Flexion update 1.

Jean Ecalle

This first Flexion Update and those soon to follow are meant to flesh out, justify, expand or complement various items in the general Survey titled

The Flexion Structure and Dimorphy: Flexion Units, Singulators, Generators, and the Enumeration of Multizeta Irreducibles.

The Survey ${ }^{1}$ in question is systematically referred to as [FLEX].

Contents

1 Essential parity of bialternals. 2
2 Canonical factorisation of bisymmetrals. 5
3 Bimould symmetries and the underlying group actions. 10
3.1 Simple symmetries and the group \mathfrak{S}_{r} 10
3.2 Intermediate symmetries and the group \mathfrak{S}_{r+1}. 10
3.3 Double symmetries and the group $S l_{r}(\mathbb{Z})$ 10
4 Obvious and less obvious filtrations on $A L A L$ and $A L I L$. 10
4.1 Weight, length, degree. 10
4.2 Regular versus wandering bialternals. 10
4.3 Support-based filtrations. 10
5 Inductive calculations on $A L I L$. 10
5.1 Induction from the bottom. 10
5.2 Induction from the top. 10
5.3 Induction from the middle. 10
5.4 The case of bicolours. 10

[^0]6 Universals on ALIL: facts and conjectures 10
6.1 Universals on the alternal side 10
6.2 Universals on the alternil side 10
6.3 Some relevant multizeta identities 10
7 Tables: co-supports on the even-weighted part of ALIL. 10
7.1 Co-supports on the alternal side. 10
7.2 Co-supports on the alternil side. 10
8 Co-supports on the odd-weighted part of $A L I L$. Tables. 10
8.1 Co-supports on the alternal side. 10
8.2 Co-supports on the alternil side. 10
8.3 Universals on the alternal side. 10
8.4 Universals on the alternil side. 10

1 Essential parity of bialternals.

This section is devoted to establishing the decomposition ${ }^{2}$

$$
\begin{equation*}
\mathrm{ARI}^{\mathrm{al} / \mathrm{al}}=\mathrm{ARI}^{\mathrm{a} 1 / \mathrm{al}} \oplus \mathrm{ARI}^{\mathrm{I} / / \mathrm{al}} \tag{1.1}
\end{equation*}
$$

of the space $A R I^{a l / a l}$ of all bialternals into:
(i) a large, regular part $A R I^{a l / a l}$, consisting of even bimoulds and stable under the ari-bracket.
(ii) a small, exceptional part $A R I^{\dot{a l / a l}}:=B I M U_{1, o d d}$, consisting of odd bimoulds of length one and endowed with a bilinear mapping oddari into $A R I I^{\underline{a l} / a l}$.

Everything rests on the following statement.

Proposition 1.1 (Parity of bialternals).

Any bialternal bimould A^{\bullet} purely of length $r>1$ is an even function of its double index sequence, i.e. $A^{\boldsymbol{w}} \equiv A^{-\boldsymbol{w}}$.

Proof: Alternality implies invariance under mantar $:=-$ anti.pari. Bialternality, therefore, implies invariance under neg.push, with:

$$
\begin{aligned}
\text { neg.push } & :=\text { mantar.swap.mantar.swap } \\
& =\text { anti.swap.anti.swap }
\end{aligned}
$$

[^1]The push operator, we recall, is idempotent of order $r+1$ when acting on $B I M U_{r}$, i.e. on bimoulds of length r.

Let us assume that $A^{\boldsymbol{w}}$ is odd in \boldsymbol{w}, and show that this implies $A^{\boldsymbol{w}} \equiv 0$.
For an even length r, this follows at once from the neg.push-invariance:

$$
\begin{equation*}
A^{\boldsymbol{w}}=(\text { neg.push })^{r+1} \cdot A^{\boldsymbol{w}}=\text { neg }^{r+1} \cdot \text { push }^{r+1} \cdot A^{\boldsymbol{w}}=\text { neg. } \cdot A^{\boldsymbol{w}}=-A^{\boldsymbol{w}} \tag{1.2}
\end{equation*}
$$

For an odd length, the argument is more roundabout. Note first that for $A^{\boldsymbol{w}}$, which we assumed to be odd in \boldsymbol{w}, invariance under neg.push amounts to invariance under -push. Here again, it turns out that the absence of non-trivial solution does not require the full bialternality of A^{\bullet}, but only its alternality and invariance under -push. So let us prove this stronger statement:

Lemma 1.1 (Alternality and push-invariance).

No non-vanishing bimould A^{\bullet} purely of length $r>1$ can be simultaneously alternal and invariant under - push.

Proof: Here again, the statement is obvious for r even. So let us consider an odd length of the form $r=2 t+1 \geq 3$.

Since we shall subject $A^{\boldsymbol{w}}$ to two linear operators, pus and push, respectively of order r and $r+1$ when restricted to $B I M U_{r}$, and since pus (resp. push) reduces to a circular permutation in the 'short' (resp 'long') bimould notation, we shall make use of both. Let us recall the conversion rule:

$$
\begin{equation*}
A^{\left[w_{0}^{*}\right], w_{1}^{*}, \ldots, w_{r}^{*}}(\text { long }) \longleftrightarrow A^{w_{1}, \ldots, w_{r}} \quad(\text { short }) \tag{1.3}
\end{equation*}
$$

with the dual conditions on upper and lower indices:

$$
\begin{array}{cc}
u_{0}^{*}=-\left(u_{1}+\ldots u_{r}\right), & u_{i}^{*} \\
v_{0}^{*} & =u_{i} \forall i \geq 1 \\
\text { arbitrary }, & v_{i}^{*}-v_{0}^{*}
\end{array}=v_{j} \forall i \geq 1
$$

To show that $A^{\bullet}=0$, we start with the elementary alternality relation:

$$
\begin{equation*}
0=\sum_{\boldsymbol{w} \in \operatorname{sha}\left(\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}\right)} A^{\boldsymbol{w}} \text { with } \boldsymbol{w}^{\prime}=\left(w_{1}, \ldots, w_{2 t}\right) \text { and } \boldsymbol{w}^{\prime}=\left(w_{2 t+1}\right) \tag{1.4}
\end{equation*}
$$

which reads:

$$
\begin{equation*}
0=\sum_{1 \leq j \leq 2 t+1} A^{\overline{w_{1}, \ldots, w_{j-1}, w_{2 t+1}, \overline{w_{j}, \ldots, w_{2 t}}}, ~} \tag{1.5}
\end{equation*}
$$

Due to the invariance of A^{\bullet} under -push, this may be rewritten as:

$$
\begin{equation*}
0=\sum_{1 \leq j \leq 2 t+1}(-1)^{j}\left(\text { push }^{\mathrm{j}} \cdot A\right)^{\overline{w_{1}, \ldots, w_{j-1}, w_{2 t+1}, \overline{w_{j}, \ldots, w_{2 t}}}} \tag{1.6}
\end{equation*}
$$

In the 'long' notation (of greater relevance here) this becomes:

$$
\begin{align*}
0 & =\sum_{1 \leq j \leq 2 t+1}(-1)^{j}\left(\operatorname{push}^{\mathrm{j}} . A\right)^{\left[w_{0}\right], \overline{w_{1}, \ldots, w_{j-1}, w_{2 t+1}, \overline{w_{j}, \ldots, w_{2 t}}}} \tag{1.7}\\
& =\sum_{1 \leq j \leq 2}(-1)^{j} A^{\left[w_{2 t+1}\right], \overline{w_{j}, \ldots, w_{2 t}, w_{0}, \overline{w_{1}, \ldots, w_{j-1}}}} \tag{1.8}
\end{align*}
$$

Under the exchange $w_{0} \leftrightarrow w_{2 t+1}$, the last identity becomes:

$$
0=\sum_{1 \leq j \leq 2 t+1}(-1)^{j} A^{\left[w_{0}\right], \overline{w_{j}, \ldots, w_{2 t} t}, w_{2 t+1}, \overline{w_{1}, \ldots, w_{j-1}}}=\sum_{1 \leq j \leq 2 t+1}(-1)^{j} A^{\left[w_{0}\right], \overline{w_{j}, \ldots, w_{2 t+1}, w_{1}, \ldots, w_{j-1}}}
$$

Or again, reverting to the short notation:

$$
\begin{equation*}
0=\sum_{1 \leq j \leq 2 t+1}(-1)^{j} A^{\overline{w_{j}, \ldots, w_{2 t+1}, \overline{w_{1}, \ldots, w_{j-1}}}} \tag{1.9}
\end{equation*}
$$

On the other hand, alternality implies pus-neutrality ${ }^{3} \sum p u s^{j} A^{\bullet} \equiv 0$, which reads:

$$
\begin{equation*}
0=\sum_{1 \leq j \leq 2 t+1} A^{\overline{w_{j}, \ldots, w_{2 t+1}, \overline{w_{1}, \ldots, w_{j-1}}}} \tag{1.10}
\end{equation*}
$$

From (1.9) and (1.10) we get by addition:

$$
\begin{equation*}
0=\sum_{0 \leq k \leq t} A^{\overline{w_{2 k+1}, \ldots, w_{2 t+1}, \overline{w_{1}}, \ldots, w_{2 k}}} \tag{1.11}
\end{equation*}
$$

and by subtraction:

$$
\begin{equation*}
0=\sum_{1 \leq k \leq t} A^{\overline{w_{2 k}, \ldots, w_{2 t+1}}, \overline{w_{1}, \ldots, w_{2 k-1}}} \tag{1.12}
\end{equation*}
$$

Under the change $\left(w_{2}, w_{3}, \ldots, w_{2 t+1}, w_{1}\right) \rightarrow\left(w_{1}, w_{2}, \ldots, w_{2 t+1}\right)$, (1.12) becomes:

$$
\begin{equation*}
0=\sum_{1 \leq k \leq t} A^{\overline{w_{2 k+1}, \ldots, w_{2 t+1}, w_{1}, \ldots, w_{2 k}}} \tag{1.13}
\end{equation*}
$$

Subtracting (1.13) from (1.11), we end up with $A^{w_{1}, \ldots, w_{r}} \equiv 0$.

[^2]
2 Canonical factorisation of bisymmetrals.

This section is devoted to establishing the factorisation ${ }^{4}$:

$$
\begin{equation*}
\mathrm{GARI}^{\mathrm{as} / \mathrm{as}}=\operatorname{gari}\left(\mathrm{GARI}^{\mathrm{as} / \mathrm{as}^{\mathrm{as}}}, \mathrm{GARI}^{\mathrm{Is} / \underline{\mathrm{as}})}\right. \tag{2.1}
\end{equation*}
$$

of the set $G A R I^{a s / a s}$ of all bisymmetrals into
(i) a large, regular factor $G A R I^{\underline{\underline{a s}} / \underline{\text { as }}}$ consisting of even bimoulds and stable under the gari product
(ii) a small, exceptional factor $G A R I^{i s / a s}$ consisting of special bimoulds derived from so-called flexion units and alternately odd/even, i.e. invariant under pari.neg rather than neg.

The proof rests on the construction and properties of the special bisymmetrals $\mathfrak{e s s}^{\circ}$ ((see [FLEX] §4.2) and on the following statement:

Proposition 2.1 (Factorisation of bisymmetrals).

Any bisymmetral bimould Sa^{\bullet} and its swappee simultaneously factor as

$$
\begin{align*}
\mathrm{Sa}^{\bullet}=\operatorname{gari}\left(\mathrm{Sal}^{\bullet}, \mathrm{Sar}\right. & =\operatorname{gira}\left(\mathrm{Sal}^{\bullet}, \mathrm{Sar}^{\bullet}\right) \tag{2.2}\\
\mathrm{Si}^{\bullet}=\operatorname{gari}\left(\mathrm{Sil}^{\bullet}, \mathrm{Si} \bullet\right. & =\operatorname{gira}\left(\mathrm{Sil}^{\bullet}, \mathrm{Sir} \bullet\right. \tag{2.3}
\end{align*}
$$

- with $\mathrm{Si}^{\bullet}=$ swap. $\mathrm{Sa}^{\bullet}, \mathrm{Sil}^{\bullet}=$ swap.Sal ${ }^{\bullet}, \mathrm{Sir}^{\bullet}=$ swap.Sar ${ }^{\bullet}$
- with bisymmetral right factors at once neg- and gush-invariant
- with bisymmetral left factors at once pari.neg- and pari.gush-invariant.

In other words:

$$
\begin{align*}
& \mathrm{Sar}^{\bullet}, \mathrm{Sir}^{\bullet} \in \mathrm{GARI}_{\text {neg }}^{\mathrm{as} / \mathrm{as}}=\mathrm{GARI}_{\text {gush }}^{\mathrm{as} / \mathrm{as}}=: \mathrm{GARI}^{\text {as/ } / \mathrm{as}} \tag{2.4}\\
& \mathrm{Sal}^{\bullet}, \mathrm{Sil}^{\bullet} \in \mathrm{GARI}_{\text {pari.neg }}^{\mathrm{as}}=\mathrm{GARI}_{\text {pari.gush }}^{\text {as/as }} \tag{2.5}
\end{align*}
$$

The above decompositions are not unique, but two of them stand out, namely the one in which

$$
\begin{equation*}
\mathrm{Sal} \mathrm{elss}^{\bullet}=\text { with }^{\bullet}-\frac{1}{2} \mathfrak{E}^{w_{1}}=\mathrm{Sal}^{w_{1}}=\frac{1}{2}\left(\mathrm{Sa}^{w_{1}}-\mathrm{Sa}^{-w_{1}}\right) \tag{2.6}
\end{equation*}
$$

and the one in which

$$
\begin{equation*}
\mathrm{Sil}^{\bullet}=\mathfrak{o s s}_{\mathfrak{O}}^{\bullet} \quad \text { with }-\frac{1}{2} \mathfrak{D}^{w_{1}}=\mathrm{Sil}^{w_{1}}=\frac{1}{2}\left(\mathrm{Si}^{w_{1}}-\mathrm{Si}^{-w_{1}}\right) \tag{2.7}
\end{equation*}
$$

These 'co-canonical' decompositions involve two conjugate flexion units \mathfrak{E} and \mathfrak{O} and, though distinct, easily translate one into the other under the classical relation between ess.e $^{\circ}$ and $\mathfrak{o s s}_{\mathfrak{O}}^{\circ}$: see formula (4.63) in §4.2 of [FLEX].

[^3]Proof: It rests on the Proposition 1.1 of the preceding section, in conjunction with the two following lemmas.

Lemma 2.1 (First components of bisymmetrals).

If the length-one component Sal ${ }^{w_{1}}$ of a bisymmetral bimould Sal ${ }^{\bullet}$ is an even function of $w_{1}=\binom{u_{1}}{v_{1}}$, it may a priori be anything, but if it is an odd function, it is necessarily a flexion unit.

Proof: Let u_{0}, u_{1}, u_{2} be constrained by $u_{0}+u_{1}+u_{2}=0$ and let v_{0}, v_{1}, v_{2} be defined up to a common additive constant. At length 2 , the unique symmetrality relation for $S a l^{\bullet}$ may be written thus:

Due to $S a l^{w_{1}}$ being odd, this yields:

Likewise, the unique symmetrality relation for $S a l^{\bullet}$ may be written as:

In the u_{i}-variables, this translates into:
or again, due to imparity and to $\sum u_{i}=0$:

Let E_{1} be the identity obtained by adding the three circular permutations of (2.8) and (2.9), and E_{2} the identity obtained by adding the six permutations, circular or anticircular, of (2.10). The left-hand sides of E_{1} and E_{2} clearly coincide, while their right-hand sides coincide only up to the sign. Equating these right-hand sides, we find:
which is precisely the symmetrical characterisation of a flexion unit.
Remark 1: On the face of it, the requirement that the length- 1 component be a flexion unit is merely a necessary condition for the existence of a bisymmetral 'continuation'. However, the theory of unit-generated bisymmetrals
$\mathfrak{e s s}^{\bullet}{ }^{\bullet}$ shows this condition to be (miraculously) sufficient. ${ }^{5}$ This is probably the best a posteriori justification for singling out this notion of flexion unit, though by no means the only one.

Remark 2: Had we assumed $S a l^{\bullet}$ to be even, we would have found no constraints at all on the length- 1 component - which was only to be expected, since the Lie-exponential of that length- 1 component is automatically in $G A R I^{\text {as/ } / \text { as }}$.

Remark 3: One should not be too exercised over the presence of the factor 4 in (2.11), but rather observe that it vanishes after the change $S a l^{w_{1}}=-\frac{1}{2} \mathfrak{E}^{w_{1}}$ which, as it happens, the construction of $\mathfrak{e s s}_{\mathfrak{E}}^{\circ}$ quite naturally imposes.

Lemma 2.2 (General and even bisymmetrals).

Though not a group, the set $\mathrm{GARI}^{\text {as/as }}$ of all bialternals is stable under both gari- and gira-postcomposition by the group GARI ${ }^{\text {as/as }}$ of even bisymmetrals, and the identity holds:

$$
\begin{equation*}
\operatorname{gari}\left(\mathrm{S}_{1}^{\bullet}, \mathrm{S}_{2}^{\bullet}\right) \equiv \operatorname{gira}\left(\mathrm{S}_{1}^{\bullet}, \mathrm{S}_{2}^{\bullet}\right) \in \operatorname{as} / \text { as } \quad\left(\forall \mathrm{S}_{1}^{\bullet} \in \mathrm{as} / \text { as }, \forall \mathrm{S}_{2}^{\bullet} \in \underline{\mathrm{as}} / \underline{\text { as }}\right) \tag{2.12}
\end{equation*}
$$

Proof: Here gira stands for the pull-back of gari under the basic involution swap. Both group laws are related as follows ${ }^{6}$:

$$
\begin{equation*}
\operatorname{gira}\left(S_{1}^{\bullet}, S_{2}^{\bullet}\right)=\operatorname{ganit}\left(\operatorname{rash} \cdot S_{2}^{\bullet}\right) \cdot \operatorname{gari}\left(S_{1}^{\bullet}, \operatorname{ras} . S_{2}^{\bullet}\right) \tag{2.13}
\end{equation*}
$$

with non-linear operators ras, rash defined by:

$$
\begin{align*}
\operatorname{ras} . S_{2}^{\bullet} & =\text { invgari.swap.invgari.swap. } S_{2}^{\bullet} \tag{2.14}\\
\operatorname{rash} . S_{2}^{\bullet} & \left.=\text { mu(push.swap.invmu.swap. } S_{2}^{\bullet}, S_{2}^{\bullet}\right) \tag{2.15}
\end{align*}
$$

But since in Lemma 2.1 the right factor S_{2}^{\bullet} is in $G A R I^{\underline{\text { as }} / \underline{\text { as }}}$ and since gari and gira coincide on $G A R I^{\text {as/ as }}$ (even as ari and ira coincide on $A R I^{\underline{\underline{a l} / \text { al }} \text {), }}$ this implies:

$$
\begin{equation*}
\text { ras. } S_{2}^{\bullet}=\text { invgari.invgira. } S_{2}^{\bullet}=S_{2}^{\bullet} \tag{2.16}
\end{equation*}
$$

Likewise, any bimould of as/as type is automatically gush-invariant (even as any bimould of al/al type is automatically push-invariant). See [FLEX], §2.4. This in turn implies:

$$
\begin{equation*}
\operatorname{rash} . S_{2}^{\bullet}=1^{\bullet} \quad \text { and } \quad \operatorname{ganit}\left(\operatorname{rash} . S_{2}^{\bullet}\right)=\mathrm{id} \tag{2.17}
\end{equation*}
$$

[^4]and establishes (2.12).
Remark 4. Thus, S_{2}^{\bullet} is the only factor that really matters when comparing $\operatorname{gari}\left(S_{1}^{\bullet}, S_{2}^{\bullet}\right)$ and $\operatorname{gira}\left(S_{1}^{\bullet}, S_{2}^{\bullet}\right)$. This is less surprising than may appear at first sight, since the gari and gira products are linear in the left factor and violently non-linear in the right factor.

We may now return to the proof of Proposition 2.1. To define our left factor Sal ${ }^{\bullet}$ we set:

$$
\begin{equation*}
\mathrm{Sal}_{r}^{\bullet}:=\mathfrak{e s s}_{\mathfrak{E}}^{\bullet} \quad \text { with } \quad-\frac{1}{2} \mathfrak{E}^{w_{1}}:=\frac{1}{2}\left(\mathrm{Sa}^{w_{1}}-\mathrm{Sa}^{-w_{1}}\right) \tag{2.18}
\end{equation*}
$$

By the general theory of $\S 4.2$ in [FLEX], this left factor is not just bisymmetral, but also invariant under pari.neg. Let us now address the construction of the right factor $S a r^{\bullet}$. For each r, we can construct bimould pairs ($S a_{r}^{\bullet}, s a r_{r}^{\bullet}$) by the following induction. For $r=1$ we set:

$$
\begin{align*}
\mathrm{Sa}_{1}^{\bullet} & :=\mathrm{Sa} \tag{2.19}\\
\mathrm{Sar}_{1}^{\bullet} & :=\frac{1}{2}\left(\mathrm{Sa}^{w_{1}}+\mathrm{Sa}^{-w_{1}}\right) \tag{2.20}
\end{align*}
$$

and for $r>1$ we set:

$$
\begin{align*}
\operatorname{Sa}_{r}^{\bullet} & :=\operatorname{gari}\left(\operatorname{Sa}^{\bullet}, \operatorname{expari}\left(-\operatorname{sar}_{1}^{\bullet}\right), \ldots, \operatorname{expari}\left(-\operatorname{sar}_{r-1}^{\bullet}\right)\right) \tag{2.21}\\
\operatorname{sar}_{r}^{w_{1}, \ldots, w_{r}} & :=\operatorname{Sa}_{r}^{w_{1}, \ldots, w_{r}}-\operatorname{Sal}^{w_{1}, \ldots, w_{r}} \tag{2.22}\\
\operatorname{sar}_{r}^{w_{1}, \ldots, w_{l}} & :=0 \quad \text { if } \quad l \neq r \tag{2.23}
\end{align*}
$$

Clearly:

$$
\operatorname{sar}_{r}^{\bullet} \in \mathrm{BIMU}_{r} \quad \text { and } \quad \mathrm{Sa}_{r}^{\bullet} \equiv \mathrm{Sal} \quad \bmod \oplus_{r \leq r^{\prime}} \mathrm{BIMU}_{r^{\prime}}
$$

Let us now check that
(i) each $S a_{l}{ }^{\bullet}$ is in $G A R I^{\text {as/as }}$;
(ii) each $s a r_{l}{ }^{\bullet}$ is in $A R I^{\underline{\text { as }} / \underline{\text { as }} \text {; }}$
(iii) and therefore each $\operatorname{expar}\left(\pm \operatorname{sar}_{l}^{\bullet}\right)$ is in $G A R I^{\text {as } / \text { as }}$.

This obviously holds for $l=1$. If it holds for all $l<r$, then by Lemma 2.1 $S a_{l}{ }^{\bullet}$ is also in $G A R I^{\text {as/as }}$, as the gari-product of an as/as by a string of several $\underline{\mathrm{as}} / \underline{\mathrm{as}}$. As for $\operatorname{sar}_{r}^{\bullet}$, it is defined as the difference of length r components of two bisymmetral bimoulds, $\mathrm{Sa}_{r}^{\bullet}$ and Sal^{\bullet}, whose earlier components coincide. It is therefore not just al/al (bialternal) but also, by Lemma 1.1 of
the preceding section, $\underline{a l} / \underline{a l}$ (bialternal and even), and its Lie exponential is automatically $\underline{a s} / \underline{a s}$.

Summing up, we arrive at a factorisation of the announced type (2.2), with a left factor defined by (2.18) and a right factor defined by

$$
\begin{equation*}
\operatorname{Sar}^{\bullet}=\lim _{r \rightarrow \infty} \operatorname{gari}\left(\operatorname{expari}\left(\operatorname{sar}_{r}^{\bullet}\right), \ldots, \operatorname{expari}\left(\operatorname{sar}_{1}^{\bullet}\right)\right) \tag{2.24}
\end{equation*}
$$

The swappee factorisations (2.3) immediately follow, again under (2.13).

3 Bimould symmetries and the underlying group actions.

3.1 Simple symmetries and the group \mathfrak{S}_{r}.
3.2 Intermediate symmetries and the group \mathfrak{S}_{r+1}.
3.3 Double symmetries and the group $S l_{r}(\mathbb{Z})$.

4 Obvious and less obvious filtrations on $A L A L$ and $A L I L$.
4.1 Weight, length, degree.
4.2 Regular versus wandering bialternals.
4.3 Support-based filtrations.

5 Inductive calculations on $A L I L$.
5.1 Induction from the bottom.
5.2 Induction from the top.
5.3 Induction from the middle.
5.4 The case of bicolours.

6 Universals on $A L I L$: facts and conjectures
6.1 Universals on the alternal side.
6.2 Universals on the alternil side.
6.3 Some relevant multizeta identities.

7 Tables: co-supports on the even-weighted part of $A L I L$.
7.1 Co-supports on the alternal side.
7.2 Co-supports on the alternil side.

8 Co-supports on the odd-weighted part of ALIL. Tables.
8.1 Co-supports on the alternal side.
8.2 Co-supports on the alternil side.

[^0]: ${ }^{1}$ In Ann. Scuola Norm. Sup Pisa, 2011, pp 27-211.

[^1]: ${ }^{2}$ See [FLEX] §2.7

[^2]: ${ }^{3}$ See [FLEX], §2.4. For a proof, see below, $\S 3$.

[^3]: ${ }^{4}$ See [FLEX], §2.8.

[^4]: ${ }^{5}$ See [FLEX], §4.2, §11.9, §11.10.
 ${ }^{6}$ see [FLEX], §2.3. This universal identity holds for any factors $S_{1}^{\bullet}, S_{2}^{\bullet}$.

