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Abstract : The present paper starts with the group of all germs of analytic
self-mappings of R,`8 and concerns itself with its successive closures under
(i) fractional iteration (ii) conjugation (iii) the solving of general composition
equations.

Rather than attempting a systematic treatment, we focus on the typical
difficulties attendant upon these extensions. On the formal side, power series
make way first for transseries, then for ultraseries, involving finite resp. trans-
finite iterates of the exponential. On the analysis side, the first casualties are
convergence and analyticity: from the start, we have to face generic resur-
gence (multicritical but of a weakly polarising type) and, further down the
road, generic cohesiveness (a natural and very inclusive extension of Denjoy
quasi-analyticity).

Nevertheless, none of these complications destroys the bi-constructive cor-
respondence between the formal objects (series, transseries, ultraseries) and
the geometric germs. We describe, and illustrate on numerous examples,
the apparatus required for upholding this correspondence: mainly accelero-
summation, which uses convolution-respecting integral transforms to ascend
from one critical Borel plane to the next, and the so-called display, a semi-
algebraic construct that supplements the genuine variable with a host of
pseudo-variables and encapsulates in highly convenient form all the informa-
tion about the resurgence pattern and Stokes constants of a given germ.

We also devote three sections to the (non-linear) iso-differential operators
which, on top of their surprising algebraic properties, are uniquely adapted
to germ composition, the analysis of deep convexity, and the description of
the universal asymptotics of very slow- or fast-growing germs.

Lastly, we reflect on the seemingly unsurmountable indeterminacy inher-
ent in the choice of transfinite exponential iterates, and on the implications of
that indeterminacy for the natural growth scale (- by which we mean, roughly
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speaking, the ultimate extension1 of our groups of non-oscillating germs -):
far from being the quintessential continuum that one would expect, the nat-
ural growth scale – on the formal as on the analysis side, in the large as well
as locally – displays a granular, almost fractal-like structure.2

Contents

1 Program: exploring/completing the natural growth scale. 3

2 Tools: resurgence, acceleration, cohesiveness, analysability. 8

3 Groups of analysable germs. Complexity hierarchy. 26

4 Conjugation{iteration of zero-exponentiality germs. 33

5 Conjugation/iteration of nonzero-exponentiality germs. 47

6 Universal asymptotics of ultra-slow germs. 51

7 Iso-convexity and the extremal basis Dat‚u. 61

8 Up to ωω : the ultra-exponential scale. 67

9 Beyond ωω : the meta-exponential scale. 77

10 Ultraseries and their all-round completeness. 80

11 Composition equations: resurgence and displays. 85

12 Some examples of composition equations. 99

13 More examples: twins and continued conjugation. 103

14 Tables: iso-derivations and iso-operators. 111

15 Tables: how construction-sensitive is E1? 126

16 Conclusion: central facts, main questions. 137

1better envisioned as a horizon than as a frozen object with sharp contours.
2A first draft of this paper was posted on our WEB page in January 2016. The present

version carries minor revisions made in April 2018.

2



1 Program: exploring/completing the natu-

ral growth scale.

1.1 Groups of real germs. Successive extensions.

The present paper purports to investigate the various groups Gext of one-
dimensional real germ mappings (for technical convenience, near `8 rather
than `0) that can be obtained by starting from some elementary germ group
G and then imposing closure under the resolution of various types of composi-
tion equations or systems – mainly the following four types Ti of increasingly
general equations (where f denotes the unknown):

f ˝q “ f ˝p0 pp{q P Qq pfractional iterationq pT1q

f ˝ f1“ f2 ˝ f pconjugationq pT2q

id “ f ˝nr ˝ fr ˝ ¨ ¨ ¨ ˝ f
˝n1 ˝ f1 pni P Nq ppositive compositionq pT3q

id “ f ˝nr ˝ fr ˝ ¨ ¨ ¨ ˝ f
˝n1 ˝ f1 pni P Zq pgeneral compositionq pT4q

As it happens, neither the general shape of the ultimate group extensions Gext

nor the sort of difficulties to arise along the way, significantly depend on the
initial group G, whether that be the group Gana of all invertible real analytic
germs f : x ÞÑ c0 x `

ř

cn x
1´npc0 ą 0q at `8, or the group G :“ă T,E ą

generated by the unit shift T :“ x ÞÑ x` 1 and the exponential E :“ exp, or
even the group G :“ă T ą generated by the sole unit shift and its twins (as
defined in §13)! All these constructions result in kindred groups Gext, each of
which can serve as a fairly satisfactory model for what we may call the natural
growth scale. On the other hand, complicating all these constructions but
also providing for excitement and surprises, two main difficulties will keep
arising: the omnipresence of divergence and the unavoidability of very fast-
growing germs.3

1.2 Non-oscillation and comparability.

We shall be working in a setting completely ‘free of oscillations’, in the sense
that our initial groups G as well as their extensions Gext shall contain only
pair-wise comparable germs. The corresponding (strict) order will systemat-
ically be noted ắ :

tf ắ gu ðñ tfpxq ă gpxq , for x large enoughu (1.1)

3and of course of the very slow-growing reciprocal germs.
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Moreover, the groups themselves and their extensions are going to be pair-
wise compatible, in the sense that they will generate over-groups:

G1,G2 ÞÑ ă G1,G2 ą ÞÑ ă Gext
1 ,Gext

2 ą Ă ă G1,G2 ą
ext (1.2)

in which the order ắ still holds.4

1.3 Divergence: resurgent or/and cohesive.

Divergence, in this context, can only be of two sorts, resurgent or cohesive,
and it has the saving grace of being always resummable : it complicates but
does not destroy the connexion between our germs f as geometric objects,
and their formal counterparts rf as power series - or series of a far more
general nature5.

Resurgence, whether mono- or polycritical (i.e. forcing us to go through
one or several intermediary models to perform resummation), always results
in germs f that are real-analytic on some tapering complex neighbourhood
of s...,`8r. In resurgence’s wake come the so-called alien derivations and,
dual to them, the pseudo-variables, which together generate a rich, flexible,
and very useful algebraic-analytic apparatus.

Cohesiveness6, on the other hand, is closely related with the frequent
occurrence of finitely (resp. transfinitely) iterated exponentials in the for-

mal objects rf , which then assume the form of transseries (resp. ultraseries).

These generalised series rf converge absolutely7 on some strictly real neigh-
bourhood of `8, and their sums f belong to a remarkable class of quasi-
analytic functions – the so-called ‘cohesive’ class COHES .

1.4 The ‘display’ and its many uses.

To each resurgent germ f there corresponds an object, noted Dpl f (‘display’
of f), that involves the variable proper, but also a huge number of so-called
pseudo-variables. The ‘display’ has many uses. Firstly, it carries all the local
information about f , including its Stokes contants or holomorphic invariants.
Secondly, it is the key to a complete understanding of the relation (upset by
resurgence) between the formal and the geometric side, i.e. between the

4As the sequel will make clear, this is only a small part of what we mean when saying
that the extensions do not depend too much on the initial groups.

5namely, transseries or ultraseries – see below.
6cohesiveness stricto sensu, i.e. non-analytic cohesiveness.
7either directly, if they carry only convergent power series, or indirectly, after the

divergent-resurgent power series they carry (tucked away within the exponential towers)
have been separately resummed.
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(trans-)series rf and the germs f . Thirdly, any relation Rpf1, ..., fnq “ id
between germs immediately extends to an identity RpDpl f1, ...,Dpl fnq “ id
between their displays, unchanged in outward form but implying a much
stronger set of constraints. This is hugely useful for establishing all sorts of
transcendence and independence theorems.

1.5 Extensions: exponential or ultra-exponential.

We cannot have stability under T1, T2 (see §1.1), let alone under T3, T4, with-
out introducing very fast or slow growing germs. There are actually two steps
here.
(i) In the first step, we are content with introducing finite iterates of the
exponential and logarithm:

En :“ E˝n , Ln “ L˝n pE :“ exp , L :“ logq (1.3)

On the formal side, this leads to so-called transseries, and on the geometric
side to analysable germs.
(ii) The second step has us introduce even more exotic newcomers, namely the
transfinite iterates Eα and Lα, with an iteration order α running through the
semi-open transfinite interval rω, ωωr, where ω stands for the first inaccessible
ordinal. It is in fact enough to define the ultraexponentials En :“ Eωn and
their reciprocals, the ultralogarithms Ln :“ Lωn . They are required to verify

E1 :“ E “ exp ; Enpx` 1q ” exppEn´1pxqq (1.4)

L1 :“ L “ log ; ´1` Lnpxq ” Ln´1plogpxqq (1.5)

These relations, though not fully determining En and Ln, yet suffice to rigidly
constrain their growth regimen.

Even on the formal side, this leads to serious complications. It forces us to
consider so-called ultraseries, which, unlike the more manageable transseries,
admit not one but several competing canonical forms (yet remain pairwise
comparable).

While transseries suffice for most purposes of non-oscillating asymptotics,
in particular in differential calculus, ultraseries cannot be avoided if we de-
mand closure under all composition equations T3, T4.

1.6 Functional incarnation of transfinite arithmetics.

Having got hold of a system – any system – of ultraexponentials and ul-
tralogarithms, we easily define the corresponding general transfinite iterates
Eα and Lα (α ă ωω). We can then replace the slow-growing Lα by suitable
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equivalence classes rLαs so defined as to remove the indeterminacy inherent
in the construction of the ultralogarithms. Next, we find that composition
naturally carries over to the classes rLαs, giving rise to a semi-group rLs, with
transfinite iteration itself smoothly extending to rLs. As it turns out, this
double structure on rLs exactly reflects the semi-ring structure of the trans-
finite interval r1, ωωr, with its non-commutative addition, non-commutative
multiplication, and semi-distributivity.8

1.7 Iso-differential operators and convexity.

We shall require a special class of operators, the so-called iso-differential
operators Dntnu:

Dntn1,...,nru f :“
ź

i

pDntniu fq with Dntniu f :“ p´1qni B ni logp1{f 1q (1.6)

They are indexed by non-ordered sequences of positive integers tnu and span
a bialgebra ISO which is far better suited to germ composition and to the
description of fast/slow germs than the larger bialgebra DIFF spanned by
the ordinary differential operators Dtnu:

Dtn1,...,nru f :“
ź

i

f pniq pni P N˚q (1.7)

DIFF and ISO both possess non-cocommutative co-products, respectively σ
and χ, that reflect their action on germ composition ˝. They also possess
(quite distinct) commutative products, respectively ‚ and ˆ. The bialgebra
ISO owes its name to the fact that its operators9 have a double homogeneous-
ness, measured by an ‘isodegree’ |n| :“

ř

ni simultaneously stable under σ
and ˆ.

It is also useful to embed ISO into a vaster bialgebra 7ISO spanned by
operators Dexny which are no longer strictly differential and whose indices
ăną are now ordered integer sequences. On 7ISO , both product and co-
product assume much simpler expressions. Moreover, ISO and 7ISO possess,
as co-algebras, positive cones ISO` and 7ISO

`
with bases Datnu and Daxny

rich in unexpected algebraic-combinatorial properties and leading to a new
notion of iso-convexity better adapted to germ compostion than ordinary
convexity. To sum up, we have these four structures:

ISO Ă
7ISO ; ISO`

Ă
7ISO

`
(1.8)

8Thus, a logical-mathematical structure, which when first introduced met with fierce
resistance on account of its supposedly ethereal character, reveals itself to be isomorphic
to a very natural structure, firmly anchored in concrete, down-to-earth analysis.

9unlike those of DIFF.
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1.8 Universal asymptotics of fast/slow germs.

With their natural adequation to germ composition, the iso-differential op-
erators enlarge the circle of operations and equations at our disposal for
carrying out group extensions G ÞÑ Gext. But their main utility lies in this:
any iso-differential operator D acting on any ultra-slow germ L (say, on any
transfinite iterate of L) produces a germ D.L whose natural asymptotic ex-
pansion depends on D alone, not on L.10

1.9 Stubborn indeterminacy in the realisation of ultra-
exponentials.

The system (1.4)-(1.5) determines each pair pLn, Enq in terms of pLn´1, En´1q,
but only up to pre- resp. post-composition by a 1-periodic germ P . 11 That,
plus the fact, just mentioned, of all ultra slow/fast germs sharing a univer-
sal asymptotics, dashes all hope of selecting a privileged solution pLn, Enq
based purely on real-asymptotic criteria. On the other hand, the possibil-
ity, however remote, cannot be dismissed off hand that one of these systems
might possess extensions to the complex domain so regular or so distinctive
as to single it (that system) out as clearly ‘optimal’. To further complicate
the picture, we shall find that all the ‘reasonable’ candidates for the first
non-elementary pair pL1, E1q

12 are extremely close to one another. So the
question is still open, and likely to remain so for quite a while.

1.10 Spirit of this paper: exploratory rather than sys-
tematic.

The present investigation is unapologetically exploratory in spirit and method.
We isolate each of the main difficulties, describe in detail the methods for
overcoming them (they involve a lot of fancy machinery), outline the unex-
pected features (there are quite a few of them), and illustrate everything on
a series of select examples. But we do not attempt an exhaustive descrip-
tion of all possible extensions Gext of all possible germ groups G, especially
where so doing would force us to grapple with the most general transseries or
ultraseries. One excuse for this caution or restraint is that we are handling
here an inflatable subject-matter and venturing into almost limitless terri-
tory, where exhaustive all too easily rhymes with exhausting, and thorough

10It is only the trans-asymptotic part of D.L that depends on L.
11More precisely, a germ P that commutes with the unit shift T .
12derived from the pair pL0, E0q “ pL,Eq.
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implies unreadable13.
But there is another reason, which is the danger of diminishing returns.

Indeed, the extensions Gext that we get by imposing full closure under T1-T4

(and under iso-differential equations for good measure), though huge, are also
in a sense sparsely populated. They do not seem, for the moment at least, to
contain all that many native germs of intrinsic interest, by which we mean
remarkable germs arising naturally and directly within the new framework, as
opposed to germs obtained by solving composition equations with external,
pre-extension data.

To put it bluntly: these extensions, though huge, have a wasteland qual-
ity about them. They exhibit low biodiversity, compared with, say, classical
complex analysis with its wealth of ‘special functions’. This applies in par-
ticular to the rarefied ultra-exponential range, which would be hardest and
most unrewarding to map out down to the last details and which for that
reason shall receive here only a sketchy treatment.

2 Tools: resurgence, acceleration, cohesive-

ness, analysability.

This section presents - mainly for perspective and to settle notations - a very
cursory survey of resurgence theory and its basic tools.

2.1 Resurgent functions. The three models.

Resurgent ‘functions’ live simultaneously in three models:
(i) in the formal model, as formal power series rϕpzq or series of a more general
type (here the tilda always stands for ‘formal’),
(ii) in the convolutive model, as analytic germs pϕpζq defined near the origin 0‚

of C‚ :“ ČC´ t0u; admitting an endless analytic continuation (usually highly
ramified) laterally along any finite, finitely punctured broken line; possessing
at most a discrete configuration of singular points ω; and growing at most
exponentially when ζ goes to 8 radially or ultimately radially,14

(iii) in the geometric model(s), as analytic germs ϕθpzq defined in certain
sectorial neighbourhoods | argpz´1q ´ θ| ă ε` π{2 and admitting there rϕpzq

13Cf Voltaire:“The secret of being a bore is to tell everything”.
14i.e. following a broken line whose last segment is infinite.
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as asymptotic series.

Fig. 2.1

rϕpzq . . . . ϕθpzq z-plane pmultiplicationq

B Œ Õ Lθ
pϕpζq ζ-plane pconvolutionq

Despite its auxiliary character, the convolutive model or ‘Borel plane’ 15 is
where most obstacles to resummation assume tangible form in the shape
of singular points ω ultimately responsible for the divergence of rϕpzq, and
where these obstacles can be overcome. The product there is the finite-path
convolution (2.1), unambiguously defined for small values of ζ, and then
extended in the large by analytic continuation:

ppϕ1 ˚ pϕ2qpζq :“

ż ζ

0

pϕ1pζ1q ˚ pϕ2pζ´ζ1q dζ1 (2.1)

Together, the formal model (our starting point) and the geometric models
(our end goal) constitute the multiplicative models, where the product is
ordinary multiplication. We go from one model to the next via algebra
homomorphisms.

The first of these is the Borel transform B. It acts term-wise and turns
any power series rϕpzq with coefficient growth of type Gevrey 1 into a power
series pϕpζq with non-zero radius of convergence

B : z´σ ÞÑ ζσ´1
{Γpσq pσ R ´Nq (2.2)

B : zn ÞÑ δpnq pn P N , δ “ Diracq (2.3)

B : rϕpzq “
ÿ

an z
´n

ÞÑ pϕpζq “
ÿ

an ζ
n´1
{pn´1q! (2.4)

The second transform is the Laplace transform L or, for distinctiveness, Lθ:

Lθ : pϕpζq ÞÑ ϕθpzq “

ż eiθ8

0

pϕpζq e´z ζ dζ parg ζ ” θq (2.5)

Here are some elementary identities for future use:

B : rϕ1.rϕ2 ÞÑ pϕ1 ˚ pϕ2 (2.6)

B : B rϕpzq ÞÑ pB pϕpζq :“ ´ζ pϕpζq pB :“ d{dzq (2.7)

B :ψpzq“ϕpz`γq ñ pϕpζq “ expp´γ ζq pψpζq (2.8)

B :ψpzq“pϕ˝hqpzqñ pψpζq“p pψ p̋phqpζq :“ pψpζ q̀
ÿ

p~˚npζq˚
p´ζqn

n!
pψpζq (2.9)

This last identity (2.9) can be resorted to each time we must post-compose
something by h “ id ` ~ with ~pzq “ op1q.

15‘plane’ is here something of a misnomer, since the functions pϕpζq usually live on highly
ramified Riemann surfaces over the ‘Borel plane’, or over a finite sector | argpζ´θ0q| ă δθ,
or even over the positive real axis R`.
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Minors and majors.

The convolution integral (2.1) makes sense only if each factor pϕipζq is radially
integrable at 0‚. When this is not the case, the germs pϕpζq – the so-called
minors – have to be supplemented by companion germs, the so-called majors,
which are defined only modulo the space REG of regular germs at 0‚. They
relate to the minors according to the formula:

pϕpζq “ ´
1

2πi

`

qϕpeπiζq ´ qϕpe´πiζq
˘

pζ near 0‚q (2.10)

Major convolution (compatible with minor convolution but of wider scope)
is given by the rule:

pqϕ1 ˚u qϕ2qpζq “
1

2πi

ż

Ipζ,uq
qϕ1pζ1q qϕ2pζ´ζ1q dζ1 (2.11)

with Ipζ, uq “
” 1

2
ζ ` e´

πi
2 u ,

1

2
ζ ` e`

πi
2 u

ı

p0 ă ζ ă u ă 1q

The definition makes good sense, since the small path Ipζ, uq keeps clear of
0‚ and since, modulo REG , the integral on the left-hand side of (2.11) does
not depend on the choice of u.

2.2 Convolution preserving averages.

Whenever the axis arg ζ “ θ of Laplace integration carries singularities, the
multivalued integrand pϕpζq must be replaced by a univalued average µ pϕpζq,
so that the resummation scheme of Fig. 2.1 becomes:

rϕpzq
B
ÝÑ pϕpζq

µ
ÝÑ µpϕpζq

L
ÝÑ ϕpzq (2.12)

Such an average µ : pϕ ÞÑ µ pϕ is defined via its weights µp
ε
ω
q:

µ pϕpζq :“
ÿ

εiPt`,´u

µ
p
ε1
ω1

,...,
,...,

εr
ωr
q
pϕ
p
ε1
ω1

,...,
,...,

εr
ωr
q
pζq if ωrăζăωr`1 (2.13)

where ω1, ω2 . . . are the successive singular points on arg ζ “ θ and where

pϕ
p
ε1
ω1

,...,
,...,

εr
ωr
q
pζq denotes the determination of pϕpζq on the interval sωr, ωr`1r

that corresponds to the right (resp. left) circumvention of ωi if εi “ `

(resp. εi “ ´) starting from the origin. Crucially, the average must respect
convolution

µppϕ1 ˚ pϕ2q ” pµpϕ1q ˚ pµpϕ2q pfirst ˚ local , second ˚ globalq (2.14)

Although the above requirement imposes stringent algebraic constraints on
the weights µp

ε
ω
q, there is still a whole zoo of such averages. Let us mention

only the most useful.
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The trivial lateral averages.

The right average µ` and left average µ´ involve only one determination:

µ
p
ε1
ω1

,...,
,...,

εr
ωr
q

˘ “ 1 presp. 0q if ε1 “ ¨ ¨ ¨ “ εr “ ˘ presp. otherwiseq (2.15)

These elementary ‘averages’ have simplicity going for them, but they fail to
respect realness : when θ “ 0 and rϕpzq is real, µ` pϕpζq and µ´ pϕpζq are not,
except in the trivial case when pϕpζq is regular and uniform on R`.

The ‘standard’ average.

Its weights, solely dependent on the εi’s, are given by the direct formula:

µ
p
ε1
ω1

,...,
,...,

εr
ωr
q

:“
Γpp` 1

2
qΓpq ` 1

2
q

Γpr ` 1qΓp1
2
qΓp1

2
q
“

p2 pq! p2 qq!

4p`q p! q! pp` qq!
(2.16)

with p :“
ÿ

εi“`

1 , q :“
ÿ

εi“´

1 pp` q “ rq (2.17)

The ‘organic’ average.

Its weights are given by the inductive formula:

µ
p
ε1
ω1

,...,
,...,

εr
ωr
q
:“µ

p
ε1
ω1

,...,
,...,

εr´1
ωr´1

q 1

2

`

1` εr´1 εr
ωr´1

ωr

˘

(2.18)

with µ
p
`

ω1
q
:“µ

p
´

ω1
q

:“
1

2
(2.19)

The ‘standard’ and ‘organic’ averages both respect convolution and realness.
The simpler standard average is sufficient for most intents and purposes, but
in some (fairly rare) cases one must resort to the organic average (or to any
one of a host of so-called well-behaved averages) in order to get a function
µ.pϕpζq that does not grow faster than the lateral determinations µ˘.pϕpζq.

2.3 Alien derivations.

To capture the always important, and often remarkable, behaviour of pϕpζq

near16 its singular points ω, we require a system of linear operators p∆ω car-
rying indices ω P C‚, behaving à la Leibniz with respect to convolution

p∆ω ppϕ1 ˚ pϕ2q ” pp∆ω pϕ1q ˚ pϕ2 ` pϕ1 ˚ pp∆ω pϕ2q (2.20)

16or, due to multivaluedness, above ω.

11



and yielding 0 whenever the test function pϕpζq has no singularities above ω.
The action of these ∆-operators, known as alien derivations, is given17 by a
formula reminiscent of (2.13):

p∆ω pϕ pζq :“
ÿ

εi“˘

εr
2πi

δ
p
ε1
ω1

,...,
,...,

εr
ωr
q
pϕ
p
ε1
ω1

,...,
,...,

εr
ωr
q
pζ ` ωq pωr :“ ωq (2.21)

with the weights δp
ε
ω
q subject to strong algebraic constraints in order to

ensure (2.20). Here are the main systems of alien derivations :

The ‘standard’ alien derivations.

Their weights depend only on the sign sequence pε1, . . . , εr´1q:

δ
p
ε1
ω1

,...,
,...,

εr
ωr
q

:“
p! q!

pp`q`1q!
with p :“

1ďiďŕ 1
ÿ

εi“`

1 ; p :“
1ďiďŕ 1
ÿ

εi“´

1 (2.22)

The ‘organic’ alien derivations.

Their weights are given by:

δ
p
ε1
ω1

,...,
,...,

εr
ωr
q

:“

#

pωp`1 ´ ωpq{p2ωrq if pε1, ..., εrq “ pp`q
p, p´qq, εrq

pωq`1 ´ ωqq{p2ωrq if pε1, ..., εrq “ pp´q
q, p`qp, εrq

0 otherwise

Alien derivations in the multiplicative models.

For use in the multiplicative models, we set :

∆ω :“ B´1
p∆ω B pformal modelq (2.23)

∆ω :“ Lθ p∆ω L´1
θ pgeometric modelsq (2.24)

∆ω :“ e´ω z ∆ω pformal and geometric modelsq (2.25)

The Leibniz rule now looks even more Leibnizian : 18

∆ω pϕ1 . ϕ2q ” p∆ω ϕ1q.ϕ2 ` ϕ1.p∆ω ϕ2q pz-planeq (2.26)

∆ω pϕ1 . ϕ2q ” p∆ω ϕ1q.ϕ2 ` ϕ1.p∆ω ϕ2q pz-planeq (2.27)

Thanks to their exponential factor e´ωz, the ‘bold-face’ or ‘invariant’ op-
erators ∆ω have the great advantage of commuting with the ordinary z-
differentiation B :“ Bz

rp∆ω,pBs “ ´ω p∆ω ùñ r∆ω, Bs “ ´ω∆ω ùñ r∆ω, Bs “ 0 (2.28)

17first for small ζ on the axis arg ζ “ argω, then in the large by analytic continuation.
18We drop the tilda or the polarisation angle θ.
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and of behaving optimally simply (‘invariantly’) under post-composition by
an identity tangent g:

∆ωpf ˝ gq ” p∆ωfq ˝ g ` pBfq ˝ g . p∆gq if gpzq „ z (2.29)

2.4 Pseudovariables and displays.

Pseudovariables Zω “ Zω1,...,ωr .

The notion of pseudovariable is dual to that of alien derivation (of the
bold-face or invariant sort). Pseudovarialbles carry as upper indices se-
quences ω :“ pω1, ..., ωrq of arbitrary length r. Multiplication for them
reduces to sequence shuffling, while differentiation (ordinary or alien) and
post-composition obey the predictable rules:

Zω
1

.Zω
2

“
ÿ

Zω
`

ω P shufflepω1, ω2q
˘

(2.30)

Bz Zω1,...,ωr “ 0 (2.31)

∆ω0 Zω1,...,ωr “

#

Zω2,...,ωr if ω0 “ ω1

0 if ω0 ­“ ω1

(2.32)

Zω ˝ g “ Zω if gpzq “ z ` opzq (2.33)

The display.

The display is best thought of as some sort of ‘alien Taylor expansion’:

Dplϕ :“ ϕ`
ÿ

r

ÿ

ωj

Zω1,...,ωr ∆ωr . . .∆ω1 ϕ (2.34)

It has a double character ´ both local (via its z-dependence) and global (via
its Z-dependence). It encodes, in ultra-compact and user-friendly form, a
huge amount of information about the function pϕpζq, describing as it does
the behaviour of pϕpζq at each ω and on each of its various Riemann sheets.
What is more, any relation R between resurgent functions automatically
extends to their displays :

t Rpϕ1, . . . , ϕsq ” 0 u ùñ t RpDplϕ1, . . . ,Dplϕsq ” 0 u (2.35)

which is fantastically helpful for establishing transcendence or independence
results.
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2.5 Multicritical resurgence and accelero-summation.

When the full formal solution of a local analytic equation or system (say, a
singular ODE) involves, alongside the familiar power series of z´1, a mixture
of several non comparable exponential blocks, for instance blocks of the form
ui e

σij zj with

z1 :“ h1pzq ă z2 :“ h2pzq ă ¨ ¨ ¨ ă zr :“ hrpzq pe.g. zj ” zαj with 0 ă αj Òq

one is usually confronted with multi-critical resurgence. Concretely, this
means that, instead of applying the simple, mono-critical resummation scheme
(2.12), one must go successively through a number of distinct Borel planes
ζj ´ as many as there are distinct ‘critical times’ zj. The intermediary func-
tions pϕjpζjq generically possess faster than exponential growth at 8 and each
transition pϕjpζjq Ñ pϕj̀ 1pζj̀ 1q is via a so-called acceleration transform Cj,j̀ 1.
These two complications aside, the situation in each ζj-plane remains much
the same as in the mono-critical case : on each intermediary function pϕjpζjq
there act specific alien derivations, generating their own resurgence equations
and contributing their own Stokes constants. The overall scheme reads:

rϕ1pz1q Ð rϕpzq ϕpzq Ð ϕrpzrq

Ó B L Ò
pϕ1pζ1q Ñ pϕ2pζ2q Ñ ¨ ¨ ¨ Ñ pϕr´1pζr´1q Ñ pϕrpζrq

C1 , 2 C2 , 3 Cŕ 1 , r

Fig. 2.2

2.6 Acceleration and deceleration transforms.

A single pair CF , C
F of integral kernels does service for the four combinations

of minor/major, ac/decelerations, but with a characteristic diagonal ‘flip’:

Fig.2.3

«

acceleration deceleration
minor CF CF

major CF CF

ff

´

z1 ă z2 , z1 “ F pz2q

¯

These kernels depend on the germ F that expresses the slower ‘time’ z1 in
terms of the faster one z2.

CF pζ2, ζ1q :“
1

2πi

ż c`i8

c´i8

ez2ζ2´z1ζ1 dz2 with z1 ” F pz2q (2.36)

CF
pζ2, ζ1q :“

ż `8

`u

e´z2ζ2`z1ζ1 dz2 with z1 ” F pz2q and 1 ă u (2.37)
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Acceleration from ζ1 to ζ2 with z1 “ F pz2q and 1 ă F pxq ă x :

pϕ2pζ2q “

ż `8

`0

CF pζ2, ζ1q pϕ1pζ1q dζ1 (2.38)

qϕ2pζ2q “
1

2πi

ż c`i8

c´i8

CF
pζ2, ζ1q qϕ1pζ1q dζ1 (2.39)

Deceleration from ζ2 to ζ1 with z1 “ F pz2q and 1 ă F pxq ă x :

ζ1 pϕ1pζ1q “
1

2πi

ż 02

01

ζ2 pϕ2pζ2qC
F
pζ2, ζ1q dζ2 pu ą 0q (2.40)

ζ1 qϕ1pζ1q “

ż `v

`0

ζ2 qϕ2pζ2qCF pζ2, ζ1q dζ2 (2.41)

Here again, we notice a flip of finite/infinite, path/loop integrals. In-
tegration in (2.38) is along an infinite path, in (2.41) along a finite one.
Integration in (2.39) is along an infinite loop that encircles 0 anticlockwise,
in (2.40) along a finite loop from 0 to 0 that encircles ζ1 ą 0 anticlockwise.

But the basic, really useful transform is of course minor acceleration
(2.38), and the crucial point to note here is that the lower kernel CF pζ2, ζ1q

has exactly the right faster-than-exponential rate of decrease (as ζ1 Ñ `8)
to make the acceleration integral (2.38) convergent for small enough values
of ζ2 ą 0. This defines a germ pϕ2pζ2q which then must, and can, be continued
in the large, over the whole of R`.

2.7 Pseudo-acceleration and -deceleration transforms.

Here, the change is between two equivalent ‘times’, denoted for distinction
by z1´ and z1 with z1 “ z1´`F pz1´q and 1 ă F pxq ă x as above.19 The new
transforms serve a totally different purpose that will be made clear in §2.8,
but their integral kernels Cid`F , C

id`F are closely related to the old ones:

Cid`F pζ1´ , ζ1q “ CF pζ1´´ ζ1, ζ1q (2.42)

C id`F
pζ1´ , ζ1q “ CF

pζ1´´ ζ1, ζ1q (2.43)

In keeping with the more elementary character of the new transforms, all
integration paths/loops now become finite.
Pseudodeceleration from ζ1 to ζ1´ with z1 “ pid`F qpz1´q :

pϕ1´ pζ1´q “

ż ζ1

`0

Cid`F pζ1´ , ζ1q pϕ1pζ1q dζ1 (2.44)

qϕ1´pζ1´q “
1

2πi

ż v2

v1

C id`F
pζ1´ , ζ1q qϕ1pζ1q dζ1 (2.45)

19The case when z1´ and z1 are too close, i.e. when F pxq “ op1q, is uninteresting.
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Pseudoacceleration from ζ1´ to ζ1 with z1 “ pid`F qpz1´q :

ζ1 pϕ1pζ1q “
1

2πi

ż 02

01

ζ1´ pϕ1´pζ1´qC
id`F

pζ1´ , ζ1q dζ1´ (2.46)

ζ1 qϕ1pζ1q “

ż v

ζ0

ζ1´ qϕ1´pζ1´qCid`F pζ1´ , ζ1q dζ1´ (2.47)

2.8 Cohesiveness and the Regularity Scale.

Each intermediary step pϕipζiq ÞÑ pϕi`1pζi`1q of the accelero-summation scheme
(see Fig. 2.2) is actually three steps in one:

Substep 1. If the accelerand pϕipζiq is ramified over R`, it must be averaged
to µ pϕipζiq relative to some convolution-respecting average µ.

Substep 2. We calculate the acceleration integral (2.38), but with µ.pϕipζiq in
place of pϕipζiq. The integral converges for ζi`1 small enough and ą 0.

Substep 3. To turn the new germ pϕi`1pζi`1q into a global function over
R`, we must continue it forward along R` and circumvent every intervening
singularity ω to the right and to the left.

Obviously, the two operations in substep 3, namely continuation and
circumvention of singularities, require some form of quasi-analyticity. Most
of the time there is no problem, because most of the time we have analyticity
– but not always. This is where cohesiveness comes in and saves the day.

Cohesive functions.

We define the class COHES of cohesive functions by first extending the clas-
sical Denjoy classes αDEN to all transfinite orders α ă ωω and then going to
the limit: 20

αDEN :“ tf ; |f pnqptq| ă c0,f pc1,f q
n
`

log1α`1pnq
˘´n
u (2.48)

COHES :“ Yαăωω
αDEN (2.49)

Like each αDEN, the limit COHES is stable under `,ˆ, ˝, B and most other
operations. Crucially, it is also quasi-analytic : two cohesive functions defined
on a real interval J coincide as soon they coincide on a subinterval I Ă J .

20Despite the latitude in the analytic incarnation of the transfinite iterates logα`1 (see
§8), each class αDEN is unambiguously defined: the indeterminacy is absorbed by the
constant c1,f in (2.48).
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Cohesive continuation.

Any cohesive function given on an interval s0, ζr (viewed for the circum-
stance as part of R` in some Borel plane) can be constructively continued to
its maximal interval of cohesiveness s0, ζ˚r by a suitably weak deceleration
followed by the reverse weak acceleration. See [E6], §3.11 or [E8], §9a, pp
93-94.

Cohesive singularities and their circumvention.

In some contexts like the Dulac problem, accelero-summation may produce
strictly cohesive germs on R` in some Borel planes21 with any number of
cohesive singularities there. To proceed with accelero-summation, the germs
in question have to be cohesively continued (multivaluedly so) up to `8,
which means bypassing all intervening singularities to the right and to the
left, while being prohibited from leaving the real axis! This sounds an im-
possibility, but is not. See [E6], §3.12 or [E8], §9b, pp 94-95.

2.8 Time changes and the Great Divide.

As pointed out, the really useful transforms are, paradoxically, the accelera-
tions and pseudo-decelerations. Indeed, despite going ‘in opposite directions’,
both share a common regularising effect, albeit of crucially different force.
To adequately describe that common effect together with that difference in
regularising potency, we must distinguish three sub-classes for each :

strong accelerations log z1{ log z2 Ñ 0 e.g. z1 “ log z2

medium accelerations log z1{ log z2 Ñ α Ps0, 1r e.g. z1 “ pz2q
α

weak accelerations log z1{ log z2 Ñ 1 e.g z1 “
z2

log z2

strong pseudodeceler . log z1{ logpz1´´z1q Ñ 1 e.g. z1 “ z1´`
z1´

log z1´

medium pseudodeceler . log z1{ logpz1´´z1q Ñ α e.g. z1 “ z1´`pz1´q
α

weak pseudodeceler . log z1{ logpz1´´z1q Ñ 0 e.g. z1 “ z1´`log z1´

Whatever the nature of the accelerand pϕ1 (provided it has the proper accel-
erable growth at infinity), the corresponding accelerate pϕ2 is automatically
guaranteed a minimum of quasi-analytic smoothness – the weaker the acce-
laration, the less the smoothness.
(i) Strong accelerates are always analytic in a spiralling neighbourhood of 0‚

21This is never the case, though, with composition equations, because these, as we shall
see, are either non-polarising or weakly polarising.
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with infinite aperture.
(ii) Medium accelerates are always analytic in a neighbourhood of 0‚ with at
least finite aperture.
(iii) Weak accelerates are always cohesive in a real right-neighbourhood s0, ...r
of 0‚, but may lack an extension to the complex domain.

With pseudo-decelerations, the picture is the same, but on the other
side of the great cohesive/non-cohesive divide: whatever the nature of the
pseudo-decelerand pϕ1, one can always, by suitably strenghtening the pseudo-
deceleration, ensure in the pseudo-decelerate pϕ1´ any given degree of smooth-
ness, short of cohesive.

Another difference is this : accelerations completely upset the singularity
landscape (they remove the old singular points and may create new ones)
whereas pseudo-decelerations keep all singular points ω in place and merely
smoothen the singularities there.

Smooth accelero-summation.

On the practical side, we can take advantage of the regularising effect of
pseudo-decelerations to replace the accelero-summation scheme Fig. 2.2 by
an improved scheme

rϕ1´pz1´q Ð rϕpzq ϕpzq Ð ϕrpzr´q

Ó B L Ò
pϕ1´pζ1´q Ñ pϕ2´pζ2´q Ñ ¨ ¨ ¨ Ñ pϕpŕ 1q´

pζpŕ 1q´
q Ñ pϕrpζr´q

C1´ , 2´ Cpŕ 1q´ , r´

where, thanks to the selection of suitably slow times zi´ „ zi in each critical
time class rzis, we ensure the smoothness of the minors pϕi´ and all their alien

derivatives p∆ωr . . . . .p∆ω1 .pϕi´ (ωk P R`) and, by the same token, render the
corresponding majors redundant.

2.10 Transseries and transmonomials.

Three co-dependent notions are relevant here: transmonomials, prime or
composite, and transseries. Being formal objects, they all bear tildas, and
since, in case of convergence or re-summability, they represent real germs on
s...,`ωr, their variable will be noted x.

paq The prime transmonomials rP cannot be factored into simpler elements,
and must be viewed as being large.
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pbq The composite transmonomials ĂM can be uniquely factored into a well-
ordered product of prime transmonomials:

ĂMpxq “ p rP0pxqq
a
rP0

ź

rP0ą rP

p rP pxqqa rP pa
rP0
P R˚, a

rP P Rq (2.50)

ĂM is said to be large (resp. small) if its leading factor rP0 is raised to a
positive (resp. negative) power a

rP0
.

pcq The transseries rS can be uniquely expanded as well-ordered sums of
transmonomials:

rSpxq “ a
ĂM0

ĂM0pxq `
ÿ

ĂM0ąĂM

a
ĂM
ĂMpxq pa

ĂM0
P R˚, a

ĂM P Rq (2.51)

rS is said to be large (resp. small) if its leading term ĂM0 is itself large (resp.
small), and it is positive (resp. negative) if a

ĂM0
is ą 0 (resp. 0 ă 0). Each

transseries splits into three part rSpxq “ rS`pxq ` s0` rS´pxq with s0 P R and

with rS`pxq resp. rS´pxq carrying only large resp. small transmonomials.

We must first define, inductively on n, the logarithm-free objects of expo-
nential depth n.
pa0q The only log-free prime transmonomial of exp-depth 0 is x.
pb0q The only log-free transmonomials of exp-depth 0 are the xapa P R˚q.
pc0q All log-free transseries of exp-depth 0 are well-ordered series of the form:

rSpxq “ aσ0 x
´σ0 `

ÿ

σ0ăσ

aσ x
´σ

pσ0 , σ P R , σ Òq (2.52)

panq Each log-free prime transmonomial rP of exp-depth n can be written
uniquely as

rP pxq “ e
ĂMpxq with rM a large transmonomial of exp-depth ń 1. (2.53)

pbnq Each log-free transmonomial ĂM of exp-depth n can be written uniquely
either as a well-ordered product or, what amounts to the same, as the expo-
nential of a purely large transseries multiplied by an ordinary power :

ĂMpxq “ p rP0pxqq
a
rP0

ź

rP0ą rP

p rP pxqqa rP “ e
rS`pxq xa˚ p

ź

well -orderedq (2.54)

with a leading prime transmonomial rP0 of exp-depth n and other factors rP
of exp-height ď n, or with a purely large transseries rS` of exp-height n´1.
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pcnq Each log-free transseries rS of exp-depth n can be uniquely expanded as

a well-ordered sum of transmonomials ĂM of exp-depth ď n, one of which at
least22 must be exactly of exp-depth n

rSpxq “ a
ĂM0

ĂM0pxq `
ÿ

ĂM0ąĂM

a
ĂM
ĂMpxq p

ÿ

well -orderedq (2.55)

Let ČTRANS` be the space of all log-free transseries and let Ln be the nth

iterate of log. Taking advantage of the natural embedding:

ČTRANS` ˝ Ln Ă ČTRANS` ˝ Ln`1 (2.56)

we can define the trialgebra ČTRANS of real transseries:

ČTRANS :“
ď

0ďn

ČTRANS` ˝ Ln (2.57)

to which the operations `,ˆ, B, ˝ extend without difficulty.23 Since these
four operations actually reduce to three,24 we can think of ČTRANS as a
trialgebra.

Canonical form of a transseries.

The composition rF , rG ÞÑ rF ˝ rG does not yield rF ˝ rG directly in canonical form,
but we get there by expelling the small transmonomials from all exponentials
and all logarithms (simple or iterated) by repeated use of the identities:

exp rGpxq “ e
rG`pxq`a` rG´pxq

“ ea e
rG`pxq

`

1`
ÿ

1ďn

p rG´pxqqn

n!

˘

(2.58)

logp rGpxqq “ log
`

b e
rΓ`pxq

p1` rΓ´pxq
˘

“ log b` rΓ`pxq `
ÿ

1ďn

p´1qn´1 p
rΓ´pxqqn

n

Transseries in real-ordered form.

Any transseries can be uniquely written as a well-ordered mock power series

rT pxq “ rTσ0pxq p rP pxqq
´σ0 `

ÿ

σ0ăσÒ

rTσpxq p rP pxqq
´σ

pσ0, σ P Rq (2.59)

22either the first one (if it is large) or all the last ones from a certain rank on (if they
are small).

23as long as they make formal sense: thus rS ˝ rT is defined only is the second factor is rT
is large and positive, i.e. starts with a large transmonomial ĂM0 and a positive coefficient
a
ĂM0

in front of it.
24The composition ˝ is essentially expressible in terms of ˆ and B: see (2.9).
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Here rP “ e
ĂM denotes the largest prime transmonomial25 present in rT , and

the mock coefficients rTσ in front of the powers rP´σ are ‘relatively negligible’
transseries, i.e. transseries containing only prime transmonomials ă rP .
(i) rP pxq is said to be the ruling prime transmonomial of the transseries rT pxq,
or its ruler for short.
(ii) ĂMpxq :“ log rP pxq, as a well-defined, usually composite (i.e. non-prime)

transmonomial, is said to be the ruling time of rT pxq.

(iii) The real-indexed transseries rTσpxq in (2.59) are said to be the pseudo-

coefficients of rT pxq.

Derivations on transseries.

Besides ordinary total differentiation B (with respect to the variable x), par-
tial differentiation BP with respect to prime transmonomials P defines as
many independent formal derivations on the algebras of transseries of a given
logarithmic depth (with predictable rules governing the behaviour of BP un-
der post-composition). Then, on the analysable transseries, we also have the
huge host of alien derivations ∆$ for $ of the form cM with any scalar c
and any (not necessarily prime) transmonomial M . Despite the similarity
in their indexation, the two systems of derivations have of course nothing in
common.

2.11 Analysable germs. The complexity hierarchy.

Most transseries rS are fated to remain formal, but there is an important
subclass that can be re-summed to analytic germs S on s...,`8r. The cor-
responding sums deserve to be known as analysable germs, since they can
be completely formalised, i.e. reduced bi-constructively and without loss of
information to a formal object rS and so, ultimately, to a set of real coeffi-
cients arranged in a tree-like structure. The correspondance rS Ø S is indeed
constructive in both directions:
(i) as accelero-synthesis in the direction rS Ñ S

(ii) as decelero-analysis in the direction S Ñ rS
However, even for re-summable transseries, one must distinguish at least

seven degrees in the severity of the divergence liable to occur, each degree
bringing its own complications and calling for specific (but, thank Goodness,
mutually compatible) remedies. Here is the list:
C1 Direct convergence.

25i.e. present in a least one of the transmonomials ĂM of rT ’s canonical expansion of type
(2.55). There always exist one such largest rP .
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C2 Graded convergence.
C3 Seriable (or compensable) divergence.
C4 Resurgent divergence of non-polarising type.
C5 Resurgent divergence of polarising type.
C6 Infinite criticity.
C7 Infinite exponential depth.

Pending the case by case discussion to be given in §3, here are a few
general remarks.

Unlike decelero-analysis, which, ‘being of the nature of destruction’, is
a relatively straightforward affair, accelero-synthesis must of necessity be a
gradual, arduous process, in the course of which more and more ‘parts’ of rS
shed their formal character (‘they drop their tilda’ ) and turn into functions
living in various Borel planes26(‘they acquire a hat’ ), to finally contribute to
the total germ S (‘they drop their hat’ ). The process, roughly, goes like this:
(i) we find and order, from smaller to larger, all the prime transmonomials
rPi “ e

ĂMi present or ‘nested’ in rS, in whatever position, at whatever expo-
nential height,

(ii) for each such rPi “ e
ĂMi we isolate all transseries rT , present or nested in

rS (canonically expanded), and admitting rPi as ruling prime transmonomial,

(iii) we write each such rT in the real-ordered form (2.59) and we realise it in
a Borel plane or Borel axis ξi conjugate to some ‘time’ xi that is equivalent
(„) to the ruling time Mipxq and slow enough to ensure smoothness.27 This

makes perfect sense since at this stage not only ĂMipxq but all the pseudo-

coefficients rTσpxq of rT have already be de-formalised (turned into bona fide
functions) in the previous steps of accelero-synthesis,
(iv) we then proceed to the next Borel plane or axis ξi`1 conjugate to

xi`1 „Mi`1pxq by accelerating each pTσ,ipξiq to pTσ,i`1pξi`1q,
(v) by the time we reach the last Borel plane or Borel axis ξlast, the whole of
rSpxq has been de-formalised and we can apply Laplace to get from pSlastpξlastq

to Slastpxlastq and from there to Spxq.
The extra complications arising from infinite criticity or infinite exponen-

tial depth, to be discussed in §3, do not radically alter the overall picture.

2.12 Multicritical displays.

With each (mono- or poly-critical) resurgent transseries rS we associate an

extremely useful object : the display, noted Dpl .rS on the formal side and

26sometimes reduced to ‘Borel axes’ R`, often with ramification there.
27See §2.8 supra.
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pDpl .Sqτ on the geometric side. The display combines two things: the so-
called pseudo-variables Z$ (a notion dual to that of alien derivation) and
the alien derivatives, of all orders and relative to all critical times zj, of our
rS resp. S. The definition reads:

Dpl.rS “ rS `
ÿ

1ďr

ÿ

$1,...,$r

Z$1,...,$r ∆$r . . .∆$1
rS (2.60)

Ó Aτ
pDpl.Sqτ “ Sτ `

ÿ

1ďr

ÿ

$1,...,$r

Z$1,...,$r p∆$r . . .∆$1 Sqτ (2.61)

Here Aτ denotes accelero-summation rS ÞÑ Sτ relative to some multipo-
larisation τ , which in each critical Borel plane prescribes an integration axis
arg ζj “ θj and a convolution average µj.

The main novelty, however, is this: unlike the indices ωi P C‚ of the
monocritical display (2.34), the new indices are of the form $i :“ ωiMi, with
ωi still in C‚ but followed by a transmonomial factor Mi that characterises
the critical time class.

In our all-real context, we often restrict the sums (2.60)-(2.61) to the
sole indices $j of positive ωi-part, in which case we get the lesser or all-real
display dpl , with fixed polarisation angles θj “ 0 and only the choice of the
averages µj left to our discretion.

As the definitions make clear, the display carries – displays, as it were
– the complete collection of our object’s Stokes constants.28 In that sense,
it contains, in ultra compact and algebraically operative form, “everything
there is to know” about the object. In fact, it is only at the level of displays
that the correspondance formal Ø geometric reaches perfection, as becomes
obvious on the following trans-polarisation formulae :

Aτ 1 ” Pτ 1, τ .Aτ with τ “
´ θ1

µ1

, . . . ,

, . . . ,

θs
µs

¯

, τ 1 “
´ θ11
µ11

, . . . ,

, . . . ,

θ1s
µ1s

¯

(2.62)

Pτ 1, τ .Z$1,...,$r “
ÿ

j

Z$1,...,$j P
$j`1,...,$r
τ 1, τ with P$

τ 1, τ P R (2.63)

or, in the short-hand of mould notations:

Pτ 1, τ .Z‚ “ Z‚ ˆP‚
τ 1 τ with P‚

τ 1, τ symmetral

These formulae say, in essence, that it is enough to know one polarised sum
to know all the others. Indeed, they show how to derive any pDpl .S qτ 1 from

28also known, depending on the viewpoint, as resurgence coefficients or holomorphic
invariants.
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any given pDpl .S qτ by subjecting the latter to the purely formal operation
Pτ 1, τ which acts on the sole pseudo-variables via universal constants P‚

τ 1,τ

that depend only on the trans-polarisation pair pτ 1, τ q and nothing else.29

Another crucial property is that any relation between resurgent objects
automatically carries over to identical relations between their displays:

tRprS1, . . . , rSsq “ 0u ùñ tRpdpl .rS1, . . . , dpl .rSsq “ RpDpl .rS1, . . . ,Dpl .rSsq “ 0u

This in turn implies a huge number of new constraints on the coefficients
of the rSi, a fact that can be very helpful for proving transcendence and
independence results

2.13 Ultraseries and ultramonomials.

There exist composition equations, beginning with the simpler types T1, T2

(iteration and conjugation), that cannot be solved within the framework of
transseries - even if we allow infinite exponential depth. To deal with such
situations and achieve the dream goal of full compositional closure30, it is
necessary, but also sufficient, to introduce a coherent system of transfinite
iterates of E and L, with iteration orders α less than ωω. Unfortunately, the
formal construction, though unique, admits many distinct analytic realisa-
tions, with no clear privileged choice (but once that choice – any choice – is

made, the correspondance rS Ø S holds without restriction). This complica-
tion, strictly speaking, affects only the analysis side. But even on the formal
side, the ultra-exponentials lead to the replacement of our transseries by less
tractable ultrasseries, made up of ultramonomials with no straightforward
decomposition into prime factors. Nonetheless, the new objects – ultraseries
and ultramonomials – remain pairwise comparable, on the formal as on the
analysis side; non-oscillation is preserved; and the order ắ survives.

2.14 Main germ groups and main extensions.

All our germ groups G and extensions Gext shall be defined by some com-
bination of three things: ă generators}extensors}restrictors ą. It usually
matters, of course, whether one applies a given extensor before or after a
given restrictor (though one tends to privilege those restrictions that are
stable under most extensions) and so one should always specify that order
within the brackets ă ..||..||.. ą.

29This also applies to the lesser display dpl .
30not just closure under composition, which is no big deal, but closure under the solving

of all equations or systems that involve the composition ˝.
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Our main generators are going to be:
(gen1) The unit shift T
(gen2) The group GenT of all real shifts Tσ : x ÞÑ x` σ.
(gen3) The group GenP of all real power functions Pσ : x ÞÑ xσ.
(gen4) The exponential E :“ exp.
(gen5) The ultra-exponentials En “ Eωn :“ exp˝ω

n
(n P N)

(gen6) The composition group CvgPow of convergent real power series of the
form x ÞÑ a˚ x p1`

ř

anx
´nq with a˚ ą 0.

(gen7) The composition group CvgTrans of gradedly-convergent transseries
with a large positive leading term.31

(gen8) The composition group CvgUltra of gradedly-convergent ultraseries
with a large positive leading term.

Our extensors or enlargers will consist in demanding closure under the
solving of a given type of composition equations or systems, mainly:
(ext1) Iteration equations (see T1 in §1.1)..
(ext2) Conjugation equations (see T2 in §1.1)..
(ext3) Positive composition equations (see T3 in §1.1).
(ext4) General composition equations (see T4 in §1.1).
(ext5) General composition systems.
We shall also pay special attention to an important subclass, the so-called
twins equations or siblings systems:
(ext6) W pf, gq “ id (tf, gu: unknown ‘twins’).
(ext7) W1pf1, .., frq “ ... “ Wr´1pf1, .., frq “ id (tfiu: unknown ‘siblings’).
Twins equations or siblings systems contain only unknowns and seem under-
determined32 but in fact, in the most interesting cases,33 they exhibit spo-
radicity,34 with all the fascination that attaches to sporadic objects.

Lasty, our main restrictors or qualifiers will be:
(rst1) identity-tangency (i.e fpxq „ x` opxq).
(rst2) shift-tangency (i.e fpxq „ x` σ ` op1q).
(rst3) 0-exponentiality (i.e. lim.stat .Ln ˝ f ˝ En “ id as nÑ `8).
(rst4) finite formal criticity (finitely many distinct prime transsmonomials).
(rst5) finite analytic criticity (finitely many critical times).
(rst6) non-polarisation (no singularities on any of the real Borel axes).
(rst7) finite exponential depth.
(rst8) analyticity on s...,`8r (as opposed to mere cohesiveness).

31i.e. a leading term of the form aM0 M0pxq, aM0 ą 0.
32their non-trivial solutions, when they exist at all, are determined only up to a common

conjugation.
33e.g. when one looks for identity-tangent solutions.
34in the sense that very few such equations or systems possess non-trivial solutions.
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3 Groups of analysable germs. Complexity

hierarchy.

3.1 Degrees of divergence. Rising complexity.

We have a neat hierarchy with seven degrees Cj of rising complexity. Each de-
gree is defined inductively, relative to the prime transmonomials P pxq present
in a given transseries and taken in increasing order. Each degree reflects the
properties of the mock power series rT pxq of (2.59) ruled by these P pxq and
of their mock coefficients Tσpxq. We can legitimately drop the tildas,35 since
at that stage of the inductive re-summation the Tσpxq (and of course P pxq
itself) have already be re-summed.

C1 Direct convergence.

There is a common abscissa of convergence x0 ă `8 such that all mock
power series rT pxq converge uniformly on rx0 ` ε,`8r.

C2 Graded convergence.

Each mock power series rT pxq has its own abscissa x
rT ă `8 of absolute

convergence. These x
rT may not be bounded, but there is a common x0 ă `8

such that all rT pxq can be continued (analytically or cohesively) to the whole
interval sx0,`8r.

C3 Seriable divergence.

Some of the mock power series rT pxq ruled by P pxq “ eMpxq may have no
finite convergence abscissae, but are simultaneously Borel summable relative
(i) to any time x˚ equivalent to the ruling time Mpxq but slow enough in the
class rMpxqs,
(ii) to any time x˚˚ faster than Mpxq, e.g. all xα “ pP pxqq

αpα ą 0q,
(iii) with sums independent of the choice of x˚ or x˚˚.
Given this huge latitude, one cannot speak of ‘critical time classes’, nor are
there any resurgence phenomena or Stokes constants attached to this very
peculiar, ‘soft’ type of divergence.

35on the Tσpxq and on P pxq, though not yet on rT pxq.
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C4 Non-polarising resurgent divergence.

Some at least of the mock power series rT pxq exhibit effective resurgence,
mono- or even polycritical, usually of critical time(s) x

rT :“ P pxq or x
rT ,α :“

pP pxqqα, but without singular points on the main axis R` of the correspond-
ing Borel plane(s) ξ

rT or ξ
rT ,α.

C5 Polarising resurgent divergence.

Same as above, but with singular points on the axes R` of at least some
Borel planes. When finitely (resp. infinitely) many alien derivations ∆ω

with ω ą 0 act effectively on (at least) one and the same mock power series,
we speak of weakly (resp. strongly) polarising resurgence.36

C6 Infinite criticity.

The number of critical time classes is not bounded.

C7 Infinite exponential depth.

There is no bound on the height of the exponential towers present in the
transseries. More precisely, the transseries carries prime transmonomials rPn
of unbounded exponentially: lim sup expop rP q “ `8.

Enlargement by conjugation, continuous iteration, extraction.

As we shall see:
(i) Composition and reciprocation (i.e. taking the composition inverse) re-
spect each of the above seven degrees.
(ii) Conjugation or continuous iteration of germs of zero-exponentiality often
generates resurgence, but always of non-polarising type.
(iii) ‘Extraction’ (i.e. the solving of composition equations or systems), when
all the factors gi have zero-exponentiality, often generates resurgence, some-
times even of the weakly (but never strongly) polarising type.
(iv) Conjugation of germs of identical but non-zero exponentiality, or more
generally ‘extraction’, whenever possible in the transserial framework,37 gener-
ically introduces infinite exponential depth in the formal solutions and re-
places analyticity by cohesiveness in the germ solutions.

36Saying that infinitely many ∆ω with ω ą 0 act effectively on rϕpzq is much stronger
than saying that pϕpζq has infinitely many singular points over R` (relative to forward
analytic continuation).

37That is the case iff after the substitution of En for f and Eni for gi (ni :“ expopgiq)
the composition equation has a solution n P Z or is trivially verified for all n.
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(v) We do not know at the moment of any composition equation or system
that would generate seriable divergence in their solutions.38

3.2 Groups of convergent analysable germs.

Convergent transseries: direct convergence.

Their stability under composition and reciprocation is elementary. This ap-
plies is particular to the groups ă GenT , E ą and ă PowSer , E ą generated
by the exponential and all real shifts resp. all real analytic map germs at
`8. Both groups already contain transseries which, once written in canon-
ical form, are of a very general form. In particular, the first of these two
groups is dense in the second, whether in the natural topology of formal or
in that of convergent transseries.

Convergent transseries: graded convergence.

Elementary transseries of type
ÿ

0ďn

e´n.x.px` σnq
´1
“

ÿ

0ďn

e´n.x
ÿ

0ďk

p´σnq
kx´k´1

p0 ă σ Òq (3.1)

present us with the simplest instance of graded convergence: no uniform
convergence abscissa x0, yet no ambiguity at all as to the proper sum.

To illustrate how much graded convergence differs from true divergence,
let us consider two similar looking difference equations:

A1pxq ´ A1px` 1q “ a1pxq :“ e´x
α

p0 ă α ă 1q (3.2)

A2pxq ´ A2px` 1q “ a2pxq :“ e´x
1`α

p0 ă α ă 1q (3.3)

with their transserial solutions expanded in canonical form:

A1pxq “ e´x
α

xβ S1pxq with β “ 1´α ą 0 (3.4)

A2pxq “ e´x
1`α

ÿ

0ďn

e´n p1`αqx
α

cnpxq (3.5)

Here, S1pxq is a formal, divergent and resurgent power series (in x´1 and x´β)
implicitely defined as the constant-free solution of the difference equation

S1pxq ´R1pxqS1px` 1q “ x´β with R1pxq :“ p1` x´1
q
β ex

α´px`1qα (3.6)

38but the possibility cannot be completely ruled out in the case of highly alternate
composition equations or systems, since their classification in a way runs parallel to that
of differential equations or systems, and these sometimes (though extremely rarely) do
generate seriable divergence.
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with R1pxq viewed as convergent series in Crrx´1, x´βss.
On the other hand, the coefficients cnpxq in the expansion of A2 are

convergent power series explicitely given by

cnpxq “ expp´γnpxqq , γnpxq “ px` nq
1`α

´ x1`α
´ n p1` αqxα (3.7)

with γnpxq and cnpxq viewed as series of decreasing powers of x. Their do-
mains of convergence |x| ą n, however, decrease as n increases, so that we
have graded rather than direct convergence in the transseries A2pxq

A1pxq P xβe´x
α Crrx´1, x´βss pβ :“ 1´α ą 0q (3.8)

A2pxq P e´x
1`α Crre´p1`αqxα , x´1, x´βss pβ :“ 1´α ą 0q (3.9)

However, it would be confusing to lump A1 and A2 into the same ‘divergent’
category: A1 exhibits true resurgence, possesses genuine invariants, and can
boast a non-trivial display, whereas A2 falls short on all three counts.

3.3 Groups of seriable analysable germs.

Let
m
˚ denote the multiplicative convolution

ph1
m
˚ h2qpxq :“

ż x

1

h1px1qh2p
x

x1

q
dx1

x1

(3.10)

We define the ‘compensators’ x´σ as follows:

x´σ0,´σ1,...,´σr :“ x´σ0
m
˚ x´σ1

m
˚ ¨ ¨ ¨

m
˚ x´σr pσi P Rq (3.11)

For distinct exponents σi we have

x´σ0,´σ1,...,´σr “
ÿ

0ďiďr

xσi
ź

j ­“i

pσj ´ σiq
´1 (3.12)

When σi occurs 1` ni times, the formula becomes

x´σ
r1`n0s
0 ,...,´σ

r1`nrs
r “ pn0! . . . nr!q

´1
p´Bσ0q

n0 . . . p´Bσrq
nr x´σ0,...,´σr (3.13)

The easy inequalities

|x´σ0,...,´σr | ď
1

r!
| log x|r|x|´σ˚ pσi ą 0 , σ˚ “ inf σiq (3.14)

ˇ

ˇ

ˇ

z´σ0,...,´σr

x´σ0,...,´σr0

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

log z

log x0

ˇ

ˇ

ˇ

rˇ
ˇ

ˇ

z

x0

ˇ

ˇ

ˇ

´σ˚
px0 ă |z| ă 1 , z P C˚q (3.15)
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show that a series

ϕpzq “
ÿ

σ

aσ z
´σ

peach σ a finite sequenceq (3.16)

can be convergent as a series of compensators, yet divergent as a power
series, due to the proximity of some indices σi inside the same sequences σ.
To deal with such series, we take our cue from the inequalities (3.14)-(3.15)
and consider slowly spiralling neighbourhoods D of infinity on C‚:

Dx0,κ0 “ tz | |z|.| log z|´κ0 ą |x0|.| log x0|
´κ0u (3.17)

Next, using the sup norm }.}D on these domains, we define the smaller com-
pensation norm }.}Dcomp:

}ϕ}Dcomp :“ inf
!

ÿ

|aσ|.}z
´σ
}
D
)

ď }ϕ}D (3.18)

with an inf taken over all possible expansions of ϕ into infinite sums (3.16)
of compensatrors. The compensation norm is multiplicative:

}ϕ1 ϕ2}
D
comp ď }ϕ1}

D
comp }ϕ2}

D
comp (3.19)

That follows from the formula:

z´σ
1
0,...,´σ

1
rz´σ

2
0 ,...,´σ

2
s “

ÿ

z´σ0,...,´σr`s (3.20)

σn “ σ1in`σ
2
in , in`jn ” n , (3.21)

0 “ σ1i0 ď σ1i1 ď ¨ ¨ ¨ ď σ1ir “ r , 0 “ σ2i0 ď σ2i1 ď ¨ ¨ ¨ ď σ2ir “ s (3.22)

which linearises the product z´σ
1

z´σ
2

of two compensators of lengths r1, r2

into a sum of pr
1`r2q!
r1! r2!

compensators z´σ of length r1`r2. As a consequence,
we can speak of the algebra of compensable power series, i.e. power series
with a finite compensation norm }.}Dcomp for some D “ Dx0,κ0 .

All well and good, except that taking the inf of all representations (3.16) is
clearly not a practical re-summation strategy. Fortunately each compensable
series rϕpzq is Borel resummable, and very flexibly so: Borel summation works
not only relative to all variables z˚ :“ logz ´ κ0 log logz for κ0 large enough,
but also relative to all variables z˚˚ ą z˚ (e.g. zα :“ zα), and in all cases
yields the same sum as does the decomposition into sums of compensators.

The definition of compensability, along with the re-summation procedure,
extends to the mock power series, leading to the larger notion of seriability.
Seriability occupies a position midway between convergence and strict resur-
gence. With the latter it shares divergence, but lacks precisely defined critical
times, exhibits no polarisation, and generates no Stokes constants. It is of
common occurence in differential geometry: to most objects ridden with
Louivillian small denominators yet having an unambiguous geometric exis-
tence,39 there tend to correspond, on the formal side, compensable or seriable

39like the transit maps associated with limit cycles of ODEs in planar geometry.
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expansions.

3.4 Groups of non-polarised analysable germs.

Non-polarised analysable germs.

This is the case when, on top of some or all of the previous complications,
some of the mock power series may exhibit (mono- or polycritical) resurgence,
but without any derivation ∆ω pω P R`q acting directly on them.40

Displays of non-polarised germs.

As a consequence, there are no singular points on R` in any of the Borel
planes; no need for convolution averages; no polarisation in the re-summed
germs or their displays.

Frequent existence of a “geometric construction” (for the solution).

Non-polarisation often goes hand in hand with the existence of a geometric
construction for the solution f a given composition equation, in the form of
a limit f“ lim fn, with fn simply defined from the equation’s factors gi. This
is definitely the case for iteration, conjugation, and some composition equa-
tions. These constructions, however, “do not mix” under composition, and
if we want to perform regular group extensions, investigate the properties of
these extensions, compare their elements pairwise, establish non-oscillation,
etc, there is in the end no substitute for the transseries approach.

3.5 Groups of polarised analysable germs.

Weak and strong polarisation.

We say that there is weak (resp. strong) polarisation, when there is resur-
gence with finitely (resp. infinitely) many ∆ω pω P R`q acting simultaneously
on at least one mock power series. Composition equations or systems can at
most generate weakly polarising resurgence. There is thus no need to resort
to well-behaved convolution averages, and there is a clearly privileged sum,
corresponding to the standard convolution average.

40But they may act indirectly, as initial factors in operator strings ∆ω∆ωr . . .∆ω1 , with
ω P R`, ωi R R`.
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The lesser display.

The lesser display (if need be, polycritical) dpl , which takes into account
the sole derivations ∆ω with ω P R`, suffices for a comparison of all possible
sums, relative to all possible choices of convolution averages, for each effective
critical time.

Integration of large transmonomials.

The integration apxq ÞÑ Apxq “ B´1apxq of large transmonomials apxq, or of
small transmonomials larger than some L1kpxq, is a major source of weakly po-
larising resurgence. Even convergent transmonomials produce resurgence,41

but of the simplest possible type, with only a single active alien derivation
∆1, relative to a single critical time x0 given by

x0 “ stat.limrÑ`8

´ˇ

ˇ

ˇ
log

apxq

L1rpxq

ˇ

ˇ

ˇ

¯

`

Lr :“ log˝r
˘

(3.23)

The limit here is ‘stationary’, since for r large enough the germs on the
right-hand side of (3.23) become equivalent at 8.

x0 “
ˇ

ˇ log apxq
ˇ

ˇ if 1 ă lim
log apxq

log x
ď `8 (3.24)

x0 “ log x if 0 ď lim
log apxq

log x
ă 1 (3.25)

Consider for instance this equation with Apxq as unknown:

A1pxq “ apxq “ L13pxq bpxq with expopbq ď ´4 (3.26)

Any monomial b, large or small, of exponentiality ď ´4, will do. For instance:

bpxq :“
`

L4pxq
˘α4

`

L5pxq
˘α5

`

L6pxq
˘α6 or

bpxq :“ exp
´

`

L5pxq
˘β5 `L6pxq

˘β6 `L7pxq
˘β7

¯

pβ5 ą 0q

The critical time here is x0 “ L4pxq and relative to that critical variable
(3.26) becomes

A10px0q “ ex0 b0px0q
`

A0px0q ” Apxq , b0px0q ” bpxq
˘

The formal solution is given by

A0px0q “ ex0 B0px0q “ ex0 p1` Bx0q
´1

`

b0px0q
˘

41About the sole exceptions are eαx xn or xα plog xqn with n P N.
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with p1` Bq´1 expanded straightforwardly in positive powers of B, while the
resummation is given by the Laplace transform of

pB0pξ0q “ p1´ ξ0q
´1

pb0pξ0q

The definition of pb0 here is unproblematic, since the monomial b0px0q “

bpE4px0qq is automatically subexponential in x0, and Laplace summation too
is unproblematic, since there is only one singularity on the positive real axis
in the Borel plane.

3.6 Infinite exponential depth.

This last complication, which takes us beyond the framework of proper
transseries as defined in §2.10, creates few complications on the formal side,
but tends to substitute cohesiveness for analyticity in the sums.

3.7 Accelero-summation commutes with composition.

Proving this commutation establishes that large, re-summable transseries,
taking in any of the seven categories Ci listed above, constitute a semi-group
under composition. Then stability under reciprocation (taking the composi-
tion inverse) has to be proven. As the formal composition or reciprocation
of transseries resolves itself into several steps,42 it is enough to check that
accelero-summation commutes with each one of them. The checks are te-
dious enough (see [E5] in a rather special case) but demand little more than
dogged patience.

4 Conjugation{iteration of zero-exponentiality

germs.

4.1 The three steps of conjugation.

The aim here is to show that any (large, positive) analysable germ f :

fpzq “ apzq ` Apzq with apzq ą Apzq ; expopaq “ 0. (4.1)

42Repeatedly resorting to the Taylor formula; rephrasing composition and reciprocation
in terms of the operations B and ˆ in the multiplicative plane (resp. pB and ˚ in the
Borel plane); expelling all infinitesimals from the exponentials and logarithms; and lastly
re-arranging the terms so produced in accordance with the well order of transseries.
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is analysably conjugate to the unit shift T . That will automatically take care
of the mutual conjugation of any two such germs, and also settle for them
the matter of continuous iteration.

Conjugating f to T is a process that is best broken down to three steps.

Step one:

We may assume fpzq ´ z to be ultimately positive (if not, we replace f by
f ˝´1). Regardless of whether fpzq is „ z or „ p1 ` constq.z or ą z, there
always exits large enough integers n such that the variable change

z “ Enpz1q , z1 “ Lnpzq (4.2)

turns f into a strongly identity-tangent germ f1:

f1pz1q “ Ln˝f ˝Enpz1q “ z1`bpz1q`Bpz1q ; 1 ą bpz1q ą Bpz1q (4.3)

Here, b denotes the leading transmonomial of f1pz1q ´ z1 (together with the
real scalar in front of it) and B the remaining transseries. If the original
transseries of f is convergent, the change of variable keeps it that way. If it
is divergent (and resummable), it does not ‘add’ to its divergence (and keeps
it resummable).

Step two:

A second change of variable

z1 “ h1,2pz2q , z2 “ h2,1pz1q with h2,1 :“ B´1 1

b
“

ż

1

b
(4.4)

turns f1 into a moderately identity-tangent germ f2, whose second trans-
monomial is exactly 1:

f2pz2q “ h2,1 ˝ f1 ˝ h1,2pz2q (4.5)

“ z2 ` ph
1
2,1 bq ˝ h1,2pz2q ` o

`

ph12,1 bq ˝ h1,2pz2q
˘

(4.6)

“ z2 `
b ˝ h1,2pz2q

h11,2pz2q
` o

`b ˝ h1,2pz2q

h11,2pz2q

˘

(4.7)

“ z2 ` 1` ϕ2pz2q with ϕ2pz2q “ op1q (4.8)

In nearly all cases this step creates divergence43, but always of resurgent-
resummable type

∆$0 h2,1 “ c0 “ Const with $0 “ σ0 βpz1q , σ0 ą 0q (4.9)

Dplph2,1q “ c0 Z$0 ` h2,1 (4.10)
43the exceptional (but obviously important) transmonomials that admit convergent in-

definite integrals are z´σ, zn plog zqm, e´σzzm pσ P C, n,mNq.
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Step three:

We conjugate the germ f2 to the unit shift T by solving the equation:

f˚2 ˝ f2pz2q “ 1` f˚2 pz2q with f˚2 pz2q “ z2 `
ÿ

1ďn

pδn f
˚
2 qpz2q (4.11)

where δn f
˚
2 denotes the term that is n-linear in the remainder transseries ϕ2

of (4.8). These n-linear terms are given inductively by the following system
of difference equations:

pδ1f
˚
2 qpz2q ´ pδ1f

˚
2 qpz2 ` 1q “ ϕ2pz2q (4.12)

pδnf
˚
2 qpz2q ´ pδnf

˚
2 qpz2 ` 1q “

ÿ

1ďpă1

1

p!

`

ϕ2pz2q
˘p `

δn´pf
˚
2

˘ppq
pz2 ` 1q p@n ą 1q

We have to split ϕ2 into five parts ϕk:

f2pz2q :“ z2 ` 1`
ÿ

1ďkď5

ϕ
rks
2 pz2q with ϕ

rks
2 P Fk (4.13)

each of which behaves very differently under the solving of difference equa-
tions (we drop the lower index 2 for simplicity):

Φrkspzq ´ Φrkspz ` 1q “ ϕrkspzq p1 ď k ď 5q (4.14)

Each ϕrks consists of small transmonomials b belonging to one of five trans-
monomial intervals Fk characterised by a specific rate of decrease at `8, on
the real axis (hence the choice of x as variable):

transmoal . asymptotic behaviour rate of decrease

b P F1 ô lim logp1{bpxqq
x

“ 0 subexponential

b P F2 ô 0 ă lim logp1{bpxqq
x

ă 8 exponential

b P F3 ô lim logp1{bpxqq
x

“ 8 , lim logp1{bpxqq
x log x

ă 8 weakly overexpal

b P F4 ô lim logp1{bpxqq
x log c

“ 8 , lim log logp1{bpxqq
x

ă 8 moderately overexpal

b P F5 ô lim log logp1{bpxqq
x

“ 8 strongly overexpal
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More tellingly, in each case the transmonomial b falls into one of the following
increasing intervals:

b P F1 ô bpxq P
Ť8

r“1

“

1
Lrpxq

, expp´ x
Lrpxq

q
‰

b P F2 ô bpxq P
Ť8

r“1

“

expp´1
r
xq , expp´r xq

‰

b P F3 ô bpxq P
Ť8

r“1

“

expp´xLrpxq , expp´r xL1pxqq
‰

b P F4 ô bpxq P
Ť8

r“1

“

expp´xL1pxqLrpxq , expp´er xq
‰

b P F5 ô bpxq P
Ť8

r“1

“

expp´exLrpxqq , 1
Erpxq

‰

So let us examine the difference equation:

Bpzq ´Bp1` zq “ bpzq pb P Fk , 0 ď k ď 4q (4.15)

for convergent44 transmonomials b successively taken in each of the five fun-
damental intervals. But before proceeding with the discussion, let us start
with three general remarks.

Remark 1: transserial solutions vs germ solutions.

In each case, the constant-free transserial solution rB of (4.15) is given by

rBpzq “
ÿ

0ďn

b̃expand
pz ` nq (4.16)

where b̃expandpz ` nq denotes the natural transserial expansion of bpz ` nq.
Moreover, the resulting B̃, whether convergent or not, always resums to a
natural, unpolarised sum B given by

Bpzq “
ÿ

0ďn

bpz ` nq pb R F00 , x largeq (4.17)

at least when b does not belong to the subinterval F1˚ Ă F1:

b P F1˚ ô bpxq P
8
ď

r“1

” 1

Lrpxq
,

1

xL1pxq . . . Lrpxq

ı

(4.18)

But despite the simplicity of the convergent germ expansion, we cannot rest
satisfied with it, for three reasons:
(i) it fails for b in F1˚

44meaning that all their nested transseries are convergent. That restriction will be
dropped later on.

36



(ii) it does not yield the (often non trivial) display Dpl B with the essential
Stokes constant carried by it.
(iii) for the general purpose of analysability,45 we cannot be content with the
germ Bpzq; we also require the underlying transseries.46

That said, two dichotomies dominate the picture: convergence/resurgence
and analytic/cohesive.

Remark 2: Resurgence vs convergence.

For b in the range F1YF2YF3, the monomials resulting from the transserial
expansions of b̃expandpz ` nq ‘interdigitate’ and contribute helter skelter to a

transseries rB that is usually divergent and always resurgent. On the contrary,
for b in the range F4YF5, for n1 ă n2, each transmonomial from b̃expandpz`n1q

neatly precedes47 each transmonomial from b̃expandpz ` n2q, so that rB is now
a (gradedly) convergent transseries.

Remark 3: Analyticity vs cohesiveness.

For any transmonomial b in the range F1 YF2 YF3 YF4, there always exist
a right strip S “ t<pzq ą x0 , |=pzq| ă y0u such that each germ bpz ` nq
extends analytically to S, decreases there uniformly as <z increases, yielding
a germ series

ř

bpz`nq that converges to a sum Bpzq analytic on the whole
of S. For b in the range F5, on the other hand, there is no strip, not even a
tapering neighbourhood of rx0,`8r, slim enough to ensure the convergence
of

ř

bpz ` nq: that germ series does converge, but only on a neighbourhood
of `8 on the real axis, and the sum B so defined is cohesive rather than
analytic.

4.2 The general transserial difference equation.

The case b P F1:

The transseries rB solution of (4.15) is generically divergent but always resur-
gent with critical time z, resurgence support Ω0 :“ 2πiZ˚, and elementary
resurgence equations:

∆ω1 Bpzq “ Aω1 p@ 9ω1 P Ω1q (4.19)

∆ω1 Bpzq “ Aω1 e
´2πik z if 9ω1 “ 2πik (4.20)

45i.e. for the biconstructive shuttle rB Ø B.
46For only thus can we compare and resum new transseries constructed from B, such as

the direct iterator f˚2 in (4.11) and its reciprocal ˚f2 .
47i.e. decreases more slowly.
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The case b P F2:

Let us separate the strictly subexponential parts c (transmonomial) and C
(transserial) by writing:

bpzq “ e´σ2 z cpzq ; Bpzq “ e´σ2 z Cpzq pσ2 ą 0q (4.21)

The equation (4.15) becomes Cpzq ´ e´σ2 z Cpz` 1q “ cpzq. Its constant-free

transserial solution rC is generically divergent but always resurgent, with crit-
ical time z, resurgence support Ω2 “ ´σ2`2πiZ˚, and elementary resurgence
equations:

∆ω2 Bpzq “ Aω2 p@ω2 P Ω2q (4.22)

∆ω2 Bpzq “ Aω2 e
´2πik z if 9ω2 “ ´σ2 ` 2πik (4.23)

The case b P F3:

Here again, we must isolate the dominant and subdominant parts by decom-
posing the transseries logp1{bpzqq “ σ3 βpzq ` γpzq into a transseries γpzq of
transmonomials all smaller than z and a supplementary transseries σ3 βpzq
normalised so as to give its leading term the form σ3 β0pzq, with β0pzq a pure
transmonomial, with no scalar in front of it.48 We can then write

bpzq “ e´σ3 βpzq cpzq ; Bpzq “ e´σ3 βpzqCpzq
`

σ3 ą 0 , cpzq “ e´γpzq
˘

(4.24)

With respect to the subexponential parts, the difference equation becomes:

Cpzq ´ dpzqCpz ` 1q “ cpzq with dpzq “ eσ3pβpzq´βpz`1qq (4.25)

Since in this special case, we shall have to deal with two critical times,
namely z itself and the slightly ‘faster’ time z` :“ βpzq, we must express
our transseries relative to both variables:

Cpzq ” C̀ pz̀ q ; Bpxq ” B
`
pz̀ q ” e´σ3 z̀ C̀ pz̀ q

`

z̀ ” βpzq
˘

(4.26)

(i) The Borel transform rCpζq with respect to the slower critical time x is con-
vergent at 0‚ (the ramified origin of the ramified Borel plane C‚) and extends
analytically to the whole of C‚, but without encountering other singularities
than 0‚ and, consequently, without giving rise to any z-related resurgence
equation. However, Ĉpζq exhibits overexponential growth in certain direc-

tions, especially for Argp 9ζq “ ´π.

(ii) The Borel transform pC̀ pζ
`
q with respect to the faster critical time z̀

48For definiteness, we may think of β0pzq as being z plog zqα with 0 ă α ď 1.
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does not converge near 0‚, but can nonetheless be resummed via the usual
acceleration integral applied to pCpζq. The only singularities of pC̀ pζ

`
q other

than 0‚ lie over the point ´σ2 and are described by the following resurgence
equations:

∆
pz̀ q
ω3 C̀ pz

`
q “ Aω3pzq with 9ω3 “ ´σ3 and z pnot z

`
q in Aω3 (4.27)

∆
pz̀ q
ω3 B`pz`q “ Aω3pzq with 9ω3 “ ´σ3 and z pnot z

`
q in Aω3 (4.28)

where Aω3pzq is 1-periodic Fourier series in z:

Aω3pzq “
ÿ

kPZ

Aω3,k e
´2π ik z (4.29)

Pay attention to the upper index z
`

that denotes the critical time in the above
alien derivations. Pay even closer attention to the variable inside Aω3pzq: that
variable is not z̀ , which would be inacceptable (since the germ produced by
an alien derivation has to be subexponential relative to the critical time under
consideration) but z, which is all right, since Aω3pzq, being exponential in z,
is subexponential in z̀ .

The case b P F4:

Here, the relevant decomposition of b is:

bpzq “ e´σ4 z λpzq´γpzq “ e´σ4 z λpzq cpzq pσ4 ą 0q (4.30)

(i) with λpzq starting with a leading transmonomial of the form λ0pzq ą log z
(ii) with all transmonomials in λpzq being ą 1.
(iii) with all transmonomials in γpzq being either z or opzq.
The sum (4.16) then becomes

rBpzq “
ÿ

0ďn

rbexpand
pzq “

ÿ

0ďn

e´σ4 z λpzq e´nσ4 λpzq rCnpzq (4.31)

with a middle factor consisting of powers of a transmonomial e´λpzq that de-
creases faster than any transmonomial in any of the transseries rCnpzq. Thus,

inside the global transeries rBpzq as given on the right-hand side of (4.31),

the contributions of the various rCnpzq do not mingle, but keep neatly apart.

The convergence abscissa xn of each rCnpzq goes to `8 as n increases49, so

that we cannot have absolute convergence in rBpzq. But we have, unproblem-

atically, graded convergence, since each rCnpzq converges to an analytic germ

49In fact, it is easily seen that zn „ Const n.
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Cnpzq which can be continued to a common interval rx0,`8r and since, on
that interval or at least on a subinterval rx10,`8r, the ‘tildeless’ germ series

Bpzq “
ÿ

0ďn

bexpand
pzq “

ÿ

0ďn

e´σ3 z λpzq e´nσ3 λpzqCnpzq (4.32)

converges (absolutely this time) to a germ Bpzq. The only pending question is
whether Bpzq is analytic, and that is where the upper bound of the interval F3

comes into play. As the prospects for analyticity worsen for faster decreasing
transmonomials bpxq, it suffices to examine the case bpzq “ e´e

r z
for large

values of r. But it is immediate that the series
ř

0ďn e
´er pz`nq converges

absolutely and normally on the halfstrip <pzq ą 0 , |=pzq| ď π
2 r
´ ε. So,

for bpzq in F3, Bpzq is always analytic on a real neighbourhood of `8 and
extends analytically either to a half-strip, or more often to a whole right
half-plane, or even to a wider sector of C‚.

The case b P F5:

The argument which clinched the graded convergence of (4.16) for b in F4

works a fortiori for b in F5. What we must show now is that B, though
generically failing to be real-analytic, nonetheless retains a high degree of
smoothness, enough to guarantee the form of quasi-analyticity known as co-
hesiveness and to ensure the property of unique continuation. The generic
failure of analyticity is already obvious from the fact that, even for b at the
lower end of the interval F5, that is to say of the form bpxq “ e´e

xLrpxq
(r

large), the translates bpz`nq cannot remain bounded on any rectangle, how-
ever narrow, that straddles R`. To establish cohesiveness is slightly harder.
The argument goes like this: for any b in F5 and any interval rx1, x2s Ă R`
close enough to `8, one can always find two real sequences tεnu and tηnu
with εn Ó 0, ηn Ó 0,

ř

ηn ă `8 and such that |bpz ` nq| be bounded by
ηn on the rectangle of width 2 εn bisected by rx1, x2s. One then optimises
the pair pεn, ηnq and, using the Dyn’kin criterion50, finds the exact regularity
type of the sum B – which paradoxically51 get weaker and weaker for faster

50Meant is an extremely useful and flexible criterion due to Moisevich Dyn’kin, which
relates the degree of smoothness (such as quasi-analytic, C8, Hölderian etc) of a real
function defined on a real interval I to that function’s pseudo-analyticity modulus, i.e. to
the speed with which it can be approximated by complex functions with a small B̄ defined
on smaller and smaller rectangles straddling I. See [E8] §3, pp 72-74.

51paradoxically, but only at first sight: indeed, for faster decreasing transmonomials b,
the convergence of the sum

ř

bpz ` nq may increase on the real axis, but the moment we
leave the real axis, the absolute values explode, especially for b at the upper end of the
interval F5, i.e. of the form 1{Er for r large.
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decreasing transmonomials b, but always remains strong enough to ensure
cohesiveness.

Overview.

Before winding up this long but necessary aside on difference equations, let us
recast B’s elementary resurgence equations and displays in a uniform mould,
by resorting to the convenient $-notations of §2.12, which alone can bring
clarity to the sort of multicritical situation that we shall encounter in an
instant, when returning to the iterators f˚ and ˚f . In all three resurgence-
generating cases, we have:

∆$ Bpzq “ Apxq ; DplB “ B ` Z$A$pzq (4.33)

with

b P F1 || $pzq “ ω1 z || 9ω1 P 2πiZ || A$pzq “ A$ e
´ω1 z

b P F2 || $pzq “ ω2 z || 9ω2 P ´σ2`2πiZ || A$pzq “ A$ e
´=pω2q z

b P F3 || $pzq “ ω3 βpzq ą z || 9$3 P ´σ3 || Aωpzq “
ř

A$,k e
´2πi k z

Thus, altough the resurgence-describing term A$pzq is always 1-periodic
in z – and cannot be anything else, since Dpl B, like B itself, has to verify the
difference equation (4.15) – the natural indexation of its Fourier coefficients
and that of the accompanying pseudovariable Z$ varies widely from case to
case.

4.3 The general transserial conjugation equation.

Now, returning to our general analysable germ f of exponentiality 1 (see
4.1) and the three associated objects – the direct iterator f˚, its functional
inverse ˚f and the real iterates f ˝t – let us state the general result, first in
the auxiliary z2-chart, then in the original z-chart.

We begin with the case when f is itself (gradedly) convergent and examine
the specific contributions of each of the five components ϕrks in (4.13):

• The initial transseries ϕr1s, ϕr2s, ϕr3s, on their own, create no other com-
plication than generic divergence52 associated with multicritical, non-
polarising, Borel-summable resurgence in f˚2 ,

˚f2, f
˝t
2 . The resurgent

equations and the displays are as in (4.33). The corresponding germs
f˚2 ,

˚f2, f
˝t2
2 are always analytic on r. . . ,`8r.

52Except of course when ϕr1s “ ϕr3s “ 0 and when ϕr2s reduces to a series
ř

cσ e
´σ z2

of pure exponential monomials.
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• The last transseries ϕr5s, on its own, creates no divergence in the trans-
series f˚2 ,

˚f2, f
˝t
2 , but it generically prevents the corresponding germs

from being analytic. Instead, it causes them to be cohesive (a special
form of quasi-analyticity) on r. . . ,`8r, of class at most Denω.

• The intermediate transseries ϕr4s, on its own, causes none of these com-
plications – neither divergence-resurgence in the transseries nor strict
(i.e. non-analytic) cohesiveness in the germs.

• In the general case, when all five components ϕrks are present, their
effects combine unproblematically: ‘analysability’ survives; we still
have the resurgence regime described in Proposition 6 below; and our
transseries still resum to cohesive germs f˚2 ,

˚f2, f
˝t2
2

Proposition 4.1 (Iterators of convergent analysable germs f).
For any (absolutely or gradedly) convergent transseries f of exponentiality 1,
the iterators and real iterates verify the following resurgence equations:

f˚2 ˝f2 “ T ˝f˚2 ; f ˝ ˚f2 “
˚f2 ˝T ; f ˝t2 “

˚f2 ˝T
˝t
˝f˚2 (4.34)

∆$f
˚
“ ´A$pf˚q (4.35)

∆$
˚f “ `A$ B ˚f with B :“ Bx (4.36)

∆$f
˝t

Bf ˝t
“ `

A$pt`f˚q ´A$pf˚q
Bf˚

(4.37)

with $ running through the set Ω “ Ω1

Ť

Ω2

Ť

Ω3. Of course, due to the
1-periodicity of the functions A$, the right-hand side of (4.37) vanishes, as
indeed it should, for any entire iteration order t. The resurgence equations,
as usual, completely determine the displays, but here a unique simplification
occurs – namely the neat separation in the displays (noted Dpl as usual)
of some composition factors that consist purely of transseries and of other
factors (noted Psd for pseudo) that consist purely of pseudovariables (accom-
panied by periodic exponentials in z). Indeed:

Dpl f˚ “ pPsd f˚q ˝ f˚ (4.38)

Dpl ˚f “
˚f ˝ pPsd ˚fq (4.39)

Dpl f ˝t “
˚f ˝ pPsd f ˝tq ˝ f˚ (4.40)

with the Psd-part transparently defined from the differential operators

A$ :“ A$pzq Bz (4.41)
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by the mutually inverse expansion (4.42) and (4.43):

Psdpf˚q :“ z `
ÿ

1ďr

ÿ

$jPΩ

p´1qr pA$r . . .A$1 .zq Z$1,...,$r (4.42)

Psdp˚fq :“ z `
ÿ

1ďr

ÿ

$jPΩ

pA$1 . . .A$r .zq Z$1,...,$r (4.43)

Psdpf ˝tq :“ Psdp˚fq ˝ T ˝t ˝ Psdpf˚q (4.44)

Notice that in (4.43) the indexation of the pseudovariables Z and that of the
invariant operators A go in the same direction, whereas in (4.42) or indeed
in the general definition of the display (2.60), the indexation of the pseu-
dovariables Z and that of the alien derivations ∆ go in opposite directions.53

The identity f˚ ˝ ˚f “ id implies not only Dplpf˚q ˝ Dplp˚fq “ id but
also Psdpf˚q ˝ Psdp˚fq “ id . This latter fact can also be verified directly by
observing
(i) that the pseudovariables behave like constants under derivation and com-
position
(ii) that they obey the shuffle rule (2.30) under multiplication
(iii) that the identities (4.42) and (4.43) are equivalent to

Psdpf˚q “ PSDpf˚q.z Psdp˚fq “ PSDp˚fq.z (4.45)

with infinite order differential operators PSDpf˚q and PSDp˚fq:

PSDpf˚q :“ 1`
ÿ

1ďr

ÿ

$jPΩ

p´1qr Z$1,...,$r A$r . . .A$1 (4.46)

PSDp˚fq :“ 1`
ÿ

1ďr

ÿ

$jPΩ

Z$1,...,$r A$1 . . .A$r (4.47)

that formally verify PSDpf˚q.PSDp˚fq ” 1.

Remark 4: Disappearance of the parasitical resurgence of step two.

To see what becomes of the elementary but (weakly) polarising resurgence
(4.9) that resulted from the change of variable z1 Ñ z2 of ‘step two’, we must
look at the complete multicritical display :

Dplpf˚2 qph2,1qpz1q“Psdpf˚2 q˝f
˚
2 pz2 ´ c0 Z$0q“Psdpf˚q˝f˚2 pz2 ´ c0 Z$0q (4.48)

53The reason is quite simply that, since each ∆ω1
commutes with B and therefore with

Aω2
as given in (4.41), we have ∆ω2

∆ω1
˚f2 “ ∆ω2

Aω1
˚f2 “ Aω1

∆ω2
˚f2 “ Aω1

Aω2
˚f2.
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with c0 and $0 as in (4.9). On the other hand we have the implications:

f1 “ h1,2 ˝ f2 ˝ h2,1 ùñ

f˚1 “ f˚2 ˝ h2,1 ùñ

Dplpf˚1 q “ Dplpf˚2 q ˝Dplph2,1q (4.49)

Replacing in (4.49) the displays Dplpf˚2 q and Dplph2,1q by their expression
(4.38) and (4.39), we see at once that the polarising resurgence of critical time
ω0 that appeared at step 2 (see (4.9)-(4.10)) automatically disappears as soon
as we revert to the variable z1 of step 1, or a fortiori to the original variable z.

Remark 5: Geometric solution.

Not only is f ˝tpzq directly characterised by

lim
nÑ`8

f ˝n ˝ f ˝tpzq ´ f ˝npzq

f ˝pn`1qpzq ´ f ˝npzq
“ t p@ t P R , @ z positive largeq (4.50)

but in any z3-chart such that

f3pz3q “ ph3,2˝f2˝h2,3qpz3q “ z3`1`dpz3q`opdpz3qq with

ż

dpz3q ă 1

with a small third monomial d whose constant-free indefinite integral is also
small, the iterator f˚3 pz3q, as a germ, is directly calculable as the limit

f˚3 pz3q “ lim
n´ą`8

pf ˝n3 pz3q ´ z3 ´ nq (4.51)

The disappearance of the ‘earlier resurgence’54 was predictable in a sense,
because a singularity on R` would create a polarisation, albeit of a very
elementary sort (one for which all real convolution averages coincide), and
that would not sit well with the existence of a privileged geometric solution.

Proposition 4.2 (Iterators of general analysable germs f).
If, instead of starting from a (gradedly) convergent analysable germ f as
in Proposition 4.1, we start from a general analysable germ f (but still of
exponentiality 0), little changes, except that the preexisting resurgence of f
(whatever the type of that resurgence) gets superimposed, in an orderly man-
ner, to the very specific resurgence generated by the passage f ÞÑ pf˚ , ˚fq.

54i.e. the one that appeared in step 2. See Remark 4.
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The neatest way to describe the resulting situation is by writing down the
displays55. The earlier factorisations (4.38)-(4.40) now assume the form:

Dpl f˚ “ pPsd f˚q ˝ pDpl fq˚ (4.52)

Dpl ˚f “
˚
pDpl fq ˝ pPsd ˚fq (4.53)

Dpl f ˝t “
˚
pDpl fq ˝ pPsd f ˝tq ˝ pDpl fq˚ (4.54)

(i) with ‘elementary factors’ pDpl fq˚, ˚pDpl fq that carries the ‘old resur-
gence’ and can obtained directly by solving the conjugation equations:56

pDpl fq˚ ˝ pDpl fq “ T ˝ pDpl fq˚ (4.55)

pDpl fq ˝ ˚pDpl fq “
˚
pDpl fq ˝ T (4.56)

(ii) and with ‘non-elementary factors’ Psd ˚f , Psd f˚ that carry the ‘new
resurgence’, commute with the unit shift T , and of course verify:

id “ pPsd ˚fq ˝ pPsd f˚q (4.57)

Psd f ˝t “ pPsd ˚fq ˝ T ˝ pPsd f˚q (4.58)

Observe that here, ‘elementary’ simply means ‘obtainable by purely formal
manipulations on transseries’.57 But as far as the general shape is concerned,
the factors (ii), being 1-periodic58, are often more ‘elementary’ than the fac-
tors (i), since there is no a priori bound on the complexity of f , let alone on
that of its display and its display’s iterators.

A striking illustration of Proposition 4.2 shall be given in §13.5 with the
‘continued conjugation’ decomposition of a germ f .

4.4 Some examples.

Example 1: iteration of power series.

For germs f given by a power series fpzq“c z`
ř

1ďn an z
1´n with c ą 0, the

iteration pattern is well-known,59 but let us see how these results fit into the
general transserial framework.

55from which the resurgence equations can be easily derived.
56Take care to distinguish the present ‘iterators of displays’ pDpl fq˚, ˚pDpl fq from the

earlier ‘displays of iterators’ pDpl f˚q, pDpl ˚fq. See Proposition 4.1.
57and thus, without recourse to analysis in the Borel plane.
58more precisely : commuting with the unit shift T .
59In the case c ­“ 1, this is a classical result due to Schroeder. In the identity-tangent

case (c “ 1), the geometric theory goes back to Fatou and the resurgence-resummation
treatment to Ecalle.
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In the non-identity-tangent case, we may assume c ą 1. Then step 1 with
n “ 1 followed by step 2 with h2,1pz1q “ z1{ log c immediately take us to the
form (4.13), but with simple decreasing exponentials on the right-hand side.
This is the simplest of all possible cases: the iterators are convergent.

In the identity-tangent case, fpzq “ z ` apz
1´p ` . . . , there is no need

for step 1, so that z1 “ z, and steps 2 with z2 “
1
p ap

zp1 ` ¨ ¨ ¨ ` c1z1 ` ρ log z1

takes us to the form (4.13), with a right-hand side in the interval F1 but
consisting essentially of decreasing powers.60 The only complication here is
a resurgence that is governed by the general equations (4.35),(4.36),(4.37),
but with invariant operators Aω that depend only on the projections 9ω.

Example 2: fractionnal iteration of monic polynomials.

Let f be a real monic polynomial of degree d ě 2:

fpzq :“ zd `
ÿ

0ďkăd

ak z
k

p2 ď dq (4.59)

Step 1 takes f to the form

pL2 ˝ f ˝ E2qpz1q :“ z1 ` log d` α2pz1q
`

α2 P Expo´2
˘

(4.60)

“ z1 ` log d`
ad´1

d ez1`pd´1q ez1
` . . . (4.61)

with f1pz1q ´ z1 in the interval F4, and step 2 (a simple dilation) keeps
f2pz2q ´ z2 in F4. As a consequence, the iterators and fractional iterates are
guaranteed to be convergent. But let us for a change look directly at the

fractional iterates, which are easily explicitable. Indeed, g :“ f ˝
1
p may be

sought of the form:

gpzq :“ zσ
´

1` Spz´1, z´σ, z´σ
2

, . . . , zσ
p´1

q

¯

(4.62)

“ zσ
´

1`

ř

nją1
ÿ

njě0

bn0,n1,...,np´1 z
´
ř

0ďjăp nj σ
j
¯

(4.63)

with σ :“ d1{p. Rather than directly iterating g and setting it equal to
f , it is advantageous to replace g first by γptq :“ 1{gpt´1q and then by a
multidimensional mapping γ : Cp

,0 ÞÑ Cp
,0 defined by:

γ : tj ÞÑ tj`1 .
´

1` Spt0, t1, . . . , tp´1q

¯´σj

p0 ď j ď p´ 2q (4.64)

tp´1 ÞÑ td0 .
´

1` Spt0, t1, . . . , tp´1q

¯´σp´1

pj “ p´ 1q (4.65)

60It is either in Crrz´1{p
2 ss if ρ “ 0 or else in Crrz´1{p

2 , z
´1{p
2 log z2ss.
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and lastly to write that the pth iterate of γ is equal to:

γ˝p : tj ÞÑ tdj .
´

1`
ÿ

0ďkăp

aktd´k

¯´σj

p0 ď j ď p´ 1q (4.66)

Example 3: iteration of transmonomials.

As an exercise, the reader may examine the following examples

fpzq “ eplog zqc1 P1plog log zq
pP1 real polynomial , c1 ą 0q

fpzq “ eplog zqc2 P2p1{ log log zq
pP2 real polynomial , c2 ą 0q

fpzq “ eP1pplog zqc1 q eplog log zqc2 P2plog log log zq

where f , despite reducing to a single transmonomial, gives rise, after nor-
malisation by the steps 1, 2, 3, to full-fledged transseries, with some or all of
the possible attendant complications.

5 Conjugation/iteration of nonzero-exponentiality

germs.

Since in the coming five sections most germs are defined, and most constuc-
tions make sense, only in real neighbourhoods of `8, we shall throughout
call the variable x rather than z, and its conjugate variable ξ rather than ζ.

5.1 Conjugation of germs with the same exponentiality.

Conjugating two analysable germs of unequal exponentiality61, as we shall
see in §6, is not possible in the relatively orderly framework of ordinary
transseries, but requires the introduction of ultraexponentials and ultralog-
arithms. At the opposite end, conjugating two analysable germs f and g
each of exponentiality 0 is always feasible62, via a germ h :“ ˚f ˝ g˚ itself
of exponentiality 0, as we just saw in §4. That leaves only the case when f
and g have the same exponentiality k P Z˚. By considering if need be the
reciprocal germs, we may assume k to be in N˚ and it is enough to treat the
case when g is the standard k-exponentialy germ. In other words, it suffices

61A germ f is said to be of exponentiality k if its leading transmonomial a is itself of
exponentiality k, i.e. if Ln ˝ f ˝ En „ Ek for n large enough.

62Provided of course they are of the same type, i.e. both ultimatily contracting or
expanding.
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to consider pairs pf, gq with expopfq “ k, g “ Ek and then calculate the
direct normaliser f♦ or its inverse ♦f by solving either of the equations (5.1),
(5.2):

f♦
˝ f “ Ek ˝ f

♦
pexpopf♦

q “ 0q (5.1)

f ˝ ♦f “
♦f ˝ Ek pexpop ♦fq “ 0q (5.2)

with fpxq “ apxq ` opapxqq and expopaq “ k. The solution f♦ (resp. ♦f) are
defined up to pre-composition by En (resp. post-composition by Ln) with
n P Z 63 and the normalisers are by definition the unique pair pf♦, ♦fq of
reciprocal germs with exponentiality zero.

Let us focus on the (slightly simpler) direct normaliser f♦. We can always
find n large enough to ‘normalise’ to Ek the leading transmonomial of f by
a conjugation (5.3) and to make the whole transserial remainder α as small
as we wish. We may for example bring f to the form f1:

f1px1q “ pLn ˝ f ˝Enqpx1q “ Ekpx1q ` αpxq with αpx1q “ op1q (5.3)

The conjugation equation then becomes f♦
1 ˝ pEk ` αq “ Ek ˝ f

♦
1 and its

unique solution (both as a transseries and an analysable germ) can easily be
expanded into a sum of transserial blocks εknpx1q. Their exact expression is
given at the end of the section, in Example 4, after a graded series of easier
cases. This expansion f♦

1 px1q “ x1`
ř

n εknpx1q converges unproblematically
in the space of transseries. It also converges incredibly fast in the space
of analysable germs on a suitable real neighbourhood of `8. The sum is
generically non-analytic, but always cohesive, in the transfinite Denjoy class
ωDEN (and usually in no smaller class), irrespective of the exponentiality k.

But before tackling the general situation (Example 6, infra), let us ex-
amine five simpler examples, all of them directly relevant to the numerical
investigation of §15. As in the preceding section (when investigating zero-
exponentiality germs), we shall first assume that our analysable f has a

(gradedly) convergent transseries rf and then examine in §5.3 what changes
for a general analysable f .

5.2 Graded examples.

Example 1. General f of exponentiality 1.

fpxq “ ex ` αpxq with αpxq “ op1q or Op1q (5.4)

63In the framework of transseries; in that of ultraseries, n may range through R.
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The direct normaliser f♦ admits a fast converging expansion

f♦
pxq “ x`

ÿ

1ďn

εnpxq (5.5)

with summands εn given by the induction

ε1pxq “ log
´

1` e´x αpxq
¯

(5.6)

εnpxq “ log
´ id ` ε1 ` ε2 ` . . . εn´1

id ` ε1 ` ε2 ` . . . εn´2

¯

˝ fpxq p@n ě 2q (5.7)

They are uniformly bounded by |εnpxq| ă Const{BxEnpxq on a real neigbour-
hood of `8 and their derivatives too admit similar bounds. The sum (5.4)
converges to a cohesive germ f♦ in the Denjoy class ωDEN .

Example 2. Special f of exponentiality 1.

fpxq :“ c pex ´ 1q pc ą 0q ; f♦
“ id `

ÿ

0ďn

εn ; ♦f “ id `
ÿ

0ďn

ηn (5.8)

Here, f and its reciprocal f ˝´1 being equally simple, the direct and reciprocal
normalisers have equally explicit expansions:

ε0pxq “ logpcq

ε1pxq “ log
´

1`
` logpcq ´ c

id ` c

˘

˝ fpxq
¯

εnpxq “ log
´

1`
` εn´1

id ` ε0 ` . . . εn´2

˘

˝ fpxq
¯

p@n ě 2q (5.9)

η0pxq “ ´ logpcq

η1pxq “ log
´

1`
`c´ logpcq

id

˘

˝ exppxq
¯

ηnpxq “ log
´

1`
` ηn´1

c` id ` η0 ` . . . ηn´2

˘

˝ exppxq
¯

p@n ě 2q (5.10)

Example 3. Special f of exponentiality 1.

fpxq :“ c x ex pc ą 0q ; f♦
“ id `

ÿ

0ďn

εn (5.11)

ε0pxq “ logpc xq

ε1pxq “ log
´

1`
` ε0

id

˘

˝ fpxq
¯

εnpxq “ log
´

1`
` εn´1

id ` ε0 ` . . . εn´2

˘

˝ fpxq
¯

p@n ě 2q (5.12)
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Example 4. Special f of exponentiality 1.

fpxq :“ c sinhpxq “
c

2
ex ´

c

2
e´x pc ą 0q ; f♦

“ id `
ÿ

0ďn

εn (5.13)

ε0pxq “ logpc{2q

ε1pxq “ log
´

1`
` logpc{2q

pc{2q
e´x ´ e´2x

˘

¯

εnpxq “ log
´

1`
` εn´1

id ` ε0 ` . . . εn´2

˘

˝ fpxq
¯

p@n ě 2q (5.14)

Example 5. General f of exponentiality 2.

fpxq “ ee
x

` αpxq with αpxq “ op1q or Op1q (5.15)

Here, the direct normaliser admits an expansion

f♦
pxq “ x`

ÿ

1ďn

ε2npxq (5.16)

with summands ε2n whose leading terms are small of exponentiality 2n for
α “ Op1q, and of exponentiality 2n` n0 for α small of exponentiality n0 :

ε2pxq “ log
´ logpfpxq

ex
˘

¯

(5.17)

ε2npxq “ log
´ logpid ` ε2 ` ε4 . . . ε2 pn´1qq

logpid ` ε2 ` ε4 . . . ε2 pn´2qq

¯

˝ fpxq p@n ě 2q (5.18)

Using the induction, these identities may also be re-written in a form better
suited for majorising the (exceedingly small) terms ε2n:

ε2pxq “ log
´

1` e´x log
`

1`
αpxq

eex
˘

¯

(5.19)

ε2npxq “ log
´

1`
log

`

1` ε2n´2

id`ε2`...ε2n´4

˘

logpid ` ε2 ` . . . ε2n´4q

¯

˝ fpxq p@n ě 3q (5.20)

Example 6. General f of exponentiality k ě 1.

fpxq “ Ekpxq ` αpxq with αpxq “ op1q or Op1q pk ě 1q (5.21)

Here, the direct normaliser admits an expansion

f♦
pxq “ x`

ÿ

1ďn

εk npxq (5.22)
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with summands εkn whose leading terms are small of exponentiality kn for
α “ Op1q, and of exponentiality kn` n0 for α small of exponentiality n0 :

εkpxq “ log
´Lk´1pfpxq

Ek´1pxq

˘

¯

(5.23)

εk npxq “ log
´Lk´1pid ` εk ` ε2 k . . . εpn´1q kq

Lk´1pid ` εk ` ε2 k . . . εpn´2q kq

¯

˝ fpxq p@n ě 2q (5.24)

with alternative, easier-to-majorise expressions analogous to (5.19), (5.20).

5.3 Resurgence and displays.

The mapping f ÞÑ pf♦, ♦fq, as just seen, creates no resurgence in case of
a resurgent-free f ; and when f is resurgent, it creates no new resurgence.
As usual, this is best seen at the level of the displays: the displays of the
normalisers coincide with the normalisers of the displays, and as such, are
directly obtainable from the following composition identities:

pDpl f♦
q “ pDpl fq♦ ùñ pDpl f♦

q ˝ pDpl fq “ Ek ˝ pDpl f♦
q (5.25)

pDpl ♦fq “ ♦
pDpl fq ùñ pDpl fq ˝ pDpl ♦fq “ pDpl ♦fq ˝ Ek (5.26)

Thus, Dpl f♦ may be calculated simply by replacing f♦ and εkn by their
respective displays in (5.22), (5.23), (5.24), and then formally expanding
everything in series of pseudovariables.

We may note in passing that there is no contradiction between the fact
that f♦, ♦f are generically non-analytic (merely cohesive) and the presence
of resurgence, for the resurgence in question always attaches to specific sub-
transseries of f♦, ♦f which, when separately re-summed, are analytic.

6 Universal asymptotics of ultra-slow germs.

6.1 The bialgebra of iso-differentiations.64

An iso-differential operator or iso-differentiation of iso-degree n is a non-
linear operator of the form:

Df :“
ÿ

1ďrďn

n1`...nr“n
ÿ

1ďni

an1,...,nr H
pn1q . . . Hpnrq with H “ logp1{f 1q (6.1)

:“
ÿ

1ďrďn

n1`...nr“n
ÿ

1ďni

bn1,...,nr

f p1`n1q

f 1
. . .

f p1`nrq

f 1
(6.2)

64This algebra was first introduced by us in 1991 (see [E5]), under a different label
(“post-homogeneous operators”) but already in connection with ultra-slow germs.
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These operators are uniquely adapted to the description of “universal asymp-
totics” since, as we shall see in a moment, they always produce the same
asymptotic series when made to act on ultra-slow germs.

Due to their double homogeneousness (– the iso part of their name alludes
to that –) they are essentially invariant under pre- and post-composition by
simulitudes S:

DpS ˝ fq ” Df ; Dpf ˝ Sq ” αn pSpzq “ αz ` βq (6.3)

They also generate an interesting bialgebra, since they possess
(i) a commutative product ˆ, distinct from the non-commutative operator
composition and additive with respect to the iso-degree:

pD1 ˆD2q f :“ pD1 fq.pD2 fq (6.4)

idegpD1 ˆD2q “ idegpD1q ` idegpD2q (6.5)

(ii) a non-commutative coproduct D ÞÑ σpDq:

σpDq :“
ÿ

degD“degD1`degD2

aD1,D2

D D1 bD2 “ D b 1` 1bD ` . . . (6.6)

that reflects the action of iso-differentiations on composition products:

Dpf2 ˝ f1q :“
ÿ

idegD“idegD1`idegD2

aD1,D2

D pD1f1q pD2f2q˝f1 . pf
1
1q
n2 pn2 :“ idegD2q (6.7)

(iii) an involution D ÞÑ rD:

Dg ” p rDfq ˝ g . pg1qn pn “ idegD , f ˝ g “ idq (6.8)

that reflects the action of iso-differentiations on functional inverses.
All three operations verify the predictable rules, namely:

ČD1 ˆD2 “ rD1 ˆ rD2 and σpD1 ˆD2q “ σpD1q ˆ σpD2q (6.9)

with

pDi bDjq ˆ pDi1 bDj1q ” pDi ˆDi1q b pDj ˆDj1q (6.10)

The resulting bialgebra ISO differs advantageously from the so-called Faa di
Bruno bialgebra (ˆ-multiplicatively generated by all powers Bn) in that the
latter lacks a “degree” with nice stability properties under both product and
co-product.65

65It differs even more from the co-commutative Leibniz bialgebra that simply reflects
the Leibniz rule.
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6.2 The first two main bases Dnt‚u and Dst‚u of ISO .

The operators Dtn1u : f ÞÑ f p1`n1q{f 1 clearly constitute a ˆ-multiplicative
basis of ISO , but their simplicity is deceptive.

The operators Dntn1u : f ÞÑ p´Bqn1 logp1{f 1q lead to far simpler formulae
for all operations: co-product, involution etc. They constitute the so-called
natural generators of ISO , to which there answers the additive basis:

Dntn1,...,nru :“ Dntn1u ˆ ¨ ¨ ¨ ˆDntnru : f ÞÑ
ź

i

´

p´Bq
ni. logp1{f 1q

¯

(6.11)

Here and throughout the sequel, the brackets tnu signal that the sequence
n inside is non ordered (defined only up to order). Ordered sequences n will
be within sharp brackets ă n ą or remain unbracketed.

We also require the symmetric generators Dstn1u, so-called because they
react to involution in the simplest way possible:

ĂDs
tn1u

“ ´Dstn1u ; ĂDs
tn1,...,nru

“ p´1qr Dstn1,...,nru (6.12)

Although the half-sums 1{2 pDntn1u´ĂDn
tn1u

q would also produce such a sym-
metric basis, the following definition (6.13) of Dst‚u in terms of Dnt‚u is to
be preferred, not least because it admits an almost identical inverse (6.14),
expressing Dnt‚u in terms of Dst‚u:

Dst1`n0u “ ∇Dstn0u ´
n0

2
Dnt1u ˆDstn0u with Dst1u “ Dnt1u (6.13)

Dnt1`n0u “ ∇˚ Dntn0u `
n0

2
Dst1u ˆDntn0u with Dnt1u “ Dst1u (6.14)

Here, ∇ and ∇˚ denote operators acting as derivations on ISO relative to
the natural product ˆ:

∇.Dntn1,...,nru :“
ÿ

j

Dntn1,...,1`nj ,...,nru p∇ :“ ´Bq (6.15)

∇˚.Dstn1,...,nru :“
ÿ

j

Dstn1,...,1`nj ,...,nru (6.16)

The equivalence of the identities (6.13), (6.14), as well as the “symmetry”
relations (6.12), follow from the formula:

ĂDn
t1`n0u

“ ∇ĂDn
tn0u

´ n0 Dnt1u ˆ ĂDn
tn0u

with ĂDn
t1u
“ ´Dnt1u (6.17)

which is itself a direct consequence of (6.8).
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The corresponding analytical expressions read

ĂDn
tn0u

”
ÿ

1ďr

n1ďn2...ďnr
ÿ

n0“n1`...`nr

p´1qr Hn0
n1,...,nr

Dntn1,...,nru (6.18)

Dstn0u ”
ÿ

1ďr

n1ďn2...ďnr
ÿ

n0“n1`...`nr

p´2q1´r Hn0
n1,...,nr

Dntn1,...,nru (6.19)

Dntn0u ”
ÿ

1ďr

n1ďn2...ďnr
ÿ

n0“n1`...`nr

p`2q1´r Hn0
n1,...,nr

Dstn1,...,nru (6.20)

with the same positive, integer-valued structure constantsHn0
n1,...,nr

in all three
formulae. We may remark in passing that if we set

Aptq :“ `t`
ÿ

1ďn

αn
tn`1

pn` 1q!
with αn0 :“

rě1
ÿ

n1`...nr“n0

Hn0
n1,...,nr

(6.21)

Bptq :“ ´t`
ÿ

1ďn

βn
tn`1

pn` 1q!
with βn0 :“

rě1
ÿ

n1`...nr“n0

p´1qr Hn0
n1,...,nr

(6.22)

the integers αn, βn possess tree-theoretical interpretations66 and the generat-
ing series A and B verify first order ODEs:

1´ A1ptq “ logp1´ Aptqq ; ´1´B1ptq “ logp1´Bptqq (6.23)

As for the co-product σ, the identities (6.6), (6.7) lead to the induction67

σpDnt1`n1uq “

!

∇b id ` id b∇`Dnt1u b Ideg
)

.σpDntn1uq (6.24)

σpDst1`n1uq “

!

∇˚ b id ` id b∇˚ `
1

2
Dst1u b Ideg ´

1

2
Ideg bDst1u

)

.σpDstn1uq

which in turn yields the analytical expression

σpDntn0uq “
ÿ

|n1|`n2“n0

Kn1,n2Dntn
1u
b Dtn2u (6.25)

σpDstn0uq “
ÿ

|n1||n2|“n0

Kn1,n2
´

Dstn
1u
bDstn

2u
´ĂDs

tn2u

bĂDs
tn1u

¯

(6.26)

“
ÿ

|n1||n2|“n0

Kn1,n2
´

Dstn
1u
bDstn

2u
´ p´1qrpn

1.n2qDstn
2u
bDstn

1u
¯

66Thus the integer αn´1 is the number of increasing trees with n nodes and cyclically
ordered branches. An increasing tree is a rooted tree whose n nodes carry distinct labels
ranging over t1, ..., nu, with the labels increasing along any branch starting from the root.

67with the notation
`

Op1bOp2

˘

.
`

D1bD2

˘

:“ pOp1 D1qb pOp2 D2q for any two linear
operators on ISO, and with Ideg denoting the scalar multiplication of any D in ISO by its
iso-degree idegpDq.
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For the symmetric basis, the right-hand side is (unsurprisingly) alternately
symmetric or antisymmetric. For the natural basis, it is linear in the second
argument,68 although semi-linearity, by itself, does not suffice to characterise
the natural basis.69

6.4 Universal asymptotics. The algebras Isolog Ă 7Isolog.

Let us consider the algebras70 7Isologk resp. 7Isolog spanned by the formal
series

è
xn1,...,nry
k pxq “

ÿ

1ďp1ăp2ă...ăprďk

pL1p1pxqq
n1 . . . pL1prpxqq

nr if r ď k (6.27)

“ 0 if r ą k (6.28)

èxn1,...,nrypxq “
ÿ

1ďp1ăp2ă...ăpră`8

pL1p1pxqq
n1 . . . pL1prpxqq

nr (6.29)

These series consist of monomials of the form:

λσ “ L1q1 . . . L
1
qr p1 ď q1 ď q2 ď ... ď qn , n “ n1 ` ...` nrq (6.30)

with an alternative indexation by transfinite ordinals

τ “ ωn´1q1 ` ω
n´2
pq2 ´ q1q ` ω

n´3
pq3 ´ q2q ` ¨ ¨ ¨ ` pqn ´ qn´1q (6.31)

that reflects the natural ordering of the monomials: the larger τ as an ordinal,
the faster the rate of decrease of λσ as a germ.

The significance of the series è
x‚y

k (resp. èx‚y ) comes from the fact that
the iso-operators, acting on finite iterates of the logarithm (resp. on trans-
finite iterates or more generally on ultra-slow germs) always produce germs

expressible as particular combinations of è
x‚y

k (resp. admitting asymptotic

series given by particular combinations of èx‚y). But whereas each è
x‚y

k con-
verges on a suitable real neighborhood of `8, the question does not even
arise for the èx‚y, since their summands cannot be simultaneously defined
on a common neighborhood of `8. This, however, does not prevent these
èx‚y from making perfect sense as well-ordered sums of λτ and as formal se-

ries, consisting each of an asymptotic part, starting with λτ1 , λτ2 etc, and a
(sometimes vanishing) transasymptotic part, starting with λτω , λτω`1 etc.

68it involves the single-indexed Dntn2u rather than the multi-indexed Dstn
2
u of (6.26).

69The pseudo-natural operators Dtn1u : f ÞÑ f1`n1{f 1, mentioned and then dismissed
at the beginning of this section, also possess right semi-linearity with respect to σ.

70relative to the ordinary product of formal series
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For reasons that shall soon become obvious, it is convenient to consider,
alongside the bases è

x‚y

k and èx‚y of 7Isologk and 7Isolog , two new bases à
x‚y

k

and àx‚y derived from the former through post-composition71 by the sym-
metral mould sa‚ and its composition inverse, the alternel mould cosa‚:

san1,...,nr :“
1

pn1 ` ...` nrqpn2 ` ...` nrq . . . nr
(6.32)

cosan1,...,nr :“ p´1qr´1 n1 (6.33)

sa‚ ˝ cosa‚ :“ I‚ (6.34)

The conversion formulae read:

à
x‚y

k pxq “ è
x‚y

k pxq ˝ sa‚ ; è
x‚y

k pxq “ à
x‚y

k pxq ˝ cosa‚ (6.35)

àx‚ypxq “ èx‚ypxq ˝ sa‚ ; èx‚ypxq “ àx‚ypxq ˝ cosa‚ (6.36)

The product rules :

èxn
1y . èxn

2y
“

ÿ

nPshepn1,n2q

èxny (6.37)

àxn
1y . àxn

2y
“

ÿ

nPshapn1,n2q

àxny (6.38)

which also hold for the k-truncated equivalents, simply mean that èx‚y, è
x‚y

k

(resp. àx‚y, à
x‚y

k ) are symmetrel (resp. symmetral).
The rules for post-composition by iterates of log are the same in both cases

è
xny
k1`k2

“
ÿ

n1.n2 “ n

è
xn1y

k1
. è

xn2y

k2
˝ Lk1 . pL

1
k1
q
|n2|

@ k1, k2 (6.39)

à
xny
k1`k2

“
ÿ

n1.n2 “ n

à
xn1y

k1
. à

xn2y

k2
˝ Lk1 . pL

1
k1
q
|n2|

@ k1, k2 (6.40)

but there is a significant difference in the rules for ordinary derivation72

B èxny “ ´
ÿ

n1njn
2“n

pnj`|n
2
|q

´

èxn
1,1,nj ,n

2y
` èxn

1,1`nj ,n
2y
¯

(6.41)

B àxny “ ´
ÿ

n1njn
2“n

pnj`|n
2
|q àxn

1,1,nj ,n
2y
´
ÿ

n1njn
2“n

nj àxn
1,1`nj ,n

2y (6.42)

71Mould composition operates likes this:
tC‚ “ A‚ ˝B‚u ô tCn “

ř

1ďs

ř

n1...ns
“ nA

|n1
|, ..., |ns

|Bn1

...Bns}.
The unit for mould composition is I‚ with In1 ” 1 @n1 and In1,...,nr ” 0 @r ­“ 1.

72B :“ d{dz
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Short proofs:
(i) The symmetrelity relation (6.37) is a direct consequence of the construc-
tion (6.27)-(6.29).
(ii) The symmetrality relation (6.38) results from the conversion formulae
(6.35), (6.36), the specific symmetries of sa‚, cosa‚, and the general symme-
try conversion formulae:

symmetrel‚ ˝ symmetral‚ “ symmetral‚ (6.43)

symmetral‚ ˝ alternel‚ “ symmetrel‚ (6.44)

These in turn make sense (are contradiction free) because mould composition
respects both symmetrelity and alternality, and because the composition
inverse of symmetral is alternel.
(iii) The composition rule (6.39) is a straightforward consequence of (6.7)
and (6.40) follows under (6.36).
(iv) The first derivation rule (6.41) results from repeated applications of the
identity

L2p
L1p
“ ´

ÿ

1ďqďp

L1q (6.45)

(v) The second derivation rule (6.42) results, inductively on index length,
from (6.41) applied to the second identity (6.35).

Remark 6.1. First reasons behind the choice of sa‚.

Post-composition in (6.36) by any symmetral mould other than sa‚ 73 would
produce symmetral series àx‚y and also ensure the composition rule (6.40),
but it would inevitably introduce non-integer coefficients in the derivation
rule (6.42). The disappearance of the denominators in (6.42) for sa‚ defined
as in (6.32) is a striking piece of luck, which by itself would be justification
enough for this particular choice. Other, even more compelling justifications
will emerge in the coming section.

Remark 6.2. Description of the sub-algebra Isolog of 7Isolog.

The algebra Isolog generated by the formal limits:

DL :“ lim
k´ą8

DLk pD P Isoq (6.46)

73such as the moulds varsan1,...,nr :“ 1{r! or varsan1,...,nr :“ sanr,...,n1 .
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is but a small sub-algebra of 7Isolog , since for any given isodegree n ě 2 :

dimpIsolog pnqq “ ppnq ă dimp7Isolog
pnq
q “ 2n´1 (6.47)

with ppnq denoting the number of partitions of n.

6.5 The bialgebra 7Iso and its two bases Dex‚y and Dax‚y.

The embedding Isolog Ă 7Isolog prompts us to similarly embed the bigebra
Iso in a larger 7Iso endowed with two bases Dex‚y, Dax‚y analogous to èx‚y,
àx‚y. Here again, the relation between the ‘natural’ system tDex‚yu and the

actually more practical system tDax‚yu is via the familiar moulds sa‚, cosa‚:

Dax‚y “ Dex‚y ˝ sa‚ (6.48)

Dex‚y “ Dax‚y ˝ cosa‚ (6.49)

To Dexny and Daxny we assign the iso-degree |n| :“ n1 ` ¨ ¨ ¨ ` nr.
The product rule is still symmetrelity resp. symmetrality :

Dexn
1y
ˆ Dexn

2y
“

ÿ

nPshepn1,n2q

Dexny (6.50)

Daxn
1y
ˆ Daxn

2y
“

ÿ

nPshapn1,n2q

Daxny (6.51)

but the rules for the co-product σ and the involution „ undergo a drastic
simplification:

σpDexnyq “
ÿ

n1.n2 “ n

Dexn
1y
b Dexn

2y (6.52)

σpDaxnyq “
ÿ

n1.n2 “ n

Daxn
1y
b Daxn

2y (6.53)

ĂDe
xny

“ p´1qrpnq
ÿ

1ďs

ÿ

n1...ns “ n

Dex|n
s|, . . . , |n2|, |n1|y (6.54)

ĂDa
xny

“ p´1qrpnq Daxñy with Čpn1, ..., nrq “ pnr, ..., n1q (6.55)

The action de B on 7Iso is patterned on its action (6.41),(6.42) on 7Isolog :

´BDexny “
ÿ

n1njn
2“n

pnj`|n
2
|q

´

Dexn
1,1,nj ,n

2y
` Dexn

1,1`nj ,n
2y
¯

(6.56)

´BDaxny “
ÿ

n1njn
2“n

pnj`|n
2
|qDaxn

1,1,nj ,n
2y
`
ÿ

n1njn
2“n

nj Daxn
1,1`nj ,n

2y (6.57)
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To actually embed Iso in 7Iso we must indicate a self-consistent way of cal-
culating the expansion praj pDq resp. prej pDq of any D P Iso in the basis
Dax‚y resp. Dex‚y. This is done by the induction formulae

praj pDnt1`n0uq “ ∇.praj pDntn0uq ; prej pDnt1`n0uq “ ∇.prej pDntn0uq (6.58)

praj pDst1`n0uq “ ∇˚.praj pDstn0uq ; prej pDst1`n0uq “ ∇˚.prej pDstn0uq (6.59)

supplemented by the initial conventions:

praj pDnt1uq :“ praj pDst1uq :“ Dax1y “ Dex1y “: prej pDst1uq “: prej pDnt1uq

In the above induction formulae, the derivation ∇ acts like ´B on the el-
ements of both bases, i.e. according to the formulae (6.41),(6.42), while
the derivation ∇˚ acts like ´B ` 1

2
Dax1yIdeg on the Dax‚y-basis and like ´B `

1
2
Dex1yIdeg on the Dex‚y-basis. In particular

∇˚Daxny “
ÿ

n1n2 “ n

|n2| ´ |n1|

2
Daxn

1,1,n2y
`

ÿ

n1,nj ,n
2 “ n

nj Daxn
1,1`nj ,n

2y

We may note that the operator Dax1y “ Dex1y “ Dnt1u and the opera-
tor Dax2y “ 1{2Dex2y “ ´Dnt2u ´ 1{2 Dnt1uDnt1u, which coincides with the
Schwarzian derivative74 , are true differential operators, but, starting from
n “ 3, none of the ‘hyperschwarzians’ Daxny “ 1{nDexny are.

6.6 Action of 7Iso on the group GăT,Eą.

In the next section, the embedding Iso Ă 7Iso is going to yield a new notion of
convexity, uniquely adapted to germ composition. For the moment, however,
the elements of 7Iso are only convenient symbols, meant in the first place to
simplify the expression of σ and „. The first step in turning these symbols
into genuine operators is to define, in a consistent manner, their action on
E, L and Tα:

Dexn1,...,nrypx` αq ” 0 (6.60)

Dexn1,...,nry pexpxq ” p´1qr @ r ě 1 (6.61)

Dexn1,...,nry p log x q ” 0 @ r ě 2 and Dexn1y p log x q ” x´n1 (6.62)

Daxn1,...,nry px` αq ” 0 (6.63)

Daxn1,...,nry pexpxq ” p´1qr sanr,...,n1 ”
p´1qr

n1 pn1`n2q...pn1` ...`nrq

Daxn1,...,nry p log x q ” x´pn1`...`nrq san1,...,nr ”
x´pn1̀ ... ǹrq

nr pnr´1`nrq...pn1` ...`nrq

74Indeed, Dax1yf ” ´ f2

f 1 and Dax2yf ” f3

f 1 ´
3
2 p

f2

f 1 q
2.
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and then to extend the action of 7Iso to the whole group GăT,Eą “ GăT,Lą
by using the composition rule derived from the co-product (6.50),(6.51):

Dexn1,...,nrypf2 ˝ f1q ”
ÿ

j

pDexn1,...,njy.f1q pDexnj`1,...,nry.f2q pf
1
1q
n1`...`nj (6.64)

Daxn1,...,nrypf2 ˝ f1q ”
ÿ

j

pDaxn1,...,njy.f1q pDaxnj`1,...,nry.f2q pf
1
1q
n1`...`nj (6.65)

This leads in particular to

Dexn1,...,nryσa,bpxq “ 0 (6.66)

Dexn1,...,nry πppxq “ p´1qr ppn1,...,r ´ pn2,...,rqx´n1,...,r (6.67)

Dexn1,...,nryθp,cpxq “ p´1qr ppn1,...,r ´ pn2,...,rqx´n1,...,r (6.68)

ˆ

´

1´
pn1

`

p p1` c x´pq
˘n1,...,r

`

j“r
ÿ

j“2

1´ pnj
`

p p1` c x´pq
˘nj,...,r

¯

with the usual definitions

σa,bpxq :“ a x` b , πppxq :“ xp , θp,cpxq :“ pc` xpq
1
p “ x p1`

c

p
x´p ` . . . q

However, the action so defined on GăT,Eą is not continuous, for the formal
topology of GăT,Eą. It does not even become continuous when restricted
to the subgroup consisting of power series, as one can easily show based on
(6.68).

So, to make sure that the action defined by the above rules is consistent,
we need to show that all identity relations in the group GăT,Eą are generated
by the identity relations between similitudes σa,b. Now, when the first draft
of this paper was completed, in January 2016, we knew of no such result.
But in the meantime a remarkable result by D. Panazzolo has appeared [P]
which, if we are not mistaken, implies exactly that.75 So, at least on the group
GăT,Eą, we have a consistent (albeit non-continuous) action, not just of the
iso-differatial operators, but also of the far more numerous iso-differential
symbols.

75Panazzolo actually establishes the existence of a normal form for elements of the
groupoid generated by the exponential and all complex similitudes z ÞÑ a z ` b. He has
to work in a groupoid in order to accommodate all complex similitudes with their distinct
fixed points, but since we are interested here only in the real similitudes and `8 as their
common fixed point, we may rephrase his results in the more familiar setting of groups.
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7 Iso-convexity and the extremal basis Dat‚u.

7.1 The positive cones 7ISO
`
Ă 7ISO .

The positive cone 7ISO
`
Ă 7ISO , consisting of all elements of the form

ř

cnDaxny with non-negative coefficients cn, is trivially stable under both
the product ˆ and the co-product σ, and this double stability automatically
carries over to the positive cone ISO` :“ 7ISO

`
X ISO consisting of dif-

ferential iso-operators. The real surprises begin when we start looking for
a natural basis of ISO`. Such a basis — the “extremal basis” — not only
exists, of unimpugnable naturalness, but it enjoys a whole string of improb-
able properties that find their reflection in remarkably explicit formulae —
none of which would survive if we tinkered ever so slightly with the defini-
tion of ISO`, for instance by replacing sa‚ in (6.48) by any other symmetral,
positive valued mould.

7.2 The extremal basis. Main statements.

For any non-ordered sequence of the form

tnu “ tn1, n2, . . . , nru “ tm
pr1q
1 ,m

pr2q
2 , . . . ,mprsq

s u (7.1)

with n1 ď n2 ď ¨ ¨ ¨ ď nr and m1 ă m2 ă ¨ ¨ ¨ ă ms (7.2)

the multiplicity correction µtnu is defined as

µtnu “
ź

1ďjďs

1

p1` rjq!
(7.3)

and we denote
Ñ
n resp.

Ð
n the ordered sequence obtained by arranging the

elements of tnu in increasing resp. decreasing order. If n is an ordered
sequence, rn denotes the same sequence with its order reversed. Lastly, for
any t P R we set:

ptq` :“ |t| if t ą 0 and ptq` :“ 0 if t ď 0 (7.4)

ptq´ :“ |t| if t ă 0 and ptq´ :“ 0 if t ě 0 (7.5)

Alongside Datnu and Daxny we also require the variants:

Datn1,...,nru :“
Datn1,...,nru

ś

p1`njq!
; Daxn1,...,nry :“

Daxn1,...,nry

ś

nj p1`njq
(7.6)
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Proposition 7.1 (The extremal basis.)
For each n1 ě 1 there exists a unique iso-operator Datn1u “ pn1`1q! Datn1u in
the positive cone Da` Ă Da` verifying the normalisation condition

Datn1u “ pn1 ´ 1q!Daxn1y ` . . . ô Datn1u “ Daxn1y ` . . . (7.7)

and characterised by either of the following properties:
(i) among all iso-operators so normalised, Datn1u and Datn1u are least elements
in the cone Da`

(ii) the expression of Datn1u resp. Datn1u in the basis Daxny resp. Daxny involves
no weakly decreasing sequences n “ pn1, ..., nrq of length r ě 2.
The system Dat‚u or Dat‚u constitutes the so-called extremal basis of ISO.

Proposition 7.2 (Analytical properties of the extremal basis.)
The elements of the positive basis are given by Dat1u “ 2 Dat1u :“ Dnt1u and
by an induction rule

Datnu “ ´BDatn´1u
´

ÿ

|n|“n

katnu µtnu Datnu (7.8)

p1`nqDatnu “ ´BDatn´1u
´

ÿ

|n|“n

katnu µtnu Datnu (7.9)

involving non-negative coefficients katnu of simple multiplicative structure:

katnu“pr1´1q p´1`n1q
´
p´1`n1´n2q

´
ź

2ďjďr

p´1`n1`. . .`nj´1´njq
` (7.10)

Here r1 denotes the multiplicity of the smallest element in the non-ordered
sequence n. As a consequence, katnu is ą 0 if and only if

n1 “ n2 ě 2 and n1 ` n2 ` ¨ ¨ ¨ ` nj´1 ě 2` nj (7.11)

The expansion of the Datnu,Datnu in the Daxny basis:

Datnu “
ÿ

1ďr

ÿ

n“n1`...`nr

tan1,...,nr Daxn1,...,nry (7.12)

Datnu “
ÿ

1ďr

ÿ

n“n1`...`nr

tan1,...,nr
Daxn1,...,nry (7.13)

as well as the expression of the involution „ : Datnu ÞÑ ĂDa
tnu

ĂDa
tnu
“ fatnu µtnu Datnu (7.14)

ĂDa
tnu
“ fatnu µtnu Datnu pwith fatnu “ p´1qrpnqtaÑ

n
q (7.15)

62



or again the formula for the co-product76 σ : Datnu ÞÑ σpDatnuq

σpDatnuq “
ÿ

|p|`|q|“n

hatpu,tqu µ
tpu Datpu b µtqu Datqu (7.16)

σpDatnuq “
ÿ

|p|`|q|“n

hatpu,tqu µ
tpu Datpu b µtqu Datqu pwith hatpu,tqu “ taÐ

p ,
Ð
q
q

also involve non-negative integers77 tan, fatnu, hatpu,tqu, but the only structure
constants with a transparent factorization are those coefficients hatpu,tqu for
which one of the sequences tpu “ tp1 ď p2 ď ...u or tqu “ tq1 ď q2 ď ...u is
of length one:

hatpu,tq1u “ pq1´p1q
`

ź

2ďjďr

pq1`p1`p2`...`pj́ 1´pjq
` (7.17)

hatp1u,tqu“pp1´q1q
´

ź

2ďjďr

pp1`q1`q2`...`qj́ 1´qjq
` (7.18)

Proposition 7.3 (Expression of the general structure constants.)
Due to the normalisation rule, tan1

“ 1. For r ě 2 there are two logically
consistent ways of calculating tan. One is the rightward induction

tan :“
ÿ

1ďsăr

ÿ

tn1...ns.nru“tnu

hat|n1|,...,|ns|u,tnru tan1 . . . tans tanr (7.19)

which expresses tan as a superposition of the special coefficients hatp1,...,pru,tq1u
as factorised in (7.17). The other is the leftward induction

tan “
ÿ

1ďsăr

ÿ

tn1.n1...nsu“tnu

hatn1u,t|n1|,...,|ns|u tan1
tan1 . . . tans (7.20)

which expresses tan as a superposition of the special coefficients hatp1,...,pru,tq1u
as factorised in (7.18).

The coefficients tan in turn yield direct expressions for the general struc-
ture constants hatpu,tqu and fatnu :

hatpu,tqu “ taÐ
p ,
Ð
q

(7.21)

fatnu “ p´1qrpnq taÑ
n

(7.22)

with ordered sequences
Ð
p,

Ð
q made up of the elements of tpu, tqu arranged

in decreasing order.

76Recall that σ is co-associative, but not co-commutative
77except fatnu whose sign is that of p´1qrpnq
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7.3 Complements.

Remark 7.1 Multiple co-product.

The preceding Propositions amount to the calculation sequence:

special hat‚u,t‚u ùñ general ta‚ ùñ general hat‚u,t‚u (7.23)

In fact, the general ta‚ also yield the structure coefficients

hatn1u,tn2u,...,tnsu “ taÐ
n1,

Ð

n2,...,
Ð

ns
(7.24)

attached to the multiple co-product

σs´1
pDatnuq “

ÿ

|n1|`...|ns|“n

hatn1u,tn2u,...,tnsu µ
n1

Datn
1u . . . µn

s

Datn
su (7.25)

Remark 7.2 Inductive calculation of the structure constants.

Let us examine how the induction scheme (7.23) works up to r “ 4:

tan1
“ 1 p@ n1q

tan1,n2
“ hatn1u,tn2u

tan1
tan2

“ pn2´n1q
`
“ pn1´n2q

´

tan1,n2,n3
“ } tan1,n2,n3

“

`hatn1,n2u,tn3u
tan1

tan2
tan3

} `hatn1u,tn2,n3u
tan1

tan2
tan3

`hatn1̀ n2u,tn3u
tan1,n2

tan3
} `hatn1u,tn2̀ n3u

tan1
tan2,n3

tan1,n2,n3,n4
“ } tan1,n2,n3,n4

“

`hatn1,n2,n3u,tn4u
tan1

tan2
tan3

tan4
} `hatn1u,tn2,n3,n4u

tan1
tan2

tan3
tan4

`hatn1̀ n2,n3u,tn4u
tan1,n2

tan3
tan4

} `hatn1u,tn2̀ n3,n4u
tan1

tan2,n3
tan4

`hatn1̀ n3,n2u,tn4u
tan1,n3

tan2
tan4

} `hatn1u,tn2̀ n4,n3u
tan1

tan2,n4
tan3

`hatn2̀ n3,n1u,tn4u
tan2,n3

tan1
tan4

} `hatn1u,tn3̀ n4,n2u
tan1

tan3,n4
tan2

`hatn1̀ n2̀ n3u,tn4u
tan1,n2,n3

tan4
} `hatn1u,tn2̀ n3̀ n4u

tan1
tan2,n3,n4

In general, the vanishing terms predominate in these sums.
Exercise: write down, then directly check, the compatibility relations for

the right- and leftward induction.
There also exists a more general induction that covers both the right- and

leftward inductions as special cases. It goes like this:

tap.q “
1ďs1ďr1
ÿ

p1...ps1 “ p

1ďs2ďr2
ÿ

q1...qs1 “ q

hat|p1|,...,|ps1 |u,t|q1|,...,|qs2 |u

i“s1
ź

i“1

tapi
j“s2
ź

j“1

taqj (7.26)
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Remark 7.3 Recurrent patterns in the structure constants.

Let us introduce the auxiliary expressions:

θω0,ω1,...,ωr :“pω0 ´ ω1qpω0 ` ω1 ´ ω2q . . . pω0 ` ...` ωr´1 ´ ωrq (7.27)

θp ˚
ω0
q,p ε1

ω1
q,...,p εr

ωr
q :“pω0 ´ ω1q

ε1pω0 ` ω1 ´ ω2q
ε2 . . . pω0 ` ...` ωr´1 ´ ωrq

εr (7.28)

with ωj P R and t˘ defined as in (7.4)-(7.5). The plain coefficients (7.27)
have an obvious Lie algebra interpretation:

θω0,ω1,...,ωr e
pω0`¨¨¨`ωrq.z B ” reωr.z B, . . . reω2.z B, reω1.z B, eω0.z Bss...s (7.29)

but it takes the sign-modified coefficients (7.28) to express the basic structure
constants of the bialgebras ISO Ă 7ISO . The formulae read:

tan1,n2,...,nr
” 0 if nr “ 1 or n1 ě n2 ¨ ¨ ¨ ě nr

tan1,n2,...,nr
” θp ˚

nr
q,p ´

nr´1
q,p `

...
q,p `

n2
q,...,p `

n1
q if n1` . . . nr´1 ď nr

hatp1,...,pru,tq1u ” θp ˚
q1
q,p `

p1
q,p `

p2
q,p `

p3
q,...,p `

pr
q pp1 ď p2 ¨ ¨ ¨ ď prq

hatp1u,tq1,...,qru ” θp ˚
p1
q,p ´

q1
q,p `

q2
q,p `

q3
q,...,p `

qr
q pq1 ď q2 ¨ ¨ ¨ ď qrq

katn1,n2,...,nru
” pr1´1q θp ˚

´1
q,p ´

n1
q,p ´

n2
q,p `

n3
q,...,p `

nr
q pn1 ď n2 ¨ ¨ ¨ ď nrq

These are in effect the only fully factorable structure constants, but from
them all others can be recovered under the induction rules (7.19),(7.20),(7.21).
Regarding the first identity, we may note that, due to the condition n1`

. . . nr´1 ď nr, the summands in the expansion (7.19) of tan (“rightward in-
duction”) have non-vanishing hat‚u,tnru-factors and, depending on the relative
sizes of n1, . . . , nr´1, varying mixtures of vanishing or non-vanishing “earlier”
ta‚-factors. Remarkably, this composite make-up does not prevent the global
tan (i.e. the one on the left-hand side of (7.19)) from admitting a full and
uniform (i.e. case independent) factorisation.

Remark 7.4 Relations between ta‚ and fat‚u.

The involutive nature of the transform Da ÞÑ ĂDa has for analytical expression
the following 78 relation (7.30):

It‚u “ fat‚u ˝ fat‚u (7.30)

p´1qrp‚q ta
r‚ “ fat‚u ˝ ta ‚ (7.31)

78with Itn1u :“ 1 and Itn1,...,nru :“ 0 if r ě 2.
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The relation (7.31), on the other hand, reflects the expansion (7.13) of Dat‚u

in the basis Dax‚y, combined with the expression Dax‚y ÞÑ p´1qrp‚qDax r‚ y of the
involution „ in that basis (see (6.55)).

Here, ˝ denotes as usual the mould (or comould) composition,79 but since
in both cases the first composition factor, namely fat‚u, carries non ordered
sequences t‚u, the sums on the right-hand side of (7.30) or (7.31) should
extend to all partitions80 of t‚u. Thus, for r “ 3, the identities (7.30) and
(7.31) read:

0 “ } p´1q3 tan3,n2,n1
“

`fatn1`n2`n3u
fatn1,n2,n3u

} `fatn1`n2`n3u
tan1,n2,n3

`fatn1,n2`n3u
fatn1u

fatn2,n3u
} `fatn1,n2`n3u

tan1
tan2,n3

`fatn2,n1`n3u
fatn2u

fatn1,n3u
} `fatn2,n1`n3u

tan2
tan1,n3

`fatn3,n1`n2u
fatn3u

fatn1,n2u
} `fatn3,n1`n2u

tan3
tan1,n2

`fatn1,n2,n3u
fatn1u

fatn2u
fatn3u

} `fatn1,n2,n3u
tan1

tan2
tan3

One may note the absence of the multiplicity correction µ‚ in (7.30) and
(7.31). Moreover, for n weakly decreasing, all partial tani factors on the right-
hand side of (7.31) also carry weakly decreasing sequences ni and therefore
vanish unless rpniq “ 1. That leaves only a single non-vanishing summand,
namely fatn1,...,nru

tan1
. . . tanr , so that in this case (7.31) reduces to (7.22).

Remark 7.5 Mould inversion and sign change.

The relations (7.30), (7.31) are vaguely evocative of other relations verified by
an important pair psofo‚,musofo‚q of mutually inverse, symmetrel 81 moulds
that, just like fat‚u, ta ‚, are also ‘product- and sign-based’ :

sofox1,...,xr :“p´1qr
ź

1ďjďr

σ̀ px1 ` ¨ ¨ ¨ ` xjq (7.32)

musofox1,...,xr :“p´1qr´1 σ́ px1` ¨ ¨ ¨ `xrq
ź

2ďjďr

σ̀ pxj ` ¨ ¨ ¨ ` xrq (7.33)

1‚ :“ sofo‚ ˆmusofo‚ (7.34)

with σ̆ ptq :“ 1 if ˘ t ą 0 and σ̆ ptq :“ 0 if ˘ t ă 0.

79see §6.3.
80The number of all partitions of a set of r labelled elements is known as the Bell number.

The first Bell numbers are 1, 2, 5, 15, 52, 203 etc. Ordinary mould composition involves
fewer summand, namely 2r´1.

81Symmetrelity holds only if we regard the moulds as distributions on R. If we view
them as defined on Z, symmetrelity fails on certain negligible subsets xi ` ...` xj “ 0.
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Remark 7.6 Amplification-specialisation.

The very special role played by the indices ni ” 1 in many formulae82 makes
it tempting to look whether we might not gain in simplicity by replacing
the Dat‚u basis of 7ISO by the basis Daax‚y resulting from the amplification-
specialisation transform

ampDa
x
a1
n1

...,...

...,...
ar
nr
y
“

ÿ

2ďnj , 0ďdj

Dax1
pd1q,n1,...,1pdrq,nry

ź

1ďjďr

paj ` ...` arq
dj (7.35)

“
ÿ

2ďnj , 0ďmj

Daa
x
m1
n1

...,...

...,...
mr
nr
y

ź

1ďjďr

pajq
mj (7.36)

which turns the symmetral Dax‚y into a symmetral Daax‚y via the equally
symmetral ampDax‚y. On closer examination, however, it turns out that we
would gain nothing from switching to Daax‚y .

Conclusion.

All the lemmas in this and the preceding section can be established, roughly
in the order in which they are enunciated, by resorting to the standard meth-
ods of mould calculus (conservation/transformation of the main symmetry
types etc) and, in nearly all cases, by reasoning inductively on the length r of
the mould components. The main surprise, once again, resides in the highly
improbable properties of the extremal basis, such as the prevalence of integer
structure coefficients where one would expect rational ones. Regarding appli-
cations, those pertaining to the universal asymptotics of slow-growing germs
are summarized in §6 and treated at greater length in [E5], chapter 7, pp
287-303, though with slightly different notations.83 As for the vast subject of
iso-convex functions and iso-differential equations (as an alternative means
of enlarging our composition groups), we leave it open for now.

8 Up to ωω : the ultra-exponential scale.

This section is devoted to constructing the minimal systems or ‘towers’ of
fast/slow growing germs necessary for compositional closure84 – notably for
the conjugation of germs of unequal exponentiality and for the continuous
iteration of germs of non-zero exponentiality.

82for instance in the derivation rule (6.57) or in the induction rule (7.11) or again in the
fact that tan1,...,nr

” 0 whenever nr “ 1.
83with Post instead of Iso, post-homogeneous instead of iso-differential etc.
84which of course does not mean closure under composition, but closure under the solving

of all (meaningful) composition equations.
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8.1 Towers of ultraexponentials and ultralogarithms.

A tower L (resp. E) of ultralogarithms (resp. ultraexponentials) is a sequence
of slow-growing (resp. fast-growing) germs

L :“
`

L1,L2,L3, . . .
˘

(8.1)

E :“
`

E1, E2, E3, . . .
˘

with Ln ˝ En ” id (8.2)

such that

L1 ˝ E ˝ E1 ” T ; L1 ˝ L ˝ E1 ” T ˝p´1q (8.3)

Lr ˝ Er´1 ˝ Er ” T ; Lr ˝ Lr´1 ˝ Er ” T ˝p´1q
p@r ě 2q (8.4)

The induction automatically implies that each En (resp. Ln) grows at a
faster (resp. slower) rate than any finite iterates of En´1 (resp. Ln´1).

To alleviate notations, we often write:

En,k :“ E˝ kn ; Ln,k :“ L˝ kn ; En,´k :“ Ln,k p@n P N , k P Zq (8.5)

8.2 Central indeterminacy. Growth types.

The functional equations (8.3),(8.4) determine each succesive pair tEn,Lnu in
terms of the preceding one, but only up to pre-compostion of Ln by a smooth
1-periodic germ P (i.e. such that T ˝ P “ P ˝ T ) and post-composition of
En by P ˝p´1q.

To be able to look on all these competing determinations as one single
object, we quotient the semi-group of smooth, slow germs (i.e. germs of

exponentiality k in ´N˚) by the equivalence relations
piq
„:

f1
piq
„ f2 ðñ D c1, c2 s.t. 0 ă c1 ă

f
piq
1 pxq

f
piq
2 pxq

ă c2 ă `8 px " 1q (8.6)

Each
piq
„ may seem to be stronger than

pi´1q
„ , but in fact only

p1q
„ is stronger

than
p0q
„. From i “ 1 onwards, all

piq
„ are of equal strength. That readily

follows from the universal asymptotics of slow functions (see §6).

For slow germs the following implications hold:

f1
piq
„ f2 , g1

piq
„ g2 ùñ f1 ˝ g1

piq
„ f2 ˝ g2 (8.7)

f1
piq
„ f2 ùñ f˚1

piq
„ f˚2 (8.8)

The first implication means that the composition ˝ carries over to the classes
rf si of slow germs. The second implication actually means two things: first,
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that the class rf˚si of the iterator f˚ does not depend on the particular
solution of the equation f˚ ˝ f “ ´1 ` f˚ that we select; and second, that
it depends only on the class rf si of the original germ. Thus, the operation
f ÞÑ f˚ carries over to the classes rf si. These classes are known as growth
types of order i.

By reciprocation, the semi-group of slow growth types induces a semi-
group of fast growth types, but the latter notion is entirely derivative on the

former. In particular, even for equivalent fast germs f1
i
„ f2 and g1

i
„ g2,

the ratios pf1 ˝ g1q
piq{pf2 ˝ g2q

piq and pf˚1 q
piq{pf˚2 q

piq often vary too wildly to
remain within fixed bounds, even for i “ 0.

8.3 Geometric incarnation of the semi-ring r1, ωωr.

For any growth type t with successive iterators t˚, t˚˚... and for any trans-
finite ordinal α ă ωω of expression:

α “ ωr nr ` ω
r´1 nr´1 ` ¨ ¨ ¨ ` ω1 n1 ` n0 pni P Nq (8.9)

we define the transfinite iterate tα by

tα :“ ptqn0 ˝ pt˚qn1 ˝ pt˚˚qn2 ˝ . . . pt˚¨¨¨˚qnr porder inversionq (8.10)

This actually defines on the whole semi-group of growth types a tranfinite
iteration that obeys the rules

ptαq ˝ ptβq “ tpβ`αq porder inversionq p@ α, β ă ωωq (8.11)

ptαqβ “ tαβ pno order inversionq p@ α, β ă ωωq (8.12)

which (up to the order reversal in (8.10)-(8.11)) exactly reproduce the non-
commutative arithmetics of the semi-ring r1, ωωr

This transfinite iteration carries over from the semi-group of slow to that
of fast germs85, with restoration of the ‘correct’ order in (8.10) and (8.11)
and preservation of the already ‘correct’ order in (8.12). But these slight for-
mal advantages count for little when weighed against the entirely derivative
character of the classes of fast germs.86

85but of course not to the total group consisting of slow, moderate, or fast germs.
86In other words, the rules for fast germs read:

tα :“ pt˚¨¨¨˚qnr ˝ . . . pt˚˚qn2 ˝ pt˚qn1 ˝ ptqn0

ptαq ˝ ptβq “ tpα`βq p@ α, β ă ωωq

ptαq
β
“ tαβ p@ α, β ă ωωq
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8.4 Some useful notations. Iterators and connectors.

This subsection is mainly for settling notations. Given a ultraexponential En
and a germ f that resembles En in the sense that:

stat.lim.kÑ`8L˝kn ˝ f ˝ E˝kn “ En pðñ expoEn f “ 1q

we produce a ‘f -based’ ultraexponential En`1 of the next order by suitably
combining the normalisers of f at its fixed points `8 and x0 (which is often
taken to be 0). Here are the definitions:
Normalisation at x “ `8:

f˚ ˝ f “ T ˝ f˚ ; f ˝ ˚f “ ˚f ˝ T pexpo f “ 0q (8.13)

f♦
˝ f “ E ˝ f♦ ; f ˝ ♦f “ ♦f ˝ E pexpo f “ 1q (8.14)

f♦n ˝ f “ En ˝ f♦n ; f ˝ ♦nf “ ♦nf ˝ En pexpoEn f “ 1q (8.15)

id “
˚f ˝ f˚ “

♦f ˝ f♦
“

♦nf ˝ f♦n (8.16)

Normalisation at x “ 0`:

f ; ˝ f “ δc ˝ f
; ; f ˝ ;f “ ;f ˝ δc

`

c :“ f 1p0q ą 1
˘

(8.17)

f : ˝ f “ T ˝ f : ; f ˝ :f “ :f ˝ T
`

f :pxq :“
logpf ;pxqq

log c

˘

(8.18)

id “
:f ˝ f : “

;f ˝ f ; “
♦f ˝ f♦ (8.19)

Normalisation at x “ x`0 :

f ; ˝ f “ δc,x0 ˝ f
; ; f ˝ ;f “ ;f ˝ δc,x0

`

δc,x0 :“ Tx0 ˝ δc ˝ T´x0q (8.20)

f : ˝ f “ T ˝ f : ; f ˝ :f “ :f ˝ T
`

f :pxq :“
logpf ;pxq ´ x0q

log c

˘

(8.21)

Notion of f -based ultraexponential:

E rf s1 :“ f : ˝ ♦f , Lrf s1 :“ f♦
˝
:f (8.22)

E ˝ E rf s1 “ E rf s1 ˝ T , Lrf s1 ˝ L “ T ˝p´1q
˝ Lrf s1 (8.23)

E rf sn`1 :“ f : ˝ ♦nf , Lrf sn`1 :“ f♦n ˝
:f (8.24)

En ˝ E rf sn`1 “ E
rf s
n`1 ˝ T , Lrf sn`1 ˝ Ln “ T ˝p´1q

˝ Lrf sn`1 (8.25)

Periodic connectors: They are periodic mappings that measure the closeness
of two fi-based ultra-exponentials. Here is the definiton for n=1:

P
rf1,f2s
1 :“ f :1 ˝

♦f1 ˝ f
♦
2 ˝

:f2 (8.26)

:“ δ´1
γ1
˝ L ˝ f ;1 ˝

♦f1 ˝ f
♦
2 ˝

;f2 ˝ E ˝ δγ2 (8.27)
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E rf1s1 ˝ P
rf1,f2s
1 “ E rf2s1 with P

rf1,f2s
1 ˝ T “ T ˝ P

rf1,f2s
1 (8.28)

For n ą 1 this becomes:

P
rf1,f2s
n`1 :“ f :1 ˝

♦nf1 ˝ f
♦n
2 ˝

:f2 (8.29)

:“ δ´1
γ1
˝ Ln ˝ f ;1 ˝ ♦nf1 ˝ f

♦n
2 ˝

;f2 ˝ En ˝ δγ2 (8.30)

E rf1sn`1 ˝ P
rf1,f2s
n`1 “ E rf2sn`1 with P

rf1,f2s
n`1 ˝ T “ T ˝ P

rf1,f2s
n`1 (8.31)

8.5 Construction of analytic ultraexponential towers.

We start with the ultraexponential Epre1 :“ Ekneser1 constructed by H. Kneser
(see §8.7 below) and choose a1 large enough for the shifted ultraexponential
E1 :“ Epre1 ˝ T´a1 to have a largest fixed point x1. We then take the local
iterator E:1 relative to that fixed point, as in (8.18), call the resulting germ
Epre2 , and repeat the process with a2 large enough, leading to E2. And so on:

Epre
1 :“ Ekneser

1 Ñ E1 :“ Epre
1 ˝ T´a1 Ñ

Epre
2 :“ E:1 Ñ E2 :“ Epre

2 ˝ T´a2 Ñ

Epre
3 :“ E:2 Ñ E3 :“ Epre

3 ˝ T´a3 Ñ . . . . . . . . .

Instead of postcomposing by simple shifts, we may use analytic, 1-periodic
mappings Pr with large built-in shifts87, leading to the modified construction:

Epre
1 :“ Ekneser

1 Ñ E1 :“ Epre
1 ˝ P˝p´1q

1 Ñ

Epre
2 :“ E:1 Ñ E2 :“ Epre

2 ˝ P˝p´1q
2 Ñ

Epre
3 :“ E:2 Ñ E3 :“ Epre

3 ˝ P˝p´1q
3 Ñ . . . . . . . . .

8.6 Action of the periodic towers on ultraexponential
towers.

Lemma (Conjugation averages).
For L slow and A,B identity-tangent (at infinity), the equation

A ˝ L ˝B˝p´1q
“ H ˝ L ˝H˝p´1q (8.32)

admits a unique identity-tangent solution H “ JugavLpA,Bq with

JugavLpA,Bq :“ lim
nÑ`8

A˝L˝B˝p´1q
˝E ˝

`

L˝A˝L˝B˝p´1q
˝E

˘˝n
˝En (8.33)

87i.e. such that supx|Prpxq ´ x| “ ar " 1
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Since JugavLpA,Aq ” A, we may view JugavLpA,Bq as the ‘conjugation
average’ of A,B respective to L.
Proof: Since A ˝ L ˝ B˝p´1q “ A ˝ L with A “ A ˝ L ˝ B˝p´1q ˝ E „ id , it
suffices to show that the equation

A ˝ L “ H ˝ L ˝H˝p´1q (8.34)

admits a unique identity-tangent solution H “ JugavLpA, idq with

JugavLpA, idq :“ lim
nÑ`8

A
`

L ˝A
˘˝n
˝ En (8.35)

If the limit exists in (8.33), it clearly verifies (8.32): replace H and H˝p´1q in
(8.32) by their expression (8.33) with n changed to m`1 and m respectively,
and go to the limit. Moreover, if H :“ JugavLpA, idq is „ id , no other
solution of (8.32) can be identity-tangent. Indeed, we get the general solution
Hgen by post-composing the particular solution H by real iterates of L:

Hgen “ H ˝ L˝t :“ H ˝ E˚ ˝ P ˝p´1q
˝ T ˝p´tq ˝ P ˝ L˚

For t ­“ 0, Hgen fails to be „ id , and for t “ 0, the right-hand side above
reduces to H irrespective of the choice of the periodic mapping P .

H can be formally expanded as

H :“ id `
ÿ

0ďn

an with (8.36)

id ` a0 “ A and (8.37)

id ` a0 ` . . . an “ A ˝ pL ˝Aq˝n ˝ E˝n (8.38)

“ A˝pL˝A˝Eq˝pL˝2˝A˝E˝2q˝. . .pL˝n˝A˝E˝nq

But for any n, any ε and any x large enough (x ě Constpεq) we have

p1´ εq
a0 ˝ E˝npxq
BxE˝npxq

ě
ˇ

ˇpL˝n˝A˝E˝nqpxq ´ x| ě p1` εq a0 ˝ E˝npxq
BxE˝npxq

(8.39)

with
a0 ˝ E˝npxq
BxE˝npxq

ă
1

BxE˝pn´1qpxq
ă

1

E˝pn´1qpxq
(8.40)

So the composition product in (8.33) clearly converges to an identity-tangent
germ.

Let us also mention, for future use, the infinitesimal variant of (8.32)-
(8.36), valid for any pair papxq “ opxq, bpxq “ opxqq:

jugavLpa, bq :“ lim
εÑ0

1

ε
JugavLpid ` ε a, id ` ε bq (8.41)

“
ÿ

0ďn

a ˝ E˝n

Bx E˝n
´

ÿ

1ďn

b ˝ E˝n

Bx E˝n
(8.42)
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Here again, the summation rules ensure that jugavLpa, aq ” a.

Proposition.(The general ultralogarithmic tower.)
Let towers P of periodic self-mappings of R

P :“
`

P1, P2, P3, . . . q with Pr ˝ T ” T ˝ Pr (8.43)

act on ultraexponential or, what amounts to the same, on ultralogarithmic
towers:

HP : L “
`

L1,L2,L3, . . .
˘

ÞÑ L “
`

L1,L2,L3, . . .
˘

(8.44)

via the following induction

L1 :“ H1 ˝ L1 ˝H
˝p´1q
1 with H1 :“ JugavL1

pP1, idq (8.45)

Lr :“ Hr ˝ Lr ˝H˝p´1q
r with Hr :“ JugavLrpPr, Hr´1q p@r ě 2q (8.46)

or, more tellingly:

L1 :“ P1 ˝ L1 “: H1 ˝ L1 ˝H
˝p´1q
1 (8.47)

Lr :“ Pr ˝ Lr ˝H´1
r´1 “: Hr ˝ Lr ˝H˝p´1q

r p@r ě 2q (8.48)

The sequence L so defined is actually a new ultralogarithmic tower, and
conversely, any ultralogarithmic tower L is of the form HPpLq for some
periodic germ tower P .

The operations HP are stable under composition, and obey the rule

HP3,2 ˝HP2,1 ” HP3,2 ˝P2,1 (8.49)

with the second “˝2 denoting the component-wise composition of periodic
germ towers:

tP3,1
“ P3,2

˝P2,1
u ðñ tP 3,1

r “ P 3,2
r ˝ P 2,1

r , @ru (8.50)

If Pr “ id ` ε pr with prpx` 1q ” prpxq, then Hr “ id ` ε hr ` opεq with:

h1 “
ÿ

0ďn1

p1 ˝ E˝n1
1

Bx E˝n1
1

(8.51)

h2 “
ÿ

0ďn2

p2 ˝ E˝n2
2

Bx E˝n2
2

´

1ďn2
ÿ

0ďn1

p1 ˝ E˝n1
1 ˝ E˝n2

2

BxpE˝n1
1 ˝ E˝n2

2 q
(8.52)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hr “
ÿ

1ďsďr

p´1qr´s
1ďns`1, ..., 1ďnr

ÿ

0ďns

ps ˝ E˝nss ˝ E˝ns`1

s`1 ˝ . . . E˝nrr

BxpE˝nss ˝ E˝ns`1

s`1 ˝ . . . E˝nrr q
(8.53)
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Remark 1: Up to ultraexponentially small, non-periodic perturbations, each
Hr coincides with the periodic mapping Pr. This is particularly apparent at
the infinitesimal level: in view of the summation rules in (8.53), these rela-
tions reduce to hr “ pr`small , with pr periodic and small ultraexponentially
small.

Remark 2: The operator HP associated with a periodic tower respects
the cohesiveness of ultraexponential towers, but usually (always?) destroys
their analyticity. Conversely, the Witt tower connecting two analytic ultra-
exponential towers is usually (always?) non-analytic, but merely cohesive of
Denjoy class ωDEN .

Remark 3: Appearances to the contrary, the periodic mappings Pr used in
§8.5 to construct analytic ultraexponential towers have nothing to do with
the periodic mappings Pr that go into the making of the operators HP . For
their action to be defined, the Pr must have large enough shifts but, when
analytic, they always result in analytic towers. The Pr , on the other hand,
can be any periodic mappings but, even when analytic, they do not respect
the analyticity of towers. But the real difference is this: while the Pr acts
on the ultraexponentials as global functions on R (as soon as r ą 1), the
operator HP acts on the ultraexponentials as germs at `8.

8.7 Kneser’s analytic iteration of exp.

In [K], H. Kneser constructed not just a square root of iteration for the ex-
ponential (as the paper’s title announces), but also an analytic solution E1

(real-analytic on R) of the equation E ˝ E1 “ E1 ˝ T , that is to say an ana-
lytic first-order ultraexponential. His elegant construction relies on classical
Schr:oder iteration at the two complex fixed points of E closest to the real
axis, combined with a realness-restoring conformal transform. It can be du-
plicated in numerous other situations. But it is numerically costly, and in
any case, getting hold of analytic ultaexponentials Ek is of little consequence
in our perspective: it does not alter the fact that the immense majority of
germs with non-zero exponentialy will have, even relatively to this analytic
system of ultraexponentials, cohesive rather than analytic fractional iterates.

8.8 Analytic ultra-quasiexponential towers.

The ultraexponential towers constructed in §8.5, though exact solutions of
the system (8.3)-(8.4) of conjugation identities, have two drawbacks:
(i) The germs Er, Lr extend to full isomorphisms of R only for r ě 2, but
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neither for r “ 0, since E0 “ E, L0 “ L, nor for r “ 1, since the Kneser pair
Ekneser1 , Lkneser

1 does not map R onto itself.
(ii) They ultimately rely on the construction of the Kneser pair, which in-
volves a complicated conformal mapping and is computationally very costly.

So it is often convenient to consider instead ultra-quasiexponentials, which
exactly reproduce the asymptotic behaviour of the ultraexponentials; are
much easier to construct; and, despite verifying slightly different conjugation
identities, can advantageously replace the ultraexponentials both as mile-
stones of the ultrafast growth scale and as builting blocks of the trigebra of
ultraseries.

The aim is to construct pairs tEvn,Lvnu of reciprocal ultrafast/ultraslow
germs that verify (i), (ii) and, optionally, (iii):
(i) Lvn belongs to the growth type rLsω

n

(ii) Lvn and Evn are analytic close to `8 and extend to reciprocal analytic
isomorphisms of R` with no other fixed point than 0 and `8
(iii) Lvn and Evn are given at 0` by convergent, odd power series and extend
therefore to odd analytic isomorphisms of R with no other fixed points than
0 and ˘8.

The simplest way to produce such pairs tEvn,Lvnu is to start from a pair
tEv ,Lvu of reciprocal analytic isomorphisms of R` that behave like tE,Lu
at infinity. More precisely, we demand that:

Evpxq „ x at 0` , Evpxq „ Const ex at `8 , Evpxq ą x @x ą 0

Lvpxq „ x at 0` , Lvpxq „ logpxq at `8 , Lvpxq ă x @x ą 0

Moreover, Ev and Lv should both admit simple, explicit expressions and Ev
should preferably be infinitely convex. This practically narrows down the
choice to

Choice 1 : Evpxq “ ex ´ 1 , Lvpxq “ logp1` xq (8.54)

Choice 2 : Evpxq “ x ex , Lvpxq “ x
ÿ

0ďn

pn`1qń 1

n!
p´xqn (8.55)

Choice 3 : Evpxq “ 2 sinhpxq , Lvpxq “ arcsinhpx{2q (8.56)

For any given series of scalars cn ą 1 we define two series Lwn and Lvn of
slow-growing analytic isomorphisms of R` by the following induction:

Lw0 :“ Lv0 :“ Lv and for n ě 1 : (8.57)

Lwn :“
`

Lwn´1 ˝ δc´1
n

˘;
“ lim

kÑ`8
ckn

`

Lwn´1 ˝ δc´1
n

˘˝k
(8.58)

Lvn :“ Lv ˝ Lwn (8.59)
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with δcpxq :“ c x as usual. Our germs verify:

Lvnpxq „ Lwnpxq „ x (8.60)

Lvnpxq ď Lwnpxq ă x @x ą 0 (8.61)
“

Lvn
‰

i
“

“

Lvn
‰

i
“

“

L
‰ωn

i
pn ě 1, i ě 0q (8.62)

The local behaviour (8.60) at 0 is obvious. The global behaviour (8.61)
follows from the identities

x ą pLwn ˝ δc´1
n
qpxq cn ą pLwn ˝ δc´1

n
q
˝2
pxq c2

n ą ¨ ¨ ¨ ą pLwn ˝ δc´1
n
q
˝k
pxq ckn

which easily result from a double induction, first on n, then on k. Regarding
the local behaviour (8.62) at `8, we may start from the relations:

Lwn´1 “ Ewn ˝ δc´1
n
˝ Lwn (8.63)

Lwn´1 “
`

Ewn ˝ E ˝ δγ´1
n

˘

˝ T ˝p´1q
˝
`

δγn ˝ L ˝ Lwn
˘

pγn :“ log cną0q (8.64)

which merely reflect the definition (8.58) of Lwn, and reason by induction
on n. The relations (8.62) with i “ 0 clearly hold for n “ 1 . If they do for
some larger n, the growth types

“

Lwn
‰

and
“

Lvn
‰

“
“

L ˝ Lwn
‰

may differ,
but the growth types

“

Lwn˚
‰

and
“

Lvn˚
‰

of the iterators at `8 do coincide 88

and in view of §8.3 this growth type is exactly
“

Lsω
n`1

0 . This completes the
inductive proof of (8.62) for i “ 0; the case i “ 1 is proven along the same
lines; and the case i ě 2 follow on the strength of the ‘universal asymptotics’
of slow functions and the regularity of Ev ,Lv and their successive derivatives
for all three choices (8.56)-(8.58).

8.9 Concluding remarks.

Universal asymptotics.

The fascinating subject of universal asymptotics for slow-growing germs,
briefly touched upon in §6.4 supra, is dealt with at greater length in [E5],
chapters 6 and 7. It has also, strangely enough, model-theoretical aspects,
some of which are discussed in [JvdH1], [JvdH2].

88Indeed, for any slow germ L, though the growth types of L˚ and pL ˝ Lq˚ differ, the

growth types of the respective iterators coincide. Cf the related identity
”

“

L
‰˝pωn`1q

i

ıω

i
“

“

L
‰ωn`1

i
, which simply reflects the identity pωn ` 1qω “ ωn`1.
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The scope of ultraexponential indeterminacy.

The section §15 infra takes a closer look at the indeterminacy inherent in the
choice of the ultraexponentials En. It shows, based on extensive numerical
data, that all the main natural choices, especially for E1, are astonishingly
close to one another. This suggests that, their theoretical equivalence non-
withstanding, it would be somehow rash to look upon all the possible choices
within the equivalence class rE1s as being exactly on the same footing.

The curse of the stair-case phenomenon.

In section §15 we also examine the staircase phenomenon. It says, roughly,
that the connector relating two condidates for E1, constructed from two aux-
iliary functions such as exppxq´a and exppxq´b, tends to a staircase function
when b goes to `8 while a remains fixed. This dashes all hope of selecting
a privileged E1 based purely on real-asymptotic criteria. But on the other
hand, we also show how slowly the connector tends to the staircase regime.
This confirms the above remark about not all candidates E1 being on the
same footing.

9 Beyond ωω : the meta-exponential scale.

In view of the sweeping closure properties that ultraseries appear to possess
(see towards the end of §10), the question as to what lies beyond the ultra-
exponential scale seems largely academic. So we shall be content here with
a few (unfortunately rather inconclusive) remarks:

9.1 Iterates of order α ě ωω.

Let tEn, n P N˚u be a strictly increasing sequence of self-mappings of R`,
each of which grows ultimately faster than any finite iterate of its predecessor:

Enpxq ă En`1pxq @n ě 1, @x ą 0 (9.1)

lim
xÑ`8

E˝kn pxq{En`1pxq “ 0 @n ě 1, @k ě 1 (9.2)

Any series of the form

Epxq :“
ÿ

ně1

εn
Enpxq

En1pn2q
pn ă n1 , n ă n2 ,

ÿ

εn ă 8q (9.3)

defines a self-mapping E of R` that ultimately grows faster than any En or
indeed any element in the semi-group generated by the En. Moreover, if the
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En are real-analytic or real-cohesive and generate a non-oscillating differential
trigebra89, they still do so after adjunction of E.

Consider now the reciprocal slow mappings Ln and L. Recall that on slow
germs, equivalence classes r...si have been defined90, which are stable under
composition and possess natural, unambiguous transfinite iterates r...s˝αi for
all orders α ă ωω. Using the construction (9.3) with En :“ En for some
coherent system En :“ Eωn , we get, at the cost of the huge indeterminacy
implicit in the choice of tn1, n2, εnu, a pair pE,Lq that lies outside the previous
scale. So there is no incoherence in decreeing that pE,Lq :“ pEωω , Lωωq. That
decision once made, the intrinsic notion of transfinite iteration of all orders
α ă ωω gives us, without further indeterminacy, all classes Lβ for β ă ωω

2
.

Repeating the process, we can reach any reasonable ordinal ω˚, but at the
cost of a new tn1, n2, εnu-indeterminacy for each non-approachable ordinal,
i.e. for each limit ordinal β not of the form β1α with α ă ωω. So, even
to reach such a small ordinal as ωω

2
we cannot avoid indeterminacies, even

countably many – one for each ωω.n (n P N˚).
Thus we can partially91 incarnate the aritmetics of, say, r1, ωω

ω
r, in the

sense that:

rLγsi ˝ rLβsi “ rLβ`γsi pinversion !q @β ă ωω
ω

, @γ ă ωω
ω

(9.4)

rLβsi
˝α
“ rLβ.αsi @β ă ωω

ω

but @α ă ωω (9.5)

However, here is a simple fact, not difficult to prove, that brings home the
hugeness of the indeterminacy:

For each coherent system trLβsi , β ă ωω
ω
u, there exists an equally coher-

ent system trL˚βsi , β ă ωω
ω
u such that

rL˚βsi “ rLβsi @β ă ωω pof courseq (9.6)

rL˚βsi ă rLωω si @β ă ωω
ω

!!! (9.7)

One obvious way of narrowing down the indeterminacy would be to bring our
mappings Eα : R` Ñ R` into close correspondance with one of the classical
hierarchies of mappings Eα : N˚ Ñ N˚

E0pnq “ n` 1 (9.8)

Eα`1pnq “ pEαq
˝n
pnq (9.9)

Eαpnq “ Eαnpnq pfor α limit ordinal , lim Ò αn “ αq (9.10)

These hierarchies of integer mappings entail a much lesser degree of arbitrari-
ness, since they only depend on the choice of a fundamendal approaching

89or ắ -ordered: see §.
90see §8
91partially, because in (9.5) α cannot exceed ωω.
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sequence αn for each limit ordinal α and since, up to fairly large ordinals,
there exists only one ‘natural’ choice.

For each limitˆ ordinal β (i.e. for each limit ordinal β not of the form β1α
with α ă ωω), one would then define the real-to-real mapping Eβ by series
of the form

Eβpxq :“
ÿ

ně1

εn
Eβnpxq

Eβ1npn
2q

pβn ď β1n , lim Ò βn “ lim Ò β1n “ βq (9.11)

with triplets pβ1n, n
2, εnq defined ‘β-uniformly’ in a way that

(i) would conforms with the chosen hierarchy on integers: Eβpnq “ Eβpnq
(ii) and that would be coherent in the sense of being compatible with the
direct definition of Eβ for approachable ordinals β.92

The trouble, though, is that so far no natural uniform choice for the triplet
pβ1n, n

2, εnq has been found that would determine privileged i-classes rLβsi for
non-approachable ordinals β. Indeed, all uniform choices seem to select in-
terpolations of Eβ between n and n` 1 that asymptotically tend to the good-
for-nothing ‘stair-case’ interpolation.

9.2 No all-inclusive quasi-analyticity class.

The existence of privileged classes rLβs1 on a huge transfinite interval would
correspondingly extend the range of canonical, increasing quasi-analytic Den-
joy classes βDEN far beyond the class COHES (sufficient for all purposes
of analysis, but still not ‘ultimate’) and take us closer to some notion of
‘all-inclusive’ quasi-analyticity class 93– probably a chimerical hope. So, all
considered, this would seem to be one more reason for doubting the existence
of a canonical system of classes rLβs1 for β ě ωω.

9.3 Non-oscillating extensions beyond the ultraexpo-
nential range.

Enlarging any group G contained in the ultraexponential range by adjunction
of a coherent system tEα, Lαu with ωω ă α ă ω˚, seems to be the only way
of guaranteeing a ‘non-oscillating’ extension Gext, i.e. an extension where the
order ắ still holds.94

92since Eβ can then be directly defined, up to postcomposition by a periodic mapping,
from an earlier Eβ˚ , (β˚ the largest non-approachable ordinal ă β) by the universal
ωn-iteration, first of slow growth classes, then of the fast reciprocals.

93see (2.48) in §2.7.
94See §1.2.
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10 Ultraseries and their all-round complete-

ness.

10.1 Ultraseries and ultramonomials.

Whereas transseries carry only finite exponential iterates, ultraseries are per-
mitted to carry transfinite iterates, up to order ωω (not included). This brings
two main complications:
(i) on the analysis side, as we saw in §8, there is an unremovable latitude in
the choice of the successive ultraexponentials En “ Eωn .
(ii) on the formal side, as we shall see in a moment, the clear distinction
between prime and non-prime transmonomials gets blurred, and instead of
one canonical representation for transseries, for ultraseries we have several.

Nonetheless, the well order survives, so does non-oscillation, and so too
does (once we have fixed a coherent system of ultraexponentials) the bi-
constructive correspondence between summable ultraseries and the associ-
ated germs.

Fortunately, there are few natural sources of ultraseries. Unlike with the
transseries, which crop up everywhere in differential calculus, there are far
fewer contexts that force us to resort to ultraseries: conjugation of germs
of unequal exponentiality, or again exceptionnally complex composition or
functional equations, but never differential equations. So we shall be content
with a very cursory treatment.

10.2 Simplification rules for ultramonomials.

Rule 1. Simplification inside ulraexponentials.

Whenever a large transseries Sr “ Ar ` Br occurs inside a strict ultraexpo-
nential Er pr ě 1q, only the “ r-large” part Ar should remain there, while the
“ r-small” part Br, characterised by

Br ă
Er ˝ Sr
E 1r ˝ Sr

„
Er ˝ Ar
E 1r ˝ Ar

(10.1)

should be ejected by means of the Taylor expansion

ErpAr `Brq “ ErpArq `
ÿ

1ďn

1

n!
pE pnq ˝ Arq pBrq

n (10.2)

which automatically converges close to `8.
Setting εr,n :“ E pn´1q

r ˝ Lr{E pnqr ˝ Lr and using the universal asymptotics
of slow germs, we find that εr,n´1 „ εr,n. As a consequence, the inequality

80



(10.1) implies Br ă pEr˝SrE 1r˝Sr
qn and we easily get the right bounds to ensure the

convergence in the right-hand side of (10.2). 95

Rule 2. Simplification inside ultralogarithms.

No logarithm or ultralogarithm Lr (r ě 0) should occur with an argument
other than the variable x or an ultralogarithm Lspxq of equal or superior
strength (r ď s).

In other words, ultralogarithms should occur only within finite sequences
of the form:

L˝n1
r1
˝ L˝n2

r2
˝ . . .L˝nkrk

with 0 ď r1 ă r2 ă ¨ ¨ ¨ ă rk , 1 ď ni p@iq (10.3)

The restrictions laid upon the arguments of ultralogarithms are thus much
more stringent than those imposed on the arguments of ultraexponentials,
but they can be met by resorting (at most finitely many times) to the fol-
lowing six subrules.

Subrule 2.1: Simplification of LrpA`Bq with A ą B:

The straightforward Taylor expansion LrpA ` Bq “ LrpAq ` . . . does the
trick, without any convergence difficulty, since for any ultralogarithm Lr,
analyticity on the real half axis automatically implies analyticity on a right
half-plane.96

Subrule 2.2: Simplification of LrpA.Bq with A ą B:

LrpABq “ LrpAq ` θrpA,Bq (10.4)

“ `AL1rpAq logpBq ` o
`

AL1rpAq logpBq
˘

(10.5)

with

θ0pA,Bq “ logpBq (10.6)

θrpA,Bq “ κrpA, θr´1pA,Bqq @r ě 1 (10.7)

95Although the ultraexponential Er remains small only within a narrow stripe around
R` that tapers off very fast at `8, the condition (10.1) of “ r-smallness” means that
Arpxq ˘ Brpxq i remains safely within that stripe as x grows. Unlike with the ordinary
exponential (r “ 0), where “0-small” simply means “small”, with strict ultraexponentials,
“ r-smallness” depends not only on r but also on the leading terms of the transseries Sr.

96Much more than that, in fact: it implies analyticity on a whole spiralling ramified
neighbourhood of 8 on C‚.
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and

κrpx, yq “
ÿ

1ďn

pLpnqr ˝ Lr´1qpxq
yn

n!
(10.8)

Using the basic identity L1r ˝ Lr´1 L1 “ L1r, we can rid the right-hand side of

(10.8) of all composite terms Lpnqr ˝ Lr´1 by expressing these as polynomials
in

1

L1r´1

; L2r´1,L3r´1, . . . ,L
pnq
r´1 ; L1r;L2r, . . . ,Lpnqr ;

Inductive proof of (10.4): Since L0 “ L “ log, the identity (10.4) is obvious
for r “ 0, and the following induction takes care of r ě 1:

LrpABq “ 1` LrpLr´1pABqq (10.9)

“ 1` LrpLr´1pAq ` θr´1pA,Bqq (10.10)

“ 1` LrpLr´1pAqq ` κrpA, θr´1pA,Bqq (10.11)

“ LrpAq ` κrpA, θr´1pA,Bqq (10.12)

Subrule 2.3: Simplification of LrpAαq:

This is not a special case of rule 2.2 (which assumed A ą B) but an easy
variant. The same type of induction yields, with the same θr as in (10.4):

LrpAαq “ LrpAq ` θrplogA,αq (10.13)

“ LrpAq ` L1rpAqA logA logα ` o
`

L1rpAqA logA logα
˘

Subrule 2.4: Simplification of Lr`k ˝ Lr:

Lr`k ˝ Lr “ Lr`k ` `r,k (10.14)

with `r,1pxq “ ´1 (10.15)

and `r,kpxq “ κr`kpx, `r,k´1pxqq
`

κr as above
˘

(10.16)

“ Lr`k ´
L1r`k
L1r`1

` o
`L1r`k
L1r`1

˘

(10.17)

Indeed, the identity holds for k “ 1, and for k ě 2 we have the induction:

Lr`k ˝ Lr “ pLr`k ˝ Er`k´1q ˝ pLr`k´1 ˝ Lrq (10.18)

“ 1` Lr`kpLr`k´1 ` `r,k´1q (10.19)

“ 1` Lr`k ˝ Lr`k´1 ` κr`kp`r,k´1q (10.20)

“ Lr`k ` κr`kpid , `r,k´1q (10.21)
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Subrule 2.5: Simplification of Lr`k ˝ Er:

Lr`k ˝ Er “ Lr`k ˝ Er`k´1 ˝ Lr`k´1 ˝ Er`k´2 ˝ ¨ ¨ ¨ ˝ Lr`1 ˝ Er
“ T ˝ Lr`k ˝ T ˝ Lr`k´1 ˝ ¨ ¨ ¨ ˝ T ˝ Lr`1 (10.22)

“ Lr`k `
L1r`k
L1r`1

` o
`L1r`k
L1r`1

˘

(10.23)

Compare (10.17) and (10.23).

Subrule 2.6: Simplification of Lr ˝ Er`k:

Lr ˝ Er`k “ Lr ˝ Er`1 ˝ Lr`1 ˝ Er`2 ˝ ¨ ¨ ¨ ˝ Lr`k´1 ˝ Er`k
“ Er`1 ˝ T´1 ˝ Er`2 ˝ T´1 ˝ ¨ ¨ ¨ ˝ Er`k ˝ T´1 (10.24)

10.3 Several competing presentations, but one well or-
der on ultraseries.

The main difference with transseries is Rule 1, which permits the ejection, not
of all small terms, but only of the r-small terms, thereby removing the clear
dichotomy between prime and non-prime ultramonomials. The above rules,
however, taken together, are sufficient to compare ultramonomials pairwise
and thus to ensure a well order, and this is what really matters.

With some extra work, these reduction rules also lead to canonical ulra-
monomial expansions for ultraseries, but there are several competing choices
here, and for each of them the full reduction procedure is pretty clumsy.
In practice, there is no need to fully reduce our ultraseries (taken in the
form which they naturally assume as algorithmic solutions of functional or
composition equations), but only so far as necessary for mutual comparison.

10.4 Integration of ultramonomials.

Like with transmonomial integration (see §3.5), ultramonomial integration
a ÞÑ A “ B´1a generates resurgence relative to a critical time x0 given by

x0 “ stat.limrÑ`8

´
ˇ

ˇ

ˇ
log

apxq

L1rpxq

ˇ

ˇ

ˇ

¯

(10.25)

The relation resembles (3.23), with Lr in place of Lr, and here again the limit
is ‘stationary’: for two large enough values of r, the germs on the right-hand
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side of (10.25) become equivalent at 8. Concretely, this yields:

x0 “
ˇ

ˇ log apxq
ˇ

ˇ if 1 ă lim
log apxq

log x
ď `8 (10.26)

x0 “ log x if 0 ď lim
log apxq

log x
ă 1 (10.27)

Here is an example analogous to the one of §3.5:

A1pxq “ apxq “ L1pxq bpxq with expopbq ď ´4 (10.28)

with a very slow germ L in the growth type of rLsγ, with γ “ ωrs ns ` ¨ ¨ ¨ `
ωr1 n1.

L “ L˝n1
r1
˝L˝n2

r2
˝ . . .L˝nkrk

p0 ď r1 ă r2 ă ... ă rs , ni ą 0q (10.29)

As for b, it may be large or small, but must have an even slower rate (of
growth or decrease, as the case may be) than L. For instance:

bpxq :“
`

Lr11pxq
˘α1

`

Lr12pxq
˘α2

`

Lr13pxq
˘α3

prs ă r11 ă r12...q or

bpxq :“ Er10
´

`

Lr10`r11pxq
˘β1 `Lr10`r12pxq

˘β2 `Lr10`r13pxq
˘β3

¯

pβ1 ą 0q

The critical time here is x0 “ LpLpxqq: it belong to the growth type of
r Lsγ`1. Relative to this critical variable, (10.28) becomes

A10px0q “ ex0 b0px0q
`

A0px0q ” Apxq , b0px0q ” bpxq
˘

(10.30)

The formal solution is given by

A0px0q “ ex0 B0px0q “ ex0 p1` Bx0q
´1

`

b0px0q
˘

(10.31)

with p1 ` Bq´1 expanded straightforwardly in positive powers of B, and the
sum is given by the Laplace transform

pB0pξ0q “ p1´ ξ0q
´1

pb0pξ0q (10.32)

The definition of pb0 here is unproblematic, since the monomial b0px0q “

bpEpEpx0qqq is automatically subexponential in x0, and Laplace summation
too is unproblematic, since there is only one singularity on the positive real
axis in the Borel plane.
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10.6 Further remarks.

Resurgent ultraseries and their displays.

The above example (10.31)-(10.32) shows that the display DplA is going to
depend on the initial choice of ultraexponential tower, since the real residue
pb0p1q in (10.32) clearly depends on it. This is a general feature: the displays
of resurgence-carrying ultraseries depend on the choice of ultraexponential
tower underlying the construction.97

However, any two exponential towers are connected by a periodic Witt
tower (see §8.6) and, based on these, one can produce conversion formulae
for the corresponding displays. These formulae show in particular that the
independence relations implied by the displays do not, unlike the displays
themselves, depend on the choice of ultraexponential tower.

Sweeping closure properties.

The variable and/or the unknown germ could even be allowed to sit inside
the iteration orders of our functional equations – and we still would have
closure! In fact, it is hard to think of meaningful problems in analysis that
would take us beyond the range of ultraseries, with ωω as natural upper limit
for the iteration orders.

11 Composition equations: resurgence and

displays.

This and the next two sections take up the subject of general composition
equations and also, occasionally, composition systems. Though these prob-
lems make sense in the general transserial setting, we shall restrict ourselves
mostly to germs expressible as power series (often identity-tangent ones), not
only to avoid unnecessary – and on the whole notational rather than sub-
stantial – complications, but also because this more familiar setting already
presents us with the typical difficulties inherent in the subject and with the
main methods required for overcoming them. Moreover, since our data and
unknowns, though still real germs and defined as usual on r...,`8r, will ex-
tend to sectorial neighbourhoods of `8 in C‚, we shall revert to calling z

97to the extent that one and the same ultraseries may be convergent or divergent de-
pending on that choice: think again of A in (10.28), which will be convergent or divergent

according as the residue pb0p1q vanishes or not, which again depends on the choice of
ultraexponential tower.
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the variable (in multplicative plane) and ζ the conjugate variable (in the
convolutive or Borel plane).

11.1 Composition equations: alternance.

For the most general composition equations, i.e. for equations of type T4

(see at the beginning of §1.1), there exist various notions of k-alternance,
which roughly measure the number of free parameters present in the general
(oscillation-free) solution. But all useful definitions agree in assigning 0-
alternance to the “positive” composition equations (i.e. those of type T3),
1-alternance to the conjugation equations (type T2), and k-alternance to those
very special equations involving k imbricated commutators:

t...ttf, f1u, f2u, . . . , fku “ f0 with tf, gu :“ f ˝ g ˝ f´1
˝ g´1

For a thorough discussion in the case of “twin” equations, see [EV]. In any
case, the present section is devoted to 0-alternance equations, whose defini-
tion is entirely unproblematic.

11.2 Composition equations: resurgence and displays.

Let us examine the general 0-alternance composition equation with data gi
real-analytic at `8:

W pfq “ id (11.1)

W pfq :“ f ˝mr ˝ gr . . . f
˝m1˝ g1 pmi P Z ,

ÿ

mi ­“0q

The factors gi are given, and the unknown f is sought, of the form:

gipzq “ z ` σi ` ψipzq “ z ` σi ` τi z
´1
` . . .

`

ψipzq P Opz
´1
q
˘

(11.2)

fpzq “ z ` σ ` ϕpzq “ z ` σ ` τ z´1
` . . .

`

ϕpzq P Opz´1
q
˘

(11.3)

with a real shift σ :“ ´
ř

σi{
ř

mi and a real residue τ :“ ´
ř

τi{
ř

mi.

Crucial to the discussion are these two exponential polynomials:

SW pλq“

m˚i
ÿ

1ďiďr

sgnpmiqe
σ
i,m˚

i
λ
“

αiÒ
ÿ

1ďiďm˚

si e
αi λ psi P Z, αi P Rq (11.4)

TW pλq“

m˚i
ÿ

1ďiďr

sgnpmiqe
σ
i,m˚

i
λ
τi,m˚i “

αiÒ
ÿ

1ďiďm˚

ti e
αi λ pti P R, αi P Rq (11.5)
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with

SW p0q “ s1 ` ¨ ¨ ¨ ` sm˚ “ m1 ` ¨ ¨ ¨ `mr ­“ 0 pm˚ ď
ÿ

|mi|q (11.6)

τi,m˚i “ pτ1 ` ...` τiq ` pm1 ` ...`mi´1 `m
˚
i q τ (11.7)

σi,m˚i “ pσ1 ` ...` σiq ` pm1 ` ...`mi´1 `m
˚
i qσ (11.8)

Here, each m˚
i ranges through r0,mi´1s or rmi,´1s depending on the sign

of mi, and m˚ is the number of distinct frequencies σi,m˚i
The second exponential polynomial TW pλq is also second in importance.

It merely determines the ramification factors zρn in the parameter saturated
solution rfpz,uq of W pfq “ id . It vanishes when all residues τi vanish, in
which case there is no ramification.

The first exponential polynomial SW pλq is the one that really matters,
because its roots λj determine
(i) the nature of the exponentials in the saturated solution of W pfq “ id
(ii) the location of the singularities in the Borel plane
(iii) the set of active alien derivations.98

The roots λj of SW pλq, with j running through an enumerable set J , are all
­“ 0 (due to (11.6)) and located within a vertical strip λ´ ď <λ ď λ` (due
to αi P R).

Let us at first make the (generically fulfilled) assumption that the λj are
linearly independent, or rather the weaker assumption that they are non-
resonant, i.e. verify no finite identity of the form

λj0 “
ÿ

j

nj λj with 0 ď nj and
ÿ

j

nj ă `8 pnj P Nq (11.9)

Let us also assume, for now, that each λj is a simple zero of SW pλq “ 0.

Proposition 11.1 (Generic composition equation of 0-alternance)
Under the above genericity assumptions, the composition equation (11.1) has
a unique parameter-saturated, normal 99 solution of the form

rfpz, uq “ rfpzq `
ÿ

un eω z rfnpzq with un “
ź

u
nj
j , ω “ăn,λą(11.10)

with n running through the set J N
0 of all J -indexed, finitely supported,

integer-valued sequences of the form n “ tnj | j P J , nj P N,
ř

nj ă 8u

and with generically divergent, but always resurgent power series

rfnpzqPz
ăn,ρąCrrz´1

ss

´

ăn,ρą“
ÿ

nj ρj , ρj :“ ´λj
RW pλjq

S 1W pλjq

¯

(11.11)

98That is to say, the set of all ∆ω liable to act (with a non-vanishing result) either on
f or on some of its successive alien derivatives.

99The normalisation condition is rfnj pzq “ zρj`opzρj q. It bears on the pilot components
rfnj pzq preceded by the factors uj e

λjz.
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whose ramification factor zρn “ zăn,ρą is always ” 1 when the residues τj
vanish.100

The resurgence support Ω contains the additive semi-group Ω˚ generated
by the λj, but is larger than Ω˚: it also contains all elements of the form
λ˚ ´ λj, with λ˚ P Ω˚.

As usual, all resurgence properties are accounted for by the Bridge Equa-
tion, which here asumes the form:

∆ω
rfpz, uq “ Aω

rfpz, uq p@ 9ω P Ωq (11.12)

with ∆ω “ e´ω z ∆ω pas alwaysq

and Aω “ un
ÿ

Ajω uj Buj p@ 9ω “ăn,λąP Ω˚q (11.13)

or Aω “ un Ajω Buj p@ 9ω “ăn,λą ´λj P Ω´ Ω˚q (11.14)

The component-by-component interpretation of the Bridge Equation yields

un
1

∆ω
rfn1pzq “ u

n
`

ÿ

Ajω uj Buj
˘

un
2
rfn2pzq (11.15)

with n1 “ n ` n2 to ensure the simultaneous elimination of the exponential
terms and u-factors. Eventually, 11.15 reduces to the identities

∆ω
rfn1pzq “

´

ÿ

pn1j ´njqA
j
ω

¯

rfn1´npzq with 9ω “ăn,λą (11.16)

with only a finite number of terms on the right-hand side.
In the special case n1 “ 0, we have the identities

∆νj
rfpzq “ Ajνj

rfnj pzq with 9νj“´λj , n
j
“tnji |n

j
i “δ

j
i , iPJ u (11.17)

with a single term on the right-hand side.101 Lastly the displays of rfpz,uq

and rfpzq are given by:

Dpl rfpz,uq “ rfpz,uq `
ÿ

r

ÿ

ωiPΩ

Zω1,...,ωr Aω1 . . .Aωr
rfpz,uq (11.18)

Dpl rfpzq “ rfpzq `
ÿ

r

ÿ

ωiPΩ

Zω1,...,ωr
“

Aω1 . . .Aωr
rfpz,uq

‰

u“0
(11.19)

Sketch of the proof:
First, a few words about the interpretation of the Bridge equation. Although
(11.16) and (11.17) show that only alien derivations ∆ω of a very special sort

100The scalars ρj in (11.11) are well defined. Indeed, S1W pλjq ­“ 0 since we assumed all
zeros of SW to be simple.
101nj0 is the sequence tnj ; nj0 “ 1, nj “ 0 if j ­“ j0u.
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can act (effectively) on any given rfn, yet for any ω˚ P Ωn ´ Ω˚ a derivation
chains ∆ωr . . .∆ω1 with

ř

ωi “ ω˚ can always be found that will act effec-

tively on rf or rfn. As a consequence, in the Borel plane the functions pfnpζq

or pfpζq generally possess singularities over all points of Ωn ´ Ω˚ resp. ´Ω˚.
Moreover, barring the exceptional cases when some of the special (and pair-
wise commuting) operators Aνj “ Ajνj Buj (with 9νj “ ´λj) have vanishing

coefficients Ajνj , the identity102

´

ź

j

pAjνjq
nj
¯

rfnpzq “
´

ź

j

p∆νjq
nj

nj!

¯

rfpzq p 9νj “ ´λjq (11.20)

makes it possible to recover all components rfn from the sole knowledge of rf ,
via some analysis in the Borel plane. Of course, if one knows the composition
equation W pfq “ id of which rf is the solution, it is far more economical to get

these rfn by formally calculating its saturated solution rfpz,uq. But if one does

not know W pfq, the identity (11.20) shows how to retrieve all components rfn
from rf , which of course would be impossible if rf were convergent. In other
words, composition equations with strictly resurgent solutions exhibit a far
greater ‘inner cohesion’: knowing even a small part of the saturated solution,
one can retrieve everything, including (modulo some hard work) the original
equation W pfq “ id itself.

As for proving Proposition 11.1, calculating the formal integral rfpz,uq

offers no difficulty, since the coefficients of rf and rfn :

rfpzq “ z ` σ `
ÿ

akz
1´k (11.21)

rfnpzq “ zăn,ρą
ÿ

an,k z
´k (11.22)

are given by inductions of the form103

SW p0q ak “ earlier terms (11.23)

SW pωq an,k “ earlier terms p 9ω “ăn,λąq (11.24)

pρj ´ kqS
1
W pλjq anj ,k “ earlier terms pλj “ăn

j,λąq (11.25)

As for the analysis part of Proposition 11.1, the shortest way is to solve the
perturbed composition equation Wεpfεq “ id derived from W pfq “ id by

102which results from a repeated application of the Bridge equation.
103The “earlier terms” in (11.24) cover all coefficients an1,k1 such that n1 ď n, k1 ď k and

|n1| ` k1 ă |n| ` k. In (11.25), like in (11.17), nj denotes the sequence tnji |n
j
i :“ δji u. If

some ρj ´ k exceptionally vanishes, that simply introduce a logarithmic terms in fnj .
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viewing both its data and unknown as perturbations of simple shifts:

gi Ñ gi,ε with gi,εpzq “ z ` σi ` ε ψipzq pgi,1 “ giq (11.26)

f Ñ fε with fεpzq “ z ` τ `
ř

1ďk ε
k ϕkpzq pf1 “ fq (11.27)

Expanding Wεpfεq in powers of ε, we get as coefficient of εk the identity
(11.28), which translates to (11.29) in the Borel plane:

SW pBq rϕkpzq “ polyn. in earlier terms B
p
rϕk1pz ` αqq pk1 ă kq (11.28)

SW p´ζq pϕkpζq “ convol . polyn. in earlier terms p´ζqp e´αqζ pϕk1pζq (11.29)

Repeated division by the exponential polynomial SW p´ζq and repeated con-
volutions make clear where the singular points of each pϕkpζq are going to be.
Moreover, the right-hand side of (11.29), though more complicated than in
the case of pure iteration equations (type T1, see §1.1), are essentially similar,
and surprisingly easy to majorize, especially above R`. By duplicating the
argument used for iteration equations,104 one sees that each ε and in partic-
ular for ε “ 1, the function pfεpζq is endlessly continuable, with only isolated
singularities105 and (at most) exponential growth along any non-vertical106

axis arg ζ “ θ. And this is all the analysis we need in order to establish
Proposition 11.1 : the algebraic machinery of resurgence takes care of the
rest, and leads straightaway to the Bridge equation (11.12)-(11.13).

Proposition 11.2 (General composition equation of 0-alternance)
If, retaining 0-alternance, we drop both the non-resonance and simplicity
assumption for the countably many zeros λj of SW pλq, the preceding results
remain in force after a number of modifications.

The indices n now range in the space JJ N
0 of double-indexed sequences n“

tnj,µ | j PJ , 0ďkăµj, nj,µPN,
ř

nj,µă8u, where µj denotes the multiplicity
of the zero λj of SW pλq. These multiplicities are bounded supµj ă 8 and
therefore possess a finite smallest common multiple µ˚.

The saturated solution broadly retains its form (11.10), but with frequen-
cies ω no longer in one-to-one correspondance with the indices n:

rfpz, uq “ rfpzq`
ÿ

un eω z rfnpzq with un“
ź

u
nj,µ
j,µ , ω “ăn,λą (11.30)

104See for example rE2s, pp 310-318.
105at least on each Riemann sheet; their projection on C may be, and often is, dense.
106This is true also along vertical axes, but harder to prove. This latter fact, however,

is not required here. It would be required only if we were to investigate the growth of the
invariants |Ajω| as ω grows.
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and with subexponential ramification factors flanked by ramified powers zăn,ρą:

rfnpzq P zăn,ρp0qą e p
ř

0ăκă1ăn,ρpκqą z
κqCrrz´

1
µ˚ ss (11.31)

rfnj,µpzq P zρjp0q e p
ř

0ăκă1 ρj,µpκq z
κq Crrz´

1
µj ss

`

un
j,µ

“uj,µ
˘

(11.32)

The finite sum in the exponential factor of (11.31) is over all rational numbers
κ in 1

µ˚
Q Y r0, 1r. The frequencies ă n,ρ ą:“

ř

nj,µρj,µ depend on scalars

ρj,µpκq, which appear in pure form in (11.32), but due to

ρj,µpκq :“ ρjpκqe
p2πiqµκ if κ P

!

0,
1

µj
,

2

µj
, ...,

µj´1

µj

)

(11.33)

ρj,µpκq :“ 0 otherwise (11.34)

reduce to the sequences:

ρjp0q, ρjp
1

µj
q, ρjp

2

µj
q, . . . , ρjp

µj ´ 1

µj
q (11.35)

For each j, the leading term corresponds to κ “ κj :“ 1´ 1{µj. It is directly
defined, up to a unit root of order µj, by

´

ρjpκjq
¯µj

“ ´
λj RW pλjq

S
pµjq
W pλjq

µj!

pκjqµj
with κj :“ 1´

1

µj
(11.36)

Once a determination of ρjpκjq has been fixed, all other coefficients in the
(11.35) are given, without ambiguity, by similar formulae. For the pilot com-

ponents107
rfnj,µ of (11.32) ., the µ-dependence is elementary, since:

rfnj,µpzq ” rfnj,0pe
p2πiqµ zq (11.37)

but no such relations apply for the general components rfn.
The invariant operators Aω now assume the form

Aω :“
ÿ

9ω“ăn,λą´λj

un A j,µ
ω,n Buj,µ n P JJ N

0 (11.38)

Note that, despite being slightly redundant, the double lower indexation of
the scalars A j,k

ω,n cannot be dispensed with since n and ω no longer determine
each other.108 This also compels us to write the monomial un to the right of
the first

ř

in (11.38), whereas in (11.13) it could be factored and moved to

107they are preceded by the linear factors unj,µ “ uj,µ and verify the normalisation

condition rfnj,µ “ zρjp0q e
ř

0ăκă1 ρj,µpκq z
κ

.p1` op1qq
108ω clearly does not determine n, and n determines only 9ω, but not ω.
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the left of
ř

. The Bridge Equation of course retains its form (11.12)-(11.13)
but its component-by-component interpretation undergoes a slight change:

∆ω
rfn1pzq“

´

ÿ

pn1j,k´ nj,kqA
j,k
ω,n

¯

rfn1´npzq with 9ω“ăn1´ n,λą´λj (11.39)

Lastly, the formula (11.18)-(11.19) for the displays remains valid, without
our having to change anything.

The analysis part of the proof is exactly the same as for Proposition 11.1.
It still relies entirely on the repeated use of (11.18). What changes is the

formal part, i.e. the way of calculating rfpz,uq as a formal object.

For the basic component rf , the same induction holds as in (11.23).

For all components rfn whose frequencies ω :“ă n,λ ą are not zeros of
SW , the same induction holds as in (11.25), except that now JJ replaces J .

For the pilot components rfnj,µ , which due to (11.37) reduce to rfnj,0 :

rfnj,0pzq “ zρjp0q e p
ř

0ăκă1 ρjpκq z
κq
´

1`
ÿ

k Pp1{µjqN˚
anj,0, k z

´k
¯

(11.40)

the induction rule becomes:

pρjp0q ´ kq
pκj ρjpκjqq

µj

µj!
S
pµjq
W pλjq anj,0, k “ earlier terms (11.41)

The same type of induction (with a non-vanishing factor S
pµjq
W pλjq) also

applies to all components rfn whose frequency ω :“ă n,λ ą is of the form
λj (due to the resonances, this may happen even if n is not of type nj,µ).

păn,ρjp0qą ´kqConstn S
pµjq
W pλjq an,k “ earlier terms (11.42)

Lastly, when some of the factors pρjp0q ´ kq or pă n,ρjp0q ą ´kq in
(11.41) or (11.42) vanish, the essential part109 of fnj,µ or fn, instead of living

in Crrz´
1
µ˚ ss, now lives in Crrz´

1
µ˚ ss b Crlog zs.

11.3 Some remarks.

Remark 1: Display and saturated solution.

There is a vague kinship between the saturated solution fpz,uq and the dis-
play Dpl f : both verify the composition equation110 W pfq “ id and both

109i.e. the series part, as opposed to the subexponential factor that precedes it.
110As noted in the introduction, the pseudovariables behave like constants under ordinary

differentiation or composition, and multiply according to the shuffle product: see §2.4.
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involve a mixture of power series and exponential terms.111. But the dis-
play is a far richer and more complex object. For one thing, the saturated
solution fpz,uq has its power series indexed by elements n of J N

0 or JKN
0 ,

whereas the power series in the display Dpl f are indexed by the incompa-
rably more numerous sequences of ωi in Ω. Secondly, whereas fpz,uq can be
derived from the composition equation by purely formal manipulations on
power series, Dpl f carries scalars like Ajω or Aj,kω,n, which, being generically
transcendental Stokes constants, are beyond the reach of formal deduction:
their calculation necessarily involve some (and often a good deal) of analysis,
be it analytic continuation in the Borel plane112 or the recourse to closed
(but highly multiple) expansions involving two ingredients: universal monics
on the one hand, and the Taylor coefficients of the data gi in the composition
equation.

Remark 2: A priori constraints on the holomorphic invariants.

If, like for the 0-alternance composition equation (11.1) when all the residues
τi vanish, the components fnpzq of the saturated solution fpz,uq are ordinary
power series of z´1, the action of the derivations ∆ω, and by way of conse-
quence the values of the invariant operators Aω, will not depend on ω as an
element of C‚, but only on the projection 9ω on C˚. This entails a drastic
simplification of the display Dpl fpz,uq, whose pseudovariables Zω1,...,ωr may
themselves be indexed by projections 9ωi.

Even when the fnpzq are not themselves power series, they are often
simply related to power series hnpzq, via an elementary monomial factor

fnpzq “ zăn,ρą hnpzq with hnpzq P Crrz´1
ss (11.43)

This in turn implies

Aε ω ” εăn,ρąAω p@ω P C‚ , @ ε “ e2πik
P C‚ , k P Zq (11.44)

so that, here again, it suffices to know the operators Aω for ω ranging through
a single sheet of C‚.

If, instead, the hnpzq are ramified power series113 in Crrz´1{pss, what is
required is the knowledge of operators Aω for ω ranging through p consecutive
sheets of C‚.

More complex situations may arise, but it is exceedingly rare for all values
of Aω (with 9ω fixed) to be truly independent, unless of course one starts from
fully ramified data gi, e.g. gipzq P Rtz´1, z´1 log zu.

111in the display, the exponential terms enter via the alien derivations ∆ω “ e´ω z ∆ω.
112via the (wholly constructive) definition of the alien derivations: see §2.3.
113That would be the case if in the composition equation (11.1) we were to consider

factors gi of the form gipzq “ z ` σi z
1´p ` . . .
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Remark 3: Composition equations with resurgent data.

If we now consider composition equations W pf, g1, . . . , grq “ id whose data
gi are themselves resurgent (with one or several critical times), the earlier
argument114 shows that resurgence will survive, with the specific resurgence
generated by the composition equation simply getting ‘grafted’ onto the pre-
existing resurgence carried by the data. But how exactly will the two com-
bine? This is where the displays come in handy, since we can calculate
Dpl f , which exhaustively describes both resurgences, old and new, in their
exact combination, by formally solving the ‘displayed’ composition equation:

W pDpl f,Dpl g1, . . . ,Dpl grq “ id (11.45)

with Dpl f as unknown and the Dpl gi as data.

Remark 4: Twin-related composition equations.

When all shifts σi in (11.3), and so too all frequencies αi in (11.4), are
commensurate (this is always the case for twin-related composition equations
– see §13), the sum SW pλq is a polynomial of degree d in eα˚λ for some
maximal α˚. The roots λj of SW pλq are therefore of the form

λ˚1 `
2πi

α˚
m1, . . . , λ˚ d `

2πi

α˚
md pmj P Zq (11.46)

If the λ˚ j are non-resonant,115 the λj are not resonant either; but if the λ˚ j
are, then the relations (11.46) massively amplify that resonance. Iteration
and conjugation equations are a striking case in point. So let us have a closer
look at them.

11.4 Iteration and conjugation equations: what is so
special about them.

For the purpose of comparison, let us write the resurgence formulae for the
solutions of iteration and composition equations, first in the standard form,
then based on parameter-saturated solutions.

Let f, f1, f2 be real-analytic germs of the form z ÞÑ z ` 1 ` Opz´1q,
with their invariant operators Aω,A1,ω,A2,ω, and let h2,1 :“ ˚f2 ˝ f

˚
1 be the

conjugator of f2 to f1, normalised by the condition h2,1pzq “ z`Opz´1q. For
simplicity, we drop the tildas everywhere.

114See the proof of Proposition 11.1, towards the end.
115in the sense of (11.9.
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Iteration related resurgence: the standard form.

f˚ ˝ f “ T ˝ f˚ ; f ˝ ˚f “ ˚f ˝ T ; f ˝t “ ˚f ˝ T ˝t ˝ f˚ (11.47)

Resurgence support: Ω :“ 2πiZ˚.
Complete system of invariants: tAω | 9ω P Ωu
Resurgence equations:

∆ωf
˚
pzq “ ´Aω e

´ω f˚pzq (11.48)

∆ω
˚fpzq “ `Aω e

´ω z
B
˚fpzq

`

B :“
d

dz

˘

(11.49)

∆ωf
˝tpzq

Bf ˝tpzq
“ `Aω

`

e´ω t´1
˘ e´ω f

˚pzq

Bf˚pzq

`

” 0 if t P Z
˘

(11.50)

Conjugation related resurgence: the standard form.

h2,1 “
˚f2 ˝ f

˚
1 h2,1 ˝ f1 “ f2 ˝ h2,1 (11.51)

∆ω h2,1

B h2,1

“ pA2,ω ´ A1,ωq
e´ω f

˚
1

Bf˚1
(11.52)

∆ωr ...∆ω1

´∆ω0 h2,1

B h2,1

¯

“

´

i“r
ź

i“1

pω˚i ´ωiqA1,ωiq

¯

pA2,ω0´A1,ω0q
e´ω

˚ f˚1

Bf˚1
(11.53)

with ω˚i :“ ω0 ` ...` ωi´1 and ω˚ :“ ω˚r`1 “ ω0 ` ...` ωr.

Iteration related resurgence: the parameter-saturated form.

The above formulae give the complete resurgence picture with all the Stokes
constants, and cannot be bettered for simplicity. However, to get a real grasp
of the difference with generic composition equations, we must re-write these
results in the general, necessarily clumsier form, based on the parameter-
saturated solutions. If we introduce formal periodic functions P ˚u ,

˚Pu, P
˝t
u of

the form:

P ˚upzq “ z ´
ÿ

jPZ˚
uj e

p2πiqjz (11.54)

˚Pupzq “ z `
ÿ

jPZ

vjpuq e
p2πiqjz with P ˚u ˝

˚Pu “ id (11.55)

P ˝tu pzq “ z `
ÿ

jPZ

wjpt;uq e
p2πiqjz

“ p
˚Pu ˝ T

˝ t
˝ P ˚uqpzq (11.56)
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there is no difficulty in expressing the coefficients vjpuq and wtjpuq as for-
mal power series of u, and we find that the saturated solutions attached to
f˚, ˚f, f ˝t admit factorisations of the form

f˚pz,uq“ pP ˚u ˝ f
˚
qpzq (11.57)

˚fpz,uq“ p˚f ˝ ˚Puqpzq (11.58)

f ˝tpz,uq“ p˚f ˝ P ˝tu ˝ f
˚
qpzq (11.59)

and analytical expressions of the form

f˚pz,uq“ f˚pzq ´
ÿ

uj e
2πijf˚pzq (11.60)

˚fpz,uq“ ˚fpzq `
ÿ v

nj1
j1

njr !
...
v
njr
jr

nj1 !
e2πiăn,jąz

B
|n|
z

˚fpzq (11.61)

f ˝tpz,uq“ f ˝tpzq `
ÿ w

nj1
j1

njr !
...
w
njr
jr

nj1 !
e2πiăn,jąz H t

npf
˚, ˚fqpzq (11.62)

In view of the factorisations (11.57), (11.58), (11.59), we find that all three
saturated solutions verify the same Bridge Equation

∆ω f
˚
pz, uq “ Aω f

˚
pz, uq p 9ω P 2πiZ˚q (11.63)

∆ω
˚fpz, uq “ Aω

˚fpz, uq p 9ω P 2πiZ˚q (11.64)

∆ω f
˝t
pz, uq “ Aω f

˝t
pz, uq p 9ω P 2πiZ˚q (11.65)

but with invariant operators Aω of the form

Aω “ 2πiAω
ÿ

kPZ˚
pj ` kquj`k Buj if 9ω “ p2πiqk pk P Z˚q (11.66)

These Aω are much simpler than the Aω predicted by the general theory (see
(11.38) ). In the present instance, the general Aω would be of the form:

Aω “
ÿ

ăn,ją´j“k

u
njr
j1

. . . u
njr
j1

Ajω,n Buj
`

9ω “ p2πiq kq
˘

(11.67)

Comparison with generic composition equations.

To grasp the scope of the simplification, let us start from r analytic germs:

g1pzq “ z ` 1` ε1
ÿ

2ďn

a1,n`1 z
´n (11.68)

gipzq “ z ` εi
ÿ

2ďn

ai,n`1 z
´n

p2 ď i ă rq (11.69)
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and consider these similar-looking composition equations:

id “ W pfq “ f ˝r ˝ g1 (11.70)

id “ W pfq “ f ˝ gr ˝ ¨ ¨ ¨ ˝ f ˝ g1˝ (11.71)

Both equations admit a unique, generically divergent, and always resurgent
solution f , with the same resurgence support Ω :“ p2πiq pZ˚ ´ rZ˚q, the
same exponential polynomials

SW pλq “ SW pλq “ eλ{r
1´ eλ

1´ eλ{r
, RW pλq “ RW pλq ” 0 (11.72)

In both cases the saturated solutions fpz,uq have unramified116 components
fnpzq P Crrz´1ss and verify the Bridge Equation. But whereas for the it-
eration equation (11.70) the corresponding invariant operators are of the
elementary form (11.66), in the case of the mixed equation (11.71) they are
(as soon as r ě 3) of the general form (11.67), without any universally valid
a priori relations117 between the various scalars Ajω,n.

11.5 Stokes constants and coefficient asymptotics.

Let rϕpzq be a resurgent power series and pϕpζq its Borel transform. Let Ωprox

the finite set of its ‘closest singular points’ ω in the Borel plane, i.e. those
lying on the boundary of the convergence disk of ϕ̂pζq, and let ∆ω rϕpzq be
the corresonding alien derivatives.

∆ω rϕpzq “ Aω rϕωpzq “ Aω rφωpω zq pω P Ωprox , z „ 8q (11.73)

rϕpzq “
ÿ

an z
´n ; rφωpzq “ Aω

ÿ

bω,m z
´m (11.74)

ϕ̂pζq “
ÿ

an
ζn´1

pn´1q!
; φ̂ωpζq “ Aω

ÿ

bω,m
ζm´1

pm´1q!
(11.75)

In all instances of ‘equational resurgence’, in particular in all cases of resur-
gence resulting for composition equations, the coefficients an of rϕpzq as well
as the coefficients bω,m of the alien derivatives are easily accessible (by for-
mal calculations) – the former exactly, the latter up to multiplication by the

116because RW pλq “ RW pλq ” 0.
117Other than the trivial relations pointed out in Remark 3 above (in this case: depen-

dence on 9ω alone). The shortest way to prove this is to expand each Ajω,n as an entire
function of ε :“ pε1, . . . , εrq and to push the Taylor expansion in ε far enough to disprove
the possibility of any given a priori constraints between the scalars Ajω,n.
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invariants (Stokes constants) Aω in front of them. This leads, for the calcula-
tion of the dominant Stokes constants Aω (those with ‘closest’ indices ω), to a
method which relies solely on the asymptotics of the an’s and the knowledge
of a few first coefficients bω,m, and is not just simpler, but numerically more
efficient than analytic continution in the Borel plane.

Simple contour integration in the Borel plane shows that

an
pn´1q!

“ Aω
ÿ

ωPΩprox

ω´n
ż 1`ε

1

pφωpt´1q t´n dt`Op|ω p1` εq|´nq (11.76)

an
pn´1q!

“ Aω
ÿ

ωPΩprox

ω´n

2πi

ż

Γε

qφωp1´tq t
´n dt`Op|ω p1` εq|´nq (11.77)

The second variant, which relies on the majors118
qφωpζq and on a contour

integration Γε that avoids the origin, applies even when the minor pφωpζq

fails to be integrable there, due to positive powers of z in rφωpzq. The same
recourse to majors makes it possible to extend the identity

pn´m´1q!

pn´1q!
“

ż `8

1

pt´1qḿ 1

pm´1q!
t´n dt if n ą m ą 1 (11.78)

to all real pairs m,n with n ą m. Assuming that sole condition, the conti-
bution of bω,m to an is thus ω´n pn´m´1q!. Therefore, for any fixed m0 ą 0,
as n goes to `8, we have

an “
ÿ

ωPΩprox
1

ω´nAω
ÿ

măm0

pn´m´1q! bω,m ` Rempn,m0q (11.79)

with a remainder Rempn,m0q bounded by Const .pn´m0´1q! and negligible
compared with the preceding terms.

So far, the indices n (resp. m) were assumed to form increasing sequences
in Z (resp. R), but we may also, and often must, allow n to range over 1

q
N.

The relation (11.79) still holds, provided we divide its right-hand side by q
and replace Ωprox

1 by Ωprox
q (defined as containing q consecutive copies, on q

consecutive Riemann sheets, of each closest 9ω). The identity (11.78) remains
in force, and so does the asymptotic formula (11.79), again with Ωprox

q in
place of Ωprox

1 .
These results still hold in the not infrequent case119 when some of the

φωpzq are no longer of the form (11.74) but of the form

rφωpzq “ ec z
α

zm0
ÿ

mP 1
q
N

bω,m z
´m with 0 ă α “

p

q
ă 1 (11.80)

118See (2.10).
119see the Proposition 11.2 supra.
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Expanding the exponential ec z
α

and multiplying it with the power series, one
gets a bilateral power series rψωpzq, each coefficient of which is expressible as
an infinite but convergent 120 sum (with contributions from the two factor
series). One may then apply the asymptotic formula (11.77) without com-

punction to this bilateral rψωpzq, or rather to the major qψωpζq of its Borel
transform.

The method also applies when some of the alien derivatives ∆ω rϕpzq in-
volve not one Stokes constant Aω, as in (11.74), but several of them, as in
the situation of Proposition 11.2 supra or in the case of intertwined germs:
see the example §13.2 infra and in particular (13.11).

12 Some examples of composition equations.

To illustrate the general results of §11 and in particular the method for the
calculation of the dominant Stokes constants, we shall now examine a series
of simple composition equations W pfq“ id of 0-alternance.121 To avoid the
(inessential) complications that come from the ramification factors zăn,ρą,
we will plump for data gipzq “ z ` σi ` τi{z ` ... with vanishing residues
τi. This way, we shall have only unramified power series to handle, and

operators ∆ω or Aω with indices ω in C˚ rather than C‚ :“ ČC´t0u. On the
other hand, to spice up matters a bit, we shall impose additional symmetries
on our composition equations (like invariance under z ÞÑ ´z) and examine
how these symmetries impact the resurgence pattern.

12.1 Example of non-polarising composition equation.

Let our first composition equation be:

g1 ˝ f ˝ g1 “ f ˝ g2 ˝ f with g1 :“ T1 ; g2 :“ T1 ˝T3 ˝T1 (12.1)

and with T1pzq :“ z`1 , T3pzq :“ pz3`1q1{3. The symmetries in the equation
ensure that the formal solution will verify:

rf ˝ τ ˝ rf ˝ τ “ id with τpzq :“ ´z

The main (exponential-free) component of the full solution rfpz,uq is of the
form:

rfpzq “ z`
ÿ

2ďn

anz
´n
“ z´

1

3
z´2
`2 z´4

´
1

9
z´5
´

110

3
z´6
`2 z´7

`
113719

81
z´8 . . .

120The convergence comes from α being ă 1 and from φω being Gevey-1.
121Whenever convenient, we shall spread the various composition factors f˝mi and gi of

(11.1) on both sides of the equation.
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The second exponential polynomial RW is ” 0 (since g1 and g2 have no
residues). The first polynomial SW pλq “ e2λ ´ eλ ` 1 “ 0 has simple roots

eλ “
1

2
˘

‘

3

2
i “ e˘πi{3 ; λ P ˘

πi

3
` 2πiZ (12.2)

which all lie on the imaginary axis (so that we have a non-polarising situation)
but verify many resonance relations (so that we must apply Proposition 11.1).

The resurgence support is Ω :“ pπi{3qZ˚. All alien derivatives δ rf “∆ω
rf

satisfy the same linear homogeneous equation:

pδ rfq ˝ g1 ´ pδ rfq ˝ g2 ˝
rf ´ pδ rfq . pf ˝ g2q

1
˝ rf “ 0

but its solutions depend on the exponential factor e´ωz implicit in ∆ω:

p∆ω
rfqpzq “ Aω e

´ωx
ÿ

0ďn

b`n pωq z
´n if ω P `

π i

3
` 2πiZ (12.3)

p∆ω
rfqpzq “ Aω e

´ωz
ÿ

0ďn

b´n pωq z
´n if ω P ´

π i

3
` 2πiZ (12.4)

The coefficients b˘n pωq P Qrωs`i
‘

3Qrωs are polynomials of degree rn
2
s in ω.

One goes from b`n pωq to b´n pωq by complex conjugation. Thus:

b`0 pωq “ 1 , b`1 pωq “ 0 , b`2 pωq “
1

6
p1`

‘

3

3
iq ω , b`3 pωq “

1

3
´

‘

3

9
i´

2

9
ω ,

b`4 pωq “
2

3
´ p1`

4
‘

3

9
iq ω `

1

108
p1`

‘

3 iq ω2

The only non-elementary part in the expansions (12.3)-(12.4) are the Stokes
constants Aω. For the dominant pair (corresponding to ω0 :“ ˘πi{3), the
method of coefficient asymptotics quickly yields more than 50 exact digits:

Aω0 “ 0.2011824344559242849485968276352735865666075898842030767963 . . .

12.2 Example of polarising composition equations.

Consider now the simplest polarising composition equation

f ˝ f ˝ g1 “ g2 ˝ f with g1pzq “ z ` 1 ; g2pzq “ z ` 1` z´2 (12.5)

and its power series solution

rfpzq “ z `
ÿ

2ďn

anz
´n
“ z ` z´2

` 4 z´3
` 18 z´4

` 104 z´5
` . . . (12.6)
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The first exponential polynomial SW pλq :“ 2 eλ´1 again has only simple, but
strongly resonating zeros λj :“ ´ log 2 ` p2πiq j, giving rise to a resurgence
support

Ω “
`

log 2` p2πiqZ
˘

ď

1ďk

`

´ k log 2` p2πiqZ
˘˘

(12.7)

All alien derivatives δ rf “ ∆ω
rf verify the same linear homogeneous equation

pδ rfq ˝ rf ˝ g1 ` p
rf 1 ˝ rf ˝ g1q.pδ rfq ˝ g1 “ pg

1
2 ˝

rfq.pδ rfq (12.8)

and are of the form

p∆ω
rfqpzq “ Aω e

´ωz
ÿ

0ďn

bnpωqz
´n with ω P log 2` 2πiZ (12.9)

The coefficients bnpωq are polynomials of degree n in ω:

b0 “ 1 , b1 “ ´
1

2
ω , b2 “

1

2
´

3

4
ω `

1

8
ω2 , b3 “ ´

1

2
´

9

4
ω `

5

12
ω2
´

1

48
ω3

The dominant Stokes constant Aω0 (with ω0 “ log 2) is

Aω0 :“ 1.3677285744847305159844172943831656775064269 . . . (12.10)

12.3 Example of polarising composition equation with
additional symmetry.

Let us again consider a polarising composition equation, but with an added
built-in symmetry:

g1 ˝ f ˝ f ˝ f ˝ g1 “ f ˝ g2 ˝ f with g1 “ T1 ; g2 :“ T1 ˝ T3 ˝ T1 (12.11)

and with T1pzq :“ z ` 1 , T3pzq :“ pz3 ` 1q1{3. Since

T
˝p´1q
k “ τ ˝ Tk ˝ τ @k odd with τpzq :“ ´z (12.12)

the symmetries in the equation (12.11) ensure that

f ˝p´1q
“ τ ˝ f ˝ τ (12.13)

The first exponential polynomial SW pλq :“ e2λ ´ 3 eλ ` 1 has only simple,
highly resonant zeros λ˘j symmetrical with respect to the origin:

λ˘j :“ log
`

p3˘
‘

5q{2
˘

˘ p2πiq j “ ˘ log
`

p3`
‘

5q{2
˘

˘ p2πiq j (12.14)
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giving rise to the resurgent support

Ω :“ logp
3

2
`

‘

5

2
qZ˚ ` p2πiqZ (12.15)

The power series solution of the composition equation is of the form:

fpzq “ z`
ÿ

2ďn

anz
´n
“ z´

1

3
z´2
`2 z´4

´
1

9
z´5
´

394

9
z´6
´2 z´7

`
162005

81
z´8
`. . .

The associated linear homogeneous equation for δ rf “ ∆ω
rf reads

pδfq ˝ f 2
˝ g1 . g

1
1 ˝ f

3
˝ g1 ` pδfq ˝ f ˝ g1 . pg1 ˝ fq

1
˝ f 2

˝ g1

`pδfq ˝ g1 . pg1 ˝ f
2
q
1
˝ f ˝ g1 ´ pδfq ˝ g2 ˝ f ´ pδfq . pf ˝ g2q

1
˝ f “ 0

leading to alien derivatives of the form:

p∆ωfqpzq “ Aω e
´ωz

ÿ

0ďn

b`n pωq z
´n if ω P ω` ` 2πiZ (12.16)

“ Aω e
´ωz

ÿ

0ďn

b´n pωq z
´n if ω P ω´ ` 2πiZ (12.17)

with ω “ ω˘ mod 2πiZ
`

ω˘ “ logp
3

2
˘

‘

5

2
q “ ˘ 2.6180339...

˘

The coefficients b˘n pωq P Qrωs`
‘

5Qrωs are polynomials of degree n in ω,
with b`n pωq and b´n pωq exchanged under rational conjugation

‘

5 ÞÑ ´
‘

5.

b`0 pωq “ 1 , b`1 pωq “ ´
1

3
ω , b`2 pωq “

1

3
` p´

1

6
`

‘

5

5
qω `

1

18
ω2 ,

b`3 pωq “ ´
1

3
´

2
‘

5

5
´

287

270
ω ` p

1

18
`

8
‘

5

135
qω2

´
1

162
ω3

The dominant Stokes constant is

Aω˘ :“ 0.150789748410623885710947272 . . .
`

ω˘ “ ˘ logp
3

2
`

‘

5

2
q
˘

(12.18)

12.4 Parity separation.

To any partition N˚ “
š

1ďiďr Ai there clearly corresponds a unique factori-
sation of every identity-tangent germ

f “ f1 ˝ f2 ˝ . . . fr with Ak-supported factors fk (12.19)

whereby “A-supported” may refer to the germ itself

fpzq “ z
`

1`
ÿ

nPA

an z
´n
˘

(12.20)
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or, what is dynamically more meaningful,122 to its infinitesimal generator f˚:

f˚pzq “ z
`

ÿ

nPA

αn z
´n
˘

with fpzq “
´

exp
`

f˚pzq Bz
˘

¯

.z. (12.21)

For r “ 2 in particular, and with Ne resp. No standing for the sets of
even and odd integers, this leads to a parity separation

f “ fe ˝ fo with fe “ τ ˝ fe ˝ τ and f ˝´1
o “ τ ˝ fo ˝ τ (12.22)

Here τ stands as usual for the reflection τ :“ z ÞÑ ´z. The solutions fe, fo are
clearly resurgent, since finding fo reduces to extracting the iteration square
root of τ ˝ f ˝´1 ˝ τ ˝ f . If for instance fpzq “ z ` 1 ` op1q, the resurgence
support Ω is 2πiZ˚, and fo verifies the resurgence equation (11.50) with
t “ 1{2. This in turn determines the resurgence pattern of fe as well as
the displays Dpl fe, Dpl fo. The latter are subject to no constraints other
than those flowing from the three relations (12.20) re-written in terms of the
displays.

For r ě 3 and τr :“ z ÞÑ er z with er :“ expp2πi{rq, there are two equally
natural generalistions of the parity factorisation (12.22). One is

f “ fr,e ˝ fr,o with (12.23)

fr,e “ τr ˝ fr,e ˝ τ
˝´1
r and pfr,o ˝ τrq

˝ r
“ id (12.24)

and the other is

f “ fr,0 ˝ fr,1 ˝ ¨ ¨ ¨ ˝ fr,r´1 with (12.25)

f
˝ ekr
r,k “ τr ˝ fr,k ˝ τ

˝´1
r and ekr “ expp2πi

k

r
q (12.26)

The condition (12.25) amounts to asking that the infinitesimal generator of
fr,k be supported by the set Nr,k of all n such that n ” k mod r. Here again,
the factors on the right-hand side of (12.23) or (12.25) are always resurgent,
with a single critical time z but rather complex resurgent supports Ω as soon
as r ě 3.

13 More examples: twins and continued con-

jugation.

13.1 Reminders about formal, identity-tangent twins.

Intertwined formal123 germs f, g, or twins for short, are non-commuting for-

122The two conditions are never equivalent.
123To alleviate notations in this introductury paragraph, we omit all tildes even on formal

objects.
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mal germs (power-serial or transserial) related by some non-trivial compo-
sition identity W pf, gq “ id . It was long thought that no formal, identity-
tangent, power-serial twins pf, gq existed, until in [EV] we came up with a
series of examples and developped a detailed typology of twins. Whether a
given equation W admits twin solutions, and how many of them, essentially
depends on the series wpa, bq :“ logW pea, ebq viewed as an element of the
(closure of the) Lie algebra Liera, bs freely generated by a, b, and on its non-
vanishing bi-homogeneous components wp,qpa, bq. Let MW :“ tpf, gq{conj u
be the set of all formal identity-tangent solutions of W pf, gq“ id , quotiented
by all formal identity-tangent conjugations h : pf, gq ÞÑph˝f˝h˝´1, h˝g˝h˝´1q.
WhenMW is a discrete (necessarily finite) set, we speak of rigid twins. When
not, MW is a discrete collection of manifoldsMW,k and the key index – the
degree of freedom – is sup dimpMW,kq.

Being rather thin on the ground, twins have something of the power of
fascination proper to sporadic objects. For a start, it appears that twins pf, gq
can always be rendered resurgent after simultaneous conjugation by some
suitable h. Two questions then arise. First, what are their non-removable
resurgence invariants (Stokes constants), i.e. those invariants that cannot be
eliminated under any (common) resurgent conjugation h? Second, do there
exist analytic twins pf, gq? Regarding the first question, we shall show on an
example how to isolate the removable invariants, get rid of them, and isolate
the non-removable core. As for the second question, the answer is either no
(most likely) or very very few, but the matter appears extremely hard to
settle.

Reminder: normal forms of formal identity-tangent germs.

Let θp,σ,ρ be the identity-tangent germ of tangency order p defined by the
power series in z´1:

θp,σ,ρpzq :“ z `
ÿ

1ďn

1

n!

” σ z

zp`ρ

Bz

p

ın

.z “ z`
σ

p
z1́ p

`

´

p1´pqσ2

2 p2
´
ρσ

p

¯

z1́ 2p
`. . .

or equivatently by the relation

θ˚p,σ,ρ˝ θp,σ,ρ “ 1`θ˚p,σ,ρ with θ˚p,σ,ρpzq :“
1

σ

“

zp`ρ logpzpq
‰

(13.1)

All θp,σ,ρ essentially reduce to θ1,1,ρ, as evidenced by the relations:

θ˝tp,σ,ρ ” θp,t σ,ρ (13.2)

δc ˝ θp,σ,ρ ˝ δc´1 ” θp,cpσ,cpρ with δcpzq :“ c.z (13.3)

πq´1 ˝ θp,σ,ρ ˝ πq ” θpq,σ,ρ with πqpzq :“ zq (13.4)
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and any identity-tangent, power-serial rf is conjugate to a well-defined θp,σ,ρ
under some identity-tangent, power-serial rf#, which is itself determined up
to pre-compostion by any iterate θ˝tp,σ,ρ:

rf#
˝ rf “ θp,σ,ρ ˝ rf#

p rfpzq „ z, rf#
pzq „ zq (13.5)

13.2 Simplest instance of rigid twins.

The simplest instance of rigid twin equation is:

W pf, gq“ id with W pf, gq :“ g˝´1
˝f ˝´3

˝g˝f ˝g˝´3
˝f ˝g˝3˝f (13.6)

The identity

W pf ˝´1, gq “ pg˝´1
˝f ˝´3

˝ gq˝
`

W pf, gq
˘˝´1

˝pg˝´1
˝f ˝3˝gq (13.7)

shows that the solutions of (13.6) go by pairs pf, gq and pf ˝´1, gq. Moreover,
if one restricts oneself to power-series solutions at infinity, these are auto-
matically identity-tangent. More precisely, using the normal forms θp,σ,ρ of
§13.1 supra, one checks that f and g are necessarily conjugate to θ1,c,0 and
θ2,´4c2,´4c2 respectively, under different conjugations. But a common dilation
z ÞÑ c1 z makes it possible to fix c arbitrarily, so that we may normalise f
to the unit shift θ1,1,0 : z ÞÑ z ` 1. The twin g is then defined up to con-
jugation by iterates of f , i.e. by shifts, and we may focus on the (unique)
determination that commutes with τ : z ÞÑ ´z. We thus get twins pf, gq of
the form:124

fpzq “ z ` 1 and gpzq “ z `
ÿ

1ďn

a2n´1 z
´2n`1 with (13.8)

gpzq “ z´2 z´1
´6 z´3

´
1522

39
z´5
´

21659

65
z´7
´

2279405017

692055
z´9 . . . (13.9)

Our composition equation W pf, gq “ id being highly alternate, the proposi-
tions of §11.2 do not apply, even after the first twin has been fixed (nor-
malised). Nevertheless, a direct investigation shows that the series g in
(13.8), (13.9) is not only Gevrey 1 but also resurgent with critical time z
and resurgence support Ω “ 2πiZ˚. The linearised equation verified by all
alien derivatives δg “ ∆ωg reads:

ÿ

1ďiď8

εi
δg ˝ hpipzq

Bhqipzq
“ 0 (13.10)

124for simplicity we drop the tildae.
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with upper factors hpi , lower factors Bhqi , and coefficients εi defined as follows:

h1 “ f } h5 “ f ˝ h4 } h9 “ f ˝ h8 }

h2 “ g ˝ h1 } h6 “ g´1 ˝ h5 } h10 “ g ˝ h9 }

h3 “ g ˝ h2 } h7 “ g´1 ˝ h6 } h11 “ f´3
˝ h10 }

h4 “ g ˝ h3 } h8 “ g´1 ˝ h7 } h12 “ g´1 ˝ h11 }

pp1, q1q “ p1, 2q } pp5, q5q “ p7, 6q } ε1 “ ` } ε5 “ ´ }

pp2, q2q “ p2, 3q } pp6, q6q “ p8, 7q } ε2 “ ` } ε6 “ ´ }

pp3, q3q “ p3, 4q } pp7, q7q “ p9, 10q } ε3 “ ` } ε7 “ ` }

pp4, q4q “ p6, 5q } pp8, q8q “ p12, 11q } ε4 “ ´ } ε8 “ ´ }

In agreement with the fact that the first exponential polynomial SW pλq “
peλ ´ 1q3 has only zeros of order three, the linearised equation (13.10) yields
alien derivatives with three a priori free Stokes constants Aω, A

˘
ω in them:125

p∆ω gqpzq “ `Aω e
´ω z

pω zq´1
ÿ

0ďn

bnpωq pω zq
´n (13.11)

`A`ω e
´pω z`

?
24ω zq

p24ω zq´
7
4

ÿ

0ďn

b`n
2
pωq p24ω zq´

n
2

`A´ω e
´pω z´

?
24ω zq

p24ω zq´
7
4

ÿ

0ďn

b´n
2
pωq p24ω zq´

n
2

Each bnpωq and each b˘n{2pωq is an even polynomial of degree 2n in ω. Unlike

the b˘n{2pωq, the bnpωq carry no terms of degree less than n ´ 1. Moreover,

the double series b˘n{2pωq reduces to one, since b`n{2pωq{b
´

n{2pωq ” p´1qn. Here
are the first polynomials:

b0pωq “ 1 , b1pωq “ ´1` ω2 , b2pωq “ 3ω2
`

2

3
ω4

b3pωq “ ´9ω2
` 6ω4

`
1

3
ω6 , b4pωq “

761

39
ω4
` 6ω6

`
2

15
ω8

b5pωq “ ´
3805

39
ω4
`

1873

39
ω6
` 6ω8

`
2

45
ω10

b6pωq “
21659

130
ω6
`

2224

39
ω8
` 2ω10

`
4

315
ω12

125If we had to do with a composition equation W pf, gq “ id of 0-alternance (in g),

the Proposition 11.1 would predict subexpontial factors of the form eρp2{3qz
2{3
`ρp1{3qz1{3 .

Here, however, we do not have 0-alternance, and so there is no contradiction in finding

subexpontial factors of the form eρp1{2qz
1{2

.
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b`0 pωq “ 1

b`1
2

pωq “ ´
93

8
` 14ω2

b`1 pωq “
12465

128
`

105

4
ω2
` 98ω4

b`3
2

pωq “ ´
750327

1024
`

28383

64
ω2
`

92669

60
ω4
`

1372

3
ω6

b`2 pωq “
178961931

32768
´

2143389

512
ω2
`

4952933

320
ω4
`

412013

30
ω6
`

4802

3
ω8

Although the indices ω of simple alien derivations have to be ­“ 0, the ex-
istence of composite derivations with zero-sum indices, such as r∆ω2 ,∆ω1s

with 9ω1` 9ω2 “ 0, forces us to consider the solutions of the linearised equation
(13.10) for ω “ 0 also. These exponential-free solutions assume a somewhat
special form:

δgpzq “ ` C z´2
ÿ

0ďn

c2n pzq
´2n (13.12)

` C` z´p
1
2
`
?
23
2
iq

ÿ

0ďn

c`2n z
´2n

` C´ z´p
1
2
´
?
23
2
iq

ÿ

0ďn

c´2n z
´2n

with only even-indexed coefficients c2n, c
`
2n, c

´
2n (the latter two complex-conjugate):

c0 “ 1 } c˘0 “ 1

c2 “ 9 } c˘2 “ ´28
9
¯ 17

?
23

9
i

c4 “ 3805
39

} c˘4 “ ´3682829
45630

¯ 131851
?

23
45630

i

c6 “ 151613
130

} c˘6 “ ´27042544817
37690380

˘ 3136135007
?

23
37690380

i

c8 “ 2279405017
153790

} c˘8 “ ´1119884000708633
213139098900

˘ 49083606237437
?

23
30448442700

i

Due to the presence of the subexponential factors e˘
?

24ωz, the Stokes
constants Aω and A˘ω in (13.11) are more difficult to calculate with high
accuracy than in the examples of §12. Nonetheless, the dominant ones (for
ω “ ˘2πi) have been computed to 12 exact digits – enough to make sure
that our twin equation admits no analytic solution, only resurgent ones.

107



13.3 Removable and non-removable invariants.

To fully describe the resurgence properties of g, we must form the general
solution gpz,uq of W pf, gq “ id , with f “ T “ the unit shift. This we do by
introducing parameters uj,µ with j P Z and µ P t´1, 0, 1u and by adding:

(i) the basic component gpzq as in (13.8)-(13.9).

(ii) the pilot components eωjz
ř

´1ďµď1 uj,µ gnj,µpzq
`

ωj :“p2πiqj, j ­“0
˘

,

obtained by replacing Aω, A
˘
ω in (13.11) by uj,0, uj,˘1 with ω “ ´ωj.

(iii) the pilot component
ř

´1ďµď1 u0,µ gn0,µpzq,

obtained by replacing C,C˘ in (13.12) by u0,0, u0,˘1.

(iv) the general components ep2πiqăn,jąz
ř

´1ďµď1 u
n g

n
pzq

`

|n| ą 1
˘

,

inductively calculable from the pilot components.
Although W pf, gq “ id , viewed as a composition equation in g, does not

have 0-alternance, the Bridge equation

∆ω gpz,uq “ Aω gpz,uq @ω P Ω :“ p2πiqZ˚ (13.13)

still applies, with differential operators Aω of the type indicated in Proposi-
tion 11.2. Moreover, purely formal considerations show that the displays of
g
u
pzq :“ gpz,uq and gpzq must be of the form:

Dpl g
u
“ p

˚Puq ˝ pDpl g
u
q ˝ pP ˚uq (13.14)

Dpl g “ p
˚P q ˝ pDpl gq ˝ pP ˚q

´

g“g
0
, P ˚“P ˚0 ,

˚P “˚P0

¯

(13.15)

with maximal and mutually reciprocal factors P ˚upzq and ˚Pupzq that depend
only on the variables uj,0, since only these variables are accompanied by pure

exponentials eω z (without perturbating subexponential factors e˘
?

24ω z) and
therefore lead to factors P ˚upzq and ˚Pupzq that commute with the unit shift
T . But f “ T . There must therefore exist an analytic germ f , of tangency
orders 1 and with resurgent iterators f˚, ˚f such that

Dpl f˚ “ P ˚ ˝ f˚ , Dpl ˚f “ ˚f ˝ ˚P (13.16)

with the very same P ˚, ˚P as in (13.15) above. We can therefore jointly
conjugate the semi-normalised pair pf, gq to a new pair pf, gq:

pf, gq ÞÑ pf, gq :“ p˚f ˝f ˝f˚, ˚f ˝g˝f˚q (13.17)

whose displays will be

Dpl f “ f , Dpl g “ ˚f ˝pDpl gq˝f˚ (13.18)
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The loss of semi-normalisation in pf, gq is more than made up by the concom-
mitant simplification in the displays. Indeed, unlike Dpl g, the new display
Dpl g no longer carries the removable invariants (Stokes constants) attached
to P ˚, ˚P and accompanied by the variables uj,0. It retains only the non-
removable invariants (Stokes constants) attached to the core Dpl g of Dpl g
and accompanied by the variables uj,˘1.

The ‘cleansed’ pair pf, gq is of course defined only up to a joint analytic
conjugation. Its construction depends on the procedure known as ‘synthe-
sis’ (constructing f from its analytic invariants, carried here by P ˚) and,
although there exist privileged solutions (the so-called ‘spherical synthesis’,
see rE4s), the construction is computationally very costly. It is not known
whether there exist more direct ways of arriving as such pairs pf, gq cleansed
of all removable invariants. It should be noted, moreover, that in any such
pair it is f , not g, that has to be analytic. This dissymmetry stems from
the fact that, whereas f and g have tangency orders 1 and 2 respectively, we
have only one intrinsic critical time, namely z, not z2.

13.4 Simplest instance of non-rigid twins.

Let W pA,Bq be an element of the group ă A,B ą freely generated by the
symbolsA,B. Let wpa, bq be its formal infinitesimal generator, of components
wp,qpa, bq in the Lie algebra freely generated by a, b:

logpW pea, ebqq “
ÿ

0ďp,q, 1ďp̀ q

wp,qpa, bq
`

wp,qpa, bq P Liep,qpa, bq
˘

(13.19)

Assume that there is a point pp0, q0qPN˚ N̂˚ and two lines Lj passing through
pp0, q0q, of equations Ljpp, qq“pp´p0q`lj pq´q0q“0, with positive anti-slopes
0 ă l1 ă l2, and such that:
(i) L1, L2 are contiguous, in the sense that there exist no points in N˚ˆN˚
lying strictly between L1 and L2

(ii) for all points pp, qq below L1 or L2, i.e. such that L1pp, qq`L2pp, qq ă 0,
the corresponding component of wpa, bq vanishes: wp,qpa, bq “ 0.
(iii) wp0,q0pa, bq ­“ 0 but wp0,q0pz

1´pB, z1´qBq ” 0 , @p, q.
Then for almost all integers pp, qq such that l1ă

p
q
ă l2, the composition

equation W pf, gq “ id admits identity-tangent solutions of the form

fpzq “ z
`

1` apz
´p
` . . .

˘

, gpzq “ z
`

1` bqz
´q
` . . .

˘

(13.20)

More generally, for all but a finite number of real numbers α Psl1, l2r, there
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exist identity-tangent, ramified twins of the form

fpzq “ z
`

1`
ÿ

1ďm`n

am,nz
´m´nα

q pa0,1 ­“ 0q (13.21)

gpzq “ z
`

1`
ÿ

1ďm`n

bm,nz
´m´nα

q pb1,0 ­“ 0q (13.22)

This construction becomes possible for all pp0, q0q ě p3, 3q but ­“ p3, 3q. Here
is the simplest example, with pp0, q0q “ p4, 3q and a Lie component w4,3pa, bq
of the form (with the notation x̄y :“ rx, ys):

w4,3“rrb, ā
3bs, ābs`6rrb, ābs, ā3bs´3rrb, ā2bs, ā2bs´3rrāb, ā2bs, ābs (13.23)

“rrra, b̄2as, as, b̄as´6rrra, b̄as, as, b̄2as´3rra, b̄as, ra, b̄2ass`4rrra, b̄as, b̄as, b̄as

One can easily construct words W pA,Bq that verify all three conditions (i)-
(ii)-(iii) relative to the contiguous lines L1, L2 or L2, L3, of equations

L1pp, qq :“p`q´7 , L2pp, qq :“2p`3q´17 , L3pp, qq :“p`2q´10 (13.24)

and of slopes l1 :“ 1, l2 “
2
3
, l3 “

1
2
.

In [EV], §7.5, pp 77-81, instances of equations W pf, gq “ id are even
constructed that admit twin solutions of the above type for any tangency
ratio p{q ą 0 or any real α ą 0/ This has the advantage of permitting
expansions in the free parameter α, in particular for α near 0 or 8, leading,
for each finite derivative in α, to unusual but rather tractable resurgence
patterns, all linked to linear equations of a mixed, difference-cum-differential
type.

13.5 An analogue of continued fractions: continued con-
jugation.

A ‘p-approximant’ is any anlytic germ ϑ of tangency order p and of the form:

ϑ˚˝ ϑ “ 1` ϑ˚ with ϑ˚pzq :“
1

σ

“

zp `
ÿ

1ăkăp

τk z
k
` ρ logpzpq

‰

(13.25)

For any power-serial rf of tangency order p, there is clearly a unique power-
serial rf 7 of tangency order p7 ą p and a unique p-approximant ϑ such that:

rf 7 ˝ rf “ ϑ ˝ rf 7
´

rfpzq“z`Opz1´p
q , rf 7pzq“z`Opz1´p7

q

¯

(13.26)
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This opens the way to a continuous conjugation:126

f Ñ f 7 Ñ f 72 Ñ . . . Ñ f 7n Ñ . . .

ϑ0 Ñ ϑ1 Ñ ϑ2 Ñ . . . Ñ ϑn Ñ . . .

with pn-approximants ϑn of strictly increasing tangency orders pn.

Resurgence and display of the nth conjugator f 7n.

If we start from an analytic f , the successive conjugators f 7n are of course
polycritically resurgent, with critical times z1 :“ zp1 ,. . . , zn :“ zpn . The cor-
responding resurgence is best captured by the polycritical displays Dplf 7n.
Their general form127 is easily found, inductively on n, by solving the equa-
tions:

pDpl f 7nq ˝ pDpl f 7pn´1q
q “ ϑpn´1 ˝ pDpl f 7nq (13.27)

with Dpl f 7pn´1q regarded as given and Dpl f 7n as unknown. However, not
only does the exact numerical determination of the nth-order Stokes constants
pose formidable problems128, but even their theoretical properties, growth
patterns etc, are far from clear.129 It is not even obvious what a priori
restrictions130 constrain the successive approximants ϑn when the initial germ
submitted to ‘continuous conjugation’ is, say, real-analytic at 8.

14 Tables: iso-derivations and iso-operators.

We use throughout the notations of §6 and §7.

126It has to rely on the approximants ϑ. The normal forms θp,σ,ρ of §13.1 would be
ill-suited for the purpose, if only because they would not lead to increasing sequences tpnu
of tangency orders.
127i.e. the form which it assumes when we regard the Stokes constants as free parameters.
128despite their definition being in principle fully constructive.
129Still, at each induction order n, one would expect an at-most-exponential growth

pattern in ω for Aω whenever the display is defined relative to a well-behaved system of
alien derivations, like the organic system.
130one thing at any rate is clear: there are no growth restrictions on their coefficients,

not even the key coefficients σn or ρn.
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14.1 The three bases Dnt‚u, Dst‚u, Dat‚u of ISO.

Table 1: Dst‚u in terms of Dnt‚u and vice versa.

All conversion formulae basically involve the same structure constants

ĂDn
tn0u

”
ÿ

1ďr

n1ďn2...ďnr
ÿ

n0“n1`...`nr

p´1qr Hn0
n1,...,nr

Dntn1,...,nru (14.1)

Dstn0u ”
ÿ

1ďr

n1ďn2...ďnr
ÿ

n0“n1`...`nr

p´2q1´r Hn0
n1,...,nr

Dntn1,...,nru (14.2)

Dntn0u ”
ÿ

1ďr

n1ďn2...ďnr
ÿ

n0“n1`...`nr

p`2q1´r Hn0
n1,...,nr

Dstn1,...,nru (14.3)

with positive integers Hn0
n1,...,nr

.

Dst1u “ Dnt1u Dnt1u “ Dst1u

Dst2u “ Dnt2u ´ 1
2
Dnt1

2u Dnt2u “ Dst2u ` 1
2
Dst1

2u

Dst3u “ Dnt3u ´ 2Dnt1,2u ` 1
2
Dnt1

3u Dnt3u “ Dnt3u ` 2Dst1,2u ` 1
2
Dst1

3u

Dst4u “ Dnt4u ´ 7
2
Dnt1,3u ´ 2Dnt2,2u ` 9

2
Dnt1

2,2u
´ 3

4
Dnt1

4u

Dst4u “ Dnt4u ` 7
2
Dnt1,3u ` 2Dnt2,2u ` 9

2
Dnt1

2,2u
` 3

4
Dnt1

4u

Table 2: Dat‚u in terms of Dnt‚u.

Dat1u “ `Dnt1u

Dat2u “ `Dnt2u ´ 1{2 Dnt1
2u;

Dat3u “ `Dnt3u ´Dnt2,1u

Dat4u “ `Dnt4u ´Dnt3,1u ´ 2 Dnt2
2u
`Dnt2,1

2u
´ 1{4 Dnt1

4u

Dat5u “ `Dnt5u ´Dnt4,1u ´ 5 Dnt3,2u `Dnt3,1
2u
` 2 Dnt2

2,1u
´Dnt2,1

3u

Dat6u “ `Dnt6u ´Dnt5,1u ´ 6 Dnt4,2u ´ 15{2 Dnt3
2u
`Dnt4,1

2u
` 11 Dnt3,2,1u

´4{3 Dnt2
3u
´Dnt3,1

3u
´ 1{2 Dnt2

2,12u
´ 5{2 Dnt2,1

4u
` 5{12 Dnt1

6u

Dat7u “ `Dnt7u ´Dnt6,1u ´ 7 Dnt5,2u ´ 21 Dnt4,3u `Dnt5,1
2u
` 13 Dnt4,2,1u

`11 Dnt3
2,1u
` 7 Dnt3,2

2u
´Dnt4,1

3u
´ 4 Dnt3,2,1

2u
´Dnt2

3,1u

´5{2 Dnt3,1
4u
´ 10 Dnt2

2,13u
` 5{2 Dnt2,1

5u
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Dat8u “ `Dnt8u ´Dntru7, 1s ´ 8 Dnt6,2u ´ 28 Dnt5,3u ´ 28 Dnt4
2u
`Dnt6,1

2u

`15 Dnt5,2,1u ` 49 Dnt4,3,1u ` 48 Dnt4,2
2u
` 25 Dnt3

2,2u
´Dnt5,1

3u

´21 Dnt4,2,1
2u
´ 11 Dnt3

2,12u
´ 39 Dnt3,2

2,1u
´ 64 Dnt2

4u
`Dnt4,1

4u

´16 Dnt3,2,1
3u
` 68 Dnt2

3,12u
´Dnt3,1

5u
´ 54 Dnt2

2,14u
` 21 Dnt2,1

6u

´21{8 Dnt1
8u

Dat9u “ `Dnt9u ´Dnt8,1u ´ 9 Dnt7,2u ´ 36 Dnt6,3u ´ 84 Dnt5,4u `Dnt7,1
2u

`17 Dnt6,2,1u ` 63 Dnt5,2
2u
` 64 Dnt5,3,1u ` 49 Dnt4

2,1u
` 195 Dnt4,3,2u

´45 Dnt3
3u
´Dnt6,1

3u
´ 24 Dnt5,2,1

2u
´ 43 Dnt4,3,1

2u
´ 81 Dnt4,2

2,1u

`110 Dnt3
2,2,1u

´ 435 Dnt3,2
3u
`Dnt5,1

4u
´ 12 Dnt4,2,1

3u
` 156 Dnt3,2

2,12u

`276 Dnt2
4,1u
´ 16 Dnt3

2,13u
´Dnt4,1

5u
´ 218 Dnt3,2,1

4u
´ 356 Dnt2

3,13u

`77{2 Dnt3,1
6u
` 231 Dnt2

2,15u
´ 77{2 Dnt2,1

7u

Dat10u
“ `Dnt10u

´Dnt9,1u ´ 10 Dnt8,2u ´ 45 Dnt7,3u ´ 120 Dnt6,4u ´ 105 Dnt5
2u

`Dnt8,1
2u
` 19 Dnt7,2,1u ` 80 Dnt6,2

2u
` 595 Dnt5,3,2u ` 204 Dnt5,4,1u

`244 Dnt4
2,2u
` 81 Dnt6,3,1u ´ 45 Dnt4,3

2u
´Dnt7,1

3u
´ 27 Dnt6,2,1

2u

´109 Dnt5,3,1
2u
´ 213 Dnt5,2

2,1u
´ 64 Dnt4

2,12u
´ 28 Dnt4,3,2,1u ´ 656 Dnt4,2

3u

`215 Dnt3
3,1u
´ 1510 Dnt3

2,22u
` 34 Dnt5,2,1

3u
`Dnt6,1

4u
´ 2 Dnt4,3,1

3u

`309 Dnt4,2
2,12u

` 159 Dnt3
2,2,12u

` 1556 Dnt3,2
3,1u
´ 144 Dnt2

5u
´Dnt5,1

5u

`248 Dnt2
4,12u

´ 370 Dnt4,2,1
4u
´ 851{4 Dnt3

2,14u
´ 2129 Dnt3,2

2,13u

`56 Dnt4,1
6u
´ 161 Dnt2

3,14u
` 1575{2 Dnt3,2,1

5u
´ 56 ˚Dnt3,1

7u

`1673{4 Dnt2
2,16u

´ 175 Dnt2,1
8u
` 35{2 Dnt1

10u
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14.2 The involution D ÞÑ rD in the three bases of ISO.

Table 3: ĂDn
t‚u

in terms of Dnt‚u.

ĂDn
t1u
“ ´Dnt1u

ĂDn
t2u
“ ´Dnt2u `Dnt1

2u

ĂDn
t3u
“ ´Dnt3u ` 4Dnt1,2u ´ 2Dnt1

3u

ĂDn
t4u
“ ´Dnt4u ` 7Dnt1,3u ` 4Dnt2

2u
´ 18Dnt1

2,2u
` 6Dnt1

4u

ĂDn
t5u
“ ´Dnt5u ` 11Dnt1,4u ` 15Dnt2,3u ´ 46Dnt1

2,3u
´ 52Dnt1,2

2u

`96Dnt1
3,2u
´ 24Dnt1

5u

ĂDn
t6u
“ ´Dnt6u ` 16Dnt1,5u ` 26Dnt2,4u ` 15Dnt3

2u
´ 101Dnt1

2,4u
´ 271Dnt1,2,3u

´52Dnt2
3u
` 326Dnt1

3,3u
` 548Dnt1

2,22u
´ 600Dnt1

4,2u
` 120Dnt1

6u

ĂDn
t7u
“ ´Dnt7u ` 22Dnt1,6u ` 42Dnt2,5u ` 56Dnt3,4u ´ 197Dnt1

2,5u
´ 629Dnt1,2,4u

´361Dnt1,3
2u
´ 427Dnt2

2,3u
` 932Dnt1

3,4u
` 3700Dnt1

2,2,3u
` 1408Dnt1,2

3u

´2556Dnt1
4,3u
´ 5688Dnt1

3,22u
` 4320Dnt1

5,2u
´ 720Dnt1

7u

ĂDn
t8u
“ ´Dnt8u ` 29Dnt1,7u ` 64Dnt2,6u ` 98Dnt3,5u ` 56Dnt4

2u
´ 351Dnt1

2,6u

´1317Dnt1,2,5u ´ 1743Dnt1,3,4u ´ 1056Dnt2
2,4u
´ 1215Dnt2,3

2u

`2311Dnt1
3,5u
` 6227Dnt1

2,32u
` 14613Dnt1,2

2,3u
` 10899Dnt1

2,2,4u

`1408Dnt2
4u
´ 9080Dnt1

4,4u
´ 47500Dnt1

3,2,3u
´ 26920Dnt1

2,23u

`22212Dnt1
5,3u
` 61416Dnt1

4,2,2u
´ 35280Dnt1

6,2u
` 5040Dnt1

8u

Table 4: ĂDa
t‚u

in terms of Dat‚u.

ĂDa
t1u
“ ´Dat1u

ĂDa
t2u
“ ´Dat2u

ĂDa
t3u
“ ´Dat3u ` 2 Dat2,1u

ĂDa
t4u
“ ´Dat4u ` 5 Dat3,1u ´ 5 Dat2,1

2u

ĂDa
t5u
“ ´Dat5u ` 9 Dat4,1u ` 5 Dat3,2u ´ 45{2 Dat3,1

2u
´ 5 Dat2

2,1u
` 15 Dat2,1

3u

ĂDa
t6u
“ ´Dat6u ` 14 Dat5,1u ` 14 Dat4,2u ´ 63 Dat4,1

2u
´ 70 Dat3,2,1u ` 105 Dat3,1

3u

`35 Dat2
2,12u

´ 105{2 Dat2,1
4u

ĂDa
t7u
“ ´Dat7u ` 20 Dat6,1u ` 28 Dat5,2u ` 14 Dat4,3u ´ 140 Dat5,1

2u
´ 280 Dat4,2,1u

´35 Dat3
2,1u
´ 70 Dat3,2

2u
` 420 Dat4,1

3u
` 770 Dat3,2,1

2u
´ 525 Dat3,1

4u

`140{3 Dat2
3,1u
´ 280 Dat2

2,13u
` 210 Dat2,1

5u
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ĂDa
t8u
“ ´Dat8u ` 27 Dat7,1u ` 48 Dat6,2u ` 42 Dat5,3u ´ 270 Dat6,1

2u

´756 Dat5,2,1u ´ 378 Dat4,3,1u ´ 336 Dat4,2
2u
´ 105 Dat3

2,2u

`1260 Dat5,1
3u
` 3780 Dat4,2,1

2u
` 945{2 Dat3

2,12u
` 2100 Dat3,2

2,1u

´2835 Dat4,1
4u
´ 6930 Dat3,2,1

3u
´ 840 Dat2

3,12u
` 2835 Dat3,1

5u

`1890 Dat2
2,14u

´ 945 Dat2,1
6u

Table 4 bis: ĂDa
t‚u

in terms of Dat‚u.

ĂDa
t1u
“ ´Dat1u

ĂDa
t2u
“ ´Dat2u

ĂDa
t3u
“ ´Dat3u `Dat2,1u

ĂDa
t4u
“ ´Dat4u ` 2 Dat3,1u ´Dat2,1

2u

ĂDa
t5u
“ ´Dat5u ` 3 Dat4,1u `Dat3,2u ´ 3 Dat3,1

2u
´ 1{2 Dat2

2,1u
`Dat2,1

3u

ĂDa
t6u
“ ´Dat6u ` 4 Dat5,1u ` 2 Dat4,2u ´ 6 Dat4,1

2u
´ 4 Dat3,2,1u ` 4 Dat3,1

3u

`Dat2
2,12u

´Dat2,1
4u

ĂDa
t7u
“ ´Dat7u ` 5 Dat6,1u ` 3 Dat5,2u `Dat4,3u ´ 10 Dat5,1

2u
´ 10 Dat4,2,1u

´Dat3
2,1u
´ 3{2 Dat3,2

2u
` 10 Dat4,1

3u
` 11 Dat3,2,1

2u
` 1{2 Dat2

3,1u

´5 Dat3,1
4u
´ 2 Dat2

2,13u
`Dat2,1

5u

ĂDa
t8u
“ ´Dat8u ` 6 Dat7,1u ` 4 Dat6,2u ` 2 Dat5,3u ´ 15 Dat6,1

2u
´ 18 Dat5,2,1u

´6 Dat4,3,1u ´ 4 Dat4,2
2u
´Dat3

2,2u
` 20 Dat5,1

3u
` 30 Dat4,2,1

2u

`3 Dat3
2,12u

` 10 Dat3,2
2,1u
´ 15 Dat4,1

4u
´ 22 Dat3,2,1

3u
´ 2 Dat2

3,12u

`6 Dat3,1
5u
` 3 Dat2

2,14u
´Dat2,1

6u

14.3 The co-product D ÞÑ σpDq in the three bases of ISO.

Table 5: σpDnt‚uq in terms of Dnt‚u.

Dnt1uÑ `1bDnt1u `Dnt1u b 1

Dnt2uÑ `1bDnt2u `Dnt1u bDnt1u `Dnt2u b 1

Dnt3uÑ `1bDnt3u ` 3Dnt1ubDnt2u `Dnt2ubDnt1u `Dnt1
2u
bDnt1u `Dnt3ub1

Dnt4uÑ `1bDnt4u ` 6Dnt1u bDnt3u ` 4Dnt2u bDnt2u ` 7Dnt1
2u
bDnt2u

`Dnt3u bDnt1u ` 3Dnt1,2u bDnt1u `Dnt1
3u
bDnt1u `Dnt4u b 1
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Dnt5uÑ `1bDnt5u ` 10Dnt1u bDnt4u ` 10Dnt2u bDnt3u ` 25Dnt1
2u
bDnt3u

`5Dnt3u bDnt2u ` 25Dnt1,2u bDnt2u ` 15Dnt1
3u
bDnt2u

`Dnt4u bDnt1u ` 4Dnt1,3u bDnt1u ` 3Dnt2
2u
bDnt1u

`6Dnt1
2,2u
bDnt1u `Dnt1

4u
bDnt1u `Dnt5u b 1

Dnt6uÑ `1bDnt6u ` 15Dnt1u bDnt5u ` 20Dnt2u bDnt4u ` 65Dnt1
2u
bDnt4u

`15Dnt3u bDnt3u ` 105Dnt1,2u bDnt3u ` 90Dnt1
3u
bDnt3u

`6Dnt4u bDnt2u ` 28Dnt2
2u
bDnt2u ` 39Dnt1,3u bDnt2u

`101Dnt1
2,2u
bDnt2u ` 31Dnt1

4u
bDnt2u `Dnt5u bDnt1u

`5Dnt1,4u bDnt1u ` 10Dnt2,3u bDnt1u ` 10Dnt1
2,3u
bDnt1u

`15Dnt1,2
2u
bDnt1u ` 10Dnt1

3,2u
bDnt1u `Dnt1

5u
bDnt1u `Dnt6u b 1

Dnt7uÑ `1bDnt7u ` 21Dnt1u bDnt6u ` 35Dnt2u bDnt5u ` 140Dnt1
2u
bDnt5u

`35Dnt3u bDnt4u ` 315Dnt1,2u bDnt4u ` 350Dnt1
3u
bDnt4u

`21Dnt4u bDnt3u ` 189Dnt1,3u bDnt3u ` 133Dnt2
2u
bDnt3u

`686Dnt1
2,2u
bDnt3u ` 301Dnt1

4u
bDnt3u ` 7Dnt5u bDnt2u

`56Dnt1,4u bDnt2u ` 105Dnt2,3u bDnt2u ` 273Dnt1,2
2u
bDnt2u

`189Dnt1
2,3u
bDnt2u ` 336Dnt1

3,2u
bDnt2u ` 63Dnt1

5u
bDnt2u

`Dnt6u bDnt1u ` 6Dnt1,5u bDnt1u ` 15Dnt2,4u bDnt1u

`10Dnt3
2u
bDnt1u ` 15Dnt1

2,4u
bDnt1u ` 60Dnt1,2,3u bDnt1u

`15Dnt2
3u
bDnt1u ` 20Dnt1

3,3u
bDnt1u ` 45Dnt1

2,22u
bDnt1u

`15Dnt1
4,2u
bDnt1u `Dnt1

6u
bDnt1u `Dnt7u b 1

Table 6: σpDst‚uq in terms of Dst‚u.

Dst1uÑ p1bDst1u `Dst1u b 1q

Dst2uÑ p1bDst2u `Dst2u b 1q

Dst3uÑ p1bDst3u `Dst3u b 1q ` pDst1u bDst2u ´Dst2u b Dt1u˚ q

Dst4uÑ p1bDst4u `Dst4u b 1q `
5

2
pDst1u bDst3u ´Dst3u bDst1uq

´
1

2
pDst1ubDst1,2u`Dst1,2ubDst1uq ` pDst2ubDst1

2u
`Dst1

2u
bDst2uq
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Dst5uÑ p1bDst5u `Dst5ub1q `
9

2
pDst1ubDst4u ´Dst4ubDst1uq

`
5

2
pDst2ubDst3u ´Dst3ubDst2uq ´

7

4
pDst1ubDt1,3u˚ `Dst1,3ubDst1uq

´
1

2
pDst1ubDst2

2u
`Dst2

2u
bDst1uq `

3

2
pDst2ubDst1,2u `Dst1,2ubDst2uq

`
19

4
pDst3ubDst1

2u
`Dst1

2u
bDst3uq `

1

4
pDst1ubDst1

2,2u
´Dst1

2,2u
bDst1uq

´pDst2u bDst1
3u
´Dst1

3u
bDst2uq `

7

4
pDst1,2ubDst1

2u
´Dst1

2u
bDst1,2uq

Dst6uÑ p1bDst6u `Dst6ub1q ` 7 pDst1ubDst5u ´ Dt5u˚ bDst5uq

`7 pDst2ubDst4u ´Dst4ubDst2uq ´ 4 pDst1ubDst1,4u `Dst1,4ubDst1uq

´
11

4
pDst1ubDst2,3u `Dst2,3ubDst1uq ´

11

4
pDst2ubDst1,3u `Dst1,3ubDst2uq

`pDst2ubDst2
2u
`Dst2

2u
bDst2uq `

59

4
pDst3ubDst1,2u `Dst1,2ubDst3uq

`
55

4
pDst4ubDst1

2u
`Dst1

2u
bDst4uq `

9

8
pDst1ubDst1

2,3u
´Dst1

2,3u
bDst1uq

`
3

4
pDst1ubDst1,2

2u
´Dst1,2

2u
bDst1uq ´

17

4
pDst2ubDst1

2,2u
´Dst1

2,2u
bDst2uq

´
65

8
pDst3ubDst1

3u
´Dst1

3u
bDst3uq ´ 10 pDst1

2u
bDst1,3u ´Dst1,3ubDst1

2u
q

´
11

4
pDst1

2u
bDst2

2u
´Dst2

2u
bDst1

2u
q ´

1

8
pDst1ubDst1

3,2u
` Dt1

3,2u
˚ bDst1uq

`pDt2u˚ bDst1
4u
`Dst1

4u
bDt2u˚ q `

9

4
pDst1

2u
bDst1

2,2u
`Dst1

2,2u
bDst1

2u
q

´
33

8
pDst1,2ubDst1

3u
`Dst1

3u
bDst1,2uq

Table 7: σpDat‚uq in terms of Dat‚u.

σpDat1uq “ `1bDat1u `Dat1u b 1

σpDat2uq “ `1bDat2u `Dat2u b 1

σpDat3uq “ `1bDat3u ` 2 Dat1u bDat2u `Dat3u b 1

σpDat4uq “ `1bDat4u ` 5 Dat1u bDat3u ` 5 Dat1,1u bDat2u `Dat4u b 1

σpDat5uq “ `1bDat5u ` 9 Dat1u bDat4u ` 5 Dat1u bDat2
2u
` 5 Dat2u bDat3u

`45{2Dat1
2u
bDat3u ` 10Dat2,1ubDat2u ` 15Dat1

3u
bDat2u `Dat5u b 1
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σpDat6uq “ `1bDat6u ` 14 Dat1u bDat5u ` 14 Dat2u bDat4u ` 63 Dat1
2u
bDat4u

`35 Dat1
2u
bDat2

2u
` 70 Dat2,1u bDat3u ` 105 Dat1

3u
bDat3u

`70 Dat2,1
2u
bDat2u ` 105{2 Dat1

4u
bDat2u `Dat6u b 1

σpDat7uq “ `1bDat7u ` 20 Dat1u bDat6u ` 35 Dat1u bDat3
2u

`140{3 Dat1u bDat2
3u
` 28 Dat2u bDat5u ` 140 Dat1

2u
bDat5u

`70 Dat1
2u
bDat3,2u ` 14 Dat3u bDat4u ` 252 Dat2,1u bDat4u

`140 Dat2,1u bDat2
2u
` 420 Dat1

3u
bDat4u ` 280 Dat1

3u
bDat2

2u

`70 Dat3,1u bDat3u ` 70 Dat2
2u
bDat3u ` 630 Dat2,1

2u
bDat3u

`525 Dat1
4u
bDat3u ` 70 Dat3,1

2u
bDat2u ` 140 Dat2

2,1u
bDat2u

`420 Dat2,1
3u
bDat2u ` 210 Dat1

5u
bDat2u `Dat7u b 1

Table 7 bis: σpDat‚uq in terms of Dat‚u.

σpDat1uq “ `1bDat1u `Dat1u b 1

σpDat2uq “ `1bDat2u `Dat2u b 1

σpDat3uq “ `1bDat3u `Dat3u b 1`Dat1u bDat2u

σpDat4uq “ `1bDat4u ` 2 Dat1u bDat3u `Dat1
2u
bDat2u `Dat4u b 1

σpDat5uq “ `1bDat5u ` 3 Dat1u bDat4u ` 1{2 Dat1u bDat2
2u
`Dat2u bDat3u

`3 Dat1
2u
bDat3u `Dat2,1u bDat2u `Dat1

3u
bDat2u `Dat5u b 1

σpDat6uq “ `1bDat6u ` 4 Dat1u bDat5u ` 2 Dat2u bDat4u ` 6 Dat1
2u
bDat4u

`Dat1
2u
bDat2

2u
` 4 Dat2,1u bDat3u ` 4 Dat1

3u
bDat3u

`2 Dat2,1
2u
bDat2u `Dat1

4u
bDat2u `Dat6u b 1

σpDat7uq “ `1bDat7u ` 5 Dat1u bDat6u `Dat1u bDat3
2u
` 1{2 Dat1u bDat2

3u

`3 Dat2ubDat5u ` 10 Dat1
2u
bDat5u `Dat1

2u
bDat3,2u `Dat3ubDat4u

`9 Dat2,1u bDat4u ` 3{2 Dat2,1u bDat2
2u
` 10 Dat1

3u
bDat4u

`2 Dat1
3u
bDat2

2u
` 2 Dat3,1u bDat3u ` 3{2 Dat2

2u
bDat3u

`9 Dat2,1
2u
bDat3u ` 5 Dat1

4u
bDat3u `Dat3,1

2u
bDat2u

`3{2 Dat2
2,1u
bDat2u ` 3 Dat2,1

3u
bDat2u `Dat1

5u
bDat2u `Dat7ub 1
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14.4 Embedding of ISO into 7ISO .

Table 8: Dnt‚u or rather dnt‚u :“ 1
‚ !

Dnt‚u in terms of Dex‚y and Dax‚y.

dnt1u “ `Dex1y “ `Dax1y

dnt2u “ `
1

2
Dex2y `

1

2
Dex1,1y “ `

1

2
Dax2y `

1

2
Dax1,1y

dnt3u “ `
1

3
Dex3y `

1

3
Dex2,1y `

1

2
Dex1,2y `

1

2
Dex1,1,1y

dnt3u “ `
1

3
Dax3y `

1

6
Dax2,1y `

1

2
Dax1,2y `

1

2
Dax1,1,1y

dnt4u “ `
1

4
Dex4y `

1

4
Dex3,1y `

11

24
Dex2,2y `

1

2
Dex1,3y `

11

24
Dex2,1,1y

`
1

2
Dex1,2,1y `

3

4
Dex1,1,2y `

3

4
Dex1,1,1,1y

dnt4u “ `
1

4
Dax4y `

1

12
Dax3,1y `

1

6
Dax2,2y `

1

2
Dax1,3y `

1

6
Dax2,1,1y

`
1

4
Dax1,2,1y `

3

4
Dax1,1,2y `

3

4
Dax1,1,1,1y

dnt5u “ `
1

5
Dex5y `

1

5
Dex4,1y `

5

12
Dex3,2y `

7

12
Dex2,3y `

1

2
Dex1,4y `

5

12
Dex3,1,1y

`
7

12
Dex2,2,1y `

7

8
Dex2,1,2y `

1

2
Dex1,3,1y `

11

12
Dex1,2,2y ` Dex1,1,3y

`
7

8
Dex2,1,1,1y `

11

12
Dex1,2,1,1y ` Dex1,1,2,1y `

3

2
Dex1,1,1,2y `

3

2
Dex1,1,1,1,1y

dnt5u “ `
1

5
Dax5y `

1

20
Dax4,1y `

1

12
Dax3,2y `

1

6
Dax2,3y `

1

2
Dax1,4y `

1

12
Dax3,1,1y

`
1

12
Dax2,2,1y `

1

4
Dax2,1,2y `

1

6
Dax1,3,1y `

1

3
Dax1,2,2y ` Dax1,1,3y

`
1

4
Dax2,1,1,1y `

1

3
Dax1,2,1,1y `

1

2
Dax1,1,2,1y `

3

2
Dax1,1,1,2y `

3

2
Dax1,1,1,1,1y
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dnt6u “ `
1

6
Dex6y `

1

6
Dex5,1y `

137

360
Dex4,2y `

5

8
Dex3,3y `

17

24
Dex2,4y `

1

2
Dex1,5y

`
137

360
Dex4,1,1y `

5

8
Dex3,2,1y `

15

16
Dex3,1,2y `

17

24
Dex2,3,1y `

187

144
Dex2,2,2y

`
17

12
Dex2,1,3y `

1

2
Dex1,4,1y `

25

24
Dex1,3,2y `

35

24
Dex1,2,3y `

5

4
Dex1,1,4y

`
15

16
Dex3,1,1,1y `

187

144
Dex2,2,1,1y `

17

12
Dex2,1,2,1y `

17

8
Dex2,1,1,2y `

25

24
Dex1,3,1,1y

`
35

24
Dex1,2,2,1y `

35

16
Dex1,2,1,2y `

5

4
Dex1,1,3,1y `

55

24
Dex1,1,2,2y `

5

2
Dex1,1,1,3y

`
17

8
Dex2,1,1,1,1y `

35

16
Dex1,2,1,1,1y `

55

24
Dex1,1,2,1,1y `

5

2
Dex1,1,1,2,1y

`
15

4
Dex1,1,1,1,2y `

15

4
Dex1,1,1,1,1,1y

dnt6u “ `
1

6
Dax6y `

1

30
Dax5,1y `

1

20
Dax4,2y `

1

12
Dax3,3y `

1

6
Dax2,4y `

1

2
Dax1,5y

`
1

20
Dax4,1,1y `

1

24
Dax3,2,1y `

1

8
Dax3,1,2y `

1

18
Dax2,3,1y `

1

9
Dax2,2,2y

`
1

3
Dax2,1,3y `

1

8
Dax1,4,1y `

5

24
Dax1,3,2y `

5

12
Dax1,2,3y `

5

4
Dax1,1,4y

`
1

8
Dax3,1,1,1y `

1

9
Dax2,2,1,1y `

1

6
Dax2,1,2,1y `

1

2
Dax2,1,1,2y `

5

24
Dax1,3,1,1y

`
5

24
Dax1,2,2,1y `

5

8
Dax1,2,1,2y `

5

12
Dax1,1,3,1y `

5

6
Dax1,1,2,2y `

5

2
Dax1,1,1,3y

`
1

2
Dax2,1,1,1,1y `

5

8
Dax1,2,1,1,1y `

5

6
Dax1,1,2,1,1y `

5

4
Dax1,1,1,2,1y

`
15

4
Dax1,1,1,1,2y `

15

4
Dax1,1,1,1,1,1y
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dnt7u “ `
1

7
Dex7y `

1

7
Dex6,1y `

7

20
Dex5,2y `

29

45
Dex4,3y `

7

8
Dex3,4y `

5

6
Dex2,5y

`
1

2
Dex1,6y `

7

20
Dex5,1,1y `

29

45
Dex4,2,1y `

29

30
Dex4,1,2y `

7

8
Dex3,3,1y

`
77

48
Dex3,2,2y `

7

4
Dex3,1,3y `

5

6
Dex2,4,1y `

125

72
Dex2,3,2y `

175

72
Dex2,2,3y

`
25

12
Dex2,1,4y `

1

2
Dex1,5,1y `

137

120
Dex1,4,2y `

15

8
Dex1,3,3y `

17

8
Dex1,2,4y

`
3

2
Dex1,1,5y `

29

30
Dex4,1,1,1y `

77

48
Dex3,2,1,1y `

7

4
Dex3,1,2,1y `

21

8
Dex3,1,1,2y

`
125

72
Dex2,3,1,1y `

175

72
Dex2,2,2,1y `

175

48
Dex2,2,1,2y `

25

12
Dex2,1,3,1y

`
275

72
Dex2,1,2,2y `

25

6
Dex2,1,1,3y `

137

120
Dex1,4,1,1y `

15

8
Dex1,3,2,1y

`
45

16
Dex1,3,1,2y `

17

8
Dex1,2,3,1y `

187

48
Dex1,2,2,2y `

17

4
Dex1,2,1,3y

`
3

2
Dex1,1,4,1y `

25

8
Dex1,1,3,2y `

35

8
Dex1,1,2,3y `

15

4
Dex1,1,1,4y

`
21

8
Dex3,1,1,1,1y `

175

48
Dex2,2,1,1,1y `

275

72
Dex2,1,2,1,1y `

25

6
Dex2,1,1,2,1y

`
25

4
Dex2,1,1,1,2y `

45

16
Dex1,3,1,1,1y `

187

48
Dex1,2,2,1,1y `

17

4
Dex1,2,1,2,1y

`
51

8
Dex1,2,1,1,2y `

25

8
Dex1,1,3,1,1y `

35

8
Dex1,1,2,2,1y `

105

16
Dex1,1,2,1,2y

`
15

4
Dex1,1,1,3,1y `

55

8
Dex1,1,1,2,2y `

15

2
Dex1,1,1,1,3y `

25

4
Dex2,1,1,1,1,1y

`
51

8
Dex1,2,1,1,1,1y `

105

16
Dex1,1,2,1,1,1y `

55

8
Dex1,1,1,2,1,1y

`
15

2
Dex1,1,1,1,2,1y `

45

4
Dex1,1,1,1,1,2y `

45

4
Dex1,1,1,1,1,1,1y
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dnt7u “ `
1

7
Dax7y `

1

42
Dax6,1y `

1

30
Dax5,2y `

1

20
Dax4,3y `

1

12
Dax3,4y `

1

6
Dax2,5y

`
1

2
Dax1,6y `

1

30
Dax5,1,1y `

1

40
Dax4,2,1y `

3

40
Dax4,1,2y `

1

36
Dax3,3,1y

`
1

18
Dax3,2,2y `

1

6
Dax3,1,3y `

1

24
Dax2,4,1y `

5

72
Dax2,3,2y `

5

36
Dax2,2,3y

`
5

12
Dax2,1,4y `

1

10
Dax1,5,1y `

3

20
Dax1,4,2y `

1

4
Dax1,3,3y `

1

2
Dax1,2,4y

`
3

2
Dax1,1,5y `

3

40
Dax4,1,1,1y `

1

18
Dax3,2,1,1y `

1

12
Dax3,1,2,1y `

1

4
Dax3,1,1,2y

`
5

72
Dax2,3,1,1y `

5

72
Dax2,2,2,1y `

5

24
Dax2,2,1,2y `

5

36
Dax2,1,3,1y `

5

18
Dax2,1,2,2y

`
5

6
Dax2,1,1,3y `

3

20
Dax1,4,1,1y `

1

8
Dax1,3,2,1y `

3

8
Dax1,3,1,2y `

1

6
Dax1,2,3,1y

`
1

3
Dax1,2,2,2y ` Dax1,2,1,3y `

3

8
Dax1,1,4,1y `

5

8
Dax1,1,3,2y `

5

4
Dax1,1,2,3y

`
15

4
Dax1,1,1,4y `

1

4
Dax3,1,1,1,1y `

5

24
Dax2,2,1,1,1y `

5

18
Dax2,1,2,1,1y

`
5

12
Dax2,1,1,2,1y `

5

4
Dax2,1,1,1,2y `

3

8
Dax1,3,1,1,1y `

1

3
Dax1,2,2,1,1y

`
1

2
Dax1,2,1,2,1y `

3

2
Dax1,2,1,1,2y `

5

8
Dax1,1,3,1,1y `

5

8
Dax1,1,2,2,1y

`
15

8
Dax1,1,2,1,2y `

5

4
Dax1,1,1,3,1y `

5

2
Dax1,1,1,2,2y `

15

2
Dax1,1,1,1,3y

`
5

4
Dax2,1,1,1,1,1y `

3

2
Dax1,2,1,1,1,1y `

15

8
Dax1,1,2,1,1,1y `

5

2
Dax1,1,1,2,1,1y

`
15

4
Dax1,1,1,1,2,1y `

45

4
Dax1,1,1,1,1,2y `

45

4
Dax1,1,1,1,1,1,1y

Table 9: Dst‚u or rather dst‚u :“ 1
‚ !

Dst‚u in terms of Dax‚y.

dst1u “ `Dax1y

dst2u “ `
1

2
Dax2y

dst3u “ `
1

3
Dax3y `

1

6
pDax1,2y ´ Dax2,1yq

dst4u “ `
1

4
Dax4y `

5

24
pDax1,3y ´ Dax3,1yq `

1

12
pDax1,1,2y ` Dax2,1,1yq ´

1

8
Dax1,2,1y
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dst5u “ `
1

5
Dax5y `

9

40
pDax1,4y ´ Dax4,1yq `

1

24
pDax2,3y ´ Dax3,2yq

`
19

120
pDax1,1,3y ` Dax3,1,1yq ´

1

120
pDax1,2,2y ` Dax2,2,1yq

´
13

60
Dax1,3,1y `

1

30
Dax2,1,2y `

1

20
pDax1,1,1,2y ´ Dax2,1,1,1yq

´
13

120
pDax1,1,2,1y ´ Dax1,2,1,1yq

dst6u “ `
1

6
Dax6y `

7

30
pDax1,5y ´ Dax5,1yq `

7

120
pDax2,4y ´ Dax4,2yq

`
11

48
pDax1,1,4y ` Dax4,1,1yq `

59

1440
pDax1,2,3y ` Dax3,2,1yq

´
9

160
pDax1,3,2y ` Dax2,3,1yq `

59

1440
pDax2,1,3y ` Dax3,1,2yq

`
1

360
Dax2,2,2y ´

71

240
Dax1,4,1y `

13

96
pDax1,1,1,3y ´ Dax3,1,1,1yq

´
11

720
pDax1,1,2,2y ´ Dax2,2,1,1yq `

59

1440
pDax1,2,1,2y ´ Dax2,1,2,1yq

´
71

288
pDax1,1,3,1y ´ Dax1,3,1,1yq `

1

30
pDax1,1,1,1,2y ` Dax2,1,1,1,1yq

´
49

480
pDax1,1,1,2,1y ` Dax1,2,1,1,1yq `

13

90
Dax1,1,2,1,1y

Table 10: Dat‚u or rather dat‚u :“ 1
‚ !

Dat‚u in terms of Dax‚y.

dat1u “ Dax1y

dat2u “ `
1

2
Dax2y

dat3u “ `
1

3
Dax3y `

1

3
Dax1,2y

dat4u “ `
1

4
Dax4y `

5

12
Dax1,3y `

5

12
Dax1,1,2y

dat5u “ `
1

5
Dax5y `

9

20
Dax1,4y `

1

12
Dax2,3y `

3

4
Dax1,1,3y `

1

12
Dax1,2,2y

`
1

12
Dax2,1,2y `

3

4
Dax1,1,1,2y

dat6u “ `
1

6
Dax6y `

7

15
Dax1,5y `

7

60
Dax2,4y `

21

20
Dax1,1,4y `

7

36
Dax1,2,3y `

7

36
Dax2,1,3y

`
7

4
Dax1,1,1,3y `

7

36
Dax1,1,2,2y `

7

36
Dax1,2,1,2y `

7

36
Dax2,1,1,2y `

7

4
Dax1,1,1,1,2y
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dat7u “ `
1

7
Dax7y `

10

21
Dax1,6y `

2

15
Dax2,5y `

1

30
Dax3,4y `

4

3
Dax1,1,5y `

1

3
Dax1,2,4y

`
3

10
Dax2,1,4y `

1

18
Dax1,3,3y `

1

18
Dax3,1,3y `

1

18
Dax2,2,3y ` 3Dax1,1,1,4y

`
11

18
Dax1,1,2,3y `

5

9
Dax1,2,1,3y `

1

2
Dax2,1,1,3y `

1

18
Dax1,1,3,2y `

1

18
Dax1,3,1,2y

`
1

18
Dax3,1,1,2y `

1

18
Dax1,2,2,2y `

1

18
Dax2,1,2,2y `

1

18
Dax2,2,1,2y ` 5Dax1,1,1,1,3y

`
2

3
Dax1,1,1,2,2y`

11

18
Dax1,1,2,1,2y`

5

9
Dax1,2,1,1,2y`

1

2
Dax2,1,1,1,2y`5Dax1,1,1,1,1,2y

Table 10 bis: Dat‚u or rather Dat‚u :“ 1
p1`‚q!

Dat‚u in terms of Dax‚y.

Dat1u “ `Dax1y

Dat2u “ `Dax2y

Dat3u “ `Dax3y ` Dax1,2y

Dat4u “ `Dax4y ` 2Dax1,3y ` 2Dax1,1,2y

Dat5u “ `Dax5y ` 3Dax1,4y ` Dax2,3y ` 6Dax1,1,3y ` Dax1,2,2y ` Dax2,1,2y ` 6Dax1,1,1,2y

Dat6u “ `Dax6y ` 4Dax1,5y ` 2Dax2,4y ` 12Dax1,1,4y ` 4Dax1,2,3y ` 4Dax2,1,3y

`24Dax1,1,1,3y ` 4Dax1,1,2,2y ` 4Dax1,2,1,2y ` 4Dax2,1,1,2y ` 24Dax1,1,1,1,2y

Dat7u “ `Dax7y `5Dax1,6y `3Dax2,5y `Dax3,4y `20Dax1,1,5y `10Dax1,2,4y `9Dax2,1,4y

`2Dax1,3,3y ` 2Dax3,1,3y ` 3Dax2,2,3y ` 60Dax1,1,1,4y ` 22Dax1,1,2,3y

`20Dax1,2,1,3y ` 18Dax2,1,1,3y ` 2Dax1,3,1,2y ` 2Dax3,1,1,2y ` 2Dax1,1,3,2y

`3Dax1,2,2,2y ` 3Dax2,1,2,2y ` 3Dax2,2,1,2y ` 120Dax1,1,1,1,3y ` 24Dax1,1,1,2,2y

`22Dax1,1,2,1,2y ` 20Dax1,2,1,1,2y ` 18Dax2,1,1,1,2y ` 120Dax1,1,1,1,1,2y

Table 11: Inductive construction of Dat‚u or rather Dat‚u :“ 1
p1`rp‚qq!

Dat‚u.

2 Dat1u :“ Dat1u “ Dnt1u precall that Dnt1u.f :“ ´
f2

f 1
q

pn`1qDatnu :“ ´BDatn´1u
´ coDatnu p@n ě 2q
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coDat1u “ 0

coDat2u “ `Dat1
2u

coDat3u “ 0

coDat4u “ `3{2 Dat2
2u

coDat5u “ 0

coDat6u “ `2 Dat3
2u
`Dat2

3u

coDat7u “ 0

coDat8u “ `5{2 Dat4
2u
` 9{8 Dat2

4u

coDat9u “ `8{3 Dat3
3u
` 2 Dat3,2

3u

coDat10u
“ `3 Dat5

2u
` 2 Dat4,3

2u
`Dat4,2

3u
` 3{2 Dat2

5u

coDat11u
“ `9{2 Dat3,2

4u

coDat12u
“ 7̀{2 Dat6

2u
`5 Dat4

3u
`5 Dat3

4u
`27{8 Dat4,2

4u
`5 Dat3

2,23u
`35{16 Dat2

6u

coDat13u
“ `5 Dat5,4

2u
` 32{3 Dat4,3

3u
` 9{4 Dat5,2

4u
` 8 Dat4,3,2

3u
` 9 Dat3,2

5u

coDat14u
“ `4 Dat7

2u
` 5{2 Dat6,4

2u
` 8 Dat5,3

3u
` 5 Dat4

2,32u
` 9{8 Dat6,2

4u

`6 Dat5,3,2
3u
` 5{2 Dat4

2,23u
` 15{2 Dat4,2

5u
` 63{4 Dat3

2,24u
` 27{8 Dat2

7u

coDat15u
“ `8 Dat5

3u
` 16{3 Dat6,3

3u
` 8 Dat5,4,3

2u
` 4 Dat6,3,2

3u
` 4 Dat5,4,2

3u

`32{3 Dat3
5u
` 27 Dat4,3,2

4u
` 6 Dat5,2

5u
` 40{3 Dat3

3,23u
` 35{2 Dat3,2

6u

coDat16u
“ `9{2 Dat8

2u
` 9 Dat6,5

2u
` 8{3 Dat7,3

3u
` 6 Dat6,4,3

2u
` 105{8 Dat4

4u

`2 Dat7,3,2
3u
` 3 Dat6,4,2

3u
` 35 Dat4,3

4u
` 9{2 Dat6,2

5u
` 45{2 Dat5,3,2

4u

`189{16 Dat4
2,24u

` 35 Dat4,3
2,23u

` 245{16 Dat4,2
6u
` 81{2 Dat3

2,25u

`693{128 Dat2
8u

coDat17u
“ `6 Dat7,5

2u
` 4 Dat7,4,3

2u
` 30 Dat5,4

3u
` 2 Dat7,4,2

3u
` 30 Dat5,3

4u

`128{3 Dat4
2,33u

` 18 Dat6,3,2
4u
` 81{4 Dat5,4,2

4u
` 30 Dat5,3

2,23u

`32 Dat4
2,3,23u

` 3 Dat7,2
5u
` 105{8 Dat5,2

6u
` 72 Dat4,3,2

5u

`105{2 Dat3
3,24u

` 135{4 Dat3,2
7u
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coDat18u
“ `5 Dat9

2u
` 35{3 Dat6

3u
` 3 Dat8,5

2u
` 35{2 Dat5

2,42u
` 25 Dat6,4

3u

`2 Dat8,4,3
2u
`Dat8,4,2

3u
` 15 Dat4

3,32u
` 224{3 Dat5,4,3

3u
` 25 Dat6,3

4u

`15{2 Dat4
3,23u

` 135{8 Dat6,4,2
4u
` 220{9 Dat3

6u
` 63{8 Dat5

2,24u

`56 Dat5,4,3,2
3u
` 27{2 Dat7,3,2

4u
` 25 Dat6,3

2,23u
` 3{2 Dat8,2

5u

`135{4 Dat4
2,25u

` 175{16 Dat6,2
6u
` 567{4 Dat4,3

2,24u
` 110{3 Dat3

4,23u

`63 Dat5,3,2
5u
` 243{8 Dat4,2

7u
` 385{4 Dat3,3,2

6u
` 143{16 Dat2

9u

15 Tables: how construction-sensitive is E1?

The main point of this section is to find out how much, or how little, the
first-order ultraexponentials E rf s1 (i.e. those that verify E rf s1 ˝ T “ E ˝ E rf s1 )
depend on the auxiliary germ f used to construct them. The answer will turn
out to be: surpisingly little. We also propose to illustrate the extremely slow
onset of the stair-case phenomenon, which says that, when f1 and f2 drift far
apart, the corresponding E rf1s1 and E rf2s1 tend to differ by post-composition by
a stair-case function.

We take over the notations of §8.4. We consider auxiliary real-analytic
self-mappings f of R`. We denote f♦, ♦f their normalisers at `8 (they
conjugate f with E) and f ;, ;f their normalisers at 0` (they conjugate f
with the dilation δc : x ÞÑ c x “ f 1p0qx pc ą 1q)

The most convenient tools for comparing two ultraexponentials E rf s1 is

the periodic connector P
rf1,f2s
1 and its Fourier coefficients. The connector is

characterised by

E rf1s1 ˝ P
rf1,f2s
1 “ E rf2s1

`

P
rf1,f2s
1 ˝ T “ T ˝ P

rf1,f2s
1

˘

(15.1)

Since we shall be dealing mostly with first-order ultraexponentials, we shall
most of the time drop the lower index 1.

Practically , we must express the connector in terms of the two kinds of
normalisers. The formula which does this reads:

P rf1,f2s :“ δ´1
γ1
˝ L ˝ f ;1 ˝

♦f1 ˝ f
♦
2 ˝

;f2 ˝ E ˝ δγ2 (15.2)

:“T n1˝ δ´1
γ1
˝ L ˝ f ;1 ˝ f

´n1´n0
1 ˝

♦f1 ˝ f
♦
2 ˝ f

n0`n2
2 ˝

;f2 ˝ E ˝ δγ2 ˝ T
´n2

Due to the defining properties of the normalisers, the second line is just a
tautological re-writing of the first, but it contains three free parameters (the
integers n0, n1, n2), which are extremely useful for optimising computational
efficiency.
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15.1 The c pex´1q-based ultraexponentials for c near 1.

We set P :“ P rf1,f2s with f1pxq :“ 2 pex ´ 1q , f2pxq :“ p1` 2´pq pex ´ 1q.
When p increases, f2 goes to the identity-tangent (at 0`) germ ex ´ 1, but
rather than the plain connector

P rf1,f2spxq “ x` a0 `
ÿ

nPZ˚
an e

2π i n x
pa´n “ ānq (15.3)

it is the shift-corrected, or shift-free, connector

rP rf1,f2spxq “ P rf1,f2spx´ a0q “ x`
ÿ

nPZ˚
ãn e

2π i n x
pã´n “ ¯̃anq (15.4)

that goes to a limit. So, alongside the shift a0 of P and its variation h :

h :“ suppP pxq ´ xq ´minpP pxq ´ xqq

we tabulate its shift-corrected coefficients ãn up to k “ 6.

p : h a0

1 : 0.000173 0.812416342070693331
2 : 0.000228 3.714151639563557264
3 : 0.000244 12.161685214161111968
4 : 0.000248 34.469041109222426463
5 : 0.000249 90.043900828527882086
6 : 0.000250 223.248440548965845345

p : 105 ã1 107 ã2

1 : ´2.59184923` 3.48082750 i ´3.93628643´ 1.02092641 i
2 : ´3.42656414` 4.57522456 i ´5.15710254´ 1.35080762 i
3 : ´3.66952951` 4.89142090 i ´5.50831912´ 1.44687006 i
4 : ´3.73566860` 4.97731255 i ´5.60360689´ 1.47302175 i
5 : ´3.75297060` 4.99976900 i ´5.62851173´ 1.47986314 i
6 : ´3.75741801` 5.00551564 i ´5.63494008´ 1.48065193 i

p : 108 ã3 1010 ã4 1011 ã5

1 : ´0.96152´ 0.61508 i ´4.945´ 2.051 i ´3.38` 0.41 i
2 : ´1.26263´ 0.80316 i ´6.512´ 2.664 i ´4.45` 0.56 i
3 : ´1.34955´ 0.85702 i ´6.966´ 2.838 i ´4.76` 0.61 i
4 : ´1.37315´ 0.87162 i ´7.090´ 2.885 i ´4.84` 0.62 i
5 : ´1.37932´ 0.87543 i ´7.122´ 2.898 i ´4.87` 0.62 i
6 : ´1.37451´ 0.87571 i ´7.057´ 2.901 i ´8.67` 0.62 i
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15.2 The c pex 1́q-based ultraexponentials for c moderate.

We are now to compare the ultraexponentials constructed from:

f1pxq :“ 2 pex ´ 1q , f2pxq :“ 2p pex ´ 1q for p ď 10 (15.5)

There is no point here in making a shift-correction, so we revert to the normal
definition of the connector:

P rf1,f2spxq “ x` a0 `
ÿ

nPZ˚
an e

2π i n x
pa´n “ ānq (15.6)

The following tables show how small the connector remains even when c
ranges over the interval r2, 210s. Thus, the main index of smallness, the
variation h, remains under 1{100 (resp. 1{10) as long as c remains within
the interval r2, 17s (resp. r2, 1045s).

p h a0

2 0.0010 ´0.039730218808207703
3 0.0039 0.140206086332004488
4 0.0097 0.298993371423610350
5 0.0191 0.428478926333908364
6 0.0317 0.534974918731011484
7 0.0467 0.624226819271341737
8 0.0628 0.700373568094414955
9 0.0794 0.766327669818064974

10 0.0958 0.824172830948231323

p 102 |a1| 103 |a2| 104 |a3| 105 |a4| 106 |a5| 107 |a6| 108 |a7| 109 |a8|

2 0.0273 0.0028 0.0008 0.0003 0.0002 0.0001 0.0001 0.0001
3 0.0980 0.0123 0.0038 0.0016 0.0009 0.0006 0.0005 0.0005
4 0.2428 0.0409 0.0160 0.0081 0.0044 0.0024 0.0016 0.0016
5 0.4777 0.1103 0.0567 0.0389 0.0285 0.0197 0.0113 0.0054
6 0.7928 0.2448 0.1572 0.1425 0.1448 0.1475 0.1394 0.1100
7 1.1636 0.4639 0.3521 0.3930 0.5155 0.7085 0.9601 1.2221
8 1.5643 0.7798 0.6730 0.8664 1.3727 2.3544 4.1118 7.0499
9 1.9735 1.1956 1.1511 1.6246 2.9451 5.9621 12.5587 26.5791

10 2.3761 1.7072 1.8187 2.7219 5.4000 12.3830 30.0981 74.5903

15.3 The c pex´1q-based ultraexponentials for c large and
the tardy onset of the staircase regime.

We still compare f1pxq :“ 2 pex ´ 1q and f2pxq :“ 2p pex ´ 1q but for very
large values of p, with a view to showing how slowly the connector (minus
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the shift a0) converges to the odd step function ent :

entpxq :“ n`
1

2
if n ă x ă n` 1 pn P Zq

entpxq :“ n if x “ n pn P Zq

So we expand the limit connector P8 as a Fourier series:

P8pxq “ a80 `entpxq “ a80 `
ÿ

nPZ˚
a8n e

2π i n x with a8n :“
1

2π i n
(15.7)

and examine how the Fourier coefficients of the current connector converge
to their limit values. We separate their arguments and absolute values, as
follows:

P rf1,f2spxq “ x`a0`
ÿ

nPZ˚
|an| e

´2π i pθn`
1
4
q e2π i n x

pa´n “ ānq (15.8)

so as to have |an{a
8
n | Õ 1 and θn Œ 0 as p goes to `8. For greater clarity,

we do not take the main determination of the argument θn (mod 2π), but
an exact determination in R`, followed by continuity, backwards from the
limit value 0. We also tabulate the variation h and minimal slope s of the
connector P rf1,f2s as well as the corresponding data h7 and s7 for the reverse
connector P rf1,f2s. We may notice that the reverse pair ph7, s7q goes to its
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limit p1, 0q slightly less sluggishly than the direct pair ph, sq.

p h h7 s s7 a0

10 0.096 0.537 0.728 0.750 0.824172830948231323
20 0.218 0.600 0.462 0.516 1.169249345157300399
30 0.285 0.621 0.353 0.403 1.338801550912898204
40 0.328 0.662 0.298 0.336 1.445091229720390133
50 0.360 0.678 0.262 0.289 1.520177351544718161
60 0.384 0.686 0.237 0.256 1.577114227264200653
70 0.404 0.705 0.219 0.230 1.622362811018353058
80 0.420 0.715 0.205 0.210 1.659543136186266516
90 0.434 0.725 0.194 0.193 1.690866157220920835

100 0.446 0.736 0.185 0.179 1.717770910145828546
110 0.457 0.743 0.178 0.167 1.741240989738605260
120 0.467 0.749 0.171 0.157 1.761975329007507570
130 0.475 0.755 0.165 0.148 1.780486537845824490
140 0.483 0.760 0.160 0.140 1.797160570587154804
150 0.490 0.764 0.156 0.133 1.812294524905533289
160 0.497 0.768 0.152 0.127 1.826121469319542517
170 0.503 0.772 0.148 0.121 1.838827260907611583
180 0.508 0.776 0.145 0.116 1.850562243985180026
190 0.513 0.779 0.142 0.112 1.861449578437993691

200 0.518 0.782 0.140 0.108 1.871591290595732904
250 0.539 0.794 0.129 0.091 1.91368817224511269.
300 0.555 0.805 0.121 0.079 1.9457952784130651 . .
350 0.568 0.812 0.115 0.070 1.971459590821952 . . .
400 0.578 0.818 0.110 0.063 1.99266499489222 . . . .
450 0.587 0.824 0.106 0.058 2.0106234087384 . . . . .

500 0.595 0.829 0.103 0.053 2.026124575139 . . . . . .
600 0.608 0.837 0.098 0.046 2.051762383852 . . . . . .
700 0.619 0.843 0.093 0.041 2.07233675865 . . . . . . .
800 0.628 0.848 0.090 0.037 2.0893952176. . . . . . . . .
900 0.636 0.852 0.087 0.034 2.1038857620. . . . . . . . .

1000 0.642 0.856 0.085 0.031 2.116427741 . . . . . . . . . .
1500 0.666 0.869 0.077 0.022 2.16129606 . . . . . . . . . . .
2000 0.682 0.878 0.072 0.018 2.1901946 . . . . . . . . . . . .

8 1 1 0 0 a80
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p θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

10 0.415 0.704 0.946 1.160 1.378 1.613 1.863 1.124 1.394 1.672
20 0.309 0.512 0.693 0.856 0.998 1.111 1.184 1.247 1.334 1.441
30 0.259 0.423 0.571 0.709 0.840 0.963 1.078 1.180 1.251 1.202
40 0.227 0.369 0.495 0.614 0.728 0.838 0.944 1.049 1.152 1.256
50 0.205 0.331 0.443 0.547 0.648 0.745 0.841 0.935 1.028 1.121
60 0.189 0.303 0.404 0.498 0.588 0.676 0.762 0.846 0.930 1.013
70 0.176 0.281 0.373 0.460 0.542 0.622 0.700 0.777 0.853 0.929
80 0.165 0.263 0.348 0.428 0.504 0.578 0.650 0.721 0.791 0.860
90 0.157 0.248 0.328 0.402 0.473 0.542 0.608 0.674 0.739 0.803

100 0.149 0.236 0.311 0.381 0.447 0.511 0.574 0.635 0.696 0.756
110 0.143 0.225 0.296 0.362 0.425 0.485 0.544 0.602 0.659 0.715
120 0.137 0.216 0.283 0.346 0.405 0.462 0.518 0.573 0.626 0.680
130 0.132 0.207 0.272 0.331 0.388 0.442 0.495 0.547 0.598 0.649
140 0.128 0.200 0.262 0.319 0.373 0.425 0.475 0.525 0.573 0.621
150 0.124 0.193 0.253 0.307 0.359 0.409 0.457 0.505 0.551 0.597
160 0.120 0.187 0.245 0.297 0.347 0.395 0.441 0.487 0.531 0.575
170 0.117 0.182 0.237 0.288 0.336 0.382 0.427 0.470 0.513 0.555
180 0.114 0.177 0.230 0.279 0.326 0.370 0.413 0.455 0.496 0.537
190 0.111 0.172 0.224 0.272 0.316 0.359 0.401 0.442 0.481 0.520

200 0.109 0.168 0.218 0.264 0.308 0.349 0.390 0.429 0.467 0.505
250 0.099 0.151 0.195 0.235 0.273 0.310 0.345 0.379 0.412 0.444
300 0.091 0.138 0.178 0.214 0.248 0.281 0.312 0.342 0.371 0.400
350 0.085 0.129 0.165 0.198 0.229 0.258 0.287 0.314 0.341 0.367
400 0.080 0.121 0.155 0.185 0.214 0.241 0.267 0.292 0.316 0.340
450 0.076 0.114 0.146 0.174 0.201 0.226 0.250 0.274 0.296 0.319

500 0.073 0.109 0.139 0.165 0.190 0.214 0.237 0.258 0.280 0.300
600 0.068 0.100 0.127 0.151 0.173 0.195 0.215 0.234 0.253 0.272
700 0.065 0.093 0.118 0.140 0.160 0.180 0.198 0.216 0.233 0.250
800 0.060 0.088 0.111 0.131 0.150 0.168 0.185 0.201 0.217 0.232
900 0.057 0.084 0.105 0.124 0.142 0.158 0.174 0.189 0.204 0.218

1000 0.055 0.080 0.100 0.118 0.134 0.150 0.165 0.179 0.193 0.206
1500 0.047 0.067 0.083 0.098 0.111 0.123 0.135 0.146 0.156 0.167
2000 0.042 0.060 0.074 0.086 0.097 0.107 0.117 0.126 0.135 0.144

8 0 0 0 0 0 0 0 0 0 0
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p |a1{a
8
1 | |a2{a

8
2 | |a3{a

8
3 | |a4{a

8
4 | |a5{a

8
5 |

10 0.149296837 0.021453706 0.003428333 0.000684112 0.000169649
20 0.329302890 0.117523401 0.040360172 0.013272026 0.004168146
30 0.416717927 0.205025907 0.099772889 0.047178160 0.021503420
40 0.467646656 0.267320358 0.154851766 0.088523369 0.049567335
50 0.502022810 0.312267954 0.199914399 0.127726793 0.080696615
60 0.527421403 0.346248776 0.236180707 0.162052274 0.110668066
70 0.547313467 0.373063558 0.265739021 0.191461410 0.137945316
80 0.563528612 0.394963283 0.290298293 0.216651171 0.162251474
90 0.577134122 0.413337163 0.311097215 0.238391932 0.183791883

100 0.588801263 0.429083602 0.329014185 0.257346891 0.202913290
110 0.598977252 0.442809139 0.344676732 0.274046130 0.219970016
120 0.607973836 0.454938910 0.358540854 0.288903536 0.235278286
130 0.616016376 0.465780653 0.370944468 0.302241106 0.249105813
140 0.623272720 0.475563356 0.382142940 0.314310602 0.261674356
150 0.629871025 0.484461495 0.392332835 0.325310604 0.273166209
160 0.635911224 0.492610765 0.401668051 0.335399373 0.283731147
170 0.641472650 0.500118598 0.410270948 0.344704393 0.293492627
180 0.646619276 0.507071387 0.418240181 0.353329448 0.302552939
190 0.651403390 0.513539570 0.425656301 0.361359890 0.310997359

200 0.655868247 0.519581277 0.432585833 0.368866583 0.318897448
250 0.674493354 0.544852007 0.461604506 0.400333347 0.352064175
300 0.688802683 0.564360793 0.484061392 0.424724290 0.377817421
350 0.700304938 0.580114526 0.502244186 0.444506937 0.398733355
400 0.709849414 0.593241284 0.517435215 0.461064154 0.416262213
450 0.717958579 0.604435487 0.530422594 0.475244851 0.431295002

500 0.724975215 0.614153538 0.541724009 0.487606100 0.444416255
600 0.736608533 0.630333048 0.560598616 0.508300206 0.466423770
700 0.745962428 0.643404191 0.575903846 0.525130397 0.484364679
800 0.753724012 0.654292064 0.588692809 0.539229958 0.49942697.
900 0.760317429 0.663570663 0.59962076. 0.55130503. 0.5123512 . .

1000 0.76602147. 0.67161906. 0.60912173. 0.5618241 . . 0.5236294 . .
1500 0.78636529. 0.7004769 . . 0.6433523 . . 0.599885 . . . 0.564591 . . .
2000 0.7993700 . . 0.719037 . . . 0.66549 . . . . 0.62464 . . . . 0.59136 . . . .

8 1 1 1 1 1

132



p |a6{a
8
6 | |a7{a

8
7 | |a8{a

8
8 | |a9{a

8
9 | |a10{a

8
10|

10 0.000046683 0.000013238 0.000003749 0.000001043 0.000000282
20 0.001283575 0.000445047 0.000208345 0.000116199 0.000065900
30 0.009340991 0.003791385 0.001381776 0.000414870 0.000120156
40 0.027047815 0.014294459 0.007248175 0.003470368 0.001520955
50 0.050211698 0.030677830 0.018344810 0.010693432 0.006043869
60 0.074892433 0.050102507 0.033075126 0.021508905 0.013754013
70 0.098901558 0.070387963 0.049652546 0.034677737 0.023956263
80 0.121290785 0.090264151 0.066771801 0.049050118 0.035756545
90 0.141773365 0.109105539 0.083633365 0.063791915 0.048386692

100 0.160371726 0.126665038 0.099803498 0.078368323 0.061284842
110 0.177234877 0.142897512 0.115079534 0.092466642 0.074076160
120 0.192550889 0.157857017 0.129394374 0.105922686 0.086528013
130 0.206507693 0.171640660 0.142755916 0.118665855 0.098507291
140 0.219277279 0.184359279 0.155210684 0.130681905 0.109947179
150 0.231010797 0.196122880 0.166822761 0.141988939 0.120823425
160 0.241838505 0.207033969 0.177661973 0.152622401 0.131138156
170 0.251871641 0.217185008 0.187797519 0.162625925 0.140909146
180 0.261204901 0.226657948 0.197294756 0.172045888 0.150162844
190 0.269918911 0.235524744 0.206213766 0.180928278 0.158929932

200 0.278082467 0.243848292 0.214608922 0.189316977 0.167242550
250 0.312442041 0.279013554 0.250259078 0.225172567 0.203053745
300 0.339186815 0.306482580 0.278242892 0.253496234 0.231564468
350 0.360938616 0.328862449 0.301094401 0.276694079 0.255003099
400 0.379188669 0.347661176 0.320314928 0.296237755 0.274789444
450 0.394856629 0.363815608 0.336847756 0.313066457 0.291848223

500 0.408546553 0.377943064 0.351317893 0.327807567 0.306803955
600 0.431542271 0.401703269 0.375680865 0.352651694 0.332034670
700 0.450325236 0.42114217. 0.39564061. 0.37303069. 0.35275422.
800 0.46612281. 0.43751635. 0.41247557. 0.3902389 . . 0.3702679 . .
900 0.4797002 . . 0.4516092 . . 0.4269828 . . 0.4050839 . . 0.385390 . . .

1000 0.4915659 . . 0.4639414 . . 0.439692 . . . 0.418102 . . . 0.398665 . . .
1500 0.534807 . . . 0.509018 . . . 0.486273 . . . 0.46593 . . . . 0.44754 . . . .
2000 0.56319 . . . . 0.538733 . . . 0.51709 . . . . 0.4976 . . . . . 0.4801 . . . . .

8 1 1 1 1 1
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15.4 Ultraexponentials based on c pex 1́q , c x ex , 2c sinhpxq.

Here, we simply tabulate the variations hi,j and the shifts ai,j0 of the connec-
tors Pi,j :“ P rfi,fjs linking the ultraexponentials based on the three germs

f1pxq :“ c pex ´ 1q ; f2pxq :“ c x ex f3pxq :“ 2 c sinhpxq (15.9)

for c “ 1 ` 2´p (first table) and c “ 2p (second table). As the tables show,
these connectors remain very small for all values of c and even tend to the
identity as c goes to `8. This latter fact holds, and can be rigorously es-
tablished, for a large class of germs of exponentiality 1.

Connectors with c “ 1` 2´p:

p h1,2 a1,2
0 h1,3 a1,3

0

1 0.00422 1.395126423236 0.00076 ´2.127251395721
2 0.00407 2.714522127338 0.00052 ´4.905079538365
3 0.00400 5.403319183800 0.00040 ´11.578143679197
4 0.00397 10.852572866710 0.00035 ´27.395815918790
5 0.00395 21.839053523673 0.00032 ´64.253570081964
6 0.00394 43.910979716185 0.00031 ´148.722696491661

Connectors with c “ 2p:

p h1,2 a1,2
0 h1,3 a1,3

0

1 0.00452 0.748324404654 0.00125 ´0.972320429299
2 0.00591 0.318250096038 0.00425 ´0.333303223359
3 0.00904 0.186108126535 0.01342 ´0.171056248431
4 0.01428 0.124282176384 0.02406 ´0.103958740427
5 0.02045 0.089235571607 0.03172 ´0.069491792962
6 0.02601 0.067035593825 0.03584 ´0.049467356752
7 0.03016 0.051952216575 0.03732 ´0.036858573573
8 0.03278 0.041221071920 0.03716 ´0.028445448367
9 0.03408 0.033339609126 0.03603 ´0.022576076169

10 0.03435 0.027412493771 0.03441 ´0.018332145060
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p h1,2 a1,2
0 h1,3 a1,3

0

50 0.00904 0.186108126535 0.00787 ´0.000735493223
100 0.00464 0.000280711837 0.00385 ´0.000183872768
150 0.00306 0.000124760035 0.00243 ´0.000081735922
200 0.00215 0.000070169964 0.00182 ´0.000045806387
250 0.00157 0.000044887230 0.00146 ´0.000029104000
300 0.00131 0.000031159126 0.00121 ´0.000020245070
350 0.00112 0.000022913631 0.00104 ´0.000015127559
400 0.00098 0.000017606832 0.00091 ´0.000011947330
450 0.00087 0.000014015734 0.00081 ´0.000009845296
500 0.00079 0.000011491570 0.00073 ´0.000008382795

15.5 The c pee
x

´1q-based ultraexponentials.

To wind up this numerical investigation, we now examine the connectors
P rf1,f2s linking the ultraexponentials based on germs of exponentiality 2:

f1pxq :“ c1

`

ee
x´1

´ 1
˘

; f2pxq :“ c2

`

ee
x´1

´ 1
˘

pc1, c2 ą 1q (15.10)

Rather than applying a modified version of formula (15.2) with normalis-
ers f♦, ♦f conjugating f with E2 at `8, we directly expand the map k1,2 that
conjugates f1 and f2:

k1,2 ˝ f2 “ f1 ˝ k1,2 , k1,2 :“ ♦f1 ˝ f
♦
2

into a very fast converging series:

k1,2pxq “ x` log
´

1` e´x log
`

ε0pxq ` ε1pxq ` ε2pxq ` . . .
˘

¯

(15.11)

ε0 “
c2

c1

“ Const

ε1 “
c1 ´ c2

c1 ` f1

log
´

1` e´f2 logpε0q
¯

εn “
1

c1 ` f1

log
´1` e´f2 logpε0 ` ε1 ˝ f2 ` . . . εn´1 ˝ f2q

1` e´f2 logpε0 ` ε1 ˝ f2 ` . . . εn´2 ˝ f2q

¯

p@n ě 2q

Then, as usual, we boost numerical efficiency by plugging suitably large
iterates of f1, f2 into the expression of the connector:

P rf1,f2s :“ δ´1
γ1
˝ L ˝ f ;1 ˝ k1,2 ˝

;f2 ˝ E ˝ δγ2 (15.12)

:“T n1˝ δ´1
γ1
˝ L ˝ f ;1 ˝ f

´n1´n0
1 ˝ k1,2 ˝ f

n0`n2
2 ˝

;f2 ˝ E ˝ δγ2 ˝ T
´n2
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The following table gives the variations h and h7 of the connectors P rf1,f2s

and P rf2,f1s with c1 “ 2 and c2 “ 2p and p ranging over the interval r2, 10s.

p h h7 p h h7 p h h7

2 0.0010 0.0161 20 0.2178 0.3916 200 0.5184 0.6724
3 0.0039 0.0379 30 0.2850 0.4626 300 0.5547 0.7008
4 0.0097 0.0650 40 0.3285 0.5059 400 0.5782 0.7188
5 0.0191 0.0956 50 0.3560 0.5359 500 0.5953 0.7316
6 0.0317 0.1275 60 0.3843 0.5583 600 0.6085 0.7414
7 0.0467 0.1588 70 0.4039 0.5761 700 0.6192 0.7492
8 0.0628 0.1884 80 0.4203 0.5906 800 0.6280 0.7556
9 0.0794 0.2156 90 0.4343 0.6027 900 0.6357 0.7612

10 0.0958 0.2404 100 0.4464 0.6132 1000 0.6423 0.7661

As was the case with germs f1, f2 of exponentiality 1, both h and h7 remain
small – but not as small as before – for moderate values of c1, c2, and they
also increase slightly less slowly when |c1 ´ c2| grows, pointing to a slightly
less sluggish convergence of the connectors to the limit staircase regime.

This trend, which gets more pronounced for germs f1, f2 of larger expo-
nentiality r ě 2 and for the connectors P

rf1,f2s
1 linking the ultraexponentials

E1 based on them, becomes absolutely dominant for germs f1, f2 which are
themselves of ultraexponential order r and for the connectors P

rf1,f2s
r`1 linking

the ultraexponentials Er`1 based on them.

15.6 Conclusion.

To sum up, three facts stand out:

• All ultraexponential E1 constructed from ‘reasonable’ germs f of expo-
nentiality 1 are surprisingly close to one another.

• This is no longer the case for the ultraexponential Er`1 or higher order
(r ě 1) constructed from germs f , reasonable or not, of ulraexponential
order r.

• Whatever the ultraexponential order, any attempt to base the con-
struction of Er`1 on the restriction of a given f on smaller and smaller
neighbourhoods of `8, so as to get a truly ‘germinal’ and ‘intrinsic’
result — any such attempt (already doomed due to the universal dif-
ferential asymptotics of fast/slow germ; see §6) must founder on the
staircase phenomenon.
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16 Conclusion: central facts, main questions.

16.1 Central facts.

F1 : Ubiquity of resurgence.

All types of composition equations or systems, even the simplest ones (frac-
tional iteration or conjugation) and the ones formally most unproblematic,131

can and often do produce divergence, even when there is none in the data.
That divergence, however, is always re-summable (it never involves such com-
plications as Liouvillian small denominators) because it is resurgent, and
resurgent of a very special type: it is either non-polarising (meaning that
the singularities in the Borel planes do not lie on R`) or at most weakly
polarising (i.e. with only a finite number of active alien derivation ∆ω with
index 9ω P R`). In the non-polarising case (which includes fractional iteration

and conjugation), rf has a privileged real sum f . In the (far less common)

weakly polarising case, rf admits several sums fτ , depending on the choice of
convolution average(s), but the standard average always works,132 yielding a
‘privileged’ sum, which we may simply denote f .

F2 : Ubiquity of cohesiveness.

Cohesiveness is the natural and unavoidable accompaniment of iterated ex-
ponentials or ultraexponentials. On its own, it generates no extra divergence
(that is to say, the transseries or ultraseries rf remains convergent if its sub-
series are themselves convergent or, if not, it becomes so after these have
been separately re-summed); it introduces no extra polarizations; and it re-
sults in sums f that always belong to the quasi-analytic class COHES on
some real neighborhood s...,`8r, but usually without extension outside the
real axis. It should be emphasised, however, that due to the non-polarising
or weakly polarising nature of the resurgence encountered in this context, co-
hesiveness is notably absent from that other place where it sometimes occurs
in accelero-summation, namely in the auxiliary Borel planes or axes.

131i.e. those that involve no jump in formal complexity, in the sense of admitting formal
power series solutions rf when all the data rfi are formal power series, etc.
132there being only finitely many singularities on R`, we are spared the complication

of faster than lateral growth on oft-crossing paths and there is no need to resort to the
fine-tuned well-behaved averages.
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F3 : Ubiquity of analysability.

No matter how intricate and divergence-ridden our group extensions may
be, the constructive correspondance between rf and f – between the formal
and geometric sides – is never lost: our germs remain completely ‘analysable’,
and all questions pertaining to them can in theory be rephrased, tackled, and
often answered, on the formal side, which of course is the more tractable of
the two. Moreover, the ‘analysable’ character of our germs holds not only at
the (highly singular) point `8, but also near it, on some real neighborhood,
where our germs f are always either real-analytic or real-cohesive (cohesive-
ness being a very special, regular, and stable subclass of quasi-analyticity.)

F4 : Display, transcendence, trans-polarisation.

To each resurgent rf , whether mono- or poly-critical, is associated a so-called
display, noted Dpl . rf on the formal side and pDpl .fqτ on the geometric side.
It combines two dual things: the so-called pseudo-variables Z$ and the alien
derivatives, of all orders and relative to all critical times :

Dpl. rf “ rf `
ÿ

1ďr

ÿ

$1,...,$r

Z$1,...,$r ∆$r . . .∆$1
rf (16.1)

Ó Sτ
pDpl.fqτ “ fτ `

ÿ

1ďr

ÿ

$1,...,$r

Z$1,...,$r p∆$r . . .∆$1 fqτ (16.2)

The multiple indexation $i :“ ωiMi involves all critical time classes rzis
through their transmonomial representatives Mipzq and, for each such class,
the singularity-carrying ωi P C‚.133

Here Sτ denotes accelero-summation rf ÞÑ fτ relative to some multipo-
larisation τ , which in each critical Borel plane prescribes an integration axis
arg ζi “ θj and a convolution average µi.

True to its name, the display does indeed display, in ultra compact and
algebraically operative form, all the information about the object - not just
its Stokes constants, but also exhaustive information about the ‘Borel side’.
It also leads to the trans-polarisation formulae (2.62)-(2.63) which show how
to derive any polarised sum pDpl .f qτ 1 from any given sum pDpl .f qτ by a
purely formal operation performed on the sole pseudo-variables and using
universal constants P‚

τ 1,τ that depend only on the pair pτ 1, τ q. Another
nice feature is that any relation between resurgent objects automatically
extends to their displays, which facilitates the proof of transcendence and
independence results.

133or, in the case of the lesser display dpl rf , all ωi P R`.
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F5 : Near-completeness of resummable transseries.

Composition equations W p rf ; rf1, . . . , rfsq “ id involving only transserial (resp.

transserial and resummable) inputs rfi admit transserial (resp. transserial and

resummable) solutions rf unless exponentiality stands in the way, that is, un-
less the exponentially shrunken134 equation W pEn;En1 , . . . , Ensq“ id admits
no solution En pn PZq. The price to pay for the admission of exponentials
and their finite iterates is of course the frequent non-analyticity of the sum
f and its replacement by cohesiveness.

F6 : Total completeness of resummable ultraseries.

To remove this last hurdle - the exponentiality hurdle - we are compelled
to enter the ultra-exponential range, i.e. to introduce a coherent system
of transfinite iterates Eα and Lα of E and L (but with α ă ωω). This
time at last, as far as we can see 135, we get full closure, but at the cost of
two complications : (i) the apparent non-existence of a privileged analytic
realisation of the formal system of transfinite iterates Eα, Lα and (ii) the co-
existence of several competing ‘canonical forms’ for the formal ultraseries, or
rather the transmonomials in them. Yet, in another sense, we are at the end
of our travails as far as analysis136 is concerned, for there exist no operations
or equations that would require us to consider iteration orders larger than
ωω or even equal to it.

F7 : Growth types and the arithmetics of r0, ωωr.

As just pointed out, the special conjugation equations verified by the trans-
finite iterates Eα and Lα of E :“ exp and L :“ log (for all α ă ωω) do not
entirely characterise the iterates, but that residual indeterminacy disappears
when we replace the slow germs Lα by their classes rLαs relative to a suitable
equivalence relation.137 These well-defined classes rLαs are then found to gen-
erate a semi-group that exactly reproduces the non-commutative arithmetics
of the transfinite interval r1, ωωr:

rLβs ˝ rLαs “ rLpα`βqs , rLαs
˝β
“ rLpα.βqs p@α, β P r1, ωωrq (16.3)

134obtained by shrinking in W “ id each rfi to Eni :“ stat.limkÑ`8pLk˝ rfi˝Ekq pni P Zq.
135an important proviso, since we are still in the early stages of transserial analysis.
136as opposed to mathematical logic, which routinely considers equations (mostly on N)

where the variable is allowed to occur inside the iteration order.
137suitable here means: compatible with composition and iteration.

139



F8 : Iso-operators and iso-convexity.

The bialgebra ISO 138 of iso-differential operators Dntnu

Dntn1,...,nru f :“
ź

i

pDntniu fq with Dntniu f :“ p´1qni B ni logp1{f 1q (16.4)

with its commutative product ˆ, its non co-commutative co-product σ (re-
flecting the interaction with germ composition ˝) and its ‘iso-degree’ ideg
compatible with ˆ and σ, is not only better suited to the study of the germ
groups G, especially in the fast and slow growing ranges (see below) but it
also possesses a remarkable positive cone ISO`. That cone induces a notion
of iso-convexity more relevant to germ composition than ordinary convexity.
It also admits a special basis Datnu extremely rich in improbable algebraic-
combinatorial properties.

F9 : Universal asymptotics of slow functions.

Any iso-differential operator D acting on any ultra-slow germ L (say, on
any transfinite iterate of L) produces a germ D.L whose natural asymptotic
expansion depends on D alone, not on L.139 This may be taken as the
foundational statement of ‘universal asymptotics’ – a fascinating subject with
ramifications in logic and model theory.140

F10 : The Natural Growth Scale or ‘Grand Cantor’.

Assuming the indeterminacy in the ultra-exponential/ultra-logarithmic scale
to be unsurmountable, and lumping together into the same ‘zones’ all germs
that are ‘indiscernible’ (in the sense of being different geometric realisations
of the same transseries), we arrive at a counter-intuitively fractal picture of
the natural growth scale. That scale, far from being the quintessential con-
tinuum that one would imagine, turns out to be thoroughly fractal and even
doubly ‘Cantorian’:
(i) in the large it resembles Cantor’s transfinite interval r1, ωωr, with a profu-
sion of detail round each Eα but an inter-galactic void between each Eα and
its successor Eα`1

(ii) and locally it reproduces the global picture at ever smaller scales, giving
rise to patterns which this time are more reminiscent of the historical Cantor
set constructed by repeated trisection of the real interval r0, 1s.

138It is sometimes known as the Connes-Moscovici bialgebra, although it was introduced
by us a decade earlier, in 1991, in our book [E5] on “Analysable Functions etc”.
139It is only the trans-asymptotic part of D.L that depends on L.
140See [JvdH2] and also J.v.d.Hoeven’s Habilitation’s thesis.
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16.2 Some open questions.

Q1 : Indeterminacy in the ultraexponential towers.

The fact that the system (1.4)-(1.5) determines each pair pLn, Enq in terms of
pLn´1, En´1q only up to pre/post-composition by some 1-periodic141 germ P ,
together with the observation that all ultra slow/fast germs share a universal
asymptotics, dashes all hope of selecting a privileged solution pLn, Enq based
purely on real-asymptotic criteria. On the other hand, we cannot discount
the possibility, however remote, that one of these systems might possess
extensions to the complex domain so regular or remarkable as to mark it out
as indisputably ‘optimal’. To further complicate the picture, we found in
§15 that all the ‘reasonable’ candidates for the first non-elementary pair142

pL1, E1q are extremely close to one another. So the question is still open, and
likely to remain so for quite a while.

Q2 : Are there privileged analytic ultraexponential towers?

The question about analytic choices has two aspects. First, does Kneser’s
construction (with its reliance on a pair of closest fixed points etc) apply at
each induction step like it does at step one? If it does, the corresponding tow-
ers tLn, Enu would enjoy an arguably privileged position among all analytic
representatives. If not, are there always analytic representatives in the con-
jugacy classes of each tLn, Enu? If there is one, there are infinitely many, but
might there be natural criteria for removing or, more realistically, reducing
this indeterminacy? Remark: the action of analytic Witt towers on analyt-
icity towers tLn, Enu usually destroys their analyticity. Conversely, the Witt
tower connecting two analytic ultraexponential towers are only exceptionally
analytic.

Q3 : The choice of carriers.

Might not the ultra-quasiexponential towers tLvn, Evnu of §8.8 with their
guaranteed analyticity and their more natural, as well as computationally less
costly, construction, be the best solution after all? True, once an analytic
tLvn, Evnu is chosen, it automatically determines a tLn, Enu which will be
merely cohesive. But the converse also holds, and in any case, no matter
what system of ultra-exponentials or ultra-quasiexponentials we choose, the
formal solutions rf of most composition equations are bound to re-sum to
cohesive rather than analytic germs f .

141More precisely, a germ P that commutes with the unit shift T .
142derived from the initial pair pL0, E0q “ pL,Eq.
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Q4 : Beyond ωω.

Although analysis will probably never require iterates of order α ě ωω, the
fact remains that adding such iterates to a group G of ultra-exponentials is
one of the few fault-proof means of producing a ‘non-oscillating’ extension
Gext, i.e. an extension where the order ắ still holds.143

Q5 : Real-analytic vs real-cohesive solutions.

When the only complication is resurgence, whether mono- or polycritical,
resummation always yields real-analytic solutions (outside `8, of course).

But what about equations with transserial solutions rf of unbounded ex-
ponential depth? The sums f are always real-cohesive, but can they excep-
tionally be better than that, i.e. real-analytic?

In the case of ultraseries, once an ultraserial solution rf is fixed, its sum f
still depends on the choice of an ultraexponential tower. Does there always
exist a (real-analytic or real-cohesive) ultraexponential tower that makes the

sum of that given, particular rf analytic?

Q6 : Independence theorems.

Clearly, the group ă T,E ą is not freely generated by T (unit shift) and
E (exponential), since it contains ‘similitudes’ S : x ÞÑ a x ` b. But the
question remains: are all relations in ă T,E ą generated by ‘elementary
relations’, i.e. by the transparent relations verified by these similitudes?
A yes answer would mean that the group ă T,E ą (which, contrary to
appearances, contains transseries of the most general type) is acted upon not
only by the iso-differentiations of ISO but also by the much more numerous,
non-differential iso-operators of 7ISO .

Another related question is this: can we have identities of type

id “ f1 ˝ g1 ˝ f2 ˝ g2 ˝ ¨ ¨ ¨ ˝ fs ˝ gs with (16.5)

fipxq :“ ai x p1`
ÿ

ai,n x
´n
q (16.6)

gipxq :“ bi x p1`
ÿ

bi,n x
´nγ
q pγ P R`

.
´ Q`q (16.7)

other than in the trivial case, when each factor fi and gi reduces to a simil-
itude x ÞÑ c x ` d ? The answer is almost certainly no 144, but the question
appears to be still open.

143See §1.2.
144Indeed, if we write that the coefficients of all monomials x1´n1´γ n2 on the right-hand

side of (16.5) vanish for all indices n1, n2 up to N , the number of apparently independent
conditions grows like N2 whereas the number of coefficients involved grows only like 2 sN .
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Q7 : No a priori constraints on the holomorphic invariants?

A general principle holds that the only a priori constraints on the general
shape of the display Dpf rf of a resurgent f are formal constraints. Put
another way, it says that as long as Dpf rf verifies the defining equation of rf ,
it can be anything.145 That principle, which applies to all known instances
of the Bridge Equation, also predicts the correct form of the display for the
composition equations examined in §11-§12. Is its validity boundless?

Q8 : Primary representatives of identity-tangent twins.

Since identity-tangent twins or siblings generically exhibit (mono- or poly-
critical) resurgence but are defined only up to conjugation by a common h, is
there always a special resurgent h, conjugation by which optimally simplifies
the displays of our twins and siblings,146 leading to ‘primary’ or ‘minimally
resurgent’ solutions? In the example of §13.2, the answer was yes, but is that
always so? In the same vein: do their exist analytic identity-tangent twins?

Q9 : Geometric solutions of non-polarising composition equations.

When does a composition equation W pf ; f1, . . . , fsq “ id admit a solution f
capable of a convergent geometric representation of the form

f “ lim
nÑ`8

Wnpf1, . . . , fsq pWn P ă f1, . . . , fs ąq (16.8)

with Wn an explicitable element generated by the inputs fi ? For equations
of type T1 or T2 (iteration or conjugation), a representation (16.8) does exist
(barring obvious obstructions linked to ‘exponentiality’), but what about the
types T3 and T4 ? And what about twins or siblings, where the data fi are
completely missing? Then again, does ‘semi-polarisation’ (i.e. the presence of
finitely many active derivations ∆ω with 9ω P R` in one or several Borel planes
- see §2.12 supra) unsurmountably precludes representations of type (16.8)?
If not, do these representations necessarily ‘pick’ the simplest polarisation τ ,
i.e. the one that corresponds to the standard convolution average?

145There exist, of course, growth constraints in ω on the resurgence constants Aω that
the display carries, but this is another story: here, we are viewing the display simply as a
formal expansion in the true variable and the pseudo-variables, leaving aside all questions
of coefficient growth.
146or, if you prefer, reduces their stock of Stokes constants.
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