(Q) = ¢(2) (2.12)
Such an average i : ¢ — pu@ is defined via its weights ()

~ €1 yeeey €ry o €1 » er .
pB(Q) = 3wl SPEE) if w<C<wrn (2.13)
eie{+,—}
where wy,ws ... are the successive singular points on arg( = # and where
Pl ::::Wrr)(g“) denotes the determination of $(¢) on the interval |w,,w, 1]
that corresponds to the right (resp. left) circumvention of w; if ¢ = +
(resp. € = —) starting from the origin. Crucially, the average must respect
convolution
W(B152) = (ud1) * (132) (first » local , second » global) (2.14)

Although the above requirement imposes stringent algebraic constraints on
the weights ;(<), there is still a whole zoo of such averages. Let us mention
only the most useful.

10



The trivial lateral averages.

The right average p, and left average p— involve only one determination:

;f;l """ wr) _ 1 (resp.0) if e =---=¢€ =% (resp.otherwise)  (2.15)

These elementary ‘averages’ have simplicity going for them, but they fail to
respect realness: when 6 = 0 and @(z) is real, . (¢) and p_ $(¢) are not,
except in the trivial case when ¢(() is regular and uniform on R*.

The ‘standard’ average.

Its weights, solely dependent on the ¢;’s, are given by the direct formula:

(a-ey  Tp+3)T+3)  (2p)!(29)
pren e er) = T = et ; (2.16)
Fr+ 1)L 0GE) 4raplet(p+ q)!
with pi=>1,q:=>1 (p+qg=r) (2.17)
€=+ € =—
The ‘organic’ average.
Its weights are given by the inductive formula:
[ T €pr €1 seeey €pr— 1 r—
Pl i ) S (L e e T (2.18)
- 1
with ,u(Jl) :=p(w1) = — (2.19)

The ‘standard’ and ‘organic’ averages both respect convolution and realness.
The simpler standard average is sufficient for most intents and purposes, but
in some (fairly rare) cases one must resort to the organic average (or to any
one of a host of so-called well-behaved averages) in order to get a function
1.9(C) that does not grow faster than the lateral determinations p.p(().

2.3 Alien derivations.

To capture the always important, and often remarkable, behaviour of ¢(()
near'® its singular points w, we require a system of linear operators A, car-
rying indices w € C,, behaving a la Leibniz with respect to convolution

A~

Ay (Pr+P2) = (A P1) * P2 + P1+ (Ay P2) (2.20)

6or, due to multivaluedness, above w.

11



and yielding 0 whenever the test function ¢(¢) has no singularities above w.
The action of these A-operators, known as alien derivations, is given!” by a
formula reminiscent of (2.13):

AuB(Q)i= ) o

=1

€1 ey ep )

()’5(511 o ffr)(c +w) (wr i=w) (2.21)

with the weights 6(o) subject to strong algebraic constraints in order to
ensure (2.20). Here are the main systems of alien derivations:

The ‘standard’ alien derivations.

Their weights depend only on the sign sequence (e, ..., €._1):
(1 g 1<i<r1 1<i<r—1
(p+q+1)! G; Z_]_

The ‘organic’ alien derivations.

Their weights are given by:

) (Werl - wp)/(Q wr‘) if (617 ey 67‘) = ((+)p7 (_)q7 67‘)
wrl = { (W1 = wg)/2wr) if (€1, 6) = (=), (+)P, &)

0 otherwise

Alien derivations in the multiplicative models.

For use in the multiplicative models, we set :

A, = B1A,B  (formal model) (2.23)

A, = Lo A, Lyt (geometric models) (2.24)

A, = e WEA, (formal and geometric models) (2.25)
The Leibniz rule now looks even more Leibnizian : '8

Ay (p1.-92) = (Auer)-p2+ 1.(AL p2) (z-plane) (2.26)

A, (p1.p2) = (AL e1).p2 + p1.(Ay p2) (z-plane) (2.27)

Thanks to their exponential factor e “*, the ‘bold-face’ or ‘invariant’ op-
erators A, have the great advantage of commuting with the ordinary z-
differentiation 0 := 0,

A, 0] = —wA, — [A,,0] = ~wA, — [A,,] =0 (2.28)

first for small ¢ on the axis arg ( = argw, then in the large by analytic continuation.
18We drop the tilda or the polarisation angle 6.
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and of behaving optimally simply (‘invariantly’) under post-composition by
an identity tangent g:

A,(fog)=(Auf)og+(0f)og.(Ag) if g(z)~=z (2.29)

2.4 Pseudovariables and displays.
Pseudovariables Z% = Z“1“r,

The notion of pseudovariable is dual to that of alien derivation (of the
bold-face or invariant sort). Pseudovarialbles carry as upper indices se-
quences w := (wy,...,w,) of arbitrary length r. Multiplication for them
reduces to sequence shuffling, while differentiation (ordinary or alien) and
post-composition obey the predictable rules:

7.7 = Y Z¥ (w € shuffle(w’, w")) (2.30)
0, Z“ o = (0 (2.31)
Zw2 ..... Wy y —
A, T = i o=y (2.32)
0 if wo F wy
Z°o0qg = Z¢ if g(z) =z+o0(2) (2.33)

The display.
The display is best thought of as some sort of ‘alien Taylor expansion’:

Dply := ¢+ ZZ Y/ A VR VR (2.34)

T Wy

It has a double character — both local (via its z-dependence) and global (via
its Z-dependence). It encodes, in ultra-compact and user-friendly form, a
huge amount of information about the function ¢({), describing as it does
the behaviour of ¢(¢) at each w and on each of its various Riemann sheets.
What is more, any relation R between resurgent functions automatically
extends to their displays:

{R(g1,...,05) =0} — {R(Dpley,...,Dply,) =0} (2.35)

which is fantastically helpful for establishing transcendence or independence
results.

13



2.5 Multicritical resurgence and accelero-summation.

When the full formal solution of a local analytic equation or system (say, a
singular ODE) involves, alongside the familiar power series of 27!, a mixture
of several non comparable exponential blocks, for instance blocks of the form
u; €79 % with

21 0= h(2) < 29 = ho(2) < - < 2z, = he(2) (e.g. zj = 2% with0 < o 1)

one is usually confronted with multi-critical resurgence. Concretely, this
means that, instead of applying the simple, mono-critical resummation scheme
(2.12), one must go successively through a number of distinct Borel planes
¢; — as many as there are distinct ‘critical times’ z;. The intermediary func-
tions @;((;) generically possess faster than exponential growth at co and each
transition @;((;) — P;1(jn) is via a so-called acceleration transform C; jy.
These two complications aside, the situation in each (j;-plane remains much
the same as in the mono-critical case: on each intermediary function @;(¢;)
there act specific alien derivations, generating their own resurgence equations
and contributing their own Stokes constants. The overall scheme reads:

P1(z1) <« §(2) p(z) —  or(z)
LB £1 Fig.2.2
9/51 (Cl) - 9/52((2) — @r—l(Cr—l) - @r(Cr)
61,2 CQ 3 Crfl,r

)

2.6 Acceleration and deceleration transforms.

A single pair Cr, CF of integral kernels does service for the four combinations
of minor/major, ac/decelerations, but with a characteristic diagonal ‘flip”:

acceleration deceleration
Fig.2.3 [ minor Cr cr ] (21 <2y, 21 = F(22)>
magjor or Cr

These kernels depend on the germ F' that expresses the slower ‘time’ z; in
terms of the faster one z,.

1 Cc+100
Cr(C,G1) == 5= e?CTHG day with 2 = F(2) (2.36)
2mi c—100
+00
CH (G, G) = J em P2 TAC do with 2 = F(z) and 1 <u  (2.37)
+u

14



Acceleration from ¢; to (; with 23 = F(29) and 1 < F(z) < x:

+00

Pa2(C2) = JO Cr(Ge, G1) P1(G1) dG (2.38)
c+100

B = o= | Ceon@ (2.39)

Deceleration from (s to ¢; with z; = F(z3) and 1 < F(z) < z:

02
GRG) = 3= | GRAGICT(G) e (> 0) (240)
GeG) = . G2 $2(C2) Cr(C2; G1) d (2.41)
+

Here again, we notice a flip of finite/infinite, path/loop integrals. In-
tegration in (2.38) is along an infinite path, in (2.41) along a finite one.
Integration in (2.39) is along an infinite loop that encircles 0 anticlockwise,
in (2.40) along a finite loop from 0 to 0 that encircles (; > 0 anticlockwise.

But the basic, really useful transform is of course minor acceleration
(2.38), and the crucial point to note here is that the lower kernel Cr((2, (1)
has exactly the right faster-than-exponential rate of decrease (as (; — +0)
to make the acceleration integral (2.38) convergent for small enough values
of ¢, > 0. This defines a germ @5((2) which then must, and can, be continued
in the large, over the whole of R*.

2.7 Pseudo-acceleration and -deceleration transforms.

Here, the change is between two equivalent ‘times’, denoted for distinction
by 21 and z; with 2; = 21+ F(2;_) and 1 < F(x) < z as above.!Y The new
transforms serve a totally different purpose that will be made clear in §2.8,
but their integral kernels Cjg,p, C**F are closely related to the old ones:

Cia+r(G_,G) = Cp(G_— G, G) (2.42)
C" () = OG- G.G) (2.43)

In keeping with the more elementary character of the new transforms, all
integration paths/loops now become finite.
Pseudodeceleration from (; to (;_ with 27 = (id+F)(z1_):

C1
ae) = Cuasr(.6) B1(6) d (2.44)
PG = 5o | et @B (2.45)
T Jo,

9The case when z;_ and z; are too close, i.e. when F(z) = o(1), is uninteresting.
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Pseudoacceleration from ¢;_ to 3 with z; = (id+F)(z_):

02 '
QR = 5] G BLG)OTTG GG (2.46)
G@i(G) = . G- @1 (G) Ciavr(G, G)dG (2.47)

2.8 Cohesiveness and the Regularity Scale.

Each intermediary step ©;((;) — @i+1((i+1) of the accelero-summation scheme
(see Fig. 2.2) is actually three steps in one:

Substep 1. If the accelerand @;((;) is ramified over R*, it must be averaged
to 1 ;((;) relative to some convolution-respecting average .

Substep 2. We calculate the acceleration integral (2.38), but with 1.;((;) in
place of $;(¢;). The integral converges for (;,; small enough and > 0.

Substep 3. To turn the new germ @;,1((;+1) into a global function over
R*, we must continue it forward along R™ and circumuvent every intervening
singularity w to the right and to the left.

Obviously, the two operations in substep 3, namely continuation and
circumuention of singularities, require some form of quasi-analyticity. Most
of the time there is no problem, because most of the time we have analyticity
— but not always. This is where cohesiveness comes in and saves the day.

Cohesive functions.

We define the class COHES of cohesive functions by first extending the clas-
sical Denjoy classes “DEN to all transfinite orders @ < w* and then going to
the limit: 2°

“DEN

{f 5 1] < cop(erp)" (loghi(n) "} (2.48)
COHES = Ugew “DEN (2.49)

Like each *DEN, the limit COHES is stable under +, x, o, ¢ and most other
operations. Crucially, it is also quasi-analytic: two cohesive functions defined
on a real interval J coincide as soon they coincide on a subinterval I < J.

20Despite the latitude in the analytic incarnation of the transfinite iterates log,, ., (see
§8), each class “DEN is unambiguously defined: the indeterminacy is absorbed by the
constant ¢y ¢ in (2.48).
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Cohesive continuation.

Any cohesive function given on an interval |0,([ (viewed for the circum-
stance as part of R* in some Borel plane) can be constructively continued to
its maximal interval of cohesiveness |0, ([ by a suitably weak deceleration
followed by the reverse weak acceleration. See [E6], §3.11 or [E8|, §9a, pp
93-94.

Cohesive singularities and their circumvention.

In some contexts like the Dulac problem, accelero-summation may produce
strictly cohesive germs on RT in some Borel planes?' with any number of
cohesive singularities there. To proceed with accelero-summation, the germs
in question have to be cohesively continued (multivaluedly so) up to +co,
which means bypassing all intervening singularities to the right and to the
left, while being prohibited from leaving the real axis! This sounds an im-
possibility, but is not. See [E6], §3.12 or [ES8], §9b, pp 94-95.

2.8 Time changes and the Great Divide.

As pointed out, the really useful transforms are, paradoxically, the accelera-
tions and pseudo-decelerations. Indeed, despite going ‘in opposite directions’,
both share a common regularising effect, albeit of crucially different force.
To adequately describe that common effect together with that difference in
regularising potency, we must distinguish three sub-classes for each :

strong accelerations log z1/1og zo — 0 e.g. z1 = logz
medium accelerations  logzi/logzy — a€]0,1] e.g. 23 = (22)°

z2
log z2

weak accelerations log z1/log zo — 1 e.g 2 =

Z1_
log z1_

medium pseudodeceler. logzi/log(z1_—2z1) > a e.g. 2z =2z1_+(z_)"

strong pseudodeceler.  log z/log(z1_—z1) = 1 eg. z1=2z_+

weak pseudodeceler. logz1/log(z1_—2z1) >0 eg. 2z

21 +log 2y

Whatever the nature of the accelerand ¢; (provided it has the proper accel-
erable growth at infinity), the corresponding accelerate @, is automatically
guaranteed a minimum of quasi-analytic smoothness — the weaker the acce-
laration, the less the smoothness.

(i) Strong accelerates are always analytic in a spiralling neighbourhood of 0,

21This is never the case, though, with composition equations, because these, as we shall
see, are either non-polarising or weakly polarising.
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with infinite aperture.

(il) Medium accelerates are always analytic in a neighbourhood of 0, with at
least finite aperture.

(iii) Weak accelerates are always cohesive in a real right-neighbourhood |0, ...[
of 0,, but may lack an extension to the complex domain.

With pseudo-decelerations, the picture is the same, but on the other
side of the great cohesive/non-cohesive divide: whatever the nature of the
pseudo-decelerand @y, one can always, by suitably strenghtening the pseudo-
deceleration, ensure in the pseudo-decelerate @;  any given degree of smooth-
ness, short of cohesive.

Another difference is this: accelerations completely upset the singularity
landscape (they remove the old singular points and may create new ones)
whereas pseudo-decelerations keep all singular points w in place and merely
smoothen the singularities there.

Smooth accelero-summation.

On the practical side, we can take advantage of the regularising effect of
pseudo-decelerations to replace the accelero-summation scheme Fig.2.2 by
an improved scheme

$1 (1) < P(2) ©(2) — or(zr_)
B L1
P1_(Gl) = P2 (G) — = Gey (Cony) — or(Gr)
Ci_o Cir)_,r_

where, thanks to the selection of suitably slow times z;_ ~ z; in each critical
time class [2;], we ensure the smoothness of the minors ¢;_ and all their alien
derivatives Awr ..... Awl-@, (wr € RT) and, by the same token, render the
corresponding majors redundant.

2.10 Transseries and transmonomials.

Three co-dependent notions are relevant here: transmonomials, prime or
composite, and transseries. Being formal objects, they all bear tildas, and
since, in case of convergence or re-summability, they represent real germs on
]..., +w[, their variable will be noted =.

(a) The prime transmonomials P cannot be factored into simpler elements,
and must be viewed as being large.
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(b) The composite transmonomials M can be uniquely factored into a well-
ordered product of prime transmonomials:

M(z) = (Po(x))* [ ] (P(x))" (a, € R*, ap € R) (2.50)

ﬁo>ﬁ’

M is said to be large (resp. small) if its leading factor P, is raised to a
positive (resp. negative) power ag .

(¢) The transseries S can be uniquely expanded as well-ordered sums of
transmonomials:

~ ~

S(z) = agy, Mo(z) + Z ag; M(x) (az, €R*apeR)  (2.51)
J’\\jo>],\7

S is said to be large (resp. small) if its leading term M, is itself large (resp.
small), and it is positive (resp. mnegative) if agz; is > 0 (resp. 0 < 0). Each
transseries splits into three part S(z) = S*(z) + s + S~ () with so € R and
with ST (x) resp. S™(x) carrying only large resp. small transmonomials.

We must first define, inductively on n, the logarithm-free objects of expo-
nential depth n.
ag) The only log-free prime transmonomial of ezp-depth 0 is x.

(
(bg) The only log-free transmonomials of exp-depth 0 are the z%(a € R*).
(co) All log-free transseries of exp-depth 0 are well-ordered series of the form:

S(x) = g™+ Y. agz°  (09,0€R, 1) (2.52)

(a,) Each log-free prime transmonomial P of exp-depth n can be written
uniquely as

~

P(z) = M@ with M a large transmonomial of ezp-depth n—1.  (2.53)

(b,) Each log-free transmonomial M of exp-depth n can be written uniquely
either as a well-ordered product or, what amounts to the same, as the expo-
nential of a purely large transseries multiplied by an ordinary power :

M(z) = (Py(z))"? H (P(z))* = 5" (@) g (H well-ordered)  (2.54)

]5()>15

with a leading prime transmonomial 150 of exp-depth n and other factors P
of exp-height < n, or with a purely large transseries St of exp-height n—1.
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(¢n) Each log-free transseries S of exp-depth n can be uniquely expanded as
a well-ordered sum of transmonomials M of exp-depth < n, one of which at

least?? must be exactly of exp-depth n
S(z) = agy, Mo(z) + Z agy M(z) (Z well-ordered)  (2.55)
M0>M

Let TRANS* be the space of all log-free transseries and let L,, be the n'®
iterate of log. Taking advantage of the natural embedding;:

TRANS* o L, © TRANS* o L+, (2.56)
we can define the trialgebra TRANS of real transseries:
TRANS := | | TRANS* o L, (2.57)
o<<n

to which the operations +, x,d,0 extend without difficulty.® Since these
four operations actually reduce to three,?* we can think of TRANS as a
trialgebra.

Canonical form of a transseries.

The composition F , G — FoG does not yield FoG directly in canonical form,
but we get there by expelling the small transmonomials from all exponentials
and all logarithms (simple or iterated) by repeated use of the identities:

exp G(z) = Gt @ratGT(@) _ ca o0 (@) (1+ Z M) (2.58)
log(G(z)) = log (b el @) (1+ f_(x)) —logh+I'*(x) + Z(—l)”_l—

Transseries in real-ordered form.

Any transseries can be uniquely written as a well-ordered mock power series

~ ~ ~ ~

T(x) = Too(2) (P(2)) ™ + ) To(w) (P(2))" (00,0 €R) (2.59)

Zeither the first one (if it is large) or all the last ones from a certain rank on (if they
are small).

23as long as they make formal sense: thus SoT is defined only is the second factor is T
is large and positive, i.e. starts with a large transmonomial M, and a positive coefficient
azy, in front of it.

24The composition o is essentially expressible in terms of x and 0: see (2.9).
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Here P = M denotes_the largest prime transmonom1al25 present in T , and

the mock coefficients T, in front of the powers P~ are ‘relatively negligible’
transseries, i.e. transseries containing only prime transmonomials < P.

(i) P(x) is said to be the ruling prime transmonomial of the transseries T'(z),
or its_ruler for short.

(ii) M (z) := log P(z), as a well-defined, usually composite (i.e. non-prime)
transmonomial, is said to be the ruling time of T (x).

(iii) The real-indexed transseries T, (z) in (2.59) are said to be the pseudo-
coefficients of T (x).

Derivations on transseries.

Besides ordinary total differentiation ¢ (with respect to the variable x), par-
tial differentiation dp with respect to prime transmonomials P defines as
many independent formal derivations on the algebras of transseries of a given
logarithmic depth (with predictable rules governing the behaviour of dp un-
der post-composition). Then, on the analysable transseries, we also have the
huge host of alien derivations A, for w of the form ¢ M with any scalar ¢
and any (not necessarily prime) transmonomial M. Despite the similarity
in their indexation, the two systems of derivations have of course nothing in
common.

2.11 Analysable germs. The complexity hierarchy.

Most transseries S are fated to remain formal, but there is an important
subclass that can be re-summed to analytic germs S on |..., +o0[. The cor-
responding sums deserve to be known as analysable germs, since they can
be completely formalised, i.e. reduced bi-constructively and without loss of
information to a formal object S and so, ultimately, to a set of real coeffi-
cients arranged in a tree-like structure. The correspondance S <> S is indeed
constructive in both directions: N
(i) as accelero-synthesis in the direction S — S
(ii) as decelero-analysis in the direction S — 3

However, even for re-summable transseries, one must distinguish at least
seven degrees in the severity of the divergence liable to occur, each degree
bringing its own complications and calling for specific (but, thank Goodness,
mutually compatible) remedies. Here is the list:
C1 Direct convergence.

25].e. present in a least one of the transmonomials M of T'’s canonical expansion of type

(2.55). There always exist one such largest P.
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Cy Graded convergence.
Cs Seriable (or compensable) divergence.
C4 Resurgent divergence of non-polarising type.
Cs Resurgent divergence of polarising type.
Ce Infinite criticity.
C; Infinite exponential depth.

Pending the case by case discussion to be given in §3, here are a few
general remarks.

Unlike decelero-analysis, which, ‘being of the nature of destruction’, is
a relatively straightforward affair, accelero-synthesis must of necessity be a
gradual, arduous process, in the course of which more and more ‘parts’ of S
shed their formal character (‘they drop their tilda’) and turn into functions
living in various Borel planes?®( ‘they acquire a hat’), to finally contribute to
the total germ S (‘they drop their hat”). The process, roughly, goes like this:
(i) we ﬁnd and order, from smaller to larger, all the prime transmonomials
]51- = eMi present or ‘nested’ in S in whatever position, at whatever expo-
nential height,
(11) for each such P; = e we isolate all transseries T, present or nested in
S (canonically expanded) and admitting D as ruling prime transmonomial,
(iii) we write each such 7" in the real-ordered form (2.59) and we realise it in
a Borel plane or Borel axis & conjugate to some ‘time’ x; that is equivalent
(~) to the ruling time M;(z) and slow enough to ensure smoothness.?” This
makes perfect sense since at this stage not only ]\Z(x) but all the pseudo-
coefficients T, (z) of T have already be de-formalised (turned into bona fide
functions) in the previous steps of accelero-synthesis,
(iv) we then proceed to the next Borel plane or axis i conjugate to
Tit1 ~ M1 () by accelerating each fm(fz) to fo,iﬂ(fiﬂ),
(v) by the time we reach the last Borel plane or Borel axis s, the whole of
§(m) has been de-formalised and we can apply Laplace to get from §1ast(§last)
t0 Slast (T1ast) and from there to S(x).

The extra complications arising from infinite criticity or infinite exponen-
tial depth, to be discussed in §3, do not radically alter the overall picture.

2.12 Multicritical displays.

With each (mono- or poly-critical) resurgent transseries S we associate an
extremely useful object: the display, noted Dpl.S on the formal side and

26sometimes reduced to ‘Borel axes’ RT, often with ramification there.

27See §2.8 supra.
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(Dpl.S)- on the geometric side. The display combines two things: the so-
called pseudo-variables Z= (a notion dual to that of alien derivation) and
the alien derivatives, of all orders and relative to all critical times z;, of our

S resp. S. The definition reads:

DpLS = S+ 2 27" A AL, S (2.60)
1<r wi,...,
| Ar
(DpL.S); = Sr+ )] Z Z7 % (Ag, ... Ay, S)r (2.61)
1<r wi,.

Here A, denotes accelero-summation S S; relative to some multipo-
larisation 7, which in each critical Borel plane prescribes an integration axis
arg (; = 0; and a convolution average f;.

The main novelty, however, is this: unlike the indices w; € C, of the
monocritical display (2.34), the new indices are of the form w; := w; M;, with
w; still in C, but followed by a transmonomial factor M; that characterises
the critical time class.

In our all-real context, we often restrict the sums (2.60)-(2.61) to the
sole indices w; of positive w;-part, in which case we get the lesser or all-real
display dpl, with fixed polarisation angles 6; = 0 and only the choice of the
averages f; left to our discretion.

As the definitions make clear, the display carries — displays, as it were
— the complete collection of our object’s Stokes constants.?® In that sense,
it contains, in ultra compact and algebraically operative form, “everything
there is to know” about the object. In fact, it is only at the level of displays
that the correspondance formal <> geometric reaches perfection, as becomes
obvious on the following trans-polarisation formulae:

) 0. .0
AT/E 7'/77-.»/47- ’LUZth T:< b , > ) T/:<} f) (262)
By s TNTA

Py L7 Z Z=o I P with PE_eR - (2.63)
or, in the short-hand of mould notations:
Prir L* = 2° xPL,.  with P, symmetral

These formulae say, in essence, that it is enough to know one polarised sum
to know all the others. Indeed, they show how to derive any (Dpl.S), from

28also known, depending on the viewpoint, as resurgence coefficients or holomorphic
mvariants.
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any given (Dpl.S), by subjecting the latter to the purely formal operation
Pr.+ which acts on the sole pseudo-variables via universal constants P:_,ﬂ_
that depend only on the trans-polarisation pair (7/,7) and nothing else.?
Another crucial property is that any relation between resurgent objects
automatically carries over to identical relations between their displays:

(R(S,...,58,) =0} = {R(dpl.S,,...,dpl.S,) = R(Dpl.Sy,..., Dpl.S,) = 0}

This in _turn implies a huge number of new constraints on the coefficients
of the §;, a fact that can be very helpful for proving transcendence and
independence results

2.13 Ultraseries and ultramonomials.

There exist composition equations, beginning with the simpler types 7T, 7>
(iteration and conjugation), that cannot be solved within the framework of
transseries - even if we allow infinite exponential depth. To deal with such
situations and achieve the dream goal of full compositional closure®, it is
necessary, but also sufficient, to introduce a coherent system of transfinite
iterates of E and L, with iteration orders « less than w®. Unfortunately, the
formal construction, though unique, admits many distinct analytic realisa-
tions, with no clear privileged choice (but once that choice — any choice — is
made, the correspondance S <> S holds without restriction). This complica-
tion, strictly speaking, affects only the analysis side. But even on the formal
side, the ultra-exponentials lead to the replacement of our transseries by less
tractable wultrasseries, made up of ultramonomials with no straightforward
decomposition into prime factors. Nonetheless, the new objects — ultraseries
and ultramonomials — remain pairwise comparable, on the formal as on the
analysis side; non-oscillation is preserved; and the order < survives.

2.14 Main germ groups and main extensions.

All our germ groups G and extensions G*™*' shall be defined by some com-
bination of three things: < generators|extensors|restrictors >. It usually
matters, of course, whether one applies a given extensor before or after a
given restrictor (though one tends to privilege those restrictions that are
stable under most extensions) and so one should always specify that order
within the brackets < ..|..|.. >.

29This also applies to the lesser display dpl.
30not just closure under composition, which is no big deal, but closure under the solving
of all equations or systems that involve the composition o.
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Our main generators are going to be:
(gen;) The unit shift T
(gensy) The group GenT of all real shifts T, : x — z + 0.
(gens) The group GenP of all real power functions P, : x — z°.
(gen,) The exponential £ := exp.
(gens) The ultra-exponentials &, = En := exp®” (n € N)
(geng) The composition group CvgPow of convergent real power series of the
form x — a, z (1 4+ Y a,z™") with a, > 0.
(gen,) The composition group CvgTrans of gradedly-convergent transseries
with a large positive leading term.3!
(geng) The composition group CugUltra of gradedly-convergent ultraseries
with a large positive leading term.

Our extensors or enlargers will consist in demanding closure under the
solving of a given type of composition equations or systems, mainly:
exty) Iteration equations (see 7y in §1.1)..
exty) Conjugation equations (see 7 in §1.1)..
exts) Positive composition equations (see T3 in §1.1).
exty) General composition equations (see 7y in §1.1).
(exts) General composition systems.
We shall also pay special attention to an important subclass, the so-called
twins equations or siblings systems:
(exte) W(f,g) = id ({f, g}: unknown ‘twins’).
(ext7) Wi(f1, oo fr) = . = Wi (f1, ., fr) = id  ({fi}: unknown ‘siblings’).
Twins equations or siblings systems contain only unknowns and seem under-
determined? but in fact, in the most interesting cases,® they exhibit spo-
radicity,®* with all the fascination that attaches to sporadic objects.

Lasty, our main restrictors or qualifiers will be:
(rst1) identity-tangency (i.e f(z) ~ x + o(x)).
(rste) shift-tangency (i.e f(x) ~ x4+ o + o(1)).
(rst3) O-exponentiality (i.e. lim.stat.L, o f o E, = id as n — +0).
(rsty) finite formal criticity (finitely many distinct prime transsmonomials).
(rsts) finite analytic criticity (finitely many critical times).
(rste)
(rstr)
(rsts)

(
(
(
(

rstg) non-polarisation (no singularities on any of the real Borel axes).
rst7) finite exponential depth.
rstg) analyticity on |...,+0o[ (as opposed to mere cohesiveness).

3lie. a leading term of the form apz, Mo(z), ans, > 0.

32their non-trivial solutions, when they exist at all, are determined only up to a common
conjugation.

33e.g. when one looks for identity-tangent solutions.

34in the sense that very few such equations or systems possess non-trivial solutions.
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3 Groups of analysable germs. Complexity
hierarchy.

3.1 Degrees of divergence. Rising complexity.

We have a neat hierarchy with seven degrees C; of rising complexity. Each de-
gree is defined inductively, relative to the prime transmonomials P(x) present
in a given transseries and taken in increasing order. Each degree reflects the
properties of the mock power series T'(z) of (2.59) ruled by these P(x) and
of their mock coefficients T, (x). We can legitimately drop the tildas,*® since
at that stage of the inductive re-summation the T,(x) (and of course P(z)
itself) have already be re-summed.

C; Direct convergence.

There is a common abscissa of convergence xy < +00 such that all mock
power series T'(x) converge uniformly on [zg + €, +0].

Cy Graded convergence.

Each mock power series f(:v) has its own abscissa x4 < +00 of absolute
convergence. These z# may not be bounded, but there is a common xy < +0o0

such that all T'(z) can be continued (analytically or cohesively) to the whole
interval |x¢, +00].

C3 Seriable divergence.

Some of the mock power series T'(z) ruled by P(z) = M@ may have no

finite convergence abscissae, but are simultaneously Borel summable relative
(i) to any time x, equivalent to the ruling time M (x) but slow enough in the
class [M(z)],

(ii) to any time x,, faster than M (x), e.g. all z, = (P(x))*(a > 0),

(iii) with sums independent of the choice of z, or ..

Given this huge latitude, one cannot speak of ‘critical time classes’, nor are
there any resurgence phenomena or Stokes constants attached to this very
peculiar, ‘soft” type of divergence.

35on the T, () and on P(z), though not yet on T'(x).
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C4 Non-polarising resurgent divergence.

Some at least of the mock power series T(m) exhibit effective resurgence,
mono- or even polycritical, usually of critical time(s) x4 := P(z) or x4 1=
(P(x))*, but without singular points on the main axis R* of the correspond-
ing Borel plane(s) {z or &7,

Cs Polarising resurgent divergence.

Same as above, but with singular points on the axes Rt of at least some
Borel planes. When finitely (resp. infinitely) many alien derivations A,
with w > 0 act effectively on (at least) one and the same mock power series,
we speak of weakly (resp. strongly) polarising resurgence.

Cs Infinite criticity.

The number of critical time classes is not bounded.

C; Infinite exponential depth.

There is no bound on the height of the exponential towers present in the
transseries. More precisely, the transseries carries prime transmonomials P,
of unbounded exponentially: lim sup expo(P) = +c0.

Enlargement by conjugation, continuous iteration, extraction.

As we shall see:

(i) Composition and reciprocation (i.e. taking the composition inverse) re-
spect each of the above seven degrees.

(ii) Conjugation or continuous iteration of germs of zero-exponentiality often
generates resurgence, but always of non-polarising type.

(iii) ‘Extraction’ (i.e. the solving of composition equations or systems), when
all the factors g; have zero-exponentiality, often generates resurgence, some-
times even of the weakly (but never strongly) polarising type.

(iv) Conjugation of germs of identical but non-zero exponentiality, or more
generally ‘extraction’, whenever possible in the transserial framework,?” gener-
ically introduces infinite exponential depth in the formal solutions and re-
places analyticity by cohesiveness in the germ solutions.

36Saying that infinitely many A, with w > 0 act effectively on $(z) is much stronger
than saying that ¢(¢) has infinitely many singular points over R™ (relative to forward
analytic continuation).

37That is the case iff after the substitution of E,, for f and E,, for g; (n; := expo(g;))
the composition equation has a solution n € Z or is trivially verified for all n.
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(v) We do not know at the moment of any composition equation or system
that would generate seriable divergence in their solutions.®®

3.2 Groups of convergent analysable germs.
Convergent transseries: direct convergence.

Their stability under composition and reciprocation is elementary. This ap-
plies is particular to the groups < GenT, E > and < PowSer, ' > generated
by the exponential and all real shifts resp. all real analytic map germs at
+00. Both groups already contain transseries which, once written in canon-
ical form, are of a very general form. In particular, the first of these two
groups is dense in the second, whether in the natural topology of formal or
in that of convergent transseries.

Convergent transseries: graded convergence.

Elementary transseries of type
Y (@t o)t =Y e Y (o)t (0<o 1) (3.1)
osn osn 0<k

present us with the simplest instance of graded convergence: no uniform
convergence abscissa xg, yet no ambiguity at all as to the proper sum.

To illustrate how much graded convergence differs from true divergence,
let us consider two similar looking difference equations:

Al(z) — Az +1) =a1(z) = 0<a<l) (3.2)
Ag(z) — Ag(z + 1) = ag(x) =e ™ 0<a<l)
with their transserial solutions expanded in canonical form:
Ay(z) = e 2?Si(x)  with f=1-a>0
A2(x) _ efx“'a Z e (1+a)z® Cn(LE)

osn

Here, S (z) is a formal, divergent and resurgent power series (in =% and z7%)
implicitely defined as the constant-free solution of the difference equation

Si(z) — Ry(z) Sy(z + 1) =27% with Ry(z):= (1 +z7H)Pe @D (36)

38but the possibility cannot be completely ruled out in the case of highly alternate
composition equations or systems, since their classification in a way runs parallel to that
of differential equations or systems, and these sometimes (though extremely rarely) do
generate seriable divergence.
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with Ry (z) viewed as convergent series in C[[z~1, x77]].
On the other hand, the coefficients ¢,(z) in the expansion of A, are
convergent power series explicitely given by

cn(z) = exp(— (7)), Y(x) = (z + )T =2 —n (14 a)2® (3.7)

with 7, (z) and ¢,(z) viewed as series of decreasing powers of x. Their do-
mains of convergence |z| > n, however, decrease as n increases, so that we
have graded rather than direct convergence in the transseries As(x)

A(z) e 2P Cl[z7!, 2] (B:=1-a>0) (3.8)
As(z) € e Cl[e 0= 7 0] (B:=1-a>0) (3.9)

However, it would be confusing to lump A; and A, into the same ‘divergent’
category: A; exhibits true resurgence, possesses genuine invariants, and can
boast a non-trivial display, whereas A, falls short on all three counts.

3.3 Groups of seriable analysable germs.

Let ¥ denote the multiplicative convolution

m * x  dx
(hy % hy)(2) ;=f hy (1) ha(—)— (3.10)
1 Ty I
We define the ‘compensators’ £~ as follows:
gTI0 OO i =00 B gpmon BB e (0; € R) (3.11)

For distinct exponents o; we have

200 OO Z 2% H(O-j _ O'i)_l (312)

o<i<r g

When o; occurs 1 + n; times, the formula becomes

[1+ng] 1+ny]

w00 ot T gl )T (200 (=) @ (3.13)

The easy inequalities

1
R IS —|| logz|"|z|~°* (0, >0, 0, = infoy) (3.14)
r!
Z70'07-"770'7‘ logz Tz |T0x "
‘—w—ao ..... —— logzg| |7 (o < |2 <1, 2€C¥) (3.15)
0 0 0
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show that a series

©o(z) =Zaa 277  (each o a finite sequence) (3.16)

can be convergent as a series of compensators, yet divergent as a power
series, due to the proximity of some indices o; inside the same sequences o .
To deal with such series, we take our cue from the inequalities (3.14)-(3.15)
and consider slowly spiralling neighbourhoods D of infinity on C,:

Dyowo = {2 | |2]-] log 2| 7" > |z0|.| log zo| "} (3.17)
Next, using the sup norm |.|? on these domains, we define the smaller com-

pensation norm |. |2, :

B = it { D lag 127717} < Il (3.18)

with an inf taken over all possible expansions of ¢ into infinite sums (3.16)
of compensatrors. The compensation norm is multiplicative:

lo1 P2limp < 01l oomp |92 oy (3.19)
That follows from the formula:
2—067...,—04Z—Ué’,...,—og’ _ Z 57005 =T 4s (320)
on =0 40, , intin=n, (3.21)
0=0), <0, <---<o;, =7 , 0=0) <o0; <---<o0, =5 (3.22)

o _—o

which linearises the product 277 z of two compensators of lengths /', r”
into a sum of % compensators z~7 of length ' +7”. As a consequence,
we can speak of the algebra of compensable power series, i.e. power series
with a finite compensation norm .| for some D = Dy .

All well and good, except that taking the infof all representations (3.16) is
clearly not a practical re-summation strategy. Fortunately each compensable
series @(z) is Borel resummable, and very flexibly so: Borel summation works
not only relative to all variables z, := logz — kg log logz for kg large enough,
but also relative to all variables z,, > 24 (e.g. 2z, := 2%), and in all cases
yields the same sum as does the decomposition into sums of compensators.

The definition of compensability, along with the re-summation procedure,
extends to the mock power series, leading to the larger notion of seriability.
Seriability occupies a position midway between convergence and strict resur-
gence. With the latter it shares divergence, but lacks precisely defined critical
times, exhibits no polarisation, and generates no Stokes constants. It is of
common occurence in differential geometry: to most objects ridden with
Louivillian small denominators yet having an unambiguous geometric exis-
tence,? there tend to correspond, on the formal side, compensable or seriable

3ike the transit maps associated with limit cycles of ODEs in planar geometry.

30



expansions.

3.4 Groups of non-polarised analysable germs.
Non-polarised analysable germs.

This is the case when, on top of some or all of the previous complications,
some of the mock power series may exhibit (mono- or polycritical) resurgence,
but without any derivation A, (w € R*) acting directly on them.*°

Displays of non-polarised germs.

As a consequence, there are no singular points on R* in any of the Borel
planes; no need for convolution averages; no polarisation in the re-summed
germs or their displays.

Frequent existence of a “geometric construction” (for the solution).

Non-polarisation often goes hand in hand with the existence of a geometric
construction for the solution f a given composition equation, in the form of
a limit f=I1im f,, with f, simply defined from the equation’s factors g;. This
is definitely the case for iteration, conjugation, and some composition equa-
tions. These constructions, however, “do not mix” under composition, and
if we want to perform regular group extensions, investigate the properties of
these extensions, compare their elements pairwise, establish non-oscillation,
etc, there is in the end no substitute for the transseries approach.

3.5 Groups of polarised analysable germs.
Weak and strong polarisation.

We say that there is weak (resp. strong) polarisation, when there is resur-
gence with finitely (resp. infinitely) many A, (w € R") acting simultaneously
on at least one mock power series. Composition equations or systems can at
most generate weakly polarising resurgence. There is thus no need to resort
to well-behaved convolution averages, and there is a clearly privileged sum,
corresponding to the standard convolution average.

40But they may act indirectly, as initial factors in operator strings A, A, ... A, , with
weRY, w; ¢ RT.
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The lesser display.

The lesser display (if need be, polycritical) dpl, which takes into account
the sole derivations A, with w € R*, suffices for a comparison of all possible
sums, relative to all possible choices of convolution averages, for each effective
critical time.

Integration of large transmonomials.

The integration a(z) — A(x) = 0 'a(z) of large transmonomials a(z), or of
small transmonomials larger than some L (x), is a major source of weakly po-
larising resurgence. Even convergent transmonomials produce resurgence,*!
but of the simplest possible type, with only a single active alien derivation
Ay, relative to a single critical time x( given by

xo = stat.lim,_, ;o (‘ log £,<(m;) D (Lr = logor) (3.23)

The limit here is ‘stationary’, since for r large enough the germs on the
right-hand side of (3.23) become equivalent at co.

1
zo = |loga(z)| if 1<1imM < 40 (3.24)
log x
1
zo = loga i 0<tim Y (3.25)
log x

Consider for instance this equation with A(z) as unknown:
A'(z) = a(x) = Ly(z) b(z) with expo(b) < —4 (3.26)
Any monomial b, large or small, of exponentiality < —4, will do. For instance:
b(x) = (La(2))™ (Ls(2))™ (Lo(2))™  or
b() = exp ((Ls(@))™ (o)™ (Le(2)™) (85> 0)

The critical time here is xy = L4(x) and relative to that critical variable
(3.26) becomes

Ag(Io) = 6$0 bo(l‘o) (Ao(l'o) = A(I) s bo(ZL‘O) = b(l’))
The formal solution is given by

AQ(.T()) = exo Bo(I()) = Gxo (]. + (3,130)71 (bo(l’o))

41 About the sole exceptions are e*® 2™ or 2% (logx)"™ with n € N.
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with (1 + 0)~! expanded straightforwardly in positive powers of 0, while the
resummation is given by the Laplace transform of

Bo(&) = (1 — &)~  bo(&)

The definition of by here is unproblematic, since the monomial bo(xg) =
b(E4(z0)) is automatically subexponential in x, and Laplace summation too
is unproblematic, since there is only one singularity on the positive real axis
in the Borel plane.

3.6 Infinite exponential depth.

This last complication, which takes us beyond the framework of proper
transseries as defined in §2.10, creates few complications on the formal side,
but tends to substitute cohesiveness for analyticity in the sums.

3.7 Accelero-summation commutes with composition.

Proving this commutation establishes that large, re-summable transseries,
taking in any of the seven categories C; listed above, constitute a semi-group
under composition. Then stability under reciprocation (taking the composi-
tion inverse) has to be proven. As the formal composition or reciprocation
of transseries resolves itself into several steps,*? it is enough to check that
accelero-summation commutes with each one of them. The checks are te-
dious enough (see [E5] in a rather special case) but demand little more than
dogged patience.

4 Conjugation/iteration of zero-exponentiality
germs.

4.1 The three steps of conjugation.

The aim here is to show that any (large, positive) analysable germ f:

f(z) =al(z) + A(z) with a(z) > A(z) ; expo(a) =0. (4.1)

42Repeatedly resorting to the Taylor formula; rephrasing composition and reciprocation
in terms of the operations ¢ and x in the multiplicative plane (resp. ¢ and * in the
Borel plane); expelling all infinitesimals from the exponentials and logarithms; and lastly
re-arranging the terms so produced in accordance with the well order of transseries.
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is analysably conjugate to the unit shift 7. That will automatically take care
of the mutual conjugation of any two such germs, and also settle for them
the matter of continuous iteration.

Conjugating f to T is a process that is best broken down to three steps.

Step one:

We may assume f(z) — z to be ultimately positive (if not, we replace f by
o). Regardless of whether f(z) is ~ 2z or ~ (1 + const).z or > z, there
always exits large enough integers n such that the variable change

z=FE,(z) , z1=Ly(2) (4.2)
turns f into a strongly identity-tangent germ f;:
fi(z1) = LpofoE,(z1) = 21+0b(z1)+B(z1) ; 1>0b(z1)> B(z) (4.3)

Here, b denotes the leading transmonomial of f;(z1) — 21 (together with the
real scalar in front of it) and B the remaining transseries. If the original
transseries of f is convergent, the change of variable keeps it that way. If it
is divergent (and resummable), it does not ‘add’ to its divergence (and keeps
it resummable).

Step two:
A second change of variable
. 1 1
21 = h]_’Q(ZQ) y Z9 = h271<21) with h271 =0 15 = JE (44)

turns f; into a moderately identity-tangent germ fy, whose second trans-
monomial is exactly 1:

fa(z2) = hoyo fiohia(z) (4.5)
= 23+ (hy1 b) 0 hio(z2) + o((hh b) © hia(22)) (4.6)
B bo hyo(22) bo hyo(22)
= 2T TG D
= 20+ 1+ @o(z0) with a(z2) = o(1) (4.8)

In nearly all cases this step creates divergence®®, but always of resurgent-
resummable type

Awo hQ?l = Cy = Const with Wy = 0y ﬁ(Zl) , 09> 0) (49)
Dpl(hg’l) = Cp 77° + hg,l (410)

43the exceptional (but obviously important) transmonomials that admit convergent in-
definite integrals are 277, 2" (log 2)™, e~ 7*2™ (¢ € C,n, mN).
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Step three:

We conjugate the germ f, to the unit shift 7" by solving the equation:

f3ofalz) =14 f3(22) with f3(z) =2+ ) (0nf5)(z)  (411)

1<n

where 6, f5 denotes the term that is n-linear in the remainder transseries ¢,
of (4.8). These n-linear terms are given inductively by the following system
of difference equations:

(60f3)(22) — (01f3) (22 + 1) = a(20) (4.12)
(6af3)(22) — (Bufi) (22 + 1) = %(m@))p(anpf;)@)(zzﬂ) (¥n > 1)

1<p<1

We have to split @9 into five parts @y:

fo(z2) =20+ 1+ Z gogk](ZQ) with gogk] € Fi (4.13)

1<k<5

each of which behaves very differently under the solving of difference equa-
tions (we drop the lower index 2 for simplicity):

O () — dlFl (2 4 1) = Il (2) (1<k<5H) (4.14)

Each ¢l®! consists of small transmonomials b belonging to one of five trans-
monomial intervals Fj characterised by a specific rate of decrease at +00, on
the real axis (hence the choice of x as variable):

transmo®. asymptotic behaviour rate of decrease

be F = lim M =0 subexponential

be F = 0 < lim W < 0 exponential

be F3 < lim W = o0, lim % < oo weakly overezp®™

be Fy < lim % = o0, lim w < o0 moderately overexp®
be F;s = lim loglos/b@) _ o strongly overexp®

xT
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More tellingly, in each case the transmonomial b falls into one of the following
increasing intervals:

be Fi < b(z)e

be F, < b(z)e

be Fy, < b(z) e

() e Uy [
(1) € U, [ exp(
be F3 = b(z)e U, [exp(—x L.(z), exp(—rxLl(x))]
(2) € U2, [exp(
(1) € U, [ exp(

b€.7:5<:>bl’

So let us examine the difference equation:
B(z) — B(1 +2) =b(2) (be Fr , 0<k<4) (4.15)

for convergent** transmonomials b successively taken in each of the five fun-
damental intervals. But before proceeding with the discussion, let us start
with three general remarks.

Remark 1: transserial solutions vs germ solutions.
In each case, the constant-free transserial solution B of (4.15) is given by

B(z) = Z pePand (5 o) (4.16)

osn

where bered(z 4 p) denotes the natural transserial expansion of b(z + n).
Moreover, the resulting B, whether convergent or not, always resums to a
natural, unpolarised sum B given by

B(z) = Z b(z +n) (b¢ Foo, x large) (4.17)

osn

at least when b does not belong to the subinterval Fi« < Fi:

! ] (4.18)

x 1
vere = UlrG inm o

But despite the simplicity of the convergent germ expansion, we cannot rest
satisfied with it, for three reasons:
(i) it fails for b in Fi«

44

meaning that all their nested transseries are convergent. That restriction will be
dropped later on.
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(ii) it does not yield the (often non trivial) display Dpl B with the essential
Stokes constant carried by it.

(iii) for the general purpose of analysability,*> we cannot be content with the
germ B(z); we also require the underlying transseries.®

That said, two dichotomies dominate the picture: convergence/resurgence
and analytic/cohesive.

Remark 2: Resurgence vs convergence.

For b in the range F; U F5 U F3, the monomials resulting from the transserial
expansions of Eexp‘md(z + n) ‘interdigitate’ and contribute helter skelter to a
transseries B that is usually divergent and always resurgent. On the contrary,
for b in the range F, U F5, for n; < ne, each transmonomial from Z;e‘”pa"d(z—knl)
neatly precedes’” each transmonomial from b%P*"(z 4 n,), so that B is now
a (gradedly) convergent transseries.

Remark 3: Analyticity vs cohesiveness.

For any transmonomial b in the range F; U Fy U F3 U Fy, there always exist
a right strip S = {R(z) > z0, |S(2)| < yo} such that each germ b(z + n)
extends analytically to .S, decreases there uniformly as Rz increases, yielding
a germ series Y. b(z 4+ n) that converges to a sum B(z) analytic on the whole
of S. For b in the range F5, on the other hand, there is no strip, not even a
tapering neighbourhood of [xg, + [, slim enough to ensure the convergence
of >1b(z + n): that germ series does converge, but only on a neighbourhood
of +00 on the real axis, and the sum B so defined is cohesive rather than
analytic.

4.2 The general transserial difference equation.
The case b € Fi:

The transseries B solution of (4.15) is generically divergent but always resur-
gent with critical time z, resurgence support €y := 27i Z*, and elementary
resurgence equations:

Awl B(Z) = Awl (le EQl) (419)
A, B(z) = A, e k= if @ = 2mik (4.20)

45§ ¢. for the biconstructive shuttle B < B.
46For only thus can we compare and resum new transseries constructed from B, such as
the direct iterator f3 in (4.11) and its reciprocal *f5 .

47 e. decreases more slowly.
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The case b e F;:

Let us separate the strictly subexponential parts ¢ (transmonomial) and C
(transserial) by writing:

b(z) =e%c(z) ; B(z)=e727C(z) (o9 > 0) (4.21)

The equation (4.15) becomes C(z) —e=72*C'(z + 1) = ¢(z). Its constant-free
transserial solution C' is generically divergent but always resurgent, with crit-

ical time z, resurgence support 0y = —oy+2miZ*, and elementary resurgence
equations:
A,, B(z) = A, (Vws € Q) (4.22)
A, B(z) = A, e *k= if Wy = —09 + 2mik (4.23)

The case b e F;:

Here again, we must isolate the dominant and subdominant parts by decom-
posing the transseries log(1/b(z)) = o3 5(2) + v(2) into a transseries y(z) of
transmonomials all smaller than z and a supplementary transseries o3 3(2)
normalised so as to give its leading term the form o3 5y(z), with y(z) a pure
transmonomial, with no scalar in front of it.*® We can then write

b(z) = e P& ¢(2) : B(z) = 7P O(2) (03 >0, c(z) = e_”’(z)) (4.24)
With respect to the subexponential parts, the difference equation becomes:
C(z)—d(z)C(z+1) =c(z) with  d(z) = e?BE=BEFD) (4 95)

Since in this special case, we shall have to deal with two critical times,
namely z itself and the slightly ‘faster’ time z, := ((z), we must express
our transseries relative to both variables:

C()=C.(2); Blx)=B.(z)=e7%*C(z) (5 =8(z)) (4.26)

(i) The Borel transform C/(¢) with respect to the slower critical time  is con-
vergent at 0, (the ramified origin of the ramified Borel plane C,) and extends
analytically to the whole of C,, but without encountering other singularities
than 0, and, consequently, without giving rise to any z-related resurgence
equation. However, C (¢) exhibits overexponential growth in certain direc-

tions, especially for Arg(¢) = —.
(i) The Borel transform C, (¢, ) with respect to the faster critical time z,

48For definiteness, we may think of 3y(z) as being z (log 2)® with 0 < o < 1.
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does not converge near 0., but can nonetheless be resummed via the usual
acceleration integral applied to C'(¢). The only singularities of C, (¢, ) other
than 0, lie over the point —oy and are described by the following resurgence
equations:

Ajg) C(z,) = Ay, (2)  with wy = —03 and z (not z,) in Ay, (4.27)
A(j;) B, (z,) = Auy(2)  with w3 = —03 and z (not z,) in A,, (4.28)

+

where A,,(z) is 1-periodic Fourier series in z:

Ay (2) = D Ay e > (4.29)

keZ

Pay attention to the upper index z, that denotes the critical time in the above
alien derivations. Pay even closer attention to the variable inside A, (z): that
variable is not z, , which would be inacceptable (since the germ produced by
an alien derivation has to be subexponential relative to the critical time under
consideration) but z, which is all right, since A,,(z), being exponential in z,
is subexponential in z, .

The case b e F;:

Here, the relevant decomposition of b is:
b(z) = e 42 MEVE) = gmoazAR) () (o4 > 0) (4.30)

(i) with A(2) starting with a leading transmonomial of the form Ay(z) > log z
(ii) with all transmonomials in A(z) being > 1.

(iii) with all transmonomials in y(z) being either z or o(z).

The sum (4.16) then becomes

E(Z) _ dexpand(z) _ Z 6704,2)\(,2) "o A(z) 6n(2) (431)

osn osn

with a middle factor consisting of powers of a transmonomial e *) that de-
creases faster than any transmonomial in any of the transseries CNZ'n(z) Thus,
inside the global transeries B(z) as given on the right-hand side of (4.31),
the contributions of the various 5’n(z) do not mingle, but keep neatly apart.
The convergence abscissa x,, of each 5’n(z) goes to +o0 as n increases®®, so
that we cannot have absolute convergence in E(z) But we have, unproblem-

atically, graded convergence, since each 5’"(2) converges to an analytic germ

49n fact, it is easily seen that z, ~ Constn.
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Ch(z) which can be continued to a common interval [x¢, +00[ and since, on
that interval or at least on a subinterval [z, +00[, the ‘tildeless’ germ series

B(Z) _ Z bexpand(z) _ Z efogz)\(z) R A(z) Cn(Z) (432)

osn osn

converges (absolutely this time) to a germ B(z). The only pending question is
whether B(z) is analytic, and that is where the upper bound of the interval F;3
comes into play. As the prospects for analyticity worsen for faster decreasing
transmonomials b(z), it suffices to examine the case b(z) = e=¢ " for large
values of 7. But it is immediate that the series > _. e~ converges
absolutely and normally on the halfstrip ®(z) > 0, [3(2)| < 7~ — €. So,
for b(z) in F3, B(z) is always analytic on a real neighbourhood of +0o0 and
extends analytically either to a half-strip, or more often to a whole right

half-plane, or even to a wider sector of C,.

The case b e F;:

The argument which clinched the graded convergence of (4.16) for b in Fy
works a fortior: for b in F5. What we must show now is that B, though
generically failing to be real-analytic, nonetheless retains a high degree of
smoothness, enough to guarantee the form of quasi-analyticity known as co-
hesiveness and to ensure the property of unique continuation. The generic
failure of analyticity is already obvious from the fact that, even for b at the
lower end of the interval Fs, that is to say of the form b(z) = e~ (r
large), the translates b(z +n) cannot remain bounded on any rectangle, how-
ever narrow, that straddles R*. To establish cohesiveness is slightly harder.
The argument goes like this: for any b in F5 and any interval [z7, 5] € R
close enough to +o0o, one can always find two real sequences {¢,} and {n,}
with €, | 0, n, | 0, >,n, < +o0 and such that |b(z + n)| be bounded by
N, on the rectangle of width 2¢, bisected by [z1,x2]. One then optimises
the pair (€,,7,) and, using the Dyn’kin criterion®, finds the exact regularity
type of the sum B — which paradoxically®® get weaker and weaker for faster

S0Meant is an extremely useful and flexible criterion due to Moisevich Dyn’kin, which
relates the degree of smoothness (such as quasi-analytic, C*, Holderian etc) of a real
function defined on a real interval I to that function’s pseudo-analyticity modulus, i.e. to
the speed with which it can be approximated by complex functions with a small ¢ defined
on smaller and smaller rectangles straddling 1. See [E8] §3, pp 72-74.

51paradoxically, but only at first sight: indeed, for faster decreasing transmonomials b,
the convergence of the sum > b(z + n) may increase on the real axis, but the moment we
leave the real axis, the absolute values explode, especially for b at the upper end of the
interval Fs, i.e. of the form 1/E, for r large.
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decreasing transmonomials b, but always remains strong enough to ensure
cohesiveness.

Overview.

Before winding up this long but necessary aside on difference equations, let us
recast B’s elementary resurgence equations and displays in a uniform mould,
by resorting to the convenient w-notations of §2.12, which alone can bring
clarity to the sort of multicritical situation that we shall encounter in an
instant, when returning to the iterators f* and *f. In all three resurgence-
generating cases, we have:

A, B(z)=A(x) ;  DplB=B+Z7A(2) (4.33)
with
be Fi | @w(z) = w2 | & € 2miZ [ A(z) = Ay e
be Fy | w(z) = w2 | @y € —02+2miZ | Ap(z) = Ay e~ S22
be Fs | w(z) =ws B(z) > 2 | w3 € —03 | Au(z) = ZAwke omik

Thus, altough the resurgence-describing term A, (z) is always 1-periodic
in z — and cannot be anything else, since Dpl B, like B itself, has to verify the
difference equation (4.15) — the natural indexation of its Fourier coefficients
and that of the accompanying pseudovariable Z% varies widely from case to
case.

4.3 The general transserial conjugation equation.

Now, returning to our general analysable germ f of exponentiality 1 (see
4.1) and the three associated objects — the direct iterator f*, its functional
inverse *f and the real iterates f°* — let us state the general result, first in
the auxiliary zo-chart, then in the original z-chart.

We begin with the case when f is itself (gradedly) convergent and examine
the specific contributions of each of the five components ¢!*l in (4.13):

e The initial transseries ¢!, @2 o3l on their own, create no other com-
plication than generic divergence®® associated with multicritical, non-
polarising, Borel-summable resurgence in f¥, *fs, f5*. The resurgent
equations and the displays are as in (4.33). The corresponding germs
[, *fo, f5* are always analytic on [..., +oo[.

52Except of course when ¢!l = ©3] = 0 and when ¢! reduces to a series dlcpe 73

of pure exponential monomials.

41



e The last transseries <p[5], on its own, creates no divergence in the trans-
series f5, *fo, f5%, but it generically prevents the corresponding germs
from being analytic. Instead, it causes them to be cohesive (a special
form of quasi-analyticity) on [..., +oo[, of class at most Den,,.

e The intermediate transseries ¢4, on its own, causes none of these com-
plications — neither divergence-resurgence in the transseries nor strict
(i.e. non-analytic) cohesiveness in the germs.

e In the general case, when all five components pl*! are present, their
effects combine unproblematically: ‘analysability’ survives; we still
have the resurgence regime described in Proposition 6 below; and our

transseries still resum to cohesive germs f5, *fa, f5 >

Proposition 4.1 (Iterators of convergent analysable germs f)
For any (absolutely or gradedly) convergent transseries f of exponentiality 1,
the iterators and real iterates verify the following resurgence equations:

fyofo=Tofy ; fo*fy="fHoT ; [f5'="f0T"f; (4.34)
Agf* = —Ax(f7) (4.35)
ALY = +AL0Yf with 0 := 0, (4.36)
Agf*  Ag(t+f) = Ac(f)
ot + o (4.37)

with w running through the set @ = Q, |2, |JQs. Of course, due to the
1-periodicity of the functions Ay, the right-hand side of (4.37) vanishes, as
indeed it should, for any entire iteration order t. The resurgence equations,
as usual, completely determine the displays, but here a unique simplification
occurs — namely the neat separation in the displays (noted Dpl as usual)
of some composition factors that consist purely of transseries and of other
factors (noted Psd for pseudo) that consist purely of pseudovariables (accom-
panied by periodic exponentials in z). Indeed:

Dpl f* = (Psdf*) o f* (4.38)
Dpl*f = *f o (Psd*f) (4.39)
Dpl % = *f o (Psd f*) o f* (4.40)

with the Psd-part transparently defined from the differential operators

A= A(2)0. (4.41)
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by the mutually inverse expansion (4.42) and (4.43):

Psd(f*) = 24> > (-1 (Ag, ... Ay, 2) ZZ0™ (4.42)

1<r w;eQ2

Psd(*f) == z+4 ), > (Ag, ... Ay 2) Z50 (4.43)
1<T‘w]‘€Q

Psd(f) = Psd(*f) o T° o Psd(f*) (4.44)

Notice that in (4.43) the indexation of the pseudovariables Z and that of the

invariant operators A go in the same direction, whereas in (4.42) or indeed

in the general definition of the display (2.60), the indexation of the pseu-

dovariables Z and that of the alien derivations A go in opposite directions.?
The identity f* o *f = id implies not only Dpl(f*) o Dpl(*f) = id but

also Psd(f*) o Psd(*f) = id. This latter fact can also be verified directly by

observing

(i) that the pseudovariables behave like constants under derivation and com-

position

(ii) that they obey the shuffle rule (2.30) under multiplication

(iii) that the identities (4.42) and (4.43) are equivalent to

Psd(f*) = PSD(f*).z  Psd(*f) = PSD(*f).z (4.45)
with infinite order differential operators PSD(f*) and PSD(*f):

PSD(f*) = 1+ Y Y (1) Z%™ A ... A, (4.46)
1<r w;e2

PSD(*f) = 1+ > > Z%7 A .. A, (4.47)
1<r w;eQ

that formally verify PSD(f*).PSD(*) = 1.

Remark 4: Disappearance of the parasitical resurgence of step two.

To see what becomes of the elementary but (weakly) polarising resurgence
(4.9) that resulted from the change of variable z; — 25 of ‘step two’, we must
look at the complete multicritical display :

Dpl(f5)(ho1)(21) =Psd(f3)o f5 (22 — co Z7°) =Psd(f*)o f5 (22 — co Z7°) (4.48)

53The reason is quite simply that, since each A,,, commutes with ¢ and therefore with
A, as given in (4.41), we have A, A, %o = A, Au, ¥fa = Ay, AL, 2 = Ay AL, fo.
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with ¢g and wy as in (4.9). On the other hand we have the implications:

fi = h1,2 ofyo h2,1
fi = f5oha
Dpl(fi) = Dpl(f5) o Dpl(h2,1) (4.49)

Replacing in (4.49) the displays Dpl(f;) and Dpl(hs 1) by their expression
(4.38) and (4.39), we see at once that the polarising resurgence of critical time
wp that appeared at step 2 (see (4.9)-(4.10)) automatically disappears as soon
as we revert to the variable z; of step 1, or a fortiori to the original variable z.

e
———

Remark 5: Geometric solution.
Not only is f(z) directly characterised by

o)~ )
e () — F(s)

= (Vte R, Vz positive large) (4.50)
but in any z3-chart such that

f3(23) = (hg’gofgohgyg)(qu) = 23+1+d(23)+0(d(23>> with Jd(Z'g) <1

with a small third monomial d whose constant-free indefinite integral is also
small, the iterator f;(z3), as a germ, is directly calculable as the limit

fi(zs) = lim (f5"(z3) — 23 —n) (4.51)

n—>+ao0

The disappearance of the ‘earlier resurgence’® was predictable in a sense,

because a singularity on RT would create a polarisation, albeit of a very
elementary sort (one for which all real convolution averages coincide), and
that would not sit well with the existence of a privileged geometric solution.

Proposition 4.2 (Iterators of general analysable germs f)

If, instead of starting from a (gradedly) convergent analysable germ f as
in Proposition 4.1, we start from a general analysable germ f (but still of
exponentiality 0), little changes, except that the preexisting resurgence of f
(whatever the type of that resurgence) gets superimposed, in an orderly man-
ner, to the very specific resurgence generated by the passage f — (f*, *f).

54j e. the one that appeared in step 2. See Remark 4.
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The neatest way to describe the resulting situation is by writing down the
displays®™. The earlier factorisations (4.38)-(4.40) now assume the form:

Dpl f* = (Psd f*) o (Dplf)* (4.52)
Dpl*f = *Dplf) o (Psd*) (4.53)
DpLf* = *(Dplf) o (Psd f*) o (Dpl )" (4.54)

(i) with ‘elementary factors’ (Dpl f)*, *(Dpl f) that carries the ‘old resur-

gence’ and can obtained directly by solving the conjugation equations:>®

(Dplf)* o (Dplf) = To(Dplf)* (4.55)
(Dplf) o *(Dplf) = *(Dplf)oT (4.56)

(i1) and with ‘non-elementary factors’ Psd*f, Psd f* that carry the ‘new
resurgence’, commute with the unit shift T', and of course verify:

id = (Psd*f) o (Psd f*) (4.57)
Psd f = (Psd*f) o T o (Psd f*) (4.58)

Observe that here, ‘elementary’ simply means ‘obtainable by purely formal
manipulations on transseries’.®” But as far as the general shape is concerned,
the factors (ii), being 1-periodic®, are often more ‘elementary’ than the fac-
tors (i), since there is no a priori bound on the complexity of f, let alone on
that of its display and its display’s iterators.

A striking illustration of Proposition 4.2 shall be given in §13.5 with the
‘continued conjugation’ decomposition of a germ f.

4.4 Some examples.
Example 1: iteration of power series.

For germs f given by a power series f(z)=cz+3],_, a, 2' ™" with ¢ > 0, the
iteration pattern is well-known,?® but let us see how these results fit into the
general transserial framework.

55from which the resurgence equations can be easily derived.

56Take care to distinguish the present ‘iterators of displays’ (Dpl f)*, *(Dpl f) from the
earlier ‘displays of iterators’ (Dpl f*), (Dpl*f). See Proposition 4.1.

57and thus, without recourse to analysis in the Borel plane.

58more precisely : commuting with the unit shift 7.

5In the case ¢ # 1, this is a classical result due to Schroeder. In the identity-tangent
case (¢ = 1), the geometric theory goes back to Fatou and the resurgence-resummation
treatment to Ecalle.
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In the non-identity-tangent case, we may assume ¢ > 1. Then step 1 with
n = 1 followed by step 2 with he1(z1) = 21/log ¢ immediately take us to the
form (4.13), but with simple decreasing exponentials on the right-hand side.
This is the simplest of all possible cases: the iterators are convergent.

In the identity-tangent case, f(z) = z + a,2'™? + ..., there is no need
for step 1, so that z; = z, and steps 2 with 2z, = p%lpzf + - 41z + plog 2y
takes us to the form (4.13), with a right-hand side in the interval F; but
consisting essentially of decreasing powers.C The only complication here is
a resurgence that is governed by the general equations (4.35),(4.36),(4.37),
but with invariant operators A, that depend only on the projections w.

Example 2: fractionnal iteration of monic polynomials.

Let f be a real monic polynomial of degree d > 2:

f(z):= 2%+ Z ay, 2" (2 <d) (4.59)
0<k<d
Step 1 takes f to the form
(Lyo foEy)(z1) = z +logd+ as(z) (a2 € Expoy) (4.60)
= 2z +logd + dd-1 (4.61)

de* +(d—1) €%

with f1(z1) — 21 in the interval Fy, and step 2 (a simple dilation) keeps
fa(2z2) — 22 in Fy. As a consequence, the iterators and fractional iterates are
guaranteed to be convergent. But let us for a change look directly at the
fractional iterates, which are easily explicitable. Indeed, g := fo% may be
sought of the form:

g(z) = 2° (1 + 8z 27, PR z”p71)> (4.62)
an>1 )
= (1 £ bugrymyy 2 Zosi™ ”J) (4.63)
n; =0

with o := d"/P. Rather than directly iterating ¢ and setting it equal to
f, it is advantageous to replace g first by v(t) := 1/g(t™!) and then by a
multidimensional mapping v : C% — CY; defined by:

ZZ tj = tj+1~ <1 + S(to,tl, .. ,tp_1)> (0 <] < P — 2) (464)

_gpb—1
ty1— td. (1 + S(to, th, - .. ,tp_1)> (j=p—1)  (4.65)

60Tt is either in C[[z5 /*]] if p = 0 or else in C[[z5 ', 5 /" log 22]].
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and lastly to write that the p* iterate of 7 is equal to:

Example 3: iteration of transmonomials.

As an exercise, the reader may examine the following examples

f(z) = ellog=)" Prlloglogz) (P real polynomial ,c; > 0)
f(z) = ellog=)® P2(1/loglog 2) (P, real polynomial ,cy > 0)
f(Z) = ePl((logz)Cl)6(1081082)62 Py (log log log z)

where f, despite reducing to a single transmonomial, gives rise, after nor-
malisation by the steps 1, 2, 3, to full-fledged transseries, with some or all of
the possible attendant complications.

5 Conjugation/iteration of nonzero-exponentiality
germs.

Since in the coming five sections most germs are defined, and most constuc-
tions make sense, only in real neighbourhoods of +o0, we shall throughout
call the variable x rather than z, and its conjugate variable & rather than (.

5.1 Conjugation of germs with the same exponentiality.

Conjugating two analysable germs of unequal exponentiality®!, as we shall
see in §6, is not possible in the relatively orderly framework of ordinary
transseries, but requires the introduction of ultraerponentials and wultralog-
arithms. At the opposite end, conjugating two analysable germs f and g
each of exponentiality 0 is always feasible®?, via a germ h := *f o g* itself
of exponentiality 0, as we just saw in §4. That leaves only the case when f
and g have the same exponentiality k € Z*. By considering if need be the
reciprocal germs, we may assume k to be in N* and it is enough to treat the
case when ¢ is the standard k-exponentialy germ. In other words, it suffices

61A germ f is said to be of exponentiality k if its leading transmonomial @ is itself of
exponentiality k, i.e. if L, o fo E, ~ Ej for n large enough.

52Provided of course they are of the same type, i.e. both ultimatily contracting or
expanding.
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to consider pairs (f,g) with ezpo(f) = k, g = Ej and then calculate the
direct normaliser f9 or its inverse %f by solving either of the equations (5.1),
(5.2):

foof = Eof? (expo(f?) = 0) (5.1)
fo'f = %ok (expo( f) = 0) (5:2)

with f(z) = a(z) + o(a(r)) and ezpo(a) = k. The solution f¢ (resp. “f) are
defined up to pre-composition by FE, (resp. post-composition by L,) with
n € Z % and the normalisers are by definition the unique pair (f9, %) of
reciprocal germs with exponentiality zero.

Let us focus on the (slightly simpler) direct normaliser f¢. We can always
find n large enough to ‘normalise’ to E} the leading transmonomial of f by
a conjugation (5.3) and to make the whole transserial remainder «a as small
as we wish. We may for example bring f to the form f;:

fi(z1) = (Lyo foEy)(x1) = Ep(xq) + alzx) with «(z;) =o(1) (5.3)

The conjugation equation then becomes f{ o (Ey + a) = Ej o fY and its
unique solution (both as a transseries and an analysable germ) can easily be
expanded into a sum of transserial blocks €, (z1). Their exact expression is
given at the end of the section, in Example 4, after a graded series of easier
cases. This expansion f{(z1) = 21+ Y., €r(1) converges unproblematically
in the space of transseries. It also converges incredibly fast in the space
of analysable germs on a suitable real neighbourhood of +c0. The sum is
generically non-analytic, but always cohesive, in the transfinite Denjoy class
“DEN (and usually in no smaller class), irrespective of the exponentiality k.

But before tackling the general situation (Example 6, infra), let us ex-
amine five simpler examples, all of them directly relevant to the numerical
investigation of §15. As in the preceding section (when investigating zero-
exponentiality germs), we shall first assume that our analysable f has a
(gradedly) convergent transseries f and then examine in §5.3 what changes
for a general analysable f.

5.2 Graded examples.

Example 1. General f of exponentiality 1.

f(z) =€e* + a(x) with a(z) =o0(1) or O(1) (5.4)

63In the framework of transseries; in that of ultraseries, n may range through R.
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The direct normaliser f¢ admits a fast converging expansion

folz) = z+ 2 en() (5.5)

1<n

with summands €, given by the induction
e1(x) = log <1 +e " a(:r:)) (5.6)

id+€1+62+...6n_1
o) =1 ( ) Vn > 2 5.7
¢ (:C) 08 id+€1 + €+ ...€,_9 Of(ili') ( n ) ( )

They are uniformly bounded by |e,(z)| < Const/d,E,(x) on a real neighour-
hood of +0o0 and their derivatives too admit similar bounds. The sum (5.4)
converges to a cohesive germ f¢ in the Denjoy class “DEN .

Example 2. Special f of exponentiality 1.

flz) i=c(e"—1) (¢>0); fozid—FZen ; Of=1d+2nn (5.8)

o<sn 0<sn

Here, f and its reciprocal f°~! being equally simple, the direct and reciprocal
normalisers have equally explicit expansions:

€o(x) = log(c)
e1(x) = log (1 - (M) o f(x))

id + ¢

en(z) = log (1 (o 606’:?“%2) of(x)) Vn=2) (5.9)

no(z) = —log(c)
m(z) = log (1 + (%(C)lg(c)) o exp(x))

(@) = log (1+ (- ;Z;;—JWH) oexp(z)) (¥n=2) (5.10)

Example 3. Special f of exponentiality 1.

f(z) ==cxe® (c>0); fO=id+ Zen (5.11)

eo(z) = log(cz) B
e1(x) = log (1 - (:—;) o f(x))
(1 +( Cn1 )o f@;)) (Vn = 2) (5.12)




Example 4. Special f of exponentiality 1.

f(z) := csinh(x) = ge”‘“ - ge’x (c>0); fO=id+ Z € (5.13)
0sn

€o(x) = log(c/2)

e1(z) = log (1 + (lO(gC(/C2/)2) e T 6_%))

en(z) = log (1 (o 6061“1. —)e f(x)) (Vn = 2) (5.14)

Example 5. General [ of exponentiality 2.

f(z) = e +a(x) with a(z) = o(1) or O(1) (5.15)
Here, the direct normaliser admits an expansion
folz) = z+ ) en(2) (5.16)
1<n

with summands €y, whose leading terms are small of exponentiality 2n for
a = O(1), and of exponentiality 2n + ng for o small of exponentiality ng:

lo x

ex(z) = log (g(e—f())) (5.17)
log(id + €3 + €4...€ (n—1))
log(id + €2 + €4. .. €2(n—2))

€an(T) = log< > of(z) (Vn=2) (5.18)

Using the induction, these identities may also be re-written in a form better
suited for majorising the (exceedingly small) terms e,:

€a () log (1 +e " log (1+ a(:v))) (5.19)

ec”
log (1 + ——2n=2 )

id+ea+...€2 n—4q

log(id + € + ... €2,,4)

ean(z) = log (1+ )of(x) (Vn=3) (5.20)

Example 6. General f of exponentiality k& > 1.

f(z) = Ex(z) + a(x) with a(x) =0(1) or O1) (k=1) (5.21)
Here, the direct normaliser admits an expansion

o) = 24 epnl(a) (5.22)

1<n
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with summands €, whose leading terms are small of exponentiality kn for
a = O(1), and of exponentiality kn + ny for @ small of exponentiality ng :

Ly x

ex(z) = log (%ﬁ)))) (5.23)

1 <Lk1(’éd + € + €2k ... E(n—l)k)
Lk_l(id + € + €2 ... E(n,g)k)

) o f(z) (Yn=2) (5.24)

€kn(T)

with alternative, easier-to-majorise expressions analogous to (5.19), (5.20).

5.3 Resurgence and displays.

The mapping f +— (f9,%), as just seen, creates no resurgence in case of
a resurgent-free f; and when f is resurgent, it creates no new resurgence.
As usual, this is best seen at the level of the displays: the displays of the
normalisers coincide with the normalisers of the displays, and as such, are
directly obtainable from the following composition identities:

(Dpl %) = (Dpl f)® = (Dplf) o (Dplf) = Ey o (Dplf%) (5.25)

(Dpl%) = %Dplf) — (Dplf)o (Dpl%) = (Dpl¥f)oE,  (5.26)
Thus, Dpl f© may be calculated simply by replacing f¢ and €, by their
respective displays in (5.22), (5.23), (5.24), and then formally expanding
everything in series of pseudovariables.

We may note in passing that there is no contradiction between the fact
that f9,9 are generically non-analytic (merely cohesive) and the presence
of resurgence, for the resurgence in question always attaches to specific sub-
transseries of f0,°f which, when separately re-summed, are analytic.

6 Universal asymptotics of ultra-slow germs.

6.1 The bialgebra of iso-differentiations.%

An iso-differential operator or iso-differentiation of iso-degree n is a non-
linear operator of the form:
ni+..np=n
Df = > >, anyom, H™ . H™) with H=log(1/f")  (6.1)
I<rsn 1<n;

nit..nr=n f(1+n1) f(l-i—nr)

= D> D> by, T (6.2)

1<rs<n 1<n;

64This algebra was first introduced by us in 1991 (see [E5]), under a different label
(“post-homogeneous operators”) but already in connection with ultra-slow germs.
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These operators are uniquely adapted to the description of “universal asymp-
totics” since, as we shall see in a moment, they always produce the same
asymptotic series when made to act on ultra-slow germs.

Due to their double homogeneousness (— the iso part of their name alludes
to that —) they are essentially invariant under pre- and post-composition by
simulitudes S:

D(Sef)=Df 5  D(feS)=a" (S(z)=az+p) (63)

They also generate an interesting bialgebra, since they possess
(i) a commutative product x, distinct from the non-commutative operator
composition and additive with respect to the iso-degree:

(D1 x Ds) f = (D1 f).(D2f) ~
ideg(D; x Dy) = ideg(Dy) + ideg(Ds) (6.5)

(ii) a non-commutative coproduct D — o(D):

oD) = > ap"”*Di®D;=D®1+1®D+... (6.6)

degD=degDq1+degDo

that reflects the action of iso-differentiations on composition products:

D(fpo fr) == Y. ap"” (Dify) (Dafo)ofi- (f{)™  (ng:=idegDy) (6.7)

idegD=idegD1 +idegDoy
(iii) an involution D +— D:
Dg = (Df)og.(g)" (n =idegD, f o g = id) (6.8)

that reflects the action of iso-differentiations on functional inverses.
All three operations verify the predictable rules, namely:

DixDy=DyxDy  and  o(Dy x Do) =0(Dy) x o(Ds)  (6.9)
with

The resulting bialgebra ISO differs advantageously from the so-called Faa di
Bruno bialgebra (x-multiplicatively generated by all powers ¢") in that the
latter lacks a “degree” with nice stability properties under both product and
co-product.%

65Tt differs even more from the co-commutative Leibniz bialgebra that simply reflects
the Leibniz rule.
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6.2 The first two main bases Dn'® and Ds* of ISO.

The operators DI} : f s f0+m) /{7 clearly constitute a x-multiplicative
basis of ISO, but their simplicity is deceptive.

The operators Dn™ : f — (—0)™ log(1/f’) lead to far simpler formulae
for all operations: co-product, involution etc. They constitute the so-called
natural generators of ISO, to which there answers the additive basis:

Dntmt--net . — DMt oL« Dt f— 1_[ ( o)™ log(1/f' )) (6.11)

Here and throughout the sequel, the brackets {n} signal that the sequence
n inside is non ordered (defined only up to order). Ordered sequences n will
be within sharp brackets < n > or remain unbracketed.

We also require the symmetric generators Ds™!, so-called because they
react to involution in the simplest way possible:

~{n1}

Ds ' =-Dd"} ; Ds — (—1)" Dglrrne) (6.12)
Although the half-sums 1/2 (Dn™} — ﬁfl{M}) would also produce such a sym-
metric basis, the following definition (6.13) of Ds'* in terms of Dn* is to
be preferred, not least because it admits an almost identical inverse (6.14),
expressing Dn* in terms of Dg*):

Dst! 70} = v Dglmo} — % Do x Ds™ with DY = DY (6.13)
Dn'*m0} = v, D"} 4 2 5 10 g1t % Do} with Dot = DY (6.14)

Here, V and V, denote operators acting as derivations on ISO relative to
the natural product x:

V.Dnl"mrd = Z:Dn"1 """ Lngemr) (V:=-0) (6.15)

Vi Dsttteteh i T D) (6.16)

The equivalence of the identities (6.13), (6.14), as well as the “symmetry”
relations (6.12), follow from the formula:

~{1+no} ~{no} {no} . ~{1}

Dn —vDn = noDn™ x Dn with  Dn = —DnM (6.17)

which is itself a direct consequence of (6.8).
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The corresponding analytical expressions read
n1<N2...<Ny

Do = >, Mo (= He Dol (6.18)

N1,

1<r no=ni+...+n,

n1<N2...<Ny

Ds™l = ) > (=2 Hp . Dot (6.19)

1<r no=ni+..+n,

ni<n2...<Ny

Dnf™h = ) > (2t Hp |, Démend (6.20)

1<r no=ni+...+n,

with the same positive, integer-valued structure constants H,°
formulae. We may remark in passing that if we set

., inall three

tn+1 ‘ r=1 "
A(t) =+t + Z (07% m with Ay = Z H'n,f,...,nr (621)
1<n ni+..np=ngo
tn+1 . r=1 . .
B(t):=—t+ > B, ni with o, = >, (=1 H - (6.22)

1<n ni+..np=ng

the integers a,,, 3, possess tree-theoretical interpretations® and the generat-
ing series A and B verify first order ODEs:

1—A'(t) =log(1—A(t)) ; —1-—DB'(t)=1log(l—B()) (6.23)
As for the co-product o, the identities (6.6), (6.7) lead to the induction®”

o(Dnlt+m}) = {V ®id + id ® V + Dn'¥ @ Ideg}.a(Dn{”l}) (6.24)
1 1
(D) = {v* @id+id® V. + ;D" @ Ideg — S Ideg @ Ds{l}}.a(Ds{”l})

which in turn yields the analytical expression

o(Dn) = ' Kmmpnt @ pin (6.25)

\nl |+n2=n0

o(Ds) = 3 g (Ds{nl} ® D™ — D" @ D }> (6.26)
[t lIn?|=no

=Y KD @D - (1) tipgn®l @ D)
[t |In?|=no

56Thus the integer c,_; is the number of increasing trees with n nodes and cyclically
ordered branches. An increasing tree is a rooted tree whose n nodes carry distinct labels
ranging over {1,...,n}, with the labels increasing along any branch starting from the root.

67with the notation (Opl ® 0p2).(D1 ®D2) := (Op; D1)® (Opg D) for any two linear
operators on ISO, and with Ideg denoting the scalar multiplication of any D in ISO by its
iso-degree ideg(D).
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For the symmetric basis, the right-hand side is (unsurprisingly) alternately
symmetric or antisymmetric. For the natural basis, it is linear in the second
argument,% although semi-linearity, by itself, does not suffice to characterise
the natural basis.®”

6.4 Universal asymptotics. The algebras Isolog c *Isolog.

Let us consider the algebras™ #Isolog, resp. FlIsolog spanned by the formal
series

" () = Y (L @)™ (L (@) i <k (6.27)
1<pi1<p2<...<pr<k
= 0 if r>k (628)
() (1) = D (L) (L, ()™ (6.29)

1<p1<p2<...<pp<+00

These series consist of monomials of the form:

Ao =L, ... L, I<q<@<..<g¢,n=n+. +n,) (6.30)

with an alternative indexation by transfinite ordinals

T=w" g W (g — ) F W gy — q2) -+ (G — Qo) (6.31)

that reflects the natural ordering of the monomials: the larger 7 as an ordinal,
the faster the rate of decrease of A\, as a germ.

The significance of the series €e<k'> (resp. €& ) comes from the fact that
the iso-operators, acting on finite iterates of the logarithm (resp. on trans-
finite iterates or more generally on ultra-slow germs) always produce germs

expressible as particular combinations of €e<k°> (resp. admitting asymptotic

series given by particular combinations of €e<'>). But whereas each €6<k°> con-
verges on a suitable real neighborhood of +00, the question does not even
arise for the ¢¢*, since their summands cannot be simultaneously defined
on a common neighborhood of +co. This, however, does not prevent these
6 from making perfect sense as well-ordered sums of A\, and as formal se-
ries, consisting each of an asymptotic part, starting with A\, , A, etc, and a

(sometimes vanishing) transasymptotic part, starting with A, , A. ., etc.

68it involves the single-indexed Dn{™?} rather than the multi-indexed D™} of (6.26).
%The pseudo-natural operators D{"1} : f — 1471 /f' mentioned and then dismissed

at the beginning of this section, also possess right semi-linearity with respect to o.
"Orelative to the ordinary product of formal series

95



For reasons that shall soon become obvious, it is convenient to consider,
alongside the bases Ee<k°> and (&* of “Isolog, and *Isolog, two new bases £a<k°>
and (™ derived from the former through post-composition™ by the sym-
metral mould sa® and its composition inverse, the alternel mould cosa®:

1

MyeeeyNp = 632
54 (ny+ ... +ny)(ng+ ... + ny) ... m, ( )
cosa™ " = (=1)"1ny (6.33)
sa® o cosa® = I° (6.34)

The conversion formulae read:
€a<,:>(x) = €e<k°>(x) osa® €e<,:>(x) = Eai?(x) o cosa® (6.35)
W (x) = 6 (x) o sa® ;LY (x) = ™ (x) o cosa® (6.36)

The product rules:
N e D S (6.37)
neshe(n’,n’)

™ ™" = Z ™ (6.38)

nesha(n’,n'")

which also hold for the k-truncated equivalents, simply mean that €e<'>, €e<k°>

(resp. €a<'>,€a<,:>) are symmetrel (resp. symmetral).
The rules for post-composition by iterates of log are the same in both cases

= > e e o Ly (L) VK (6.39)
W= D o Ly (L) Yk K (6.40)

but there is a significant difference in the rules for ordinary derivation™

L™ = — Z (n;+n"|) (€e<"/’1’"f’"”> + €e<"/’1+"j’"”>> (6.41)
n'n;n"=n

Q™ = = 3 (b Y Ty (6,42
n'n;n"=n n'n;n’=n

“IMould composition operates likes this:

{C*=A"0B} & {C" =3, St e _p AP Lo In?ipnt gnty

The unit for mould composition is I* with ™ =1 Vn; and I™» " =0 Vr £ 1.
20 :=d/dz
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Short proofs:

(i) The symmetrelity relation (6.37) is a direct consequence of the construc-
tion (6.27)-(6.29).

(ii) The symmetrality relation (6.38) results from the conversion formulae
(6.35), (6.36), the specific symmetries of sa®, cosa®, and the general symme-
try conversion formulae:

symmetrel® o symmetral® = symmetral® (6.43)

symmetral® o alternel® = symmetrel® 6.44)

These in turn make sense (are contradiction free) because mould composition
respects both symmetrelity and alternality, and because the composition
inverse of symmetral is alternel.

(iii) The composition rule (6.39) is a straightforward consequence of (6.7)
and (6.40) follows under (6.36).

(iv) The first derivation rule (6.41) results from repeated applications of the
identity

L//
== > L, (6.45)
p 1<q<p

(v) The second derivation rule (6.42) results, inductively on index length,
from (6.41) applied to the second identity (6.35).

Remark 6.1. First reasons behind the choice of sa°.

Post-composition in (6.36) by any symmetral mould other than sa® ™ would

produce symmetral series (™ and also ensure the composition rule (6.40),
but it would inevitably introduce non-integer coefficients in the derivation
rule (6.42). The disappearance of the denominators in (6.42) for sa® defined
as in (6.32) is a striking piece of luck, which by itself would be justification
enough for this particular choice. Other, even more compelling justifications
will emerge in the coming section.

Remark 6.2. Description of the sub-algebra Isolog of *Isolog.
The algebra Isolog generated by the formal limits:

DL := lim DL (D € Iso) (6.46)
k—>00
"such as the moulds varsa™ " := 1/r! or varsa™ " 1= sg"r",
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is but a small sub-algebra of *Isolog, since for any given isodegree n > 2:
dim(Isolog™) = p(n) < dim(ﬁlsolog(n)) =21 (6.47)

with p(n) denoting the number of partitions of n.

6.5 The bialgebra ‘Iso and its two bases D&* and Da™.

The embedding Isolog < *Isolog prompts us to similarly embed the bigebra
Iso in a larger Iso endowed with two bases D&, Da® analogous to (6,
(e . Here again, the relation between the ‘natural’ system {De*} and the
actually more practical system {IDDa<°>} is via the familiar moulds sa®, cosa®:

D& = DE o sa® (6.48)
D = Da® o cosa® (6.49)

To D™ and Da™ we assign the iso-degree |n| := ny + - - - + n,.
The product rule is still symmetrelity resp. symmetrality :

D™ x D™ = YT D (6.50)
neshe(n’,n’")
Da™ x Da™ = Y DA™ (6.51)

nesha(n’,n")

but the rules for the co-product ¢ and the involution ~ undergo a drastic
simplification:

o(DE™) = Z D™ @ D™ (6.52)
o(Da™) = > Da™ @Da™” (6.53)

B = (™Y 3 Bt (6.54)

I<spl..n®=n

Ba” = (=1)"™ D&™ with (ny, ne) = (ny,.onsmr) (6.55)

The action de @ on *Iso is patterned on its action (6.41),(6.42) on *Isolog:

—8De<"> _ Z (nj+|n//|> <]D)e<n/71,’nj7n//> n ]D)e<’n/71+nj,n//>> (656)

n'nyn”=n

—8]D>a<"> _ Z (nj+‘n//|)]])a<n/71,nj7n//> —1—2 n; ]:D)a<'n,/’1+nj7n//> (657)

n'njn"=n n'nin"=n
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To actually embed Iso in *Iso we must indicate a self-consistent way of cal-
culating the expansion praj(D) resp. prej(D) of any D € Iso in the basis
D™ resp. D&, This is done by the induction formulae

praj (DoY) = Vo praj(Dn™)  ; prej (D™} = ¥V prej (Do) (6.58)
praj (D04 = V, praj (DS™) 5 prej(Dst0h) = v, .prej (D) (6.59)
supplemented by the initial conventions:

pmj(Dn{l}) = pmj(Ds{l}) = Da? = D& =: prej(Ds{l}) =: p'r’ej(Dn{l})

In the above induction formulae, the derivation V acts like —0 on the el-
ements of both bases, i.e. according to the formulae (6.41),(6.42), while
the derivation V, acts like —0 + %]D)a<1>]deg on the Da™-basis and like —0 +

%]D)e<1>ld6g on the D& -basis. In particular

V. D (ny __ |’I’L”| — |n/| n'/,1,n") ', 1+n;,n"
*a—ZTDa +an]]))a’3
n'n” =n n'njn’ =n
We may note that the operator D&% = D& = Dn'" and the opera-
tor Da® = 1/2Dé¥ = —Dn® — 1/2DnDn™, which coincides with the
Schwarzian derivative™ | are true differential operators, but, starting from
n = 3, none of the ‘hyperschwarzians’ Da™ = 1 /n DE™ are.

6.6 Action of Iso on the group GerE>.

In the next section, the embedding Iso < *Iso is going to yield a new notion of
convexity, uniquely adapted to germ composition. For the moment, however,
the elements of #/so are only convenient symbols, meant in the first place to
simplify the expression of ¢ and ~. The first step in turning these symbols
into genuine operators is to define, in a consistent manner, their action on
E, L and Ty:

De<m"”’nr><$ + Oé) = 0 (660)
D) (exp ) =(—1)" Yr>1 (6.61)
]D)e<”17 Mr) (logz) = 0 Yr>2 and ]D)e<n1> (log I’) =g ™ (662)
Da™ " (2 4+ a) = 0 (6.63)
_1)7"
]D <n1, ,nr> = *1 r Npyenny N1 = (
a (exp z) (=1)" sa ny (ny+ng)...(ni+ ... +n,)
x—(nl-‘r-n‘f"nr)
Da<"1""’"r> ( log T ) — x—(n1+-..+m-) g =

™Indeed, Da f = —fc—l,' and Da? f = ?—/,” — 3 (L2



and then to extend the action of #so to the whole group Gerp> = Garr>
by using the composition rule derived from the co-product (6.50),(6.51):

D™ (fy 0 f1) = Z (D7 fr) (D1 fo) (f) 4 (6.64)
J

Da<n1""’n7'>(f2 of) = Z (Da<n1""’nj>-f1) (Da<nj+1""’m>-f2) (fymtetr (6.65)
J

This leads in particular to

D™ g () = 0 (6.66)
De<n1,---,nr> Wp(x) _ (_1)T (pm ,,,,, = pnz ..... r) T (667)
D€<n1""’n’">9p,c(£li) (_1)7" (pm AAAAA r_ pnz AAAAA r) M (6.68)

with the usual definitions

ap(x) i=ax +b, mp(x) =2, ,.(x) = (c+ J,’p>% =z(l+ gxp +...)
However, the action so defined on G g~ is not continuous, for the formal
topology of G.rg~. It does not even become continuous when restricted
to the subgroup consisting of power series, as one can easily show based on
(6.68).

So, to make sure that the action defined by the above rules is consistent,
we need to show that all identity relations in the group G.r g~ are generated
by the identity relations between similitudes o,;. Now, when the first draft
of this paper was completed, in January 2016, we knew of no such result.
But in the meantime a remarkable result by D. Panazzolo has appeared [P]
which, if we are not mistaken, implies exactly that.”™ So, at least on the group
G<r p>, we have a consistent (albeit non-continuous) action, not just of the
iso-differatial operators, but also of the far more numerous iso-differential
symbols.

">Panazzolo actually establishes the existence of a normal form for elements of the
groupoid generated by the exponential and all complex similitudes z — a z + b. He has
to work in a groupoid in order to accommodate all complex similitudes with their distinct
fixed points, but since we are interested here only in the real similitudes and +oo as their
common fixed point, we may rephrase his results in the more familiar setting of groups.
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7 Iso-convexity and the extremal basis Dal*).

7.1 The positive cones IS0 < tISO0.

The positive cone IS0 < tISO, consisting of all elements of the form
D en Da™ with non-negative coefficients ¢, is trivially stable under both
the product x and the co-product o, and this double stability automatically
carries over to the positive cone ISO* := fISO" A ISO consisting of dif-
ferential iso-operators. The real surprises begin when we start looking for
a natural basis of ISO*. Such a basis — the “extremal basis” — not only
exists, of unimpugnable naturalness, but it enjoys a whole string of improb-
able properties that find their reflection in remarkably explicit formulae —
none of which would survive if we tinkered ever so slightly with the defini-
tion of ISO™, for instance by replacing sa® in (6.48) by any other symmetral,
positive valued mould.

7.2 The extremal basis. Main statements.

For any non-ordered sequence of the form

n} = {n,no,....n} = {m{™ m{? . ml) (7.1)

with <Ny <---<n, and m; <mg <--- <My (7.2

the multiplicity correction p{™ is defined as

1
d = T T (7.3)

1<j<s

and we denote m resp. m the ordered sequence obtained by arranging the
elements of {n} in increasing resp. decreasing order. If m is an ordered
sequence, o denotes the same sequence with its order reversed. Lastly, for
any t € R we set:

O :=1t] o t>0 and (t)":=0 4 t<0 7.4)
(t)" :=|t| if t<0 and ()" =0 4if t=0 7.5)
Alongside Da™ and Da™ we also require the variants:
{n1,....,nr} (1501
%{nl,...,nr} = Da™ DLa(nl,.“,nD . Da™ (76)

[T(1+n)! T TIn, (T+ny)
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Proposition 7.1 (The extremal basis.)
For each ny > 1 there exists a unique iso-operator Da™ = (ny+1)!Da™ in
the positive cone Dat < Da' werifying the normalisation condition

Dal™} = (n, — 1)ID&™ + ... < Dal™ = Da®™ + . (7.7)

and characterised by either of the following properties:

(i) among all iso-operators so normalised, Da™ and Dal™} are least elements
in the cone Da™

(1) the expression of Dal™ resp. Dal™ in the basis Da™ resp. D&™ involves
no weakly decreasing sequences n = (ny,...,n,) of length r = 2.

The system Dal*t or Dal* constitutes the so-called extremal basis of ISO.

Proposition 7.2 (Analytical properties of the extremal basis.)
The elements of the positive basis are given by Da"t = 2Da™ := Dot and
by an induction rule

Dal™ = —gDa""Y — Z kagny pi™ Da™ (7.8)
In|=n

(1+n)Da™ = —0Da" ™ — 3 kay, p™ Da™ (7.9)
|n|=n

imwvolving non-negative coefficients kag,, of simple multiplicative structure:

kg, = (r1—1) (=14+n1) " (=14n3—ng) " [ [ (=14m1+.. . +nj_1—ny)"(7.10)

2< <r

Here r1 denotes the multiplicity of the smallest element in the non-ordered
sequence m. As a consequence, ka, is > 0 if and only if

ni=ny=2 and mny+ng+---+n;_1=2+n,; (7.11)

The expansion of the Da™ Dal™ in the Da™ basis:

Dal™ = Z Z tan,, ... DM (7.12)
I<rn=ni+..4+n,
Da = > > ta, , D" (7.13)

I<rn=ni+..4+n,

as well as the expression of the involution ~ : Dal™ — ﬁé{n}

~{n}

Da = = fag, p!™ Da™ (7.14)
N{n} n n . r(n
Da = fag, p™ Da™ (with  fag, = (=1)"™ta;,) (7.15)
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or again the formula for the co-product™ o : Da™ — g(Da™)

(Da{n} Z hap) (q) M{p} Da?” ® M{q} Dal® (7.16)

Ipl+lg|=n

(Da{"} Z hag, o u{p} Dal? ®,u{q} Dal? (with hag, oy = t—%ﬁ)

|p|+lg|=n

also involve non-negative integers’® ta,,, fag,,, hag, 1, but the only structure
constants with a transparent factomzatzon are those coefficients ha{p} g Jor
which one of the sequences {p} = {p1 < pa < ..} or{q} ={q < ¢ < ..} is
of length one:

hag, ) = (—p1)" H (@ +pr+pet...+pia—p;)" (7.17)
25j<r

hag, ) gy = (P1—a) H (m+a+@+..+ga—q) (7.18)
2<j<r

Proposition 7.3 (Expression of the general structure constants.)
Due to the normalisation rule, ta, = 1. For r = 2 there are two logically
consistent ways of calculating ta,,. One is the rightward induction

t_an = Z Z m’{|nl|,.,.,|n8|},{nr} t_anl .. .t_ans t_am (719)

1<s<r {n'..ns%n,;}={n}

which expresses ta,, as a superposition of the special coefficients hag,
as factorised in (7.17). The other is the leftward induction

t_an = Z 2 ha{n1}7{‘n1|7m7|ns|} t_anl t_anl .. .t_a,ns (720)

1S5<7 {n1.nt.n}={n}

yeesDr )y {qi}

which expresses ta,, as a superposition of the special coefficients hag, 41
as factorised in (7.18).

The coefficients ta,, in turn yield direct expressions for the general struc-
ture constants hag, (o and fag,

hag) @ = gy (7.21)

fag, = (-1)™t (7.22)

with ordered sequences (1;, q made up of the elements of {p}, {q} arranged
in decreasing order.

"6Recall that o is co-associative, but not co-commutative
"Texcept fag,, whose sign is that of (—1)"(")
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7.3 Complements.
Remark 7.1 Multiple co-product.
The preceding Propositions amount to the calculation sequence:
special hagg oy = general ta, = general hag, (7.23)
In fact, the general ta, also yield the structure coefficients

L I B N

(7.24)
attached to the multiple co-product

O'sjl(m{n}) = 2 @{nl},{nz},...,{ns} ,Unl %{nl} c. u"s D_a{ns} (725)

[nt|+..|n%|=n

Remark 7.2 Inductive calculation of the structure constants.

Let us examine how the induction scheme (7.23) works up to r = 4:

mnl =1 (v nl)
ta, n, = h—a{m}ﬂ{ﬂa} ta,, ta,, = (n2 *nl)—k = (n1—na)”
t—an17n2,n3 = H t—a’nl ,nN2,N3 =

+ha’{n1 na}fng} B, 8y, Wy, | +ha{n1} {na,nz} & ta,, ta,, ta,,

Fha g, ot s} By g T8y | +hag, 1 tnying) t8n, 185, 0,
Y, s ngns = L
+h—a{"17"2:"3}:{n4} ta,, ta,, ta,, ta,, H +ha{m} {naingna} Bn, 1, oy,
Fhag, 1, not (na) 8, 0, 10, 2, [ Fhag, 1 fnptng na} 8, 180, o, 185,
+ha, ins not ) 8y g B0, 12, | Fhag oo ta, ta,  ta
Fha g o1t ) g g 800, 12, | hag o o ta, ta, o tay,
+ha{"1+ﬂ2+ﬂ3} {na} By ngng W, [ +@{m}v{n2+fn3+n4} tay,, Wy, ny

In general, the vanishing terms predominate in these sums.

Exercise: write down, then directly check, the compatibility relations for
the right- and leftward induction.

There also exists a more general induction that covers both the right- and
leftward inductions as special cases. It goes like this:

1<s1<r1 1<so<r2 1=81 Jj=s2

ta, o= O D bagpe gt ,wnﬂta Hta (7.26)

pl...p®l = pqt...¢q°1 =g¢q
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Remark 7.3 Recurrent patterns in the structure constants.

Let us introduce the auxiliary expressions:

Ooor,ior = (wo —w1)(wo + w1 —wa) ... (wo+ ... + wr—1 —wy) (7.27)

(ery = (wo — wi) M (Wo + w1 —wa)?® .. (wo + oo+ wrg — wy)(7.28)

wr

O ) )

wq wy /7

with w; € R and t* defined as in (7.4)-(7.5). The plain coefficients (7.27)
have an obvious Lie algebra interpretation:

O oroo, €OTHENZ G = [T [627 0, [¢7 0, €07 ]]...]  (7.29)

but it takes the sign-modified coefficients (7.28) to express the basic structure
constants of the bialgebras ISO < #ISO. The formulae read:

@nhnz,...,nr = 0 Zf n, =1 or mp =ng--- ="My
By = Oy Dty ot <y
hao,  piay = 00 el ) (1 <pa-- <pr)
bag ) gy = O () (< <)
Kag nyny = (11—1) 9(_*1) (oD N R s PR G (n1 <ng- - <n,)

These are in effect the only fully factorable structure constants, but from
them all others can be recovered under the induction rules (7.19),(7.20),(7.21).
Regarding the first identity, we may note that, due to the condition n; +
... Myp—1 < n,, the summands in the expansion (7.19) of ta,, (“rightward in-
duction”) have non-vanishing ha, 1, i-factors and, depending on the relative
sizes of nq, ..., n,_1, varying mixtures of vanishing or non-vanishing “earlier”
ta,-factors. Remarkably, this composite make-up does not prevent the global
ta,, (i.e. the one on the left-hand side of (7.19)) from admitting a full and
uniform (i.e. case independent) factorisation.

Remark 7.4 Relations between ta, and fa,.

The involutive nature of the transform Da — Da has for analytical expression
the following ™ relation (7.30):

~
2

{e = f_a{o} © f_a{o} (730)

(_1)7"(') = f—a{o} © mo (731)

—+

[ 24

Bwith I{nl} ;=1 and I{nl ne} i= 0ifr>2.

aaaaa
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The relation (7.31), on the other hand, reflects the expansion (7.13) of Dal*)
in the basis Da®, combined with the expression Da® (—1)r) Da’®” of the
involution ~ in that basis (see (6.55)).

Here, o denotes as usual the mould (or comould) composition,”™ but since
in both cases the first composition factor, namely fai,,, carries non ordered
sequences {e}, the sums on the right-hand side of (7.30) or (7.31) should
extend to all partitions® of {e}. Thus, for r = 3, the identities (7.30) and
(7.31) read:

0= | (=1)° tan, nym, =
+f—a{nl +ng+ns} f—a{nl n2,n3} H +f—a{n1 +nz+nsz} t—am n2,n3
+f—a{n1,n2+n3} f—a{nl} f—a{n2,n3} H +f—a{n1,n2+n3} t—am @nzn:s
+f—a{m,m +n3z} f—a{m} f—a{m,ns} H Jrf—a{m,m +n3} t—an2 mm,ns
+f—a{n37n1 +na} f—a{n:s} f—a{nhnz} | +f—a{n3,n1 o} Wy By,
+f—a{n1,n2,n3} f—a{nl} f—a{m} f_a{m} | +f—a{m,n2,n3} ta, ta,, ta,,

One may note the absence of the multiplicity correction p* in (7.30) and
(7.31). Moreover, for n weakly decreasing, all partial ta,,: factors on the right-
hand side of (7.31) also carry weakly decreasing sequences n® and therefore
vanish unless r(n?) = 1. That leaves only a single non-vanishing summand,
namely fag, ., .ta, ...ta, , so that in this case (7.31) reduces to (7.22).

s 20

Remark 7.5 Mould inversion and sign change.

The relations (7.30), (7.31) are vaguely evocative of other relations verified by
an important pair (sofo®, musofo®) of mutually inverse, symmetrel 3 moulds
that, just like fag,, ta,, are also ‘product- and sign-based’ :

sofo™ " 1= (—1)" 1_[ o (x + -+ +xy) (7.32)
1<j<r
musofo™ %" 1= (=1)" o (z,+ - +1,) H op(xj+ - +2,)(7.33)
2<j<r
1* :=sofo® x musofo* (7.34)

with oy (t) ;=1 if £¢t>0and ou(t) :=0 if £t <0.

see §6.3.

80The number of all partitions of a set of r labelled elements is known as the Bell number.
The first Bell numbers are 1, 2, 5, 15, 52, 203 etc. Ordinary mould composition involves
fewer summand, namely 271

81Symmetrelity holds only if we regard the moulds as distributions on R. If we view
them as defined on Z, symmetrelity fails on certain negligible subsets z; + ... + z; = 0.
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Remark 7.6 Amplification-specialisation.

The very special role played by the indices n; = 1 in many formulae®? makes
it tempting to look whether we might not gain in simplicity by replacing
the Dal® basis of YISO by the basis Daa™ resulting from the amplification-
specialisation transform

Aq eeeyens ar (d1) (dy) )
amp]Da<"1 ....... ) — Z Dm0 0 H (aj + o+ CLT)dJ (7.35)
2<n;,0<d; 1<g<r
. <'r:1 ....... 7727,7«> s
= Z Daa' 1 - r 1_[ (a;)™ (7.36)
2<n;,0<m; 1<j<r

which turns the symmetral Da® into a symmetral Das® via the equally
symmetral ampDa<'>. On closer examination, however, it turns out that we
would gain nothing from switching to Daa™ .

Conclusion.

All the lemmas in this and the preceding section can be established, roughly
in the order in which they are enunciated, by resorting to the standard meth-
ods of mould calculus (conservation/transformation of the main symmetry
types etc) and, in nearly all cases, by reasoning inductively on the length r of
the mould components. The main surprise, once again, resides in the highly
improbable properties of the extremal basis, such as the prevalence of integer
structure coefficients where one would expect rational ones. Regarding appli-
cations, those pertaining to the universal asymptotics of slow-growing germs
are summarized in §6 and treated at greater length in [E5|, chapter 7, pp
287-303, though with slightly different notations.®3 As for the vast subject of
iso-convex functions and iso-differential equations (as an alternative means
of enlarging our composition groups), we leave it open for now.

8 Up to w”: the ultra-exponential scale.

This section is devoted to constructing the minimal systems or ‘towers’ of
fast /slow growing germs necessary for compositional closure® — notably for
the conjugation of germs of unequal exponentiality and for the continuous
iteration of germs of non-zero exponentiality.

82for instance in the derivation rule (6.57) or in the induction rule (7.11) or again in the
fact that ta,  , =0 whenever n, = 1.

83with Post instead of Iso, post-homogeneous instead of iso-differential etc.

84which of course does not mean closure under composition, but closure under the solving
of all (meaningful) composition equations.
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8.1 Towers of ultraexponentials and ultralogarithms.

A tower L (resp. €) of ultralogarithms (resp. ultraexponentials) is a sequence
of slow-growing (resp. fast-growing) germs

L = (ﬁl,ﬁg,ﬁg,...)

E = (£.86,8,...) with L,0& =1d (8.2)
such that

LioFEo& =T ; LioLo& =711 (8.3)

Er OCr-10 gr =T ) ET © »Crfl © gr = TO(il) (VT = 2) (84)

The induction automatically implies that each &, (resp. L,) grows at a
faster (resp. slower) rate than any finite iterates of &,—1 (resp. £,_1).
To alleviate notations, we often write:

Eng 1= Eﬁk 0 Lok = Eflk i Enk = Lok (VneN, keZ) (8.5)

8.2 Central indeterminacy. Growth types.

The functional equations (8.3),(8.4) determine each succesive pair {&,,, £, } in
terms of the preceding one, but only up to pre-compostion of £,, by a smooth
1-periodic germ P (i.e. such that T'o P = P oT') and post-composition of
E, by P,

To be able to look on all these competing determinations as one single
object, we quotient the semi-group of smooth, slow germs (i.e. germs of

exponentiality k& in —N*) by the equivalence relations @,

() 1 ()
fi~fo = Jea,0 st 0<c < T, <<+ (x» 1) (8.6)
[ (z)
Each ¢ may seem to be stronger than (1:1)7 but in fact only Y is stronger
than <. From i = 1 onwards, all 9 are of equal strength. That readily

follows from the universal asymptotics of slow functions (see §6).

For slow germs the following implications hold:

f1(2~)f2791(i)92 = f1091@f2092 (8.7)
(@) x () px
h~fo = fi~[; (8.8)

The first implication means that the composition o carries over to the classes
[f]i of slow germs. The second implication actually means two things: first,
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that the class [f*]; of the iterator f* does not depend on the particular
solution of the equation f*o f = —1 4+ f* that we select; and second, that
it depends only on the class [f]; of the original germ. Thus, the operation
f — f* carries over to the classes [f];. These classes are known as growth
types of order 1.

By reciprocation, the semi-group of slow growth types induces a semi-
group of fast growth types, but the latter notion is entirely derivative on the
former. In particular, even for equivalent fast germs f; ~ fo and g1 ~ ¢o,
the ratios (f10g1)®/(f2092)? and (f#)D/(f)@ often vary too wildly to
remain within fixed bounds, even for ¢ = 0.

8.3 Geometric incarnation of the semi-ring [1,w"[.

For any growth type t with successive iterators t*, t**... and for any trans-
finite ordinal o < w* of expression:

a=wn,+w .1+ +wing + ng (n; € N) (8.9)
we define the transfinite iterate t* by
t* = ()™ o (t*)™ o ()2 o ... (FF)™r (order inversion) (8.10)

This actually defines on the whole semi-group of growth types a tranfinite
iteration that obeys the rules

(t*) o (t7) = ¥+ (order inversion) (Va,fb<w?) (811)
() = 8 (no order inversion) Va,p<w’) (812)

which (up to the order reversal in (8.10)-(8.11)) exactly reproduce the non-
commutative arithmetics of the semi-ring [1,w*|

This transfinite iteration carries over from the semi-group of slow to that
of fast germs®, with restoration of the ‘correct’ order in (8.10) and (8.11)
and preservation of the already ‘correct’ order in (8.12). But these slight for-
mal advantages count for little when weighed against the entirely derivative
character of the classes of fast germs.®

85hut of course not to the total group consisting of slow, moderate, or fast germs.
86n other words, the rules for fast germs read:

PO (t*..‘*)nr o... (t**)ng o (t*)vu ° (t)no
t*)o () = tleth) (Vo, B <uw®)
(ta)ﬁ — 0B (V a, < w“’)
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8.4 Some useful notations. Iterators and connectors.

This subsection is mainly for settling notations. Given a ultraexponential &,
and a germ f that resembles &, in the sense that:

stat.lim.,_, o LF o fo &F =&, (= expog f=1)

we produce a ° f—based’ ultraexponential &, of the next order by suitably
combining the normalisers of f at its fixed points +c0 and z( (which is often
taken to be 0). Here are the definitions:

Normalisation at x = +00:

ffof=Tof* ; fo'f="foT (expo f = 0) (8.13)

flof=Eof’ ; fo%="CfoFE (expo f =1) (8.14)

forof=Eof  folf="If0g, (expog, f=1) (8.15)

id = *foft = %fofo = o (3.16)
Normalisation at © = 0% :

flof=d.0ff + folf=1fod,  (c:=f(0)>1) (8.17)

IZE
flof=Tofl ; folf=TfoT U%m=@%£ﬁ)

id = Tfoft = ¥oft = Ofofd (8.19)

Normalisation at x = x{ :

fiof = ¢,z Ofi ; fo j;f = ifo(sc,xo (50,:00 i=Th00.0T ) (8.20)

flof=Tof' 5 folf=TfoT (ﬂmwzbgﬁitﬂm) (8:21)
Notion of f-based ultraexponential:

N froop | L= ooty (8.22)
Eoel—gllor | Wop—71ot0, (8.23)
Sﬁp=f%“7, Ll = oo (8.24)
EnolWl =Wl o | LW o, =TV o U] (8.25)

Periodic connectors: They are periodic mappings that measure the closeness
of two f;-based ultra-exponentials. Here is the definiton for n=1:

PP = o Ofio fl o 1y (8.26)
::571 oLoflo o fdotf, oFEod,, (8.27)
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gl o plintd _ gleel iy, plinkl o — g plins] (8.28)

For n > 1 this becomes:

PULEY . flo Onp o f0n o T, (8.29)
=6, 0 Lyo fiofioffno ifoE, 00, (8:30)
gt o P — gl it PYLRlo T = 1o PULS (8.31)

8.5 Construction of analytic ultraexponential towers.

We start with the ultraexponential £ := £Fr¢*r constructed by H. Kneser
(see §8.7 below) and choose a; large enough for the shifted ultraexponential
& =& oT_,, to have a largest fixed point z;. We then take the local
iterator & relative to that fixed point, as in (8.18), call the resulting germ
&V and repeat the process with ay large enough, leading to &. And so on:

EPe = Lheser g gPoT
g .= g&f — & =& oT,, —
gre .= &l — & =& 0T ., — .........

Instead of postcomposing by simple shifts, we may use analytic, 1-periodic
mappings P, with large built-in shifts®” leading to the modified construction:

EPC = gl g = g Y
ge=8 - L=
gre = g — & =EoPy Y
8.6 Action of the periodic towers on ultraexponential

towers.

Lemma (Conjugation averages).
For L slow and A, B identity-tangent (at infinity), the equation

AoLoB Y = HoLoHY (8.32)
admits a unique identity-tangent solution H = Jugav,.(A, B) with

Jugav,(A,B) := lim AoLoB°"Yofo(LoAoLoBTHog)™ o™ (8.33)

n——+aoo

87i.e. such that sup,|P,(z) —z| = a, » 1
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Since Jugav,(A,A) = A, we may view Jugav,.(A, B) as the ‘conjugation
average’ of A, B respective to L.

Proof: Since Ao Lo B°Y = Ao L with A = Ao LoB"Do& ~ id, it
suffices to show that the equation

AoL=HoLoH"Y (8.34)
admits a unique identity-tangent solution H = Jugav (A, id) with
Jugav (A, id) := nl_i)IJIrlOOA(ﬁ o A)" o En (8.35)

If the limit exists in (8.33), it clearly verifies (8.32): replace H and H°(~Y in
(8.32) by their expression (8.33) with n changed to m + 1 and m respectively,
and go to the limit. Moreover, if H := Jugav,(A,id) is ~ id, no other
solution of (8.32) can be identity-tangent. Indeed, we get the general solution
H ., by post-composing the particular solution H by real iterates of L:

Hyen = Hof = Ho&*o PVl g por*

For t 4 0, He, fails to be ~ id, and for ¢t = 0, the right-hand side above
reduces to H irrespective of the choice of the periodic mapping P.
H can be formally expanded as

H:=id+ ) a, with (8.36)

0<n
id+ap = A and (8.37)
id+ay+...a, = Ao (Lo A)" o & (8.38)

= Ao(LoAo&)o(LZ0A0EP) 0. . (L0 AE™)

But for any n, any € and any x large enough (x > Const(¢)) we have

(1—e) % > (L0 Ao (x) — x| = (1+ ¢) % (8.39)
with 0”@ ! ! (8.40)

axgon(x) < axgo(nfl)(aj) < go(nfl)(x)

So the composition product in (8.33) clearly converges to an identity-tangent
germ.

Let us also mention, for future use, the infinitesimal variant of (8.32)-
(8.36), valid for any pair (a(z) = o(x),b(z) = o(x)):

1
jugav,(a,b) = lir% — Jugav,(id + €a, id + €b) (8.41)
e—0 €
a o SOTL b o 80’)’1
= e - (8.42)
Laen bae
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Here again, the summation rules ensure that jugav,(a,a) = a.
Proposition.(The general ultralogarithmic tower.)
Let towers P of periodic self-mappings of R

P .= (P,P,Ps,...) with P.oT=ToP, (8.43)

act on ultraexponential or, what amounts to the same, on ultralogarithmic
towers:

Hp: L= (£1,£2,£3,...)|—>£= (§1,§2,§3,...) (8.44)
via the following induction

L :=H oLyo0 Hf(_l) with  Hy := Jugav, (P, id) (8.45)
L, :=H.oL,0oH"Y with H,:=Jugav, (P,,H,) (Vr=>2) (8.46)

or, more tellingly:

L= PioLl — HyofLioH™Y (8.47)
L = PoL.oH' = H.oL.oH Y (¥r>2) (8.48)

=

The sequence £ so defined is actually a new ultralogarithmic tower, and
conversely, any ultralogarithmic tower L is of the form Hp(L) for some
periodic germ tower P.

The operations Hp are stable under composition, and obey the rule

HP3,2 O HPQ,I = HP3‘2 OP2’1 (8.49)

with the second “o”

germ towers:

denoting the component-wise composition of periodic
{P3,1 _ P3,2 OP2,1} — {33,1 _ 33,2 o R?,l, vr} (850)

If P. =id+ ep, with p.(z + 1) = p.(x), then H, = id + € h, + o(€) with:

pro&™
o= ), e (8.51)
o= Oz ET™
gOTZQ 1<no gonl gonQ
hy = P20¢s ~ _Zplo ) (8.52)
0<n2 0z &3 0<n1 Oz (E7™ 0 E5™)
.................. 1<n+1 1<nrp ogon ogoniﬂ (.). .. o
hy = (=1 - (8.53)
2O N e e
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Remark 1: Up to ultraexponentially small, non-periodic perturbations, each
H, coincides with the periodic mapping P,. This is particularly apparent at
the infinitesimal level: in view of the summation rules in (8.53), these rela-
tions reduce to h, = p,+ small, with p, periodic and small ultraexponentially
small.

Remark 2: The operator Hp associated with a periodic tower respects
the cohesiveness of ultraexponential towers, but usually (always?) destroys
their analyticity. Conversely, the Witt tower connecting two analytic ultra-
exponential towers is usually (always?) non-analytic, but merely cohesive of
Denjoy class “ DEN.

Remark 3: Appearances to the contrary, the periodic mappings P, used in
§8.5 to construct analytic ultraexponential towers have nothing to do with
the periodic mappings P, that go into the making of the operators Hp. For
their action to be defined, the P, must have large enough shifts but, when
analytic, they always result in analytic towers. The P, , on the other hand,
can be any periodic mappings but, even when analytic, they do not respect
the analyticity of towers. But the real difference is this: while the P, acts
on the ultraexponentials as global functions on R (as soon as r > 1), the
operator Hp acts on the ultraexponentials as germs at +oo0.

8.7 Kneser’s analytic iteration of exp.

In [K], H. Kneser constructed not just a square root of iteration for the ex-
ponential (as the paper’s title announces), but also an analytic solution &
(real-analytic on R) of the equation F o & = & o T, that is to say an ana-
lytic first-order ultraexponential. His elegant construction relies on classical
Schroder iteration at the two complex fixed points of E closest to the real
axis, combined with a realness-restoring conformal transform. It can be du-
plicated in numerous other situations. But it is numerically costly, and in
any case, getting hold of analytic ultaexponentials & is of little consequence
in our perspective: it does not alter the fact that the immense majority of
germs with non-zero exponentialy will have, even relatively to this analytic
system of ultraexponentials, cohesive rather than analytic fractional iterates.

8.8 Analytic ultra-quasiexponential towers.

The ultraexponential towers constructed in §8.5, though exact solutions of
the system (8.3)-(8.4) of conjugation identities, have two drawbacks:
(i) The germs &,, L, extend to full isomorphisms of R only for » > 2, but
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neither for r = 0, since & = E, Ly = L, nor for r = 1, since the Kneser pair
Efneser - phneser does not map R onto itself.
(ii) They ultimately rely on the construction of the Kneser pair, which in-
volves a complicated conformal mapping and is computationally very costly.

So it is often convenient to consider instead ultra-quasiexponentials, which
exactly reproduce the asymptotic behaviour of the ultraexponentials; are
much easier to construct; and, despite verifying slightly different conjugation
identities, can advantageously replace the ultraexponentials both as mile-
stones of the ultrafast growth scale and as builting blocks of the trigebra of
ultraseries.

The aim is to construct pairs {Ev,, Lv,} of reciprocal ultrafast/ultraslow
germs that verify (i), (ii) and, optionally, (iii):
(i) Lv, belongs to the growth type [L]“"
(ii) Lv, and &v, are analytic close to +00 and extend to reciprocal analytic
isomorphisms of R* with no other fixed point than 0 and +o0
(ili) Lv, and v, are given at 0" by convergent, odd power series and extend
therefore to odd analytic isomorphisms of R with no other fixed points than
0 and +oo0.

The simplest way to produce such pairs {Ev,,, Lv,} is to start from a pair
{Ev, Lv} of reciprocal analytic isomorphisms of R* that behave like {E, L}
at infinity. More precisely, we demand that:

Ev(z) ~z at 0% | Fv(z) ~Conste® at +oo , FEv(z)>z Vx>0
Lv(z) ~z at 0° | ILv(z)~ log(z) at +o0 , Lu(z)<z V>0
Moreover, Fv and Lv should both admit simple, explicit expressions and Ev

should preferably be infinitely convex. This practically narrows down the
choice to

Choicel :  FEv(x)=e"—1 ,  Lv(z)=log(l+ z) (8.54)
n—1
Choice?2 : Ev(x)=xe® | Lv(z) =z Z %(—x)" (8.55)
o<sn
Choice3 : FEv(z) =2 sinh(z) , Lv(z) = arcsinh(z/2) (8.56)

For any given series of scalars ¢, > 1 we define two series Lw, and Lv, of
slow-growing analytic isomorphisms of R* by the following induction:

Lwy = Lyg = Lw and for n>=1: (8.57)
Lw,, = (Lwn_loécgl)i = kETm c* (Ewn_loécgl)Ok (8.58)
Lv, = Lvo Lw, (8.59)
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with d.(x) := cx as usual. Our germs verify:

Lo, (z) ~ Lwp(z) ~ @ (8.60)
Lo, (z) < Lwy(x) <x Y >0 (8.61)
[vn], = [Loa], = [L] (n=1,i>0) (8.62)
The local behaviour (8.60) at 0 is obvious. The global behaviour (8.61)

follows from the identities

x> (Lw, 00,1)(x) e > (Lwn 06,1)%(x) 2 > -+ > (Lw, 0 5051)‘3’“(:1:) ck
which easily result from a double induction, first on n, then on k. Regarding
the local behaviour (8.62) at +00, we may start from the relations:

Lwn, 1 = Ewy, 06,1 0 Lw, (8.63)
Lw,—y = (Ew, 0 Eo 57;1) o T°(-Do (84, 0 Lo Lw,) (v, :=logc,>0) (8.64)

which merely reflect the definition (8.58) of Lw,, and reason by induction
on n. The relations (8.62) with ¢ = 0 clearly hold for n = 1 . If they do for
some larger n, the growth types [Lw,| and [Lvn] = [L o L’wn] may differ,
but the growth types [Lw,"] and [Lv,’| of the iterators at +c0 do coincide *
and in view of §8.3 this growth type is exactly [L]g’"“. This completes the
inductive proof of (8.62) for i = 0; the case ¢ = 1 is proven along the same
lines; and the case ¢ > 2 follow on the strength of the ‘universal asymptotics’
of slow functions and the regularity of Fv, Lv and their successive derivatives
for all three choices (8.56)-(8.58).

8.9 Concluding remarks.
Universal asymptotics.

The fascinating subject of universal asymptotics for slow-growing germs,
briefly touched upon in §6.4 supra, is dealt with at greater length in [E5],
chapters 6 and 7. It has also, strangely enough, model-theoretical aspects,
some of which are discussed in [JvdH1], [JvdH2].

88Indeed, for any slow germ £, though the growth types of £* and (L o £)* differ, the
o(w"+1)]‘*’ _

growth types of the respective iterators coincide. Cf the related identity [[L]

%

n+1
[L]; , which simply reflects the identity (w™ + 1)w = w™*+1.
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The scope of ultraexponential indeterminacy.

The section §15 infra takes a closer look at the indeterminacy inherent in the
choice of the ultraexponentials &,. It shows, based on extensive numerical
data, that all the main natural choices, especially for &, are astonishingly
close to one another. This suggests that, their theoretical equivalence non-
withstanding, it would be somehow rash to look upon all the possible choices
within the equivalence class [€;] as being ezactly on the same footing,

The curse of the stair-case phenomenon.

In section §15 we also examine the staircase phenomenon. It says, roughly,
that the connector relating two condidates for &, constructed from two aux-
iliary functions such as exp(r)—a and exp(x)—b, tends to a staircase function
when b goes to +00 while a remains fixed. This dashes all hope of selecting
a privileged & based purely on real-asymptotic criteria. But on the other
hand, we also show how slowly the connector tends to the staircase regime.
This confirms the above remark about not all candidates & being on the
same footing.

9 Beyond w”: the meta-exponential scale.

In view of the sweeping closure properties that ultraseries appear to possess
(see towards the end of §10), the question as to what lies beyond the ultra-
exponential scale seems largely academic. So we shall be content here with
a few (unfortunately rather inconclusive) remarks:

9.1 Iterates of order o > w”.

Let {€,,n € N*} be a strictly increasing sequence of self-mappings of R*,
each of which grows ultimately faster than any finite iterate of its predecessor:

E.(r) < €i(x)  VYn=1,Yx>0 (9.1)
lim EF(2)/€(z) =0 VYn=1Vk>1 (9.2)
Tr—+00
Any series of the form
E(x) = Z €n Qiqj((;% (n<n',n<n", Zen < o) (9.3)

n=1

defines a self-mapping € of R* that ultimately grows faster than any &, or
indeed any element in the semi-group generated by the &,. Moreover, if the
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¢, are real-analytic or real-cohesive and generate a non-oscillating differential
trigebra®, they still do so after adjunction of €.

Consider now the reciprocal slow mappings £, and £. Recall that on slow
germs, equivalence classes [...]; have been defined®, which are stable under
composition and possess natural, unambiguous transfinite iterates [...]7* for
all orders o < w“. Using the construction (9.3) with &, := &, for some
coherent system &, := E n, we get, at the cost of the huge indeterminacy
implicit in the choice of {n’,n” €,}, a pair (&, £) that lies outside the previous
scale. So there is no incoherence in decreeing that (€, £) := (E,«, L,~). That
decision once made, the intrinsic notion of transfinite iteration of all orders
a < w¥ gives us, without further indeterminacy, all classes Lg for § < w?’.
Repeating the process, we can reach any reasonable ordinal w*, but at the
cost of a new {n’,n”, e,}-indeterminacy for each non-approachable ordinal,
i.e. for each limit ordinal S not of the form f'a with @ < w“. So, even
to reach such a small ordinal as w®” we cannot avoid indeterminacies, even
countably many — one for each w“™ (n € N*).

Thus we can partially?! incarnate the aritmetics of, say, [1,w“"[, in the
sense that:

[L.]io[Lsli = [Lgsy)i (inversion!) VB < w*” ¥y < w*” (9.4)

[Ls]:i™ = [Lp.ali VB < w but Yo <w?  (9.5)

However, here is a simple fact, not difficult to prove, that brings home the

hugeness of the indeterminacy:

For each coherent system {[Lg;, B < w“"}, there exists an equally coher-
ent system {[L%];, B < w*"} such that

[L5], = [Lsl, VB <w” (of course) (9.6)

[L5], < [Lww];, VB <w® I (9.7)

One obvious way of narrowing down the indeterminacy would be to bring our

mappings E, : RT — R* into close correspondance with one of the classical
hierarchies of mappings £, : N* — N*

Eyn) = n+1 (9.8)
Eyn(n) = (E,)"(n) (9.9)
E,(n) = E, (n) (for o limit ordinal | lim 1 o, = ) (9.10)

These hierarchies of integer mappings entail a much lesser degree of arbitrari-
ness, since they only depend on the choice of a fundamendal approaching

8%r < -ordered: see §.

Dsee §8
M partially, because in (9.5) o cannot exceed w®.
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sequence «,, for each limit ordinal o and since, up to fairly large ordinals,
there exists only one ‘natural” choice.

For each limit™ ordinal 3 (i.e. for each limit ordinal 8 not of the form '«
with a < w*), one would then define the real-to-real mapping Ejz by series
of the form

Eg, ()

Eg(x) = ZW (B, < B, lim 1 B, =lim1 G, =B) (9.11)

with triplets (5/,,n”, €,) defined ‘S-uniformly’ in a way that
(i) would conforms with the chosen hierarchy on integers: Eg(n) = E4(n)
(ii) and that would be coherent in the sense of being compatible with the
direct definition of Ej for approachable ordinals 3.9

The trouble, though, is that so far no natural uniform choice for the triplet
(Bl,,n", €,) has been found that would determine privileged i-classes [Lgl; for
non-approachable ordinals 5. Indeed, all uniform choices seem to select in-
terpolations of E4 between n and n + 1 that asymptotically tend to the good-

for-nothing ‘stair-case’ interpolation.

9.2 No all-inclusive quasi-analyticity class.

The existence of privileged classes [Lg]; on a huge transfinite interval would
correspondingly extend the range of canonical, increasing quasi-analytic Den-
joy classes °DEN far beyond the class COHES (sufficient for all purposes
of analysis, but still not ‘ultimate’) and take us closer to some notion of
‘all-inclusive’ quasi-analyticity class >~ probably a chimerical hope. So, all
considered, this would seem to be one more reason for doubting the existence
of a canonical system of classes [Lg]; for f = w®.

9.3 Non-oscillating extensions beyond the ultraexpo-
nential range.

Enlarging any group G contained in the ultraexponential range by adjunction
of a coherent system {E,, L.} with w* < a < w*, seems to be the only way
of guaranteeing a ‘non-oscillating’ extension G*™*, i.e. an extension where the
order < still holds.?

92

since Eg can then be directly defined, up to postcomposition by a periodic mapping,
from an earlier Eg«, (8* the largest non-approachable ordinal < ) by the universal
w"-iteration, first of slow growth classes, then of the fast reciprocals.

9see (2.48) in §2.7.

91Gee §1.2.

79



10 Ultraseries and their all-round complete-
ness.

10.1 Ultraseries and ultramonomials.

Whereas transseries carry only finite exponential iterates, ultraseries are per-
mitted to carry transfinite iterates, up to order w* (not included). This brings
two main complications:

(i) on the analysis side, as we saw in §8, there is an unremovable latitude in
the choice of the successive ultraexponentials &, = E“".

(ii) on the formal side, as we shall see in a moment, the clear distinction
between prime and non-prime transmonomials gets blurred, and instead of
one canonical representation for transseries, for ultraseries we have several.

Nonetheless, the well order survives, so does non-oscillation, and so too
does (once we have fixed a coherent system of ultraexponentials) the bi-
constructive correspondence between summable ultraseries and the associ-
ated germs.

Fortunately, there are few natural sources of ultraseries. Unlike with the
transseries, which crop up everywhere in differential calculus, there are far
fewer contexts that force us to resort to ultraseries: conjugation of germs
of unequal exponentiality, or again exceptionnally complex composition or
functional equations, but never differential equations. So we shall be content
with a very cursory treatment.

10.2 Simplification rules for ultramonomials.
Rule 1. Simplification inside ulraexponentials.

Whenever a large transseries S, = A, + B, occurs inside a strict ultraexpo-
nential & (r = 1), only the “r-large” part A, should remain there, while the
“r-small” part B,, characterised by

£08, oA,

Br<erss ~eoa (10-1)
should be ejected by means of the Taylor expansion
L e
E(A +By) = E(A) + )] — (€W A) (B, (10.2)

1<n

which automatically converges close to +c0.
Setting €., 1= g, Lr/&gn) o L, and using the universal asymptotics
of slow germs, we find that €.,_1 ~ €.,. As a consequence, the inequality
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(10.1) implies B, < (%ﬁ:)” and we easily get the right bounds to ensure the

convergence in the right-hand side of (10.2). %

Rule 2. Simplification inside ultralogarithms.

No logarithm or ultralogarithm L, (r = 0) should occur with an argument
other than the variable x or an ultralogarithm Ls(x) of equal or superior
strength (r < s).

In other words, ultralogarithms should occur only within finite sequences
of the form:

LMo Lo LM with 0<r <ry<--- <7y, 1<n (V) (10.3)

The restrictions laid upon the arguments of ultralogarithms are thus much
more stringent than those imposed on the arguments of ultraexponentials,
but they can be met by resorting (at most finitely many times) to the fol-
lowing six subrules.

Subrule 2.1: Simplification of £,.(A + B) with A > B:

The straightforward Taylor expansion £,(A + B) = L,(A) + ... does the
trick, without any convergence difficulty, since for any ultralogarithm L,,
analyticity on the real half axis automatically implies analyticity on a right
half-plane.

Subrule 2.2: Simplification of £,(A.B) with A > B:

L.(AB) = L,(A) +6,(A, B) (10.4)
= +AL.(A) log(B) + o(AL,(A) log(B)) (10.5)

with
0o(A, B) = log(B) (10.6)
0.(A,B) = k. (A,0,_1(A,B)) ¥Yr =1 (10.7)

9 Although the ultraexponential £, remains small only within a narrow stripe around
R* that tapers off very fast at +o0, the condition (10.1) of “r-smallness” means that
A, (z) £ B(x)i remains safely within that stripe as z grows. Unlike with the ordinary
exponential (r = 0), where “O-small” simply means “small”, with strict ultraexponentials,
“r-smallness” depends not only on r but also on the leading terms of the transseries .S,..

96Much more than that, in fact: it implies analyticity on a whole spiralling ramified
neighbourhood of oo on C,.
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and

n y"
R, y) = Y (LM 0 Ly)(x) o (10.8)
1<n '
Using the basic identity £ o £, L = L], we can rid the right-hand side of
(10.8) of all composite terms £ o L, 1 by expressing these as polynomials
in ]
ok Ll,l,ﬁﬁLl,...,ﬁﬁ@l B Y S SOk
r—1
Inductive proof of (10.4): Since Ly = L = log, the identity (10.4) is obvious
for r = 0, and the following induction takes care of r > 1:

L(AB) =1+ L,(L,-1(AB)) (10.9)
=1+ L (Lr_1(A) +6,_1(A, B)) (10.10)
=1+ L,(L,1(A)) + K,(A,0,_1(A, B)) (10.11)
= L.(A) + £ (A, 6:-1(A, B)) (10.12)

Subrule 2.3: Simplification of £, (A%):

This is not a special case of rule 2.2 (which assumed A > B) but an easy
variant. The same type of induction yields, with the same 6, as in (10.4):

L.(A%) = L.(A) +6,.(logA, «) (10.13)
= L,(A)+ L,(A) Alog Aloga + o(L](A) A log A log o)

Subrule 2.4: Simplification of L, ;0 L,:

»Cr+k: oL, = £r+k + &,k (10.14)
with {.q(z) = —1 (10.15)
and Ly, (z) = Kpyr (2, b -1 () (/f,, as above) (10.16)

L L
_ ﬁr o r+k r+k 1017
o, ) o1

Indeed, the identity holds for £ = 1, and for £ > 2 we have the induction:

LoipoLl, = (£r+k © 5r+k—1) o (£r+k—1 © ﬁr) ( )
=1+ Lou(Lrgrm1 + lrg—1) ( )
=1+ LokoLysp—1 + Krgn(lrp—1) (10.20)
= Lyyi + Krpr(id, 1) ( )
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Subrule 2.5: Simplification of £, ;0 &,:

Er-&-k o g’r = £r+k o 57‘+k—1 © £r+k—1 © gr+k—2 -0 £r+1 © gr

=ToL, 0T oL, p_10--0T oL, (10.22)
/ /

= Loy + E 4 o) (10.23)
r+1 r+1

Compare (10.17) and (10.23).

Subrule 2.6: Simplification of £, 0 &, :

Er © 5r+k = Er © gr+1 © £r+1 o €r+2 -0 ﬁr-i—k—l o 8r+k
=& 10T 10& 90T y0---0& poT 4 (10.24)

10.3 Several competing presentations, but one well or-
der on ultraseries.

The main difference with transseries is Rule 1, which permits the ejection, not
of all small terms, but only of the r-small terms, thereby removing the clear
dichotomy between prime and non-prime ultramonomials. The above rules,
however, taken together, are sufficient to compare ultramonomials pairwise
and thus to ensure a well order, and this is what really matters.

With some extra work, these reduction rules also lead to canonical ulra-
monomial expansions for ultraseries, but there are several competing choices
here, and for each of them the full reduction procedure is pretty clumsy.
In practice, there is no need to fully reduce our ultraseries (taken in the
form which they naturally assume as algorithmic solutions of functional or
composition equations), but only so far as necessary for mutual comparison.

10.4 Integration of ultramonomials.

Like with transmonomial integration (see §3.5), ultramonomial integration
a — A = 07'a generates resurgence relative to a critical time z, given by

2o = stat.lim,_, (‘ log Z/(z) D (10.25)

The relation resembles (3.23), with £, in place of L,, and here again the limit
is ‘stationary’: for two large enough values of r, the germs on the right-hand
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side of (10.25) become equivalent at co. Concretely, this yields:

1
70 = |loga(x)| if 1 <tim2U®) (10.26)
log x
1
vo = loga i 0<tim 28U (10.27)
log
Here is an example analogous to the one of §3.5:
A'(z) = a(z) = L'(x)b(x) with expo(b) < —4 (10.28)

with a very slow germ £ in the growth type of [L]”, with v = W™ ngy + -+ +
wng.

L=LoL)o. L) 0<r<re<..<ry, n;>0) (10.29)

As for b, it may be large or small, but must have an even slower rate (of
growth or decrease, as the case may be) than £. For instance:

b(x) = (Lo(@)™ (Loy(2)™ (Loy(2))™ (ro<rh <rh) or
b(flj’) = gr(’)((‘crf)-&-r’l(x))gl ('CT6+T’2(:E))B2 (‘Cr()-&-rg(x))Bg) (ﬁl > O)

The critical time here is g = L(L(x)): it belong to the growth type of
[L]*'. Relative to this critical variable, (10.28) becomes

Ap(xo) = €™ bo(o) (Ao(wo) = A(z) , bo(xo) = b(x)) (10.30)
The formal solution is given by
AO(ZE()) = e"0 Bo(l’o) = " (]_ + 810)_1 (bo([Eo)) (1031)

with (1 + 0)~! expanded straightforwardly in positive powers of 0, and the
sum is given by the Laplace transform

Bo(&o) = (1 — &)™ bo(&) (10.32)

The definition of by here is unproblematic, since the monomial bo(xg) =
b(E(E(z0))) is automatically subexponential in xy, and Laplace summation
too is unproblematic, since there is only one singularity on the positive real
axis in the Borel plane.

84



10.6 Further remarks.

Resurgent ultraseries and their displays.

The above example (10.31)-(10.32) shows that the display DplA is going to
depend on the initial choice of ultraexponential tower, since the real residue
bo(1) in (10.32) clearly depends on it. This is a general feature: the displays
of resurgence-carrying ultraseries depend on the choice of ultraexponential
tower underlying the construction.®”

However, any two exponential towers are connected by a periodic Witt
tower (see §8.6) and, based on these, one can produce conversion formulae
for the corresponding displays. These formulae show in particular that the
independence relations implied by the displays do not, unlike the displays
themselves, depend on the choice of ultraexponential tower.

Sweeping closure properties.

The variable and/or the unknown germ could even be allowed to sit inside
the iteration orders of our functional equations — and we still would have
closure! In fact, it is hard to think of meaningful problems in analysis that
would take us beyond the range of ultraseries, with w® as natural upper limit
for the iteration orders.

11 Composition equations: resurgence and
displays.

This and the next two sections take up the subject of general composition
equations and also, occasionally, composition systems. Though these prob-
lems make sense in the general transserial setting, we shall restrict ourselves
mostly to germs expressible as power series (often identity-tangent ones), not
only to avoid unnecessary — and on the whole notational rather than sub-
stantial — complications, but also because this more familiar setting already
presents us with the typical difficulties inherent in the subject and with the
main methods required for overcoming them. Moreover, since our data and
unknowns, though still real germs and defined as usual on [..., +oo[, will ex-
tend to sectorial neighbourhoods of +o0 in C,, we shall revert to calling 2

97to the extent that one and the same ultraseries may be convergent or divergent de-
pending on that choice: think again of A in (10.28), which will be convergent or divergent
according as the residue 30(1) vanishes or not, which again depends on the choice of
ultraexponential tower.
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the variable (in multplicative plane) and ¢ the conjugate variable (in the
convolutive or Borel plane).

11.1 Composition equations: alternance.

For the most general composition equations, i.e. for equations of type T
(see at the beginning of §1.1), there exist various notions of k-alternance,
which roughly measure the number of free parameters present in the general
(oscillation-free) solution. But all useful definitions agree in assigning 0-
alternance to the “positive” composition equations (i.e. those of type T3),
1-alternance to the conjugation equations (type 73), and k-alternance to those
very special equations involving k imbricated commutators:

{"'{{f7f1}7f2}7"‘7fk}:fU with {f7g} ::fogofilogi]-

For a thorough discussion in the case of “twin” equations, see [EV]. In any
case, the present section is devoted to 0-alternance equations, whose defini-
tion is entirely unproblematic.

11.2 Composition equations: resurgence and displays.

Let us examine the general O-alternance composition equation with data g;
real-analytic at +o0:

W(f) = id (11.1)
W(f) == f™og,...f™og  (mieZ, ) mi+0)
The factors g; are given, and the unknown f is sought, of the form:

gi(z) =z4o0+¢i(z) =z+oi+mz 4.0 (Yi(2)e0(z"h))  (11.2)
fz)=z4+0+¢(z) =z+0+72"+...  (p(z)e0(z"")) (11.3)

1

with a real shift o := — > 0,/ >, m; and a real residue 7 := — > 7,/ > m,.
Crucial to the discussion are these two exponential polynomials:
a;

Sw () = Z sgn(m;)e’ r o Z s; €% (s;i€Z,c; € R)  (11.4)

1<i<r I<i<my

zk ;!
Tw(\) = Y sgn(my)e™ ry e = > e (teR,a;eR) (1L5)

1<i<r 1<i<msy
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with
Sw(0) = si+-+spr=mi+-+m £0  (me <Y |myl)  (11.6)

Timr = (M4 .+ 7))+ ( + o+ mi +mf) T (11.7)
Oimr = (01 + ..+ 0i) + (M1 + ..+ M +mj) o (11.8)
*

Here, each m ranges through [0, m;—1] or [m;, —1] depending on the sign
of m;, and m* is the number of distinct frequencies o

The second exponential polynomial Ty () is also second in importance.
It merely determines the ramification factors 2™ in the parameter saturated
solution f(z,u) of W(f) = id. It vanishes when all residues 7; vanish, in
which case there is no ramification.

The first exponential polynomial Sy (\) is the one that really matters,
because its roots \; determine
(i) the nature of the exponentials in the saturated solution of W (f) = id
(ii) the location of the singularities in the Borel plane
(iii) the set of active alien derivations.”®
The roots A; of Sy (A), with j running through an enumerable set 7, are all
+ 0 (due to (11.6)) and located within a vertical strip A\_ < RA < Ay (due
to a; € R).

Let us at first make the (generically fulfilled) assumption that the \; are
linearly independent, or rather the weaker assumption that they are non-

resonant, i.e. verify no finite identity of the form

N, = an Aj o with  0<n; and an <+o (n;eN) (11.9)
J J

Let us also assume, for now, that each \; is a simple zero of Sy (A) = 0.

Proposition 11.1 (Generic composition equation of 0-alternance)
Under the above genericity assumptions, the composition equation (11.1) has
a unique parameter-saturated, normal * solution of the form

flzu) = f(z) + Zun e? fulz) with u™ = Hu;” , w=<mn,A>(11.10)

with m running through the set JY of all J-indexed, finitely supported,
integer-valued sequences of the form m = {n;|j € J,n; € N,Xn; < oo}
and with generically divergent, but always resurgent power series

~ _ Ry (\;
falz)ez=mP> C[[z71]] <<"7P>=Z njpj . pji= A S’—/\])> (11.11)

w ()

98That is to say, the set of all A, liable to act (with a non-vanishing result) either on

f or on some of its successive alien derivatives.

99The normalisation condition is f,,; (z) = 2#7 +0(z#7). It bears on the pilot components
fni(2) preceded by the factors u; e*i?.
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whose ramification factor zPm = z=™P~ is always =1 when the residues 7,
vanish.'%

The resurgence support ) contains the additive semi-group €, generated
by the \;, but is larger than Q.: it also contains all elements of the form
A — Aj, with Ay € Q.

As usual, all resurgence properties are accounted for by the Bridge Equa-
tion, which here asumes the form:

~ ~

A,f(z,u) = Auf(z,u) (Vwe) (11.12)
with A, = e “% A, (as always)

and A, = u" ZAZJ u; Oy,  (Yw=<n,A>e ) (11.13)

or A, =u"ALo, (Vw=<nA>-X\eQ-Q,) (11.14)

The component-by-component interpretation of the Bridge Equation yields
WA fu(2) = (DAL g 0y) u™ fon(2) (11.15)

with n’ = n + n” to ensure the simultaneous elimination of the exponential
terms and w-factors. Fventually, 11.15 reduces to the identities

Ay Ju(2) = (N0 =) AL) Jn(2) with & =<m, x> (11.16)

with only a finite number of terms on the right-hand side.
In the special case n' = 0, we have the identities

~

Ay, f(2) = Al fri(z) with vy=—X;, n?={nl|n]=0] ieJ} (11.17)

~

with a single term on the right-hand side.*®* Lastly the displays of f(z,u)

~

and f(z) are given by:
Dpl f(z, u) = f(z, u) + Z Z 2 Ay A, f(z, u) (11.18)

r w;EQ

~

F)+> 3z [Ay, A, f(zw)],_,  (11.19)

T w;ef)

Dpl f(2)

Sketch of the proof:
First, a few words about the interpretation of the Bridge equation. Although
(11.16) and (11.17) show that only alien derivations A, of a very special sort

100The scalars p; in (11.11) are well defined. Indeed, Sj;,(A;) & 0 since we assumed all
zeros of Sy, to be simple.
101pdo is the sequence {n;; nj, =1, n; = 0 if j % jo}-
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can act (eﬂectively) on any given fy, yet for any w, € O, — 2, a derivation
chains A, Aw1 with Y w; = w, can always be found that will act effec-
tlvely on f or fn As a consequence, in the Borel plane the functions fn( )
or f (Q ) generally possess singularities over all points of €,, — €, resp. —(,.
Moreover, barring the exceptional cases when some of the special (and pair-
wise commuting) operators A, = AJ 0, (with 7; = —);) have vanishing
coefficients A{;j, the identity!'%?

(H(A,{j)"j) ful2) = (H (Anj~) ) ) =\ (11.20)

makes it possible to recover all components fn from the sole knowledge of f,
via some analysis in the Borel plane. Of course, if one knows the composition
equation W (f) = id of which f is the solution, it is far more economical to get
these fn by formally calculating its saturated solution ]?(z,u). But if one does
not know W(f), the identity (11.20) shows how to retrieve all components fn
from f which of course would be impossible if f were convergent. In other
words, composition equations with strictly resurgent solutions exhibit a far
greater ‘inner cohesion’: knowing even a small part of the saturated solution,
one can retrieve everything, including (modulo some hard work) the original
equation W(f) = id itself.

As for proving Proposition 11.1, Calculatlng the formal integral f (z u)
offers no difficulty, since the coefficients of f and fn :

fz) = 240+ apt* (11.21)
Faz) = 25 Ylap, 2t (11.22)
are given by inductions of the form!'%
Sw(0)ap = earlier terms (11.23)
Sw(w) any = earlier terms (W=<n,A>) (11.24)

(pj — k) Sy (Nj) apiy = earlier terms (N =<ni A>)  (11.25)

As for the analysis part of Proposition 11.1, the shortest way is to solve the
perturbed composition equation W,(f.) = id derived from W(f) = id by

102which results from a repeated application of the Bridge equation.

103The “earlier terms” in (11.24) cover all coefficients Ay 1 such that n' < n, k" < k and
In'| + k' < |n| + k. In (11.25), like in (11.17), nd denotes the sequence {n] |n] := §7}. If
some p; — k exceptionally vanishes, that simply introduce a logarithmic terms in f, ;.
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viewing both its data and unknown as perturbations of simple shifts:

i = Gie with g (2) = 2+ 0; + €Yy(2) (9i1 = 9i) (11.26)
f—fe with f(2)=z+7+ Zlgk or(z) (fi=f) (11.27)

Expanding W,(f.) in powers of €, we get as coefficient of €¥ the identity
(11.28), which translates to (11.29) in the Borel plane:

Sw(0) r(z) = polyn. in earlier terms P Pr(z + ) (K <k) (11.28)
Sw(—C) Pe(C) = conwol. polyn. in earlier terms (—C)P e P (¢) (11.29)

Repeated division by the exponential polynomial Sy (—() and repeated con-
volutions make clear where the singular points of each @ (() are going to be.
Moreover, the right-hand side of (11.29), though more complicated than in
the case of pure iteration equations (type 71, see §1.1), are essentially similar,
and surprisingly easy to majorize, especially above R*. By duplicating the
argument used for iteration gquations,104 one sees that each € and in partic-
ular for e = 1, the function f.(¢) is endlessly continuable, with only isolated
singularities’® and (at most) exponential growth along any non-vertical'®®
axis arg( = 6. And this is all the analysis we need in order to establish
Proposition 11.1: the algebraic machinery of resurgence takes care of the
rest, and leads straightaway to the Bridge equation (11.12)-(11.13).

Proposition 11.2 (General composition equation of 0-alternance)
If, retaining 0-alternance, we drop both the mon-resonance and simplicity
assumption for the countably many zeros A; of Sw(A), the preceding results
remain in force after a number of modifications.

The indices m now range in the space ..T§ of double-indezred sequences n =
{n;,lied, 0<k<p;, n;,eN, > n;, <o}, where p; denotes the multiplicity
of the zero \; of Sw(A). These multiplicities are bounded sup p; < o and
therefore possess a finite smallest common multiple fi,.

The saturated solution broadly retains its form (11.10), but with frequen-
ctes w no longer in one-to-one correspondance with the indices n:

flz,u) = f(z)—kZu"ewsz’n with u™ Huw , w=<n,A> (11.30)

104Gee for example [Es], pp 310-318.

1053t least on each Riemann sheet; their projection on C may be, and often is, dense.

106This is true also along vertical axes, but harder to prove. This latter fact, however,
is not required here. It would be required only if we were to investigate the growth of the
invariants |AJ | as w grows.
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and with subexponential ramification factors flanked by ramified powers z<™*> :

Fu(2) € 2P0 o Cosuca<np)= ) C[[ ;™ 74 ] (11.31)
~ K -1 j
Friu(2) € 2Pi(0) o Rocnet PiulR) 2%) Cllz 1] (u"]’”:um) (11.32)

The finite sum in the exponential factor of (11.81) is over all rational numbers
K in ui*(@ U [0,1[. The frequencies < m, p >:= Y n; ,.p;, depend on scalars
pju(K), which appear in pure form in (11.32), but due to

. , 2 pi—1
L 2ri)pk 7
piu(K) == pi(K)e if ke {0 e ,—} 11.33
() i (k) W " ( )

piu(K) =0 otherwise (11.34)
reduce to the sequences:

PO )P

) (11.35)

For each j, the leading term corresponds to k = k; 1= 1 —1/p;. It is directly
defined, up to a unit root of order y;, by

5 N Rw(y) ! 1
(pj(mj))“ - - J(sz( L L S B (11.36)
SE (N, (k) g

Once a determination of p;(k;) has been fived, all other coefficients in the
(11.35) are given, without ambiguity, by similar formulae. For the pilot com-
ponents'” fi. of (11.52) ., the u-dependence is elementary, since:

fnj’“( ) fnJO( (@mé) b Z) (1137)

but no such relations apply for the general components fn
The invariant operators A, now assume the form

A, = > wr A0

Ug,p

neJ, (11.38)

w=<n,A>—\;

Note that, despite being slightly redundant, the double lower indexation of
the scalars Aj)’; cannot be dispensed with since n and w no longer determine

each other.1%® This also compels us to write the monomial u™ to the right of
the first >, in (11.38), whereas in (11.13) it could be factored and moved to

107they are preceded by the linear factors uv = u;,, and verify the normalisation

condition fr. = 2P0 eXocncr Pinl®) 2 (1 4 o(1))
108, clearly does not determine n, and n determines only w, but not w.
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the left of .. The Bridge Equation of course retains its form (11.12)-(11.13)
but its component-by-component interpretation undergoes a slight change:

Ao (2) = (Z(n’j,k— k) A&@) Frrn(2) with 9=<m/'— n,A> -\, (11.39)

Lastly, the formula (11.18)-(11.19) for the displays remains valid, without
our having to change anything.

The analysis part of the proof is exactly the same as for Proposition 11.1.
It still relies entirely on the repeated use of (11.18). What changes is the

formal part, i.e. the way of calculating f(z, u) as a formal object.

For the basic component f, the same induction holds as in (11.23).

For all components fn whose frequencies w :=< n, A > are not zeros of
Sw, the same induction holdsNas in (11.25), except that now J replaces J.

For the pilot components f;.., which due to (11.37) reduce to fnj,o:
anJ}O(Z) = 210 ¢ Cocnar pi(R) =) (1 + Z 30 z_k> (11.40)
k(1) N*
the induction rule becomes:

ok
(p;(0) — k) W S‘(A’;J)()\j) Upioy, = earlier terms (11.41)
j.

The same type of induction (with a non-vanishing factor S‘(,f,” )()\j)) also

applies to all components f,, whose frequency w :=< m, A > is of the form
A; (due to the resonances, this may happen even if n is not of type n’*).

(<m, p;(0)> —k) Consty, Swj)(/\j) any = earlier terms (11.42)
Lastly, when some of the factors (p;(0) — k) or (< n,p;(0) > —Fk) in
(11.41) or (11.42) vanish, the essential part'® of f,;. or f,, instead of living

in C[[2~ ], now lives in C[[z 7+ ]] ® C[log 2].
11.3 Some remarks.
Remark 1: Display and saturated solution.

There is a vague kinship between the saturated solution f(z,u) and the dis-
play Dpl f: both verify the composition equation!'® W (f) = id and both

109] e. the series part, as opposed to the subexponential factor that precedes it.

110 Ag noted in the introduction, the pseudovariables behave like constants under ordinary
differentiation or composition, and multiply according to the shuffle product: see §2.4.
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involve a mixture of power series and exponential terms.!''!. But the dis-
play is a far richer and more complex object. For one thing, the saturated
solution f(z,w) has its power series indexed by elements n of J3' or jICON,
whereas the power series in the display Dpl f are indexed by the incompa-
rably more numerous sequences of w; in Q. Secondly, whereas f(z,u) can be
derived from the composition equation by purely formal manipulations on
power series, Dpl f carries scalars like A7, or AZ¥ which, being generically
transcendental Stokes constants, are beyond the reach of formal deduction:
their calculation necessarily involve some (and often a good deal) of analysis,
be it analytic continuation in the Borel plane!'? or the recourse to closed
(but highly multiple) expansions involving two ingredients: universal monics
on the one hand, and the Taylor coefficients of the data g; in the composition
equation.

Remark 2: A priori constraints on the holomorphic invariants.

If, like for the O-alternance composition equation (11.1) when all the residues
7; vanish, the components f,, (z) of the saturated solution f(z,u) are ordinary
power series of 271, the action of the derivations A, and by way of conse-
quence the values of the invariant operators A,,, will not depend on w as an
element of C,, but only on the projection w on C*. This entails a drastic
simplification of the display Dpl f(z,u), whose pseudovariables Z“!»“r may
themselves be indexed by projections w;.

Even when the f,(z) are not themselves power series, they are often
simply related to power series hy,(z), via an elementary monomial factor

fn(2) = 2P hyp(2)  with  hy(2) € C[[z71]] (11.43)
This in turn implies
A,=e™" A, (VweC,,Ve=e""*eC,, keZ) (11.44)

so that, here again, it suffices to know the operators A, for w ranging through
a single sheet of C,.

If, instead, the hy(z) are ramified power series''® in C[[2~'/7]], what is
required is the knowledge of operators A, for w ranging through p consecutive
sheets of C,.

More complex situations may arise, but it is exceedingly rare for all values
of A, (with w fixed) to be truly independent, unless of course one starts from
fully ramified data g;, e.g. g;(z) € R{z™!, 27 log z}.

11in the display, the exponential terms enter via the alien derivations A, = e™“? A,,.

12yia the (wholly constructive) definition of the alien derivations: see §2.3.
13That would be the case if in the composition equation (11.1) we were to consider
factors g; of the form g;(2) = z + 0; 2 7P + ...
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Remark 3: Composition equations with resurgent data.

If we now consider composition equations W(f, g1,...,g,) = id whose data
g; are themselves resurgent (with one or several critical times), the earlier
argument!!* shows that resurgence will survive, with the specific resurgence
generated by the composition equation simply getting ‘grafted” onto the pre-
existing resurgence carried by the data. But how exactly will the two com-
bine? This is where the displays come in handy, since we can calculate
Dpl f, which exhaustively describes both resurgences, old and new, in their
exact combination, by formally solving the ‘displayed’ composition equation:

W(Dpl f, Dplgy,...,Dplg,) =id (11.45)

with Dpl f as unknown and the Dpl g; as data.

Remark 4: Twin-related composition equations.

When all shifts o; in (11.3), and so too all frequencies «; in (11.4), are
commensurate (this is always the case for twin-related composition equations
— see §13), the sum Sy ()\) is a polynomial of degree d in e*** for some
maximal . The roots A; of Sy () are therefore of the form

271 271
my, ..., )\*d +
Oé* a*

)\*1 +

ma  (m;eZ) (11.46)

If the )\, ; are non-resonant,'' the \; are not resonant either; but if the A,
are, then the relations (11.46) massively amplify that resonance. Iteration
and conjugation equations are a striking case in point. So let us have a closer
look at them.

11.4 Iteration and conjugation equations: what is so
special about them.

For the purpose of comparison, let us write the resurgence formulae for the
solutions of iteration and composition equations, first in the standard form,
then based on parameter-saturated solutions.

Let f, f1, fo be real-analytic germs of the form z — z + 1 + O(z71),
with their invariant operators A, Ay, Ag,,, and let hyo := *fy 0 f{* be the
conjugator of f; to fi, normalised by the condition hy1(2) = 24+ O(z71). For
simplicity, we drop the tildas everywhere.

14Gee the proof of Proposition 11.1, towards the end.
13in the sense of (11.9.
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Iteration related resurgence: the standard form.

[rof=Tof* 5 fo'f="foT 5 f'="foTof"  (1147)
Resurgence support: Q := 27 Z*.

Complete system of invariants: {A, | w € Q}
Resurgence equations:

ALfi(z) = —A,e /™G (11.48)
AL¥f(z) = +A,e 0% (2) (0:= dilz) (11.49)
Aw ot iy —w f*(2) '

af{—t(i? = +A, (e7¥'=1) eé‘f*(z) (=0 4f teZ) (11.50)

Conjugation related resurgence: the standard form.

hop ="fao f1 haio fi = faoha (11.51)
Ath,l o (A _A )ﬂ (1152)
0h2,1 - 2w 1w afl* .

Aw h =T . —w* ¥
Awr--'Awl (#j) = (E(wl —(.A.)Z) Al,“’i)) (AQ,UJO _ALUJO) e(}Tl* (1153)

with w! = wp + ... + wi— and W* := W) | = wo + ... +w,.

Iteration related resurgence: the parameter-saturated form.

The above formulae give the complete resurgence picture with all the Stokes
constants, and cannot be bettered for simplicity. However, to get a real grasp
of the difference with generic composition equations, we must re-write these
results in the general, necessarily clumsier form, based on the parameter-
saturated solutions. If we introduce formal periodic functions P, *P,, P2t of
the form:

Pi(z) = z— Y, u;e®™? (11.54)
JEL*

Pu(z) = z+ 2 v;(u) @™ with  P¥o*P, =id (11.55)
JEL

Plz) = z+4 )] wi(t;u) e®™* = (*P, 0 T°" o PF)(2) (11.56)
JEL
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there is no difficulty in expressing the coefficients v;(u) and wj(u) as for-
mal power series of u, and we find that the saturated solutions attached to
f*,*f, £ admit factorisations of the form

fH(zu) = (Pro f)(2) (11.57)
flzu)= (7 o "Pu)(2) (11.58)
[ zu) = ("fo Pilo f*)(2) (11.59)
and analytical expressions of the form
[ (z,u)=f*(2) — Zuj el (2) (11.60)
v?ljl ;lTjT Ti<n,j>z Aln| *

fzou)= *f(z) + PR e2ri<mig=z glnl g () (11.61)

P = ) + L i () (L)

In view of the factorisations (11.57), (11.58), (11.59), we find that all three
saturated solutions verify the same Bridge Equation

A, f*(z,u) = A, fH(z,u) (we2mZ") (11.63)
A, flzyu) = AL f(z,u) (we2miZ*) (11.64)
A, fzu) = Ay f(z,u) (w e 2mi Z%) (11.65)

but with invariant operators A, of the form

Ay =2miA, Y (j+ k) ujidy, if ©=2mi)k (keZ*) (11.66)

keZ*

These A,, are much simpler than the A, predicted by the general theory (see
(11.38) ). In the present instance, the general A, would be of the form:

A,= D w i AL, 0, (@ = (2mi) k) (11.67)
<n,j>—j=k

Comparison with generic composition equations.

To grasp the scope of the simplification, let us start from r analytic germs:

g(z) = z4+1+¢ Z a1 pi1 2 " (11.68)
2<n
gi(2) = z+ ¢ Z Aips1 2" 2<i<r) (11.69)
2<n
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and consider these similar-looking composition equations:

id = W(f)=f"oq (11.70)
id = W(f) = fogoofogo (a1.71)

Both equations admit a unique, generically divergent, and always resurgent
solution f, with the same resurgence support Q := (27i) (Z* — rZ*), the
same exponential polynomials

1— A
Sw(\) = Sw(\) = M ——°

w T_ovr Rw(\) = Rw(\) =0 (11.72)

In both cases the saturated solutions f(z,u) have unramified''® components
fn(2) € C[[z7!]] and verify the Bridge Equation. But whereas for the it-
eration equation (11.70) the corresponding invariant operators are of the
elementary form (11.66), in the case of the mixed equation (11.71) they are
(as soon as r = 3) of the general form (11.67), without any universally valid
a priori relations''” between the various scalars A7, ..

11.5 Stokes constants and coefficient asymptotics.

Let $(z) be a resurgent power series and ¢(() its Borel transform. Let P
the finite set of its ‘closest singular points’ w in the Borel plane, i.e. those
lying on the boundary of the convergence disk of ¢({), and let A, @(z) be
the corresonding alien derivatives.

Ay 3(2) = A 3u(z) = Ay b (w 2) (We QP z~w) (11.73)
B(z) =D anz" () = ALY b (11.74)
HO-Topmy ¢ 0= A Dby (LT

In all instances of ‘equational resurgence’, in particular in all cases of resur-
gence resulting for composition equations, the coefficients a,, of $(z) as well
as the coefficients b, ,, of the alien derivatives are easily accessible (by for-
mal calculations) — the former exactly, the latter up to multiplication by the

Hbhecause Ry (\) = Rw (A) = 0.

"70Other than the trivial relations pointed out in Remark 3 above (in this case: depen-
dence on w alone). The shortest way to prove this is to expand each A7 , as an entire
function of € := (e1,...,€,.) and to push the Taylor expansion in € far enough to disprove

the possibility of any given a priori constraints between the scalars Azj_’n.
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invariants (Stokes constants) A, in front of them. This leads, for the calcula-
tion of the dominant Stokes constants A, (those with ‘closest’ indices w), to a
method which relies solely on the asymptotics of the a,’s and the knowledge
of a few first coefficients b, ,,, and is not just simpler, but numerically more
efficient than analytic continution in the Borel plane.

Simple contour integration in the Borel plane shows that

an Y 1+e » B
-1 Awwe;pmw L G (t—1)t"dt + O(|w (1 +€)|™) (11.76)
Ay, w™" - . »
(n—1)! A”we;pm 2 L%(l_t)t dt +O(lw(1+¢)|™)  (11.77)

The second variant, which relies on the majors*'® 5W(C ) and on a contour
integration I'. that avoids the origin, applies even when the minor ¢,(¢)

fails to be integrable there, due to positive powers of z in qgw(z). The same
recourse to majors makes it possible to extend the identity

—m—=1) +00 t—1 m—1

fn=m—1! _ J =D vt if n=m>1 (11.78)
(n—1)! 1 (m=1)!

to all real pairs m,n with n > m. Assuming that sole condition, the conti-

bution of by, to a, is thus w™" (n—m—1)!. Therefore, for any fixed mg > 0,

as n goes to +00, we have

a, = 2 w A, 2 (n—m—1)l b, m + Rem(n,my) (11.79)

wePTox m<mo

with a remainder Rem(n,mg) bounded by Const.(n—my—1)! and negligible
compared with the preceding terms.

So far, the indices n (resp. m) were assumed to form increasing sequences
in Z (resp. R), but we may also, and often must, allow n to range over %N .
The relation (11.79) still holds, provided we divide its right-hand side by ¢
and replace 7" by Q" (defined as containing q consecutive copies, on g
consecutive Riemann sheets, of each closest w). The identity (11.78) remains
in force, and so does the asymptotic formula (11.79), again with QP in
place of Q™.

These results still hold in the not infrequent case''® when some of the
¢w(z) are no longer of the form (11.74) but of the form

~

a _ . p
w(2) = e 2" bymz ™ with 0<a==-<1 11.80
Pu(2) 5 . (11.80)

meiN
q

H8Gee (2.10).
H9gee the Proposition 11.2 supra.
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Expanding the exponential ecja and multiplying it with the power series, one
gets a bilateral power series 1,,(z), each coefficient of which is expressible as
an infinite but convergent'* sum (with contributions from the two factor
series). One may then apply the asymptotic formula (11. 77) without com-
punction to this bilateral ¢,(z), or rather to the major ¥, (¢) of its Borel
transform.

The method also applies when some of the alien derivatives A, @(2) in-
volve not one Stokes constant A, as in (11.74), but several of them, as in
the situation of Proposition 11.2 supra or in the case of intertwined germs:
see the example §13.2 infra and in particular (13.11).

12 Some examples of composition equations.

To illustrate the general results of §11 and in particular the method for the
calculation of the dominant Stokes constants, we shall now examine a series
of simple composition equations W (f)=1id of 0-alternance.'?! To avoid the
(inessential) complications that come from the ramification factors z<™*>
we will plump for data ¢;(z) = z + 0; + 7;/2 + ... with vanishing residues
7;. This way, we shall have only unramified power series to handle, and
operators A, or A, with indices w in C* rather than C, := C—{0}. On the
other hand, to spice up matters a bit, we shall impose additional symmetries
on our composition equations (like invariance under z — —z) and examine
how these symmetries impact the resurgence pattern.

12.1 Example of non-polarising composition equation.

Let our first composition equation be:
giofogi = fogaof with g1:=T1 ; gp:=TyoTz0Ty (12.1)

and with T1(z) := 2+1, T3(2) := (2>+1)¥3. The symmetries in the equation
ensure that the formal solution will verify:

forofor=id with 7(z):=—z

The main (exponential-free) component of the full solution f(z, u) is of the
form:

1 1 110
= +§ R e R T I A
=z a z Z z 92 3 z zZ 31

113719 4
z RN

120The convergence comes from a being < 1 and from ¢,, being Gevey-1.
121\Whenever convenient, we shall spread the various composition factors f°™ and g; of
(11.1) on both sides of the equation.
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The second exponential polynomial Ry is = 0 (since g; and go have no
residues). The first polynomial Sy (A\) = €** — e* + 1 = 0 has simple roots

A

3 : j
et = i%%zeﬂw ;Aei%+ﬂm2 (12.2)

N | —

which all lie on the imaginary axis (so that we have a non-polarising situation)
but verify many resonance relations (so that we must apply Proposition 11.1).

The resurgence support is € := (7i/3) Z*. All alien derivatives 6f = A, f
satisfy the same linear homogeneous equation:

(6f) o g = (6f)ogz0f = (6f).(foga) o f =0

but its solutions depend on the exponential factor e

# implicit in A,:
(AL f)(2) = Aye Z bi(w) 2™ if we —i—%i + 2mi Z (12.3)
o<n
(Auf)(z) = Age™ X b (w) 2" if we —%i +2miZ (12.4)
o<n
The coefficients b} (w) € Q[w]+1i4/3 Q[w] are polynomials of degree [%] in w.
One goes from b} (w) to b, (w) by complex conjugation. Thus:

1, 3, 1 V3. 2
by (W) =1, b (w) =0, b;(w)zg(“r?l)wa bgf(w>=§—72—§w ,
2 443 1
bi(w)==—(1+—"i — (1 ++/3i) &?
@) = 2 w14 VB w
The only non-elementary part in the expansions (12.3)-(12.4) are the Stokes
constants A,. For the dominant pair (corresponding to wg := +7i/3), the

method of coefficient asymptotics quickly yields more than 50 exact digits:
A, = 0.2011824344559242849485968276352735865666075898842030767963 . . .

12.2 Example of polarising composition equations.

Consider now the simplest polarising composition equation
fofogi=gof with g(2)=2z+1; g2)=2+1+2"% (12.5)
and its power series solution

fz)=z+ Z anz " =24+ 2 2+ 42z 1827 1104270 4+ ... (12.6)

2<n
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The first exponential polynomial Sy () := 2 e*—1 again has only simple, but

strongly resonating zeros \; := —log2 + (271) j, giving rise to a resurgence
support
Q= (log2+ (27i) Z) | ] (- k log2 + (2mi) Z)) (12.7)

1<k
All alien derivatives 5]? = Awf verify the same linear homogeneous equation

(6f) e Fog +(F'ofog).(6]) o g = (g50 F)-(6F) (12.8)
and are of the form

(ALf)(2) = Auwe™ Y by(w)z ™ with welog2+2miZ (12.9)

osn

The coefficients b, (w) are polynomials of degree n in w:

1 1 3 1 1 9 5 1
bo=1. b= ——w by — 2wt ow? bym —m — St —
0=1, =W, =g mgwtgwn, b= g T W g Wt T g

The dominant Stokes constant A, (with wy = log2) is

Ay, 1= 1.3677285744847305159844172943831656775064269 . . . (12.10)

12.3 Example of polarising composition equation with
additional symmetry.

Let us again consider a polarising composition equation, but with an added
built-in symmetry:

grofofofog =fogof with go=T ; go:=TioTyoTy (12.11)
and with 71(2) := 2z + 1, T3(z) := (2* + 1)'/3. Since

7Y = 70Ty or Vk odd with 7(2):=—=2 (12.12)
the symmetries in the equation (12.11) ensure that

Y =ro0for (12.13)

The first exponential polynomial Sy (\) := e** — 3e* + 1 has only simple,
highly resonant zeros )\ji symmetrical with respect to the origin:

A i=log ((3+4/5)/2) + (2mi) j = +log ((3+ +/5)/2) £ (2mi)j (12.14)
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giving rise to the resurgent support

3 5
Q= log(§ + \/7) Z* + (2mi) Z (12.15)
The power series solution of the composition equation is of the form:
1 1 394 162005
=2+ n R R P e i A P L
=2z ;La =2z z z~ 57? 9 ? z T

The associated linear homogeneous equation for 5]? = Awf reads

0f) o fPogi.giofPoqm+(0f)ofog-(uof)ofPonm
+(0f)ogr-(grof?) ofog—(6f)ogeof—(6f).(fogs)of=0

leading to alien derivatives of the form:

(Auf)(2) = Aye™ > bf(w) 2™ if wew, +2miZ (12.16)
o<n

= A, e Z b, (w) z™" if wew_+2miZ (12.17)
0<n

5
\/) +2.6180339...)

with w=w; mod2mZ (wy= log(2

The coefficients b (w) € Q[w]++/5Q[w] are polynomials of degree n in w,
with b (w) and b, (w) exchanged under rational conjugation /5 — —4/5.

1 1 1 /5 1
by(w) =1, bi(w)=—gw, =g+ (c+p)wtgw
1 205 287 1 85 1
bt S il 3
FW =g et ()Y T e

The dominant Stokes constant is

3 /5
A, = 0.150789748410623885710947272 . . . (wy = ilog(—+\/7)) (12.18)

12.4 Parity separation.

To any partition N* = [ [, <i<r Ai there clearly corresponds a unique factori-
sation of every identity-tangent germ

f=fiofao... [ with — Ag-supported factors fi (12.19)

whereby “A-supported” may refer to the germ itself

=2 (14 Y anz™") (12.20)

neA

102



or, what is dynamically more meaningful,'?? to its infinitesimal generator f,:

fe(2) = 2 ( Z a2 ") with  f(z) = <exp (f«(2) @)) z.o (12.21)
neA
For r = 2 in particular, and with N, resp. N, standing for the sets of
even and odd integers, this leads to a parity separation

f=Ffof, with fo=7ofior and f~'=70for (12.22)

Here 7 stands as usual for the reflection 7 := 2z — —z. The solutions f., f, are
clearly resurgent, since finding f, reduces to extracting the iteration square
root of 7o f°~to 7o f. If for instance f(z) = z 4+ 1 + o(1), the resurgence
support 2 is 2w Z*, and f, verifies the resurgence equation (11.50) with
t = 1/2. This in turn determines the resurgence pattern of f. as well as
the displays Dpl f., Dpl f,. The latter are subject to no constraints other
than those flowing from the three relations (12.20) re-written in terms of the
displays.

For r > 3 and 7, := z — e, z with e, := ezp(27i/r), there are two equally
natural generalistions of the parity factorisation (12.22). One is

f = freo fro with (12.23)
fre = 7o freors™ and  (froom)?" =id (12.24)
and the other is
f=froofr1o 0 frra with (12.25)
f:,;ilﬁ = 70 frpor ! and e¥ = exp(2mi g) (12.26)

The condition (12.25) amounts to asking that the infinitesimal generator of
fri be supported by the set N, ;, of all n such that n = k£ mod r. Here again,
the factors on the right-hand side of (12.23) or (12.25) are always resurgent,
with a single critical time 2z but rather complex resurgent supports {2 as soon
asr = 3.

13 More examples: twins and continued con-
jugation.

13.1 Reminders about formal, identity-tangent twins.

1123

Intertwined formal* = germs f, g, or twins for short, are non-commuting for-

122The two conditions are never equivalent.
1237 alleviate notations in this introductury paragraph, we omit all tildes even on formal
objects.
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mal germs (power-serial or transserial) related by some non-trivial compo-
sition identity W (f,g) = id. It was long thought that no formal, identity-
tangent, power-serial twins (f, g) existed, until in [EV] we came up with a
series of examples and developped a detailed typology of twins. Whether a
given equation W admits twin solutions, and how many of them, essentially
depends on the series w(a,b) := log W (e?, e) viewed as an element of the
(closure of the) Lie algebra Lie|a, b] freely generated by a, b, and on its non-
vanishing bi-homogeneous components wy, 4(a,b). Let My, = {(f, g)/conj}
be the set of all formal identity-tangent solutions of W ( f, g) =id, quotiented
by all formal identity-tangent conjugations h : (f, g)+— (hofoh°™t hogoh°™1).
When My is a discrete (necessarily finite) set, we speak of rigid twins. When
not, My is a discrete collection of manifolds My and the key index — the
degree of freedom — is sup dim(Myy ).

Being rather thin on the ground, twins have something of the power of
fascination proper to sporadic objects. For a start, it appears that twins (f, g)
can always be rendered resurgent after simultaneous conjugation by some
suitable h. Two questions then arise. First, what are their non-remowvable
resurgence invariants (Stokes constants), i.e. those invariants that cannot be
eliminated under any (common) resurgent conjugation h? Second, do there
exist analytic twins (f, g)? Regarding the first question, we shall show on an
example how to isolate the removable invariants, get rid of them, and isolate
the non-removable core. As for the second question, the answer is either no
(most likely) or very very few, but the matter appears extremely hard to
settle.

Reminder: normal forms of formal identity-tangent germs.

Let 0,,, be the identity-tangent germ of tangency order p defined by the

power series in 2!

) 17 o2z 0,1» o, (1-p)o®  poy 1,
9p703p(2)'22+§a|: _].Z:Z+_24p+<—_—>z p—i—.._

2P4p p P 2 p? P

x

or equivatently by the relation

! |27+ plog(2?)] (13.1)

0 00p0, =146 with 0%, (z) := p

(@]
D,0,p P,0,p D,0,p

All 0, , , essentially reduce to 6, ,, as evidenced by the relations:

szg’p = Optop (13.2)
0c00p5p 001 = Opwoew,  with  0.(2) :=cz (13.3)
Tg-100p0,0Tg = Opgop with — wy(z) == 24 (13.4)
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and any identity-tangent, power-serial f is conjugate to a well-defined 0, , ,

under some identity-tangent, power-serial f#, which is itself determined up

to pre-compostion by any iterate 9;?0, P

~ ~

f#of = ep,a,pof# (]?(Z> ~ vaN#<z) ~ Z) (135)

13.2 Simplest instance of rigid twins.

The simplest instance of rigid twin equation is:

W(f,g)=id with W(f,g):=g""of Pogofog° ofog®cf  (13.6)
The identity

Wl g) = (¢° o f* 20 )0 (W(f,9))" o(g° Lo fPog) (13.7)

shows that the solutions of (13.6) go by pairs (f,g) and (f°~, g). Moreover,
if one restricts oneself to power-series solutions at infinity, these are auto-
matically identity-tangent. More precisely, using the normal forms 6, , of
§13.1 supra, one checks that f and g are necessarily conjugate to 6, .o and
02,42, _ac2 Tespectively, under different conjugations. But a common dilation
z +— ¢ z makes it possible to fix ¢ arbitrarily, so that we may normalise f
to the unit shift 6,10 : 2 — 2z + 1. The twin g is then defined up to con-
jugation by iterates of f, i.e. by shifts, and we may focus on the (unique)
determination that commutes with 7 : z — —z. We thus get twins (f, g) of

the form:124
f(z) = 2+1 and Q<Z>:Z+Za2n_12_2n+l with (13.8)
1<n
1522 21659 2279405017
= 22271 G325 T ... (139
9(z) = 2227 =627 - == 2 65 692055 - (13.9)

Our composition equation W(f, g) = id being highly alternate, the proposi-
tions of §11.2 do not apply, even after the first twin has been fixed (nor-
malised). Nevertheless, a direct investigation shows that the series g in
(13.8), (13.9) is not only Gevrey 1 but also resurgent with critical time z
and resurgence support 2 = 2w Z*. The linearised equation verified by all
alien derivatives 6g = A, g reads:

dgoh, (z
D 20?;()2()) —0 (13.10)

1<i<8

124for simplicity we drop the tildae.
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with upper factors h,, , lower factors dh,, , and coefficients ¢; defined as follows:

hy = i | hy = i ohy | hy = i o hg |

hy = gohy | hg = 271 ohs | hy = 9 o hy |

hy = gohy | by = g ! ohg | hy = z o hy |

hy = gohy | hy = 2_10h7 | hyy = g~ Yohy |
(pr@) = (1,2) | (ps,q5) (76) | a=+] &=~-|
(p2;q2) = (2,3) | (pe,q6) = (8,7) [ &=+ | =— |
(p3,q3) = 3,4) | (pryar) = (9,10) | e =+ | &=+ |
(pasqa) = (6,5) | (ps,gs) = (12,11) [ €4 =— | es=— 1|

In agreement with the fact that the first exponential polynomial Sy (\) =
(e* —1)3 has only zeros of order three, the linearised equation (13.10) yields

alien derivatives with three a priori free Stokes constants A, A* in them:'?
(Aug)(z) = +A,e™" (w2)™" Y ba(w) (w2)™ (13.11)
o<n
FAS emWeVHLD) (94 )" Zlf’ (24wz)"2
osn
+A, e~ (wrvwz) (24w z)” Z b (w) (24w 2) 2
osn

Each b, (w) and each b:f/Q (w) is an even polynomial of degree 2n in w. Unlike
the b:_:/z (w), the b,(w) carry no terms of degree less than n — 1. Moreover,
the double series b:f/Z(w) reduces to one, since b:/z (W)/b,,5(w) = (—=1)". Here
are the first polynomials:

2
bow) =1, bi(w)=—-1+w? ;| by(w)=3w*+-w

3
1 761 2
b3(w) = —9w2+6w4+§w6 , b4(w)=§w + 6w —|—1—5w8
3805 1873 2

b5(w) = 39 (U4+Ww6+6 +4—5w

21659 2224 4
b N o sese 8 2w - 12
6(w) 130 w® + 39 w® + 04 315

1251f we had to do with a composition equation W(f,g) = id of 0-alternance (in g),

the Proposition 11.1 would predict subexpontial factors of the form eP(2/3)2+p(1/3)21*
Here, however, we do not have 0-alternance, and so there is no contradiction in finding

subexpontial factors of the form e?(1/2)2"*.
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by (w) =1

93
bi_ ((U) = —§ + 14 w2
12465 105
+ _ 2 4
by (w) = T8 + v + 98w
750327 28383 92669 1372
b+ — 2 4 6
3 (@) 1024 e Y0 W T3
b+( ) 178961931 2143389 2, 4952933 iy 412013 N 4802
W = — w —_— W w w
2 32768 512 320 30 3

Although the indices w of simple alien derivations have to be £ 0, the ex-
istence of composite derivations with zero-sum indices, such as [A,,, A, ]
with wi+ws = 0, forces us to consider the solutions of the linearised equation
(13.10) for w = 0 also. These exponential-free solutions assume a somewhat
special form:

og(z) = +C 27 Z Con (2)727 (13.12)
osn
/23
+ Ot @) ey 272"
/23
0 G Con z72m

with only even-indexed coefficients ¢, 3., ¢5,, (the latter two complex-conjugate):

o = 1 | & = 1
_ + 28 — 174/23 .
A N I _m o uym,
_ 3805 + 3682829 — 13185123 ;
G4 = 39 I € = 45630 T~ 45630
o — 151613 | = _ 27042544817 | 3136135007 /23 ;
6 130 6 37690380 —— 37690380
c 2279405017 | of = - 11L9884000708633 4 4908360623747 V23 ;
8 153790 8 213139098900 + 30448442700

Due to the presence of the subexponential factors eim, the Stokes
constants A, and AT in (13.11) are more difficult to calculate with high
accuracy than in the examples of §12. Nonetheless, the dominant ones (for
w = £27i) have been computed to 12 exact digits — enough to make sure
that our twin equation admits no analytic solution, only resurgent ones.
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13.3 Removable and non-removable invariants.

To fully describe the resurgence properties of g, we must form the general
solution g(z,u) of W(f,g) = id, with f =T = the unit shift. This we do by
introducing parameters u;, with j € Z and p € {—1,0,1} and by adding:

(i) the basic component g(z) as in (13.8)-(13.9).

(ii) the pilot components e quugl W gnj,u(z) (wj = (27Ti)j,j:+:0),
obtained by replacing A,, AL in (13.11) by u;, u;j+1 with w = —w;.

(iii) the pilot component Z—1<u<1 Uo p g_]no’u(z),

obtained by replacing C, C* in (13.12) by ug, uo +1-

(iv) the general components (™) <m:>z Yicu<t U 9, (2) (|n|>1),
inductively calculable from the pilot components.

Although W(f, g) = id, viewed as a composition equation in g, does not
have O-alternance, the Bridge equation

Aug(z,u) = Ay g(z,u) Vw e Q= (2mi) Z* (13.13)

still applies, with differential operators A, of the type indicated in Proposi-
tion 11.2. Moreover, purely formal considerations show that the displays of
g (z) := g(z,u) and g(z) must be of the form:

Zu

Dplg, = (*Pu) o (Dplg,) o (P)) (13.14)
Dplg = (P) o (Dplyg) o (P¥) <g=g0, P*=Fg, *P=*P0> (13.15)

with mazimal and mutually reciprocal factors P (z) and *P,(z) that depend
only on the variables u; ¢, since only these variables are accompanied by pure
exponentials e¥* (without perturbating subexponential factors eim) and
therefore lead to factors P} (z) and *P,(z) that commute with the unit shift
T. But f = T. There must therefore exist an analytic germ f, of tangency
orders 1 and with resurgent iterators f*, *f such that

Dplf*=P*o f* | Dpl*f =*o"*P (13.16)

with the very same P* *P as in (13.15) above. We can therefore jointly
conjugate the semi-normalised pair (f, g) to a new pair (f, g):

(f9) = (f.9) = (fofof* "fogofT) (13.17)
whose displays will be
Dplf=/f , Dplg="fo(®plg)of* (13.18)
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The loss of semi-normalisation in (f, ¢) is more than made up by the concom-
mitant simplification in the displays. Indeed, unlike Dpl g, the new display
Dpl g no longer carries the removable invariants (Stokes Canstants) attached
to P*,*P and accompanied by the variables u;o. It retains only the non-
removable invariants (Stokes constants) attached to the core Dplg of Dplg
and accompanied by the variables u; 1. - -

The ‘cleansed’ pair (f,g) is of course defined only up to a joint analytic
conjugation. Its construction depends on the procedure known as ‘synthe-
sis’ (constructing f from its analytic invariants, carried here by P*) and,
although there exist privileged solutions (the so-called ‘spherical synthesis’,
see [Ey]), the construction is computationally very costly. It is not known
whether there exist more direct ways of arriving as such pairs (f, g) cleansed
of all removable invariants. It should be noted, moreover, that in any such
pair it is f, not g, that has to be analytic. This dissymmetry stems from
the fact that, whereas f and g have tangency orders 1 and 2 respectively, we
have only one intrinsic critical time, namely z, not 2.

13.4 Simplest instance of non-rigid twins.

Let W (A, B) be an element of the group < A, B > freely generated by the
symbols A, B. Let w(a, b) be its formal infinitesimal generator, of components
wp.4(a,b) in the Lie algebra freely generated by a, b:

log(W(e*,e")) = > wyyla,b) (wpq(a,b) € Lie, 4(a,b)) (13.19)

0<p,q, 1<ptq

Assume that there is a point (po, ¢o) € N*xN* and two lines L; passing through
(po, q0), of equations L;(p, q) = (p—po)+l; (¢—qo) =0, with positive anti-slopes
0 < Il < Iy, and such that:
(i) Ly, Ly are contiguous, in the sense that there exist no points in N* x N*
lying strictly between L, and Lo
(ii) for all points (p,q) below Ly or Lo, i.e. such that Li(p,q)+ La(p,q) <0,
the corresponding component of w(a, b) vanishes: w, ,(a,b) = 0.
(ii) wWp.q0 (@, b) £ 0 but wy, 4 (21770, 2'790) =0, Vp,q.

Then for almost all integers (p, q) such that [; < %’ < ly, the composition
equation W(f, g) = id admits identity-tangent solutions of the form

f2)=z14ap?+...) , glz)=z(1+bgz"+...) (13.20)

More generally, for all but a finite number of real numbers « €]ly, l5[, there

109



exist identity-tangent, ramified twins of the form

f(z) = z(1+ Z Az ") (ap1 #+ 0) (13.21)
1<m+n

9(2) = 2(1+ D] buaz ™) (bio +0) (13.22)
1<m+n

This construction becomes possible for all (pg, qo) = (3,3) but £ (3,3). Here
is the simplest example, with (po, o) = (4,3) and a Lie component wy 3(a, b)
of the form (with the notation zy := [z,y]):

wy 3=[[b, @*b], ab] +6[[b, ab], a*b] — 3[[b, a*b], a*b] —3[[ab, a*b], ab] (13.23)
[[[a, b%a], a], ba] —6[[[a, ba), a], b*a] —3[[a, ba], [a, b*a]] +4[[[a, ba], ba], ba]

One can easily construct words W (A, B) that verify all three conditions (i)-
(ii)-(iii) relative to the contiguous lines L, Ly or Lo, L3, of equations

Li(p,q):==p+q—T7, Lao(p,q):=2p+3q—17, Ls(p,q):=p+2¢—10  (13.24)

and of slopes l; := 1,1, = %,13 = %

In [EV], §7.5, pp 77-81, instances of equations W (f,g) = id are even
constructed that admit twin solutions of the above type for any tangency
ratio p/qg > 0 or any real « > 0/ This has the advantage of permitting
expansions in the free parameter «, in particular for o near 0 or oo, leading,
for each finite derivative in «, to unusual but rather tractable resurgence

patterns, all linked to linear equations of a mixed, difference-cum-differential
type.

13.5 An analogue of continued fractions: continued con-
jugation.

A ‘p-approximant’ is any anlytic germ 9 of tangency order p and of the form:
1
Vol =1+9" with 9*(z) = =" + Z 72"+ plog(2?)]  (13.25)

o
1<k<p

For any power-serial f of tangency order p, there is clearly a unique power-
serial f* of tangency order p* > p and a unique p-approximant ¥ such that:

~

Frof=voft <f(z)=z+0(21’p), fﬂ<z>=z+0(zlfp“)) (13.26)
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This opens the way to a continuous conjugation:'26

f — fﬁ — fﬁ2 — ... — fﬁn —

190 - 191 - 192 - ... - ﬁn -

with p,-approximants 9J,, of strictly increasing tangency orders p,.

Resurgence and display of the n'" conjugator f*".

If we start from an analytic f, the successive conjugators f¥* are of course
polycritically resurgent, with critical times 2 :=2P',..., z,:=2zP*. The cor-
responding resurgence is best captured by the polycritical displays Dplf.
Their general form'?7 is easily found, inductively on n, by solving the equa-
tions:

(Dpl /) o (Dpl f*"~V) = 9, , o (Dpl f*") (13.27)

with Dpl £~ regarded as given and Dpl f¥ as unknown. However, not
only does the exact numerical determination of the n**-order Stokes constants
pose formidable problems'?®, but even their theoretical properties, growth
patterns etc, are far from clear.'?® It is not even obvious what a priori
restrictions'®” constrain the successive approximants 1J,, when the initial germ
submitted to ‘continuous conjugation’ is, say, real-analytic at oo.

14 Tables: iso-derivations and iso-operators.

We use throughout the notations of §6 and §7.

1261t has to rely on the approximants ¥. The normal forms 6, , , of §13.1 would be
ill-suited for the purpose, if only because they would not lead to increasing sequences {p, }
of tangency orders.

127} e. the form which it assumes when we regard the Stokes constants as free parameters.

128 Jespite their definition being in principle fully constructive.

129Gtill, at each induction order n, one would expect an at-most-exponential growth
pattern in w for A, whenever the display is defined relative to a well-behaved system of
alien derivations, like the organic system.

13%0ne thing at any rate is clear: there are no growth restrictions on their coefficients,
not even the key coefficients o, or p,.
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14.1 The three bases Dn'*, D¢}, Dal*! of ISO.
Table 1: DS in terms of Dn* and vice versa.

All conversion formulae basically involve the same structure constants

nis<n2...SNy

D VD S G VL R (14.1)

1<r  ng=ni+..+n,

n1<N2...SNy

Dévh = MY (= H, Dalmerd (14.2)

.....

1<r no=ni+...4n,

n1<N2...<Ny

Do = ) >+ Hp |, Ddmeend (14.3)

-----

1<r no=ni+...4n,

with positive integers H,°

Ds™ = Dn'¥ Dn'" = D!}

Ds? = Dn'? — %Dn{lz} Dn'? = Ds + %DS{12}

Ds® = Do — 2D 4 1Dn™ Do = D 4 2D 4 1D
Ds¥ = Do — TDn*3 — 2D 4 2pntt*2 — 3pylth

D = D + TDn™ + 200 4 2Dn*? 4 3Pttt

Table 2: Da* in terms of Dn*.

Daly = +Dn¥

Da? = +Dn® —1/2 Dnt"*}:

Da® = +Dn® — DY

Da¥ = +Dn® — DY — 2 Dn?* + Du®'™ — 1/4 Dn™

Da® = +Dn® — Dn*% — 5 Dn®? + D™ 4 2 DY — D1

Da® = +Dn® — DY — 6 Dn? — 15/2 Dnf® 4 D™ 4 11 D2
—4/3Dn" — D™ — 1/2 D1 — 5/2 D0 + 5/12 D™

Da{7} — _|_Dn{7} _ Dn{G,l} o 7Dn{5’2} _91 Dn{4’3} I Dn{5’12} 413 Dn{4’271}
+11 Dn{32’1} + 7Dn{3’22} _ Dn{4713} —4 Dn{3,2712} o Dn{23’1}
—5/2Dn" — 10 Du2*'* + 5/2 Dn®1™
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Da® = +Dn® — Dnfl'7,1] — 8 Du®% — 28 Dn>¥ — 28 Du**} + Dnf61*
+15 Dn®>Y 4 49 D31 4 48 Dn*?* + 25 Dn**# — pp®1*)
—21 Du*>'* — 11 Do — 39 DY — 64 Dn®Y 4 DY
~16Dn*>1* 4 68 Du> '} — D™} — 54 Du*** + 21 Dn>1%
—21/8 Dn"”)

Dal” = +Dn® — DY — 9 Dn™? — 36 Du®® — 84 Du®¥ + D™ 1%
+17 DY + 63 Dn®?} + 64 Dn®>Y 4 49 Dut**Y + 195 D432
—45 D0 — D™ — 24 D21 — 43 D31 — 81 D2
+110 Dof®* 2% — 435 Du®2% 4+ DY — 12 Dnf41% 4 156 Dn®21%
+276 Dn?"Y — 16 D" — Du™™ — 218 Duf*21" — 356 D1}
+77/2 Duf' + 231 Du®> 1" — 77/2 Du>1")

Da'% = +Dn"% — DY — 10 D% — 45 Du™* — 120 Du®* — 105 Du®”
+ Do 19 Du™2Y 4+ 80 Dn®2% 4 595 Dn®3 + 204 Dnf>41}
+244 Dt + 81 Dnf®3 Y — 45 Dn*3* — D™ — 27 Dpf6-21%
—109 Du®31* — 213 Dn®2* Y — 64 Dnl** 1" — 28 D321 — 656 Dn{*2")
+215 D"V — 1510 Dn®* 2% 4 34 D1 4 D1 — 2 ppft31%
+309 Dnf*?> 1% 1 159 Dnf**21* 4 1556 Dn®?*1 — 144 Dnf?™ — D51
+248 D" — 370 D1 — 851/4 D1 — 2129 Dnf32*1%)
+56 Dnt*'* — 161 D> + 1575/2 Duf®>'*} — 56 « Dn*'"}
+1673/4 Dn** ' — 175 Dn®'™ + 35/2 Dnf!™"}

113



14.2 The involution D — D in the three bases of ISO.

Table 3: b\fl{.} in terms of Dn'*.

6;1{1}
f)\ﬁ{z}
f)\fl{g}
]3\;1{4}
f)\fl{5}

~{6
Dn{}

~{T
Dn{}

~{8
Dn{}

— _Dnl¥

—Dn? + Do

—Dn® + 4Dn"? — 2Dn"™)

—Dn¥ + 7D + 4Dn* — 18Dn**? + 6Dn™"

—Dn™ + 11D + 15D — 46Dn*¥ — 520012

+96Dn"*? — 24Dn!"™}

—Dn'® + 16Dt + 26Dn®4 + 15Dn®* — 101Dn**4 — 271Dnf!23)
—52Dn®* + 326D + 548Dn!"*?* — 600Dn**? + 120Dn'*
—Dn'™ + 22Dnt"% + 42Dn®5 + 56Dn*4 — 197Dn"*% — 629Dnt>4
—361Dn"3* — 427Dn®*3 + 932Dn"*4 + 3700Dn"* 23 + 1408Dn!"2°"}
—2556Dn"™*? — 5688Dn!'> 2"} + 4320Dn"*% — 720Dt

—Dn® + 29Dn"7 + 64Dn>% + 98D + 56Dnt**t — 351Dt ¢
—1317Dn"%% — 1743Dnt"34 — 1056Dn®*4 — 1215Dn>3
4231100 + 622700 3* + 14613Dn2*3 + 10899Dnt"* >4
+1408Dn?" — 9080Dn™*4 — 47500Dn"* 23 — 26920Dnl! 2}
+22212Dn"* ¥ + 61416Dn" "2 — 35280Dn"*? + 5040Dnt"™

Table 4: ]3;1,{.} in terms of Dal*.

D\é{l}
13;1{2}
13;1{3}
13;1{4}
~—{5}

Da
~{6
Da{ }

~A{7
Da{}

— _Dall

_Da®

—Da® 4 2 Dal*Y

—Dat¥ + 5Da®" — 5 Dal>1*)

—Da® + 9Da*V 4+ 5Da®? — 45/2 Da®'*} — 5 Da®*V + 15 Dal?1)

— —Dal® + 14Da®" + 14 Da*? — 63 Da*'* — 70 Da®*>" + 105 Da®*™}

+35Dal?" 1" — 105/2 Daf®!"}

—Da™ + 20 Dal®" + 28 Da®? + 14 Da*¥ — 140 Da>'*} — 280 Da*>!
—~35Dal™ — 70 Da?*) + 420 Daf™'™} + 770 Da®>1? — 525 Dal® 1"
+140/3 Dal?* — 280 Da®*1*} 4 210 Da>™
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Da” — —Da® + 27Dal™Y + 48 Dal®? + 42 Da®¥ — 270 Dal®'®
—756 Dal>>! — 378 Daf®*" — 336 Dal**"} — 105 Da®®*?
+1260 Dal®™ + 3780 Dal»>'™ 4 945/2 Dal®" 1™} + 2100 Dal®2*1
—2835 Dal™* — 6930 Da®2'*} — 840 Da®* "™} + 2835 Dal*1*}
+1890 Dal®*'™ — 945 Da>'"

Table 4 bis: @{.} in terms of Dal*.

~{1

Da = —Dat

@{2} _ _%{2}

@{3} — _Da® + DalY

&{4} _ —&1{4} + 2@{3’1} _ m{gﬁ}

Da™ = _Daf® 1 3Da! + D — 3 Dal™1 _ 1/2 DY 1 Daf21?)
]3;{6} — _Da® + 4DV + 2Da*? — 6 Dal*'? — 4 D2 4 4 D1

+m{22,12} _ m{ll“}

Da” = —Da™ + 5DV + 3Daf? + Da™¥ — 10 Da®'* — 10 Da*2Y
—Da®> M — 3/2Da*?* 1 10 D™ + 11 Da®>'* + 1/2 Da?™
—5Da®" — 2 Da®* 1"} 4 Dal21"}

i{g} — —Da® + 6Da™ + 4Da®? + 2Dal3 — 15 Dal6* — 18 Dal®2 1
—6 m{zl,?),l} _ 4m{4,22} _ &1{32’2} +920 %{5,13} +30 m{4,2,12}
+3 m{sz,ﬁ} + 10%{3,22,1} —15 m{4,14} ) m{:s,z,li*} _ zm{?,lz}
+6Da™ + 3Dal?* 1" — Dal21%

14.3 The co-product D — o(D) in the three bases of [SO.

Table 5: o(Dn*) in terms of Dn'*.

DY - +1@ Do + Dt @ 1

Dn'? — +1 ® D + Dot @ Dot + Dn'? @ 1

Do — +1@Dn® + 300 @Dn? + Du? @Dn" + D" @Dn™ + Du® @1

Dn¥ - +1 @ Dn* + 6Dn'"} @ Do + 4Dn® ® Dn? + 7Dn"* @ Dn®
+Dn @ Du™ + 3Dn"? @ Du” + D™ @ D" + D ® 1
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Dn® — +1®Dn® + 10DnY @ D' + 10Dn® ®@ Dn® + 25Dn'™ © D
+5Dn® ® Dn? + 25Dn"? @ Dn'? + 15Dn'* @ Dn?
+Dn @ DY + 4Dn'¥ @ DY + 3Dn?" @ DntV
+6Dn"*? @ Dn + Dn" @ Dn™ + Dn® ® 1

Dnl® — +1®@Dn'® + 15D @ D™ + 20D ® Dnt* + 65Dn"* @ Dnt¥
+15Dn® @ D + 105D @ Dn®® + 90Dn"™ @ Dnf*
+6Dn* ® Dn? + 28Dn?* @ Dn? + 39Dn™¥ ® Dn?
+101D0"*? @ Dn? + 31Dn*" @ Dn? + Dn®® @ Dnt!
+5Dnt'% @ Dottt + 10Dn*% @ D' + 10Dnt!* 3 ® Dnt!
+15Dn"?* @ Dn™ + 10Dn"*? @ Dt + D™ @ Dot + Dnl® ® 1

D™ - +1 @ D™ + 21Dn" ® Dnf® + 35Dn? @ Dn™ + 140D @ Dn'®
+35Dn® @ Dn¥ + 315Dnt"? @ Dt + 350D @ Dnt#
+21Dn% @ Do + 189Dn"¥ @ D + 133Dn2*) @ Dn®
+686Dn"*? @ Do + 301Dn"™ @ Dn® + 7Dn®® @ Dnf?
156D @ Dn? + 105Dn2¥ @ Dn? + 273Dn!"%* @ Dn?
+189Dn"*# @ Dn? + 336Dn"*? @ Dn? + 63Dn!*™ @ Dn?
+Dn® @ Dn™ + 6D @ Dn™ + 15Dn** @ Dnftt
+10Dn®" @ Dn™ + 15Dn*% @ Dt + 60Dn'"23 ® Dl
+15Dn%Y @ Dnt™ + 20Dn"*# @ DntY + 45Dnt* 2" @ DnlY
+15Dn{14’2} ® Dot + Dn*” ® Dot} + Dn{™ ®1

Table 6: o(Ds'*) in terms of Ds'*.
D — 1® D + Dt @ 1)

Ds?¥ - (1®@Ds® + D? ®1)
Ds® - (1@Ds® + D @1) + (D @ Ds? — D @ D)

5
Ds - (1@Ds¥ + DM @1) + 5 (Ds" @ Ds® — Ds'¥ @ DsM)

1 2 2
) (D@D + D 2@Dst!) 4 (DsP@Ds!"™ + D i@ Ds?)
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D — (1@Ds™ + D' @1) + g (Ds @Ds™ — DS @Ds!)
+g (Ds? @D — D @Ds?) — ;L (D@D + D @DsY)
]_ 2 2 3
) (D @Ds? + D @Ds™M) + 3 (Ds? @D 4 D @Ds?)
19 D oD + D @D + L (D @De>? — DD @Dl
~|—Z(Ds ®Ds" + Ds" ' ®Ds )+Z(DS ®Ds" % — D" @DstV)
—(Ds? @ D' — D@D + Z (D2 @D — D @Ds1¥)

D% — (1@Ds9 + DY ®1) + 7 (D@D — D @Ds™)

+7(Ds? @Ds — D @Ds?) — 4 (DM @Ds™Y + D' @Ds!)

U pdngpds 4 DS{2,3}®DS{1}) ~ U pegpgdta 4 pdtd gDdh
1 1

4

(
9 (D@D _ gt g ndth
8

95 2 2
+7 (D@D + D @Ds™) +

—i—z (DU @DsH?* — D2 @D — Z7 (Ds? @Ds!*? — Dd*2 @D

—% (D@D — D @Ds) — 10 (DS @Ds¥ — D ¥ @Ds1™)
141 (D" @Ds?™ — D@D — % (DY @D + DI*Z @D
+(DP D™ + D@ D) + g (D @D*? 4+ Dd* B @D
33

=2 (DM @D + D@D

Table 7: o(Da®) in terms of Da*.

a(D {1}) +1®Dat + Dal @ 1

o(Da?) = +1®@Da? + Da? @1

a(D {3}) +1® Da® + 2 Dal¥ ® Da? + Dat® ®1

o(Da¥) = +1 @ Da¥ + 5Daf? @ Dal® + 5 Dal"¥ @ Da® + Dal¥ ® 1
o(Da®) = +1 @ Da® + 9 Dal¥ @ Dal¥ + 5 Dal" @ Dal®*” 4 5 Da? @ Da®

+45/2Da"} @ Da® + 10Da®V @ Da® + 15Da" @ Da? + Da® ® 1
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o(Dal®) = +1 @ Da® + 14 Da ® Da™ + 14 Da! ® Daf* + 63 Dal'*! ® Daf¥
+35Dal"™ ® Dal®} 4+ 70 Da>" @ Da® + 105 Dal'* ® Dal®
+70 Da>'" @ Da® + 105/2 Dal'" @ Da® + Da® @ 1

o(Dal™) = +1 ® Dal™ + 20 Da'! ® Da® + 35 Daf'} @ Dal**}
+140/3 Dat" ® Daf®” + 28 Da®® ® Daf™ + 140 Da''"! @ Da®
+70 Dal" @ Da®? + 14 Da® @ Dal¥ + 252 Dal>! ® Dal¥
+140 Da®" @ Da?*! + 420 Dal'™ @ Dal¥ + 280 Dal'”} @ Dat**}
+70 Da® @ Da® + 70 Da®**! ® Da® + 630 Da®>'* @ Dat¥
+525 Dal'™ ® Da® + 70 Da®'™ ® Da®® + 140 Da®*! © Dal?
+420 Da21*} ® Da? + 210 Dalt™} ® Da? + Dal™ ®1

Table 7 bis: ¢(Da'*) in terms of Da'*.

- 41 ®%{1} + @{1} ®1
=11 ®m{2} + %{2} ®1
= +1® m{?’} + m{?)} X1+ m{l} ®m{2}

+3 @{12} ®@{3} + m{ll} ®&x{2} + %{13} @@*{2} + %{5} ®1

0(@@) = 1+1® m{ﬁ} + 4@{1} @@ﬁ} + 2@{2} ®m{4} + 6&1{12} ® m{ﬁl}
_1_%{12} ® m{?} 1 4Da?Y @ Dal® + 4%{13} ® Dal¥
492 m{%l’} ® Dal? + @{14} ®Da? + Dal% ® 1

0(%{7}) = +1®Da” + 5Dal! @ Da® + Dal¥ ® m{ﬁ} +1/2 Dal! @&{23}
+3Da? @ Da™ + 10 m{12}® Dal™ + m{12}® Da®? + Da® @ Dal¥
1+9Da?! @ Dal¥ + 3/2 Da?! ® @{22} +10 @{13} ® Dal¥
492 m{ls} ® m{?"} 1 2DaB @ Da® + 3/2 m@z} ® Da®
49 @{2712} ® Dat¥ + 5@{14} ® Dat¥ + %{3,12} ® Dal?

+3/2 @{2271}@) Da? + 3@{2713}® Da? + m{ls}@) Da? + Da"® 1
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14.4 Embedding of ISO into ‘ISO.
Table 8: Dn'* or rather dn!* := % Dn'* in terms of D& and Da™.

dn = 4DV = 4DV

i = +2De® + LD = 42 De® 4+ 1 e
2 2 2 2
1 1 1 1

dn® = 42 De¥ 4+ 2 D>V 4 Z D 4 Z DL
3 3 2 2

dn®® = +l Da® + l]Da<2’1> + 1]D)a<1’2> + 1IDSLGJ’1>
3 6 2 2

dnt? = +i De® + %l]D)e@”D + % D% + %De<1’3> + % De>hY
+%De<1,2,1> + ZD6<17172> + %Deﬂ,l,l,b
m® — +1pa® 4 L et 4 Ipaer £ Lpaas 4 Lpgey
1 12 6 2 6
_'_% Da<1,2,1> + %]D)aﬂ,l,?} + %Daﬂ,l,l,b

1 1 5) 7 1 )
do®™ = 12D + 2 DAY + D2 £ D2 + Z DY 4 e Lb
n +5 e + 5 S + 19 S + 19 S + 9 S) + 19 (§)
7 7 1 11
+— D2V 4 — D 4 DY DAY 4 DY
12 8 2 12
3

+Z De2LLD 11 DEL2LD | L2 §De<1,1,1,2> 1 2 DL LLLD
8 12 2 2

1 1 1 1 1 1
d {5} = 4— D <5> + — D <471> + — D <372> + — ]D) <273> + — D <174> + — D <371’1>
. oo Tyt 12 6 g ¢ Tl

+l a2V 4 1]D)a@’l’% + 1]I))zau<1’3’l> + 1ID>.9L<1’2’2> + Dah b
12 4 6 3

+1 DALY 4 l]DaOQ,l,l) I lDa<1,1,2,1> I §Da<1,1,1,2> i §]Da<1,1,1,1,1>
4 3 2 2 2
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dn'® = +% DE® 4+ é]D)e<5,1> + % Db | gDe<3,3> n ;_Z D & %]D)e<175>
+% DAL 4 2D8<3,2,1> + % DB 4 g D23 4 % De22:2
+g D3 4 %De<1,4,1> + % D32 4 % DeL23 4 Z%]D)e<1,1,4>

+%De<3,1,1,1> + %De@,z,l,b + gDe@,l,z,D + gﬂ)e<2’1’1’2> + %DGG,S,LD

35 35 5 55 -
99 221 | 99 m 1212 2n 131 22 mn 1122 2n 1,13
+24De +16]D)e +4]D>e +24]D>e +2]De

17 35 55 .
I DSLLLY L 2O (A2 L0 PO (12 LD 2 my (L1121

—1-8 e + 16 e +24 & _|_2 o

15

15
2 DpLLLLY 2P pgLLLLLD
+ 1 e + 1 o

1 1 1 1 1 1
dn'® = —i——]D)<6>+—]D<5’1>+—]D<4’2>+—]D<3’3>—|——]D)<2’4>+—]D)<1’5>
" 6« T30 Tt 2 Tt T

1 1 1 1 1
L DALY f B2 4 I DeBld L L Da@3D 4 2 a2
20 24 g 18 " g
1 1 5 5 5
2D L I Data o 2 s 4 2 pad2d o 2 patd
+3 a + 3 a + Y a + 19 a + 1 a

1 1 1 1 .
DL L 2 D@2 4 C et 4 Z pp@hhy  Z plaLy
+ Dd + 5 D + 5 D + o Dd + 2
)

) 5 5 5
B AR | R e T ) F i g
7 Rt et T Rt

+1 D& LLLD 4 §]D)a<1,2,1,1,1> + §Da<1,1,2,1,1> + §]D>a<1’1’1’2’1>
2 ] 6 1

+1_5 ]D)a<17171v172> + E Da<l,1,l,].,1,]_>
4 4

DL
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7 29
— D2 L 2 pedd
50 e + 15 c +

1 7 29 29 7
- D {1,6) b D $5,1,1) o ]D) {4,2,1) D {4,1,2)

+26 +206 +45e +3O +8
77

7 5 125
M D322 DB D24
18 1 % T
25 1 137 15
D21 L5 DA 4
T 3 120
3 29 o 7 21
O bl 4 2 1 D210 D120 D312
+ e + 30 48 e + - 1 + — 3 e

7 5

_ D <374> + _ ]D) <2?5>
8 " 6

dn'™ = +1 DE” + 1ID>e<6’1> +
7 7
D331

D232 4

175
2 ]:D)e<2,2,3>

]D)<133> 17

— De 1,24y
]D)e<4,1,1,1>

125 129 peain | 175 175 pe22n @ D221 25 29 D218

72 72 48 12
27725 De 2,1,2,2) + 265 ]D)e<2,l,l,3> 12; De {1,4,1,1) + = 15 De {1,3,2,1)
45 17 187 17
L Ppgsry | Hpassy 20T passsy  1ipasiy
16 8 ¢ 48 4
Jr;]D)e<1,1,4,1> + % Db | %De<1,1,2,3> n ?Deﬂ’l’l’@

_i_E DB LLLY 4 1_75 D211 | E D121 | 25 D120
8 8 2 6

25 45

187
29 D@t | 22
+ e + 16

48
35

17

DEL3LLY - 20 pgr221 | 2lpa.2121)

o1 25

12 D211 | 2213y, 22 pigen | 10 R a1219)
8 8

105
16
15 2 petnan 4 22 55 D122 4 E DL | % De2LLLLD
4 8 2 4

o1
DL L2 LI |

105
+ = D <l,2,l,1,l,1> +
8 ° 16
+E De<1,1,1,1,2,1> + 4_5 De<1,1,1,1,1,2> + ﬁ De<1,1,1,1,1,1,1>
2 1 4

@ ]De<l’1’l’2’l’1>
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<mW}=-+%D&”4—3-Déﬁb+-E-Dé&@+-E-Dé¢$+-i-méa®+~1méla

12 30 20 12 6

1 1 1 3 1

2D £ DD ¢ a2 L 2 pa@ld 4 D@3
AT 02 02 360

1 1 1 5 5

2 DaB22 4 S DB 4§ L DaAd L 2 pa@3d ¢ 2 a2
TR T 4 P 36 -

5 1 3 1 1

i WeAWIREIE (WO VLIS WO R S ) WO S ) RO X
+12 a + 10 a + 20 2 + 1 2) + 9 a

3 3 1 1 1

i) BRI WCRREVINNEIS W RPN | WC R EAVEIEY \WERRE
+2 a + 10 a + 13 a D a 1 2)

5 5 5 5 5

2 a3 L 2 22D | ° pa212 | 2 paeisy | 2 puel2d)
Tt 2B Vi 36 The

5 3 1 3 1
L2 De@Ild | 2 Pl | 2 s | 2 padsl | 2 pad2s

6 20 g g 6
+% Da<1,2,2,2> + Da<1727173> + 2]:[))&(1,1,4,1} + g ]D)a<1,1,3,2> + Z Da<1,1,2,3>

15 1 5 5

2 DL | 2 @il | 2 pae211) | 2 pae1aL
e Ty 24 18

5 5 3 1
+— ID) <2,1,1,2,1> + = D <2,1,1,1,2> + = ID) <1,3,1,1,1> + = ]D) <1,2,2,1,1>

The Mt g 0 30
_1_1 Da<1,2,1,2,1> + § Da<1,2,1,1,2> + § Da<1,1,3,1,1> + § Da<1,1,2,2,1>

2 2 8 8
_’_E Da<1,1,2,1,2> + § Da<l,1,l,3,l> + § Da<l,1,l,2,2> + g Da<1,1,1,1,3>

8 1 2 2

O @LLLLY | S m A2l O 1011y, O 11,12,1,1)
—|—4]D)a +2Da +8Da —I—ZID)a

+§ Dl LLL2D §]Da<l’1’1’1’1’2> 4 45 DL LLLLD
4 4 4

Table 9: D or rather ds* := % Ds'* in terms of Da™.
dst" = +Da?
&2 = 41 Da®
2
ds® = +l Da® + E (D2 — Da®?)
3 6
1

ds' = —I—i Da® + % (D — D) + % (Da12 4 Da®h ) — 3 Da>V
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1 9 1
A = +z Da® + 0 (D — Da™ ) + v (Da®® — Da®?)

19 1
DLl | D@ LD D2 | 2D
190 ( + Da™7) — 120 (Da™ + )
13 1
20 D3 4 = D<212>+ Dbl _ @b
60 30 50 (D& ™)
13
(D20 P2ty
120

- (Da<274> _ Da<4’2>)

1 7
ds® = +2D9 + = (DY — Y
S +— Da —|—3O( B) > ) + 120

6

+i—; (Da<1’1’4> + ]Da<4:171>) 1220 (]Da<1 23) | g2 1>)
160 (D2 4+ D) + 1151?10 (Da®H® 4 Da12)
+3—(150 D222 _ ;Tl() DA | ;_2 (DD _ D@D
71210 (D122 ]D>a<27271’1>) 1151?10 (D212 ]D>a<2’17271>)
27818 (DAY — D3 LDy 4 310 (D12 4 P LLLDY
49 13

- ]Da<1’1’2’1’1>

DabLL2D 4 a2 LLDY

480
Table 10: Da* or rather dal* := % Da in terms of Da™.

dal™ = Da®

da® = + 1 pa®
2

da® = +1 Da® + 1]Da<1’2>
3 3

1 5! 5!
d {4} — _ D <4> _ ]D) <173> _ ID) <17172>
a —|—4 " + 19 £2) + 19 a

4 = +1 D6 + 2D ¢ LD 4 Sy | L

7
36

- Da<27173>

5 20 12 4 12
—i—% Dal? 4 ;lma<171,1,2>
da® = —l—é Da® + 1—75 Da> + 6_70 Da>® + ;—(1) ) % a2
+£ DLl o %Da@,l,z@ 4 %Da<l’2’l’2> i s a1 | ZDa<1,1,1,1,2>
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10 2

dal™ = +% Da?” + — Da® + = Da®> + 1 Da®® 4 gDa<l’1’5> + %Da<1’2’4>

Table

Dalt =
m{Q} _
m{i’)} _
%{4} _
Da” =

m{ﬁ} _

m{ﬂ _

21 15 30

3 1 1 1
+—Da®M 4 — DY 4 DAY 4 Da®Y - 3Dt
10 18 18 18

11 5 1 1 1
L D2 2 pa2ld D@l | L sy L sl
8 9 " i T T
-l—% a3 1_18 Dal222 %8 Da122 4 % Da2212 4 5pabLLLd)
+§ Dab 122 | % Da 212 | g a2 L1 4 % DaZLLL2 | 5 et LLLLY
10 bis: Dal* or rather m{'} = (1i-)! Dal* in terms of ]])La®.
+]Dﬁ<l>
+m<2>

+%<3> + I[)La<L2>
+De® + 2D + 212
+m@ n 3%@@ X @@,3) I 6@<l’1’3> I M1,2,2> 4 %@,1,@ T 6M<1,1,1,2>

+1Dﬁ<6> + 4]:Dﬁ<1,5> + 2IDLa,<2’ZD + 12[Dil<1’174> + 4@(1,2;» + 4m<2,1,3>

+24 DaM Y 4 A DAt 2 4 4 DAY 4 4 DD 4 24 Dt
+]:Dﬁ<7> +5m<1,6> _’_3m<2,5> +IDﬁJ<374> +20 Dﬁ<17175> +10 Dﬁ<17274> +9_a<27174>
+92 H)La<1,3,3> + 2M37173> + 3@2,2,3& + 60 %<1,1,1,4> + 29 ]])La<1,1,2,3>

+20 DY 4 18 DAY 4 2 DA 4 2 D2 4 2 DA

+3 ]])La<12722> + 31Dﬁ<2,1,2,2> + 3]])La<2’271’2> + 120 M1,1,1,1,3> + 24 Dﬁ<1’1717272>
+22 DALY 4 20 DAL 4 18 DD 4 190 Dbl L1

Table 11: Inductive construction of Dal* or rather Dal* := —L__ Dal*,

(1+r(e))!

f

2Da¥ := Dal! = DnY (recall that DnM _f :=
f/

)

(n+1)Da™ := —@Da"" Y — coDal™ (Vn = 2)
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@{1}
@{2}
@{3}
m{‘l}
m{f’}
@{6}
m{ﬂ
@{8}
M{Q}

coDat!%

coDat'!}

coDal'?
coDal'?
coDat'¥

coDal!?}

coDal'%

coDal'™

0

+Dal™

0

+3/2 Da?"}

0

+2Dal¥* + Dal?¥

0

+5/2 Da*™} + 9/8 Dal®"}
+8/3Dal®”} 4 2 Dal®?")
+3 m{a’#} + 2%{4,32} + @{4:23} +3/2 m{?”}
+9/2 Da®2"

+7/2Dal® +5 Dal*®} +5 Dal®"} 4+ 27/8 Dal*?" + 5 Da®*?* + 35 /16 Dal®*}
+5Dal® % 4 32/3 Dat*3* + 9/4 Dal®?" 4 8 Dal*32" + 9 Dal®?"

+4Da™ +5/2 Dal*™ + 8 Da®**} + 5 Dal**# + 9/8 Dal®*"
+6 Dal®>2% 1 5/2 Dal*?* + 15/2 Da*?"} + 63/4 Da®* 2" 4 27/8 Dal*"}

+8Da®" + 16/3 Da®*™} 4 8 Dal®***) 4 4 Dal0*#} 4 4 Dal®42
+32/3Dal" + 27 Dal**?" + 6 Da®2" + 40/3 Da®*?"} + 35/2 Dal>**

+9/2 Dal® + 9 Dal®%*} + 8/3 Dal™** 4 6 Dal®**} 4 105/8 Dal*"}
+2Dal™2% 4 3Dal642" 4 35 Da**" + 9/2Da®2" + 45/2 Da®32"
+189/16 Dal™*2" + 35 Da™*?*) 4 245/16 Da*") + 81/2 Da**2"}
+693,/128 Dal*™

46 m{7,52} + 4%{7,4,32} + 3()@{5,43} n 2&{774’23} 30 %{5’34}
+128/3 m{‘*z’?’s} + 18 m{6,3,24} +81/4 m{5,4,24} 430 _a{5’32723}
+32 %{42,3,23} + 3&1{7,25} " 105/8 %{5726} 79 %{473725}
+105/2 Da®*?" + 1354 Da®*")
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+92 m{8,4,32} + @{8’4’23} n 15&{43732} n 224/3 @{5’4733} Lo @{6,34}
+15/2Dal™2" 4 135/8 Dal®**" + 220/9 Da®") + 63/8 Dal2"

+56 %{5’4’3’23} + 27/2 m{773724} + 25 m{6,32,23} + 3/2 mJ{8725}

+135/4 Dal**" 4+ 175/16 Da®**) + 567/4 Dal****" 4 110/3 Da®*"?")
+63 Dal®*2% 4 243 /8 Da*?" 4 385/4 Da®*2% 4 143/16 Dal”

15 Tables: how construction-sensitive is &7

The main point of this section is to find out how much, or how little, the
first-order ultraexponentials Sl[f ] (i.e. those that verify Sl[f loT = FEo El[f ])
depend on the auxiliary germ f used to construct them. The answer will turn
out to be: surpisingly little. We also propose to illustrate the extremely slow
onset of the stair-case phenomenon, which says that, when f; and f5 drift far
apart, the corresponding Sl[f 1 and Sl[f 2l tend to differ by post-composition by
a stair-case function.

We take over the notations of §8.4. We consider auxiliary real-analytic
self-mappings f of R*. We denote f¢, %f their normalisers at +oo (they
conjugate f with E) and f* * their normalisers at 0% (they conjugate f
with the dilation 0, :  — cz = f/(0)x (¢ > 1))

The most convenient tools for comparing two ultraexponentials Sl[f Iis

the periodic connector Pl[f Pl and its Fourier coefficients. The connector is
characterised by
gl[fﬂ o Pl[fhfz] _ gl[fz] (Pl[fhfz] oT =To Pl[f1,f2] ) (15‘1)

Since we shall be dealing mostly with first-order ultraexponentials, we shall
most of the time drop the lower index 1.

Practically , we must express the connector in terms of the two kinds of
normalisers. The formula which does this reads:

PUEl= 57 o Lo fio Ofio f o Hao Eod, (15.2)
=T"o 5,?11 o Loﬁt off™ ™o Of, of2<> o frot"2 o Y, 0 Eod,,oT "

Due to the defining properties of the normalisers, the second line is just a
tautological re-writing of the first, but it contains three free parameters (the
integers mng, 1, ng), which are extremely useful for optimising computational
efficiency.
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15.1 The c¢(e*—1)-based ultraexponentials for ¢ near 1.

We set P := PUvP2l with fi(z) :=2(e* — 1) , fo(z):= (1 +277)(e® —1).
When p increases, fy goes to the identity-tangent (at 07) germ e® — 1, but
rather than the plain connector
PULLl(g) = 2 4+ ag + Z an €™ (a—pn = an) (15.3)
nez*
it is the shift-corrected, or shift-free, connector
]S[fl’fﬂ(x) = P[fl’fQ](x —ag) =+ Z Q, e2mine (G_p = a,) (15.4)
nez*

that goes to a limit. So, alongside the shift ay of P and its variation h :
h :=sup(P(z) — x) — min(P(z) — z))
we tabulate its shift-corrected coefficients a,, up to k = 6.
h ao

p

1 0.000173 0.812416342070693331
2 0.000228 3.714151639563557264
3 : 0.000244 12.161685214161111968
4 0.000248  34.469041109222426463
5 0.000249  90.043900828527882086
6 0.000250 223.248440548965845345

P 105 C~L1 107 C~L2

1 —2.59184923 + 3.480827507  —3.93628643 — 1.02092641 ¢
2 —3.42656414 + 4.575224567  —5.15710254 — 1.35080762¢
3 —3.66952951 + 4.891420907  —5.50831912 — 1.44687006 %
4 —3.73566860 + 4.97731255¢  —5.60360689 — 1.473021751
5 —3.75297060 + 4.999769007  —5.62851173 — 1.47986314 ¢
6 —3.75741801 + 5.005515647  —5.63494008 — 1.48065193 ¢
P 108 ng 1010 C~L4 1011 C~L5

1 —0.96152 — 0.615087  —4.945 —2.0517 —3.38 +0.41%
2 —1.26263 — 0.80316¢ —6.512 — 2.664 ¢ —4.45+0.561¢
3 —1.34955 — 0.85702:  —6.966 — 2.838:  —4.76 + 0.61%
4 —1.37315 - 0.87162:  —7.090 — 2.885%7  —4.84 4 0.621
5 —1.37932 — 0.875437  —7.122 —2.898¢  —4.87+ 0.621
6 —1.37451 — 0.87571¢  —7.057 —-2901¢ —8.67+ 0.624
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15.2 The c (e"—1)-based ultraexponentials for ¢ moderate.

We are now to compare the ultraexponentials constructed from:
fi(z):=2(e"—1) , fo(x):=2P(e"—1) for p<10 (15.5)

There is no point here in making a shift-correction, so we revert to the normal
definition of the connector:

PUCENz) =2+ ag+ ] ap e (a_p = an) (15.6)

nez*
The following tables show how small the connector remains even when ¢
ranges over the interval [2,2'°]. Thus, the main index of smallness, the

variation h, remains under 1/100 (resp. 1/10) as long as ¢ remains within
the interval [2,17] (resp. [2,1045]).

p h Qo

2 0.0010 —0.039730218808207703
3 0.0039  0.140206086332004488
4 0.0097  0.298993371423610350
5 0.0191 0.428478926333908364
6 0.0317  0.534974918731011484
7 0.0467  0.624226819271341737
8 0.0628  0.700373568094414955

9 0.0794  0.766327669818064974
10 0.0958  0.824172830948231323

102 |CL1| ].03 |CL2| ].04 |CL3’ 105 ‘CL4| 106 |CL5| 107 ’(16‘ ].08 |CL7| 109 |CL8|

0.0273 0.0028 0.0008 0.0003 0.0002 0.0001 0.0001 0.0001
0.0980 0.0123 0.0038 0.0016 0.0009 0.0006 0.0005 0.0005
0.2428 0.0409 0.0160 0.0081 0.0044 0.0024 0.0016 0.0016
0.4777 0.1103 0.0567 0.0389 0.0285 0.0197 0.0113  0.0054
0.7928 0.2448 0.1572 0.1425 0.1448 0.1475 0.1394 0.1100
1.1636  0.4639 0.3521 0.3930 0.5155 0.7085 0.9601 1.2221
1.5643 0.7798 0.6730 0.8664 1.3727 2.3544 4.1118 7.0499
1.9735 1.1956 1.1511 1.6246 2.9451 5.9621 12.5587 26.5791
23761 1.7072 1.8187 2.7219 5.4000 12.3830 30.0981 74.5903

O W00 IO Uik W I

—_

15.3 The ¢ (e"—1)-based ultraexponentials for ¢ large and
the tardy onset of the staircase regime.

We still compare fi(z) := 2(e” — 1) and fy(z) := 27 (e* — 1) but for very
large values of p, with a view to showing how slowly the connector (minus
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the shift ag) converges to the odd step function ent:

1
ent(x) := ntg if n<z<n+1l (nelZ)
ent(z) = n if x=n (neZ)
So we expand the limit connector P as a Fourier series:

1

P*(x) = ai’ +ent(z) = ay + Z LTI ith  aF = 5

nez*

(15.7)

and examine how the Fourier coefficients of the current connector converge
to their limit values. We separate their arguments and absolute values, as
follows:

p[fl,f?](a:) — x+a0+ Z ‘an| 6_271-1'(9”-’_&) eQﬂ-inx (ain = an) (158)

neZ*

so as to have |a,/a’| / 1 and 6, N\, 0 as p goes to +oo. For greater clarity,
we do not take the main determination of the argument 6, (mod 27), but
an exact determination in R*, followed by continuity, backwards from the
limit value 0. We also tabulate the variation h and minimal slope s of the
connector P2 as well as the corresponding data h¥ and st for the reverse
connector PU/vF2l. We may notice that the reverse pair (hf,s?) goes to its
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limit (1,0) slightly less sluggishly than the direct pair (h, s).

p

10
20
30
40
50
60
70
30
90
100
110
120
130
140
150
160
170
180
190

200
250
300
350
400
450

200
600
700
800
900

1000
1500
2000

o0

h

0.096
0.218
0.285
0.328
0.360
0.384
0.404
0.420
0.434
0.446
0.457
0.467
0.475
0.483
0.490
0.497
0.503
0.508
0.513

0.518
0.539
0.555
0.568
0.578
0.587

0.595
0.608
0.619
0.628
0.636

0.642
0.666
0.682

1

hi

0.537
0.600
0.621
0.662
0.678
0.686
0.705
0.715
0.725
0.736
0.743
0.749
0.755
0.760
0.764
0.768
0.772
0.776
0.779

0.782
0.794
0.805
0.812
0.818
0.824

0.829
0.837
0.843
0.848
0.852

0.856
0.869
0.878

1

S

0.728
0.462
0.353
0.298
0.262
0.237
0.219
0.205
0.194
0.185
0.178
0.171
0.165
0.160
0.156
0.152
0.148
0.145
0.142

0.140
0.129
0.121
0.115
0.110
0.106

0.103
0.098
0.093
0.090
0.087

0.085
0.077
0.072

0

st

0.750
0.516
0.403
0.336
0.289
0.256
0.230
0.210
0.193
0.179
0.167
0.157
0.148
0.140
0.133
0.127
0.121
0.116
0.112

0.108
0.091
0.079
0.070
0.063
0.058

0.053
0.046
0.041
0.037
0.034

0.031
0.022
0.018

0
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Qo

0.824172830948231323
1.169249345157300399
1.338801550912898204
1.445091229720390133
1.520177351544718161
1.577114227264200653
1.622362811018353058
1.659543136186266516
1.690866157220920835
1.717770910145828546
1.741240989738605260
1.761975329007507570
1.780486537845824490
1.797160570587154804
1.812294524905533289
1.826121469319542517
1.838827260907611583
1.850562243985180026
1.861449578437993691

1.871591290595732904
1.91368817224511269.
1.9457952784130651 . .
1.971459590821952 . ..
1.99266499489222 . . ..
2.0106234087384 . . . ..

2.026124575139 ......
2.051762383852 ......
2.07233675865 . ... ...
2.0893952176.........
2.1038857620.........

2116427741 ..........
2.16129606...........
2.1901946 ............

o0
Qg



10
20
30
40
20
60
70
80
90
100
110
120
130
140
150
160
170
180
190

200
250
300
350
400
450

500
600
700
800
900

1000
1500
2000

o0

0.415
0.309
0.259
0.227
0.205
0.189
0.176
0.165
0.157
0.149
0.143
0.137
0.132
0.128
0.124
0.120
0.117
0.114
0.111

0.109
0.099
0.091
0.085
0.080
0.076

0.073
0.068
0.065
0.060
0.057

0.055
0.047
0.042

0

0.704
0.512
0.423
0.369
0.331
0.303
0.281
0.263
0.248
0.236
0.225
0.216
0.207
0.200
0.193
0.187
0.182
0.177
0.172

0.168
0.151
0.138
0.129
0.121
0.114

0.109
0.100
0.093
0.088
0.084

0.080
0.067
0.060

0

0.946
0.693
0.571
0.495
0.443
0.404
0.373
0.348
0.328
0.311
0.296
0.283
0.272
0.262
0.253
0.245
0.237
0.230
0.224

0.218
0.195
0.178
0.165
0.155
0.146

0.139
0.127
0.118
0.111
0.105

0.100
0.083
0.074

0

1.160
0.856
0.709
0.614
0.547
0.498
0.460
0.428
0.402
0.381
0.362
0.346
0.331
0.319
0.307
0.297
0.288
0.279
0.272

0.264
0.235
0.214
0.198
0.185
0.174

0.165
0.151
0.140
0.131
0.124

0.118
0.098
0.086

0

1.378
0.998
0.840
0.728
0.648
0.588
0.542
0.504
0.473
0.447
0.425
0.405
0.388
0.373
0.359
0.347
0.336
0.326
0.316

0.308
0.273
0.248
0.229
0.214
0.201

0.190
0.173
0.160
0.150
0.142

0.134
0.111
0.097

0
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1.613
1.111
0.963
0.838
0.745
0.676
0.622
0.578
0.542
0.511
0.485
0.462
0.442
0.425
0.409
0.395
0.382
0.370
0.359

0.349
0.310
0.281
0.258
0.241
0.226

0.214
0.195
0.180
0.168
0.158

0.150
0.123
0.107

0

07

1.863
1.184
1.078
0.944
0.841
0.762
0.700
0.650
0.608
0.574
0.544
0.518
0.495
0.475
0.457
0.441
0.427
0.413
0.401

0.390
0.345
0.312
0.287
0.267
0.250

0.237
0.215
0.198
0.185
0.174

0.165
0.135
0.117

0

Os

1.124
1.247
1.180
1.049
0.935
0.846
0.777
0.721
0.674
0.635
0.602
0.573
0.547
0.525
0.505
0.487
0.470
0.455
0.442

0.429
0.379
0.342
0.314
0.292
0.274

0.258
0.234
0.216
0.201
0.189

0.179
0.146
0.126

0

Oy

1.394
1.334
1.251
1.152
1.028
0.930
0.853
0.791
0.739
0.696
0.659
0.626
0.598
0.573
0.551
0.531
0.513
0.496
0.481

0.467
0.412
0.371
0.341
0.316
0.296

0.280
0.253
0.233
0.217
0.204

0.193
0.156
0.135

0

010

1.672
1.441
1.202
1.256
1.121
1.013
0.929
0.860
0.803
0.756
0.715
0.680
0.649
0.621
0.597
0.575
0.555
0.537
0.520

0.505
0.444
0.400
0.367
0.340
0.319

0.300
0.272
0.250
0.232
0.218

0.206
0.167
0.144

0



p

10
20
30
40
20
60
70
80
90
100
110
120
130
140
150
160
170
180
190

200
250
300
350
400
450

200
600
700
800
900

1000
1500
2000

o0

a1 /af’|

0.149296837
0.329302890
0.416717927
0.467646656
0.502022810
0.527421403
0.547313467
0.563528612
0.577134122
0.588801263
0.598977252
0.607973836
0.616016376
0.623272720
0.629871025
0.635911224
0.641472650
0.646619276
0.651403390

0.655868247
0.674493354
0.688802683
0.700304938
0.709849414
0.717958579

0.724975215
0.736608533
0.745962428
0.753724012
0.760317429

0.76602147.
0.78636529.
0.7993700. .

1

as/a3|

0.021453706
0.117523401
0.205025907
0.267320358
0.312267954
0.346248776
0.373063558
0.394963283
0.413337163
0.429083602
0.442809139
0.454938910
0.465780653
0.475563356
0.484461495
0.492610765
0.500118598
0.507071387
0.513539570

0.519581277
0.544852007
0.564360793
0.580114526
0.593241284
0.604435487

0.614153538
0.630333048
0.643404191
0.654292064
0.663570663

0.67161906 .
0.7004769 . .
0.719037 . ..

1

|as/ag’|

0.003428333
0.040360172
0.099772889
0.154851766
0.199914399
0.236180707
0.265739021
0.290298293
0.311097215
0.329014185
0.344676732
0.358540854
0.370944468
0.382142940
0.392332835
0.401668051
0.410270948
0.418240181
0.425656301

0.432585833
0.461604506
0.484061392
0.502244186
0.517435215
0.530422594

0.541724009
0.560598616
0.575903846
0.588692809
0.59962076 .

0.60912173.
0.6433523. .
0.66549 . . ..

1
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|aa/af’|

0.000684112
0.013272026
0.047178160
0.088523369
0.127726793
0.162052274
0.191461410
0.216651171
0.238391932
0.257346891
0.274046130
0.288903536
0.302241106
0.314310602
0.325310604
0.335399373
0.344704393
0.353329448
0.361359890

0.368866583
0.400333347
0.424724290
0.444506937
0.461064154
0.475244851

0.487606100
0.508300206
0.525130397
0.539229958
0.55130503.

0.5618241 ..
0.599885 . ..
0.62464 . . ..

1

|as/ag’|

0.000169649
0.004168146
0.021503420
0.049567335
0.080696615
0.110668066
0.137945316
0.162251474
0.183791883
0.202913290
0.219970016
0.235278286
0.249105813
0.261674356
0.273166209
0.283731147
0.293492627
0.302552939
0.310997359

0.318897448
0.352064175
0.377817421
0.398733355
0.416262213
0.431295002

0.444416255
0.466423770
0.484364679
0.49942697 .
0.5123512..

0.5236294 . .
0.564591 . ..
0.59136 .. ..

1



p

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

200
250
300
350
400
450

500
600
700
800
900

1000
1500
2000

Q0

|as/ag|

0.000046683
0.001283575
0.009340991
0.027047815
0.050211698
0.074892433
0.098901558
0.121290785
0.141773365
0.160371726
0.177234877
0.192550889
0.206507693
0.219277279
0.231010797
0.241838505
0.251871641
0.261204901
0.269918911

0.278082467
0.312442041
0.339186815
0.360938616
0.379188669
0.394856629

0.408546553
0.431542271
0.450325236
0.46612281.
0.4797002. .

0.4915659. .
0.534807 . ..
0.56319....

1

|az/af|

0.000013238
0.000445047
0.003791385
0.014294459
0.030677830
0.050102507
0.070387963
0.090264151
0.109105539
0.126665038
0.142897512
0.157857017
0.171640660
0.184359279
0.196122880
0.207033969
0.217185008
0.226657948
0.235524744

0.243848292
0.279013554
0.306482580
0.328862449
0.347661176
0.363815608

0.377943064
0.401703269
0.42114217.
0.43751635.
0.4516092. .

0.4639414 ..
0.509018 . ..
0.538733 . ..

1

|as/ag’|

0.000003749
0.000208345
0.001381776
0.007248175
0.018344810
0.033075126
0.049652546
0.066771801
0.083633365
0.099803498
0.115079534
0.129394374
0.142755916
0.155210684
0.166822761
0.177661973
0.187797519
0.197294756
0.206213766

0.214608922
0.250259078
0.278242892
0.301094401
0.320314928
0.336847756

0.351317893
0.375680865
0.39564061 .
0.41247557 .
0.4269828. .

0.439692 . ..
0.486273 . ..
0.51709. ...

1
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|ag/ag’|

0.000001043
0.000116199
0.000414870
0.003470368
0.010693432
0.021508905
0.034677737
0.049050118
0.063791915
0.078368323
0.092466642
0.105922686
0.118665855
0.130681905
0.141988939
0.152622401
0.162625925
0.172045888
0.180928278

0.189316977
0.225172567
0.253496234
0.276694079
0.296237755
0.313066457

0.327807567
0.352651694
0.37303069.
0.3902389. .
0.4050839. .

0.418102...
0.46593 . ...
0.4976 .. ...

1

|a10/a%)|

0.000000282
0.000065900
0.000120156
0.001520955
0.006043869
0.013754013
0.023956263
0.035756545
0.048386692
0.061284842
0.074076160
0.086528013
0.098507291
0.109947179
0.120823425
0.131138156
0.140909146
0.150162844
0.158929932

0.167242550
0.203053745
0.231564468
0.255003099
0.274789444
0.291848223

0.306803955
0.332034670
0.35275422.
0.3702679. .
0.385390. ..

0.398665 . ..
0.44754 .. ..
0.4801 .....

1



15.4 Ultraexponentials based on ¢ (¢"—1), cx e’ , 2¢sinh(x).

Here, we simply tabulate the variations h*/ and the shifts ag’j of the connec-
tors P ; := P/l linking the ultraexponentials based on the three germs

fi(z) ==c(e" —1)

;o fo(z)i=cxe”

f3(x) := 2¢ sinh(z) (15.9)

for ¢ = 14 277 (first table) and ¢ = 2P (second table). As the tables show,
these connectors remain very small for all values of ¢ and even tend to the
identity as ¢ goes to +oo. This latter fact holds, and can be rigorously es-
tablished, for a large class of germs of exponentiality 1.

Connectors with c =1+ 27P:

h1’2

0.00422
0.00407
0.00400
0.00397
0.00395
0.00394

DU W~ S

1.395126423236
2.714522127338
5.403319183800
10.852572866710
21.839053523673
43.910979716185

Connectors with ¢ = 2P:

h1’2

0.00452
0.00591
0.00904
0.01428
0.02045
0.02601
0.03016
0.03278
0.03408
0.03435

O O 0~ ULk W~ 3

—_

0.748324404654
0.318250096038
0.186108126535
0.124282176384
0.089235571607
0.067035593825
0.051952216575
0.041221071920
0.033339609126
0.027412493771
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h1,3

0.00076
0.00052
0.00040
0.00035
0.00032
0.00031

h1,3

0.00125
0.00425
0.01342
0.02406
0.03172
0.03584
0.03732
0.03716
0.03603
0.03441

aé’g
—2.127251395721
—4.905079538365
—11.578143679197
—27.395815918790
—64.253570081964
—148.722696491661

—0.972320429299
—0.333303223359
—0.171056248431
—0.103958740427
—0.069491792962
—0.049467356752
—0.036858573573
—0.028445448367
—0.022576076169
—0.018332145060



1,2 1,2 1,3 1,3
D h ap h ap

50  0.00904 0.186108126535  0.00787 —0.000735493223
100 0.00464 0.000280711837  0.00385 —0.000183872768
150 0.00306 0.000124760035  0.00243 —0.000081735922
200 0.00215 0.000070169964  0.00182 —0.000045806387
250 0.00157 0.000044887230  0.00146 —0.000029104000
300 0.00131 0.000031159126  0.00121 —0.000020245070
350  0.00112 0.000022913631  0.00104 —0.000015127559
400  0.00098 0.000017606832  0.00091 —0.000011947330
450  0.00087 0.000014015734  0.00081 —0.000009845296
500 0.00079 0.000011491570  0.00073 —0.000008382795

15.5 The c¢(¢“ —1)-based ultraexponentials.

To wind up this numerical investigation, we now examine the connectors
PUnP2] linking the ultraexponentials based on germs of exponentiality 2:

filz) = (eez_l — 1) s fao(x) == (eez_l — 1) (c1,c9 > 1)  (15.10)

Rather than applying a modified version of formula (15.2) with normalis-
ers fO,9f conjugating f with Ey at +00, we directly expand the map ki 5 that
conjugates fi; and fs:

k1,20f2=f10k1,2 ) k1,23= <>flof2<>

into a very fast converging series:

kia2(z) = x + log <1 + e " log (eo(x) + e1(z) + () + ... )) (15.11)
€ = @ _ Const
C1
C1 —C2 _
- 1 (1 +e 21 )
o = 1 Og<1+ef2 log(eo—i—elofg—f—...En_lof2)> (vn > 2)
a+ fi 1+ef2logleg+e10fo+ ...y 20 fo)

Then, as usual, we boost numerical efficiency by plugging suitably large
iterates of fi, fs into the expression of the connector:

plffl.— 5;11 ol o ff o kg0 if2 oF o (572 (15.12)

:szoé;l1 oLo fli ofi™M ™o kg0 fyotn2 o ifQ oFEod,oT ™

135



The following table gives the variations h and hf of the connectors PL/2]
and Pl2:f1] with ¢; = 2 and ¢, = 2P and p ranging over the interval [2, 10].

P h hf P h ht P h ht
2 0.0010 0.0161 20 0.2178 0.3916 200 0.5184 0.6724
3 0.0039 0.0379 30 0.2850 0.4626 300 0.5547 0.7008
4 0.0097 0.0650 40 0.3285 0.5059 400 0.5782 0.7188
5 0.0191 0.0956 50 0.3560 0.5359 500 0.5953 0.7316
6 0.0317 0.1275 60 0.3843 0.5583 600 0.6085 0.7414
7 0.0467 0.1588 70 0.4039 0.5761 700 0.6192 0.7492
8 0.0628 0.1884 80 0.4203 0.5906 800 0.6280 0.7556
9 0.0794 0.2156 90 0.4343 0.6027 900 0.6357 0.7612
10 0.0958 0.2404 100 0.4464 0.6132 1000 0.6423 0.7661

As was the case with germs fi, fo of exponentiality 1, both h and Af remain
small — but not as small as before — for moderate values of ¢y, ¢s, and they
also increase slightly less slowly when |c¢; — 3| grows, pointing to a slightly
less sluggish convergence of the connectors to the limit staircase regime.
This trend, which gets more pronounced for germs fi, fo of larger expo-
nentiality » > 2 and for the connectors Pl[f 1l linking the ultraexponentials
&1 based on them, becomes absolutely dominant for germs fi, {2 which are
themselves of ultraezponential order r and for the connectors Prfl’f d linking

the ultraexponentials &,,1 based on them.

15.6 Conclusion.

To sum up, three facts stand out:

e All ultraexponential & constructed from ‘reasonable’ germs f of expo-
nentiality 1 are surprisingly close to one another.

e This is no longer the case for the ultraexponential &£,,; or higher order
(r = 1) constructed from germs f, reasonable or not, of ulraexponential
order 7.

e Whatever the ultraexponential order, any attempt to base the con-
struction of &, on the restriction of a given f on smaller and smaller
neighbourhoods of 400, so as to get a truly ‘germinal’ and ‘intrinsic’
result — any such attempt (already doomed due to the universal dif-
ferential asymptotics of fast/slow germ; see §6) must founder on the
staircase phenomenon.
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16 Conclusion: central facts, main questions.

16.1 Central facts.
F; : Ubiquity of resurgence.

All types of composition equations or systems, even the simplest ones (frac-
tional iteration or conjugation) and the ones formally most unproblematic,'3!
can and often do produce divergence, even when there is none in the data.
That divergence, however, is always re-summable (it never involves such com-
plications as Liouvillian small denominators) because it is resurgent, and
resurgent of a very special type: it is either non-polarising (meaning that
the singularities in the Borel planes do not lie on R*) or at most weakly
polarising (i.e. with only a finite number of active alien derivation A, with
index w € R"). In the non-polarising case (which includes fractional iteration
and conjugation), f has a privileged real sum f. In the (far less common)
weakly polarising case, fadmits several sums f, depending on the choice of
convolution average(s), but the standard average always works,'3? yielding a
‘privileged” sum, which we may simply denote f.

F, : Ubiquity of cohesiveness.

Cohesiveness is the natural and unavoidable accompaniment of iterated ex-
ponentials or ultraexponentials. On its own, it generates no extra divergence
(that is to say, the transseries or ultraseries f remains convergent if its sub-
series are themselves convergent or, if not, it becomes so after these have
been separately re-summed); it introduces no extra polarizations; and it re-
sults in sums f that always belong to the quasi-analytic class COHES on
some real neighborhood ]..., + o[, but usually without extension outside the
real axis. It should be emphasised, however, that due to the non-polarising
or weakly polarising nature of the resurgence encountered in this context, co-
hesiveness is notably absent from that other place where it sometimes occurs
in accelero-summation, namely in the auxiliary Borel planes or axes.

'3li.e. those that involve no jump in formal complexity, in the sense of admitting formal

power series solutions f when all the data f; are formal power series, etc.

132there being only finitely many singularities on R*, we are spared the complication
of faster than lateral growth on oft-crossing paths and there is no need to resort to the
fine-tuned well-behaved averages.
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F3 : Ubiquity of analysability.

No matter how intricate and divergence-ridden our group extensions may
be, the constructive correspondance between f and f — between the formal
and geometric sides — is never lost: our germs remain completely ‘analysable’,
and all questions pertaining to them can in theory be rephrased, tackled, and
often answered, on the formal side, which of course is the more tractable of
the two. Moreover, the ‘analysable’ character of our germs holds not only at
the (highly singular) point +o0, but also near it, on some real neighborhood,
where our germs f are always either real-analytic or real-cohesive (cohesive-
ness being a very special, regular, and stable subclass of quasi-analyticity.)

F, : Display, transcendence, trans-polarisation.

To each resurgent fl whether mono- or poly-critical, is associated a so-called
display, noted Dpl.f on the formal side and (Dpl.f), on the geometric side.
It combines two dual things: the so-called pseudo-variables Z¥ and the alien
derivatives, of all orders and relative to all critical times:

DpLf = f+> > Z%" A, AL f (16.1)

1<r wi,...,wr
| S-

DpLf)r = frt D> D> Z%" (AL . AL f)r (16.2)

1<r wi,...,wor

The multiple indexation w; := w; M; involves all critical time classes |z;]
through their transmonomial representatives M;(z) and, for each such class,
the singularity-carrying w; € C,.133 R

Here S, denotes accelero-summation f — f, relative to some multipo-
larisation 7, which in each critical Borel plane prescribes an integration axis
arg ¢; = 0; and a convolution average f;.

True to its name, the display does indeed display, in ultra compact and
algebraically operative form, all the information about the object - not just
its Stokes constants, but also exhaustive information about the ‘Borel side’.
It also leads to the trans-polarisation formulae (2.62)-(2.63) which show how
to derive any polarised sum (Dpl.f), from any given sum (Dpl.f), by a
purely formal operation performed on the sole pseudo-variables and using
universal constants P2,  that depend only on the pair (7/,7). Another
nice feature is that anif relation between resurgent objects automatically
extends to their displays, which facilitates the proof of transcendence and
independence results.

13301, in the case of the lesser display dplf, all w; e RT.
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F5 : Near-completeness of resummable transseries.

Composition equations W(f, fl, cee jz,) = id involving only transserial (resp.
transserial and resummable) inputs f; admit transserial (resp. transserial and
resummable) solutions funless exponentiality stands in the way, that is, un-
less the exponentially shrunken'3! equation W(E,; E,,, ..., E,,)=1id admits
no solution £, (n€Z). The price to pay for the admission of exponentials
and their finite iterates is of course the frequent non-analyticity of the sum
f and its replacement by cohesiveness.

F¢ : Total completeness of resummable ultraseries.

To remove this last hurdle - the exponentiality hurdle - we are compelled
to enter the ultra-exponential range, i.e. to introduce a coherent system
of transfinite iterates E, and L, of F and L (but with a < w*). This
time at last, as far as we can see'3®, we get full closure, but at the cost of
two complications: (i) the apparent non-existence of a privileged analytic
realisation of the formal system of transfinite iterates E,, L, and (ii) the co-
existence of several competing ‘canonical forms’ for the formal ultraseries, or
rather the transmonomials in them. Yet, in another sense, we are at the end
of our travails as far as analysis'® is concerned, for there exist no operations
or equations that would require us to consider iteration orders larger than
w® or even equal to it.

F7 : Growth types and the arithmetics of [0, w"].

As just pointed out, the special conjugation equations verified by the trans-
finite iterates E, and L, of E := exp and L := log (for all o < w*) do not
entirely characterise the iterates, but that residual indeterminacy disappears
when we replace the slow germs L, by their classes [L,] relative to a suitable
equivalence relation.'®” These well-defined classes [L, ] are then found to gen-
erate a semi-group that exactly reproduces the non-commutative arithmetics
of the transfinite interval [1,w*|:

[Ls] o [La] = [Larp] 5 [Lal™ =[Lag] (Vo Be[lw?]) (16.3)

1B4obtained by shrinkingin W = id each ﬁ to E,, 1= stat.limkHHO(LkoﬁoEk) (n; € 7).

135an important proviso, since we are still in the early stages of transserial analysis.

136as opposed to mathematical logic, which routinely considers equations (mostly on N)
where the variable is allowed to occur inside the iteration order.

137 suitable here means: compatible with composition and iteration.
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Fs : Iso-operators and iso-convexity.

The bialgebra ISO 38 of iso-differential operators Dnf™

Duf"tmh f o= T (D™ f) with Do f := (=1)" 0™ log(1/f')  (16.4)

with its commutative product x, its non co-commutative co-product o (re-
flecting the interaction with germ composition o) and its ‘iso-degree’ ideg
compatible with x and o, is not only better suited to the study of the germ
groups G, especially in the fast and slow growing ranges (see below) but it
also possesses a remarkable positive cone ISO™. That cone induces a notion
of iso-converity more relevant to germ composition than ordinary convexity.
It also admits a special basis Dal™ extremely rich in improbable algebraic-
combinatorial properties.

Fg : Universal asymptotics of slow functions.

Any iso-differential operator D acting on any ultra-slow germ L (say, on
any transfinite iterate of L) produces a germ D.L whose natural asymptotic
expansion depends on D alone, not on £.!3 This may be taken as the
foundational statement of ‘universal asymptotics’— a fascinating subject with
ramifications in logic and model theory.'4°

Fio0 : The Natural Growth Scale or ‘Grand Cantor’.

Assuming the indeterminacy in the ultra-exponential /ultra-logarithmic scale
to be unsurmountable, and lumping together into the same ‘zones’all germs
that are ‘indiscernible’ (in the sense of being different geometric realisations
of the same transseries), we arrive at a counter-intuitively fractal picture of
the natural growth scale. That scale, far from being the quintessential con-
tinuum that one would imagine, turns out to be thoroughly fractal and even
doubly ‘Cantorian’:

(i) in the large it resembles Cantor’s transfinite interval [1, w*[, with a profu-
sion of detail round each E, but an inter-galactic void between each F, and
its successor E, 1

(i) and locally it reproduces the global picture at ever smaller scales, giving
rise to patterns which this time are more reminiscent of the historical Cantor
set constructed by repeated trisection of the real interval [0, 1].

1381t is sometimes known as the Connes-Moscovici bialgebra, although it was introduced
by us a decade earlier, in 1991, in our book [E5] on “Analysable Functions etc”.

1391t is only the trans-asymptotic part of D.L that depends on L.

140Gee [JvdH2] and also J.v.d.Hoeven’s Habilitation’s thesis.
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16.2 Some open questions.
Q1 : Indeterminacy in the ultraexponential towers.

The fact that the system (1.4)-(1.5) determines each pair (£, &,) in terms of
(Ln_1,En_1) only up to pre/post-composition by some 1-periodic'*! germ P,
together with the observation that all ultra slow/fast germs share a universal
asymptotics, dashes all hope of selecting a privileged solution (£,, &,) based
purely on real-asymptotic criteria. On the other hand, we cannot discount
the possibility, however remote, that one of these systems might possess
extensions to the complex domain so regular or remarkable as to mark it out
as indisputably ‘optimal’. To further complicate the picture, we found in
§15 that all the ‘reasonable’ candidates for the first non-elementary pair'4?
(L4, &1) are extremely close to one another. So the question is still open, and
likely to remain so for quite a while.

Qs : Are there privileged analytic ultraexponential towers?

The question about analytic choices has two aspects. First, does Kneser’s
construction (with its reliance on a pair of closest fixed points etc) apply at
each induction step like it does at step one? If it does, the corresponding tow-
ers {L,,&,} would enjoy an arguably privileged position among all analytic
representatives. If not, are there always analytic representatives in the con-
jugacy classes of each {L,,, E,}7 If there is one, there are infinitely many, but
might there be natural criteria for removing or, more realistically, reducing
this indeterminacy? Remark: the action of analytic Witt towers on analyt-
icity towers {L,, &, } usually destroys their analyticity. Conversely, the Witt
tower connecting two analytic ultraexponential towers are only exceptionally
analytic.

Q3 : The choice of carriers.

Might not the ultra-quasiexponential towers {Lv,,v,} of §8.8 with their
guaranteed analyticity and their more natural, as well as computationally less
costly, construction, be the best solution after all? True, once an analytic
{Lv,,Ev,} is chosen, it automatically determines a {L,,&,} which will be
merely cohesive. But the converse also holds, and in any case, no matter
what system of ultra-exponentials or ultra-quasiexponentials we choose, the
formal solutions f of most composition equations are bound to re-sum to
cohesive rather than analytic germs f.

141\ ore precisely, a germ P that commutes with the unit shift 7.
42derived from the initial pair (Lo, &) = (L, E).
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Q4 : Beyond w”.

Although analysis will probably never require iterates of order a > w®, the
fact remains that adding such iterates to a group G of ultra-exponentials is
one of the few fault-proof means of producing a ‘non-oscillating’ extension
G®*, i.e. an extension where the order < still holds.'*3

Qs : Real-analytic vs real-cohesive solutions.

When the only complication is resurgence, whether mono- or polycritical,
resummation always yields real-analytic solutions (outside +o0, of course).

But what about equations with transserial solutions f of unbounded ex-
ponential depth? The sums f are always real-cohesive, but can they excep-
tionally be better than that, i.e. real-analytic? N

In the case of ultraseries, once an ultraserial solution f is fixed, its sum f
still depends on the choice of an ultraexponential tower. Does there always
exist a (real-analytic or real-cohesive) ultraexponential tower that makes the
sum of that given, particular f analytic?

Qs : Independence theorems.

Clearly, the group < T, E > is not freely generated by T (unit shift) and
E (exponential), since it contains ‘similitudes’ S : = — ax + b. But the
question remains: are all relations in < T, E > generated by ‘elementary
relations’, i.e. by the transparent relations verified by these similitudes?
A yes answer would mean that the group < T, E > (which, contrary to
appearances, contains transseries of the most general type) is acted upon not
only by the iso-differentiations of /SO but also by the much more numerous,
non-differential iso-operators of *1SO.
Another related question is this: can we have identities of type

id = fiogiofaogeo---0fsog,  with (16.5)
filx) = a;x(1+ Z ainx ") (16.6)
gi(x) = bix(1l+ Z binz ™)  (yeRT-Q") (16.7)

other than in the trivial case, when each factor f; and g; reduces to a simil-
itude x +— cx + d? The answer is almost certainly no'*, but the question
appears to be still open.

143Gee §1.2.

144Tndeed, if we write that the coefficients of all monomials ' ~"1~7"2 on the right-hand
side of (16.5) vanish for all indices n1,ns up to N, the number of apparently independent
conditions grows like N? whereas the number of coefficients involved grows only like 2 s N.
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Q7 : No a priori constraints on the holomorphic invariants?

A general principle holds that the only a priori constraints on the general
shape of the display Dpf f of a resurgent f are formal constraints. Put
another way, it says that as long as Dpf f verifies the defining equation of f ,
it can be anything.'4> That principle, which applies to all known instances
of the Bridge Equation, also predicts the correct form of the display for the
composition equations examined in §11-§12. Is its validity boundless?

Qs : Primary representatives of identity-tangent twins.

Since identity-tangent twins or siblings generically exhibit (mono- or poly-
critical) resurgence but are defined only up to conjugation by a common h, is
there always a special resurgent h, conjugation by which optimally simplifies
the displays of our twins and siblings,'*% leading to ‘primary’ or ‘minimally
resurgent’solutions? In the example of §13.2, the answer was yes, but is that
always so? In the same vein: do their exist analytic identity-tangent twins?

Qo : Geometric solutions of non-polarising composition equations.

When does a composition equation W (f; fi,..., fs) = id admit a solution f
capable of a convergent geometric representation of the form

= lim Walfio ) (Wae<fifo>) (16.8)
with W,, an explicitable element generated by the inputs f; 7 For equations
of type Ty or T3 (iteration or conjugation), a representation (16.8) does exist
(barring obvious obstructions linked to ‘exponentiality’), but what about the
types T3 and 737 And what about twins or siblings, where the data f; are
completely missing? Then again, does ‘semi-polarisation’ (i.e. the presence of
finitely many active derivations A, with w € R™ in one or several Borel planes
- see §2.12 supra) unsurmountably precludes representations of type (16.8)7
If not, do these representations necessarily ‘pick’ the simplest polarisation T,
i.e. the one that corresponds to the standard convolution average?

145There exist, of course, growth constraints in w on the resurgence constants A, that
the display carries, but this is another story: here, we are viewing the display simply as a
formal expansion in the true variable and the pseudo-variables, leaving aside all questions
of coefficient growth.

14601, if you prefer, reduces their stock of Stokes constants.
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