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Abstract : This monograph is almost entirely devoted to the flexion structure
generated by a flexion unit E or the conjugate unit O, with special emphasis
on the polar specialisation of the units (“eupolar structure”).
(i) We first state and prove the main facts (some of them new) about the
central pairs of bisymmetrals pal•/pil• and par•/pir• and their even/odd fac-
tors, by relating these to four remarkable series of alternals {re•r}, {le•r},
{he•r}, {ke•2r}, and that too in a way that treats the swappees pal• and pil•

(resp. par• and pir•) as they should be treated, i.e. on a strictly equal footing.
(ii) Next, we derive from the central bisymmetrals two series of bialternals,
distinct yet partially (and rather mysteriously) related.
(iii) Then, as a first step towards a complete description of the eupolar struc-
ture, we introduce the notion of bialternality grid and present some facts and
conjectures suggested by our (still ongoing) computations.
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1 Prefatory remarks. Dilators and their uses.

§1-1. Preamble.

We assume some familiarity with [E1] or [E3], though the main definitions
have been recalled towards the end, in the appendix §17. In the main, the
present paper concerns itself with the simplest, most basic flexion structure,
namely the multialgebra-cum-multigroup Flex (E) generated by a single flex-
ion unit E, and the companion structure Flex (O) generated by the conjugate
unit O. Under the polar specialisation (E,O) 7→ (Pi ,Pa), this becomes the
eupolar structure, seemingly much simpler than the general eumonogenous
structure1 but in fact isomorphic to it. Eupolars can therefore serve as a
prop for the intuition as well as a vehicle for simple proofs.

Within its self-assigned limits (eupolars and monogenous flexion struc-
tures) our paper deals with two sorts of questions – some clearly and provenly
essential, others at first sight gratuitous but, we suspect, potentially of equal
relevance. Let us explain.

The essential part revolves around the eupolar bisymmetral pair pal•/pil•

and its mirror image, the somewhat less important bisymmetrals par •/pir •.
The first pair is doubly relevant to multizeta theory: firstly, because, together
with its trigonometric counterpart tal•/til•, it goes into the making of the first

1meaning the structure generated under all flexion operations by a given flexion unit.
Monogenous structures generated by an arbitrary element of BIMU 1 are of course more
complex. For two equivalent characterisations of flexion units, in particular Pa and Pi ,
see §17.12 below. As for the (unary or binary) flexion operations allowed in the generative
process, they can all be constructed from the four elementary flexions d, c, b, e in proper
association. They include all operations listed in §17.2-§17.5 with the sole exceptions of
swap and pus (push is allowed).
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factor Zag•I /Zig•I in the classical trifactorisation of the fundamental bimould
Zag•/Zig• that “carries all multizetas”; and secondly because it enters into
the construction of the so-called singulators, themselves key to the study of
the canonical multizeta irreducibles.

The pair pal•/pil•, as also par •/pir •, had already been dealt with in
our previous papers, but somewhat desultorily, on a piecemeal basis. So a
unified treatment, complete with motivations, definitions, characterisations
and proofs, was long overdue. The sections §2-§8 offer just such a treatment
and, as is so often the case, systematisation brings its own rewards. Thus we
exhibit two series, unsurpassed for simplicity, of alternals {le•r} and {re•r}, and
show that they are connected respectively to pal• and pil•, as the ingredients
of the mu-dilator dupal• of pal• and the gari-dilator dipil• of pil•. This is a
deeply satisfying state of affairs: it not only restores the symmetry (somewhat
impaired in the previous approaches) between the co-equal swappees pal• and
pil• but also leads to a simple proof of their bisymmetrality – of all extant
proofs, the shortest. Nor do the pleasant surprises stop there. We introduce
two additional series of alternals {he•r} and {ke•2r}, less elementary than the
first pair but still capable of a simple, transparent description, and show
that these, too, are closely related to ripal• (the gari-inverse of pal•) and its
even factor ripal•ev. It is truly gratifying to see that our four elementary or
semi-elementary series of alternals (so far the only of their kind, i.e. the only
ones known to admit a simple description) turn out to be, each in its own
way, intimately interwoven with the central bisymmetrals.

The paper’s second part, from section §9 onwards, deals with the eupolar
structure per se, without immediate applications in mind. The main chal-
lenge here is to generate, describe, and classify all regular, i.e. neg-invariant
bisymmetrals and bialternals. Now, unlike the central bisymmetrals pal•/pil•

and par •/pir •, which are irregular (in the sense of being invariant under nei-
ther neg nor pari but only under the product pari ◦ neg), the regular bisym-
metrals Sa•/Si• (as elements of GARI) correspond one-to-one to the regular
bialternals (as elements of ARI) via the exponentiation expari from ARI to
GARI 2. So the attention now shifts to the bialternals which, living as they
do in an algebra, are much easier to handle than the bisymmetrals. Starting
from the two central-irregular pairs pal•/pil• and par •/pir •, we describe two
distinct procedures for producing two infinite series of bialternals, which in
turn generate two distinct bialternal subalgebras of ARI. These two subalge-
bras do not coincide but partly overlap – though how far is yet unclear. Nor

2The much simpler correspondance between GARI-elements and their various dilators,
though extremely useful, does not respect double symmetries, but merely turns symme-
trality into alternality.
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do we know whether, between themselves, they generate all bialternals.
This ignorance is galling. It is true that at the moment the polar bialter-

nals, unlike the central bisymmetrals,3 have no known applications to multi-
zeta algebra. But this may change. It would indeed be strange if the eupolar
structure, even in its most recondite aspects, did not have some bearing on
the study on multizetas. On the contrary, there is every reason to believe,
and past experience strongly suggests, that most difficulties, irregularities or
anomalies besetting multizeta theory4 originate in the eupolar domain which,
being itself purely singular, holds the key to all the ‘singularity’ scattered over
the wider flexion field. Be that as it may, and all applications aside, the eu-
polar structure is a fascinating subject in its own right and deserves to be
studied for its own sake.

So how are we to advance our knowledge of polar bialternals? Paradoxi-
cally, by widening the search: instead of obsessing about the sole bialternals
and the spaces ARI al/al

r = ARI (1,1)
r spanned by them, we may relax the notion

and consider the larger spaces ARI (d1,d2)
r spanned by all eupolars of a (suit-

ably defined) bialternality codegree (d1, d2). The new approach embraces all
eupolars, since for (d1, d2) large enough5 ARI (d1,d2)

r coincides with the whole
of ARI . Moreover, the dimensions

Bial d1,d2r := dim(ARI (d1,d2)
r )

or rather the differences

biald1,d2r := Bial d1,d2r − Bial d1−1,d2
r − Bial d1,d2−1

r + Bial d1−1,d2−1
r

which constitute the entries of the so-called bialternality grid, seem to follow
a remarkable pattern. In particular, when we add the quite natural require-
ment of push-invariance, every second grid entry vanishes, leading to the
so-called bialternality chessboard.

The corresponding computations, however, are extremely complex and
progress only haltingly. At the moment we are stuck at length r = 8: enough
to discern the outlines of a tantalising pattern; not enough to see the full pic-
ture emerge. The investigation goes on but it may be quite some time before
the next batch of data arrives.6 So, rather than delay indefinitely the pa-
per’s publication, we have chosen to post this first, incomplete and somewhat

3and, of course, unlike the polynomial bialternals!
4like, for example, the existence of the exceptional, polynomial-valued bialternals

carma•/carmi•. See E1 and E2.
5d1 + d2 > r suffices.
6With many flexion operations, especially when working in algebras, it does not take

much computational power to reach even length r = 20. With others, such as inflected
group inversion, inflected exponentiation or, like in the present instance, when it comes to
expressing that a bimould has a given bialternality codegree, difficulties arise much earlier.
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sketchy draft. We mean to update it regularly as the computations progress.

§1-2. Conceptual vs mechanical proofs. The priorities of explo-
ration.

The sheer profusion of formulae in flexion theory makes it strictly impos-
sible to write down regular proofs for each one of them. Clearly, identities
involving such key bimoulds as pal•/pil• deserve to be established with care,
to do justice to the centrality and flagship quality of these objects. But
what about the common run of flexion formulae? For them, it would be nice
(time-saving and reassuring) to be able to fall back on a

Mechanical truth criterion (conjectural):
Any bimould-valued flexion identity of the form

R•(F1, ..., Fp;A
•
1, ..., A

•
q) ≡ 0 with Fi ∈ FLEXIONS , A•j ∈ BIMU (1)

of total depth d

d = depth(R•) :=
∑
i

depth(Fi) +
∑
j

depth(A•j) (2)

is automatically true for all lengths r as soon as it holds identically for all
arguments A•j and all lengths r ≤ d+ 1.

This of course would require that we properly define the partial depths
in formula (2).

The depth of ‘products’ Fi (associative or pre-Lie) would be 1; that of
‘alternate’ operations (commutators, Lie brackets etc) would be 2; and that
of complex operations like the singulators would probably have to be 3 or 4.

The depth of the arguments A•j would be 1 when A•j is allowed to range
unrestrained over BIMU ; or 2 if when A•j ranges over the set of all bimoulds
with a simple symmetry; or again 3 or 4 if when it ranges over all bimoulds
with a regular double symmetry.

Though the existence of some such truth criterion would seem almost
certain, none has been established as yet. On the other hand, in the iden-
tities commonly encountered in flexion theory the total depth d, summarily
assessed along the above lines, rarely exceeds 6 or 7. So we may make safety
doubly or trebly safe by verifying our identities up to the length 2d or 3d
instead of d+ 1, which remains well within the range of the computationally
feasible, and if the identities pass the test, confidently assume their validity.
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But there is a catch here: in many important instances the arguments A•j
do not range over a vast enough domain of BIMU. For instance, the irregular
(though central!) bisymmetrals pal•/pil• are fairly ‘isolated’ creatures, un-
like the regular7 (though less central!) bisymmetrals Sa•/Si•. For the likes
pal•/pil• or par •/pir •, therefore, no ‘mechanical truth criterion’ would work,
and there is no way we can dispense with regular proofs here.

That said, careful consolidation, essential in the central, vital parts of an
evolving theory, is one thing, and unfettered exploration, normal and legiti-
mate at the fringes of the theory, is another. Each has its own logic, norms,
and imperatives, and it would be foolish to mix up the two.

§1-3. Lie or pre-Lie brackets and group laws. Anti-actions.

This first paragraph is there simply to dispel possible misconceptions
about the flexion laws, the corresponding anti-actions, and the impact on
these of the basic involution swap, which is the very glue of dimorphy.

First, we have the overarching structure AXI/GAXI, whose elements are
bimould pairs A• = (A•L,A•R). Then we have the unary structures (seven
in number, up to isomorphism) consisting of simple bimoulds A• and cor-
responding to as many substructures of AXI/GAXI, each one of which is
defined by an involutive linkage A•R ≡ h.A•L between left and right compo-
nents (the number of suitable involutions h is of course very limited).

Let A
∫
I/GA

∫
I be such a unary structure8; let I

∫
A/GI

∫
A be the mirror

structure under swap; and let h1, h2, h3, h4 be the four corresponding involu-
tions:

a
∫
i −→ h1 ; i

∫
a −→ h2

ga
∫
i −→ h3 ; gi

∫
a −→ h4

The laws are simply derived from the overstructure AXI/GAXI:

prea
∫
i(A•, B•) = preaxi(A•1,B•1) ; prei

∫
a(A•, B•) = preaxi(A•2,B•2)

a
∫
i(A•, B•) = axi(A1,B1) ; i

∫
a(A•, B•) = axi(A2,B2)

ga
∫
i(A•, B•) = gaxi(A•3,B•3) ; gi

∫
a(A•, B•) = gaxi(A•4,B•4)

with
A•i,L := A• ; A•i,R := hi.A

• (∀i ∈ {1, 2, 3, 4})
B•i,L := B• ; B•i,R := hi.A

• (∀i ∈ {1, 2, 3, 4})
The anti-actions also are similarly defined:

a
∫
it(A•) = axit(A•1) ; i

∫
at(A•) = axit(A•2)

ga
∫
it(A•) = gaxit(A•3) ; gi

∫
at(A•) = gaxit(A•4)

7i.e. neg-invariant
8with the unusual mid-letter

∫
(pronounced sh ) suggesting generality.
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but whereas under the vowel swap a ↔ i the three types of laws (pre-Lie,
Lie, or associative) transmute into one another:

prei
∫
a(A•, B•) = swap.prea

∫
i(swap.A•, swap.B•)

i
∫
a(A•, B•) = swap.a

∫
i(swap.A•, swap.B•)

gi
∫
a(A•, B•) = swap.ga

∫
i(swap.A•, swap.B•)

the corresponding anti-actions do not relate in this way

i
∫
at(A•) 6= swap.a

∫
it(swap.A•).swap

gi
∫
at(A•) 6= swap.ga

∫
it(swap.A•).swap

and clearly cannot, since the right-hand sides (above) fail to define a mu-
derivation resp. a mu-isomorphism.

Nonetheless, the laws may be expressed in terms of the anti-actions. Thus
for the first law we have:

prea
∫
i(A•, B•) = a

∫
it(B•).A• + mu(A•, B•)

a
∫
i(A•, B•) = prea

∫
i(A•, B•)− prea

∫
i(B•, A•)

= a
∫
it(B•).A• − a

∫
it(A•).B• + lu(A•, B•)

ga
∫
i(A•, B•) = mu(ga

∫
it(B•).A•, B•)

Of course, the same identities hold with “a
∫
i” changed everywhere to “i

∫
a”.

§1-4. Left-right separation.

The phenomenon is summed up by the following identities, which speak
for themselves:

axit(A•) = amit(A•L) + anit(A•R) (3)

gaxit(A•) = gamit(A•L) . ganit
(
(gamit(A•L))−1A•R

)
(4)

= ganit(A•R) . gamit
(
(ganit(A•R))−1A•L

)
(5)

The last two identities are easier to check in the following, equivalent form:

gamit(A•).ganit(B•) = gaxit(C•) with C•L := A• , C•R := gamit(A•).B• (6)

ganit(A•).gamit(B•) = gaxit(D•) with D•L := ganit(A•).B• , D•R := A• (7)

§1-5. Closure under the basic involution swap .
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There exist many “closure identities”, which essentially reduce i
∫
a / gi

∫
a

to a
∫

i / ga
∫
i . We mention the only one that we shall really require:

gira(A•, B•) ≡ ganit(rash.B•).gari(A•, ras.B•) (8)

with

rash.B• := mu(push.swap.invmu.swap.B•, B•) (9)

ras.B• := invgari.swap.invgari.swap.B• (10)

§1-6. The monogenous algebra Flex (E). Basis and projectors.

The monogenous algebra Flex (E) = ⊕Flex r(E) was constructed in [E3]
§3-§4, along with the standard basis {e•t} ∼ {e•t} of Flex r(E). That standard
basis has cardinality (2r)!/(r! (r+1)!) and admits a natural indexation either
by r-node binary trees t or by some special r-term sequences t that stand in
one-to-one correspondance with these trees. The basis elements are defined
inductively:

e•t := amnit(e•t1 , e
•
t2).E• ⇐⇒ (11)

ewt := e
w1c
t1 E dwie e

bw2

t2 with w = w1.wi.w
2 and r1+r2 = r−1

and the corresponding inductions for trees and sequences go like this:

(t1, t2) 7→ t := {t1 ← • → t2} (12)

(t1, t2) 7→ t := [ t1, r1+1, t2
(r1+1) ] (13)

Here, {t1 ← • → t2} denotes of course the binary tree we get by glueing t1
(resp. t2) to the root-node • as its left (resp. right) branch. On the sequence
side, r1 denotes the length of t1 and t2

(r1+1) results from t2 by adding r1+1
to its every element, after which we concatenate everything, thus producing
a sequence t that is some well-defined permutation of [1, 2, . . . , r].

What we now need is an algorithm for projecting the general element X•

of Flex r(E) onto the standard basis. The following formula does just that:

X• ≡
∑
t

e•t RestX•
i.e.
=
∑

e•[i1,...,ir] Resi1,...,irX• (14)

with projectors Res i1,...,ir capable of two interpretations:

(i) Resi1,...,ir := Resuir . . .Resui2Resui1 (15)

(ii) Resi1,...,ir := Resvi1 .Resvi2 . . .Resvir (16)
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Mark the order inversion from (i) to (ii). To calculate, ResuiX
•, we set all

variables vi equal to 0; then take the coefficient of E(ui
0

) minus9 the coefficient
of E(−ui

0
); then set ui = 0. Performing the operation r times, successively

with Resui1 , Resui2 etc, we end up with a scalar that does not depend on the
particular expression chosen for X• (elements of Flexr(E), we recall, admit
many different expressions).

To calculate ResviX
•, we go through exactly the same motions, but with

the roles of the ui’s and vi’s exchanged and the order of the operations re-
versed. Once again, the final result does not depend on the expression10 of
X•, and coincides with the result of the first procedure.

Clearly, in the polar specialisation E = Pa (resp. Pi), the operator Resui
(resp. Resvi) corresponds to the taking of the residue at ui = 0 (resp. vi = 0).

§1-7. Dilators: what are they, and what are they good for?

Infinitesimal generators and dilators have this in common that they often
permit to rephrase problems about groups as more tractable problems about
algebras. But of the two, the dilators are the more useful by far, mainly
because they are so much closer, conceptually and computationally, to the
group elements from which they derive.

Here is how the inflected dilators diS • and daS • and the uninflected dila-
tor duS • relate to the corresponding group element S• (henceforth referred
to as the dilatee):

der.S• = preari(S•, diS •) (diS• = gari-dilator) (17)

der.S• = preira(S•, daS •) (daS• = gira-dilator) (18)

dur.S• = mu(S•, duS •) (duS• = mu-dilator) (19)

The three relations are entirely parallel: indeed, the Lie bracket correspond-
ing to mu is lu and mu may (trivially) be regarded as a pre-Lie bracket prelu
for lu. As for the operators der and dur, they are mu-derivations each:

der.Sw1,...,wr := r Sw1,...,wr (20)

dur.Sw1,...,wr := (u1+. . . ur)S
w1,...,wr (21)

9Of course, flexion units being odd functions of their variable wi = (ui

vi
), we have

E
(ui
vi

) ≡ −E
(−ui
−vi

)
, but since complex superpositions of flexion operations are liable to

yield either form, both possibilities must be taken into account.
10Elements of Flex (E) can be expressed/expanded in numerous, outwardly distinct ways

and, when resulting from a sequence of flexion operations, they usually appear, prior to
simplification, in an absurdly complicated shape.
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In the context of the monogenous structures Flex r(E) the latter derivation
dur is particularly relevant when E = Pa but even then it has the slight
drawback of taking us out of Flex r(E) into something which, with due quo-
tation marks, might be called “Flex r(E)⊗{I•}”, with an elementary I• that
is 1 or 0 according as the length r(•) is 1 or not.11

To remedy the non-internal character of dur, we must sometimes replace
it by duur, which is a bona fide internal mu-derivation of Flex (E) into itself.
Since all elements of Flex r(E) may be expressed12 as a superposition of terms
M•

r of the form

M•
r := amnit(M•

r1
,M•

r2
).E• with r1+r2 = r−1 and M•

ri
∈ Flex ri(E)

it is enough to say how duur acts on these M•
r , and here is how it acts:

duur.M•
r := mu(M•r1 , I

•,M•r2) (22)

The corresponding dilator relation then assumes the form

duur.S• = mu(S•, duur.duuS •) (23)

or the equivalent form

S• = muu(S•, duuS •) (24)

with muu denoting a sort of integration-by-part operator but with the twist
that the underlying product mu is non-commutative:

muu(A•, B•)
essentially

:= duur−1.mu(A•, duur.B•) (25)

or more rigorously:

muu(A•, B•) := amnit(mu(A•, B•1), B•2).E• if B• = amnit(B•1 , B
•
2).E•

§1-8. Relations between inflected and non-inflected dilators.

For any S• such that S ∅ = 1, the inflected dilators diS •, daS • and the
non-inflected dilator duS • relate according to:

der.duS• − dur.diS• + lu(diS•, duS•) − arit(diS•).duS• = 0 (26)

der.duS• − dur.daS• + lu(daS•, duS•)− irat(daS•).duS• = 0 (27)

11I • is the unit for mould composition ◦ and should be carefully distinguished from the
multiplication unit 1• which is 1 or 0 according as the length r(•) is 0 or > 0.

12See [E3], (3.35).
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The shortest way to prove (26), (27) is to rewrite the dilator identities (17),
(18), (19) as follows

D1.S
• = mu(S•, diS•) with D1 := der− arit(diS•) (28)

D2.S
• = mu(S•, daS•) with D2 := der− irat(daS•) (29)

D3.S
• = mu(S•, duS•) with D3 := dur (30)

and to observe that since the derivation dur commutes with all three deriva-
tions der , arit(diS•), irat(daS•), we have:

[D1,D3] = [D2,D3] = 0 ( but [D1,D2] 6= 0 ) (31)

To establish (27), which we shall require in the sequel, we apply the commu-
tator [D2 ,D3 ] to S •. We get successively:

0 = D2.D3.S
• −D3.D2.S

•

0 = D2.mu(S•, duS•)−D3.mu(S•, daS•)

0 = mu(D2.S
•, duS•) + mu(S•,D2.duS•)−mu(D3.S

•, daS•)−mu(S•,D3.daS•)

0 = mu(S•, daS•, duS•)+mu(S•,D2.duS•)−mu(S•, duS•, daS•)−mu(S•,D3.daS•)

Since we assumed S ∅ = 1, our S• is mu-invertible. So we may mu-divide
the last identity by S• on the left, and what we are left with is exactly the
sought-after identity (27). The proof of (26) is entirely analogous.

We may note that since the relations (26) and (27) are of the form

r(w).duSw = ‖u‖.diSw + earlier terms (32)

r(w).duSw = ‖u‖.daSw + earlier terms (33)

they clearly determine diS • and daS • in terms of duS • and vice versa.
We may also observe that since prelu := mu is, trivially, a pre-Lie law

for the Lie law lu, the relation (26), (27) can be rewritten in the following,
particularly harmonious form:

dur.diS• + prelu(duS•, diS•) = der.duS• + preari(diS•, duS•) (34)

dur.daS• + prelu(duS•, daS•) = der.duS• + preira(daS•, duS•) (35)

Furthermore, although there exists no simple direct relation between the
inflected dilators diS • and daS •, there exists, interestingly, an indirect one,
via the non-inflected duS •.

§1-9. Dilatees in terms of the dilators.
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One goes from a mu-dilator duS • or duuS • to the source element S• (the
“dilatee”) via the identities:

Sw = 1w +
∑

w1...ws=w

Paj|u
1|,...,|us| duSw

1

. . . duSw
s

(36)

S• = 1• +
∑

r1+...rs=r(•)

−→
muu (duuS•r1 , . . . , duuS•rs) (37)

with a symmetral mould Paj • defined by:

Pajx1,...,xr :=
∏

1≤i≤r

1

x1 + · · ·+ xi
(38)

Similarly, one goes from a gari-dilator diS • to the source S• via the identity:

S• =
∑

r1+...rs=r(•)

Paj r1,...,rs
−→

preari (diS •r1 , . . . , diS •rs) (39)

with the same auxiliary mould Paj • but differently indexed.
An analogous formula expresses the product T • = gari(R•, S•) in terms

of the dilators:13

T • = R•+S• +
∑

r0+...rs=r(•)

Paj r1,...,rs
−→

preari (R•r0 , diS •r1 , . . . , diS •rs) (40)

Mark the absence of r0 in Paj r1,...,rs .
We may also, and often must, express the operators garit(S•) and adari(S•)

in terms of diS •:

garit(S•) = id +
∑

r1+...rs = r(•)

Paj r1,...,rsarit(diS •rs), . . . arit(diS •r1) (41)

adari(S•) = id +
∑

r1+...rs = r(•)

Paj r1,...,rsari(diS •r1), . . . ari(diS •rs) (42)

where ari denote the adjoint action of ARI on itself.14 The indexation of
the operators ari(diS •ri ) and arit(diS •ri ) goes in opposite directions, but this
should not come as a surprise, since adari defines an action (of GARI on
ARI) and garit an anti-action (of GARI on BIMU).

13Of course, on the right-hand side of (40), we must substitute for S• the expansion
(39) and do likewise with T •.

14 i.e. ari(A•).B• ≡ ari(A•, B•).
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§1-10. Some other dilator identities.

How does the gari-product affect dilators? Like this:

T • = gari(R•, S•) =⇒ (43)

diT • = diS • + adari(S•)−1.diR• (44)

Since according to (42) adari(S•)±1 can also be expressed in terms of diS •,
the above identity amounts to a sort of Campbell-Hausdorff formula for the
composition of gari-dilators. In the same vein, we must mention the conver-
sion formulae between
(i) the dilator diS • of S•.
(ii) the dilator diriS • of riS • := invgari(S•)
(iii) the infinitesimal generator liS • := logari(S•).

The conversion diS • ↔ diriS • is via the involutive formula:

diriS • =
∑
1≤s

∑
w1...ws = w

Japaj r(w
1),...,r(ws)

−→
preari (diSw

1

, . . . , diSw
s

)

=
∑
1≤s

1

s

∑
w1...ws = w

Japaj r(w
1),...,r(ws)

−→
ari (diSw

1

, . . . , diSw
s

) (45)

with an alternal mould Japaj • := Compo(Ja•,Paj •) defined as Paj • pre-
composed by the elementary mould Jax1,...,xr := (−1)r x1. Thus we get:

Japajx1 = 1 ; Japajx1,x2 =
x1−x2

x1 x2

; Japajx1,x2,x3 =
x1x3−x2

1+x2
2−x2

3

x1x3(x1+x2)(x2+x3)
etc

The conversion liS • → diS • is via an even simpler formula:

diS • =
∑
1≤s

∑
w1...ws = w

Bin r(w1),...,r(ws)
−→

preari (liSw
1

, . . . , liSw
s

)

=
∑
1≤s

1

s

∑
w1...ws = w

Bin r(w1),...,r(ws)
−→
ari (liSw

1

, . . . , liSw
s

) (46)

with an elementary alternal mould Bin• defined by:

Binx1,...,xr :=
1

r

∑
1≤j≤r

xj
(j − 1)!(r − j)!

(47)

§1-11. Internals and externals.
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A bimould A• is said to be internal if, for all r, it verifies two dual
properties, which in short notation read:

{u1 + . . . ur 6= 0} =⇒ {A
(
u1
v1

,...,
,...,

ur
vr

)
≡ 0} (48)

{vi − v′i = const ; ∀i} =⇒ {A
(
u1
v1

,...,
,...,

ur
vr

)
≡ A

(
u1
v′1

,...,
,...,

ur
v′r

)
} (49)

and in long notation assume the more natural form:

{u0 6= 0} =⇒ {A
([

u0
v0

]
,
,
u1
v1

,...,
,...,

ur
vr

)
≡ 0} (50)

{∀ v0 , ∀ v′0} =⇒ {A
(([

u0
v0

]
,
,
u1
v1

,...,
,...,

ur
vr

)
≡ A

(([
u0
v′0

]
,
,
u1
v1

,...,
,...,

ur
vr

)
} (51)

Internals constitute an ideal ARIintern of ARI resp. a normal subgroup
GARIintern of GARI . The elements of the corresponding quotients are re-
ferred to as externals:

ARIextern := ARI/ARIintern (52)

GARIextern := GARI/GARIintern (53)

Moreover, when restricted to internals, the ari bracket reduces, up to order,
to the simpler lu bracket, and the gari product, again up to order, reduces
to the mu product:

ari(A•, B•) ≡ lu(B•, A•) , ∀A•, B• ∈ ARIintern (54)

gari(A•, B•) ≡ mu(B•, A•) , ∀A•, B• ∈ GARIintern (55)

Lastly, we have two useful identities governing the action of internal bimoulds
on general ones:

arit(A•).B• ≡ lu(A•, B•) ; ∀A• ∈ ARIintern,∀B• ∈ ARI (56)

garit(A•).B• ≡ mu(A•, B•) ; ∀A• ∈ GARIintern,∀B• ∈ GARI (57)

and two anologous identites for the action of general bimoulds on internals:

arit(B•).A• ≡ ari(A•, B•) ; ∀A• ∈ ARIintern,∀B• ∈ ARI (58)

garit(B•).A• ≡ gari(A•, B•) ; ∀A• ∈ GARIintern, ∀B• ∈ GARI (59)

Pay attention to the order of the terms, and observe that any bimould, acting
on an internal, produces an internal:

arit(ARI) .ARIintern ⊂ ARIintern (60)

garit(GARI) .GARIintern ⊂ GARIintern (61)
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§1-12. Short guide to the nomenclature.

Elements of Flex (E) or Flex (O) are always denoted by a short letter
combination in Gothic fonts, with e or o as root vowels. The exchange e↔ o
reflects the involution syap15 while vowel change plus the Umlaut double dot
(e→ ö or o→ ë) is expressive of the involution swap16

In the polar specialisations, for reasons we cannot go into here, the con-
ventions have to be slightly different: the root vowel here is a (resp. i) for
elements of Flex (Pa) (resp. Flex (Pi)) but the exchange a↔ i under conser-
vation of the consonental skeleton usually reflects the swap transform: thus
pal• ↔ pil• and par • ↔ pir •. To express the syap transform, on the other
hand, we usually change the final consonant plus of course the root vowel:
thus pal• ↔ pir • and pil• ↔ par •. Since swap and syap thankfully commute,
this leads to no major inconsistencies.

Lastly, inversion under the group laws, whether in the ‘Gothic’ or ‘Roman’
context, is usually denoted by a prefix reminiscent of the law: ri for gari, ra
for gira, mu for mu. The same applies for the dilators, which take the prefix
di, da, du depending on the parent group.

2 Polar alternals: the series {re•r}, {le•r} and

{he•r}, {ke•2r}.
We shall construct in Flex (E) two elementary and two semi-elementary series
of alternals by giving in each case a direct description side by side with an
inductive definition.

§2-1. The first alternal series {re•r} .

The inductive definition, which immediately implies alternality, reads:

re•1 := E• ; rer
• := arit(re•r−1)E• (∀r ≥ 2) (62)

To get a direct definition-description of re•r, we may proceed like this. For
any sign sequence ε = {ε1, . . . , εr−1}, we define the decreasing sets Ji(ε) by

15which is a rigorous isomorphism for all flexion operations.
16which respects few operations, but with an all-important exception: when acting on

regular (i.e. neg-invariant) bialternals or bisymmetrals, swap commutes respectively with
ari or gari.
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setting J1(ε) := [1, 2, . . . , r] and, for 1 < i ≤ r, by taking Ji(ε) to be Ji−1(ε)
deprived of its largest (resp. smallest) element if εi−1 = + (resp -). Then:

rew1,...,wr
r :=

∑
ε1,..,εr−1∈{+,−}

ε1 . . . εr−1

i=r∏
i=1

E

(
u∗i (ε)
u∗
i
(ε)

)
(63)

with indices u∗i (ε), v
∗
i (ε) defined by the dual conditions:

u∗i (ε) :=
∑

uj with j running through Ji(ε) (64)

v∗i (ε) := vj′ − vj′′ with j′ ∈ Ji(ε)− Ji+1(ε) , j′′ ∈ Ji−1(ε)− Ji(ε) (65)

Of course, for i = 1 we must set vj′′ = 0.
Alternatively, one may say that, when projected onto the standard basis

{e•t} of Flex (E), the alternal re•r takes the coefficient (−1)k when t is a one-
branch tree with k right-leaning slopes, and the coefficient 0 whenever t has
more than one branch.

The most outstanding property of the alternals re•r is their self-reproduction
à la Witt under the ari bracket:

ari(re•r1 , re
•
r2

) = (r1−r2) re•r1+r2 (66)

§2-2. The second alternal series {le•r} .

Here the direct definition reads:

lew1,...,wr
r :=

∑
1≤i≤r

(−1)i−1 (r − 1)!

(i− 1)!(r − i)!
E

(
u1+...+ur

vi

)∏
j 6=i

E

(
uj

vj−vi

)
(67)

Alternality is nearly obvious on this definitious. It is even more obvious for
the closely related bimoulds len•r:

lenw1,...,wr
r :=

∑
1≤i≤r

(−1)i−1 (r − 1)!

(i− 1)!(r − i)!
I

(
ui
vi

)∏
j 6=i

E

(
uj
vj

)
(68)

Clearly len•r = duur.le•r, since we have on the one hand

le•r =
∑

1≤i≤r

(−1)i−1 (r − 1)!

(i− 1)!(r − i)!
amnit

(
mui−1(E•),mur−i(E

•)
)
.E•
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and on the other

len•r =
∑

1≤i≤r

(−1)i−1 (r − 1)!

(i− 1)!(r − i)!
mu
(
mui−1(E•), I•,mur−i(E

•)
)

which again implies:

len•r = ~lu(I•,

(r−1) times︷ ︸︸ ︷
E•, ...,E•) (69)

This last expression (69) ensures the alternality of len•r and the earlier iden-
tity len•r = duur.le•r carries alternality back to le•r.

§2-3. The third alternal series {he•r} .

We begin here with the direct, descriptive definition, which relies on the
standard basis {e•t} of Flex (E). The coefficients he(t) of he•r in that basis are
not going to depend on the full structure of the indexing binary trees t but
only on a four-parameter ‘abstract’, slant(t), which gives the numbers p1, p2

(resp. q1, q2) of left-leaning (resp. right-leaning) slopes in the two branches
issueing from the tree’s root node. Clearly, p1 +p2 +q1 +q2 = r−1, and the
inductive calculation of slant(t) goes like this. If e•t = amnit(e•t′ , e

•
t′′).E

• with

slant(t′) =
[
p′1
q′1

∣∣p′2
q′2

]
and slant(t′′) =

[
p′′1
q′′1

∣∣p′′2
q′′2

]
, then

slant(t) =
[1 + p′1 + p′2

q′1 + q′2

∣∣∣ p′′1 + p′′2
1 + q′′1 + q′′2

]
if t′, t′′ 6= ∅ (70)

slant(t) =
[1 + p′1 + p′2

q′1 + q′2

∣∣∣ 0

0

]
if t′′ = ∅ (71)

slant(t) =
[ 0

0

∣∣∣ p′′1 + p′′2
1 + q′′1 + q′′2

]
if t′ = ∅ (72)

We can now define e•t :

he•r =
∑
r(•)=r

he(t) e•t (73)

through coefficients he(t) = he

[
p1
q1

∣∣ p2
q2

]
that depend only on slant(t):

he

[
p1
q1

∣∣ p2
q2

]
= (−1)q12−1 (p12)!(q12)!

(p12+q12)!
det
[ p1

1+q1

∣∣∣1+p2

q2

]
(74)

with the usual abbreviations p12 := p1+p2 , q12 := q1+q2.
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The invariance, implied by alternality, of the he• under

mantir := minu.anti .pari = −anti .pari

is immediate since it amounts to

he

[
p1
q1

∣∣ p2
q2

]
≡ (−1)p1+p2+q1+q2 he

[
q2
p2

∣∣ q1
p1

]
but the full alternality is less obvious. It may be derived from the following
identities. Indeed, setting

He• :=
∑
1≤r

1

r (r+1)
he•r ; Rë• :=

∑
1≤r

1

r (r+1)
rë•r (75)

with rë•r := swap.ro•r for ro•r := syap.re•r,
17 and introducing two elementary,

mutually gani-inverse bimoulds se•, nise•:

sew1,...,wr := Ew1 . . .Ewr (se∅ := 1) (76)

nisew1,...,wr := E
( u1
v1:2

)
E

( u12
v2:3

)
. . .E(u1...r

vr
) (nise∅ := 1) (77)

we can check (see (245)-(246)) either of the two equivalent identities:

He• = ganit(nise•).Rë• (78)

Rë• = ganit(se•).He• (79)

Since Rë• is elementarily E•-alternal and since the mutually inverse operators
ganit(se•) and ganit(nise•) can be shown, almost as elementarily, to exchange
E•-alternality and plain alternality

ganit(se•) : alternal −→ E-alternal
ganit(nise•) : E-alternal −→ alternal

we conclude that He• is indeed alternal. The hard part in all this is to estab-
lish (79) or, preferably, (78). See the remarks in §4, towards the end of the
second bisymmetrality proof. But if we do not want to bother with the messy
combinatorics involved, we may simply take (78) as definition of He• and he•r.
This route is calculation-free and automatically ensures the alternality of he•r.

§2-4. The fourth alternal series {ke•2r∗} .

17ro•r := syap.re•r simply says that ro•r is constructed from O exactly as re•r was con-
structed from E.
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These new alternals are defined only for even lengths r = 2r∗. Like for the
preceding series, we begin with a direct, descriptive definition by projection
on the standard basis of Flex (E). Here too, the coefficients do not depend
on the full structure of the indexing binary tree t but on a four-parameter
‘abstract’, stack(t), which gives the numbers m1,m2 (resp. n1, n2) of end-
nodes (resp. non end-nodes) carried by the two branches issueing from the
root-node. Like in the previous case, we have m1+m2+n1+n2 = r−1 but,
unlike in the previous case, there now exist obvious inequalities between the
mi’s and the ni’s. As a result, for any given (even) length r, the number of
distinct stacks will be less than that of of distinct slants.

The inductive definition of stack(t) goes like this. If e•t = amnit(e•t′ , e
•
t′′).E

•

with stack(t′) =
[
m′1
n′1

∣∣m′2
n′2

]
and stack(t′′) =

[
m′′1
n′′1

∣∣m′′2
n′′2

]
, then

stack(t) =
[ m′1 +m′2

1 + n′1 + n′2

∣∣∣ p′′1 + p′′2
1 + q′′1 + q′′2

]
if t′, t′′ 6= ∅ (80)

stack(t) =
[ m′1 +m′2

1 + n′1 + n′2

∣∣∣ 0

0

]
if t′′ = ∅ (81)

stack(t) =
[ 0

0

∣∣∣ m′′1 +m′′2
1 + n′′1 + n′′2

]
if t′ = ∅ (82)

We are now in a position to define ke•2r∗

ke•2r∗ =
∑

r(t)=2r∗(even)

ke(t) e•t (83)

through coefficients ke(t) = ke

[
m1
n1

∣∣m2
n2

]
that depend only on stack(t):

ke

[
m1
n1

∣∣m2
n2

]
= (−2)m12−1(m12−1)!

(n12−m12)!!

(n12+m12−2)!!
det
[ m1

1+n1

∣∣∣ m2

1+n2

]
(84)

with the usual abbreviations m12 := m1 +m2 , n12 := n1 +n2 and with the
odd or double factorial 18:

n!! := 1.3.5 . . . (n− 2).n =
(n+ 1)!

((n+1)/2)!
2−(n+1)/2 (∀n odd) (85)

The above definition of ke•2r∗ is concise enough, and striking too, but one
thing it leaves in the dark19 is the alternality of ke•2r∗ . One way (and as far

18This makes sense since the terms in the double factorials, namely n12 +m12−2 and
n12−m12 , are always odd. The term m12−1 may be even or odd, but that is no problem,
as it sits in a simple factorial.

19apart of course from the obvious relation anti .ker•2r∗ ≡ −ker
•
2r∗ , which is necessary but

far from sufficient for alternality.
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as we know, the only way) round this difficulty is to relate {ke•2r∗} to {he•r}.
To this end, we set:

He• :=
∑
1≤r

1

r (r + 1)
he•r (86)

He•ev :=
∑
1≤r∗

1

2r∗ (2r∗ + 1)
he•2r (87)

Ke• = Ke•ev :=
∑
1≤r∗

2−2r∗+1

(2r∗ + 1)(2r∗ − 1)
ke•2r∗ (88)

and we introduce the elementary operator P (adjoint action on ARI):

P .M• :=
1

2
ari(E•,M•) (89)

The thing is now to establish the identity:

Ke•ev := −1

2
E• + exp(P) .He• (90)

or the equivalent but computationally more economical identity, which in-
volves half as many terms

Ke•ev := cosh(P)−1 .He•ev (91)

and may be derived by inverting (90) to

He• := exp(−P) . (
1

2
E• + Ke•ev) ≡ exp(−P) .Ke•ev (92)

then parifying (92) to

He•ev := cosh(P) .Ke•ev (93)

and lastly inverting (93) back to (91).
For ways of establishing (90) we refer to the paragraph “properties of

ripal•ev” (see §4.7 below). But here again, if we are loath to go through the
tedium of establishing (90) or (91) straight from the beautiful descriptive
definition (83), we may forgo that direct definition and simply take (91) as
the definition of ke2r∗ . This is sufficient for all practical purposes and it gives
us the alternality of ke2r∗ without our having to fire a single shot.
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Remark: parity separation in {he•r}.

From (90) and (91) we derive, after elimination of Ke•ev, an interesting way
of expressing the odd-length components he•2r∗+1 in terms of the even-length
components. Indeed, setting:

He• = He•ev + He•od =
∑
r even

1

r (r + 1)
he•r +

∑
r odd

1

r (r + 1)
he•r (94)

we get:

He•od = =
1

2
E• + tanh(P).He•ev (95)

Of course, exp(P), cosh(P), tanh(P) etc should be interpreted as power se-
ries of the operator P .
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§2-5. Tables for length r = 4: the elementary alternals.

basis element
∣∣ rew4

∣∣ lew4
∣∣

ew1,w2,w3,w4

[1,2,3,4] = E
(u1234

v4
)
E

(u123
v3:4

)
E

( u12
v2:3

)
E

( u1
v1:2

) ∣∣ 1
∣∣ −1

∣∣
ew1,w2,w3,w4

[2,1,3,4] = E
(u1234

v4
)
E

(u123
v3:4

)
E

( u12
v1:3

)
E

( u2
v2:1

) ∣∣ −1
∣∣ −1

∣∣
ew1,w2,w3,w4

[1,3,2,4] = E
(u1234

v4
)
E

(u123
v2:4

)
E

( u1
v1:2

)
E

( u3
v3:2

) ∣∣ 0
∣∣ −1

∣∣
ew1,w2,w3,w4

[2,3,1,4] = E
(u1234

v4
)
E

(u123
v1:4

)
E

( u23
v3:1

)
E

( u2
v2:3

) ∣∣ −1
∣∣ −1

∣∣
ew1,w2,w3,w4

[3,2,1,4] = E
(u1234

v4
)
E

(u123
v1:4

)
E

( u23
v2:1

)
E

( u3
v3:2

) ∣∣ 1
∣∣ −1

∣∣
ew1,w2,w3,w4

[1,2,4,3] = E
(u1234

v3
)
E

( u12
v2:3

)
E

( u1
v1:2

)
E

( u4
v4:3

) ∣∣ 0
∣∣ 3

∣∣
ew1,w2,w3,w4

[2,1,4,3] = E
(u1234

v3
)
E

( u12
v1:3

)
E

( u2
v2:1

)
E

( u4
v4:3

) ∣∣ 0
∣∣ 3

∣∣
ew1,w2,w3,w4

[1,3,4,2] = E
(u1234

v2
)
E

( u1
v1:2

)
E

( u34
v4:2

)
E

( u3
v3:4

) ∣∣ 0
∣∣ −3

∣∣
ew1,w2,w3,w4

[1,4,3,2] = E
(u1234

v2
)
E

( u1
v1:2

)
E

( u34
v3:2

)
E

( u4
v4:3

) ∣∣ 0
∣∣ −3

∣∣
ew1,w2,w3,w4

[2,3,4,1] = E
(u1234

v1
)
E

(u234
v4:1

)
E

( u23
v3:4

)
E

( u2
v2:3

) ∣∣ −1
∣∣ 1

∣∣
ew1,w2,w3,w4

[3,2,4,1] = E
(u1234

v1
)
E

(u234
v4:1

)
E

( u23
v2:4

)
E

( u3
v3:2

) ∣∣ 1
∣∣ 1

∣∣
ew1,w2,w3,w4

[2,4,3,1] = E
(u1234

v1
)
E

(u234
v3:1

)
E

( u2
v2:3

)
E

( u4
v4:3

) ∣∣ 0
∣∣ 1

∣∣
ew1,w2,w3,w4

[3,4,2,1] = E
(u1234

v1
)
E

(u234
v2:1

)
E

( u34
v4:2

)
E

( u3
v3:4

) ∣∣ 1
∣∣ 1

∣∣
ew1,w2,w3,w4

[4,3,2,1] = E
(u1234

v1
)
E

(u234
v2:1

)
E

( u34
v3:2

)
E

( u4
v4:3

) ∣∣ −1
∣∣ 1

∣∣
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Tables for length r = 4: the semi-elementary alternals.

basis element slant
∣∣ hew4

∣∣ stack
∣∣ kew4

∣∣
ew1,w2,w3,w4

[1,2,3,4] = E
(u1234

v4
)
E

(u123
v3:4

)
E

( u12
v2:3

)
E

( u1
v1:2

) [
3
0

∣∣0
0

] ∣∣ 1
∣∣ [1

2

∣∣0
0

] ∣∣ 1
∣∣

ew1,w2,w3,w4

[2,1,3,4] = E
(u1234

v4
)
E

(u123
v3:4

)
E

( u12
v1:3

)
E

( u2
v2:1

) [
2
1

∣∣0
0

] ∣∣ −2/3
∣∣ [1

2

∣∣0
0

] ∣∣ 1
∣∣

ew1,w2,w3,w4

[1,3,2,4] = E
(u1234

v4
)
E

(u123
v2:4

)
E

( u1
v1:2

)
E

( u3
v3:2

) [
2
1

∣∣0
0

] ∣∣ −2/3
∣∣ [2

1

∣∣0
0

] ∣∣ −4
∣∣

ew1,w2,w3,w4

[2,3,1,4] = E
(u1234

v4
)
E

(u123
v1:4

)
E

( u23
v3:1

)
E

( u2
v2:3

) [
2
1

∣∣0
0

] ∣∣ −2/3
∣∣ [1

2

∣∣0
0

] ∣∣ 1
∣∣

ew1,w2,w3,w4

[3,2,1,4] = E
(u1234

v4
)
E

(u123
v1:4

)
E

( u23
v2:1

)
E

( u3
v3:2

) [
1
2

∣∣0
0

] ∣∣ 1
∣∣ [1

2

∣∣0
0

] ∣∣ 1
∣∣

ew1,w2,w3,w4

[1,2,4,3] = E
(u1234

v3
)
E

( u12
v2:3

)
E

( u1
v1:2

)
E

( u4
v4:3

) [
2
0

∣∣0
1

] ∣∣ 1/3
∣∣ [1

1

∣∣1
0

] ∣∣ 2
∣∣

ew1,w2,w3,w4

[2,1,4,3] = E
(u1234

v3
)
E

( u12
v1:3

)
E

( u2
v2:1

)
E

( u4
v4:3

) [
1
1

∣∣0
1

] ∣∣ 1/3
∣∣ [1

1

∣∣1
0

] ∣∣ 2
∣∣

ew1,w2,w3,w4

[1,3,4,2] = E
(u1234

v2
)
E

( u1
v1:2

)
E

( u34
v4:2

)
E

( u3
v3:4

) [
1
0

∣∣1
1

] ∣∣ −1/3
∣∣ [1

0

∣∣1
1

] ∣∣ −2
∣∣

ew1,w2,w3,w4

[1,4,3,2] = E
(u1234

v2
)
E

( u1
v1:2

)
E

( u34
v3:2

)
E

( u4
v4:3

) [
1
0

∣∣0
2

] ∣∣ −1/3
∣∣ [1

0

∣∣1
1

] ∣∣ −2
∣∣

ew1,w2,w3,w4

[2,3,4,1] = E
(u1234

v1
)
E

(u234
v4:1

)
E

( u23
v3:4

)
E

( u2
v2:3

) [
0
0

∣∣2
1

] ∣∣ −1
∣∣ [0

0

∣∣1
2

] ∣∣ −1
∣∣

ew1,w2,w3,w4

[3,2,4,1] = E
(u1234

v1
)
E

(u234
v4:1

)
E

( u23
v2:4

)
E

( u3
v3:2

) [
0
0

∣∣1
2

] ∣∣ 2/3
∣∣ [0

0

∣∣1
2

] ∣∣ −1
∣∣

ew1,w2,w3,w4

[2,4,3,1] = E
(u1234

v1
)
E

(u234
v3:1

)
E

( u2
v2:3

)
E

( u4
v4:3

) [
0
0

∣∣1
2

] ∣∣ 2/3
∣∣ [0

0

∣∣2
1

] ∣∣ 4
∣∣

ew1,w2,w3,w4

[3,4,2,1] = E
(u1234

v1
)
E

(u234
v2:1

)
E

( u34
v4:2

)
E

( u3
v3:4

) [
0
0

∣∣1
2

] ∣∣ 2/3
∣∣ [0

0

∣∣1
2

] ∣∣ −1
∣∣

ew1,w2,w3,w4

[4,3,2,1] = E
(u1234

v1
)
E

(u234
v2:1

)
E

( u34
v3:2

)
E

( u4
v4:3

) [
0
0

∣∣0
3

] ∣∣ −1
∣∣ [0

0

∣∣1
2

] ∣∣ −1
∣∣

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Polar bisymmetrals: main statements.

For perspective, let us start with a synoptic table of our central bimoulds:

ess•
swap↔ öss• (E 7→ Pi) pil•

swap↔ pal•

syap l syap l polar specialisation
=⇒ syap l syap l

oss•
swap↔ ëss• (O 7→ Pa) par•

swap↔ pir•

We take our stand on the self-reproduction property (66) of the alternals
re•r under the ari bracket, which is entirely analogous to the behaviour of the
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monomials xr+1 under the bracket {φ, ψ} := φ′ψ−φψ′. As a consequence, the
Lie algebra isomorphism induced by xr+1 7→ re•r extends to an isomorphism of
the group of formal identity-tangent mappings f := x 7→ x +

∑
ar x

r+1 into
the group GARI re consisting of bimoulds of the form S• := expari(

∑
γr re

•
r).

All elements of GARI re are automatically symmetral.

Proposition 3.1 (Direct bisymmetral: definition)
The source mapping f : x 7→ 1 − e−x = x − 1/2x2 + . . . has for images in
GARI re resp. GARI ro bimoulds denoted by ess• resp. oss•. They are auto-
matically symmetral, but their swappees öss• resp. ëss• are also symmetral.
The same-vowelled bimoulds ess and ëss (and by way of consequence oss and
öss) coincide up to length r = 3 inclusively but differ ever after. Under the
polar specialisation (O,E) 7→ (Pa,Pi) our universal bimoulds specialise to:

(öss•, ess•) 7→ (pal•, pil•) (96)

(oss•, ëss•) 7→ (par•, pir•) (97)

At this point, the reader may well ask: why, among all identity-tangent
mappings f , single out precisely f : x 7→ 1 − e−x ? The short answer is:
because only this choice and no other20 ensures that the separator gepar(ess•)
be symmetral (see (109)) below), which in turn is a necessary condition for
öss• (not ess•!) to be symmetral. The condition, however, is not sufficient,
and the full bisymmetrality proofs (two of them), as indeed all the other
proofs backing up this section’s statements, shall be given in §4.

Proposition 3.2 (Direct bisymmetral: characterisation)
The bimould pal• has only poles of the form P (ui) or P (u1 + ...+u2i). Equiv-
alently, its swappee pil•, or rather anti.pil•, has only poles of the form21

P (vi − vi−1) or P (v2i). This pole pattern characterises pal•/pil• among all
other polar bisymmetrals.

Proposition 3.3 (Inverse bisymmetral: properties)
The gari-inverses (prefix “ ri”) of the bisymmetrals are automatically symme-
tral, but they are not bisymmetral, meaning that their swappees, which may
also be viewed as gira-inverses (prefix “ ra”) are not exactly symmetral, but
rather E-symmetral or O-symmetral, depending of course on the root vowel.
Thus side by side with the straight symmetries

riess• = invgari(ess•) and rïess• = invgari(ëss•) ∈ symmetral (98)

riess• = invgari(ess•) and riöss• = invgari(öss•) ∈ symmetral (99)

20that is, up to a rescaling f 7→ fc with fc : x 7→ c−1f(c x). But the applications we
have in mind, as well as intrinsic considerations, dictate that we take c = 1.

21for i = 1, “P (v1 − v0)” of course reduces to P (v1).
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we have the tweaked symmetries

raess• = invgira(ess•) = swap(riöss•) ∈ E-symmetral (100)

raëss• = invgira(ëss•) = swap(rioss•) ∈ E-symmetral (101)

raoss• = invgira(oss•) = swap(rïess•) ∈ O-symmetral (102)

raöss• = invgira(öss•) = swap(riess•) ∈ O-symmetral (103)

In the polar specialisation (O,E) 7→ (Pa,Pi) this becomes

ripal• , ripar• , ripil• , ripir• , ∈ symmetral (104)

rapil• = swap.ripal• , rapir• = swap.ripar• ∈ symmetril (105)

rapal• = swap.ripil• , rapar• = swap.ripir• ∈ symmetrul (106)

We now recall the definition of the two separators22 gepar and hepar

gepar.S• := mu(anti.swap.S•, swap.S•) (107)

hepar.S• :=
∑

1≤k≤r(•)

pusk.logmu.swap.S• (108)

Proposition 3.4 (Direct bisymmetral: separators) .
The separation identities read

gepar.ess• := mu(anti.öss•, öss•) = expmu(−O•) (109)

hepar.ess• :=
∑

1≤k≤r(•) pusk.logmu.öss• = −1

2
O• (110)

with their obvious analogues under the exchange e↔ o.

Proposition 3.5 (Inverse bisymmetral: separators)
The separation identities read

gepar.riess• := mu(anti.raöss•, raöss•) = 1• +
∑
r≥1

mur(O
•) (111)

hepar.riess• :=
∑

1≤k≤r(•) pusk.logmu.raöss• =
1

2

∑
r≥1

mur(O
•) (112)

They possess obvious analogues under the exchange e ↔ o. Here mur(O
•)

stands, as usual, for the r-th mu-power of O.

22so-called because, acting on elements S• of the group GARI re, they have the virtue
of separating (or manifesting, if you prefer) the coefficients ar of the source mapping f :
see the remarks immediately before Proposition 3.1 and also [E3] §4.1.
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Proposition 3.6 (Direct bisymmetral: gari-dilator)
The identity reads

der.ess• = preari(ess•, diess•) with (113)

diess• := −
∑
r≥1

1

(1 + r)!
re•r ∈ alternal (114)

and has an obvious analogue under the exchange e↔ o.

Proposition 3.7 (Inverse bisymmetral: gari-dilator)
The identities read

der.riess• = preari(riess•, diriess•) (115)

der.riöss• = preari(riöss•, diriöss•) (116)

with dilators equal to

diriess• := +
∑
r≥1

1

r.(1 + r)
re•r ∈ alternal (117)

diriöss• := +
∑
r≥1

1

r.(1 + r)
ho•r ∈ alternal (118)

and with the semi-elementary alternals ho•r defined as in (73) but based on
the unit O instead of E.

Proposition 3.8 (Bisymmetral swappee: mu-dilator)
The identity reads

öss• = muu(öss, duuöss) with (119)

duuöss• := +
∑
r≥1

αr lo
•
r ∈ alternal (120)

with muu defined as in (25) and the elementary alternals lo•r defined as in
§2 but with respect to the unit O instead of E. The coefficients αr are the
Bernoulli numbers :∑

r≥1

αr t
r := −1 +

t

et − 1
= −1

2
t+

1

12
t2 − 1

720
t4 +

1

30240
t6 + . . . (121)

Under the polar specialisation O 7→ Pa, the above relations assume the sim-
pler form:

dur.pal• = mu.(pal•, dupal•) (122)

dupal• :=
∑
r≥1

αr lan•r (123)
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relatively to the elementary alternals

lan•r := ~lu(I•,

r−1 times︷ ︸︸ ︷
Pa•, ...,Pa•) (124)

Before examining the parity properties of our bisymmetrals, a few general
considerations are in order. It is clear that any bimould M• such that M∅ = 1
can be uniquely factored as follows

M• = gari(M•
od,M

•
ev) = mu(M•

odd,M
•
evv) (125)

or in reverse order

M• = gari(M•
ev,M

•
od) = mu(M•

evv,M
•
odd) (126)

with factors that of course differ from (125) to (126) but in both cases satisfy
the parity conditions:

pari.M•
ev ≡ M•

ev ; pari.M•
od ≡ invgari.M•

od

pari.M•
evv ≡ M•

evv ; pari.M•
odd ≡ invmu.M•

odd

With the ‘upper’ factorisations (125), for example, we find

gari(M•
od,M

•
od) = gari(M•, pari.invgari.M•) (127)

mu(M•
odd,M

•
odd) = mu(M•, pari.invmu.M•) (128)

From there, by square rooting,23 we go to M•
od and M•

odd and thence to M•
ev

and M•
evv.

None of this requires M• to be symmetral or in Flex (E). Elements of
Flex (E), though, behave identically under pari and neg, so that for them the
labels even and odd acquire redoubled significance.

In any case the existence of even × odd or odd × even factorisations is a
universal phenomenon.24 What distinguishes the bisymmetrals is the exis-
tence of remarkable and multiple factorisations of that sort, with odd factors
that tend to be exceedingly simple.

23an unambiguous operation, if we impose, as we do, that

M∅ = M∅od = M∅ev = M∅odd = M∅evv = 1

24universal but by no means elementary : it involves square rooting, which in the case
of identity-tangent mappings f generically produces divergence (of ‘resurgent’ type).
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Proposition 3.9 (Parity properties)
We have three similar-looking but logically independent identities:

ess• = gari(ess•od, ess
•
ev) (129)

öss• = gari(öss•od, öss
•
ev) (130)

öss• = mu(öss•evv, öss
•
odd) (131)

with six symmetral factors. Three of these, namely ess•ev , öss•ev, and öss•evv

are highly non-elementary and “even”, i.e. simultaneously invariant under
neg and pari, which implies that they carries only non-vanishing components
of even length. The bimoulds in the next triplet, ess•od, öss•od and öss•odd, are
quite elementary, being given by:

ess•od = expari
(
− 1

2
E•
)

(132)

öss•od = expari
(
− 1

2
O•
)

(133)

öss•odd = expmu
(
− 1

2
O•
)

(134)

or more explicitly:

essw1,...,wr
od =

(−1)r

2r
E

(
u1
v1:2

)
E

(
u12
v2:3

)
. . .E

(
u1...r
vr

)
(135)

össw1,...,wr
od =

(−1)r

2r
O

(
u1
v1:2

)
O

(
u12
v2:3

)
. . .O

(
u1...r
vr

)
(136)

össw1,...,wr
odd =

(−1)r

2r
1

r!
Ow1 . . .Owr (137)

They are also “odd” in the sense of being invertible under pari or neg:

invgari(ess•od) = pari(ess•od) = neg(ess•od) (138)

invgari(öss•od) = pari(öss•od) = neg(öss•od) (139)

invmu(öss•od) = pari(öss•od) = neg(öss•od) (140)

Three points deserve attention here.
First, note the presence of a factor 1

r!
in (137) and its absence in the

inflected counterparts (135) and (136).
Second, there is no equivalent to (140) on the E-side, that is to say, no

remarkable mu-factorisation25 of ess•, whether of type mu(ess•evv, ess
•
odd) or

of type mu(ess•odd, ess
•
evv).

25i.e. no factorisation with at least one elementary factor.
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Third, while ess•/öss• are swap-related, ess•od/öss
•
od are syap-related and

ess•ev/öss
•
ev are not related at all (in any simple way). There would be some

justification, therefore, for denoting the odd factor oss•ev rather than öss•ev,
though in a way that too might be confusing. The truth is that this theory
is so replete with symmetries that no nomenclature can possibly do justice
to them all.

Proposition 3.10 (Even factors: separators)
The separators of essev are unremarkable26 but those of riessev exactly mirror,
up to parity, the formulae for riess:

gepar.riessev = 1• +
∑
r≥1

4−r mur(O
•) (141)

hepar.riessev =
∑
r≥1

4−r mur(O
•) (142)

Proposition 3.11 (Even factors: gari- and gira-dilators.)
The three identities read

der.ess•ev = preari(ess•ev, diess
•
ev) (143)

der.öss•ev = preira(öss•ev, daöss
•
ev) (144)

der.öss•evv = preira(öss•evv, daöss
•
ev) +

1

2
mu(öss•evv, codaöss

•
ev) (145)

with

diess•ev = −
∑
1≤r

1

(2r + 1)!
re•2r (146)

daöss•ev = −
∑
1≤r

1

(2r + 1)!
rö•2r (147)

codaöss•ev =
1

2
expmu(O•) +

1

2
expmu(−O•)− 1• (148)

= −daöss•ev − anti.daöss•ev (149)

Warning: the simultaneous occurrence of ev/evv in (145) (where öss•evv stands
side by side with daöss•ev and codaöss•ev) is no misprint! This awkward jumble
in notations is rooted in the nature of our objects and cannot be helped.27

26The generating functions for gepar(ess•ev) and hepar(ess•ev) are respectively 1
cosh(x/2)2

and − 1
2

x
tanh(x/2) .

27The only bimould that would deserve the label daöss•evv would be the gira-dilator of
öss•evv, characterised by the identity der.öss•evv = preira(öss•evv, daöss

•
evv). That bimould

very much exists, of course, but it is thoroughly uninteresting and we can forget about it.
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We may note, besides, that due to (149) the ‘jumbled’ identity (145) can be
rewritten as follows:

der.öss•evv = irat(daöss•ev).öss•evv+
1

2
mu(öss•evv, daöss

•
ev−anti.daöss•ev) (150)

with id−anti rather than id +anti in front of daöss•ev.

Proposition 3.12 (Inverse even factor: gari-dilator)
We have two similar looking but logically totally distinct identities

der.riess•ev = preari(riess•, diriess•ev) (151)

der.riöss•ev = preari(riöss•, diriöss•ev) (152)

with dilators equal to

diriess•ev := +
∑
r≥1

21−2r

(2r−1).(2r+1)
re•2r ∈ alternal (153)

diriöss•ev := +
∑
r≥1

21−2r

(2r−1).(2r+1)
ko•2r ∈ alternal (154)

and with the semi-elementary alternals ko•2r defined as in §2 but based on the
unit O instead of E.

Proposition 3.13 (Even factors: mu-dilators.)
We have two similar looking but logically rather distinct identities

öss•ev = muu(össev, duuössev) (155)

öss•evv = muu(össevv, duuössevv) (156)

duuöss•ev := +
∑
r≥1

α2r lo
•
2r ∈ alternal (157)

duuöss•evv := +
∑
r≥1

β2r lo
•
2r ∈ alternal (158)

with the bilinear product muu defined as in (25) and the same elementary
alternals lo•r as above. The coefficients α2r are also the same as in (121)
except for the omission of α1, but (158) involves new coefficients β2r given
by∑

r≥1

β2r t
2r :=

t

et/2 − e−t/2
− 1 = − 1

24
t2 +

7

5760
t4 − 31

967680
t6 + . . . (159)
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Under the polar specialisation O 7→ Pa the above relations assume a simpler
form, with muu replaced by the familiar product mu :

dur.pal•ev = mu.(pal•ev, dupal•ev) (160)

dur.pal•evv = mu.(pal•evv, dupal•evv) (161)

and with

dupal•ev :=
∑
r∗≥1

α2r lan•2r∗ ; dupal•evv :=
∑
r∗≥1

β2r lan•2r∗ (162)

relatively to the same elementary alternals lan•r as in (124).

This concludes our list of ‘main statements’ about the bisymmetrals. For
easy reference, we now tabulate the main source functions behind their sep-
arators and dilators.

Table 1: gari-dilators and their coefficients:

In all the instances encountered in this section (six in all), we list the
identity-tangent diffeomorphisms f with their images in GARI re or GARI ro

for the unit choice E or O and the corresponding polar specialisations:

{f := x 7→ x+ x
∑

an x
n} 7→ {fe•, fo•} and {fi•, fa•} (163)

along with the four relevant generating functions:

• f0(x) := x−1 f#(x) = 1 − f(x)
x f ′(x)

: carries the coefficients of the gari-
dilators.

• f1(x) := f ′(x) : carries the coefficients of the first separator gepar.

• f2(x) := 1
2
x f ′′(x)
f ′(x)

: carries the coefficients of the second separator hepar.

• f3(x) := f ′′′(x)
f ′(x)

− 3
2

(f ′′(x)
f ′(x)

)2
= Schwarzian of f : ought to carry the coef-

ficients of a conjectural third separator (still unknown).

Instance 1 : {f(x) = 1− e−x} 7→ {ess•, oss•} and {pil•, pal•}
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f0(x) =
1 + x− exp(x)

x
=
∑
1≤r

−1

(r + 1)!
xr (164)

f1(x) = exp(−x) = 1 +
∑
1≤r

(−1)r

r!
xr (165)

f2(x) = −1

2
x (166)

f3(x) = −1

2
(167)

Instance 2 : {f(x) =
x

1+ 1
2
x
} 7→ {ess•od, oss

•
od} and {pil•od, pal•od}

f0(x) = −1

2
x (168)

f1(x) = =
1

(1 + 1
2
x)2

(169)

f2(x) = = −x
2

1

(1 + 1
2
x)

(170)

f3(x) = = 0 (171)

Instance 3 : {f(x) = 2 tanh(
x

2
)} 7→ {ess•ev, oss

•
ev} and {pil•ev, pal•ev}

f0(x) = 1− sinh(x)

x
=
∑
1≤r∗

−1

(2r∗+1)!
x2r∗ (172)

f1(x) =
(

cosh(
x

2
)
)−2

= 1− 1

4
x2 +

1

24
x4 − 17

2880
x6 +

31

40320
x8 + . . .(173)

f2(x) = −x
2

tanh(
x

2
) = −1

4
x2 +

1

48
x4 − 1

480
x6 +

17

80640
x8 + . . . (174)

f3(x) = −1

2
(175)

Instance 4 : {f(x) = log(
1

1− x
)} 7→ {riess•, rioss•} and {ripil•, ripal•}
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f0(x) = 1+
(1−x)

x
log(1−x) =

∑
1≤r

1

r (r+1)
xr (176)

f1(x) =
1

(1− x)
(177)

f2(x) =
x

2

1

(1− x)
(178)

f3(x) =
1

2

1

(1− x)2
(179)

Instance 5 : {f(x) =
1

1− 1
2
x
} 7→ {riess•od, rioss

•
od} and {ripil•od, ripal•od}

f0(x) =
1

2
x (180)

f1(x) =
1

(1− 1
2
x)2

(181)

f2(x) =
x

2

1

(1− 1
2
x)

(182)

f3(x) = 0 (183)

Instance 6 : {f(x)=2 arctanh(
x

2
)} 7→ {riess•ev, rioss

•
ev} and {ripil•ev, ripal•ev}

f0(x) = 1+(
1

x
−x

4
) log

(1− 1
2
x

1+ 1
2
x

)
= x

∑
1≤r∗

21−2 r∗

(2r∗−1)(2r∗+1)
x2r∗ (184)

f1(x) =
1

1− 1
4
x2

(185)

f2(x) =
x2

4

1

(1− 1
4
x2)

(186)

f3(x) =
1

2

1

(1− 1
4
x2)2

(187)

Table 2: mu-dilators and their coefficients:
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The swappees {öss•, ëss•, pal•, pir •} possess simple mu-dilators whose co-
efficients admit the following generating function:

t

et − 1
− 1 = −1

2
t+

1

12
t2 − 1

720
t4 +

1

30240
t6 − 1

120960
t8 + . . . (188)

The even gari-factors {öss•ev, ëss
•
ev, pal•ev, pir •ev} of these swappees possess sim-

ple mu-dilators whose coefficients admit the same generating function, minus
the first exceptional odd term:

t

et − 1
− 1 +

1

2
t =

1

12
t2 − 1

720
t4 +

1

30240
t6 − 1

120960
t8 + . . . (189)

Their even mu-factors {öss•evv, ëss
•
evv, pal•evv, pir •evv} also possess simple mu-

dilators but with coefficients admitting a rather distinct generating function:

t

et/2 − e−t/2
− 1 = − 1

24
t2 +

7

5760
t4 − 31

967680
t6 +

127

15482880
t8 + . . . (190)

4 Polar bisymmetrals: proofs.

We shall work mostly with the natural polar specialition (E,O) 7→ (Pi ,Pa).

§4-1. Separators of pil• and ripil•.

All separator identities in §3 result from the general statement:

If fi• is the image in the group GARIre of the identity-tangent mapping
f : x 7→ x+

∑
1≤r ar x

r+1, then its two separators are of the form

gepar.fiw1,...,wr = a∗r Paw1 . . .Pawr with a∗r = (r + 1) ar (191)

hepar.fiw1,...,wr = a∗∗r Paw1 . . .Pawr with
∑
1≤r

a∗∗r x
r :=

x

2

f ′′(x)

f ′(x)
(192)

To prove (191) we note that the bimould fi•, being the image of f , has a
gari-dilator of the form:

der.fi• = preari(fi•, difi•) with difi• =
∑
1≤r

αr ri•r (193)

so that its swappee fa• has a gira-dilator of the form:

der.fa• = preira(fa•, dafa•) with dafa• =
∑
1≤r

αr sra•r (194)
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with sra•r := swap.ri•r and with identical coefficients αr given by

1− f(x)

x f ′(x)
=
∑
1≤r

αr x
r (195)

Due to the very special form of sra•r and anti .sra•r :

anti.sraw1,...,wr = P (u1+ ... ur)
∑

1≤i≤r

i
∏
j 6=i

P (uj) (196)

the pre-bracket preira in (194) may be replaced by preiwa, which becomes:

der.fa• = preiwa(fa•, dafa•) = iwat(dafa•).fa• + mu(fa•, dafa•)(197)

Setting gefa• := mu(anti .fa•, fa•) and applying the mu-derivation der to
both sides, we find, in view of (197) and anti .iwat(sra•) = iwat(sra•).anti :

der.gefa• = iwat(dafa•).gefa• + mu(gefa•, dafa•) + mu(anti.dafa•, gefa•)(198)

Using the elementary identities

sra•r + anti.sra•r = (r+1).mur(Pa•) (199)

and

irat(sra•p).muq(Pa•) = iwat(sra•p).muq(Pa•)

= −(p−q+1) .mup+q(Pa•)

+mu(sra•p,muq(P•))

+mu(muq(P•), anti.sra•p) (200)

it is but a short step fom (198) to (191).
The proof for hepar runs along similar lines but is more intricate. Since

we do not really require the result in the sequel, let us just mention the key
step in the argument. Let r = {r1, ..., rs} denote any non-ordered sequence
of s positive integers, and let fa•r resp. lofa•r denote the part of fa• resp. lofa•

that is multilinear in sra•r1 , . . . , sra•rs . Applying the rules of §1-9 we find:

fa•r = ar1 ...ars
∑
σ∈S(s)

Paj rσ(1),...,rσ(s)
−→

preira (sra•rσ(1) , ..., sra
•
rσ(s)

) (201)

lofa•r =
∑

1≤m≤s

(−1)m−1

m

∑
r1...rm=r

mu(fa•r1 , ..., fa
•
rm) (202)
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Next, consider

rofa•r = ar1 ...ars
∑
σ∈S(s)

Paj rσ(1),...,rσ(s) irat(sra•rσ(r)) . . . irat(sra•rσ(2)).sra
•
rσ(1)

(203)

Although rofa•r has a much simpler (less composite) definition than lofa•r and
actually differs from it as soon as r ≥ 2, one can nonetheless show that after
pus-averaging the two expressions do coincide:∑

1≤k≤|r|

pusk.lofa•r ≡
∑

1≤k≤|r|

pusk.rofa•r (204)

§4-2. Shape of the gari-dilators of pil• and ripil•.

This is a standard application of the correspondance f 7→ f#. See the
Table 1 at the end of the preceding section, where f0(x) ≡ f#(x)/x. See also
§4 in [E3], from (4.11) through (4.17).

§4-3. Bisymmetrality of pal•/pil•: first proof.

This proof strives to be even-handed, in the spirit of dimorphy: it treats
pal• and pil• in exactly the same way, by relating each to its dilator. So,
rather than defining pil• from its source mapping f as in Proposition 3.1,
we adopt the following, strictly equivalent definition, polar-transposed from
Proposition 3.6 and based on the gari-dilator dipil•:

der.pil• = preari(pil•, dipil•) (205)

with dipil• := −
∑
1≤r

1

(r+1)!
ri•r

The alternals ri•r are of course the specialisation of re•r under E 7→ Pi .
We then consider a bimould pal• defined, not as the swappee of pil•, but

directly and independently, via the mu-dilator dupal•:

dur.pal• = mu(pal•, dupal•) (206)

with dupal• :=
∑
1≤r

αr lan•r
(
αr as in (121)

)
with the same Bernoulli coefficients αr as in Proposition 3.8 and with lan•r
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being the specialisation of len•r under E 7→ Pa. See §2. Quite explicitely:

lan•r =
∑

1≤i≤r

(−1)i−1 (r − 1)!

(i− 1)!(r − i)!
mu
(
mui−1(Pa•), I•,mur−i(Pa•)

)
= ~lu(I•,

(r−1) times︷ ︸︸ ︷
Pa•, ...,Pa•) (207)

Both dilators dipil• and dupal• being alternal, it immediately follows that
pil• and pal• are symmetral: this is obvious from the inversion formulae (36)
and (39) and from the symmetrality of the mould Paj • common to both.

So everything now reduces to showing that pal• is actually the swappee
of pil• or, what amounts to the same, that the system (206) that defines pal•

is equivalent to the system

der.pal• = preira(pal•, dapal•)

= irat(dapal•).pal• + mu(pal•, dapal•) (208)

with dapal• := −
∑
1≤r

1

(r+1)!
sra•r

(
sra•r := swap.ri•r

)
deduced under the swap transform from the system (205) that defines pil•.

Before taking that one last step, let us recall the universal relation (27)
between the gira-dilator daS • and the mu-dilator duS • of a given S•:

der.duS• − dur.daS• + lu(daS•, duS•)− irat(daS•).duS• = 0

Specialising the triplet {S •, daS •, duS •} to the triplet {pal•, dapal•, dupal•},
we get:

der.dupal•−dur.dapal•+lu(dapal•, dupal•)− irat(dapal•).dupal• = 0 (209)

which, as observed in the universal case (cf §1), determines dapal• in terms
of dupal• and vice versa.

Now, this appealingly symmetrical and winningly simple relation (209)
involves only elementary monomials Pa(.) and readily follows from the basic
identities (199), (200) and (207).

This establishes beyond cavil that the symmetral bimould pil• as defined
by (205) and the equally symmetral bimould pal• as defined by (206) are
mutual swappees.

Remark: This last identity (209) is totally rigid in the sense that if we
tinker with the common coefficients −1/(r+1)! of dipil• and dapal•, there
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is no way we can adjust the coefficients αr of dupal• to salvage (209). This
rigidity will stand us in good stead in [E4] for unravelling the structure of
the trigonometric bisymmetrals tal•/til•. For a foretaste, see §17 infra.

§4-4. Bisymmetrality of pal•/pil•: second proof.

This alternative proof is more roundabout28 but makes up for it by yield-
ing valuable extra information. We now starts from pil• and its gari-inverse
ripil•, which are automatically symmetral by construction. The challenge is
to show that pal• (now defined derivatively, as the swappee of pil•) is also
symmetral or, what amounts to the same but turns out to be easier, that its
gari-inverse ripal• is symmetral. The key here is to compare ripal• with the
swappee rapal• of ripil•, which may be also be viewed as the gira-inverse of
pal• (hence the prefix “ra”). According to (10) ripal• is also the ras-transform
of rapal•:

ripal• = ras.rapal• := invgari.swap.invgari.swap.rapal• (210)

The following picture sums up the situation:

pal•
swap←→ pil•

invgari l l invgari
ripal• ripil•

ras ↑ ↙swap↗

rapal•

In view of (9) we also have:

rash.rapal• = mu(corapal•, rapal•) with (211)

corapal• = push.swap.invmu.swap.rapal• (212)

Replacing push by its definition (391) in (212) and using the fact that ripil•,
being symmetral, is mu-invertible under pari.anti, we get successively:

corapal• = neg.anti.swap.anti.swap.swap.invmu.swap.rapal• (213)

= neg.anti.swap.anti.invmu.ripil• (214)

= neg.anti.swap.anti.anti.pari.ripil• (215)

= neg.anti.swap.pari.ripil• (216)

= anti.swap.neg.pari.ripil• (217)

= anti.swap.ripil• (218)

= anti.rapal• (219)

28Before starting, the reader may have a look at the overall logical scheme as pictured
at the end of the paragraph §4-4.
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So we end up with

corapal• = mu(anti.rapal•, rapal•) (220)

= gepar(ripil•) (221)

= pac• (due to (111) (222)

with an elementary pac• that admits an equally elementary gani-inverse
nipac• :

pacw1,...,wr =
∏

1≤i≤r

P (ui) (223)

nipacw1,...,wr = (−1)r
∏

1≤i≤r

P (ui+. . .+ur) (224)

gani(pac•, nipac•) = 1• (225)

Thus, in view of (8), we go from ripal• to rapal• and back via the relations

ganit(pac•).ripal• = rapal• (226)

ganit(nipac•).rapal• = ripal• (227)

Now, it is an easy matter to ckeck29 that

ganit(pac•) : alternal//symmetral −→ alternul//symmetrul (228)

ganit(nipac•) : alternul//symmetrul −→ alternal//symmetral (229)

Let us now write down the dilator identity for ripil• (see (151)-(153)) and
the logically equivalent identity for the swappee rapal• :

der.ripil• = preari(ripil•, diripil•) with diripil• =
∑
1≤r

1

r.(r+1)
ri•r (230)

der.rapal• = preira(rapal•, darapal•) with darapal• =
∑
1≤r

1

r.(r+1)
sra•r(231)

As usual, sra•r := swap.ri•r . More explicitely:

sraw1,...,wr
r =

∑
(r+1−i)ui

u1 . . . ur(u1+...ur)
(232)

29especially in the form (228). For details about the ‘twisted symmetries’ al-
ternil/symmetril and alternul/symmetrul , see [E3], §3.5.
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From that we infer the shuffle identity:∑
w∈ sha(w1,w2)

esrawr ≡ esraw
1

r1
expaw

2

r2
+ expaw

1

r1
esraw

2

r2
with (233)

esra•r :=
1

(r + 1)!
dur.sra•r (234)

expa•r := expmu(Pa•) (235)

which in turn easily implies that the dilator darapal•, as given by (239),
is alternul.30 Now, if from “darapal• ∈ alternul” we could directly deduce
“rapal• ∈ symmetrul”, life would be easy: we could, applying (227) and
(229), immediately conclude that ripal• and therefore pal• are symmetral,
and be done with it. Unfortunately, we cannot 31 – at least not directly –
and must take the detour through the dilators darapal• and diripal•.

So our goal now is to go from the proven identity (231) to an identity of
the form:

der.ripal• = preari(ripal•, diripal•) with

diripal• := ganit(nipac•).darapal• (236)

and from there to the identity:

der.ripal• = preari(ripal•, diripal•) with diripal• =
∑
1≤r

1

r.(r+1)
ha•r (237)

To deal with the first step, let us parse the identities (231) and (236) respec-
tively as A1 + A2 = 0 and B1 +B2 = 0 with

A1 :=
(
− der + irat(darapal•)

)
.rapal• A2 := mu(rapal•, darapal•) (238)

B1 :=
(
− der + arit(diripal•)

)
.ripal• B2 := mu(ripal•, diripal•) (239)

and then check that:

ganit(nipac•).A1 = B1 (240)

ganit(nipac•).A2 = B2 (241)

30This fact is already mentioned in [E3], in “universal mode”: see (4.6) p 73.
31 To do that directly, we would require the alternulity of the gari-dilator dirapal• of

rapal• (not considered here) rather than the alternulity of its gira-dilator darapal• (con-
sidered!). Extreme caution is called for here; great care must be taken to distinguish
between the various dilators: diripil• (linked to ripil), diripal• (linked to ripal), and the
pair darapal•/dirapal• (both linked to rapal•, but in different ways). Always pay close
attention to the vowels and their placement: no agglutinative language with vocalic alter-
nation could beat flexion theory for fiendish intricacy! But that’s no fault of ours. That’s
just the way things are, and there in no point in carping.
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The relation (241) is simply the definition of diripal•: see (236), second line.
To prove the non-trivial part, namely

ganit(nipac•).A1 = B1 (242)

we apply to rapal• both terms of the operator identity

ganit(nipac•).
[
− der + irat(darapal•)

]
≡[

− der + arit(ganit(nipac•).darapal•)
]
.ganit(nipac•) (243)

which is easier to check in this equivalent formulation:32[
− der + irat(darapal•)

]
.ganit(pac•) ≡

ganit(pac•).
[
− der + arit(ganit(nipac•).darapal•)

]
(244)

Thus, the mu-isomorphism ganit(nipac•) takes us from (231) to (236), thereby
establishing the latter identy, with a dilator diripal• which, being the image
under ganit(nipac•) of the alternul darapal•, is automatically alternal. This
in turn immediately implies that ripal• and pal• are symmetral. In also im-
plies, in view of (227), that rapal• is symmetrul — the very property, recall,
that we could not directly derive from “darapal• ∈ alternul”.

This completes our second, less direct proof of the bisymmetrality of
pal•/pil•. What it doesn’t do, though, is prove that our definitely alternal
bimould diripil• admits the exact expansion (237), with ha•r the polar spe-
cialisation of he•r under E 7→ Pa. To rigorously establish this non-essential,
but very nice extra bit of information unfortunately requires rather lengthy
and tedious, though in a sense elementary calculations. One way to proceed
is to start from the expansion (231) of darapal•; to apply ganit(nipac•) to
each srar

• separately, resulting in a bimould hasrar
• with infinitely many

non-vanishing components:

hasra•r :=
∑
r≤r∗

hasra•r,r∗ with hasra•r,r∗ ∈ BIMUr∗ (245)

One may then expand each hasra•r,r∗ in the standard basis of Flex r∗(Pa),
where it admits a rather simple, highly lacunary projection; and eventually
piece everything together inside the double sum∑

1≤r≤r∗

1

r.(r + 1)
hasra•r,r∗ ≡

1

r∗(r∗+1)
ha•r∗ (246)

32These are ‘rigid’ identities, strictly dependent on the nature of the inputs: if we were
to modify the definition of darapal• by, say, modifying the coefficients of sra•r in (231), we
would have to simultaneously modify the pair pac•,nipac• of gani-inverse elements.
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The combinatorially minded reader may fill in the dots.33

To conclude, let us sum up the various steps of the whole argument (–
our second bisymmetrality proof –) with the number of stars alongside each
arrow reflecting the trickiness of the corresponding implication:

{pil• ∈ symmetral} =⇒ {ripil• ∈ symmetral}
⇓

{darapal• ∈ alternul} ∗⇐= {diripil• ∈ alternal}
⇓ ∗∗

{diripal• ∈ alternal} ∗∗∗
=⇒ {diripal• =

∑
1

r.(r+1)
ha•r}

⇓
{ripal• ∈ symmetral} ∗

=⇒ {rapal• ∈ symmetrul}
⇓

{pal• ∈ symmetral}

§4-6. Even and odd factors of pal•/pil•.

We must first establish the three factorisations (129), (130), (131). De-
spite their air of kinship, they are in fact quite distinct, and must be dealt
with separately. Under our preferred polar specialisation (E,O) 7→ (Pi ,Pa)
they become respectively:

pil• = gari(pil•od, pil•ev) with pil•od = expari(−1

2
Pi•) (247)

pal• = gari(pal•od, pal•ev) with pal•od = expari(−1

2
Pa•) (248)

pal• = mu(pal•evv, pal•odd) with pal•odd = expmu(−1

2
Pa•) (249)

(i) The first factorisation (247) merely reflects the factorisation f = fod ◦ fev

of the source diffeomorphisms. Explicitly:

f(x) = 1− e−x ; fod(x) =
x

1− 1
2
x

; fev(x) = 2
ex/2 − e−x/2

ex/2 + e−x/2
(250)

Of course, as a function, fev(x) is odd and fod(x) is neither odd nor even, but
what matters in this context is that the quotient fev(x)/x should carry only

33There exist alternative strategies, like applying ganit(nipac•) to sra•r as (indirectly)
defined by (231) and summing, not in i and then r as above, but rather in r and then i,
but all these approaches seem to lead to calculations of roughly the same complexity and
tediousness.
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even powers of x and that fod(•) should admit −fod(−•) as its reciprocal
mapping.

(ii) The second factorisation (248) is less immediate to derive. We first
observe that if we specialise E to Pa rather than Pi , we get instead of (247)
the following factorisation:

par• = gari(par•od, par•ev) with par•od = expari(−1

2
Pa•) (251)

Anticipating on the key result of §8 below about the canonical factorisation of
bisymmetrals, we may note that the two exceptional (i.e. non-neg-invariant)
bisymmetrals pal• and par • necessarily coincide up to gari-postcomposition
by a regular (i.e. simultaneously neg- and pari-invariant) bisymmetral, which
we may call ral•, and whose first three components ral•1, ral•2, ral•3, as well as
all later components of odd length, necessarily vanish. In other words:

pal• = gari(par•, ral•) = gari(par•od, par•ev, ral•) (252)

But this is exactly the sought-after factorisation (248), with explicit factors:

pal•od = par•od = expari(−1

2
Pa•) (253)

pal•ev = gari(par•ev, ral•) (254)

(iii) The third factorisation (249) is rather special in being a mu-factorisation
incongruously arising out of a purely gari-gira context.34 The quickest way
to derive it is to assume the (already doubly established) bisymmetrality of
pal•/pil•, then to define the would-be even factor pal•evv via the equation
(249) in terms of pal• and pal•odd; and then to check its evenness. Injecting
the factor pal•evv so defined into the first separator identity:

gepar.pil• = mu(anti.pal•, pal•) = expmu(−Pa•) (255)

we find at once:
mu(anti.pal•evv, pal•evv) (256)

and hence
invmu.pal•evv = anti.pal•evv (257)

But we have defined pal•evv as the mu-product of pal•, which we have shown
to be symmetral, and of expmu(1

2
Pa•), also clearly symmetral. So pal•evv is

itself symmetral, and as such mu-invertible under pari.anti. Therefore:

invmu.pal•evv = pari.anti.pal•evv (258)

34For a tentative mitigation of this ‘incongruity’, see §1-11 supra.
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Comparing (257) and (258), we see that pal•evv is pari-invariant, and so neg-
invariant as well, and therefore truly even.

Properties of pal•ev and pal•evv.

In our preferred polar specialisation, the identities (143), (144), (145)
become

der.pil•ev = preari(pil•ev, dipil•ev) (259)

der.pal•ev = preira(pal•ev, dapal•ev) (260)

der.pal•evv = preira(pal•evv, dapal•ev) +
1

2
mu(pal•evv, codapal•ev) (261)

with the unavoidable ev/evv jumble in (261) and with dilators given by

dipil•ev := −
∑
1≤r

1

(2 r+1)!
ri•2r (262)

dapal•ev := −
∑
1≤r

1

(2 r+1)!
sra•2r (sra•r := swap.ri•r ) (263)

codapal•ev :=
1

2
expmu(Pa•) +

1

2
expmu(−Pa•)− 1• (264)

= −dapal•ev − anti.dapal•ev (265)

The identity (259) simply reflects the form of the preimage f# of the
gari-dilator. See f0 := x−1 f# in (172):

The identity (260) is the mechanical transposition of (259) under the
involution swap.

To establish the last identity (261), we must start, not from (260), but
from the corresponding relation for pal•, which reads

der.pal• = preira(pal•, dapal•) with dapal• := −
∑
1≤r

1

(r+1)!
sra•r (266)

To declumsify our notations, we set:35

B := −
∑
r even

1

(r+1)!
sra•r ; C := −

∑
r odd

1

(r+1)!
sra•r (267)

A := B + C ; A∗ := B − C (268)

35Note in passing that B is the gira-dilator of b, but that C has nothing to do with the
gira-dilator of c
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a := pal• ; b := pal•evv ; c := pal•odd (269)

Further, we shall denote the mu-product by a simple dot “.” We shall also
abbreviate irat(A), irat(B) etc as Ā, B̄ etc. Lastly, stars in upper (resp.
lower) index position shall stand for the involution pari (resp. anti).

With these compact notations, the relation (266) we want to establish
reads

R := −der(b.c) +Bb+ b.B − 1

2
B − 1

2
B∗ ≡ 0 (270)

Using the fact that der , Ā, B̄ etc are mu-derivations, we see that R may be
decomposed as

R = R1.c
−1 +R∗1.c− b.R2 − b.R∗2 (271)

with

R1 := −der(b.c) + Ā (b.c) + b.c.A (272)

R∗1 := −der(b.c−1) + Ā∗ (b.c−1) + b.c−1.A∗ (273)

R2 := (Āc).c−1 + c.A.c−1 − 1

2
A+

1

2
A∗ −

1

2
Pa• (274)

R∗2 := (Ā∗c−1).c+ c−1.A∗.c− 1

2
A∗ +

1

2
A∗∗ +

1

2
Pa• (275)

Let us now show that R1 ≡ R•1 ≡ R2 ≡ R∗2 ≡ 0. The identities R∗1 ≡ 0
and R∗2 ≡ 0 follow respectively from R1 ≡ 0 and R2 ≡ 0 under pari, and
the identity R1 ≡ 0 is none other than (266). So the only thing left to
check is R2 ≡ 0. To do this we apply the derivation rule (200) and then the
simplification rule (199) to show that in the expression (Āc).c−1 + c.A.c−1 all
‘intermediary terms’, i.e. all terms of the form

mu
(
mur1(Pa•), sra•r2 ,mur3(Pa•)

)
or mu

(
mur1(Pa•), anti.sra•r2 ,mur3(Pa•)

)
with r1 6= 0, r2 ≥ 2, r3 6= 0 disappear, leaving only ‘extreme terms’ that can-
cel out with the terms from −1/2A+ 1/2A∗, plus of course pure mu-powers
of Pa•, which also cancel out. This establishes R ≡ 0.

§4-7. Properties of ripal•ev .

Applying the identity (44) for dilator composition to the factorisation

ripal•ev = gari(ripal•, pal•od) (276)

we find
diripal•ev = dipal•od + adari(pal•od)−1. diripal• (277)
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But since pal•od = expari(−1/2 Pa•), this simplifies to

diripal•ev = −1

2
Pa• + (expP). diripal• (278)

with diripal• as in (236) and with the ordinary exponential expP of the
elementary operator P :

P .M• :=
1

2
ari(Pa•,M•) (∀M• ∈ BIMU) (279)

Being the gari-dilator of a symmetral bimould, diripal•ev is of course alternal.
And since we have shown that pal•ev and therefore ripal•ev are ‘even’ (i.e. pari-
invariant), the same applies for diripal•ev, so that, as expained in §2 (see (89)
and (90) ) the relation between diripal• and diripal•ev may be rewritten as

diripal•ev = (coshP)−1.
1

2
(id + pari).diripal• (280)

which, appearances notwithstanding, is actually simpler than (278), as it
involves only even-length components.

In a sense, this is all we need to know. But in order to get the extra
information of formula (154) or rather, in our polar specialisation, the ex-
plicit expansion of diripal•ev in terms of the remarkable alternals ka•2r (polar-
specialised from the ke•2r of §2), we must work harder. Rather than derive
the expansion of diripal•ev directly36 from that of diripal• via (278) or (280),
it is more convenient to reproduce the approach of (245) and (246), i.e. to
set

kasra•r := (expP).ganit(nipac•).sra•r =
∑
r≤r∗

kasrar,r∗
(
kasrar,r∗ ∈ BIMUr∗

)
and then regroup the (highly lacunary) components of r∗:∑

1≤r≤r∗

1

r.(r + 1)
kasra•r,r∗ ≡

21−r∗

(r∗ − 1).(r∗+1)
ka•r∗ (281)

Comparing the components kasra•r,r∗ with the earlier hasra•r,r∗ of (245), one
even gets to understand (however dimly) why the relevant tree-combinatorial
object for calculating the bimould projections in the standard basis {e•t} is

36The direct method yields only partial but valuable information. Thus, denoting
Proj 1.M

• the first coefficient of M• in the standard eupolar basis, we may establish

the identity Proj 1.P2r∗−r.diripal•r = (−2)r−2r∗

r.r+1
(2r∗−2)!
(r−2)! which leads to Proj 1.diripal•ev,2r∗ =

1
2r∗(2r∗+1)

which in turn yields the important normalisation property Proj 1.ka•2r∗ = 1
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slant(t) in the case of ha•r and stack(t) in the case of ka•2r. Still, the calcu-
lations are quite lengthy and the whole approach leaves much to be desired.
In particular, one would appreciate a more conceptual explanation for the
puzzling slant/stack dichotomy.

§4-8. Characterisation of pal•/pil•.

The explicit expansion of pal• as given in (300) below (as a direct con-
sequence of (122) and (123)) makes it clear that pal•, and therefore pil•

too, possess exactly the pole pattern described in Proposition 3.2. To prove
the converse, namely that no other Pi -polar bisymmetral varpil• can display
the same pole pattern, we must use the results of §8 about the standard
factorisation of bisymmetrals. In the case when varpil•1 = 0, we have

varpil• = expari.bir• with bir• ∈ bialternal (282)

In the case when our first component varpil•1 is 6= 1, it is necessarily of
the form cPi• and, modulo an elementary dilation varpil•r 7→ γrvarpil•r, we
may assume c = −1/2 and get varpil•1 and pil•1 to coincide, thus ensuring
(according to §8) the existence of a factorisation:

varpil• = gari(pil•, expari.bir•) with bir• ∈ bialternal (283)

The thing now is to focus on the first nonzero component bir •2r (2r ≥ 4).
It is bound to occur linearily in the expansion of varpil•, whether the latter
be of type (282) or (283). Now, bir •2r cannot be of the form c ri•2r, which is
simply alternal, not bialternal. But of all alternals, let alone bialternals, ri•2r
alone possesses precisely the pole structure described in Proposition 3.2 for
pil•. This clinches the argument.

5 Polar bisymmetrals: explicit expansions.

§5-1. Explicit expansions for pil• and pil•ev.

From the {ri•r}-expansions of pil•’s dilator dipil• and infinitesimal gener-
ator lipil• := logari .pil•:

dipil• =
∑
1≤r

τr ri•r with τr = − 1

(r+1)!
(284)

lipil• =
∑
1≤r

θr ri•r with θr = horrible (285)
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we at once derive (see (39) and (430)) two equally valid expansions for pil•

itself, which in their first raw form read:

pil• = 1• +

s≥1∑
r1,...,rs≥1

τr1 . . . τrs Pajr1,...,rs
−→

preari (ri•r1 , ..., ri
•
rs) (286)

pil• = 1• +

s≥1∑
r1,...,rs≥1

1

s!
θr1 ...θrs

−→
preari (ri•r1 , ..., ri

•
rs) (287)

The main difference lies of course in the transparency of the τr’s compared
with the complexity of the θr’s. But quite apart from the nature of their
coefficients, the above expansions are unsatisfactory on two further counts:
they are non-unique37 and involve multiple pre-Lie brackets, which are com-
plex, inflected expressions. So we must hasten to replace them by unique
expansions involving simple, uninflected mu-products. There are three ways
of doing this, based on the elementary series {mi•r}, {ni•r}, {ri•r} inductively
defined as follows:

mi•1 := Pi• ; mi•r := amit(mi•r−1).Pi• (288)
ni•1 := Pi• ; ni•r := anit(ni•r−1).Pi• (289)

ri•1 := Pi• ; ri•r := arit(ri•r−1).Pi• (290)

and behaving as follows under the anti-action arit:

arit.(ri•q).mi•p =
∑
s≥1

∑
ri=p+q∑
r1≥p

(−1)1+s rs mu(mi•r1 , ...,mi•rs) (291)

arit.(ri•q).ni•p =
∑
s≥1

∑
ri=p+q∑
rs≥p

(−1)1+s+q r1 mu(ni•r1 , ..., ni•rs) (292)

arit.(ri•q).ri•p = p.ri•p+q +
∑
k≤q

lu(ri•k, ri
•
p+q−k) (293)

For s ≥ 1 and r1 + ...+ rs = r each of the three sets{
mu(mi•r1 , ...,mi•rs)

}
;
{

mu(ni•r1 , ..., ni•rs)
}

;
{

mu(ri•r1 , ..., ri
•
rs)
}

(294)

consists of linearly independent bimoulds that span one and the same sub-
space Flexinr(Pi) of Flexr(Pi). The six conversion rules between the three

37Thus we have (286) side by side with (287), all due to the many a priori relations
between multiple pre-Lie brackets.
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bases are mentioned in [E3] §4.1. Let us recall the most useful:

ri•r0 =
∑
1≤s

∑
∑
ri=r0

(−1)s+1 rs mu(mi•r1 , ...,mi•r1) (295)

ri•r0 =
∑
1≤s

∑
∑
ri=r0

(−1)s+r r1 mu(ni•r1 , ..., ni•r1) (296)

The first two bases (294) of Flexinr(Pi) have the advantage of consisting of
‘atoms’ (simple strings of inflected units Pi). The ingredients ri•r of the third
basis are not atomic (it takes at least r+ 1 strings to express them) but they
make up for it by being alternal.

Now, the above derivation rules (291), (292), (293) together with the two
conversion rules (295), (296) make it easy38 to expand the multiple preari-
brackets of (284), (285) in each of the three bases (294). In the event we get
three alternative expressions:

pil• = 1• +

s≥1∑
r1,...,rs≥1

Mipr1,...,rs mu(mi•r1 , ...,mi•rs) (297)

pil• = 1• +

s≥1∑
r1,...,rs≥1

Nipr1,...,rs mu(ni•r1 , ..., ni•rs) (298)

pil• = 1• +

s≥1∑
r1,...,rs≥1

Ripr1,...,rs mu(ri•r1 , ..., ri
•
rs) (299)

with three rational-valued moulds Mip•, Nip•, Rip• defined by simple in-
duction rules (see next paragraph) that dually reflect the rules (288), (289),
(290). In accordance with the nature of the three bases (294), Mip• and Nip•

are symmetrel while Rip• is symmetral.
The procedure for expandind pil•ev is entirely similar: one need only retain

the sole even terms τ2r ri•2r in (284).

§5-2. General inductions for the moulds Mip•,Nip•,Rip•.

38 since preari(A•, B•) = arit(B•).A• + mu(A•,B•)
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The first induction goes like this:

Mip∅ := 1 , Mip1 := α1

Mipn1 :=
1

n1

Min1
∗ +

1

n1

∑
0<n0<n1

Mipn0 Min1
n0

Mipn :=
1

|n|
∑

n1.n2=n

Mipn
1

Min
2

∗ +
1

|n|

0<n0≤first(n2)∑
n1.n2.n3=n

Mipn
1,n0,n3

Min
2

n0

with

Min1,...,nr
∗ := (−1)1+rnr α|n|

Min1,...,nr
n0

:= (−1)1+r nr α|n|−n0 if 0 < n0 ≤ n1 ( := 0 otherwise)

The second induction is essentially the same under the left-right exchange:

Nip∅ := 1 , Nip1 := α1

Nipn1 :=
1

n1

Nin1
∗ +

1

n1

∑
0<n0<n1

Nipn0 Nin1
n0

Nipn :=
1

|n|
∑

n1.n2=n

Nipn
1

Nin
2

∗ +
1

|n|

0<n0≤last(n2)∑
n1.n2.n3=n

Nipn
1,n0,n3

Nin
2

n0

with

Nin1,...,nr
∗ := (−1)r+|n|n1 α|n|

Nin1,...,nr
n0

:= (−1)1+r+|n|−n0 n1 α|n|−n0 if 0 < n0 ≤ nr ( := 0 otherwise)

The third induction involves less terms and is faster to run on a computer
(see §18.A infra), the reason being that here the bulk of the complexity is
absorbed by the ‘molecular’ ri•r’s that replace the ‘atomic’ mi•r’s or ni•r’s of
the earlier inductions:

Rip∅ := 1 , Rip1 := α1 , Rip

r times︷︸︸︷
1,...,1 :=

1

r!
(α1)r

Ripn1 :=
1

n1

αn1 +
1

n1

∑
0<n0<n1

Ripn0 Rin1
n0

Ripn :=
1

|n|
Ripn

′
αnr +

1

|n|

0<n0<|n2|∑
n1.n2.n3=n

Nipn
1,n0,n3

Nin
2

n0
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with

Rin1
n0

:= n0 αn1−n0 if n0 < n1 ( := 0 otherwise)

Rin1,n2
n0

:= +αn1+n1−n0 if n1 < n0 ≤ n2

:= −αn1+n2−n0 if n2 < n0 ≤ n1

:= 0 otherwise

Rin1,...,nr
n0

:= 0 if r ≥ 3

S5-3. Explicit expansions for pal•, pal•ev and pal•evv.

We start from the mu-dilators dupal•, dupal•ev, dupal•evv as described in
§3. Applying the rule (39) we immediately derive these three expansions:

pal• = 1• +

ri even or 1∑
w1...ws= •

αr1 ...αrs Paj|u
1|,...,|us| mu(lan•r1 , ..., lan•rs) (300)

pal•ev = 1• +

ri even∑
w1...ws= •

αr1 ...αrs Paj|u
1|,...,|us| mu(lan•r1 , ..., lan•rs) (301)

pal•evv = 1• +

ri even∑
w1...ws= •

βr1 ...βrs Paj|u
1|,...,|us| mu(lan•r1 , ..., lan•rs) (302)

with ri = r(wi) = r(ui); with the selfsame Bernoulli-like numbers αr, βr as
in (121),(159); and with

lanr
• := ~lu(I•,

(r−1) times︷ ︸︸ ︷
Pa•, ...,Pa•) (303)

The last two expansions must be preferred to the first, since they involve
only even terms. Of these two even expansions, (302) is again preferrable to
(301), since the passage from pal•evv to pal• (mu-multiplication) is so much
simpler than the passage from pal•ev to pal• (gari-multiplication).

But there is still room for improvement. Indeed, (302) is blighted by
some redundancy since the summands on the right-hand side are not linearly
independent.39. To get a true basis, we must introduce bimoulds Lan•ε1,...,εs ∈

39The products mu(lan•r1 , ..., lan•rs ) are of course linearly independent, but cease to be
so when ‘precomposed’ by Paj • as in (300), (301), (302).
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Flex 2s(Pa) inductively defined by

Lanw1,...,w2s
ε1,...,εs

= Lanw1,...,w2s−2
ε1,...,εs−1

Panw1,...,w2s
εs with (304)

Panw1,...,w2s

0 := P(u2s−1) P(u2s)

Panw1,...,w2s

1 := P(u2s−1) P(u1 + ...+ u2s)

Panw1,...,w2s

2 := P(u2s) P(u1 + ...+ u2s)

Fixing s and letting each εi range over {0, 1, 2}, except for the first ε1
which is forbidden to be 0, we get a set of bimoulds Lan•ε1,...,εs that
(i) are linearly independent
(ii) span the same subspace of Flex 2s(Pa) as the Paj • ◦mu(lan•r1 , ..., lan•rs )
(iii) permit to express these Paj • ◦mu(lan•r1 , ..., lan•rs ) via a simple rule.

So (302) may be rewritten more economically as

pal•evv = 1• +

s≥1∑
ε1,...,εs∈{0,1,2}

Hanε1,...,εs Lan•ε1,...,εs
(
s =

1

2
r(•)

)
(305)

with a rational valued mould Han• belonging to none of the classical sym-
metry types but nonetheless calculable by a simple induction.

From pal•evv we easily go to pal•, through elementary mu-multiplication by
the arch-elementary factor pal•odd, and from there we go to pil• through the
equally elementary involution swap. Moreover, of all expansions currently
at our disposal, this ultimate expansion (305) for pal•evv is clearly optimal,
since it involves only 2.3r/2−1 atomic summands, as compared with the 2r

summands in each of the three expansions (297), (298), (299) for pil•.

Remark: If in (304) we had prohibited for ε1 the value 1 resp. 2 instead
of 0, we would still have got two valid bases Lan•ε1,...,εr and two expansions
of the form (303), though with changed moulds H •. There exist yet other
bases with the same indexation. These multiple choices, hardly relevant in
the eupolar case, acquire real significance in the eutrigonometric case ([E4])
and shall be discussed there.

6 Polar bisymmetrals: seven remarks.

.
Remark 1. Nearly complete restoration of symmetry.

The first proof presented here (in §4) of the bisymmetrality of pal•/pil•

is definitely shorter than the second one, which in turn is simpler than either
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of the two proofs sketched in [E3]. As we see it, it has two further merits: it
respects the symmetry between the two swappees (unlike the earlier treat-
ments, which gave precedence to pil• and relegated pal• to the subordinate
status of a derivative object) and it does so in the most satisfactory way
that could be dreamt of, by linking pal• and pil• separately to the only two
completely elementary alternal series that exist in Flex (E), namely {le•r} and
{re•r}.

The linkage between each swappee and its alternal series is provided by
the notion of dilator, but the two dilators in question are rather different:
one is geared to the uninflected mu-product, the other to the inflected gari-
product. The two alternal series {le•r} and {re•r} also differ, and in much the
same way. We have here, we suggest, the whole essence of dimorphy in a
nutshell: a symmetry that is nearly complete, yet stops just short of being
thoroughly, dully, and barrenly complete. In fact the whole flexion structure
– dimorphy’s natural framework – is largely though not perfectly self-dual
under swap. So is its core ARI//GARI. And so is the core’s core, consisting
of the two pairs pal•/pil• and tal•/til•. Experience shows that such mathe-
matical structures are among the most fecund.

Remark 2. Pervasiveness of parity.

Considerations of parity are paramount in all branches of the theory,
not just in the factorisation of the key bimoulds but also when it comes to
constructing and describing their length-r components.

Regarding the factorisations, they come in all sorts and shapes. Thus, all
three formulae (129), (130), (131) are logically independent, carry unrelated
even factors, and involve two distinct group laws, mu and gari. Nor is the
phenomenon restricted to the eupolar context; it extends to such objects as
the important bimould Zag•, though with a nuance: unlike eupolar bimoulds,
which are automatically invariant under pari ◦ neg , general bimoulds such as
Zag• react differently to pari and neg , leading to a more intricate factorisation
pattern, with three factors Zag•I , Zag•II , Zag•III , the first of which again splits
into three subfactors.

Regarding the mould components, the even/odd dichotomy makes itself
felt in this way: whereas we have to work in order to find the even-length
components of our bisymmetrals40, their odd-length components immediately
and effortlessly follow, and that too under any one of at least four distinct
mechanisms.41 The dichotomy also holds for the components of Zag• and

40This applies for the eutriginometric tal•/til• even more than for the eupolar pal•/pil•.
41we can use either the three identities (129), (130), (131) in section §3 or again the
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those of each of its three factors. Thus, constructing the even-length compo-
nents of Zag•I or Zag•II is hard work, while the odd-length components easily
follow. With Zag•III , it is exactly the reverse.

Ultimately, the dominance of parity in flexion theory can be traced back
to one root cause: the essential parity of bialternals (see §7 infra). Germane
considerations also explain the existence of a surperalgebra SUARI parallel
to ARI (see [E1], §24, pp 456-459).

Remark 3. Native complexity of bisymmetrals

No bisymmetrality proof for pal•/pil• is entirely elementary, even though
the first of the two proofs presented here (in §4-3) keeps complications down
to a minimum. Bisymmetrality proofs for the trigonometric tal•/til• are even
longer and harder.

This relative difficulty in proving what is after all the signature property
of our two bimould pairs (their birthmark as it were and the one reason be-
hind their ubiquity in multizeta theory) simply reflects the non-trivial nature
of these objects – their native and irreducible complexity.

Remark 4. Nature picks exactly the right polar specialisations

Though the two structures Flex (Pi) and Flex (Pa) are strictly isomorphic,
the two polar specialisations, when applied to a given element of Flex (E),
often lead to rational functions that differ widely in appearance, complexity,
and (rational) degree.

Thus pal•/pil• is far simpler than par •/pir •. Unlike par •/pir •, it admits
a trigonometric counterpart. And unlike par •/pir •, it spontaneously occurs
in the double trifactorisation of Zag•/Zig•.

Similarly, the alternal series {re•r} is simpler when specialised to {ri•r}
under E 7→ Pi than when specialised to {ra•r} under E 7→ Pa. Conversely,
the series {le•r}, {he•r}, {ke•2r} are simpler in their incarnation as {la•r}, {ha•r},
{ka•2r} than as {li•r}, {hi•r}, {ki•2r}.

Lastly, as if to complete this picture of harmony, it so happens that it is
precisely in their simpler form {ri•r} and {la•r}, {ha•r}, {ka•2r} that the four
alternals series occur in the dilators of pal•/pil•.

Remark 5. Direct vs inverse bisymmetrals.

In some ways (e.g. with regard to their separators and dilators) the

‘secondary-to-primary’ identity (4.85) in [E3].
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gari-inverses of bisymmetrals are better-behaved than the originals. This
fact, already noticeable with eupolars, becomes particularly striking in the
eutrigonometric case: compare for example the transparent right-hand side
of (4.88) in [E3] with that of (4.87), for which no simple closed formula exists.

But the main difference is one of ‘universality’: whereas pal•/pil• and
par •/pir • and indeed all ‘intermediate’ bisymmetrals42 have different gepar-
separators, the separators of the gari-inverses ripal•/ripil• and ripar •/ripir •

(and of all other exceptional, non neg-invariant bisymmetrals) do coincide.43

Lastly, we may note that in the applications to multizeta algebra it is the
inverse polar bisymmetrals ripal•/ripil• and the direct trigonometric bisym-
metrals tal•/til• that matter most.

Remark 6. Coexistence of inflected and non-inflected opeations.

Quite often, when comparing flexion formulae,44 one is struck by a recur-
rent anomaly: that of complex inflected operations like gari, expari etc inex-
plicably morphing into non-inflected ones like mu, expmu etc. While there
is no neat, sweeping reason for this stealthy tendency towards ‘desinflexion’,
but only case to case explanations, one may still point to the existence of a
large ideal ARIintern of ARI and of a large normal subgroup GARIintern of
GARI where ari and gari reduce to lu and mu (but with the order of the
arguments reversed). See §1-11 supra.

Remark 7. The trigonometric bisymmetral tal•/til•.

The ‘trigonometric specialisation’

(E,O) 7→ (Qic,Qac) with Qiw1
c :=

c

tan(c v1)
; Qaw1

c :=
c

tan(c u1)
(306)

is no proper specialisation, since Qi•c and Qa•c are only approximate units,
due to the corrective terms ± c2 in the identities (3.28) and (3.29) of [E3].
See also §17-12 infra. One should therefore be prepared for serious complica-
tions when going from pal•/pil• to the trigonometric equivalent tal•/til•, and
in that respect the trigonometric bisymmetrals do not disappoint. A long
monograph [E5] will be devoted to them and their natural environment, the
structures Flex (Qic) and Flex (Qac), which are not isomorphic to the polar
prototypes nor indeed to each other.

42of type gari(pal•, expari(bal•)) with bal• any bialternal.
43This is not always an asset: it is sometimes useful to have simple criteria that tell the

canonical from the non-canonical bisymmetrals.
44for example (247), (248), (249).
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We shall be content here with a few hints, to highlight the key steps in
the transition from eupolar to eutrigometric. The formula (113) linking pil•

to its gari-dilator dipil• survives unchanged (as to its general form). The link
between pal• to its mu-dilator dupal• also survives, especially regarding the
even factors, though not exactly in the ‘differential’ form (119) but rather
in the ‘integral’ form (300), with the auxiliary mould Paj • replaced, unsur-
prisingly, by a more complex Taj •. But the main change is this: while the
polar dilators had their components dipil•r resp. dupal•r simply proportional
to ri•r resp. la•r (or rather lan•r), the trigonmetric dilator components ditil•r
and dutal•r take their values in two δ(r)-dimensional spaces of alternals, with
a fast (faster than polynomially) increasing δ(r). So now at each (even) step
we have to determine not one, but δ(r) rational coefficients on both sides,
and to understand the affine (or linear, modulo the ‘earlier’ coefficients) cor-
respondance between the two sets. The alternal series {har} and {ka2r} also
survive (with single components morphing into linear spaces) and so does
their connection with the even factors of the inverse bisymmetrals. Alto-
gether, although almost every single statement of §3 has its counterpart in
the new setting, we experience a steep increase in difficulty, resulting in an
even more diverse and interesting situation.

7 Essential parity of bialternals.

This section is devoted to establishing the decomposition45

ARIal/al = ARIȧl/ȧl ⊕ ARIal/al (307)

of the space ARI al/al of all bialternals into:
(i) a large, regular part ARI al/al , consisting of even bimoulds and stable un-
der the ari-bracket.
(ii) a small, exceptional part ARI ȧl/ȧl := BIMU odd

1 , consisting of odd bi-
moulds of length one and endowed with a bilinear mapping oddari into
ARI al/al .

Everything rests on the following statement.

Proposition 7.1 (Parity of bialternals).
Any nonzero bialternal bimould A• purely of length r > 1 is neg-invariant
or, if you prefer, an even function of its double index sequence: Aw ≡ A−w.

45See [E3] §2.7
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Proof: Alternality implies invariance under mantar := −anti .pari . Bialter-
nality, therefore, implies invariance under neg.push, with:

neg.push := mantar.swap.mantar.swap

= anti.swap.anti.swap

The push operator, we recall, is idempotent of order r+1 when acting on
BIMU r, i.e. on bimoulds of length r.

Let us assume that Aw is odd in w, and show that this implies Aw ≡ 0.
For an even length r, this follows at once from the neg.push-invariance:

Aw = (neg.push)r+1.Aw = negr+1.pushr+1.Aw = neg.Aw = −Aw (308)

For an odd length, the argument is more roundabout. Note first that for
Aw, which we assumed to be odd in w, invariance under neg.push amounts
to invariance under -push. Here again, it turns out that the absence of
non-trivial solution does not require the full bialternality of A•, but only
its alternality and invariance under -push. So let us prove this stronger
statement:

Lemma 7.1 (Alternality and push-invariance).
No nonzero bimould A• purely of length r > 1 can be simultaneously alternal
and invariant under −push.

Proof: Here again, the statement is obvious for r even. So let us consider
an odd length of the form r = 2 t+1 ≥ 3.

Since we shall subject Aw to two linear operators, pus and push, respec-
tively of order r and r+1 when restricted to BIMU r, and since pus (resp.
push) reduces to a circular permutation in the ‘short’ (resp ‘long’) bimould
notation, we shall make use of both. Let us recall the conversion rule:

A[w∗0 ],w∗1 ,...,w
∗
r (long)←→ Aw1,...,wr (short) (309)

with the dual conditions on upper and lower indices:

u∗0 = −(u1 + . . . ur) , u∗i = ui ∀i ≥ 1
v∗0 arbitrary , v∗i − v∗0 = vj ∀i ≥ 1

To show that A• = 0, we start with the elementary alternality relation:

0 =
∑

w∈sha(w′,w′′)

Aw with w′ = (w1, . . . , w2t) and w′′ = (w2t+1) (310)
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which reads:
0 =

∑
1≤j≤2 t+1

Aw1,...,wj−1,w2t+1,wj ,...,w2t (311)

Due to the invariance of A• under -push, this may be rewritten as:

0 =
∑

1≤j≤2 t+1

(−1)j(pushj.A)w1,...,wj−1,w2t+1,wj ,...,w2t (312)

In the ‘long’ notation (of greater relevance here) this becomes:

0 =
∑

1≤j≤2 t+1

(−1)j(pushj.A)[w0],w1,...,wj−1,w2t+1,wj ,...,w2t (313)

=
∑

1≤j≤2 t+1

(−1)jA[w2t+1],wj ,...,w2t,w0,w1,...,wj−1 (314)

Under the exchange w0 ↔ w2t+1, the last identity becomes:

0=
∑

1≤j≤2 t+1

(−1)jA[w0],wj ,...,w2t,w2t+1,w1,...,wj−1 =
∑

1≤j≤2 t+1

(−1)jA[w0],wj ,...,w2t+1,w1,...,wj−1

Or again, reverting to the short notation:

0 =
∑

1≤j≤2 t+1

(−1)jAwj ,...,w2t+1,w1,...,wj−1 (315)

On the other hand, alternality implies pus-neutrality46
∑

pusjA• ≡ 0, which
reads:

0 =
∑

1≤j≤2 t+1

Awj ,...,w2t+1,w1,...,wj−1 (316)

From (315) and (316) we get by addition:

0 =
∑

0≤k≤t

Aw2k+1,...,w2t+1,w1,...,w2k (317)

and by subtraction:

0 =
∑

1≤k≤t

Aw2k,...,w2t+1,w1,...,w2k−1 (318)

Under the change (w2, w3, . . . , w2t+1, w1) → (w1, w2, . . . , w2t+1), (318) be-
comes:

0 =
∑

1≤k≤t

Aw2k+1,...,w2t+1,w1,...,w2k (319)

Subtracting (319) from (317), we end up with Aw1,..,wr ≡ 0. �.

46See [E3], §2.4. For a proof, see below, §3.
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8 Standard factorisation of bisymmetrals.

This section is devoted to establishing the factorisation47:

GARIas/as = gari
(
GARIȧs/ȧs,GARIas/as

)
(320)

of the set GARI as/as of all bisymmetrals into
(i) a large, regular factor GARI as/as consisting of even bimoulds48 and stable
under the gari product
(ii) a small, exceptional factor GARI ȧs/ȧs consisting of special bimoulds de-
rived from so-called flexion units and with components that are alternately
odd/even, i.e. invariant under pari.neg rather than neg.

The proof rests on the construction and properties of the special bisym-
metrals ess• and oss• (see Proposition 3.1, supra) and on the following state-
ment:

Proposition 8.1 (Factorisation of bisymmetrals).
Any bisymmetral pair of swappees Sa•//Si• simultaneously factor as

Sa• = gari(Sal•, Sar•) = gira(Sal•, Sar•) (321)

Si• = gari(Sil•, Sir•) = gira(Sil•, Sir•) (322)

(i) with Si• = swap.Sa• , Sil• = swap.Sal• , Sir• = swap.Sar•

(ii) with bisymmetral right factors that are at once neg- and gush-invariant 49

(iii) with bisymmetral left factors that are at once pari.neg- and pari.gush-
invariant.
In other words:

Sar•, Sir• ∈ GARIas/as
neg = GARI

as/as
gush =: GARIas/as (323)

Sal•, Sil• ∈ GARI
as/as
pari.neg = GARI

as/as
pari.gush (324)

The above decompositions are not unique, but two of them stand out, namely
the one in which

Sal• = ess• with − 1

2
Ew1 = Salw1 =

1

2
(Saw1 − Sa−w1) (325)

and the one in which

Sil• = oss• with − 1

2
Ow1 = Silw1 =

1

2
(Siw1 − Si−w1) (326)

47See [E3], §2.8.
48they are even functions of their multiindex w, but may possess non-vanishing compo-

nents of any length, even or odd.
49We recall that gush := neg .gantar .swap.gantar .swap with gantar := invmu.anti .pari .
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These ‘co-canonical’ decompositions involve two conjugate flexion units E and
O and, though distinct, easily translate into one another under the classical
relation50 between ess• and oss•.

Proof: It rests on the Proposition 7.1 of the preceding section, in conjunction
with the two following lemmas.

Lemma 8.1 (First components of bisymmetrals).
If the length-one component Salw1 of a bisymmetral bimould Sal• is an even
function of w1 = (u1

v1
), it may be anything, but if it is an odd function, it is

necessarily a flexion unit.

Proof: Let u0, u1, u2 be constrained by u0 + u1 + u2 = 0 and let v0, v1, v2

be defined up to a common additive constant. At length 2, the unique
symmetrality relation for Sal• may be written thus:

Sal
( u1
v1:0

,
,
u2
v2:0

)
+ Sal

( u2
v2:0

,
,
u1
v1:0

) ≡ Sal
( u1
v1:0

)
Sal

( u2
v2:0

)
(327)

Due to Salw1 being odd, this yields:

Sal
( −u1−v1:0

,
,
−u2
−v2:0

)
+ Sal

( −u2−v2:0
,
,
−u1
−v1:0

) ≡ Sal
( u1
v1:0

)
Sal

( u2
v2:0

)
(328)

Likewise, the unique symmetrality relation for Sal• may be written as:

Sil
(−v0:2−u0

,
,
v1:2
u1

)
+ Sil

( v1:2
u1

,
,
−v0:2
−u0

) ≡ Sil
( v1:2
u1

)
Sil

(−v0:2−u0
)

In the ui-variables, this translates into:

Sal
( u1
v1:0

,
,
−u0,1
−v0:2

)
+ Sal

( −u0−v0:1
,
,
u0,1
v1:2

) ≡ Sal
( u1
v1:2

)
Sal

( −u0−v0:2
)

or again, due to imparity and to
∑
ui = 0 :

Sal
( u1
v1:0

,
,
u2
v2:0

)
+ Sal

( −u0−v0:1
,
,
−u2
−v2:1

) ≡ −Sal
( u1
v1:2

)
Sal

( u0
v0:2

)
(329)

Let E1 be the identity obtained by adding the three circular permutations
of (327) and (328), and E2 the identity obtained by adding the six permu-
tations, circular or anticircular, of (329). The left-hand sides of E1 and E2

clearly coincide, while their right-hand sides coincide only up to the sign.
Equating these right-hand sides, we find:

4
(
Sal

( u1
v1:0

)
Sal

( u2
v2:0

)
+ Sal

( u2
v2:1

)
Sal

( u0
v0:1

)
+ Sal

( u0
v0:2

)
Sal

( u1
v1:2

)) ≡ 0 (330)

50See §9 infra or formula (4.63) in §4.2 of [E3].
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which is precisely the symmetrical characterisation of a flexion unit. �.

Remark 1: On the face of it, the requirement that the length-1 component
be a flexion unit is merely a necessary condition for the existence of a bisym-
metral ‘continuation’ at all lengths. However, the theory of unit-generated
bisymmetrals ess• shows this condition to be (miraculously) sufficient.51 This
is probably the best a posteriori justification for singling out this notion of
flexion unit, though by no means the only one.

Remark 2: Had we assumed Sal• to be even, we would have found no
constraints at all on the length-1 component – which was only to be ex-
pected, since the ari-exponential of that length-1 component is automatically
in GARI as/as.

Remark 3: One should not be too exercised over the presence of the factor 4
in (330), but rather observe that it vanishes after the change Salw1 = −1

2
Ew1

which, as it happens, the construction of ess• quite naturally imposes.

Lemma 8.2 (General and even bisymmetrals).
Though not a group, the set GARIas/as of all bialternals is stable under both
gari- and gira-postcomposition by the group GARIas/as of even bisymmetrals,
and the identity holds:

gari(S•1, S
•
2) ≡ gira(S•1, S

•
2) ∈ as/as (∀S•1 ∈ as/as , ∀S•2 ∈ as/as) (331)

Proof: Here gira stands for the pull-back of gari under the basic involution
swap. Both group laws are related as follows52:

gira(S•1 , S
•
2) = ganit(rash.S•2).gari(S•1 , ras.S•2) (332)

with non-linear operators ras, rash defined by:

ras.S•2 = invgari.swap.invgari.swap.S•2 (333)

rash.S•2 = mu(push.swap.invmu.swap.S•2 , S
•
2) (334)

But since in Lemma 8.2 the right factor S•2 is in GARI as/as and since gari
and gira coincide on GARI as/as (even as ari and ira coincide on ARI al/al),
this implies:

ras.S•2 = invgari.invgira.S•2 = S•2 (335)

51See §3-§4 supra.
52see §1-5 supra or [E3], §2.3. This universal identity holds for any factors S•1 , S

•
2 .
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Likewise, any bimould of as/as type is automatically gush-invariant (even as
any bimould of al/al type is automatically push-invariant). See [E3], §2.4.
This in turn implies:

rash.S•2 = 1• and ganit(rash.S•2) = id (336)

and establishes (331).�.

Remark 4. Thus S•2 is the only factor that really matters when comparing
gari(S•1 , S

•
2) and gira(S•1 , S

•
2). This is less surprising than may appear at

first sight, since the gari and gira products are linear in the left factor and
violently non-linear in the right factor.

We can now return to the proof of Proposition 8.1. To define our left
factor Sal• we set:

Sal•r := ess• with − 1

2
Ew1 :=

1

2
(Saw1 − Sa−w1) (337)

By the general theory of §3-§4 supra, this left factor is not just bisymmetral,
but also invariant under pari.neg. Let us now address the construction of
the right factor Sar •. For each r, we can construct bimould pairs (Sa•r, sar •r)
by the following induction. For r = 1 we set:

Sa•1 := Sa• (338)

sar•1 :=
1

2
(Saw1 + Sa−w1) (339)

and for r > 1 we set:

Sa•r := gari
(
Sa•, expari(−sar•1), . . . , expari(−sar•r−1)

)
(340)

sarw1,...,wr
r := Saw1,...,wr

r − Salw1,...,wr (341)

sarw1,...,wk
r := 0 if k 6= r (342)

Clearly:

sar•r ∈ BIMUr and Sa•r ≡ Sal• mod ⊕r≤r′ BIMUr′

Let us now check that
(i) each Sak

• is in GARI as/as;
(ii) each sark

• is in ARI as/as;
(iii) and therefore each expar(± sar•k) is in GARI as/as.
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This obviously holds for k = 1. If it holds for all k < r, then by Lemma 2.1
Sak

• is also in GARI as/as, as the gari-product of a bimould of type as/as by
a string of several bimoulds of type as/as . As for sarr

•, it is defined as
the difference of length-r components of two bisymmetral bimoulds, Sa•r and
Sal•, whose earlier components coincide. It is therefore not just of type al/al
(bialternal) but also, by Lemma 7.1 in the preceding section, of type al/al
(bialternal and even), and its ari-exponential is automatically as/as .

Summing up, we arrive at a factorisation of the announced type (321),
with a left factor defined by (337) and a right factor defined by

Sar• = lim
r→∞

gari
(
expari(sar•r), . . . , expari(sar•1)

)
(343)

The swappee factorisations (322) immediately follow, again under (332). �

9 Polar bialternals: first main source.

After our in-depth study of the central but exceptional (i.e. non neg-invariant)
bisymmetrals, we can now turn to our first instance of regular (i.e. neg-
invariant) bisymmetrals, and thence to the corresponding (automatically reg-
ular) bialternals.

Applying the general results of Proposition 8.1 about the standard fac-
torisation gari(Sal•, Sar •) of bisymmetrals and bearing in mind that in the
eupolar context the right factor Sar •, due to homogeneousness, is not only
neg- but also pari-invariant, we arrive at the following picture:

öss• = gari(oss•, soös•) = gari(oss•, expari(loöl•))

swap l swap l swap l

ess• = gari(ëss•, sëes•) = gari(ëss•, expari(l̈eel•))

syap l syap l syap l

oss• = gari(öss•, söos•) = gari(öss•, expari(löol•))

swap l swap l swap l

ëss• = gari(ess•, seës•) = gari(ess•, expari(leël•))

As second gari-factors we have here regular bisymmetrals seës• etc that
are themselves exponentials of regular bialternals leël• etc. Both carry only
even-length components, with a vanishing length-2 component.53 Moreover,
since the involution sap (product of swap and syap, in whichever order) turns
seës• and soös• into their gari-inverses, we clearly have

sap.leël• = −leël• = l̈eel• = −sap.l̈eel•

sap.loöl• = −loöl• = löol• = −sap.löol•

53See Proposition 3.1.
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In the polar specialisation, the picture becomes:

pal• = gari(par•, ral•) = gari(par•, expari(liral•))

swap l swap l swap l

pil• = gari(pir•, ril•) = gari(pir•, expari(liril•))

syap l syap l syap l

par• = gari(pal•, lar•) = gari(pal•, expari(lilar•))

swap l swap l swap l

pir• = gari(pil•, lir•) = gari(pil•, expari(lilir•))

with
gari(lar•, ral•) = gari(lir•, ril•) = 1• (344)

and
lilar• = −liral• ; lilir• = −liril• (345)

To construct our first series of bialternals, we now have the choice between
the components of infinitesimal generators such as lilir • or those of dilators
such as dilir • or diril•. Past experience suggests that the latter are to be
preferred, and anyway the three systems {lilir •2r}, {dilir •2r}, {diril•2r} generate
exactly the same bialternal subalgebra of ARI.

So, forgetting about lilir •, let us look at the dilators dilir • and diril• to
decide which is simpler. Starting from the factorisations

lir• = gari(ripil•, pir•) ; ril• = gari(ripir•, pil•) (346)

or the more economical factorisations

lir• = gari(ripil•ev, pir•ev) ; ril• = gari(ripir•ev, pil•ev) (347)

and applying the rule (44) for dilator composition, we find respectively

dilir• = adari(ripir•).(diripil• − diripir•) (348)

diril• = adari(ripil•).(diripir• − diripil•) (349)

and

dilir• = adari(ripir•ev).(diripil•ev − diripir•ev) (350)

diril• = adari(ripil•ev).(diripir•ev − diripil•ev) (351)

The identities (348) and (349) are unnecessarily wasteful, since they draw
on all components, even and odd, of the central bisymmetrals to calculate
the components dilir •2r and diril•2r, all even, of the bialternals. And of the

64



two remaining identities, (351) is better than (350) since it involves, via the
adari action, the bimould ripil•ev, which is much simpler than ripir •ev.54

We have thus got hold of our first series of bialternals {diril•2r ; r ≥ 2}
along with a probably optimal algorithm for their calculation. Indeed, using
formula (42) and the key results (153) and (154) of §3, we can make the
terms on the right-hand side of (351) wholly explicit. For the bimould part
we get an expansion in terms of elementary alternals:

diripir•ev − diripil•ev =
∑
1≥r

21−2r

(2r−1) (2r+1)
(ki•2r − ri•2r)

and for the operator part we have an equally simple expansion:

adari(ripil•ev) = id+
∑

Paj2r1,...,2rs

[
j=s∏
j=1

21−2rj

(2rj−1)(2rj+1)

]
ari(ri•2r1)...ari(ri•2rs)

10 Polar bialternals: second main source.

§10-1. Abstract singulators.

To begin with we must recall the construction of the ‘abstract’ singulator
senk that to any bisymmetral ess• associates (non-linearly) a linear operator

senk(ess•) =
∑
1≤r

senkr(ess
•) (352)

whose ‘components’ senkr(ess
•) have the astonishing property of turning any

length-1 bimould into a bialternal bimould of length r. That, however, comes
at a price: every second time the bialternal so produced is identically 0. More
precisely:

senk2r(ess
•) : BIMU even

1 −→ 0• (353)

senk2r(ess
•) : BIMU odd

1 −→ BIMU
al/al
2r (354)

senk2r−1(ess•) : BIMU even
1 −→ BIMU

al/al
2r−1 (355)

senk2r−1(ess•) : BIMU odd
1 −→ 0• (356)

54In fact, diril• is not just simpler to calculate than dilir•; it is also simpler in itself, in
its coefficient structure, as can be seen from the extensive tables referred to in §18 and
posted on our Webpage.
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Before constructing senk, let us recall the definition of mut (anti-action of
BIMU on itself ) and adari (action of GARI on ARI):

mut(B•).A• := mu(invmu(B•),A•,B•) (357)

adari(B•).A• := logari(gari(B•, expari(A•), invgari(B•))) (358)

= gari(preari(B•,A•), invgari(B•) (359)

We also require elementary operators that render any bimould neg- or push-
invariant:

neginvar := id + neg (360)

pushinvar :=
∑
0≤r

(id + push + push2 + ...+ pushr).lengr (361)

We can now enunciate the two equivalent definitions of senk :

senk(ess•).S• :=
1

2
neginvar.

(
adari(ess•)

)−1
.mut(es•). S• (362)

=
1

2
pushinvar.mut(neg.ess•).garit(ess•).S• (363)

The ‘components’ senkr(ess
•) are of course defined in the only possible way:

senkr(ess
•).S• := lengr . senk(ess•). S• (364)

with lengr denoting the natural projection of BIMU onto BIMU r.
The magic properties of senk result from its remarkable behaviour under

the swap transform:55

swap.senk(ess•).S• := senk(pari.öss•).swap.S• (365)

swap.senkr(ess
•).S• := (−1)r−1 senkr(öss

•).swap.S• (366)

§10-2. The polar singulators slank and srank .

Subsituting pil• or pir • for ess• in senk, we get two operators slink and

55The (−1)r−1 in (366) is no misprint: the operator senkr(ess•) involves various products
of components ess•ri and for each such product the total length

∑
ri is r−1, not r.
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srink :56

slink.S• :=
1

2
neginvar .

(
adari(pil•)

)−1
.mut(pil•). S• (367)

=
1

2
pushinvar .mut(neg.pil•) . garit(pil•) . S• (368)

srink.S• :=
1

2
neginvar .

(
adari(pir•)

)−1
.mut(pir•). S• (369)

=
1

2
pushinvar .mut(neg.pir•) . garit(pir•) . S• (370)

whose ‘components’ slinkr and srinkr turn arbitrary, entire-valued length-1
bimoulds into bialternal, singular-valued length-r bimoulds. This property
makes slinkr and srinkr extremely useful in multizeta algebra, in the back-
and-forth known as singularisation-desingularisation.

§10-3. The second series of bialternals.

Our aim here, however, is different: we want to produce eupolar bialter-
nals, i.e. bialternal elements of Flex r(Pi). Here, the ‘singuland’ (i.e. that on
which the singulator acts) can only be Pi•, and so, in view of (353)-(356),
the ‘singulate’ (i.e. the bialternal fruit of the operation) can and in fact will
be nonzero only in the situation (354). So we have no choice but to set

visli•2r := slink2r.Pi• (371)

visri•2r := srink2r.Pi• (372)

§10-4. Relations between the two series of bialternals.

Like with the two equivalent systems {diril•2r} and {dilir •2r} of the pre-
ceding section, it is easy to show that the new systems {visli•2r} and {visri•2r}
are also equivalent, in the sense of generating one and the same bialternal
subalgebra of ARI. So we shall retain only {visli•2r}, since it can be shown to
be simpler than {visri•2r}, much as {diril•2r} was simpler than {dilir •2r}.

The only questions left are these:
(i) how do the systems {diril•2r} and {visli•2r} compare?
(ii) do they, together, generate all eupolar bialternals?

The answer to the second question is probably no, but this is no more than
a hunch. The answer to the first question is not clear either: up to length

56In view of (365), subsituting pal• or par• for ess• in senk would produce nothing new.
It would just yield (up to sign) the swap transforms of slink and srink.
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10, the two systems are equivalent; at length 12 they produce a distinct
generator each; but at length 14 they do not. And what happens thereafter
is anybody’s guess.

11 Polar algebra and subalgebras.

Warning: from here on the exposition becomes less systematic and the paper
takes a more exploratory turn. It mixes proof-backed statements, conjectures,
and mere ‘observed facts’, while making clear in each case which is which.

The six main subspaces of Flex (E) are:57

Flexsap(E) , consisting of all sap-invariant bimoulds .
Flexpus(E) , consisting of all pus-variant bimoulds .

Flexpush(E) , consisting of all push-invariant bimoulds .

Flexal(E) , consisting of all alternal bimoulds .

Flexal/push(E) , consisting of all alternal and push-invariant bimoulds .

Flexal/al(E) , consisting of all bialternal bimoulds .

All these subspaces except the first (sap-invariants) are stable under ari
and define as many subalgebras. On the other hand, only the fourth (alter-
nals) is stable under lu. This again shows how much more flexible, versatile
and interesting the flexion operations are. Remarkably, neither the pus-

invariant subspace Flex pus
r nor the push-variant subspace Flex push

r are stable
under ari, let alone lu.58

Here is a table with the dimensions, up to r = 14, of the length-r com-

57Recall that sap := swap.syap = syap.swap and that a bimould A• in BIMU r is said
to be pus-variant iff (id + pus + pus2 + ...pusr−1 ).A• = 0.

58This underscores the ‘complementarity’ between pus (a circular permutation of order
r in the short notation) and push (a circular permutation of order r in the long notation).
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ponents of these subspaces or subalgebras.

r | Flexr Flexsap
r Flexpus

r Flexpush
r Flexal

r Flexal/push
r Flexal/al

r

1 | 1 1 0 0 1 0 0
2 | 2 1 1 0 1 0 0
3 | 5 3 3 0 2 0 0
4 | 14 7 9 2 4 1 1
5 | 42 22 28 4 9 1 0
6 | 132 66 90 18 20 4 1
7 | 429 217 297 48 48 7 0
8 | 1430 715 1001 156 115 17 1
9 | 4862 2438 3432 472 286 36 0

10 | 16796 8398 11934 1526 719 88 2
11 | 58786 29414 41990 4852 1842 196 0
12 | 208012 104006 149226 16000 4766 481 ≥ 3
13 | 742900 371516 534888 52940 12486 1148 0
14 | 2674440 1337220 1931540 178276 32973 2838 ≥ 3

All these dimensions have remarkable combinatorial interpretations, mostly
in terms of special trees with r or r−1 nodes.

• dim(Flex r(E)) = (2r)!
r! (r+1)!

. For two distinct interpretations and the cor-
responding bases, see Remark 1 below.

• dim(Flex sap
r (E)) = 1

2
dim(Flex sap

r ) resp. = 1
2

dim(Flex r)+dim(Flex (r−1)/2)
if r is even resp. odd.

• dim(Flexpus
r (E)) = 3 (2 r−2)!

(r+1)! (r−2)!
. The sequence occurs in the Online En-

cyclopedia of Integer Sequences under A000245 with a number of com-
binatorial interpretations.

• dim(Flexpush
r (E)) = 2 (2 r)!

r! (r+1)!
− 1

2 r+2

∑
d | r+1 φ(d) ((2 r+2)/d)!

((r+1)/d)! ((r+1)/d)!
. This

formula is due to F. Chapoton, who used it to solve a different prob-
lem, but with a combinatorial interpretation easily translatable into
ours. See [Ch] or item A106520 in the Online Encyclopedia of Integer
Sequences.

• dim(Flexal
r (E)) = number β(r) of non-ordered59 rooted trees with r

nodes.60 For numerous alternative interpretations and formulae for in-
ductive calculation, see A000081 in the Online Encyclopedia of Integer
Sequences. Thus, the generating series B(x) :=

∑
0<r β(r)xr verifies

59The relative position of the various branches issueing from a given node is indifferent.
60counting the root as a node.
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B(x) = x exp
(∑

1≤k
1
k
B(xk)

)
. For a combinatorial interpretation di-

rectly related to our problem, see Remark 2 below.

• dim(Flexal/push
r (E)). Though there is no known closed formula, this

again appears to coincide with a sequence investigated by F. Chapoton
(see A098091 in the Online Encyclopedia of Integer Sequences) but
with a combinatorial interpretation61 that doesn’t make the connection
obvious.

• dim(Flexal/al
r (E)) = unknown at the moment for r ≥ 16. See §10.4.

Remark 1: Bases of Flex r(E).

As is well known, the Catalan numbers dim(Flex r(E)) = (2r)!
r! (r+1)!

are ca-
pable of two main tree-theoretic interpretations:
(i) as counting the binary trees with r-nodes
(ii) as counting the ordered trees62 with r-nodes.63

There exists a basis {e•t} naturally indexed by the binary trees t: see §1-6.
There also exists two bases {em•t} and {en•t} indexed by the ordered trees of
the second interpretation. Indeed, let t be a s-rooted tree consisting of an
ordered system of s one-rooted trees tj ; and let t∗ be the one-rooted tree that
results from attaching each tj to a common root.64 The inductive definition
then reads:

em•t := mu(em•t1 , . . . , em
•
ts) ; em•t∗ := amit(em•t).E

•

en•t := mu(en•t1 , . . . , en
•
ts) ; en•t∗ := anit(en•t).E

•

starting of course from em•t0 = em•t0 := E• for the one-node, one-root tree
t0. The two systems {em•t ; nodes(t) = r} and {en•t ; nodes(t) = r} are each
a basis65 of Flex r(E). However, the system {er•t ; nodes(t) = r} similarly
constructed but with arit in place of amit or anit defines no basis.66 Worse
still, Flex (E) cannot be generated from E• under repeated use of the sole
operations lu and arit (much less under lu and ari).

61According to F. Chapotion, these are the graded dimensions of the spaces of invariant
bilinear forms on the free pre-Lie algebra on one generator.

62Several branches may issue from one and the same node, and their planar disposition,
from left to right, matters.

63Several roots are allowed in these “trees”. Some speak of bushes or forests instead.
64distinct from the original roots of each tj .
65Note that the systems {em•t} and {en•t} are quite distinct from the similar-looking

systems in (??). The latter span much smaller subspaces.
66There appear linear dependence relations between the er•t as soon as r = 5.
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Remark 2: Basis of Flex al
r (E).

Let θ := {θ1, . . . ,θs} be the unordered rooted tree obtained by attaching
s unordered rooted trees θj to a common root. Then the inductive rule67:

err•θ :=
∑
σ∈Ss

→
lu
(
arit(err•θσ(1)).E

•, err•θσ(2) , . . . , err
•
θσ(s)

)
(373)

produces, for each r, a system {err•θ; nodes(θ) = r} consisting of bimoulds
that are alternal of length r (obvious); have the right indexation and so too
the right cardinality (obvious); are linearly independent (non obvious); and
therefore constitute a basis of Flex al

r (E). This is a rather unusual situation,
given that most free Lie algebras68 possess no privileged natural basis.

12 Interplay of the lu and ari structures.

(i) As lu-algebras, both Flex al(E) and Flex (E) are freely generated by a
well-defined number of prime generators ge•r,i taken in each component space
Flex al

r (E) or Flexr(E).

(ii) As ari-algebras, both Flex al(E) and Flex (E) decompose as

Flexal(E) = Flexal(re)⊕ Flexal
free(E) (374)

Flex(E) = Flexal(re)⊕ Flexfree(E) (375)

The elementary subalgebra Flex al(re) is generated (and spanned) by the self-
reproducing alternals re•r. All its components Flex alr (re) are one-dimensional.
The algebra Flex al

free(E) resp. Flexfree(E) is freely generated by a well-defined

number of primary generators fe•r,i taken in each Flex al
r (E) resp. Flexr(E),

and supplemented by secondary generators of the form

→
ari (fe•r0 , re

•
r1
, . . . , re•rs) with r0+r1+. . . rs = r (376)

with only non-increasing (or non-decreasing, if one so prefers69) integer se-
quences (r1, . . . , rs).

67As usual, we get the induction started by setting err•θ0 := E• for the one-node one-root
tree θ0.

68As a lu-algebra, Flexal(E) is free, and very nearly free as an ari-algebra. See §12.
69Expliciting the conversion rules between the two systems (376) that correspond to

non-increasing or non-decreasing sequences, and finding a compact expression for these
rules, is a wholesome exercise on moulds.
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The following table carries for each length-r component of Flexal
free(E)

resp. Flexfree(E):
(i) the total dimension δr resp. dr
(ii) the number δ∗r resp. d∗r of primary generators
(iii) the number δ∗∗r resp. d∗∗r of all generators (primary and secondary)

| Flexal
r | Flexal

r | Flexal
r | Flexr | Flexr | Flexr

r | δr | δ∗r | δ∗∗r | dr | d∗r | d∗∗r
| . . . | . . . | . . . | . . . | . . . | . . .

1 | 1 | 0 | 0 | 1 | 0 | 0
2 | 1 | 0 | 0 | 2 | 1 | 1
3 | 2 | 1 | 1 | 5 | 3 | 4
4 | 4 | 2 | 3 | 14 | 8 | 13
5 | 9 | 4 | 8 | 42 | 20 | 37
6 | 20 | 8 | 19 | 132 | 62 | 112
7 | 48 | 17 | 44 | 429 | 187 | 335
8 | 115 | 41 | 103 | 1430 | 619 | 1062
9 | 286 | 98 | 242 | 4862 | 2049 | 3432

10 | 719 | 250 | 586 | 16796 | 6998 | 11451
11 | 1842 | 631 | 1437 | 58786 | 24186 | 38944
12 | 4766 | 1645 | 3616 | 208012 | 84673 | 134696
13 | 12486 | 4285 | 9216 | 742900 | 299445 | 471911
14 | 32973 | 11338 | 23884 | 2674440 | 1065675 | 1668516

13 Alternal codegrees and alternality grids.

§13-1. Loose and strict alternality codegrees.

A bimould A• ∈ BIMU r is said to have loose alternality codegree d if the
identity70 ∑

w∈ sha(w1,...,wd+1)

Aw = 0 (∀w,∀wi 6= ∅) (377)

holds for all systems {w1, . . . ,wd+1}, and it is said to have strict alternality
codegree d if the identity does not always hold for d−1. Alternality in the

70recall that sha(w1, ...,wd+1) denotes the set of all w that result from shuffling the
various wi.
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usual sense corresponds to d = 1. We speak here of codegrees rather than
degrees, because the notion is clearly dual to that of ‘differential’ degree.71

The (strict) codegree behaves additively under ‘products’ such as mu or
preari, but with a unit drop in the case of ‘brackets’ like lu or ari:

C• = mu(A•, B•) =⇒ codegal(C•) = codegal(A•) + codegal(B•)

C• = preari(A•, B•) =⇒ codegal(C•) = codegal(A•) + codegal(B•)

C• = lu(A•, B•) =⇒ codegal(C•) ≤ codegal(A•) + codegal(B•)− 1

C• = ari(A•, B•) =⇒ codegal(C•) ≤ codegal(A•) + codegal(B•)− 1

§13-2. Filtration of Flex r(E).

Consider the filtration

Flex r(E) = Flex (r)
r (E) ⊃ Flex (r−1)

r (E) ⊃ . . .Flex (2)
r (E) ⊃ Flex (1)

r (E)

of Flex r(E) into subspaces Flex (d)
r (E) consisting of all elements of (loose)

alternal codegree d. The following (incomplete) table mentions, for each r,
the dimensions aldr of the corresponding gradation:

aldr := Aldr − Ald−1
r with Aldr := dim(Flex (d)

r (E))

| d | 1 2 3 4 5 6 7 8
r | total | . . . . . . . . . . . . . . . . . . . . . . . .
1 | 1 | 1
2 | 2 | 1 1
3 | 5 | 2 2 1
4 | 14 | 4 6 3 1
5 | 42 | 9 16 12 4 1
6 | 132 | 20 47 39 20 5 1
7 | 429 | 48 127 141 76 30 6 1
8 | 1430 | 115 ? ? ? 130 42 7 1

alr−0
r = 1

alr−1
r = r − 1

alr−2
r = (r − 2)(r − 1)

alr−3
r =

1

2
(r − 3)(r2 − r − 4)

alr−4
r = (r − 4) . . .

71Think of mould-comould contractions
∑

Aw1,...,wr∆wr
...∆w1

, with inputs ∆wi
freely

generating a Lie algebra. Besides, as d increases, A• becomes ‘less alternal’, not more. So
it would be jarring to speak of alternality degree here.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 7 6 5 4 3 2 1 | r | 1 2 3 4 5 6 7 8
.... .... .... .... .... .... .... .... | | ... ... ... ... ... ... ... ...

1 | 1± | 0
1 | 1+ | 0
0 | 1− | 0

2 0 | 1± | 0 0
1 0 | 2+ | 0 0
1 0 | 2− | 0 0

2 3 0 | 3± | 0 0 0
1 2 0 | 3+ | 0 0 0
1 1 0 | 3− | 0 0 0

2 6 5 1 | 4± | 1 1 0 0
1 3 3 0 | 4+ | 0 1 0 0
1 3 2 1 | 4− | 1 0 0 0

2 8 23 9 0 | 5± | 0 2 2 0 0
1 4 12 5 0 | 5+ | 0 1 1 0 0
1 4 11 4 0 | 5− | 0 1 1 0 0

2 10 40 68 17 1 | 6± | 1 5 8 4 0 0
1 5 20 32 8 0 | 6+ | 0 2 5 2 0 0
1 5 20 30 9 1 | 6− | 1 3 3 2 0 0

2 12 60 154 186 15 0 | 7± | 0 4 24 16 4 0 0
1 6 30 77 96 7 0 | 7+ | 0 0 0
1 6 30 77 90 8 0 | 7− | 0 0 0

2 14 84 1 | 8± | 1 0 0
1 14 42 0 | 8+ | 0 0 0
1 14 42 1 | 8− | 1 0 0

14 Bialternal codegrees and bialternality grids.

§14-1. Bialternal codegree.

The bialternality codegree (loose or strict) of a bimould is simply its
alternality codegree paired with that of its swappee:

codegbial(A•) :=
(
codegal(A•) , codegal(swap.A•)

)
(378)

Ordinary bialternality corresponds to codegree (1,1).
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We cannot expect the bialternality codegree (or rather its second com-
ponent) to behave in anything like a predictable manner under mu and lu
nor indeed under preari and ari, but there an important exception, namely
on the subalgebra of push-invariant elements72, where swap commutes with
preari and ari. So for push-invariant bimoulds we have:

C• = preari(A•, B•) =⇒ codegbial(C•) = codegbial(A•) + codegbial(B•)

C• = ari(A•, B•) =⇒ codegbial(C•) ≤ codegbial(A•) + codegbial(B•)− (1, 1)

Here again we have a filtration of Flex r(E) into increasing subspaces
Flex (d1,d2)

r (E) with the corresponding dimensions

Bial d1,d2r := dim(Flex (d1,d2)
r (E)) (379)

and the even more relevant differences

biald1,d2r := Bial d1,d2r − Bial d1−1,d2
r − Bial d1,d2−1

r + Bial d1−1,d2−1
r (380)

which serve as entries of the so-called bialternality grid.
In fact, we have two such grids: one for the whole of Flex r(E) and

one for the push-invariant subalgebra Flex push
r (E). The second grid, also

called bialternality chessboard, is the more important of the two, but in this
‘monogenous’ or ‘eupolar’ context both are equally interesting. In particular,
both are symmetrical with respect to the main diagonal. This is due to the
existence of a second involution syap, specific to this case.

But when we leave the ‘eupolar’ context and move on for example to the
important case of polynomial-valued bimoulds, we still have (highly interest-
ing) bialternality grids and chessboards but there is no syap anymore and so
the property of diagonal symmetry disappears, though traces of it remain.

§14-2. The bialternality grid for general eupolars.

Here are the cases that proved amenable to computation:

3 | 1 0 0
2 | 1 0 2 | 1 1 0
1 | 0 1 1 | 0 1 1

1 2 1 2 3

72which, remember, contains all bialternals!
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5 | 1 0 0 0 0
4 | 1 0 0 0 4 | 4 0 0 0 0
3 | 2 1 0 0 3 | 1 10 1 0 0
2 | 0 5 1 0 2 | 3 3 10 0 0
1 | 1 0 2 1 1 | 0 3 1 4 1

1 2 3 4 1 2 3 4 5

7 | 1 0 0 0 0 0 0

6 | 1 0 0 0 0 0 6 | 6 0 0 0 0 0 0

5 | 5 0 0 0 0 0 5 | 11 19 0 0 0 0 0

4 | 4 16 0 0 0 0 4 | 24 34 19 0 0 0 0

3 | 9 14 16 0 0 0 3 | 1 64 56 19 0 0 0

2 | 0 17 14 16 0 0 2 | 5 5 64 34 19 0 0

1 | 1 0 9 4 5 1 1 | 0 5 1 24 11 6 1

1 2 3 4 5 6 1 2 3 4 5 6 7

8 | 1 0 0 0 0 0 0 0
7 | 7 0 0 0 0 0 0 0
6 | ? ? 0 0 0 0 0 0
5 | ? ? ? 0 0 0 0 0
4 | ? ? ? ? 0 0 0 0
3 | ? ? ? ? ? 0 0 0
2 | ? ? ? ? ? ? 0 0
1 | 1 ? ? ? ? ? 7 1

1 2 3 4 5 6 7 8

Two features stand out here: strict diagonal symmetry as well as the
vanishing of all entries in the north-west triangles. Both are eupolar-specific
phenomena, although as tendencies both extend, in a much weakened form,
to the case of polynomial-valued bimoulds.

§14-3. The bialternality chessboard for push-invariant eupolars.
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For r < 4 all entries are 0. For 4 ≤ r ≤ 8, we get:

5 | 0 0 0 0 0
4 | 0 0 0 0 4 | 0 0 0 0 0
3 | 0 0 0 0 3 | 0 1 0 0 0
2 | 0 1 0 0 2 | 1 0 1 0 0
1 | 1 0 0 0 1 | 0 1 0 0 0

1 2 3 4 1 2 3 4 5

| 0 0 0 0 0 0 0

6 | 0 0 0 0 0 0 | 0 0 0 0 0 0 0

5 | 0 0 0 0 0 0 | 0 2 0 0 0 0 0

4 | 0 2 0 0 0 0 | 5 0 3 0 0 0 0

3 | 3 0 2 0 0 0 | 0 12 0 3 0 0 0

2 | 0 5 0 2 0 0 | 2 0 12 0 2 0 0

1 | 1 0 3 0 0 0 | 0 2 0 5 0 0 0

1 2 3 4 5 6 1 2 3 4 5 6 7

8 | 0 0 0 0 0 0 0 0
7 | ? 0 0 0 0 0 0 0
6 | 0 ? 0 0 0 0 0 0
5 | ? 0 ? 0 0 0 0 0
4 | 0 ? 0 ? 0 0 0 0
3 | ? 0 ? 0 ? 0 0 0
2 | 0 ? 0 ? 0 ? 0 0
1 | 1 0 ? 0 ? 0 ? 0

1 2 3 4 5 6 7 8

We observe the vanishing of all entries on the diagonals of equation d1 −
d2 − r = odd or, what amounts to the same, on the anti-diagonals r − d1 −
d2 = odd . The phenomenon, this time, is not eupolar-specific but quite
general and a direct consequence of push-invariance. The reasons behind it
are explained in the next section, which is devoted to the case of polynomial-
valued bimoulds.

15 Basic prerequisites.

.
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§15-1. Elementary flexions.

In addition to ordinary, non-commutative mould multiplication mu (or ×):

A• = B• × C• = mu(B•, C•) ⇐⇒ Aw =

r(w1),r(w2)≥0∑
w1.w2=w

Bw
1

Cw
2

(381)

and its inverse invmu:

(invmu.A)w =
∑

1≤s≤r(w)

(−1)s
∑

w1...ws = w

Aw
1

. . . Aw
s

(wi 6= ∅) (382)

the bimoulds73 A• in BIMU = ⊕0≤rBIMUr can be subjected to a host of
specific operations, all constructed from four elementary flexions b, e, d, c that
are always defined relative to a given factorisation of the total sequence w.
The way these flexions act is apparent from the following examples:

w = a.b a =
(
u1,
v1,

u2,
v2,

u3
v3

)
b =

(
u4,
v4,

u5,
v5,

u6
v6

)
=⇒ ac =

(
u1,
v1:4,

u2,
v2:4,

u3
v3:4

)
db =

(
u1234,
v4,

u5,
v5,

u6
v6

)
w = b.c b =

(
u1,
v1,

u2,
v2,

u3
v3

)
c =

(
u4,
v4,

u5,
v5,

u6
v6

)
=⇒ be =

(
u1,
v1,

u2,
v2,

u3456
v3

)
bc =

(
u4,
v4:3,

u5,
v5:3,

u6
v6:3

)
w = a.b.c a =

(
u1,
v1,

u2,
v2,

u3
v3

)
b =

(
u4,
v4,

u5,
v5,

u6
v6

)
c =

(
u7,
v7,

u8,
v8,

u9
v9

)
=⇒ ac =

(
u1,
v1:4,

u2,
v2:4,

u3
v3:4

)
dbe =

(
u1234,
v4,

u5,
v5,

u6789
v6

)
bc =

(
u7,
v7:6,

u8,
v8:6,

u9
v9:6

)
with the usual short-hand: ui,...,j := ui+...+uj and vi:j := vi−vj. Here and
throughout the sequel, we use boldface (with upper indexation) to denote
sequences (w,wi,wj etc), and ordinary fonts (with lower indexation) to de-
note single sequence elements (wi, wj etc), or sometimes sequences of length
r(w) = 1. Of course, the ‘product’ w1.w2 denotes the concatenation of the
two factor sequences.

§15-2. Short and long indexations on bimoulds.

For bimoulds M• ∈ BIMU r it is sometimes convenient to switch from the
usual short indexation (with r indices wi’s) to a more homogeneous long in-
dexation (with a redundant initial w0 that gets bracketed for distinctiveness).
The correspondence goes like this:

M
(u1
v1

,...,
,...,

ur
vr

) ∼= M
(
[u∗0],
[v∗0 ],

u∗1
v∗1

,...,
,...,

u∗r
v∗r

)
(383)

73BIMUr of course regroups all bimoulds whose components of length other than r
vanish. These are often dubbed “length-r bimoulds” for short.
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with the dual conditions on upper and lower indices:

u∗0 = −u1...r := −(u1+...+ur) , u∗i = ui ∀i ≥ 1
v∗0 arbitrary , v∗i − v∗0 = vi ∀i ≥ 1

and of course
∑

1≤i≤r uivi ≡
∑

0≤i≤r u
∗
i v
∗
i .

§15-3. Unary operations.

The following linear transformations on BIMU are of constant use:

B• = minu.A• ⇒ Bw1,...,wr = −Aw1,...,wr (384)

B• = pari.A• ⇒ Bw1,...,wr = (−1)r A−w1,...,−wr (385)

B• = anti.A• ⇒ Bw1,...,wr = Awr,...,w1 (386)

B• = mantar.A• ⇒ Bw1,...,wr = (−1)r−1Awr,...,w1 (387)

B• = neg.A• ⇒ Bw1,...,wr = A−w1,...,−wr (388)

B• = swap.A• ⇒ B
(u1
v1

,...,
,...,

ur
vr

)
= A

( vr
u1..r

,...,
,...,

v3:4 ,
u123,

v2:3,
u12,

v1:2
u1

)
(389)

B• = pus.A• ⇒ B
(u1
v1

,...,
,...,

ur
vr

)
= A

(ur,
vr,

u1,
v1,

u2
v2

,...,
,...,

ur−1
vr−1

)
(390)

B• = push.A• ⇒ B
(u1
v1

,...,
,...,

ur
vr

)
= A

(−u1...r,−vr ,
u1 ,
v1:r,

u2
v2:r

,...,
,...,

ur−1
vr−1:r

)
(391)

All are involutions, save for pus and push, whose restrictions to each BIMUr

reduce to circular permutations of order r resp. r+1:74

push = neg.anti.swap.anti.swap (392)

lengr = pushr+1.lengr = pusr.lengr (393)

§15-4. Inflected derivations and automorphisms of BIMU.

Let BIMU ∗ resp. BIMU ∗ denote the subset of all bimoulds M• such that
M∅ = 0 resp. M∅ = 1. To each pair A• = (A•L,A•R) ∈ BIMU ∗ × BIMU ∗
resp. BIMU ∗ × BIMU ∗ we attach two remarkable operators:

axit(A•) ∈ Der(BIMU ) resp. gaxit(A•) ∈ Aut(BIMU )

74pus resp. push is a circular permutation in the short resp. long indexation of bimoulds.
Indeed: (push.M)[w0],w1,...,wr = M [wr],w0,...,wr−1 .
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whose action on BIMU is given by:75

N• = axit(A•).M• ⇔ Nw=
∑1

MadcAbcL +
∑2

MaccAbbR (394)

N•=gaxit(A•).M• ⇔ Nw =
∑3

Mdb
1e . . . dbseAa

1c
L . . .Aa

sc
L A

bc1
R . . .Abc

s

R (395)

and verifies the identities:

axit(A•).mu(M•
1 ,M

•
2 )≡mu(axit(A•).M•

1 ,M
•
2 )+mu(M•

1 , axit(A•).M•
2 )(396)

gaxit(A•).mu(M•
1 ,M

•
2 )≡mu(gaxit(A•).M•

1 , gaxit(A•).M•
2 ) (397)

The BIMU-derivations axit are stable under the Lie bracket for operators.
More precisely, the identity holds:

[axit(B•), axit(A•)] = axit(C•) with C• = axi(A•,B•) (398)

relative to a Lie law axi on BIMU ∗ × BIMU ∗ given by:

C•L := axit(B•).A•L − axit(A•).B•L + lu(A•L,B•L) (399)

C•R := axit(B•).A•R − axit(A•).B•R − lu(A•R,B•R) (400)

Here, lu denotes the standard (non-inflected) Lie law on BIMU:

lu(A•, B•) := mu(A•, B•)−mu(B•, A•) (401)

Let AXI denote the Lie algebra consisting of all pairs A• ∈ BIMU ∗×BIMU ∗
under this law axi.

Likewise, the BIMU-automorphisms gaxit are stable under operator com-
position. More precisely:

gaxit(B•).gaxit(A•) = gaxit(C•) with gaxi(A•,B•) (402)

relative to a law gaxi on BIMU ∗ × BIMU ∗ given by:

C•L := mu(gaxit(B•).A•L,B•L) (403)

A•R := mu(B•R, gaxit(B•).A•R) (404)

Let GAXI denote the Lie group consisting of all pairs A• ∈ BIMU ∗×BIMU ∗

under this law gaxi.

75The sum
∑1

resp.
∑2

extends to all sequence factorisations w = a.b.c with

b 6= ∅, c 6= ∅ resp. a 6= ∅, b 6= ∅. The sum
∑3

extends to all factorisations
w = a1.b1.c1.a2.b2.c2...as.bs.cs such that s ≥ 1, bi 6= ∅, ci.ai+1 6= ∅ ∀i. Note that the
extreme factor sequences a1 and cs may be ∅.
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§15-5. The mixed operations amnit = anmit :

For A• := (A•, 0•) and B• := (0•, B•) the operators axit(A•) and axit(B•)
reduce to amit(A•) and anit(B•) respectively, and the identity (398) be-
comes:

amnit(A•, B•) ≡ anmit(A•, B•) (∀A•, B• ∈ BIMU∗) (405)

with

amnit(A•, B•) := amit(A•).anit(B•)− anit(amit(A•).B•) (406)

anmit(A•, B•) := anit(B•).amit(A•)− amit(anit(B•).A•) (407)

When one of the two arguments (A•, B•) vanishes, the definitions reduce to:

amnit(A•, 0•) = anmit(A•, 0•) := amit(A•) (408)

amnit(0•, B•) = anmit(0•, B•) = anit(B•) (409)

Moreover, when amnit operates on a length-1 bimould M• ∈ BIMU 1 (such
as a flexion units E•, see §17-2 infra), its action drastically simplifies :

N• :=amnit(A•, B•).M•≡anmit(A•, B•).M• ⇔ Nw:=
∑

awib=w

AacMdwieBbb (410)

§15-6. Unary substructures.

We have two obvious subalgebras//subgroups of ARI//GARI, answering
to the conditions:

AMI ⊂ AXI : A•R = 0• , GAMI ⊂ GAXI : A•R = 1•

ANI ⊂ AXI : A•L = 0• , GANI ⊂ GAXI : A•L = 1•

but we are more interested in the mixed unary substructures, consisting of
elements of the form:

A• = (A•L,A•R) with A•R ≡ h(A•L) and h a fixed involution (411)

with everything expressible in terms of the left element A•L of the pair A•.
There exist, up to isomorphism, exactly seven such mixed unary substruc-
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tures:

algebra h swap algebra h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARI minu ↔ IRA minu.push
ALI anti .pari ↔ ILA anti .pari .neg
ALA anti .pari .negu ↔ ALA anti .pari .negu
ILI anti .pari .negv ↔ ILI anti .pari .negv

AWI anti ↔ IWA anti .neg
AWA anti .negu ↔ AWA anti .negu
IWI anti .negv ↔ IWI anti .negv

group h swap group h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GARI invmu ↔ GIRA push.swap.invmu.swap
GALI anti .pari ↔ GILA anti .pari .neg
GALA anti .pari .negu ↔ GALA anti .pari .negu
GILI anti .pari .negv ↔ GILI anti .pari .negv

GAWI anti ↔ GIWA anti .neg
GAWA anti .negu ↔ GAWA anti .negu
GIWI anti .negv ↔ GIWI anti .negv

§15-7. Dimorphic substructures.

Among all seven pairs of substructures, only two respect dimorphy, namely
ARI//GARI and ALI//GALI. Moreover, when restricted to dimorphic ob-
jects, they actually coincide:

ARIal/al = ALIal/al with {al/al} = {alternal/alternal and even}
GARIas/as = GALIas/as with {as/as}= {symmetral/symmetral and even}

We shall henceforth work with the pair ARI//GARI, whose definition in-
volves a simpler involution h (it dispenses with the sequence inversion anti :
see above table).

§15-8. The algebra ARI and its group GARI : basic anti-actions

The proper way to proceed is to define the anti-actions (on BIMU, with its
uninflected product mu and bracket lu) first of the lateral pairs AMI//GAMI,

82



ANI//GANI and then of the mixed pair ARI//GARI:

N• = amit(A•).M• ⇔ Nw =
∑1

MadcAbc (412)

N• = anit(A•).M• ⇔ Nw =
∑2

MaccAbb (413)

N• = arit(A•).M• ⇔ Nw =
∑1

MadcAbc −
∑2

MaccAbb (414)

with sums
∑1 (resp.

∑2) ranging over all sequence factorisations w = abc
such that b 6= ∅, c 6= ∅ (resp. a 6= ∅, b 6= ∅).

N• = gamit(A•).M• ⇔ Nw =
∑1

Mdb
1 . . . dbsAa

1c . . . Aa
sc (415)

N• = ganit(A•).M• ⇔ Nw =
∑2

Mb1e . . . bseAbc
1

. . . Abc
s

(416)

N• = garit(A•).M• ⇔ Nw =
∑3

Mdb
1e . . . dbseAa

1c . . . Aa
scAbc

1

∗ . . . Abc
s

∗ (417)

with A•∗ := invmu(A•) and with sums
∑1,

∑2,
∑3 ranging respectively over

all sequence factorisations of the form :

w = a1b1 . . . asbs (s ≥ 1 , only a1 may be ∅)
w = b1c1 . . . bscs (s ≥ 1 , only cs may be ∅)
w = a1b1c1 . . . asbscs (s ≥ 1 , with bi 6= ∅ and ciai+1 6= ∅)

More precisely, in
∑3 two inner neigbour factors ci and ai+1 may vanish

separately but not simultaneously, whereas the outer factors a1 and cs may
of course vanish separately or even simultaneously.

§15-9. The algebra ARI and its group GARI : Lie brackets and
group laws.

We can now concisely express the Lie brackets ami, ani, ari and the group
products gami, gani, gari :

ami(A•, B•) := amit(B•).A• − amit(A•).B• + lu(A•, B•) (418)

ani(A•, B•) := anit(B•).A• − anit(A•).B• − lu(A•, B•) (419)

ari(A•, B•) := arit(B•).A• − arit(A•).B• + lu(A•, B•) (420)

gami(A•, B•) := mu(gamit(B•).A•), B•) (421)

gani(A•, B•) := mu(B•, ganit(B•).A•)) (422)

gari(A•, B•) := mu(garit(B•).A•), B•) (423)
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§15-10. The algebra ARI and its group GARI : pre-Lie brackets.

Parallel with the three Lie brackets, we have three pre-Lie brackets:

preami(A•, B•) := amit(B•).A• + mu(A•, B•) (424)

preani(A•, B•) := anit(B•).A• −mu(A•, B•) (sign!) (425)

preari(A•, B•) := arit(B•).A• + mu(A•, B•) (426)

with the usual relations:

ari(A•, B•) ≡ preari(A•, B•)− preari(B•, A•) (427)

assopreari(A•, B•, C•) ≡ assopreari(A•, C•, B•) (428)

with assopreari denoting the associator of the pre-Lie bracket preari. The
same holds of course for ami and ani.

§15-11. Exponentiation from ARI to GARI.

Provided we properly define the multiple pre-Lie brackets, i.e. from left
to right:

~preari(A•1, . . . , A
•
s) = preari( ~preari(A•1, . . . , A

•
s−1), A•s) (429)

we have a simple expression for the exponential mapping from a Lie algebra
to its group. Thus, the exponential expari : ARI → GARI can be expressed
as a series of pre-brackets:

expari(A•) =
∑
n

1

n!
~preari(

n times︷ ︸︸ ︷
A•, . . . , A•) (430)

§15-12. Flexion units.

A flexion unit E is an element of BIMU 1 that verifies identically

0 ≡ E
(u1
v1

)
+ E

(−u1−v1
)

(431)

0 ≡ E
(u1
v1

)
E

(u2
v2

) − E
(u1,2
v1

)
E

( u2
v2:1

) − E
(u1,2
v1

)
E

( u1
v1:2

)
(432)

The above identities may be rewritten as

0 ≡
( ∑

0≤n<r

pushn
)

mu(

r times︷ ︸︸ ︷
E•, . . . ,E•) (433)
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for r = 1 and 2, but they actually imply (433) for all values of r.
The present paper deals mainly with the polar units Pa, Pi :

Paw1 := P (u1) =
1

u1

, Piw1 := P (v1) =
1

v1

(434)

and occasionally with the approximate trigonometric units Qa, Qi :

Qaw1 := Q(u1) =
c

tan(c u1)
, Qiw1 := Q(v1) =

c

tan(c v1)
(435)

for which the expression on the right side of (432), instead of vanishing, be-
comes ± c2.

For a more substantive exposition of the flexion structure, we refer to [E1]
and [E3].
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