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Abstract : This expository paper is devoted to the so-called arborification-
coarborification transform which, by automatically carrying out suitable re-
groupings, often manages to restore convergence in multiple expansions that,
in raw form, would seem hopelessly divergent. We first unravel the underly-
ing combinatorics. Then we review 14 applications to complex analysis and
holomorphic dynamics. Lastly, we present some new algebraic material : a
bevy of some twenty richly structured “σ-functions”, which are defined si-
multaneously on all symmetric groups Sr. Since all these objects originate
in arborification, their ‘distinctiveness’ rubs off on that particular transform,
reinforcing its privileged status among all possible alternatives.

Résumé : Nous tâchons de faire le point sur l’arborification-coarborification.
Il s’agit là d’une transformation générale qui effectue, au sein de séries mul-
tiples divergentes, des regroupements judicieux susceptibles d’ instaurer la
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convergence. Nous examinons la méthode tour à tour sous trois angles : com-
binatoire, analyse, algèbre. La partie algébrique présente une multitude de
“σ-fonctions” (i.e. de fonctions définies simultanément sur tous les groupes
de permutations) apparemment nouvelles et aux propriétés très riches. Tous
ces objets, liés qu’ils sont à l’arborification, confirment indirectement le statut
privilégié de cette dernière parmi toutes les transformations concurrentes.

1 Arborification-coarborification as a special

case of fusion-fission.

1.1 Introduction. Why arborify ?

Analysis often presents us with so-called mould-comould expansions, i.e. in-
finite series of the form :

SS :=
∑

A•B• =
∑

Aω Bω =
∑

0≤r≤∞

∑
ωi

Aω1,...,ωr Bω1,...,ωr (1)

which, despite being divergent, somehow ought to converge, or at least to
be re-arrangeable into convergent shape. But let us be a bit more specific.
These expansions SS typically involve three ingredients :
– a highly multiple indexation, with “ • ” running through an infinite set of
sequences 1 of arbitrary lengths r = r(•).
– a mould part A• , usually consisting of scalars, or scalar functions of some
variables xi or parameters ti.
– a comould part B• , usually consisting of operators, which most of the time
are ordinary differential operators in the variables xi, but of high degree d.2

Unfortunately, as pointed out, these mould-comould expansions SS tend
to be normally divergent 3 even when there are strong reasons to suspect that
the corresponding power series Si := SS.xi do, in fact, have positive conver-
gence radii. No contradiction here : since a great many terms A•B• in SS
contribute to any given Taylor coefficient of Si, there is ample scope for mu-
tual cancellations or compensations within each Taylor coefficient. The chal-
lenge, therefore, is to regroup – preferably, in a conceptually appealing and
universally valid manner – the terms in SS so as to make the suspected can-
cellations manifest. Clearly, these regroupings should be carried out adroitly,

1usually, “ • ” runs through a monoid freely generated by a countable index reservoir Ω
such as N or Z or Nν or Zν .

2quite often, the Bω1,...,ωr
are simple products Bωr

. . . Bω1 of first-order differential
operators, in which case length and degree coincide : r = d.

3i.e.
∑
|A•|.‖B•‖ = +∞ for any reasonable norm or semi-norm ‖.‖
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and be exactly the right size : neither too vast, for then we would get unman-
ageably large expressions and the mechanisms responsible for compensation
would remain as opaque as they are “inside” the Taylor cofficients of the
Si, nor too constricted, for in that case there would be no opportunity for
compensation to take place.

One extremely general way of re-ordering our expansions SS to achieve
promising re-groupings is to move from the “•”-indexation by totally ordered
sequences to some “#”-indexation by partially ordered sequences, for some
specified type of partial order.

The idea translates into the general fusion-fission transform :

SS =
∑
•

A•B• 7−→ SS =
∑

#

A#B# (2)

with dual rules for the mould and comould parts :

Fusion rule : A# :=
∑
•

F#
• A

• :=
∑
• ≥ #

A• (3)

Fission constraint : B• :=
∑

#

F#
• B# :=

∑
• ≥ #

B# (4)

which automatically ensure that SS remains globally unchanged. Here, the
coefficients F#

• are either 1 or 0 and the notation • ≥ # says that, while
both sequences • and # consist of exactly the same elements ωi with exactly
the same multiplicities, the second sequence has on it a partial4 order weaker
than, but compatible with the total order of the first.

As a special case, we have the arborification-coarborification transform :

SS =
∑
•

A•B• 7−→ SS =
∑
≺

A≺B≺ (5)

with the dual rules :

Arborification rule : A≺ :=
∑
•

F≺• A
• :=

∑
• ≥ ≺

A• (6)

Coarborification constraint : B• :=
∑
≺

F≺• B≺ :=
∑
• ≥ ≺

B≺ (7)

which correspond to the choice of arborescent orders. In other words, we work
here with partially ordered sequences ≺ , each element ωi of which possesses

4non-strictly, of course : that partial order may on occasion be total !
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at most one antecedent, which we denote ωi− . Minimal elements, or roots,
are not assumed to be unique.5

There are three distinct angles - analytic, combinatorial, algebraic - for ap-
proaching our “regrouping” transforms, and all three point to the same con-
clusion : among all fusion-fission transforms, arborification-coarborification,
for innumerable reasons, towers as the most important and the most use-
ful. The present paper is devoted to showing why this is so, by successively
adopting the three viewpoints :

• Analysis, of course, remains the main raison d’être for these regroup-
ing techniques. In §4, we shall review no less than fourteen genuinely
distinct situations, ranging from holomorphic dynamics to KAM theory
to resurgence calculus, where arborification can be harnessed to great
effect – and often must.

• Combinatorics, on the other hand, lays bare the mechanisms at work,
and explains why the technique succeeds. Here, the mould-comould
duality is very helpful in sorting out the difficulties. As we shall see
in §3, it is the comould part that leads us, rather naturally, to single
out the coarborification constraints (7) among all fusion constraints (4).
But it is in the mould part that the really subtle phenomena, those that
hold the key to compensation, do occur, as will be shown in §2 on some
rich mould material

• Algebra here is something of a side-show, but a fascinating one. As
we shall see, to each fusion-fission transform one may attach a string
of algebraic objects, mainly arithmetical moulds and σ-functions (i.e
functions that are defined, simultaneously and uniformly, on all per-
mutation groups Sr) which encapsulate all that is most distinctive
about each given transform. Now, the first surprise is that the particu-
lar moulds and σ-functions attached to arborification-coarborification
(they constitute what we call the haukian family) are replete with
structure, symmetries, and all manner of highly improbable proper-
ties, which are listed in §5 and illustrated in the tables of §7. And the
second surprise is that all this structure comes crashing down as soon
as we move on to the moulds or σ-functions associated with the other
transforms : unlike the haukian prototypes, they seem to be utterly
unremarkable.

5so that, technically, our arborescent sequences ≺ must be viewed as “weighted forests”
rather than “weighted trees”.
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The arborification-coarborification technique has been around for quite
some time; so here we merely present a unified treatment, catalogue some
typical applications, and refer to the literature for details. The algebraic part,
on the other hand, is quite new, or appears to be6, but here the material is so
abundant that the exposition had to be both sketchy (with only the barest
hints at proofs) and lacunary (with many developments left out). Thus,
damaging as the admission may sound, the present paper is partly a review,
and partly a formulary. But this is all that the limited format allowed. And
there will be, circumstances permitting, a sequel.

We wish to thank M. Kouider, C. Delorme, and D. Forge for helpful
discussions, also for guidance in the literature on group representations.

1.2 Straight / contracting arborification-coarborification.

A brief reminder about mould calculus has been prefaced to the next sec-
tion (§2). Here we simply recall how moulds and comoulds from the basic
symmetry types interact in (5) and what sort of objects they produce :

1 : (A•, B•) = (symmetral, cosymmetral ) ⇒ SS = formal diffeomorphism
2 : (A•, B•) = (alternal, cosymmetral) ⇒ SS = formal derivation
3 : (A•, B•) = (symmetrel, cosymmetrel) ⇒ SS = formal diffeomorphism
4 : (A•, B•) = (alternel, cosymmetrel) ⇒ SS = formal derivation
5 : (A≺, B≺) = (separative, coseparative) ⇒ SS = formal diffeomorphism
6 : (A≺, B≺) = (atomic, coseparative) ⇒ SS = formal derivation

As it happens, depending on the symmetry types involved (whether they are
of the straight sort, with the vowel a, or of the contracting sort, with the
vowel e) one should resort to one or the other of two slightly different variants
of arborification-coarborification :

Straight arborification-coarborification : for case 1 or 2

Arborification rule : A≺ :=
∑
•

F≺• A
• (8)

Coarborification constraint : B• :=
∑
≺

F≺• B≺ (9)

Standard coarborification rule : B≺ :=
∑
•

Stan•≺B• (10)

6we cannot vouch for its newness, because the literature on groups and group functions
is bottomless. But so far all our checks and inquiries have drawn a blank. Yet if some
reader knows of previous connections, we would appreciate hearing from him.
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Here, the arborification tensor Fω
≺

ω is equal to 1 if there exists a bijection of
ω≺ into ω which :

(i) respects7 the order on ω≺ and ω

(ii) leaves the indices ωi unchanged

and Fω
≺

ω := 0 in all other cases. Thus (8) translates into such relations as :

A
(ω1
ω2 → ω3

)≺
:= Aω1, ω2, ω3 + Aω2, ω1, ω3 + Aω2, ω3, ω1

A
(ω1→ω2

↗
↘
ω3
ω4

)
≺

:= Aω1, ω2, ω3, ω4 + Aω1, ω2, ω4, ω3

Whereas the arborification rule (8) completely defines A≺, the dual relation
(9) merely constrains B≺. However, in the important case when the comoulds
are differential operators, there is a natural8 way to define B≺ which not only
agrees with the constraints (9), but also meets the conditions C3, C4 below,
which ensure the transparent (term by term) conservation of the nature (i.e.
being a derivation or an automorphism) of the expansion SS.9 When the
comoulds belong to free associative algebras, there exists no such compelling
choice, but several competing possibilities (see §1.5-9).

Let us sum up the pattern for case 1 and 2 :

C1 : Straight arborification: A• = symmetral ⇒ A≺ = separative
C2 : Straight arborification: A• = alternal ⇒ A≺ = atomic
C3 : Standard coarborification: B• = cosymmetral ⇒ B≺ = coseparative
C4 : Standard coarborification: B• = coalternal ⇒ B≺ = coatomic

Contracting arborification-coarborification : for case 3 or 4.

Contracting arborification rule : A≺ :=
∑
•

CF≺• A
• (11)

Contracting coarborification constraint : B• :=
∑
≺

CF≺• B≺ (12)

Standard coarborification rule : B≺ :=
∑
•

Stan•≺B• (13)

Here, the arborification tensor CFω
≺

ω is equal to 1 if there exists a surjection
of ω≺ onto ω which :

7non-comparable elements in ω≺ may become comparable in ω, but comparable ele-
ments have to remain so.

8even canonical, up to the choice of variables xi.
9its global conservation is not an issue : it automatically follows from the dualness of

the rules (8) and (9).
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(i) respects the order on ω≺ and ω

(ii) contracts the indices, in the sense that each ωi in ω has to be the sum
of all its pre-images ωj in ω≺

and CFω
≺

ω := 0 in all other cases. Thus (11) translates into such relations
as :

A
(ω1
ω2 → ω3

)≺
:= Aω1, ω2, ω3 + Aω2, ω1, ω3 + Aω2, ω3, ω1 + Aω1+ω2, ω3 + Aω2, ω1+ω3

A
(ω1→ω2

↗
↘
ω3
ω4

)
≺

:= Aω1, ω2, ω3, ω4 + Aω1, ω2, ω4, ω3 + Aω1, ω2, ω3+ω4

Here again, we have to supply some coarborification rule compatible with
the constraints (12) and, if possible, with conditions C ′3, C

′
4. Remarkably, it

turns out that, in the case of differential operators at any rate, one and the
same standard arborification rule (cf §1.4 and §3) applies equally in both
contexts : straight or contracting.

Summing up, here is the general pattern for case 3 and 4 :

C′1 : Contracting arborification: A• = symmetrel ⇒ A≺ = separative
C′2 : Contracting arborification: A• = alternel ⇒ A≺ = atomic
C′3 : Standard coarborification: B• = cosymmetrel ⇒ B≺ = coseparative
C′4 : Standard coarborification: B• = coalternel ⇒ B≺ = coatomic

1.3 The reason why arborification-coarborification works.

As far as analytic applications are concerned, the whole point of arborification-
coarborification is to re-arrange expansions of the form

∑
A•B•, which are

usually hopelessly divergent, because they typically admit no better bounds
than :

|A•| ≤ a1 a
r
2 ; ‖B•‖D ≤ r! a3 a

r
4 (with r := r(•) ) (14)

into formally identical expansions
∑
A≺B≺, which are often convergent, be-

cause they usually admit bounds of the form :

|A≺| ≤ c1 c
r
2 ; ‖B≺‖D ≤ c3 c

r
4 (with r := r(≺) ) (15)

with fixed constants c1, c2, but with adjustable constants c3, c4 that depend
on a neighbourhood D of the origin, and go to 0 as this neighbourhood
shrinks.

The key here is not so much the disappearance of the factorial in the
comould estimates as its non-appearance in the mould estimates. The dis-
appearance is not really surprising, because the coarborification constraints
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enable us to spread the ‘load’ of any given B• more or less evenly among a
great many B≺. What calls for an explanation is the non-appearance of r!
in A≺, since under the arborification rule (8) or (11), and for very weakly
ordered arborescent sequences, A≺ is equal to a sum of almost r! distinct A•,
which have no a priori reason of cancelling or compensating each other, and
in fact don’t cancel nor compensate for moulds A• picked “at random”. But
for moulds of “natural origin”, i.e. for the ones that spontaneously occur
in the expansions

∑
A•B• that originate, not in our whims, but in analysis,

such cancellations, on the contrary, tend to take place with providential reg-
ularity. Why so ? Because of case-specific identities, which ensure that the
norms of natural moulds don’t increase significantly under arborification. A
more precise mechanism, which accounts for this small miracle, is the fre-
quent phenomenon of form preservation : after arborification, many moulds
retain their outward analytical expression, except that in this expression all
sums, differences, etc, of indices ωi have to be re-interpreted in terms of the
new arborescent order. But the ultimate reason lies is the fact that “useful”
or “natural” moulds almost invariably conform to some “template” (usually,
one or several relations involving some of the many operations that are de-
fined on moulds) and that arborification ordinarily preserves the “template”
in question, for the simple reason that nearly all mould operations “arborify”,
i.e. extend painlessly to arborescent moulds.

Summing up, we may say that the arborification technique works so well
because arborification usually respects “norm”, “form”, and “template”, with
usually almost meaning whenever needed.

The section §2 infra enumerates a long list of natural moulds, which shall
all be required for the applications to analysis of section §4, and which, bar-
ring two (explainable) exceptions, all possess the above properties. But take
any of these moulds, and tinker ever so slightly with its definition, and ev-
erything immediately unravels : arborification no longer preserves norm, nor
form, nor template. To grasp this stark dichotomy between the behaviour
of natural-useful and artificial-random moulds, we may reach for an anal-
ogy : whereas a random Taylor series with convergence radius one will, with
probability one, possess a natural boundary on the unit circle, most series
encountered in real life tend, on the contrary, to possess only isolated singu-
larities and endless continuability.
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1.4 Standard coarborification.

Pending the precise desciption of coarborification in §3 (with the exact bounds),
let us give a rough description with the heuristics behind it. Consider what
is perhaps the most frequent situation. Take some comould B• consisting of
differential operators, with the following factorisation property :

Bω = Bω1, ω2,...,ωr = Bωr . . . Bω2Bω1 = xnrB∗ωr . . . x
n2B∗ω2

xn1B∗ω1
(16)

with each factor Bωi separating into a homogeneous monomial xni and a
differential operator B∗ωi of homogeneity 0 :

Bωi = xniB∗ωi with Bωi : xm C→ xm+ni C ; B∗ωi : xm C→ xm C (17)

In view of the Leibniz rules, a natural way to coarborify our comould is
to define the action of the sought-after operator Bω≺ on any test function
ϕ(x) as follows. We write Bω≺ ϕ(x) =

(
xnrB∗ωr . . . x

n2B∗ω2
xn1B∗ω1

)
≺ ϕ(x) and

decree that :
(i) if ωi is a root of ω≺, then B∗ωi should act on ϕ(x) alone
(ii) if ωi has an immediate antecedent ωi− in ω≺, then B∗ωi should act on the
homogeneous monomial xni− that accompanies the corresponding B∗ωi− .

If we start from a cosymmetral comould B• with factor operators that
are first-order derivations, then the Leibniz rules clearly ensure the desired
decomposition Bω =

∑
ω≺≤ω Bω≺ . But that decomposition also holds, less

obviously so, when we start from a cosymmetrel comould.

1.5 Quadratic coarborification.

It applies above all to the case of comoulds with values in free associative
algebras. Its true significance lies in the fact that it clears the way for the
algebraic developments of section §5. But it also has analytic implications,
namely for the notion of free-analyticity in §6.2.

Its quickest definition is by means of the tensor contractions10 :

B≺ := B• K
•
• F

•
≺ with K•• :=

(
H••
)−1

, H•• := F •≺ F
≺
• (18)

where F •≺ F
≺
• , short for

∑
≺ F

•
≺ F

≺
• , denotes the symmetric tensor obtained

by contracting both ≺ and leaving the two • alone. Viewed as a square
matrix, the tensor H•• so produced is invertible, with real-positive spectrum,
and admits an inverse K•• .

10covariant indices contract with contravariant ones in proximate positions.
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There is a more conceptual characterisation of quadratic coarborification :
it is the one that minimises the quadratic ‘coarborification norm’

‖B•‖2
coarb :=

∑
≺≤•

< B≺, B≺ > (19)

for the natural scalar product on the free algebra generated by the Bωi .
11

1.6 Instances of over- and undershooting.

Overshooting : We may take all possible oders. But the regroupings are then
too large to be helpful or to illuminate the compensation mechanisms.

Undershooting : We may take all laminations, i.e. all partial orders that al-
low to each element at most one successor and at most one predecessor. A
lamination clearly splits a set into subsets (“branches”) which (i) are mutu-
ally non-comparable (ii) carry each a total order. Here, the regroupings are
too small to permit compensation to come into its own, at least if we insist
that to each d-branched lamination there should correspond an operator of
differential order d. But despite its uselessness as far as restoring convergence
is concerned, lamination has interesting combinatorial-algebraic aspects. We
shall briefly review two instances in §1.8 and §1.9. For now, let us note in
passing that laminations lead to a decomposition of the space Br spanned by
all r! products of r distinct, non-commuting operators Bi

(i) first into subspaces dBr consisting of derivations of order d

(i) then into subspaces B
(
d1
r1

,
,
d2
r2

,
,
...
...
,
,
dk
rk

)
spanned by associative products of d1

Lie elements of homogeneity r1 , d2 Lie elements of homogeneity r2 , etc. . .

Br = ⊕1≤d≤r
dBr = ⊕ r1<r2<···<rk

d1 r1+···+dk rk=r B
(
d1
r1

,
,
d2
r2

,
,
...
...
,
,
dk
rk

)
(20)

Since these cells correspond one-to-one to the sets of all order-respecting
laminations r# of r := (1, . . . , r) which have d1 branches of length r1, d2

branches of length r2, etc, the corresponding dimensions clearly are :

dim
(d1

r1

,

,

d2

r2

,

,

. . .

. . .

,

,

dk
rk

)
:= dim

(
B
(
d1
r1

,
,
d2
r2

,
,
...
...
,
,
dk
rk

))
=

r!∏
di!
∏
rdii

(21)

dimr,d := dim
(d

Br

)
=

∑
k≥1

∑
P
di=d

∑
P
di ri=r

dim
(d1

r1

,

,

d2

r2

,

,

. . .

. . .

,

,

dk
rk

)
(22)

= # {r≺ : r≺ ≤ r , r≺ with d roots} (23)

11with < Bω, Bω′ >:= δω,ω′ .
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The reason for the last identity is that dBr also possesses a basis whose
elements correspond one-to-one to the various order-respecting arborescent
orders r≺ on the sequence r := (1, . . . , r).

1.7 Lamination-colamination on a free algebra.

We consider the associative algebra B freely generated by the symbolsB1, B2, . . .
viewed as formal, order-one derivations, and we use the customary notations :
Bn = Bn1,...,nr := Bnr . . . Bn1 .

Whereas B admits a unique filtration

associative algebra = B = ∞B . . . 3B ⊃ 2B ⊃ 1B = Lie algebra (24)

into the subspaces dB consisting of formal derivations of order at most d, there
exist several more or less natural ways of converting this into a gradation
⊕ dB∗ with privileged projections B→ dB∗ :

B∗ = 1B∗ ⊕ 2B∗ ⊕ 3B∗ . . . with 1B∗ = 1B , d+1B∗ ∼ d+1B/ dB (25)

Bn = 1Bn + 2Bn + 3Bn . . . ∀Bn = Bn1,...,nr := Bnr . . . Bn1 (26)

Bn 7→ dBn =
∑
n′

dHn′

n Bn′ ∈ dB∗ with dHn′

n ∈ Q (27)

depending on which set of conditions Ci we impose :

C1: economy:
The projection tensors dHn′

n should vanish unless the sequences n and n′ have
same length r, same elements ni and n′i (with the same multiplicities in case
of repetitions), and differ only as to the order of these elements.

C2: isotropy (or universality):
The projection tensors should depend only on the permutation σ that turns
the ordered sequence n into n′ , ie :

dHn′1,...,n
′
r

n1,...,nr
≡ dh(σ) with n′i ≡ nσ(i) ∀i (28)

C3: symmetry:
The projection tensors should be symmetric : dHn′

n ≡ dHn
n′ .

In combination with condition C2, this translates into : dh(σ) ≡ dh(σ−1).

C4: orthogonality:
The gradation subspaces dB∗ should be pairwise orthogonal, relative to the

13



natural scalar product :

< Bn, Bn′ >:= 1 (resp 0) if n = n′ (resp n 6= n′) (29)

C5: order-compatibility:
The first projection tensor 1Hn′

n should depend only on the number of com-
patibilities/ incompatibilities in the orders of n and n′. More concretely, and
assuming condition C2, this means that 1h(σ) should depend only on the
numbers p and q of + and − signs in the sequence σ(i+ 1)− σ(i).

C6: lamination-compatibility:
The higher projection tensors dHn′

n should be simply deducible from the first
one. Ideally, we should have :

dBn ≡ 1

d!

∑
sha(n1,n2,...,ns)=n

1Bn1
1Bn2 . . . 1Bnd (30)

leading to a natural co-lamination Bn ≡
∑

n#≤nBn#

C1, C2 are minimum demands in this free algebra context but, as it turns
out, there is some incompatibility between the further conditions.

1.8 Uniform lamination-colamination.

Imposing C1, C2 and C5 (order compatibility) totally fixes the first projection
tensor. If the sequences n,n′ are repetition-free, we get :

1Hn′

n = 1h(σ) = (−1)q
p! q!

(p+ q + 1)!
= (−1)q

p! q!

r!
(31)

If n,n′ involve repetitions, with multiplicities k1, k2 . . . , we must consider
all k1! k2! . . . sequences n,n′ that coincide with n,n′, except that identi-
cal terms are now regarded as distinct, in all possibe ways, and then set
1Hn′

n :=
∑

1Hn′
n with Hn′

n calculated according to the rule (31) Then condi-
tion C6 is automatically fulfilled, in its strong form (30), leading to a natural
colamination. But we have neither C3 (symmetry) nor C4 (orthogonality).

1.9 Quadratic lamination-colamination.

If we now add C3 (orthogonality) to C1, C2, all projection tensors dHn′
n are

fixed at once. Although they lack simple, closed expressions, the associated σ-
function dh(σ), especially the first one (d = 1) possess remarkable properties

14



(see §5.18 and §7.9). Condition C3 (symmetry) is then automatically fulfilled
(the implication is non-trivial), as well as a weaker form of C6 : the right-
hand side of (30) may involves partial sequences ni which are not always
order-compatible with n.

2 Combinatorial aspects of arborification.

2.1 Basic mould operations.

Moulds are functions of a variable number of variables : they depend on
sequences ω := (ω1, . . . , ωr) of arbitrary length r = r(ω). The sum ‖ω‖ of a
sequence is simply

∑r
1 ωi. Sequences are systematically written in boldface,

with upper indexation when such is called for, and with the product denoting
concatenation: e.g. ω = ω1.ω2. The elements ωi which make up these
sequences are written in normal print, with lower indexation. The sequences
themselves are affixed to the moulds as upper indices A• = {Aω}, since
moulds are meant to be contracted

A•, B• 7→ < A•, B• > :=
∑

Aω Bω

with dual objects (often differential operators or elements of an associative
algebra), the so-called comoulds B• = {Bω}, which carry their own indices
in lower position. Moulds may be added, multiplied, composed.
Mould addition is what you expect : components of equal length get added.
Mould multiplication (mu or ×) is associative, but non-commutative :

C• = A• ×B• ⇐⇒ Cω =
∑

ω = ω1. ω2

Aω
1

Bω
2

(32)

(This includes the trivial decompositions ω = ω.∅ and ω = ∅.ω).

Mould composition (◦) too is associative and non-commutative :

C• = (A• ◦B•) ⇐⇒ Cω =
∑

ω = ω1 . . . ωs

A‖ω
1‖,...,‖ωs‖Bω

1

. . . Bω
s

(33)

with a sum extending to all possible decompositions of ω into s ≤ r(ω) non-
empty factor sequences ωi

The operations (+,×, ◦) on moulds interact in exactly the same way as their
namesakes for power series. Thus (A• ×B•) ◦ C• ≡ (A• ◦ C•)× (B• ◦ C•).
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2.2 Basic mould symmetries.

Nearly all useful moulds fall into a few basic symmetry types.
A mould A• is said to be symmetral (resp. alternal) iff :∑

ω∈sha(ω1,ω2)

Aω = Aω
1

Aω
2

(resp. 0) ∀ω1 6= ∅ ,∀ω2 6= ∅ (34)

A mould A• is said to be symmetrel (resp. alternel) iff :∑
ω∈she(ω1,ω2)

Aω = Aω
1

Aω
2

(resp. 0) ∀ω1 6= ∅ , ∀ω2 6= ∅ (35)

Here sha(ω1,ω2) (resp. she(ω1,ω2 )) denotes the set of all sequences ω
obtained from ω1 and ω2 under ordinary (resp. contracting) shuffling. In a
contracting shuffle, two adjacent indices ωi and ωj stemming from ω1 and
ω2 respectively may coalesce to ωij := ωi+ωj.

Thus, for a sequence ω1 := (ω1) of length 1 and a sequence ω2 := (ω2, ω3)
of length 2, the symmetrality (resp alternality) condition reads :

Aω1,ω2,ω3 + Aω2,ω1,ω3 + Aω2,ω3,ω1 ≡ Aω1 Aω2,ω3

(resp ≡ 0)

and the symmetrelity (resp alternelity) condition reads :

Aω1,ω2,ω3 + Aω2,ω1,ω3 + Aω2,ω3,ω1 + Aω1+ω2,ω3 + Aω2,ω1+ω3 ≡ Aω1 Aω2,ω3

(resp ≡ 0)

For arbomoulds, i.e. moulds A≺ with an arborescent order on their indices,
two new symmetries come into play : separativity and atomicity.

Separativity means that whenever ω≺ is many-rooted, with one-rooted
subsequences ωi

≺
, the arbomould factors accordingly :

Aω
≺ ≡

∏
Aω

i≺
if ω≺ = ⊕ ωi≺ with ωi

≺
one-rooted (36)

Atomicity means that whenever ω≺ has more than one root, the arbo-
mould vanishes :

Aω
≺ ≡ 0 if ω≺ is many-rooted (37)

Mould-comould contractions.
LetBω be the homogeneous components of some local-analytic, ν-dimensional

vector field X (resp of the postcomposition operator F associated with some
local-analytic ν-dimensional diffeomorphism f) and let

Bω = Bω1,...,ωr := Bωr . . . Bω1 (reversion !) (38)
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The comould B• so defined is said to be co-symmetral (resp co-symmetrel)
if its action on a product ϕ1ϕ2 obeys the Leibniz rule :

Bω (ϕ1 ϕ2) =
∑

(Bω1 ϕ1) (Bω2 ϕ2) (39)

with a sum extending to all pairs (ω1,ω2) such that ω ∈ sha(ω1,ω2) (resp
ω ∈ she(ω1,ω2)).

The four main symmetry types admit a simple characterisation in terms
of mould-comould contractions :

A• : B• 7→ C• with Cω0 :=
∑
‖ω‖=ω0

Aω Bω (40)

Indeed :
A• : B• → C•

alternal : field → field
symmetral : field → diffeo
alternel : diffeo → field
symmetrel : diffeo → diffeo

Most stability properties follow from this interpretation. Thus :

symmetral• × symmetral• = symmetral•

symmetrel• × symmetrel• = symmetrel•

alternal• ◦ alternal• = alternal•

symmetrel• ◦ symmetrel• = symmetrel•

2.3 Constant-type moulds.

mould value symmetry type associated series

1• 1 if r = 0 (0 otherwise) symmetral 1

I• 1 if r = 1 (0 otherwise) alternal x

log• (−1)r−1

r
alternel log(1 + x)

exp•a
ar

r!
symmetral e a x

tu•a
(−1)r

r!
Γ(r−a)
Γ(−a)

symmetrel (1 + x)a

2.4 Difference-type flat moulds.

For any t = (t1, .., tr) ∈ Rr, ti 6= tj, we set p :=
∑

ti<ti+1
1, q :=

∑
ti>ti+1

1

and define the symmetral mould sad•a (special case: sad• = sad•1 ) and the
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alternal mould lad• as follows :

sad∅ := 1 =: sad∅a ; lad∅ := 0

sad t1,...,tr := 1 (resp 0) if t1 < t2 · · · < tr (resp otherwise)

sad t1,...,tr
a :=

a

r!

∏
1≤i≤p

(a+ i)
∏

1≤j≤q

(a− j)

lad t1,...,tr := (−1)q
p! q!

(p+ q + 1)!
= (−1)q

p! q!

r!

2.5 Difference-type polar moulds.

tas∅a,b := 1 ; tas t1a,b :=
a− b

(a− t1)(t1 − b)

tas t1,...,tra,b :=
a− b

(a− t1)(t1 − t2) . . . (tr−1 − tr)(tr − b)

tas∅? := 0 ; tas t1? :=
1

(−t1)(t1)

tas t1,...,tr? :=
1

(−t1)(t1 − t2) . . . (tr−1 − tr)(tr)

tas∅?? := 0 ; tas t1?? := 1

tas t1,...,tr?? :=
1

(t1 − t2) . . . (tr−1 − tr)

tas•a,b × tas•b,c = tas•a,c
tas•a,b × tas•b,a = 1•

2.6 Sum-type flat moulds.

We first settle some notations, then define our moulds :

x := (x1, . . . , xr) (41)

x̌i := x1 + · · ·+ xi (42)

x̂i := xi + · · ·+ xr (43)

‖x‖ := x1 + · · ·+ xr = x̂1 = x̌r (44)

σ+(x) := 1 if x > 0 (resp := 0 if x < 0) (45)

σ−(x) := 1 if x < 0 (resp := 0 if x > 0) (46)

δ(x) := 1 if x = 0 (resp := 0 if x 6= 0) (47)
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sofox± := (−1)r σ±(x̌1) . . . σ±(x̌r)

antisofoxa := (−1)r σ±(x̂1) . . . σ±(x̂r)

sefox± := (−1)r−1σ±(x̌1) . . . σ±(x̌r−1) σ∓(x̌r)

antisefox± := (−1)r−1σ∓(x̂1) σ±(x̂r−1) . . . σ±(x̂r)

lefox± := (−1)rσ±(x̌1) . . . σ±(x̌r−1) δ(x̌r)

antilefox± := (−1)rδ(x̂1) σ±(x̂r−1) . . . σ±(x̂r)

2.7 Sum-type polar moulds. The “organic” family.

saωa :=
∏i=r

i=1
ωi
ω̌i

musaωa := (−1)r
∏i=r

i=1
ωi
ω̂i

romoωa :=
∏i=r

i=1(a ωi
ω̌i
− 1) antiromoωa :=

∏i=r
i=1(a ωi

ω̂i
− 1)

remoωa := a ωr
ω̌r

∏i=r−1
i=1 (a ωi

ω̌i
− 1) antiremoωa := a ω1

ω̂1

∏i=r
i=2(a ωi

ω̂i
− 1)

somo•a,b := remo•a × antiromo•1−b (48)

:= romo•a × antiremo•1−b (49)

= romo•a/b × remo•b (50)

somo•
[a
c
b
d

]
:= somo•c−b

d−b ,
a−b
d−b

(51)

somo•
[ b
a

0
1

]
:= somo•a,b (52)

2.8 Main properties.

Symmetry types :12

All the above moulds fall into one or the other of the main symmetry types.

Alternal : lad•, tas•?, tas•??

Symmetral : exp•a, sad•, sad•a, tas•a,b, sa•, musa•

Alternel : log•, lefo•±, redo•±, redom•

Symmetrel : tu•a, sofo•±, sefo•±, romo•a, remo•a, somo•a,b

12flat moulds should be regarded as distribution-valued : for them the symmetries hold
almost everywhere, not necessarily everywhere.
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All pairs (mould•, antimould•) have the same symmetry type.

Useful identities and closure properties :

sofo•
+
× sefo•− = 1• (53)

antisofo•
+
× antisefo•− = 1• (54)

remo•a × antiromo•1−a = 1• (55)

romo•a × antiremo•1−a = 1• (56)

multplicative inverse : somo•
[a
c
b
d

]
↔ somo•

[ c
a
b
d

]
( a , c exchanged )

composition inverse : somo•
[a
c
b
d

]
↔ somo•

[ b
d
a
c

]
( columns exchanged )

sequence reversal : somo•
[a
c
b
d

]

anti↔ somo•
[ c
a
d
b

]
( rows exchanged )

multplication : somo•a1,a2
× somo•a2,a3

= somo•a1,a3

composition : somo•a1,b1
◦ somo•a2,b2

= somo•(a2−b2)a1+b2 , (a2−b2)b1+b2

multplication : somo•
[a0
a2

b1
b2

]
× somo•

[a1
a0

b1
b2

]
= somo•

[a1
a2

b1
b2

]

composition : somo•
[a1
a2

b1
b2

]
◦ somo•

[ b1
b2

c1
c2

]
= somo•[a1

a2

c1
c2

]

2.9 Smooth and form-preserving arborification.

Smooth or size-preserving arborification.

All the above moulds possess the property of smooth arborification (meaning
that their arborified variants admit essentially the same type of bounds) the
only exception being the moulds log• and tu•a for a /∈ Z and in particular for
a = 1/2. This is in relation with the fact that the standard alien derivations
(which admit log• as their left-lateral mould) and the standard or median
convolution average (which admits tu•1/2 as its right- and left-lateral mould)

are not well-behaved.13

Of course, for alternal or symmetral (resp alternel or symmetrel) moulds,
one should take the ordinary (resp contracting) form of arborification.

Form-preserving arborification.

All the sum-type moulds listed above, i.e. all those moulds whose definition

13See §4.10, §4.11 and [E11].
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involves forward sums x̂i or ω̂i (resp backward sums x̌i or ω̌i) have the stronger
and very useful property of form-preserving arborification. This means that
they retain their outward analytical expression, except that the sums x̂i or
ω̂i (resp x̌i or ω̌i) are now relative to the arborescent (resp antiarborescent)
order. The same holds for the difference-type moulds tas•a,∞ and tas•∞,b.

Thus, it is an easy matter to check that for any arborescent sequence ω≺

(resp antiarborescent sequence ω�) we still have :

saω
�

a :=
i=r∏
i=1

ωi
ω̌i

musaω
≺

a := (−1)r
i=r∏
i=1

ωi
ω̂i

exactly as in §2.1.10, except that ω̂i (resp ω̌i) now denotes the sum of all
indices ωj that follow (resp precede) ωi inside ω≺ (resp ω�). Of course, as
in the case of totally ordered sequences, ωi itself should be included in that
sum.

2.10 Mould mixing and arborification.

For any pair A•, B• of moulds carrying real indices ωi, the mould mixture
C• := A•mixB• is defined by :

Cω1,...,ωr :=
∑
π∈Sr

∑
1≤m≤r

MIXω1,...,ωr
π,m B̃ωπ(1),...,ωπ(m)Aωπ(m+1),...,ωπ(r) (57)

with a sum extending to all permutations π of the sequence (1, . . . , r) . This

sum involves the mould A• itself and the conjugate B̃• of the mould B• :

B̃ ω1,...,ωr := (−1)r B̃ ωr,...,ω1 (58)

as well as a ‘disorder coefficient’ which is defined as follows :

MIX ω1,...,ωr
π,m := ε1 ε2 . . . εr σε1(ω̂1)σε2(ω̂2) . . . σr(ω̂r) (59)

and assumes the values 0,±1. Here, the sign function σ± and the forward
sums ω̂i := ωi + . . . ωr are as in §2.6, and the signs εi are given by :

ε1 := + if m < π−1(1)
:= − if m ≥ π−1(1)

εi := + if π−1(i− 1) < π−1(i) (for i > 1)
:= − if π−1(i− 1) > π−1(i) (for i > 1)

The usefulness of mix derives from the automatic sign separation which it
brings about in the index sequences. Indeed, the sum on the right-hand side
of (57) involves only terms of the form Aα1,...,αr1 and B β1,...,βr2 such that :

α̂i := α1 + · · ·+ αr1 ≥ 0 ; β̂i := β1 + · · ·+ βr2 ≤ 0 (60)
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Mould mixing also respects symmetrality (in particular, self-mixing leaves
symmetral moulds unchanged) and commutes with pre-multiplication by a
third mould :

{A• and B• symmetral} =⇒ {A• mix B• symmetral} (61)

{A• symmetral} =⇒ {A• mix A• = A•} (62)

(C• × A•) mix (C• ×B•) = C• × (A•mixB•) (63)

Moreover – and this is essential for the sequel – the mixing operation retains
its form under arborification. Indeed, if we construct C• := A•mixB• as
in (57), then the standard (non-contracting) arborification C≺ is given by a
straightforward variant of (57) :

C(ω1,...,ωr)≺ :=
∑
π∈Sr

∑
1≤m≤r

MIX(ω1,...,ωr)≺

π,m B̃ωπ(1),...,ωπ(m)Aωπ(m+1),...,ωπ(r) (64)

with disorder coefficients MIXω≺

π,m still given by (59), except that the forward
sums ω̂i are now relative to the arborescent order on ω≺, and with a suitable
redefinition of the signs εi :

ε1 := + if m < π−1(1) (for i root of ω≺)
:= − if m ≥ π−1(1)

εi := + if π−1(i−) < π−1(i) (for i not a root ω≺

:= − if π−1(i−) > π−1(i) and i− antecedent of i)

2.11 Mould flattening and arborification.

Let us also mention two more mould transforms which turn alternel (resp
symmetrel) moulds A• into alternal (resp symmetral) moulds B•. The first
transform is quite elementary and applies to all cases. The second transform
is more subtle, but also more relevant to the present investigation. It ap-
plies only to moulds A• with indices ni in N and turns them into ‘flat’ or
‘piecewise-constant’ moulds B• with indices ti in R. Both transforms respect
multiplication in the sense that transf(A•1 × A•2) ≡ transf(A•1) × transf(A•2).
Here is how they are defined :

First mould transform:

direct : A• 7→ B• := A• ◦ exp•1 (65)

inverse : B• 7→ A• := B• ◦ log• (66)

Second mould transform:
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A• ↔ B• with B t1,...,tr := SA ε1,...,εr−1,+ and

ε1 := sign(t1 − t2) , . . . , εr−1 := sign(tr−1 − tr)
SA+ := −A 1

SA+,+ := +A 1,1

SA−,+ := +A 1,1 + A 2

SA+,+,+ := −A 1,1,1

SA+,−,+ := −A 1,1,1 − A 1,2

SA−,+,+ := −A 1,1,1 − A 2,1

SA−,−,+ := −A 1,1,1 − A 1,2 − A 2,1 − A 3

etc . . . Generally :

direct : SA ε1,...,εs := (−1)r
∑?

An1,...,ns

inverse : A r1,...,rs := (−1)s
∑??

ε1 . . . εr SA
ε1,...,εr

In the last but one identity, all sign subsequences εi consist of (ri− 1) initial
− signs and one final + sign (ri may be =1) and

∑? extends to all integer
sequences ni of sum ri , whereas in the last (reverse) identity the sum

∑??

extends to all εj ∈ {+,−} except when j ∈ {r1, r1 +r2, . . . , r1 +. . .+rs} , in
which case εj has to be +.

3 Combinatorial aspects of coarborification.

3.1 The standard coarborification rule.

Let {Bω, ω ∈ Ω} be any system of ordinary differential operators in the
variables x1, . . . , xν and define the comould B• as usual by setting :

Bω1,..., ωr := Bωr . . . Bω1 (67)

Then there exists a privileged arborescent comould B•≺ , the so-called stan-
dard or homogeneous coarborification of B• , which is entirely characterised
by the following three properties :
P1 B•≺ is coseparative14 i.e. :

Bω≺ (ϕ1 ϕ2) ≡
∑

ω1≺⊕ω2≺=ω≺

Bω1≺ (ϕ1) Bω2≺ (ϕ2) (68)

14 ω1≺ ⊕ ω2≺ denotes the tree obtained by juxtaposition of ω1≺ and ω2≺, with no
other order relations than those inherited from the sub-trees ωi≺. The sum (68) extends
also to the trivial juxtapositions, with one summand ωi≺ equal to ω≺ and the other one
empty.
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P2 If deg(ω≺) = d i.e. if the tree ω≺ has exactly d roots, then the operator
is homogeneous in the ∂i := ∂xi with total degree d
P3 If ω = ω1ω

∗ (in other words, if ω is of degree one, with a root element
ω1 followed by some arborescent sequence ω∗≺) the corresponding operator
factors as :

Bω≺ xj ≡ Bω∗≺ Bω1 log xj (j = 1, 2, . . . , ν) (69)

Moreover, if B• is cosymmetral 15 (resp cosymmetrel 16), then B• and B≺• are
indeed correlated according to Bω :=

∑
ω≺<ω Bω≺ (resp Bω :=

∑
ω≺≺ <<ω Bω≺≺ ).

In other words, whereas symmetral and symmetrel moulds obey different ar-
borification rules (simple/contracting), the standard co-arborification rules
are exactly the same for a cosymmetral comould and a cosymmetrel one.

Let us check, by induction on the length r of ω≺, the fact that P1, P2,
P3 together do determine Bω≺ .

Either d(ω≺) = 1, which means that ω≺ is of the form (70), in which case
Bω≺ is as in (71) below :

ω≺ = (ω1,ω
∗≺) (70)

Bω≺ =
∑

1≤i≤ν

(Bω∗≺ .Bω1
≺ . log xj)(xj ∂j) (71)

Or deg(ω≺) = d ≥ 2, which means that ω≺ is of the form (72), with
s clusters of d1, . . . , ds identical, irreducible summands ωi1

≺
, . . . ,ωis

≺
, in

which case Bω≺ is as below :

ω≺ = ω1≺ ⊕ · · · ⊕ ωd≺ (ωi
≺ 6= ∅ , deg(ωi

≺
) = 1)

= (ωi1
≺

)⊕d1 ⊕ · · · ⊕ (ωis
≺

)⊕ds (d1 + · · ·+ ds = d) (72)

Bω≺ =
1

d1! . . . ds!

∑
1≤s≤d
1≤js≤ν

(Bω1≺ . log xj1) . . . (Bωd≺ . log xjd) (xj1 ∂j1) . . . (xjd ∂jd)

3.2 Interpretation for cosymmetral/el comoulds.

To see how one and the same operation works equally well in the seemingly
so different contexts of cosymmetrality and cosymmetrelity, the reader may

15see §3.2.
16see §3.2.
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examine the simplest non-trivial examples of cosymmetral and cosymmetrel
comoulds, with one variable x only and the factorisation property :

B(a)
• : B(a)

n1,...,nr
:= B(a)

nr . . . B
(a)
n1

B(e)
• : B(e)

n1,...,nr
:= B(e)

n . . . B(e)
n1

B(a)
n := bn x

n+1 ∂n B(a)
n : xm C→ xm+n C (∀m,n)∑

n≥0

B(e)
n := exp

(∑
n≥1

bn x
n+1 ∂n

)
B(e)
n : xm C→ xm+n C (∀m,n)

and then use the corresponding cosymmetries17 :

B(a)
n

coproduct−→ 1⊗B(a)
n +B(a)

n ⊗ 1 (cosymmetrality) (73)

B(e)
n

coproduct−→
∑

n1+n1=n

B(e)
n1
⊗B(e)

n2
(cosymmetrelity) (74)

to check that in both cases the same standard procedure of §3.1 leads to
comoulds B

(a)
≺ and B

(e)
≺ which are both coseparative, but verify the distinct

coarborification constraints (9) and (12).

3.3 Standard coarborification and norm reduction.

Coarborification automatically diminishes comould norms. This of course is
its main property, its main justification, and the reason for its usefulness
in analysis. The phenomenon takes place for any reasonable norm on local
differential operators, for instance :

‖B‖ = ‖B‖D1,D2
:= sup

ϕ6=0

‖B ϕ‖D1

‖ϕ‖D2

with 0 ∈ D1 , D̄1 ⊂ D2 ⊂ Cν (75)

with D1,D2 two small open neighbourhoods of 0 and ‖ϕ‖Di the uniform norm
on Di. To illustrate norm reduction, i.e. the improvement from (76) to (77) :

‖Bω‖ ≤ r(ω≺)! CN(ω≺) ‖Bω1‖ . . . ‖Bωr‖ (76)

‖Bω≺‖ ≤ CN(ω≺) ‖Bω1‖ . . . ‖Bωr‖ (77)

let us fix a non-resonant spectrum λ ∈ Cν and consider first-order differential
operators of the form :

Bωi := xni B∗ωi with B∗ωi :=
∑

1≤j≤ν

bjωi xj ∂xj , ωi :=< ni, λ > , bjωj ∈ C

17Since B(e)
0 = 1 the sum (74) includes as extreme terms B(e)

n ⊗ 1 and 1⊗B(e)
n .
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Next, let us carry out homogeneous coarborification for three extreme types
of arborescent sequences :

ω := (ω1, . . . , ωr) ; total order ; all ωi distinct
ω′≺ := (ω1, . . . , ωr) ; total order ; all ωi distinct
ω′′≺ := (ω1 ⊕ · · · ⊕ ωr) ; no order ; all ωi distinct
ω′′′≺ := (ω1 ⊕ · · · ⊕ ωr) ; no order ; all ωi identical

We find :

Bω := Bωr . . . Bω1 (78)

Bω′≺ := xnr(B∗ωr x
nr−1) (B∗ωr−1

xnr−2) . . . (B∗ω3
xn2) (B∗ω2

xn1)B∗ω1
(79)

Bω′′≺ := xn1+···+nr B∗ω1
. . . B∗ωr (80)

Bω′′′≺ :=
1

r!
xn1+···+nr B∗ω1

. . . B∗ωr (81)

and in all three cases we observe the disappearance of the factor r! , though
for rather distinct reasons :

– in (79) we have a first-order differential operator B∗ω1
preceded by innocuous

scalar factors B∗ωi x
ni−1

– in (80) we have a differential operator B∗ω1
. . . B∗ωr (all terms commute) of

order r and of factorially large norm, but with a more than factorially small
front factor x‖n‖ since x is small and ‖n‖ ≥ const . r1+ 1

ν

– in (81) we have again a differential operator B∗ω1
. . . B∗ωr (all terms are equal)

of order r and of factorially large norm, but with a multiplicity factor 1
r!

in
front.

4 The arborification-coarborification trans-

form. Fourteen applications to analysis.

4.1 Application 1: Linearisation of vector fields with
diophantine spectra.

A local analytic vector field X with diophantine, non-resonant spectrum
λ := (λ1, . . . , λν) :

X := X lin +
∑

Bn with (82)

X lin :=
∑

1≤i≤ν

λi xi ∂xi and

Bn := homog. part of deg. n = (n1, .., nν) (ni ≥ −1, at most one neg. ni)
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admits a formal linearisation Θent which in operatorial form reads :

X = Θent X
lin Θ−1

ent with (83)

Θent :=
∑

Sa• B• ≡
∑

Sa
≺
B≺ (84)

Θ−1
ent :=

∑
invSa

•
B• ≡

∑
invSa

≺
B≺ (85)

Saω := (−1)r
∏

1≤i≤r

1

ω1 + · · ·+ ωi
(86)

invSa
ω

:=
∏

1≤i≤r

1

ωi + · · ·+ ωr
(87)

Prior to arborification, the normalising series (84),(85) are usually divergent.
After arborification, they are always convergent, because both moulds Sa•

and invSa• suffer no significant norm increase. And the reason why they
don’t is that one of them, namely invSa• actually retains its form , i.e. its
outward analytical expression, under arborification.18

N.B. Here and in the sequel, we take advantage of the non-resonance of
the λi’s to substitute an indexation by ωi =< λ, ni >∈ C for the original
indexation by ni ∈ Zν .

4.2 Application 2: Linearisation of diffeos with dio-
phantine spectra.

A local analytic diffeoX with diophantine and (multiplicitively) non-resonant
spectrum l := (l1, . . . , lν) :

F :=
(
1 +

∑
Bn

)
. F lin with (88)

F lin := ϕ(x1, . . . , xν) 7→ ϕ(l1 x1, . . . , lν xν)

Bn := homog. part of deg. n = (n1, .., nν) (ni ≥ −1, at most one neg. ni)

18For details, see [E3],[E9], also [Sie1],[Sie2],[Br] for the historical background.
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admits a formal entire linearisation Θent which in operatorial form reads :

F = Θent F
lin Θ−1

ent with (89)

Θent :=
∑

Se• B• ≡
∑

Se≺ B≺ (90)

Θ−1
ent :=

∑
invSe

•
B• ≡

∑
invSe

≺
B≺ (91)

Seω := (−1)r
∏

1≤i≤r

e−ωi

1− e−ω1···−ωi
(92)

invSe
ω

:=
∏

1≤i≤r

1

eωi+···+ωr − 1
(93)

As before, and for the same reasons, arborification restores convergence in
the normalising series Θ±1

ent . 19

4.3 Application 3: Normalisation of vector fields with
resonant spectra.

Here normalisation rather than linearisation is the order of the day, with
normalising transformations Θres that are generally divergent but resurgent.
To simplify, assume the resonance to be of degree 1 (only one relation between
the λi’s), in which case one single ‘normal’ variable z bears the whole burden
of divergence and resurgence.

X := Xnor +
∑

Bn with (94)

Xnor :=
∑

1≤i≤ν

λi xi ∂xi + xm
∑

1≤i≤ν

τi xi ∂xi with < m, τ >= −1 and

Bn := homog. part of deg. n = (n1, .., nν) (ni ≥ −1, at most one neg. ni)

In operatorial form, the resurgent normalising transformations Θ±1
res read :

X = Θres X
nor Θ−1

res with (95)

Θres :=
∑

Ve(z)• B• ≡
∑

Ve(z)
≺
B≺ (96)

Θ−1
res :=

∑
invVe(z)

•
B• ≡

∑
invinvVe(z)

≺
B≺ (97)

with mould elements Ve(z)ω,Ve(z)ω that are elementary resurgent mono-
mials. The normalising transformations being usually divergent, the only

19For details, see [E3],[E9], also [Sie1],[Sie2],[Br],[Rü] for the background.
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question that arises is of course whether the Θ±1
res are convergent as series

of resurgent functions. Sometimes they already are, prior to arborification;
sometimes arborification is called for.20

4.4 Application 4: Normalisation of diffeos with reso-
nant spectra.

The picture is much the same as in the previous example.

F :=
(
1 +

∑
Bn

)
. F nor with (98)

F nor := ϕ(x1, . . . , xν) 7→ ϕ(l1 x1..., . . . , lν xν ...)

Bn := homog. part of deg. n = (n1, .., nν) (ni ≥ −1, at most one neg. ni)

with resurgent normalising transformations Θ±1
res of the form :

F = Θnor F
lin Θ−1

nor with (99)

Θnor :=
∑

We(z)• B• ≡
∑

We(z)≺ B≺ (100)

Θ−1
ent :=

∑
invWe(z)

•
B• ≡

∑
invWe(z)

≺
B≺ (101)

and with suitable resurgent monomials We(z)• and invWe(z)
•
. 21

4.5 Application 5: Ramified linearisation of vector fields
with quasi-resonant spectra.

Here, we assume pure quasi-resonance. In other words, we have no (exact)
resonance, but a violation of Bryuno’s classical diophantine condition.

X := X lin +
∑

Bn with (102)

X lin :=
∑

1≤i≤ν

λi xi ∂xi and

Bn := homog. part of deg. n = (n1, .., nν) (ni ≥ −1, at most one neg. ni)

Quasi-resonance doesn’t prevent formal entire linearisation, but it usually
renders Θ±1

ent divergent. To get hold of something convergent, we must har-
ness the phenomenon of compensation and work with ramified transforma-
tions Θ±1

ram. These are ‘ramified’ in the sense that they involve positive,

20For details, see [E2],[E3],[E5].
21For details, see [E2],[E3],[E5].
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irrational powers of at least one, but sometimes two or three variables xi.
Moreover, instead of being defined on ordinary (uniform) neighbourhoods of
the origin 0 ∈ Cν , they are defined in spiral-like, ramified neighbourhoods.
The operatorial expansions for Θ±1

ram are always of the form :

X = Θram X lin Θ−1
ram with (103)

Θram := Θent Θ−1
colin =

∑
Sa•ram(z) B• ≡

∑
Sa
≺

ram(z) B≺ (104)

Θ−1
ram := Θcolin Θ−1

ent =
∑

invSa•ram(z) B• ≡
∑

invSa≺ram(z) B≺ (105)

but the analysis very much depends on the ‘badness’ of the quasiresonance.

Case 1: Real, semi-mixed spectrum :
This is the case when λ1 < 0 but 0 < λ2, λ3, . . . , λν .
Then one ramification suffices :

z := x
−1/λ1

1 (106)

Sa •ram(z) := Sa•co(z) := (invSa• z‖•‖)× Sa• (107)
invSa •ram(z) := invSa•co(z) := invSa• × (Sa• z‖•‖) (108)

with z‖•‖ used as short-hand for z‖ω‖ := z
P
ωi . Here the expansions for Θ±1

ram

are already convergent before arborification.22

Case 2 : Real, mixed spectrum:
This is the case when we have at least two negative and two positive λi.
Here, two ramifications become necessary, attached to two eigenvalues of our
own choosing, but of opposite signs, say λ1 < 0 < λ2, and we must resort
to the sophisticated operation of mould mixing, which is described in §2.10.
The mould ingredients for Θ±1

ram now read :

z1 := x
−1/λ1

1 , z2 := x
−1/λ2

2 (109)

invSa•ram(z) := invSa•co(z1) mix invSa•co(z2) (110)

≡ invSa• ×
(
(Sa• z

‖•‖
1 ) mix (Sa• z

‖•‖
2 )
)

(111)

but the novelty is that now Θ±1
ram requires arborification to become conver-

gent (in a suitable space of ramified functions, of course).

22of course, they remain so after arborification : arborification is sometimes unnecessary,
but never harmful.
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Case 3 : Full-blown quasiresonance with complex spectrum .
The same approach as above applies, but with three ramifications and more
intricate forms of mixing. Here again, one cannot avoid arborification.

Link with the so-called ‘compensators’.
The mould ingredients Sa•ram(x) and invSa•ram(x) which enter the construction
of Θ±ram are actually sums of compensators of the form :

zσ0,σ1,...,σr :=
∑

0≤i≤r

zσi
∏
j 6=i

1

σi − σj
(z ∈ C, σi ∈ R+) (112)

which remain bounded even when the σi’s get dangerously close to one an-
other. This simple remark underpins the whole theory of compensation. 23

4.6 Application 6: “Correction” of vector fields with
resonant spectra.

This section and the two that follow deal with a remarkable, often misunder-
stood phenomenon : the non-appearance of supermultiple small denomina-
tors24 when resonance interacts with diophantine small denominators. The
present section tackles the phenomenon in its purest form and at the sim-
plest level. Take a resonant vector field X with diophantine spectrum. Since
resonance generally precludes linearisation (even formal), that leaves two op-
tions. In the first one, we add a resonant series to the linear part X lin to get a
normal or prenormal form, leading to an entire, but divergent and resurgent
conjugation of X to that normal form, as in §4.3. In the second option, we
subtract a resonant series (the ‘correction’) from the field X to force formal
conjugation with X lin. But this time, despite the deceptive symmetry of the
two approaches, the formal conjugation turns out to be analytic as well.

X ∼ X lin (non-resonant case) (113)

X ∼ X lin +Xpre with [Xpre, X lin] = 0 (resonant case) (114)

X −Xcor ∼ X lin with [Xcor, X lin] = 0 (resonant case) (115)

23For details, see [E8], also [E6].
24very roughly : small denominators with such abnormally high multiplicities that their

presence would automatically thwart convergence.
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Translating the second option into mould expansions, we find :

X −Xcor = Θcor X Θ−1
cor (116)

Xcor =
∑

Carr• B• =
∑

Carrω1,...,ωrBnr . . . Bn1 (117)

Θcor =
∑

Scarr• B• =
∑

Scarrω1,...,ωrBnr . . . Bn1 (118)

The key ingredient here is a mould Carr• inductively defined by :

Carr∅ = 0 ; Carr0 = 1 ; Carrω1 = 0 if ω1 = 0 (119)

variCarr
ω =

∑
ω1ωiω2ω3=ω

Carrω
1ωiω

3

Carrω
2 −

∑
ω1ω2ωiω3=ω

Carrω
1ωiω

3

Carrω
2

(120)

with a variation operator vari that acts as follows :

variM
ω1,...,ωr := ωiM

ω1,...,ωr +M ω1,...,ωi+ωi+1,...,ωr −M ω1,...,ωi−1+ωi,...,ωr (121)

We have analogous formulas for Scarr•. Two points must be emphasised
here. The first is that the above induction leaves us sufficient latitude
(through the choice of the index i) to prevent the occurence of supermul-
tiple small denominators. The second point is that it takes arborification to
make the expansions (117) and(118) convergent.25

4.7 Application 7: Floquet theory.

Floquet theory concerns itself with differential equations with quasi-periodic
coefficients. A test case is the system :

∂tX(t) = U(t) X(t) with (122)

U(t) := l A+
∑
ω∈Ω

eiωt Uω (A,Uω const ; l, t ∈ R , l� 1) (123)

ω ∈ Ω := λ1 Z + · · ·+ λν Z (λ1, λ2 . . . non-resonant) (124)

In order to reduce (122) to an elementary, ‘self-solving’ equation :

∂t Y (t) = V Y (t) with V = const (125)

by means of a change of unknown X(t) = Θ(t)Y (t), we must solve :

V + Θ−1(t) ∂tΘ(t) = Θ−1(t) U(t) Θ(t) (126)

25There exists a parallel theory for diffeos. For details, see [EV1],[EV2].
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with a constant matrix V whose spectrum (iv1, . . . , ivν) can be read off the
asymptotic behaviour of the solution of (122). The next steps are broadly
parallel to those in the preceding section, except that now multiplication or
division by the frequencies ωi must be replaced respectively by the action of
the operators :

V := (∂t − ad(V )) ; V := (∂t − ad(V ))−1 (127)

The elementary identities :

1

ω1 (ω1 + ω2)
+

1

ω2 (ω1 + ω2)
≡ 1

ω1 ω2

(128)

upon whose repeated use the induction (120) rests, give way to the identities :

V ((V B∗ω1
) B∗ω2

) + V (B∗ω1
(V B∗ω2

)) ≡ (V B∗ω1
) (V B∗ω2

) (129)

with B∗ωi := e iωtBωi and Bωi = const (130)

The last step – arborification – is not required in all cases : whether it is or
not depends on the group we work in.26

4.8 Application 8: KAM theory and the survival of
invariant tori.

Working under the classical (analytic) KAM assumptions, we perturb an
integrable hamiltonian h:

h(y) =< λ, y > + < y,Q, y >=
∑

λi yi +
∑

Qi,j yi yj (131)

(with Q-independent basic frequencies λi) into a non-integrable H :

H(x, y) = h(y) + ε b(x, y) (x ∈ Tν , y ∈ Rν
0 ) (132)

= < λ, y > +
∑
m,n

Hm,n(x, y) (133)

The whole point is to start from Bryuno’s (not Siegel’s) diophantine assump-
tions on the λi’s and to prove the convergence, for y = 0 and a small enough
perturbation parameter ε, of the uncorrected Lindstedt series :∑

Hm,n(x, y) =
∑

cm,n(ε) e2πi<x,m> yn =
∑

cm,n(ε) e2πi<λ,m> t yn (134)

ω := < m,λ >= ‘frequency’ (m ∈ Zν)

η := −1 + ‖n‖ = −1 +
∑

ni = ‘grade’ (n ∈ Nν , η ≥ −1)

26For some details, see [E10].
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Going over from the potential H to the vector field XH , we must partially
correct and partially normalise our field XH :

XH −Xcor conj∼ X lin +Xnor (135)

frequency(Xcor) = 0 , frequency(Xnor) = 0 (136)

grade(Xcor) = 0 , grade(Xnor) 6= 0 (137)

by allowing only terms of zero (resp non-zero) grade on the left- (resp right-
hand) side of (135). Like in §4.3 the correction still possesses a mould ex-
pansion of type :

Xcor =
∑
r≥1

∑
Bicarr

(ω1
η1

,...,
,...,

ωr
ηr

)
XHmr,nr . . . XHm2,n2XHm1,n1 (138)

with frequencies ωi :=<mi, λ> and grades ηi := −1 + ‖ni‖. The normal part
Xnor also has a similar mould expansion, but we need not worry about it,
since it vanishes for y = 0 and so does not contribute to the Lindstedt series.

The alternal mould Bicarr• is more complex than, but essentially similar
to, the mould Carr• of §4.3. In fact, Bicarr• reduces to Carr• when all
the grades ηi are 0 or, more generally, when to each vanishing partial sum
ωi + · · ·+ωj = 0 there corresponds a vanishing partial sum ηi + · · ·+ ηj = 0.

We can duplicate in this case all the steps of §4.6 and prove, once again,
the non-occurence of supermultiple small denominators, except that now the
formal multiplicity of a divisor is exactly twice what it was in §4.6. That
apart, precious little changes. We still must arborify to get the convergence
of Xcor. This establishes, for a small enough perturbation parameter ε, the
convergence of the Lindstedt series for the corrected hamiltonian. Then a
standard argument going back to Poincaré (known as “killing the constants”
and using the possibility of changing the integration constants) readily yields
the convergence of the Lindstedt series for the given hamiltonian itself.27

4.9 Application 9: Well-behaved alien derivations.

Roughly speaking, a system ∆∆ = {∆∆ω , ω ∈ R+} of alien derivations is said
to be well-behaved if, getting them to act on natural resurgent functions ϕ,
we get exponential bounds of type ‖∆∆ωϕ‖ ≤ co e

c1 ω. This condition, which
is useful in certain (not all) applications, is not fulfilled by the simplest and
oldest system – that of standard alien derivations. Now, a system ∆∆ is

completely characterised by a system of weights d
( ε1
ω1

,...,
,...,

ε1
ω1

)
with εi ∈ {+,−}

27For some details, see [E10].
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and ωi ∈ R+. Further, due to so-called self-consistency constraints, knowing
these weights reduces to knowing any one of the three following moulds 28:

redω1,...,ωr := (−1)r d
( +
ω1

,...,
,...,

+
ωr

)
(“right-lateral mould”)(139)

ledω1,...,ωr := (−1)r d
( −
ω1

,...,
,...,

−
ωr

)
(“left-lateral mould”) (140)

nad t1,...,tr
ω∗,t∗ := ε1 . . . εr d( ε1

ω∗
,...,
,...,

εr
ω∗

) ( “neutral mould” ) (141)

with εi := sign(ti − ti−1) (∀i < r) and εr := sign(tr − t∗)

and we have this very useful criterion : the system ∆∆ is well-behaved iff, after
arborification, one of these moulds (and therefore all three) admit exponential
bounds.29

4.10 Application 10: Well-behaved uniformising aver-
ages.

For uniformising convolution averages30 m the requirement of being well-
behaved is even more essential than for alien derivations. These averages were
first devised to overcome the vexing phenomenon of faster-than-exponential
growth in the Borel plane along singularity-carrying axes. Like alien deriva-

tions, averages admit a description in terms of weights m
( ε1
ω1

,...,
,...,

ε1
ω1

)
that are

subject to severe self-consistency constraints, and all the information can be
compressed into either of three moulds 31:

remω1,...,ωr := (−1)r m
( +
ω1

,...,
,...,

+
ωr

)
( “right-lateral mould” ) (142)

lemω1,...,ωr := (−1)r m
( −
ω1

,...,
,...,

−
ωr

)
( “left-lateral mould” ) (143)

nam t1,...,tr
ω∗,t∗ := ε1 . . . εr m( ε1

ω∗
,...,
,...,

εr
ω∗

) ( “neutral mould” ) (144)

with εi := sign(ti − ti−1) (∀i < r) and εr := sign(tr − t∗)

Here again, well-behavedness has a simple characterisation : the uniformising
average m is well-behaved iff, after arborification, one of these moulds (and
therefore all three) admit exponential bounds. 32

28the first two are alternel; the last one is alternal.
29For details, see [E11].
30they turn multivalued functions ϕ̂ over R+ into uniform ones and respect convolution :

m(ϕ̂1 ∗ ϕ̂2) ≡m(ϕ̂1) ∗m(ϕ̂2)
31the first two are symmetrel; the last one is symmetral.
32For details, see [Me1],[EM],[E11].

35



4.11 Application 11: ‘Display’ of a resurgent function.

The display of a resurgent function f is defined by :

f 7→ display(f) := f +
∑
r≥1

∑
ωi

ZZ ω1,...,ωr∆∆ωr . . .∆∆ω1 f (145)

It encapsulates in user-friendly form all the information about f . It involves
all (successive) alien derivatives of f , along with dual objects, the so-called
pseudovariables, which multiply according to the shuffle product, behave pre-
dictably under alien derivation, and remain inert under natural derivation :

ZZω
1

ZZω
2

=
∑

ω ∈ sha(ω1,ω2)

ZZω (146)

∆∆ω0 ZZ
ω1,...,ωr = ZZ ω2,...,ωr (resp 0) if ω0 = ω1 (resp ω0 6= ω1) (147)

∂z ZZ
ω = 0 (148)

These rules ensure that the display commutes with all operations (addition,
multiplication, ordinary and alien derivation) and makes it an extremely use-
ful tool for
(a) writing down in compact form all the obstructions to convergence33

(b) proving transcendence results34.

There are precautions to take, however: although the display may be
written down in any dual bases of ALIEN and PSEUDO, if we want the
expansion (145) to be convergent35 we must
(a) work with a well-behaved basis of ALIEN and PSEUDO
(b) arborify the expansion (145).36

4.12 Application 12: Canonical-spherical Object Syn-
thesis.

Object Analysis is concerned with finding the analytic invariants {Aω} of
local analytic objects Ob.37 Object Synthesis, conversely, starts from some

33i.e. all the Stokes constants, whose non-vanishing prevents f from being convergent.
34since any relation R(f1, f2, . . . ) = 0 immediately translates into a corresponding re-

lation between the displays, whose impossibility is often conspicuous, in view of the huge
mass of constraints which it implies.

35relative to the natural topology of RESUR ⊗ PSEUDO
36For some details, see [E10].
37these are mostly, but not only, vector fields or diffeomorphisms.
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(admissible !) system of invariants {Aω} and endeavours to produce an object
Ob with precisely those prescribed invariants. The beauty is that there
exists :
(a) a canonical solution Obcan

(b) an entirely explicit, easy-to-handle expression of Obcan in terms of mould-
comould expansions which involve (on the comould side) the invariants {Aω}
and (on the mould side) a special system of resurgence monomials, the so-
called ‘spherical’ or ‘twisted’ monomials.
Here again, the mould-comould expansions always can, and often must be
arborified to achieve convergence.38

4.13 Application 13: Non-linear q-equations (F.Menous).

The technique of arborification has recently been used to great effect by F.
Menous 39 to prove that the q-difference equation :

x σq y = y + b(x, y) ( b(0, 0) = ∂yb(0, 0) = 0 ) (149)

with analytic right-hand side and (σq f)(x) :=f(q x), is analytically conjugate
to one of the following normal forms :

x σq y = y , x σq y = y + x (150)

4.14 Application 14: The “sandwich equation”.

The “sandwich equation” of unknown f :

fn1 ◦ g1 ◦ fn2 ◦ g2 ◦ . . . fnr ◦ gr = id with ni ∈ Z (151)

is clearly the most general equation that may be considered on an unspecified
group G. If we now take G to be the group of local diffeos of C and assume
the data gi to be quasirotations, i.e. of the form x 7→ ci x+o(x) with |ci| = 1,
then, barring global resonance and quasiresonance and assuming

∑
ni 6= 0,

the unique formal solution of (151) is also analytic. To establish this fact,
massive arborification of the ‘template-preserving’ sort 40 is required. 41

38For details, see [E10].
39For details, see [Me2].
40see §1.3
41For some details, see [EV3].
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5 Algebraic aspects of arborification-coarborification.

Haukian moulds and haukian σ-functions.

5.1 Quadratic coarborification and quadratic fission :
induced matrices, induced σ-functions, induced moulds.

We recall that the general fusion-fission transform :

SS =
∑
•

B• A
• 7−→ SS =

∑
#

B# A# (152)

involves a fusion rule and a dual fission constraint. The latter leaves con-
siderable latitude. In a differential operator context, there is a natural way
of satisfying it.42 In a free-associative context, there exists another natural
answer, which is the quadratic fission rule.43 In matrix notations :

Fusion rule : A# := F#
• A

• (153)

Fission constraint : B• := B# F
#
• (154)

Quadratic fission rule : B# := B• (F •# F
#
• )−1 F •# (155)

A• := column matrix of type (r!, 1) (156)

A# := column matrix of type (r!!, 1) (157)

B• := row matrix of type (r!, 1) (158)

B# := row matrix of type (r!!, 1) (159)

F#
• := rectangular matrix of type (r!!, r!) (160)

F •# := rectangular matrix of type (r!, r!!) := tr(F#
• ) (161)

H•• := square matrix of type (r!, r!) := F •# F
#
• (162)

K•• := square matrix of type (r!, r!) := (F •# F
#
• )−1 (163)

For definiteness, we concentrate on the case when all r indices inside • are
distinct. Then r!! denotes some integer larger than r! that only depends on
the chosen type of order. For the arborescent order, there exist exactly r!
arborescent # compatible with a given • and so r! < r!! < r!2.

Among all the fission rules compatible with the fission constraints, quadratic
fission stands out as the only one that admits a simple matrix expression.

42the so-called standard coarborification rule, studied at length in §3.
43it minimizes the quadratic fission norm ‖B•‖2fission :=

∑
#≤• < B#, B# >.
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Likewise, among all the fusion-fission transforms of type (152), the special
case of arborification-coarborification stands out in at least three respects :

(i) it gives rise, in the group algebra A(Sr) of the symmetric group Sr, to a
pair of elements (has,kas) which, despite being mutually inverse, are both
expressible by simple, totally explicit formulae.

(ii) after normalisation to (has,kas) under the condition
∑

σ∈Sr has(σ) =∑
σ∈Sr kas(σ) = 1, these elements in turn give rise to a pair of moulds

(has•, kas•) which are unexpectedly simple, extend to the whole of N and
even Z, and are of symmetral type.

(iii) both as moulds and σ-functions, the above objects extend naturally to a
two-parameter family, the haukian objects, which possess a wealth of rather
improbable properties, all the more remarkable for completely disappearing
when we substitute for the arborescent order any other type of order.

5.2 The symmetric group algebras and σ-functions.

Throughout, Sr shall denote the group of all permutations σ of {1, . . . , r}
and A(Sr) shall be the corresponding group algebra, relative to the standard
convolution product ∗. As for the σ-functions, they are functions σ 7→ h(σ)
that are defined simultaneously and uniformly on all groups Sr. Most of the
σ-functions h,k we shall encounter will stand in natural relation to integer-
indexed moulds h•, k•. They will also possess simple invariance properties
under a finite group of order 8 that acts on all Sr. This “octo-group” consists
of the following operations {o0 , o1 , . . . , o7} :

o0 : σ 7→ o0 σ := σ (164)

o1 : σ 7→ o1 σ := σ−1 (165)

o2 : σ 7→ o2 σ := rev σ rev (166)

o3 : σ 7→ o3 σ := rev σ−1 rev (167)

o4 : σ 7→ o4 σ := rev σ (168)

o5 : σ 7→ o5 σ := σ rev (169)

o6 : σ 7→ o6 σ := rev σ−1 (170)

o7 : σ 7→ o7 σ := σ−1 rev (171)

with rev = revr ∈ Sr denoting the particular permutation (“reversion”) such
that rev(i) + i ≡ r + 1. We shall refer to o1 σ and o2 σ as the inverse and
reverse of σ. Apart from the unit element o0 , the octo-group comprises five
involutions o1, . . . , o5 and two elements o6, o7 of order 4.
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5.3 Quadratic coarborification and the fully explicit σ-
functions has,kas .

σ-functions (has,kas) induced by the matrices (H•• , K
•
•) :

For any fusion-fission transform, the matrices H•• and K•• are clearly invert-
ible44, symmetric, and of the form :

Hn′1,...,n
′
r

n1,...,nr
= h(σ) , Kn′1,...,n

′
r

n1,...,nr
= k(σ) with n′i ≡ nσ(i) , σ ∈ Sr (172)

So, knowing (H•• , K
•
•) reduces to knowing the induced σ-functions (h,k).

Moreover, since H•• and K•• are symmetric and mutually inverse, we have :

h(σ−1) ≡ h(σ) , k(σ−1) ≡ k(σ) , h ∗ k = 1A(Sr) (173)

For a general fusion-fission transform, this is about all there is to say. But
for the arborification-coarborification transform, (h,k) specialises to a highly
remarkable pair (has,kas), which becomes easier to handle when normalised
to (has,kas) under the condition :∑

σ∈Sr

has(σ) =
∑
σ∈Sr

kas(σ) = 1 (174)

We shall now succinctly describe these two objects and their teeming progeny.

Direct expression of has(σ) :

has(σ) :=
∏

1≤j≤r

βj(σ) ∈ N (∀σ ∈ Sr) (175)

has(σ) :=
∏

1≤j≤r

2 βj(σ)

j (j + 1)
=

1

hr
has(σ) ∈ Q+ (∀σ ∈ Sr) (176)

with βj(σ) := # { i : 1 ≤ i ≤ j , σ(i) ≤ σ(j)} (177)

and hr := 2−r r! (r + 1)! ∈ N (178)

These formulas easily follow from the interpretation of has(σ) as the number
of arborescent sequences that are order-compatible with both {1, . . . , r} and
{σ(1), . . . , σ(r)}. More unexpected is the existence of a closed expression for
the convolution inverse kas(σ).

44because of their interpretation in terms of norm minimisation. See §5.1
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Direct expression of kas(σ) . We have :

kas(σ) :=
1

hr

∑
P(0,σ)∈Coher(0,σ)

sign(P(0, σ)) .P(0, σ)! ∈ Q (179)

=
1

hr
ξ(σ)

∑
P(0,σ)∈Coher(0,σ)

P(0, σ)! (180)

kas(σ) := ξ(σ)
∑

P(0,σ)∈Coher(0,σ)

P(0, σ)! ∈ Z (181)

with elementary summands defined by :

P(0, σ)! :=
r! (r − 1)!∏

i [pi(pi − 1)]∗. [qi(qi − 1)]∗
(182)

with [x]∗ := x (resp 1) if x > 0 (resp if x = 0) (183)

or equivalently :

P(0, σ)! :=
∏
i

ca∗pi,qi (184)

with ca∗p,q :=
(p+ q − 1)! (p+ q − 2)!

p!(p− 1)! q! (q − 1)!
(185)

The sums extend to all maximal coherent binary bracketings45 of the sequence
0, σ(1), . . . , σ(r). Maximal binary bracketings are systems of nested pairs of
brackets. They correspond one-to-one to binary trees. The coherence condi-
tion means that the integers within each bracket should be some permutation
of consecutive integers (s, s+ 1, . . . ). Thus, ‘holes’ are prohibited. As for the
products (182),(184), they extend to all pairs i of nested brackets or, equiv-
alently, to all nodes i in the associated binary tree. Each of these pairs (or
nodes) involves a sequence pi of length pi in the left bracket and a sequence
qi of length qi in the right bracket, and gives rise to two factors :
(i) the integer factor ca∗pi,qi defined above
(ii) a sign factor which is 1 (resp −1) if pi < qi (resp. pi > qi), meaning of
course that each element of pi is less (resp. greater) than each element of qi.
Multiplied together, the factors ca∗pi,qi yield the “factorial” P(0, σ)! and the
sign factors yield the global sign(P(0, σ)). This global sign is actually inde-
pendent of the bracketing P . It depends solely on the permutation σ. So it

45when no such bracketings exist (which becomes possible for r ≥ 4, and tends to occur
with a probability approaching 1 as r increases), then of course the right-hand side of
(179) should be taken as 0.
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may be denoted as ξ(σ) and factored out of the sum on the right-hand side
of (180). Beware that ξ(σ) is not the permutation’s signature ε(σ).

Let us show on two examples how the above rules work.
First, let r = 4 and (0, σ) = (0, 2, 1, 4, 3). We find only two coherent brack-
etings. Here they are, along with the attached factors :(

0
)((

(2)(1)
)(

(4)(3)
))

=⇒ ca∗1,4.ca∗2,2.ca∗1,1.ca∗1,1 = 3 (186)((
0
)(

(2)(1)
))(

(4)(3)
)

=⇒ ca∗3,2.ca∗1,2.ca∗1,1.ca∗1,1 = 6 (187)

The global sign factor being (−1)× (−1) = 1 , we find kas(σ) = 9.
Now, consider the case r = 4 and (0, σ) = (0, 3, 1, 4, 2). It is easy to check
that there exits no coherent bracketing here. Therefore kas(σ) = 0.

Normalisation :
The reason for normalising (has,has) to (has,has) is that the latter form
alone leads to an interesting mould extension. In this context, let us record
the two parallel formulas :∑

σ∈Sr

has(σ) =
(∑
σ∈Sr

kas(σ)
)−1

= 2−r r! (r + 1)! (188)

∑
σ∈Sr

ε(σ) has(σ) =
(∑
σ∈Sr

ε(σ) kas(σ)
)−1

= ent(
r

2
) ! ent(

r + 1

2
) ! (189)

with ε(σ) := signature of σ and ent(x) := integer part of x.

5.4 The associated moulds has•, kas•.

Definition of hasn and kasn for arbitrary positive sequences n :
The relations

hasσ(1),...,σ(r) := has(σ) , kasσ(1),...,σ(r) := kas(σ) , (190)

define hasn, kasn for any standard sequence n of length r, i.e. for any per-
mutation of {1, . . . , r}. Now, any sequence of positive integers n, of length
r, coherent or not, but without repetitions, may, for r∗ large enough, be em-
bedded in a standard sequence n∗ of length r∗ . Surprisingly, the following
two sums :

hasn :=
∑

n∗∈Standard(r∗),n∗3n

hasn
∗

(independent of r∗) (191)

kasn :=
∑

n∗∈Standard(r∗),n∗3n

hasn
∗

(independent of r∗) (192)
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which range through all r∗!/(r∗− r)! standard sequences n∗ containing n,
do not depend on the choice of r∗. Thus has• and kas• possess a natural
extension to all positive, repetition-free sequences n.

Symmetrality of has• (conditional) and kas• (unconditional) :
The two moulds so defined are symmetral :∑

n∈ sha(n1,n2)

hasn ≡ hasn
1

hasn
2

if n1,n2,n1n2 ∈ coherent (193)

∑
n∈ sha(n1,n2)

kasn ≡ kasn
1

kasn
2 ∀ n1 6= ∅, ∀ n2 6= ∅ (194)

but whereas the first identity is conditional on all three sequences n1,n2,n1n2

being coherent46, the second identity holds in all cases, at least whenever it
makes sense, i.e. for any repetition-free sequences n1,n2,n1n2.

Form preservation under arborification :
The direct expressions for has(σ),kas(σ) carry over trivially to hasn, kasn,
at least for standard n, but they also carry over, almost unchanged, to the
arborified variants hasn

≺
, kasn

≺
. For instance, (181) remains in force, with

maximal binary bracketings as in (181), with the very same Catalan factors
and sign rule, and a “coherence” condition which demands that each paren-
thesis should contain
(i) some coherent subsequence
(ii) some connected portion of the original tree n≺

Factorisation properties of kasn :
Any sequence n of positive integers factors uniquely into a product of maxi-
mal coherent sequences n1n2 . . .nk and so too does the mould kas• :

kasn ≡ kasn
1

kasn
2

. . . kasn
k

if n1 < n2 · · · < nk (195)

≡ 0 otherwise (196)

No such rule holds for hasn, but this is immaterial, as the direct definition
is so simple.

Shift parameter of hasn and kasn :
For any sequence n = (n1, . . . , nr) and any shift parameter s ∈ N let us set
sn := (s + n1, . . . , s + nr). The shift-dependence of has

sn and kas
sn turns

out to be remarkably simple. It is :

46i.e. permutations of unbroken integer sequences.
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(i) rational47 of degree at most 2.r for the former,
(ii) polynomial of degree at most r for the latter.

Extension of hasn and kasn to arbitrary integer sequences n :
Simply write any (repetion-free) sequence n as sm for some positive m and
negative s, and using rational (resp. polynomial) shift-continuation, set :

hasn := has
sm , kasn := kas

sm (197)

The result won’t depend on the pair (s,m), but on n alone. Symmetrality
also is guaranteed by construction, and so too is the persistence of the fac-
torisation (195). The only hurdle, namely the occurence of s-poles which may
render hasn (but not kasn ) infinite for certain sequences n of mixed signs,
will be removed by the introduction of a ‘twist’ parameter t. See below.

5.5 The twist parameter t and the shift parameter s.

Introduction of a ‘twist’ parameter t and survival of all essential
properties of hasn, kasn .
Fixing a real or complex parameter t, we first define has t and its normalised
variant has t by formulae closely patterned on (175) and (176) :

has t(σ) :=
∏

1≤j≤r

( t
2

+ βj(σ)
)

(
∑
σ

has t(σ) 6= 1) (198)

hast(σ) :=
1

r!

∏
1≤j≤r

t+ 2 βj(σ)

t+ j + 1
(
∑
σ

hast(σ) = 1) (199)

with βj(σ) := # { i : 1 ≤ i ≤ j , σ(i) ≤ σ(j)}

Next, we derive kas t and kas t by straightforward inversion in the group
algebra A(Sr). We then construct the moulds has•t and kas•t exactly as
before, successively for sequences n of standard, then positive, then arbitrary
type. For this last step, we use the same trick as before, introducing a shift-
parameter s and setting :

hasnt := has
sm
t =: hasmt, s , kasnt := kas

sm
t =: kasmt, s (200)

As before, we get the bonus :
(i) of conditional symmetrality for has•t and has•t, s
(ii) of unconditional symmetrality for kas•t and kas•t, s.

47with simple poles at the points s = −2,−3, . . . ,−r − 1.
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Broadly speaking, all known properties of has• and kas• seem to survive
the introduction of the ‘twist’ parameter t. The t-dependence itself closely
resembles the s-dependence : rational for has•t and polynomial for kas•t . Ac-
tually, the shift and twist48 parameters coexist and commingle amicably, and
the t-dependence even turns out to be the simpler of the two.

Twist- and shift-dependence of has• .
hasnt, s is a rational function of t, s, of total degree no larger than 2 r′, and
with at most r′ simple poles of the form t+ s+ 1 + k, inf(n) ≤ k ≤ sup(n).
Note that here r′ is not the length r of n, but its span := 1+sup(n)−inf(n).

Twist- and shift-dependence of kas• .
kasnt, s is a polynomial in (t, s), of t-degree at most r−1, of s-degree at most
2 r−2, and of total (t, s)-degree also no larger than 2 r−2. The main thing,
however, is the existence of a closed expresssion for kasnt, s. First, we set49 :

ca∗p,q :=
(p+ q − 2)! (p+ q − 1)!

(p− 1)! (q − 1)! (p)! q!
(201)

ca∗p,q(t) :=
(p+ q − 2)! (p+ q − 1 + t)!

(p− 1)! (q − 1)! (p+ t)! q!
∈ Z[t] (202)

ca∗p,q(t, s) :=
(p+ q − 2 + s)! (p+ q − 1 + t+ s)!

(p− 1 + s)! (q − 1)! (p+ t+ s)! q!
∈ Z[t, s] (203)

Next, we define mappings Pt,s by the following induction :

Pt,s : n→ Pt,s(n) ∈ Z[t, s] (204)

Pt,s(n) := 1 if n has length one. Otherwise : (205)

Pt,s(n) :=
∑

n1.n2=n

ca∗r1,r2(s, t) ξ(n
1,n2) Pt,s(n

1) P0,0(n2) (206)

with a sum extending to all factorisations of n into non-empty sequences
n1,n2 of length r1, r2 ; and with sign coefficients defined in this way :

ξ(n1,n2) := +1 if max(n1) < min(n2) (207)

:= −1 if max(n2) < min(n1) (208)

:= 0 otherwise (209)

We should pay attention to the highly dissymmetric role assigned to n1 and
n2 on the right-hand side of (206). Now, with all the ingredients in place,

48this is a mere label, of course : the twist attached to has• and kas• bears no relation
to the one attached to the resurgence monomials.

49of course, for x 6∈ N, x! means Γ(x+ 1).
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we may write down the required formulas for any σ ∈ Sr . They read :

kas(σ) = kasn := P0,0(−n) (210)

kas t(σ) = kasnt := Pt,0(−n) (211)

kas t,s(σ) = kasnt,s := Pt,s(
−n) (212)

with n := (σ(1), . . . , σ(r)) , −n := (0, σ(1), . . . , σ(r)).

For future use let us also define a related, parameter-free σ-function ka :

ka(σ) = kan := P0,0(n) (n here, not −n !) (213)

The corresponding mould ka• turns out to be alternal.

Let us point out, lastly, that has t, s,kas t, s are mutually inverse in A(Sr)
only for s = 0. For other values of s, the inverse of has t, s is unremarkable,
and that of kas t, s is remarkable (i.e. factorisable and explicitable) only for
s ∈ {0,−1, . . . ,−r}.

5.6 Basic symmetries for has,kas.

These σ-functions present a large number of symmetries, which involve the
‘octo-group’ (see §5.2) and become easier to write down after suitable pa-
rameter changes (t, s) → (t′, s′) or (t′′, s′′) that mix up twist, shift, and
length.

First, we have the parity relations in σ (or o1-invariance):

hast(σ) ≡ hast(σ
−1) ∀σ ∈ Sr (214)

kast(σ) ≡ kast(σ
−1) ∀σ ∈ Sr (215)

hast,s(σ) 6= hast,s(σ
−1) generally (216)

kast,s(σ) ≡ kast,s(σ
−1) ∀σ ∈ Sr (217)

Now to the symmetries proper. It is convenient to set :

has{t′,s′}(σ) := hast′−1,s′− r
2
− 1

2
(σ) ∀σ ∈ Sr (218)

kas{t′′,s′′}(σ) := kas2 t′′−1,s′′−t′′− r
2
(σ) ∀σ ∈ Sr (219)

The σ-function has is invariant under one involution only:

{t′, s′, σ} 7−→ {−t′,−s′, o4σ} (recall that o4σ := rev . σ) (220)
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but the σ-function kas is invariant under 11 involutions (4 independent) :

{t′′, s′′, σ} 7−→ {t′′, s′′, o1σ} (recall that o1σ := σ−1) (221)

{t′′, s′′, σ} 7−→ {−t′′, s′′, o0 σ} (recall that o0σ := σ) (222)

{t′′, s′′, σ} 7−→ {−t′′, s′′, o1σ} (223)

{t′′, s′′, σ} 7−→ {t′′,−s′′, o2σ} (recall that o2σ := rev σ−1 rev) (224)

{t′′, s′′, σ} 7−→ {t′′,−s′′, o3σ} (225)

{t′′, s′′, σ} 7−→ {−t′′,−s′′, o2σ} (226)

{t′′, s′′, σ} 7−→ {−t′′,−s′′, o3σ} (227)

{t′′, s′′, σ} 7−→ {s′′, t′′, o0σ} if ξ(σ)=− and with factor (−1)r−1 (228)

{t′′, s′′, σ} 7−→ {s′′, t′′, o1σ} if ξ(σ)=− and with factor (−1)r−1 (229)

{t′′, s′′, σ} 7−→ {s′′, t′′, o2σ} if ξ(σ)=− and with factor (−1)r−1 (230)

{t′′, s′′, σ} 7−→ {s′′, t′′, o3σ} if ξ(σ)=− and with factor (−1)r−1 (231)

The next symmetries involve a σ-function lokas derived from kas by taking
the (mould) logarithm of the corresponding moulds, but after reversion to
the original (s, t) parameters, like this :

σ-functions moulds moulds σ-functions

kas t,s −→ kas•t,s
mould logarithm−→ lokas•t,s −→ lokas t,s

↓ ↓
kas{t′′,s′′} (symmetral) (alternal) lokas{t′′,s′′}

This σ-function lokas is invariant under 7 involutions (3 independent) :

{t′′, s′′, σ} 7−→ {t′′, s′′, o5σ} with factor (−1)r−1 (232)

{t′′, s′′, σ} 7−→ {−t′′, s′′, o0 σ} (233)

{t′′, s′′, σ} 7−→ {−t′′, s′′, o5σ} with factor (−1)r−1 (234)

{t′′, s′′, σ} 7−→ {t′′,−s′′, o2σ} (235)

{t′′, s′′, σ} 7−→ {t′′,−s′′, o4σ} with factor (−1)r−1 (236)

{t′′, s′′, σ} 7−→ {−t′′,−s′′, o0σ} (237)

{t′′, s′′, σ} 7−→ {−t′′,−s′′, o5σ} with factor (−1)r−1 (238)

These new symmetries are as unexpected as the previous ones. In partic-
ular, they are no direct consequences of the symmetries for kas 50

50indeed, due to the non-linearity of the taking of mould logarithms, the (t, s)↔ (t′′, s′′)
shuttle has the effect of mixing up quite distinct sequence lengths.
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5.7 Factorisation properties for has,kas.

The factorisaton property for kas already encountered in §5.4 survives the
introduction of the twist and shift parameters. For any repetition-free integer
sequence n with its decomposition n1 . . .nk into a product of coherent factor
sequences, we still have :

kasnt, s ≡ kasn
1

t, s kas
n2

t, s . . . kas
nk

t, s if n1<n2 . . .<nk (239)

≡ 0 otherwise (240)

In combination with the formula (212), which already settles the case of
coherent sequences n, the rule (239) covers all possible cases.

Moreover, if a sequence n contains indices ni of both signs, we have a
further factorisation result :

kasnt, s ≡ kasn
1

t, s kas
n2

t, s if n = n1 .n2 with n1 ≤ 0 < n2 (241)

= 0 otherwise (242)

5.8 Proofs : main steps.

Catalan numbers and polynomials.

can := (2n)!
n!(n+1)!

cap,q := (p+q)!
p! q!

(p+q+1)!
(p+1)! (q+1)!

can(t) := (2n+t)!
n!(n+1+t)!

cap,q(t) := (p+q)!
p! q!

(p+q+1+t)!
(p+1+t)! (q+1)!

can(t, s) := (2n+t+s)!
n!(n+1+t+s)!

cap,q(t, s) := (p+q+s)!
(p+s)! q!

(p+q+1+t+s)!
(p+1+t+s)! (q+1)!

They relate under can = ca∗n+1 and cap,q = ca∗p+1,q+1 to the earlier coefficients
and polynomials, but are sometimes more convenient. Useful identities :

can ≡
∑

p+q=n−1,
p≥0 , q≥0

cap,q ; can(t) ≡
∑

p+q=n−1,
p≥0 , q≥0

cap,q(t) (243)

Induction for has• and has•t .
It is implicit in the factorisation rule

Induction for kas• and kas•t .
Thanks to the factorisation property (239) we may limit ourselves to coherent
sequences n, and by playing on the shift parameter s, we may even assume
n to be some permutation of the basic sequence (1, . . . , r). That leaves the
distinction between normal and antinormal sequences, depending on whether
the smallest element 1 precedes or follows the largest element r. The simpler
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induction rules apply for antinormal sequences. As usual, we have the choice
between two (non-trivially equivalent) variants, the one privileging the small-
est element, the other the largest. They go like this:

For antinormal sequences n=(...r...1...)=(a, 1,b)=(c, r,d) of length r :

kasa,1,bt,s := cas,r−1(t) (−1)r(a) kasãt,−1 kas
b
t,−1 (244)

kasc,r,dt,s := cas,r−1(t) (−1)r(d) kas
−c̃
t,r kas

−d
t,r (245)

with ∼(n1, . . . , nr) := (nr, . . . , n1) and −(n1, . . . , nr) := (−n1, . . . ,−nr).
For normal sequences n = (...1...r...), ñ is antinormal51 and the rule is :

kasnt,s := (−1)r−1kasñt,s +
∑

2≤k≤r(n)

(−1)r−k
∑

n1n2...nk=n

kasñ
1

t,s kas
ñ2

t,s . . . kas
ñk

t,s (246)

Main steps : One checks that the elementary induction for has and hast
translates into the above induction for kas and kast . Then one shows that
the latter agrees (is equivalent) with the direct expressions (181) for kas and
(211) for kast.

5.9 Factorisation properties for the connecting func-
tions hak , häk.

Fix t1, t2. Since hast1 , kast2 are even σ-functions52, it is readily seen that
all 2 × 8 × 8 convolution products of the form (oi hast1) ∗ (oj kast2) and
(oj kast2) ∗ (oi hast1), with 0 ≤ i, j ≤ 7, actually reduce, modulo the oi-
action of the octo-group, to just two of them, e.g. hakt1,t2 and häkt1,t2 :

hakt1,t2(σ) := hast1 ∗ kast2 (σ) =
∑

σ1σ2=σ

hast1(σ1) kast2(σ2) (247)

häkt1,t2(σ) := hast1 ∗ (o4kast2) (σ) = (o5hast1) ∗ kast2 (σ) (248)

=
∑

σ1. rev . σ2=σ

hast1(σ1) kast2(σ2) (249)

But the real surprise is that both these “connecting” σ-functions should enjoy
the property of maximal factorisation, which hast1 already possesses, but not

51so the first term in (246) may be calculated according to the rule (244) or (245).
52i.e. invariant under the change σ 7→ σ−1
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kast2 .
53 Indeed, we have :

hak t1,t2(σ) :=
1

r!

∏
1≤j≤r

t1 + γj(σ) t2 + δj(σ)

t1 + j + 1
∀σ ∈ Sr (250)

häk t1,t2(σ) :=
1

r!

∏
1≤j≤r

t1 + γ∗j (σ) t2 + δ∗j (σ)

t1 + j + 1
∀σ ∈ Sr (251)

with coefficients γj , δj given by :

if σ(j−1)<σ(j)<σ(j+1) : γj(σ) := j − 1 δj(σ) := 2 βj(σ) + j2 − j
if σ(j−1)<σ(j)>σ(j+1) : γj(σ) := −1 δj(σ) := 2 βj(σ) − 2 j

if σ(j−1)>σ(j)<σ(j+1) : γj(σ) := 0 δj(σ) := 2 βj(σ)

if σ(j−1)>σ(j)>σ(j+1) : γj(σ) := −j δj(σ) := 2 βj(σ)− j2 − j

and with the same βj(σ) as in the definition (175), (177) of has.

For j = 1 or r, the above inequalities involve numbers σ(0) or σ(r + 1)
which are not defined, since σ ∈ Sr, but even then one does get the correct
answer by setting σ(0) := 0 or σ(r+1) := r+ 1. We may also note that there
is always a factor54 t1 +2 on the numerator of (250) , which cancels the t1 +2
on the denominator. Similarly, unless σ = id, there always has to be at least
one factor55 t1−t2 on the numerator of (250) since hakt,t(σ) ≡ 0 when σ 6= id.

Analogous formulas hold for the coefficients γ∗j , δ
∗
j . In fact :

γ∗j (σ) ≡ −γj(σ) ∀σ ∈ Sr , ∀j ∈ {1, . . . , r} (252)

δ∗j (σ) ≡ −δj(σ) + 2 + 2σ(j) ∀σ ∈ Sr , ∀j ∈ {1, . . . , r} (253)

Here again, there is always a factor56 t1 +2 on the numerator of (251) ,
which cancels the one on the denominator. But since generally häkt,t(σ) 6= 0
there is no ‘permanent’ factor t1−t2 on the numerator of (251).

Proofs : These factorisation properties haven’t been proved yet in all cases,
but they have been systematically checked on a computer up to r = 9.

53at least not in that sense. Its own factorisation properties (239) are of a markedly
different nature.

54it corresponds to the largest value of j such that σ(1) > σ(2) · · · > σ(j).
55it corresponds to the value of j such that σ(1) < σ(2) < · · · < σ(j) > σ(j+1) (σ 6= id).
56it corresponds to the largest value of j such that σ(1) > σ(2) · · · > σ(j).
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Moreover, for a large proportion of permutations σ, they result from the
three, clearly equivalent identities that follow :

kast ∗ ha (σ) = λr(t) ka(σ) ∀σ ∈ Sr (254)

hast ∗ ka (σ) = λ−1
r (t) ha(σ) ∀σ ∈ Sr (255)

hakt1,t2 ∗ ha (σ) =
λr(t2)

λr(t1)
ha(σ) ∀σ ∈ Sr (256)

with λr(t) :=
Γ(t+ r + 2)

Γ(r)Γ(t+ 3)
=

(t+ 3) . . . (t+ r + 1)

(r − 1)!
(257)

These identities involve new σ-functions ha,ka. The first is elementary, and
can be read off the defining identity :∑

σ∈Sr

ha(σ) eσ(1) . . . eσ(r) := [..[e1, e2] . . . er] (258)

The other one, ka, has already received a direct definition in (213). It is
closely related to the leading t-terms in kas t and kas t, s . Indeed :

ka(σ) ≡ r (
d

dt
)r−1kast(σ) ∀t (259)

≡ r

Γ(r)

Γ(s+ r)

Γ(s+ 1)
(
d

dt
)r−1kast,s(σ) ∀t,∀s (260)

It displays maximal symmetry under the action of the octo-group :

ka(σ) = ka(oiσ) ∀σ ∈ Sr , ∀i ∈ {0, 1, 2, 3} (261)

ka(σ) = (−1)r−1ka(oiσ) ∀σ ∈ Sr , ∀i ∈ {4, 5, 6, 7} (262)

The corresponding moulds ha•, ka• are clearly alternal.57

Convolution group. Link with the ‘organic’ family.
From the construction of the connecting functions there follow the identities :

hakt1,t2 ∗ hakt2,t3 = häkt1,t2 ∗ häkt2,t3 = hakt1,t3 ∀t1, t2, t3 (263)

hakt1,t2 ∗ häkt2,t3 = häkt1,t2 ∗ hakt2,t3 = häkt1,t3 ∀t1, t2, t3 (264)

hakt,t = häkt,t ∗ häkt,t = 1A(Sr) ∀t (265)

To derive from these a true convolution group we must take the limits :

hok t := lim
t1→∞

hakt1, t t1 (266)

hök t := lim
t1→∞

häkt1, t t1 (267)

57ha(σ) =: haσ(1),...,σ(r) , ka(σ) =: kaσ(1),...,σ(r) .
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We end up with much simpler σ-functions :

hok t(σ) ≡ hök−t(σ) ≡ 1

r!

∏
1≤j≤r

(1 + γj(σ) t) (268)

with automatic stability under convolution ;

hok t1 ∗ hok t2 ≡ hok t1 t2 ∀t1, t2 (269)

and an unexpected connection with the organic mould family : see §5.19.

5.10 Yet more factorisation properties.

Two ‘dual objects’, namely the scalar products
∑

σ∈Sr hast1(σ) hast2(σ) and
the convolution products

∑
σ1σ2=σ hast1(σ1) hast2(σ2) evaluated at σ = id

also display, as functions of the twist parameters t1, t2, quite unexpected
factorisation properties. Actually, this holds for all k-linear sums :∑

σ∈Sr

hast1(σ) hast2(σ) . . .hastk(σ) =
Nr,k

Dr,k

(270)

∑
σ∈Sr

ε(σ) hast1(σ) hast2(σ) . . .hastk(σ) =
N ′r,k
D′r,k

(271)

and also for convolutions evaluated at more general permutations σ ∈ Sr,
like for instance those acting like rev on {1, .., j0} and like id on {1+j0, .., r} :

(hast1 ∗ hast2)(σ) =
N∗r,j0
D∗r,j0

(272)

Indeed, the numerators Nr,k and N ′r,k factor into products of r polynomials,
each of total degree k, and the numerator N∗r,j0 factors into a product of r
quadratic polynomials 58

There is no point in either writing down or proving the above factorisa-
tions, since they will turn out to be special cases of a more general result.
Indeed, the factorisations (270),(271) will reduce to (275),(276) infra with
tij := 1

2
ti + j, and the factorisation (272) will reduce to (277) infra with

aj := 1
2
t1 + j and bj := 1

2
t2 + j.

58The denominators Dr,k and D∗r,j0 also break down into simple factors, but this was
entirely predictable, since all terms in the sums being considered already share the same
elementary factors.
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Though not nearly as deep as the factorisations of the previous sections,
in particular those for the mould kas• or the σ-functions hak,häk, the un-
expected splitting phenomenon occurring in (270),(271),(272) has one merit :
when looking for the underlying mechanism, one is led quite naturally to a
generalisation of the σ-functions has t,kas t under with the twist parameter
t is replaced by a parameter sequence T = {tj}. The next section shall be
devoted to this extension, and the subsequent sections to a search for those
particular sequences T that yield the most interesting σ-functions.

5.11 Extending has,kas to haus,kaus.

Starting from any sequence T = {t1, t2, t3 . . . } we set :

haus
T
(σ) :=

∏
1≤j≤r

tβj(σ)

t1 + t2 · · ·+ tj
(∀σ ∈ Sr) (273)

with βj(σ) as in (177). Normalisation is non-trivial but automatic :∑
σ ∈ Sr

haus
T
(σ) ≡ 1 ∀r (274)

and the ‘superficial’ factorisations of the last section have exact analogues :∑
σ∈Sr

haus
T1

(σ) . . .haus
Tk

(σ) =
∏

1≤p≤r

∑
1≤j≤p

∏
1≤i≤k tij∏

1≤i≤k
∑

1≤j≤p tij
(275)

∑
σ∈Sr

haus
T1

(σ) . . .haus
Tk

(σ) ε(σ) = (−1)r
′ ∏
1≤p≤r

∑
1≤j≤p (−1)1+j

∏
1≤i≤k tij∏

1≤i≤k
∑

1≤j≤p tij

with Ti={tij}={ti1, ti2, ti3 . . . } and r = 2 r′ or 2 r′ + 1 (276)

The factorisation (272) for convolution products also has an analogue :∑
σ∈Sr

(haus
A
∗ haus

B
)(σ) =

∏
1≤p≤r

∑
1≤j≤p aj bσ(j)

(
∑

1≤j≤p aj).(
∑

1≤j≤p bj)
(277)

which holds for all sequences A={a1, a2 . . . }, B={b1, b2 . . . } and all permu-
tations σ of the form σj0 :

σj0 (j) = 1 + j0 − j (resp j) if j ≤ j0 (resp j > j0) (278)

But we would also like the deeper properties of has,kas to survive. In
other words, we would like to come up with pairs haus

T
,kaus

T
of mutually
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inverse σ-functions such that :
(i) kaus

T
(σ) has low degree denominators and is expressible in closed, trans-

parent form
(ii) kaus

T
(σ) vanishes for most 59 permutations σ

(iii) haus
T
,kaus

T
admit natural mould extensions haus•

T
, kaus•

T
with nice

properties such as symmetrality.
(iv) there exist simple connecting σ-functions60 with maximum factorisation.
(v) haus

T
,kaus

T
possess simple images under most linear representations of

the symmetric groups Sr.
As it turns out, there are three types of sequences T , and only three,

which answer this long wish list. They are :

Tat :=
[ t

2
+ n

]n=+∞

n=1
‘arithmetic sequence’ (279)

Tux :=
[

xn
]n=+∞

n=1
‘geometric sequence’ (280)

Tux,t :=
[xn
t
− t

xn

]n=+∞

n=1
‘bigeometric sequence’ (281)

Moreover, since (haus
T
,kaus

T
) depend, not on the sequence T as such, but

on its class T̃ up to homotheties {t1, t2, . . . } 7→ {c t1, c t2, . . . }, these three

classes T̃ at T̃ ux , T̃ ux,t constitute a two-dimensional connected manifold. In-
deed :

T̃a t = lim
ε→0

T̃u 1+2 ε , 1− t ε (282)

T̃ux = T̃ux, 0 := lim
t→0

T̃ux, t (283)

Arithmetic sequences yield the familiar pair (has t,kas t)=(hausTat ,kausTat).
So let us turn successively to the geometric and bigeometric sequences.

5.12 Restricting haus,kaus to hus,kus.

σ-functions husx and kusx . Setting :

(husx,kusx) :=(haus
T
,kaus

T
) with T = Tux := {x, x2, x3, . . . } (284)

59more precisely, for all permutations that admit no maximal coherent binary bracketing :
see §5.3

60i.e. σ-functions hauk
T1,T2

such that haus
T1
≡ hauk

T1,T2
∗ haus

T2
.
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we get :

husx(σ) =:
hus∗x(σ)

DHr(x)
=

xβ
∗(σ)

DHr(x)
(285)

kusx(σ) =:
kus∗x(σ)

DKr(x)
with kus∗x(σ) ∈ Z[x2] or xZ[x2] (286)

with simple, cyclotomic denominators :

DHr(x) :=
∏

1≤k≤r

1− xk

1− x
(287)

DKr(x) :=
∏

2≤k≤r

(1− x)(1− xk (k−1))

(1− xk)
if r ≥ 2 (DK1(x) := 1) ,(288)

and with simple numerators. Those of husx are monomials of exponent :

β∗(σ) := −r +
∑

1≤j≤r

j βj(σ) ( βj(σ) as in (177) )

≡ # {(i, j) : 1 ≤ i < j ≤ r , σ(i) < σ(j)} (289)

and those of kusx are even61 polynomials of low degree.

Numerators of husx and kusx .
Unexpected as the simplicity of the denominators DKr(x) may be, the truly
interesting part is the numerators kus∗x. Like with kas t, they depends on
the maximal coherent binary bracketings of the sequence {σ(1), .., σ(r)} :
– when no such bracketings exist, the numerator vanishes
– when there is only one bracketing, we have maximal factorisation into
cyclotomic factors
– when there are several bracketings, we get very peculiar superpositions of
such products, with many residual aspects of ‘cyclotomicity’.
All cases are covered by a completely explicit generalisation of formula (211)
which involves the so-called Gaussian polynomials which are the q-analogues
of the binomial coefficients so abundantly present in the definition of the
operators P t, s of (211).

Symmetries of husx and kusx . With ξ(σ) as in (180), we have :

kusx(oi σ) ≡ kusx(σ) ∀σ ∈ Sr , ∀i ∈ {0, 1, 2, 3} (290)

kusx(oi σ) ≡ kus 1
x
(σ) ∀σ ∈ Sr , ∀i ∈ {4, 5, 6, 7} (291)

kus 1
x
(σ) ≡ (−1)r−1 x−ξ(σ)

r (r−1)
2 kusx(σ) (292)

kus∗−x(σ) ≡ εr ε(σ) kus∗x(σ) (293)

61up to an occasional factor x, present whenever ξ(σ) = −1.

55



with εr :=1 if r=0 or 1 mod 4 and εr :=−1 if r=2 or 3 mod 4.

Connections between kusx and kast :

kas0(σ) ≡ kus∗1(σ+) ∀σ ∈ Sr , σ+ ∈ Sr+1 (294)

where σ+ stands for the natural extension of σ to Sr+1. 62

5.13 Endowing hus,kus with a twist parameter t.

Turning now to the bigeometric sequences, we set :

(husx, t,kusx, t) :=(haus
T
,kaus

T
) with T = Tux, t :=

[xn
t
− t

xn

]+∞

1
(295)

As usual, the ‘direct’ σ-function husx, t holds no mysteries. Its numerator
is elementary, and its denominator breaks up into simple factors that are
immediately obtainable from the general formula (273) for hausT after the
substitution tn  xn

t
− t

xn
.

More remarkable are the simplifications that occur with the σ-function
kusx, t. Its denominator DKr(x, t) also breaks up into simple factors : we
have on the one hand the cyclotomic factors of x alone, already present in
the denominators DKr(x) of kusx , and on the other hand, in equal number,
elementary factors that depend on both x and t. Explicitely :

husx, t(σ) =
hus∗x, t(σ)

DHr(x, t)
=

hus∗x, t(σ)

DHr(x)DH∗r (x, t)
∀σ ∈ Sr

kusx, t(σ) =
kus∗x, t(σ)

DKr(x, t)
=

kus∗x, t(σ)

DKr(x)DK∗r (x, t)
∀σ ∈ Sr

DH∗r (x, t) :=
∏

1≤k≤r

(t2 − xk+1) (296)

DK∗r (x, t) :=
∏

1≤k≤r

(t2k − xk(k+1))

(t2 − xk+1)
(297)

The really non-trivial part of kusx, t, however, is its numerator. Like with
kas t and kusx, t, the new numerator kus∗x, t(σ) depends on the maximal
coherent binary bracketings of the sequence {σ(1), .., σ(r)} :
– when no such bracketings exist, the numerator vanishes
– when there is only one bracketing, the numerator breaks up completely
into simple factors
– when there exist several bracketings, we get a superposition of such terms.
All cases are covered by a suitable generalisation of formula (212).

62ie σ+(j) := σ(j) for j = 1, . . . , r and σ+(r + 1) := r + 1
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5.14 Factorisation properties for the connecting func-
tions huk , hük.

Their construction runs parallel to that of hak , häk . We set :

hukx, t1,t2(σ) := husx, t1 ∗ kusx, t2 (σ) =
∑

σ1σ2=σ

husx, t1(σ1) kusx, t2(σ2) (298)

hükx, t1,t2(σ) := husx, t1 ∗ (o4kusx, t2) (σ) = (o5husx, t1) ∗ kusx, t2 (σ) (299)

=
∑

σ1. rev . σ2=σ

husx, t1(σ1) kusx, t2(σ2) (300)

and we encounter once again the miracle of maximal factorisation, for both
numerators and denominators :

hukx, t1,t2(σ) =
huk∗x, t1,t2(σ)

DHKr(x, t1, t2)
; hükx, t(σ) =

hük∗x, t1,t2(σ)

DHKr(x, t1, t2)
∀σ ∈ Sr

DHKr(x; t1, t2) := DH∗r (x, t1) DK∗r (x, t2) =
∏

1≤k≤r

(t21 − xk+1)
∏

1≤k≤r

(t2 k2 − xk(k+1))

(t22 − xk+1)

huk∗x, t1,t2 = t
γ(σ)
2 xδ(σ)

∏
1≤j≤r

(
t1 t

γj(σ)
2 + xδj(σ)/2

) ∏
1≤j≤r

(
t1 t

γj(σ)
2 − xδj(σ)/2

)
hük∗x, t1,t2 = t

γ∗(σ)
2 xδ

∗(σ)
∏

1≤j≤r

(
t1 t

γ∗j (σ)

2 + xδ
∗
j (σ)/2

) ∏
1≤j≤r

(
t1 t

γ∗j (σ)

2 − xδ∗j (σ)/2
)

with the very same γj, δj, γ
∗
j , δ
∗
j as in §5.9 63 and with elementary corrective

factors t
γ(σ)
2 xδ(σ) or t

γ∗(σ)
2 xδ

∗(σ) which account for the global invariance under
the change (x, t1, t2) → (x−1, t−1

1 , t−1
2 ). To highlight this invariance, we may

also write down our connecting functions as follows :

hukx, t1, t2 ≡
∏

1≤j≤r

bigeo(x
j+1
2 , t2)

bigeo(x
j+1
2 , t1)

bigeo(x
δj(σ)

2 , t1 t
γj(σ)
2 )

bigeo(x
j(j+1)

2 , tj2)
(301)

hükx, t1, t2 ≡
∏

1≤j≤r

bigeo(x
j+1
2 , t2)

bigeo(x
j+1
2 , t1)

bigeo(x
δ∗j (σ)

2 , t1 t
γ∗j (σ)

2 )

bigeo(x
j(j+1)

2 , tj2)
(302)

with bigeo(x, t) :=
x

t
− t

x
(303)

63Note in passing that δj(σ) and δ∗j (σ) always being even integers, the above products
amount to entire factorisations.
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When the parameters x, t1, t2 go to 1 simultaneously and with all three num-
bers x − 1, t1 − 1, t2 − 1 in fixed ratios, we clearly retrieve as a special case
the factorisations (250),(251) for the ‘arithmetic’ case :

 
∏

1≤j≤r

(t1 + γj(σ) t2 + δj(σ))

j (j + 1)

 
∏

1≤j≤r

(t1 + γ∗j (σ) t2 + δ∗j (σ))

j (j + 1)

5.15 The pair hus,kus as a q-analogue of has,kas. The
‘haukian’ family of σ-functions.

The pairs (husx,kusx) and (husx, t,kusx, t) may be looked upon as q-analogues
of (has,kas) and (has t,kas t) respectively, with x functioning as q-parameter.
The associated moulds (hus•x, kus

•
x) and (hus•x, t, kus

•
x, t) even display a sym-

metry sui generis, which resembles symmetrality and might be called q-
symmetrality. But we cannot afford to go into these matters here. Be it
enough to say that the three pairs :

(has t,kas t) : ‘arithmetic’

(husx,kusx) : ‘geometric’

(husx, t,kusx, t) : ‘bigeometric.’

which due to (282), (283) constitute a connected manifold, seem to enjoy a
unique status, not only among all pairs (haus

T
,kaus

T
), but even among all

pairs (h,k) of mutually inverse σ-functions. They fully deserve a name of
their own : let us call them haukian functions.64

5.16 Representation theory of finite groups and ‘haukian’
σ-functions.

The existence of simple images
∑

σ h(σ)ρ(σ) ,
∑

σ k(σ)ρ(σ) under the ele-
mentary, one-dimensional representations ρ(σ) := 1 (trivial) or ρ(σ) := ε(σ)
(signature) is garanteed for all pairs (haus

T
,kaus

T
) by the formulas (275),

(276). But if we move on to general, higher-dimensional representations ρ
of the symmetric groups Sr , the haukian family once again stands out for
the simplicity of its behaviour, in particular for the distribution pattern of
its standard factors inside the determinants of the representations. Results

64the h stands for the direct function; the k for its convolution inverse; and the diphthong
au refers to the a and u of the arithmetic and (bi)geometric cases.
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here are still incomplete, so we mention just two formulae, relative to the
r-dimensional representations :

ρr(σ) . ei := eσ(i) ∀σ ∈ Sr , i ∈ {1, . . . , r} (304)

Typically, we get the familiar factors but with altered multiplicities :

det
(∑
σ∈Sr

hast(σ)ρr(σ)
)

=
∏

1≤k≤r−1

(1 + k)−1+2r−3k
∏

1≤k≤r−1

(t+ 2 + k)3k (305)

det
(∑
σ∈Sr

husx(σ)ρr(σ)
)

=
∏

1≤k≤r−1

(xk − 1)+1+2r−3k (306)

5.17 σ-functions originating in uniform lamination.

We now take leave of the haukian family and consider a few other σ-functions
that arise in the context of our fusion-fission transforms. The first is con-
nected with the uniform lamination-colamination described in §1.8. It in-
volves the alternal mould lad• ( of flat, difference-type : see §2.4) which also
occurs in the construction of the standard alien derivations. The closely
related mould sad•a will resurface in §5.19.

5.18 σ-functions originating in quadratic lamination.

The quadratic lamination-colamination described in §1.9 also gives rise to
interesting σ-functions hes,kes,ke. The first two are mutually inverse and
all three are simple. Let B be the associative algebra freely generated by
e1, e2, . . . and let 1B be the corresponding Lie algebra, with its natural em-
bedding in B. The projection proj1 : B→1 B characterised in §1.9 involves a
σ-function ke which, though not invertible, is closely related to an invertible
one, kes, whose inverse hes is unexpectedly simple : it assumes only zeros
or powers of 2 as its values.

Projection proj1 : B→1 B : We have five equivalent expressions :
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proj1(e1...er) =
∑
σ∈Sr

ke (σ) eσ(1).. eσ(r) (307)

=
∑
σ∈Sr

1

r
ke (σ) [..[eσ(1), eσ(2)] . . . eσ(r)] (308)

=
∑
σ∈Sr

1

r
ke (σ) [eσ(1) . . . [eσ(r−1), eσ(r)]..] (309)

=
∑

τ∈Sr−1

kes (τ) [..[e1, eτ(2)] . . . eτ(r)] (310)

=
∑

τ∈Sr−1

kes (τ) [eτ(1) . . . [eτ(r−1), Ar]..] (311)

which make manifest the one-to-one correspondance that exists between
kes(τ) as defined on Sr−1 = Sl and ke(σ) as defined on Sr :

kes(τ)
⇒
= ke(σ) with σ(1) := τ(1), . . . , σ(l) := τ(l), σ(r) := r (312)

ken
1, r,n2 ⇒

= (−1)r2
∑

n∈ sha(n1,ñ2)

kesn (313)

Only the second relation calls for comments. For convenience it is written in
mould form, and the sum ranges over all shuffles n of n1 and of the reverse
ñ2 of n2. The integer r2 is of course the length of n2.

Properties of kes . Here are the main ones :

kes (idl) =
1

1 + l
=

1

r
(314)

kes (τ) is maximal for τ = idl (315)

kes (τ) = kes (τ−1) (parity) (316)

kes (τ) = kes (τ ?) with τ ? = revl ◦ τ ◦ revl (symmetry) (317)∑
τ∈Sl

kes (τ) =
l! l!

(2 l)!
(318)

∑
τ∈Sl

ετ kes (τ) =
(l/2)! (l/2)!

l!
for l even (319)

∑
τ∈Sl

ετ kes (τ) =
((l − 1)/2)! ((l − 1)/2)!

2 (l − 1)!
for l odd (320)

kes has an inverse hes in the group algebra A(Sl) (321)
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Properties of hes . We have :

hes (τ) ∈ {0, 2, 21, . . . , 2l} if τ ∈ Sl (322)

with the actual values given by a simple rule. That rule is best described by
deriving hes from a more general, real-indexed and flat (i.e. locally constant)
mould hes•. The link is simply :

hes (τ) = hes τ(1),...,τ(l) if τ ∈ Sl (323)

and hes• is defined by the following induction :

hesω = cohesω
1

hesω
2

cohesω
3

(324)

Here ω = (ω1, . . . , ωl) is any sequence of l distinct real number. The sequence
ω1 (resp ω3) is obtained from ω by retaining only the terms ωi such that
ωi < ω1 (resp ωi > ωl). The mid-sequence ω2 is obtained from ω by retaining
only the terms ωi such that ω1 < ωi < ωl as well as the term ω−1 immediately
inferior to ω1 (if it exists) and the term ω+

l immediately superior to ωl (if it
exists). Some of the factor sequences ωi may reduce to the empty sequence
∅, but the above relations amount to a true induction since in all cases
length (ω2) ≤ length (ω)− 2.
To complete the induction rules we must set:

hes ∅ = 1 (325)

cohes ∅ = 2 and for ω 6= ∅ : (326)

cohesω = 1 if ω is an increasing sequence (327)

cohesω = 0 otherwise (328)

Remarks about the proofs : Though less than two page long, the proof
has to be skipped in this expository paper. Let us just point out the reason
for the occurrence of powers of 2 in hes. They stem from the standard scalar
products of Lie elements of the form [..[eσ(1), eσ(2)], . . . , eσ(k)] which happen
to be exact powers of 2.

5.19 σ-functions with treble stability.

Stability under ∗,×, ◦.
To conclude this unashamedly ‘botanical’ chapter in character, we give two
instances of σ-function that display a treble stability :
(i) stability under the convolution product ∗ .
(ii) stability of the associated mould under mould multiplication × .
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(iii) stability of the associated mould under mould composition ◦ .
Of course, all three stabilities are completely independent.65

The ‘uniform’ mould family.
The following moulds are associated with the so-called uniform average of
resurgent theory. Setting remu•a = tu•−a as in §2.3 and namu•a = sad•a as in
§2.4 we have :

remu•a × remu•b ≡ remu•a+b ∀a, b ∈ C (329)

remu•a ◦ remu•b ≡ remu•a b ∀a, b ∈ C (330)

namu•a ∗ namu•b ≡ namu•a b ∀a, b ∈ C (331)

The proofs are quite short. Far more interesting is the next example.

The ‘organic’ mould family.
The mould remo•a and the closely related mould romo•a were defined in §2.7.
They are essentially the ‘lateral moulds’ (see §4.10) associated with the im-
portant ‘organic average’ which is central to resurgence theory. Built from
these one-parameter moulds, we have the two-parameter mould somo•a,b, also
defined in §2.7, and its unexpected closure properties under mould multipli-
cation and mould composition (see §2.7). But on top of these, we have also
stability under convolution. Indeed, along with these ‘lateral’ moulds there
goes a ‘neutral’ mould namo•a, whose associated σ-function namoa turns
out to essentially coincide with the σ-function hok already encountered in
connection with the family {has,kas,hak} . Indeed, it can be shown that :

namoa(σ) ≡ ar hok 1
a
(σ) ∀σ ∈ Sr , ∀a ∈ C (332)

The closure under convolution follows at once :

namo•a ∗ namo•b ≡ namo•a b ∀a, b ∈ C (333)

6 Conclusion and complements.

6.1 Unique status of arborification-coarborification among
all fusion-fission transforms.

In the introduction, we pointed out the effectiveness of the arborification-
coarborification transform in analysis. In §4 we backed up this claim with a

65the first one is at constant length r , the others mix up various lengths.
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string of applications . In §2 and §3 we examined the combinatorial mecha-
nisms behind the method’s success, and the reasons for its superiority over
other, a priori equally attractive fusion-fission transforms. In the last sec-
tion, §5, this unique status received a further boost, and that too from an
unexpected quarter : algebra.

To take stock, let us briefly retrace our main steps in §5. Starting from
a series66 of mutually inverse matrices (H•• , K

•
•), which arise naturally when

investigating arborification in a free associative context, we have successively
encountered all the objects which grace the following table :

(H•• , K
•
•) (has•t , kas

•
t )

shift.
=⇒ (has•t,s , kas

•
t,s)

⇓ mould. ⇑

(has ,kas)
twist
=⇒ (hast ,kast)

connect.
=⇒ (hakt1,t2 ,häkt1,t2)

⇓ arith. ⇑ T=Tat ⇓
q-analogue (hausT ,kausT ) q-analogue

⇓ geom.↙↙T=Tux bigeom. ⇓ T=Tux,t ⇓

(husx ,kusx)
twist
=⇒ (husx, t,kusx, t)

connect.
=⇒ (hukx; t1,t2 ,hükx; t1,t2)

mould. ⇓

(hus•x, t , kus
•
x, t)

shift.
=⇒ (hus•x, t, s , kus

•
x, t, s)

These haukian objects, some of them moulds, the others σ-functions, turned
out to possess no end of unexpected properties :

a) the σ-functions go in pairs of mutually inverse 67 elements, with both
terms admitting numerous symmetries, possessing quite explicit expressions,
notably simple denominators, and also presenting a tendency towards max-
imal factorisation – all of which is quite uncommon for mutually inverse
σ-functions.68

b) unlike σ-functions ‘picked at haphazard’, ours possess natural extensions
to integer-indexed, rational valued moulds, the only restriction being that
the indices have to be pair-wise distinct.

66these square matrices of order r! are defined for all r.
67in the convolution algebras A(Sr) of the symmetric groups Sr.
68indeed, inversion in the algebras A(Sr) tends to produce huge denominators.
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c) the moulds so produced, in turn, display precise symmetries (either sym-
metrality or, more rarely, alternality), which may be common enough in “nat-
ural moulds”, but rather surprising in the present instance69

d) there is a tantalising connection between these “haukian” moulds and the
moulds of the “organic family”, which have a quite distinct origin.

But now comes the crux : although the entire construction, starting from
the matrix pair (H•• , K

•
•) down to the whole set of characters in the above

Table, can be duplicated for any other fusion-fission transform, relative to
any type of order (all partial orders, laminescent orders, arborescent orders of
binary, or ternary type, etc etc) none of these parallel constructions 70 retains
any of the rich structure or endearing simplicity which is the hallmark of the
haukian family. Although, at the moment, these curious haukian properties
seem to have no direct relevance to arborification-coarborification as a tool
for convergence-restoration in analysis, they certainly enhance its uniqueness
status. Even if devoid of deeper meaning, this ‘agreement’ between analysis
and algebra71 which we observe here is very gratifying.

6.2 Local-analyticity, free-analyticity, alien-analyticity.

C[[x1, . . . , xν ]] resp. C{x1, . . . , xν} are well-established notations for the ring
of all formal, resp. local-analytic72 power series in the ν commuting in-
determinates xi and with coefficients in C. Going over to non-commuting
indeterminates Xi, the question arises : What could be the natural counter-
part C{{X1, . . . , Xν}} of C{x1, . . . , xν} ? And how could we characterise its
elements :

SS =
∑

0≤r≤∞

∑
ik∈{1,..., ν}

Ai1, i2,...,ir Xir . . . Xi2 Xi1 (A• ∈ C) (334)

preferably in terms of bounds on A• ? That of course will depend on which
future ‘specialisations’ we have in mind for our indeterminates Xi.

S1 : finite-dimensional specialisations, e.g. in spaces End(V ) of endomor-
phisms of µ-dimensional vector spaces V , with µ finite but otherwise unre-

69at any rate, these mould symmetries are not a simple rephrasing, nor even a conse-
quence, of the σ-function symmetries.

70as far as we could see. We did explore quite a few options.
71a similar ‘convergence’ is also a feature of resurgence theory which, despite having its

moorings in analysis, often tastes like pure algebra.
72i.e. with non-zero convergence radius.
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lated to ν.

S2 : infinite-dimensional specialisations, e.g. in the spaces Der(C{x1, .., xµ})
of ordinary derivations of the ring of convergent power series of µ variables.73

For definiteness, let us restrict ourselves to specialisations Xi 7→ spe(Xi) that
are homogeneous and degree-increasing :

spe(Xi) : xm C −→ xm+di C (di ∈ Nµ , ∀m ∈ Nµ) (335)

S3 : alien specialisations, i.e. incarnations in the space ALIEN of alien
derivations of some space of resurgent functions. Here again, assume for
definiteness that spe(Xi) specialises to homogeneous alien derivations. 74

So, against this backdrop of possible specialisations, let us weigh the
merits of the three types of majorisations on A• which naturally spring to
mind. They are :

M1 : |A i1,...,ir | ≤ c0 c
r
1 (336)

M2 : |A i1,...,ir | ≤ c0 c
r
1

1

r!
(337)

M3 : |A( i1,...,ir)≺ | ≤ c0 c
r
1 with A≺ :=

∑
≺≤•

A• (338)

for some finite positive constants c0 = c0(SS), c1 = c1(SS) and with, on the
third line, the usual convention of straight arborification (see §1.2).

Condition M1 is adequate for specialisations of type S1, but clearly not
for those of type S2, even in the case of a single X1, and much less for type S3.

Condition M2, on the other hand, ensures the convergence of specialisa-
tions S2 and S3, but is unnecessarily stringent.

The “proper” condition would seem to be the one involving arborification,
namely M3. As we saw, it implies the convergence of all specialisations S2,
and it does so at a much lesser cost75– in fact, at a minimal cost. Moreover,
the space C{{X1, . . . , Xν}} of all SS subject to M3

76 enjoys all the stability

73here again, µ is unrelated to ν, and can be any finite number.
74i.e. alien derivations of a given frequency ω, like ∆ω or [..[∆ω1 ,∆ω2 ] . . .∆ωr ] with∑
ωi = ω, but no superpositions corresponding to different ω’s.

75in the uninteresting case of a single variable Xi , where non-commutativity doesn’t
come into play, M3 is readily seen to coincide with M2, but for several variables it is
considerably weaker.

76with constants that depend on SS.
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properties that one may wish for, e.g. under multiplication and substitution.
We then speak of free-analyticity.

Condition M3 also happens to be the weakest condition that guarantees
the convergence of specialisations of type S3. Dually, it is the strongest con-
dition to be verified by the displayed and restricted forms of natural resurgent
functions. We speak in that context of alien-analyticity.

7 Tables.

7.1 The σ-functions has,kas .

To handle integers only, we set : has∗(σ) := r! (1+r)!
2r

has(σ) ∀σ ∈ Sr .

σ has∗ kas σ has∗ kas σ has∗ kas

[1] 1 1 [1, 2, 3] 6 7 [2, 3, 1] 2 −1
[1, 2] 2 2 [1, 3, 2] 4 −4 [3, 1, 2] 2 −1
[2, 1] 1 −1 [2, 1, 3] 3 −2 [3, 2, 1] 1 2

[1, 2, 3, 4] 24 38 [2, 3, 1, 4] 8 −2 [3, 4, 1, 2] 4 −3
[1, 2, 4, 3] 18 −22 [2, 3, 4, 1] 6 −2 [3, 4, 2, 1] 2 4
[1, 3, 2, 4] 16 −12 [2, 4, 1, 3] 6 0 [4, 1, 2, 3] 6 −2
[1, 3, 4, 2] 12 −7 [2, 4, 3, 1] 4 1 [4, 1, 3, 2] 4 1
[1, 4, 2, 3] 12 −7 [3, 1, 2, 4] 8 −2 [4, 2, 1, 3] 3 1
[1, 4, 3, 2] 8 14 [3, 1, 4, 2] 6 0 [4, 2, 3, 1] 2 2
[2, 1, 3, 4] 12 −12 [3, 2, 1, 4] 4 4 [4, 3, 1, 2] 2 4
[2, 1, 4, 3] 9 9 [3, 2, 4, 1] 3 1 [4, 3, 2, 1] 1 −7
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σ has∗ kas σ has∗ kas σ has∗ kas

[1, 2, 3, 4, 5] 120 296 [2, 4, 5, 1, 3] 18 0 [4, 2, 3, 1, 5] 10 4
[1, 2, 3, 5, 4] 96 −172 [2, 4, 5, 3, 1] 12 1 [4, 2, 3, 5, 1] 8 1
[1, 2, 4, 3, 5] 90 −94 [2, 5, 1, 3, 4] 24 0 [4, 2, 5, 1, 3] 9 0
[1, 2, 4, 5, 3] 72 −57 [2, 5, 1, 4, 3] 18 0 [4, 2, 5, 3, 1] 6 0
[1, 2, 5, 3, 4] 72 −57 [2, 5, 3, 1, 4] 16 0 [4, 3, 1, 2, 5] 10 8
[1, 2, 5, 4, 3] 54 114 [2, 5, 3, 4, 1] 12 1 [4, 3, 1, 5, 2] 8 0
[1, 3, 2, 4, 5] 80 −104 [2, 5, 4, 1, 3] 12 0 [4, 3, 2, 1, 5] 5 −14
[1, 3, 2, 5, 4] 64 79 [2, 5, 4, 3, 1] 8 −2 [4, 3, 2, 5, 1] 4 −2
[1, 3, 4, 2, 5] 60 −19 [3, 1, 2, 4, 5] 40 −19 [4, 3, 5, 1, 2] 6 6
[1, 3, 4, 5, 2] 48 −22 [3, 1, 2, 5, 4] 32 16 [4, 3, 5, 2, 1] 3 −7
[1, 3, 5, 2, 4] 48 0 [3, 1, 4, 2, 5] 30 0 [4, 5, 1, 2, 3] 12 −12
[1, 3, 5, 4, 2] 36 11 [3, 1, 4, 5, 2] 24 0 [4, 5, 1, 3, 2] 8 6
[1, 4, 2, 3, 5] 60 −19 [3, 1, 5, 2, 4] 24 0 [4, 5, 2, 1, 3] 6 6
[1, 4, 2, 5, 3] 48 0 [3, 1, 5, 4, 2] 18 0 [4, 5, 2, 3, 1] 4 9
[1, 4, 3, 2, 5] 40 38 [3, 2, 1, 4, 5] 20 38 [4, 5, 3, 1, 2] 4 12
[1, 4, 3, 5, 2] 32 11 [3, 2, 1, 5, 4] 16 −32 [4, 5, 3, 2, 1] 2 −22
[1, 4, 5, 2, 3] 36 −33 [3, 2, 4, 1, 5] 15 2 [5, 1, 2, 3, 4] 24 −7
[1, 4, 5, 3, 2] 24 44 [3, 2, 4, 5, 1] 12 4 [5, 1, 2, 4, 3] 18 4
[1, 5, 2, 3, 4] 48 −22 [3, 2, 5, 1, 4] 12 0 [5, 1, 3, 2, 4] 16 2
[1, 5, 2, 4, 3] 36 11 [3, 2, 5, 4, 1] 9 −3 [5, 1, 3, 4, 2] 12 1
[1, 5, 3, 2, 4] 32 11 [3, 4, 1, 2, 5] 20 −6 [5, 1, 4, 2, 3] 12 1
[1, 5, 3, 4, 2] 24 22 [3, 4, 1, 5, 2] 16 0 [5, 1, 4, 3, 2] 8 −2
[1, 5, 4, 2, 3] 24 44 [3, 4, 2, 1, 5] 10 8 [5, 2, 1, 3, 4] 12 4
[1, 5, 4, 3, 2] 16 −77 [3, 4, 2, 5, 1] 8 1 [5, 2, 1, 4, 3] 9 −3
[2, 1, 3, 4, 5] 60 −94 [3, 4, 5, 1, 2] 12 −12 [5, 2, 3, 1, 4] 8 1
[2, 1, 3, 5, 4] 48 52 [3, 4, 5, 2, 1] 6 14 [5, 2, 3, 4, 1] 6 4
[2, 1, 4, 3, 5] 45 38 [3, 5, 1, 2, 4] 16 0 [5, 2, 4, 1, 3] 6 0
[2, 1, 4, 5, 3] 36 26 [3, 5, 1, 4, 2] 12 0 [5, 2, 4, 3, 1] 4 −2
[2, 1, 5, 3, 4] 36 26 [3, 5, 2, 1, 4] 8 0 [5, 3, 1, 2, 4] 8 1
[2, 1, 5, 4, 3] 27 −52 [3, 5, 2, 4, 1] 6 0 [5, 3, 1, 4, 2] 6 0
[2, 3, 1, 4, 5] 40 −19 [3, 5, 4, 1, 2] 8 6 [5, 3, 2, 1, 4] 4 −2
[2, 3, 1, 5, 4] 32 16 [3, 5, 4, 2, 1] 4 −7 [5, 3, 2, 4, 1] 3 −2
[2, 3, 4, 1, 5] 30 −4 [4, 1, 2, 3, 5] 30 −4 [5, 3, 4, 1, 2] 4 9
[2, 3, 4, 5, 1] 24 −7 [4, 1, 2, 5, 3] 24 0 [5, 3, 4, 2, 1] 2 −12
[2, 3, 5, 1, 4] 24 0 [4, 1, 3, 2, 5] 20 2 [5, 4, 1, 2, 3] 6 14
[2, 3, 5, 4, 1] 18 4 [4, 1, 3, 5, 2] 16 0 [5, 4, 1, 3, 2] 4 −7
[2, 4, 1, 3, 5] 30 0 [4, 1, 5, 2, 3] 18 0 [5, 4, 2, 1, 3] 3 −7
[2, 4, 1, 5, 3] 24 0 [4, 1, 5, 3, 2] 12 0 [5, 4, 2, 3, 1] 2 −12
[2, 4, 3, 1, 5] 20 2 [4, 2, 1, 3, 5] 15 2 [5, 4, 3, 1, 2] 2 −22
[2, 4, 3, 5, 1] 16 2 [4, 2, 1, 5, 3] 12 0 [5, 4, 3, 2, 1] 1 38
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7.2 The σ-functions has,kas with a twist parameter.

has∗t(σ) := r! (t+ 2)(t+ 3) . . . (t+ r + 1) has t(σ) ∀σ ∈ Sr (339)

kas∗t(σ) := r! has t(σ) ∀σ ∈ Sr(340)
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σ has∗t kas∗t

[1] (t+ 2) 1

[1, 2] (t+ 2)(t+ 4) (t+ 4)
[2, 1] (t+ 2)(t+ 2) −(t+ 2)

[1, 2, 3] (t+ 2)(t+ 4)(t+ 6) (t+ 6)(2 t+ 7)
[1, 3, 2] (t+ 2)(t+ 4)(t+ 4) −(t+ 8)(t+ 3)
[2, 1, 3] (t+ 2)(t+ 2)(t+ 6) −(t+ 6)(t+ 2)
[2, 3, 1] (t+ 2)(t+ 2)(t+ 4) −(t+ 3)(t+ 2)
[3, 1, 2] (t+ 2)(t+ 2)(t+ 4) −(t+ 3)(t+ 2)
[3, 2, 1] (t+ 2)(t+ 2)(t+ 2) 2 (t+ 3)(t+ 2)

[1, 2, 3, 4] (t+ 2)(t+ 4)(t+ 6)(t+ 8) (t+ 8)(7 t2 + 57 t+ 114)
[1, 2, 4, 3] (t+ 2)(t+ 4)(t+ 6)(t+ 6) −2(t+ 4)(2 t2 + 25 t+ 66)
[1, 3, 2, 4] (t+ 2)(t+ 4)(t+ 4)(t+ 8) −2(t+ 8)(t+ 6)(t+ 3)
[1, 3, 4, 2] (t+ 2)(t+ 4)(t+ 4)(t+ 6) −(t+ 14)(t+ 4)(t+ 3)
[1, 4, 2, 3] (t+ 2)(t+ 4)(t+ 4)(t+ 6) −(t+ 14)(t+ 4)(t+ 3)
[1, 4, 3, 2] (t+ 2)(t+ 4)(t+ 4)(t+ 4) 2(t+ 14)(t+ 4)(t+ 3)
[2, 1, 3, 4] (t+ 2)(t+ 2)(t+ 6)(t+ 8) −2(2 t+ 9)(t+ 8)(t+ 2)
[2, 1, 4, 3] (t+ 2)(t+ 2)(t+ 6)(t+ 6) 3(t+ 9)(t+ 4)(t+ 2)
[2, 3, 1, 4] (t+ 2)(t+ 2)(t+ 4)(t+ 8) −(t+ 8)(t+ 3)(t+ 2)
[2, 3, 4, 1] (t+ 2)(t+ 2)(t+ 4)(t+ 6) −2(t+ 4)(t+ 3)(t+ 2)
[2, 4, 1, 3] (t+ 2)(t+ 2)(t+ 4)(t+ 6) 0
[2, 4, 3, 1] (t+ 2)(t+ 2)(t+ 4)(t+ 4) (t+ 4)(t+ 3)(t+ 2)
[3, 1, 2, 4] (t+ 2)(t+ 2)(t+ 4)(t+ 8) −(t+ 8)(t+ 3)(t+ 2)
[3, 1, 4, 2] (t+ 2)(t+ 2)(t+ 4)(t+ 6) 0
[3, 2, 1, 4] (t+ 2)(t+ 2)(t+ 2)(t+ 8) 2(t+ 8)(t+ 3)(t+ 2)
[3, 2, 4, 1] (t+ 2)(t+ 2)(t+ 2)(t+ 6) (t+ 4)(t+ 3)(t+ 2)
[3, 4, 1, 2] (t+ 2)(t+ 2)(t+ 4)(t+ 4) −3(t+ 4)(t+ 3)(t+ 2)
[3, 4, 2, 1] (t+ 2)(t+ 2)(t+ 2)(t+ 4) 4(t+ 4)(t+ 3)(t+ 2)
[4, 1, 2, 3] (t+ 2)(t+ 2)(t+ 4)(t+ 6) −2(t+ 4)(t+ 3)(t+ 2)
[4, 1, 3, 2] (t+ 2)(t+ 2)(t+ 4)(t+ 4) (t+ 4)(t+ 3)(t+ 2)
[4, 2, 1, 3] (t+ 2)(t+ 2)(t+ 2)(t+ 6) (t+ 4)(t+ 3)(t+ 2)
[4, 2, 3, 1] (t+ 2)(t+ 2)(t+ 2)(t+ 4) 2(t+ 4)(t+ 3)(t+ 2)
[4, 3, 1, 2] (t+ 2)(t+ 2)(t+ 2)(t+ 4) 4(t+ 4)(t+ 3)(t+ 2)
[4, 3, 2, 1] (t+ 2)(t+ 2)(t+ 2)(t+ 2) −7(t+ 4)(t+ 3)(t+ 2)
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7.3 The σ-functions has,kas with twist and shift.

We set :

has∗t,s(σ) :=
(2 r)!

2r
(t+ s+ 2) . . . (t+ s+ r + 1) has t,s(σ) ∀σ ∈ Sr (341)

kas∗t,s(σ) := r! has t,s(σ) ∀σ ∈ Sr(342)

σ has∗t,s

[1] t+ s+ 2

[1, 2] 3 t2 + 6 t s+ 3 s2 + 18 t+ 17 s+ 24
[2, 1] 3 t2 + 6 t s+ 3 s2 + 12 t+ 13 s+ 12

[1, 2, 3] 15 (t+ s+ 4) (t2 + 2 t s+ s2 + 8 t+ 7s+ 12)
[1, 3, 2] 15 t3+45 t2 s+45 t s2+15 s3+150 t2+300 t s+147 s2+480 t+468 s+480
[2, 1, 3] 15 t3+45 t2 s+45 t s2+15 s3+150 t2+285 t s+141 s2+420 t+414 s+360
[2, 3, 1] 15 t3+45 t2 s+45 t s2+15 s3+120 t2+255 t s+129 s2+300 t+336 s+240
[3, 1, 2] 15 t3+45 t2 s+45 t s2+15 s3+120 t2+240 t s+123 s2+300 t+312 s+240
[3, 2, 1] 15 (t+ s+ 2) (t2 + 2 t s+ s2 + 4 t+ 5 s+ 4)

σ kas∗t,s

[1] 1

[1, 2] t s+ s2 + t+ 3 s+ 4
[2, 1] −(s+ 1) (t+ s+ 2)

[1, 2, 3] (t s+ s2 + t+ 4 s+ 6) (t s+ s2 + 2 t+ 4 s+ 7)
[1, 3, 2] −1

2
(s+ 2) (t+ s+ 3) (t s+ s2 + t+ 3 s+ 8)

[2, 1, 3] −1
2

(s+ 1) (t s+ s2 + 2 t+ 5 s+ 12) (t+ s+ 2)
[2, 3, 1] −1

2
(s+ 1) (s+ 2) (t+ s+ 2) (t+ s+ 3)

[3, 1, 2] −1
2

(s+ 1) (s+ 2) (t+ s+ 2) (t+ s+ 3)
[3, 2, 1] (s+ 1) (s+ 2) (t+ s+ 2) (t+ s+ 3)

7.4 The σ-functions hak,hok .

hak∗a,b(σ) := r! (a+ 2)(a+ 3) . . . (a+ r + 1) hak a,b(σ) ∀σ ∈ Sr (343)

hok∗b(σ) := r! hok b(σ) ∀σ ∈ Sr (344)
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σ hak∗a,b hok∗b

[1] (a+ 2) 1

[1, 2] (a+ 2)(a+ b+ 6) (1 + b)
[2, 1] (a− b)(a+ 2) (1− b)

[1, 2, 3] (a+ 2)(a+ b+ 6)(a+ 2 b+ 12) (1 + b)(1 + 2 b)
[1, 3, 2] (a+ 2)(a− b)(a+ 4) (1− b)
[2, 1, 3] (a− b)(a+ 2)(a+ 2 b+ 12) (1− b)(1 + 2 b)
[2, 3, 1] (a+ 2)(a− b)(a+ 2) (1− b)
[3, 1, 2] (a− b)(a+ 2)(a+ 2 b+ 10) (1− b)(1 + 2 b)
[3, 2, 1] (a− b)(a− 2 b− 4)(a+ 2) (1− b)(1− 2 b)

[1, 2, 3, 4] (a+ 2)(a+ b+ 6)(a+ 2 b+ 12)(a+ 3 b+ 20) (1 + b)(1 + 2 b)(1 + 3 b)
[1, 2, 4, 3] (a+ 2)(a+ b+ 6)(a− b)(a+ 6) (1 + b)(1− b)
[1, 3, 2, 4] (a+ 2)(a− b)(a+ 4)(a+ 3 b+ 20) (1− b)(1 + 3 b)
[1, 3, 4, 2] (a+ 2)(a+ b+ 6)(a− b)(a+ 4) (1 + b)(1− b)
[1, 4, 2, 3] (a+ 2)(a− b)(a+ 4)(a+ 3 b+ 18) (1− b)(1 + 3 b)
[1, 4, 3, 2] (a+ 2)(a− b)(a− 3 b− 8)(a+ 4) (1− b)(1− 3 b)
[2, 1, 3, 4] (a− b)(a+ 2)(a+ 2 b+ 12)(a+ 3 b+ 20) (1− b)(1 + 2 b)(1 + 3 b)
[2, 1, 4, 3] (a− b)(a+ 2)(a− b)(a+ 6) (1− b)(1− b)
[2, 3, 1, 4] (a+ 2)(a− b)(a+ 2)(a+ 3 b+ 20) (1− b)(1 + 3 b)
[2, 3, 4, 1] (a+ 2)(a+ b+ 6)(a− b)(a+ 2) (1 + b)(1− b)
[2, 4, 1, 3] (a+ 2)(a− b)(a+ 2)(a+ 3 b+ 18) (1− b)(1 + 3 b)
[2, 4, 3, 1] (a+ 2)(a− b)(a− 3 b− 8)(a+ 2) (1− b)(1− 3 b)
[3, 1, 2, 4] (a− b)(a+ 2)(a+ 2 b+ 10)(a+ 3 b+ 20) (1− b)(1 + 2 b)(1 + 3 b)
[3, 1, 4, 2] (a− b)(a+ 2)(a− b)(a+ 4) (1− b)(1− b)
[3, 2, 1, 4] (a− b)(a− 2 b− 4)(a+ 2)(a+ 3 b+ 20) (1− b)(1− 2 b)(1 + 3 b)
[3, 2, 4, 1] (a− b)(a+ 2)(a− b)(a+ 2) (1− b)(1− b)
[3, 4, 1, 2] (a+ 2)(a− b)(a+ 2)(a+ 3 b+ 16) (1− b)(1 + 3 b)
[3, 4, 2, 1] (a+ 2)(a− b)(a− 3 b− 10)(a+ 2) (1− b)(1− 3 b)
[4, 1, 2, 3] (a− b)(a+ 2)(a+ 2 b+ 10)(a+ 3 b+ 18) (1− b)(1 + 2 b)(1 + 3 b)
[4, 1, 3, 2] (a− b)(a+ 2)(a− b− 2)(a+ 4) (1− b)(1− b)
[4, 2, 1, 3] (a− b)(a− 2 b− 4)(a+ 2)(a+ 3 b+ 18) (1− b)(1− 2 b)(1 + 3 b)
[4, 2, 3, 1] (a− b)(a+ 2)(a− b− 2)(a+ 2) (1− b)(1− b)
[4, 3, 1, 2] (a− b)(a− 2 b− 4)(a+ 2)(a+ 3 b+ 16) (1− b)(1− 2 b)(1 + 3 b)
[4, 3, 2, 1] (a− b)(a− 2 b− 4)(a− 3 b− 10)(a+ 2) (1− b)(1− 2 b)(1− 3 b)
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7.5 The σ-functions häk,hök.

häk∗a,b(σ) := r!(a+ 2)(a+ 3) . . . (a+ r + 1) häk a,b(σ) ∀σ ∈ Sr (345)

hök∗b(σ) := r! hök b(σ) ∀σ ∈ Sr (346)

σ häk∗a,b hök∗b

[1] (a+ 2) 1

[1, 2] (a+ 2)(a− b) (1− b)
[2, 1] (a+ b+ 6)(a+ 2) (1 + b)

[1, 2, 3] (a+ 2)(a− b)(a− 2 b− 4) (1− b)(1− 2 b)
[1, 3, 2] (a+ 2)(a+ b+ 8)(a+ 2) (1 + b)
[2, 1, 3] (a+ b+ 6)(a+ 2)(a− 2 b− 4) (1 + b)(1− 2 b)
[2, 3, 1] (a+ 4)(a+ b+ 8)(a+ 2) (1 + b)
[3, 1, 2] (a+ b+ 8)(a+ 2)(a− 2 b− 4) (1 + b)(1− 2 b)
[3, 2, 1] (a+ b+ 8)(a+ 2 b+ 10)(a+ 2) (1 + b)(1 + 2 b)

[1, 2, 3, 4] (a+ 2)(a− b)(a− 2 b− 4)(a− 3 b− 10) (1− b)(1− 2 b)(1− 3 b)
[1, 2, 4, 3] (a+ 2)(a− b)(a+ b+ 10)(a+ 2) (1− b)(1 + b)
[1, 3, 2, 4] (a+ 2)(a+ b+ 8)(a+ 2)(a− 3 b− 10) (1 + b)(1− 3 b)
[1, 3, 4, 2] (a+ 2)(a− b+ 2)(a+ b+ 10)(a+ 2) (1− b)(1 + b)
[1, 4, 2, 3] (a+ 2)(a+ b+ 10)(a+ 2)(a− 3 b− 10) (1 + b)(1− 3 b)
[1, 4, 3, 2] (a+ 2)(a+ b+ 10)(a+ 3 b+ 16)(a+ 2) (1 + b)(1 + 3 b)
[2, 1, 3, 4] (a+ b+ 6)(a+ 2)(a− 2 b− 4)(a− 3 b− 10) (1 + b)(1− 2 b)(1− 3 b)
[2, 1, 4, 3] (a+ b+ 6)(a+ 2)(a+ b+ 10)(a+ 2) (1 + b)(1 + b)
[2, 3, 1, 4] (a+ 4)(a+ b+ 8)(a+ 2)(a− 3 b− 10) (1 + b)(1− 3 b)
[2, 3, 4, 1] (a+ 4)(a− b+ 2)(a+ b+ 10)(a+ 2) (1− b)(1 + b)
[2, 4, 1, 3] (a+ 4)(a+ b+ 10)(a+ 2)(a− 3 b− 10) (1 + b)(1− 3 b)
[2, 4, 3, 1] (a+ 4)(a+ b+ 10)(a+ 3 b+ 16)(a+ 2) (1 + b)(1 + 3 b)
[3, 1, 2, 4] (a+ b+ 8)(a+ 2)(a− 2 b− 4)(a− 3 b− 10) (1 + b)(1− 2 b)(1− 3 b)
[3, 1, 4, 2] (a+ b+ 8)(a+ 2)(a+ b+ 10)(a+ 2) (1 + b)(1 + b)
[3, 2, 1, 4] (a+ b+ 8)(a+ 2 b+ 10)(a+ 2)(a− 3 b− 10) (1 + b)(1 + 2 b)(1− 3 b)
[3, 2, 4, 1] (a+ b+ 8)(a+ 4)(a+ b+ 10)(a+ 2) (1 + b)(1 + b)
[3, 4, 1, 2] (a+ 6)(a+ b+ 10)(a+ 2)(a− 3 b− 10) (1 + b)(1− 3 b)
[3, 4, 2, 1] (a+ 6)(a+ b+ 10)(a+ 3 b+ 16)(a+ 2) (1 + b)(1 + 3 b)
[4, 1, 2, 3] (a+ b+ 10)(a+ 2)(a− 2 b− 4)(a− 3 b− 10) (1 + b)(1− 2 b)(1− 3 b)
[4, 1, 3, 2] (a+ b+ 10)(a+ 2)(a+ b+ 10)(a+ 2) (1 + b)(1 + b)
[4, 2, 1, 3] (a+ b+ 10)(a+ 2 b+ 10)(a+ 2)(a− 3 b− 10) (1 + b)(1 + 2 b)(1− 3 b)
[4, 2, 3, 1] (a+ b+ 10)(a+ 4)(a+ b+ 10)(a+ 2) (1 + b)(1 + b)
[4, 3, 1, 2] (a+ b+ 10)(a+ 2 b+ 12)(a+ 2)(a− 3 b− 10) (1 + b)(1 + 2 b)(1− 3 b)
[4, 3, 2, 1] (a+ b+ 10)(a+ 2 b+ 12)(a+ 3 b+ 16)(a+ 2) (1 + b)(1 + 2 b)(1 + 3 b)
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7.6 The σ-functions haus,kaus.

We set T := [t1, t2, t3, . . . ] and

haus∗T (σ) := t1 (t1+t2) . . . (t1+ · · ·+tr) hausT (σ) ∀σ ∈ Sr

σ haus∗T σ haus∗T σ haus∗T

[1] t1 [1, 2, 3] t1 t2 t3 [2, 3, 1] t21 t2
[1, 2] t1 t2 [1, 3, 2] t1 t

2
2 [3, 1, 2] t21 t2

[2, 1] t21 [2, 1, 3] t21 t3 [3, 2, 1] t31

[1, 2, 3, 4] t1 t2 t3 t4 [2, 3, 1, 4] t21 t2 t4 [3, 4, 1, 2] t21 t
2
2

[1, 2, 4, 3] t1 t2 t
2
3 [2, 3, 4, 1] t21 t2 t3 [3, 4, 2, 1] t31 t2

[1, 3, 2, 4] t1 t
2
2 t4 [2, 4, 1, 3] t21 t2 t3 [4, 1, 2, 3] t21 t2 t3

[1, 3, 4, 2] t1 t
2
2 t3 [2, 4, 3, 1] t21 t

2
2 [4, 1, 3, 2] t21 t

2
2

[1, 4, 2, 3] t1 t
2
2 t3 [3, 1, 2, 4] t21 t2 t4 [4, 2, 1, 3] t31 t3

[1, 4, 3, 2] t1 t
3
2 [3, 1, 4, 2] t21 t2 t3 [4, 2, 3, 1] t31 t2

[2, 1, 3, 4] t21 t3 t4 [3, 2, 1, 4] t31 t4 [4, 3, 1, 2] t31 t2
[2, 1, 4, 3] t21 t

2
3 [3, 2, 4, 1] t31 t3 [4, 3, 2, 1] t41

7.7 The σ-functions hus,kus.

Reverting to the simple cyclotomic polynomials of §5.12 , we set :

hus∗x(σ) := husx(σ)
∏

1≤k≤r

(1− xk)
(1− x)

∀σ ∈ Sr

kus∗x(σ) := kusx(σ)
∏

1≤k≤r

(1− x)(1− xk (k−1))

(1− xk)
∀σ ∈ Sr
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σ hus∗x kus∗x

[1] 1 1

[1, 2] x x
[2, 1] 1 −1

[1, 2, 3] x3 x3 (x2 + 1)
[1, 3, 2] x2 −x4

[2, 1, 3] x2 −x4

[2, 3, 1] x −x
[3, 1, 2] x −x
[3, 2, 1] 1 x2 + 1

[1, 2, 3, 4] x6 x6 (x8 + 2x6 + x4 + 2x2 + 1)
[1, 2, 4, 3] x5 −x7 (x2 + 1) (x4 + 1)
[1, 3, 2, 4] x5 −x7 (x2 + 1) (x4 − x2 + 1)
[1, 3, 4, 2] x4 −x10

[1, 4, 2, 3] x4 −x10

[1, 4, 3, 2] x3 x9 (x2 + 1)
[2, 1, 3, 4] x5 −x7 (x2 + 1) (x4 + 1)
[2, 1, 4, 3] x4 x8 (x2 − x+ 1) (x2 + x+ 1)
[2, 3, 1, 4] x4 −x10

[2, 3, 4, 1] x3 −x3 (x2 + 1)
[2, 4, 1, 3] x3 0
[2, 4, 3, 1] x2 x4

[3, 1, 2, 4] x4 −x10

[3, 1, 4, 2] x3 0
[3, 2, 1, 4] x3 x9 (x2 + 1)
[3, 2, 4, 1] x2 x4

[3, 4, 1, 2] x2 −x2 (x2 − x+ 1) (x2 + x+ 1)
[3, 4, 2, 1] x x (x2 + 1) (x4 + 1)
[4, 1, 2, 3] x3 −x3 (x2 + 1)
[4, 1, 3, 2] x2 x4

[4, 2, 1, 3] x2 x4

[4, 2, 3, 1] x x (x2 + 1) (x4 − x2 + 1)
[4, 3, 1, 2] x x (x2 + 1) (x4 + 1)
[4, 3, 2, 1] 1 −(x8 + 2x6 + x4 + 2x2 + 1)
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7.8 The σ-functions hus,kus with a twist parameter.

We set :

hus∗x, t(σ) := DHr(x, t) husx, t(σ) ∀σ ∈ Sr
kus∗x, t(σ) := DKr(x, t) kusx, t(σ) ∀σ ∈ Sr

DHr(x, t) := DHr(x) DH∗r (x, t) =
∏

1≤k≤r

(1− xk)
(1− x)

∏
1≤k≤r

(t2 − xk+1)

DKr(x, t) := DKr(x) DK∗r (x, t) =
∏

2≤k≤r

(1− x)(1− xk(k−1))

(1− xk)
∏

1≤k≤r

(t2k − xk(k+1))

(t2 − xk+1)

σ hus∗x, t kus∗x, t

[1] −(x2 − t2) 1

[1, 2] (x4 − t2) (x2 − t2) (x4 − t2)
[2, 1] x (x2 − t2)2 −x (x2 − t2)

[1, 2, 3] −(x2 − t2) (x4 − t2) (x6 − t2) (x6 − t2)K123

[1, 3, 2] −x (x2 − t2) (x4 − t2)2 −x (x8 − t2) (x6 − t4)
[2, 1, 3] −x (x2 − t2)2 (x6 − t2) −x (x2 − t2) (x12 − t4)
[2, 3, 1] −x2 (x2 − t2)2 (x4 − t2) −x4 (x2 − t2) (x6 − t4)
[3, 1, 2] −x2 (x2 − t2)2 (x4 − t2) −x4 (x2 − t2) (x6 − t4)
[3, 2, 1] −x3 (x2 − t2)3 x3 (x2 + 1) (x2 − t2) (x6 − t4)

with K123 := x10 + x8 − x6 t2 + x4 t2 − x2 t4 − t4.

7.9 The σ-functions huk,hük.

We set :

huk∗x; a,b(σ) := DHKr(x; a, b) hukx, t(σ) ∀σ ∈ Sr
hük∗x; a,b(σ) := DHKr(x; a, b) hükx, t(σ) ∀σ ∈ Sr

DHKr(x; a, b) := DH∗r (x, a) DK∗r (x, b) =
∏

1≤k≤r

(a2 − xk+1)
(b2 k − xk(k+1))

(b2 − xk+1)
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σ huk∗x; a, b hük∗x; a b

[1] (a2−x2) (a2−x2)

[1, 2] (a2−x2)(a2 b2−x6) b2 x3 (a2−x2)(a2 b−2−1)
[2, 1] b2 x3 (a2−x2)(a2 b−2−1) (a2−x2)(a2 b2−x6)

[1, 2, 3] (a2−x2)(a2 b2−x6)(a2 b4−x12) b6 x11 (a2−x2)(a2 b−2−1)(a2 b−4−x−4)
[1, 3, 2] b4 x7 (a2−x2)(a2 b−2−1)(a2−x4) b2 x4 (a2−x2)2(a2 b2−x8)
[2, 1, 3] b2 x3 (a2−x2)(a2 b−2−1)(a2 b4−x12) b4 x8 (a2−x2)(a2 b2−x6)(a2 b−4−x−4)
[2, 3, 1] b4 x8 (a2−x2)2(a2 b−2−1) b2 x3 (a2−x2)(a2−x4)(a2 b2−x8)
[3, 1, 2] b2 x4 (a2−x2)(a2 b−2−1)(a2 b4−x10) b4 x7 (a2−x2)(a2 b2−x8)(a2 b−4−x−4)
[3, 2, 1] b6 x11 (a2−x2)(a2 b−2−1)(a2 b−4−x−4) (a2−x2)(a2 b2−x8)(a2 b4−x10)

7.10 The σ-functions ke and hes,kes.

We set :

kes∗(σ) := δr kes(σ) but ke∗(σ) := δr−1 ke(σ) ∀σ ∈ Sr

with δr :=
(2 r)!

r! r!
δ∗r

and δ∗1 = δ∗2 = δ∗3 = 1, δ∗4 = 32, δ∗5 = 25.3, δ∗6 = 26.32.52.41

σ ke∗ σ ke∗ σ ke∗

[1] 1 [1, 2, 3] 2 [2, 3, 1] −1
[1, 2] 1 [1, 3, 2] −1 [3, 1, 2] −1
[2, 1] −1 [2, 1, 3] −1 [3, 2, 1] 2

[1, 2, 3, 4] 5 [2, 3, 1, 4] −1 [3, 4, 1, 2] −1
[1, 2, 4, 3] −2 [2, 3, 4, 1] −2 [3, 4, 2, 1] 2
[1, 3, 2, 4] −2 [2, 4, 1, 3] 0 [4, 1, 2, 3] −2
[1, 3, 4, 2] −1 [2, 4, 3, 1] 1 [4, 1, 3, 2] 1
[1, 4, 2, 3] −1 [3, 1, 2, 4] −1 [4, 2, 1, 3] 1
[1, 4, 3, 2] 2 [3, 1, 4, 2] 0 [4, 2, 3, 1] 2
[2, 1, 3, 4] −2 [3, 2, 1, 4] 2 [4, 3, 1, 2] 2
[2, 1, 4, 3] 1 [3, 2, 4, 1] 1 [4, 3, 2, 1] −5
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σ hes kes∗ σ hes kes∗ σ hes kes∗

[1] 1 1 [1, 2, 3] 4 2 [2, 3, 1] 2 −1
[1, 2] 2 1 [1, 3, 2] 2 −1 [3, 1, 2] −6 −1
[2, 1] −2 −1 [2, 1, 3] −6 −1 [3, 2, 1] 4 2

[1, 2, 3, 4] 24 126 [2, 3, 1, 4] 22 −19 [3, 4, 1, 2] 21 −9
[1, 2, 4, 3] 23 −44 [2, 3, 4, 1] 21 −19 [3, 4, 2, 1] 0 16
[1, 3, 2, 4] 23 −44 [2, 4, 1, 3] 21 1 [4, 1, 2, 3] 21 −19
[1, 3, 4, 2] 22 −19 [2, 4, 3, 1] 0 11 [4, 1, 3, 2] 0 11
[1, 4, 2, 3] 22 −19 [3, 1, 2, 4] 22 −19 [4, 2, 1, 3] 0 11
[1, 4, 3, 2] 0 36 [3, 1, 4, 2] 21 1 [4, 2, 3, 1] 0 16
[2, 1, 3, 4] 23 −44 [3, 2, 1, 4] 0 36 [4, 3, 1, 2] 0 16
[2, 1, 4, 3] 22 16 [3, 2, 4, 1] 0 11 [4, 3, 2, 1] 0 −44
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σ hes kes∗ σ hes kes∗ σ hes kes∗

[1, 2, 3, 4, 5] 25 4032 [2, 4, 5, 1, 3] 21 23 [4, 2, 3, 1, 5] 0 344
[1, 2, 3, 5, 4] 24 −1284 [2, 4, 5, 3, 1] 0 157 [4, 2, 3, 5, 1] 0 143
[1, 2, 4, 3, 5] 24 −1284 [2, 5, 1, 3, 4] 21 32 [4, 2, 5, 1, 3] 0 −53
[1, 2, 4, 5, 3] 23 −513 [2, 5, 1, 4, 3] 0 −6 [4, 2, 5, 3, 1] 0 11
[1, 2, 5, 3, 4] 23 −513 [2, 5, 3, 1, 4] 0 −51 [4, 3, 1, 2, 5] 0 337
[1, 2, 5, 4, 3] 0 940 [2, 5, 3, 4, 1] 0 143 [4, 3, 1, 5, 2] 0 6
[1, 3, 2, 4, 5] 24 −1284 [2, 5, 4, 1, 3] 0 6 [4, 3, 2, 1, 5] 0 −940
[1, 3, 2, 5, 4] 23 393 [2, 5, 4, 3, 1] 0 −259 [4, 3, 2, 5, 1] 0 −259
[1, 3, 4, 2, 5] 23 −513 [3, 1, 2, 4, 5] 23 −513 [4, 3, 5, 1, 2] 0 148
[1, 3, 4, 5, 2] 22 −438 [3, 1, 2, 5, 4] 22 205 [4, 3, 5, 2, 1] 0 −205
[1, 3, 5, 2, 4] 22 27 [3, 1, 4, 2, 5] 22 27 [4, 5, 1, 2, 3] 21 −213
[1, 3, 5, 4, 2] 0 259 [3, 1, 4, 5, 2] 21 32 [4, 5, 1, 3, 2] 0 148
[1, 4, 2, 3, 5] 23 −513 [3, 1, 5, 2, 4] 21 −56 [4, 5, 2, 1, 3] 0 148
[1, 4, 2, 5, 3] 22 27 [3, 1, 5, 4, 2] 0 −6 [4, 5, 2, 3, 1] 0 107
[1, 4, 3, 2, 5] 0 940 [3, 2, 1, 4, 5] 0 940 [4, 5, 3, 1, 2] 0 107
[1, 4, 3, 5, 2] 0 259 [3, 2, 1, 5, 4] 0 −337 [4, 5, 3, 2, 1] 0 −393
[1, 4, 5, 2, 3] 22 −213 [3, 2, 4, 1, 5] 0 259 [5, 1, 2, 3, 4] 21 −513
[1, 4, 5, 3, 2] 0 337 [3, 2, 4, 5, 1] 0 205 [5, 1, 2, 4, 3] 0 205
[1, 5, 2, 3, 4] 22 −438 [3, 2, 5, 1, 4] 0 −6 [5, 1, 3, 2, 4] 0 184
[1, 5, 2, 4, 3] 0 259 [3, 2, 5, 4, 1] 0 −148 [5, 1, 3, 4, 2] 0 143
[1, 5, 3, 2, 4] 0 259 [3, 4, 1, 2, 5] 22 −213 [5, 1, 4, 2, 3] 0 157
[1, 5, 3, 4, 2] 0 344 [3, 4, 1, 5, 2] 21 23 [5, 1, 4, 3, 2] 0 −259
[1, 5, 4, 2, 3] 0 337 [3, 4, 2, 1, 5] 0 337 [5, 2, 1, 3, 4] 0 205
[1, 5, 4, 3, 2] 0 −940 [3, 4, 2, 5, 1] 0 157 [5, 2, 1, 4, 3] 0 −148
[2, 1, 3, 4, 5] 24 −1284 [3, 4, 5, 1, 2] 21 −213 [5, 2, 3, 1, 4] 0 143
[2, 1, 3, 5, 4] 23 421 [3, 4, 5, 2, 1] 0 337 [5, 2, 3, 4, 1] 0 344
[2, 1, 4, 3, 5] 23 393 [3, 5, 1, 2, 4] 21 23 [5, 2, 4, 1, 3] 0 11
[2, 1, 4, 5, 3] 22 205 [3, 5, 1, 4, 2] 0 −53 [5, 2, 4, 3, 1] 0 −184
[2, 1, 5, 3, 4] 22 205 [3, 5, 2, 1, 4] 0 6 [5, 3, 1, 2, 4] 0 157
[2, 1, 5, 4, 3] 0 −337 [3, 5, 2, 4, 1] 0 11 [5, 3, 1, 4, 2] 0 11
[2, 3, 1, 4, 5] 23 −513 [3, 5, 4, 1, 2] 0 148 [5, 3, 2, 1, 4] 0 −259
[2, 3, 1, 5, 4] 22 205 [3, 5, 4, 2, 1] 0 −205 [5, 3, 2, 4, 1] 0 −184
[2, 3, 4, 1, 5] 22 −438 [4, 1, 2, 3, 5] 22 −438 [5, 3, 4, 1, 2] 0 107
[2, 3, 4, 5, 1] 21 −513 [4, 1, 2, 5, 3] 21 32 [5, 3, 4, 2, 1] 0 −421
[2, 3, 5, 1, 4] 21 32 [4, 1, 3, 2, 5] 0 259 [5, 4, 1, 2, 3] 0 337
[2, 3, 5, 4, 1] 0 205 [4, 1, 3, 5, 2] 0 −51 [5, 4, 1, 3, 2] 0 −205
[2, 4, 1, 3, 5] 22 27 [4, 1, 5, 2, 3] 21 23 [5, 4, 2, 1, 3] 0 −205
[2, 4, 1, 5, 3] 21 −56 [4, 1, 5, 3, 2] 0 6 [5, 4, 2, 3, 1] 0 −421
[2, 4, 3, 1, 5] 0 259 [4, 2, 1, 3, 5] 0 259 [5, 4, 3, 1, 2] 0 −393
[2, 4, 3, 5, 1] 0 184 [4, 2, 1, 5, 3] 0 −6 [5, 4, 3, 2, 1] 0 1284
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Publ. Math. Orsay (1981).
[E2] J. Ecalle, Les fonctions résurgentes, Vol.2, Les fonctions résurgentes
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