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Abstract. The present paper addresses two seemingly unrelated topics — the anal-
ysis of singular-and-singularly-perturbed differential systems; and the arithmetics
of multizetas — but with a strong unifying thread, provided by the three scrambling
operators.

The operators in question — scram, viscram, discram — properly belong to the
field of combinatorics and mould algebra. Their properties are many, but one
stands out: generating rich symmetries and sophisticated operations out of poorer
or more elementary ones.

The formal solutions of singular differential systems, when expanded in inverse-
power series of the ‘critical variable’ z, tend to exhibit divergence, but of a regular
and well-understood type: resummable and resurgent, with a resurgence regime
completely governed by the now classical Bridge equation. When one introduces a
singular perturbation parameter € and expands the solution in powers of the same,
divergence and resurgence still rule the show, but the picture becomes incomparably
more complex: the resurgence calls for two new Bridge equations, not one; the
familiar Stokes constants make way for the radically different tessellation coeffi-
cients; and it takes the operator scram to fully unravel the mechanisms responsible
for this new level of complexity.

The closely related operators viscram and discram, on their part, render dis-
tinguished services in multizeta algebra, especially for dissecting what is arguably
the most pivotal case: the bicoloured multizetas. For one thing, they assist in
proving the independence of the standard system of bicolour generators. But their
real contribution lies elsewhere. The fact is that, due to the simultaneous play of
weigths s; € N* and colours ¢; € %Z/Z, there exist for any given (large) total weight
s, a huge number of k-coloured multizetas. Yet there is a saving grace: the dou-
ble symmetry (known as arithmetical dimorphy ) which constrains these multizetas
induces so strong a rigidity that the whole information can be recovered from rela-
tively sparse boundary data (somewhat like with harmonic or analytic functions).
The phenomenon is particularly striking in the case of bicolours (k=2) and their



three satellites: the ‘lower satellite’ sa, with all degrees set equal to 0; the ‘first
upper satellite’ sa™*, with all colours (simultaneously) set equal to 0 or %; and the
‘second upper satellite’ sa™*, similar in shape to the first, but completely differ-
ent in origin. We show, with ample assistance from viscram and discram, how
each of these three satellite systems not only morphs into the other two, but also
leads to the complete system of bicolours — each conversion finding its expression
in remarkably explicit formulae.
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1 Introduction. The three scrambling opera-
tors.

1.1 Roadmap and main results.

The present paper is about a new family of operators — the scrambling oper-
ators — and their wide-ranging applications to Combinatorics, Algebra, and
Analysis. In keeping with this prospectus, and although we shall present a
fairly large number of new results along the way, our chief concern shall be
one of bridge building and unification, of bringing order and structure to a
seemingly loosely-knit, in places even chaotic mathematical subject matter.

The scrambling operators.

They are three in number! — scram, discram, viscram — and their proper set-
ting is at the intersection of combinatorics and mould algebra. The secret of
their usefulness lies in their two main properties. First, they turn the straight-
forward, uncomplicated, uninflected mould operations into the subtler, more
complex, inflected operations which govern bimould algebra. Second, they
transmute simple symmetries into double ones. Some of them, like viscram,
also preserve double symmetries. This makes them ideally suited for tackling
arithmetical dimorphy.

INot counting two generalisations of scram, to wit the u- and v-augmented scrambles.



Singularly perturbed differential systems and co-equational resur-
gence.

There is a distinct kinship, but also a sharp gap in complexity, between
equational resurgence (i.e. the divergence-resurgence relative to the criti-
cal variable of a singular differential system) and co-equational resurgence
(i.e. the divergence-resurgence relative to a critical parameter in such a sys-
tem). The gap manifests at every level. At the global level: while equational
resurgence is entirely described by one so-called Bridge equation (relating
alien and ordinary differential operators), co-equational resurgence calls for
two Bridge equations, each of a far more intricate structure. At the an-
alytical level: while equational resurgence and equational Stokes analysis
require only simple resurgence monomials (elementary resurgent functions)
and monics (elementary transcendental numbers), co-equational resurgence
calls for incomparably more complex monomials and an altogether new type
of monics, the discrete-valued tessellation coefficients, which largely replace
the familiar, continuous-valued Stokes constants. Lastly, at the methodolog-
ical level, we have this major complication: while the shape and nature of
equational resurgence may be established almost calculation-free, by formal
manipulations involving the alien derivations and supplemented by only a
modicum of Analysis, co-equational resurgence allows no such short-cuts,
not even for performing the very first step: locating the singularities on the
various Riemann sheets of the ‘Borel plane’.

As it happens, this gap in complexity faithfully reflects the divide be-
tween uninflected mould algebra, developed in the late seventies, largely as a
handtool for equational resurgence, and inflected bimould algebra, developped
from the mid-eighties for tackling co-equational resurgence. We survey (and
update) the question in sections §2 and §3, and then tackle perturbed differ-
ential systems in §4.

An outstanding feature of co-equational resurgence is the centrality of
combinatorics to the subject — a combinatorics moreover that is entirely
dominated by the scramble transform, and even, in the case of ramified z-
data, by a generalised version of it. One may balk at the complexity of certain
developments, and resent the notational acrobatics they force on one, but one
would do well to remember two things. First, the combinatorics in question
has nothing artificial about it: it is entirely, rigidly, univocally imposed by
the nature of this particular, very prevalent form of resurgence. Second, while
the combinatorics is complex enough in its own terms, it neatly disentangles
and tidies up mathematical situations that are incomparably more complex.
Consider for instance this system, with generic, depth-4 hyperlogarithmic



coefficients b;:
(0, +wix)Yi(2) = Yic1(2) bi(2) (1<i<4,Yy=1) (1)

It is a honest-to-goodness differential system, linear to boot, and fairly sim-
ple. Yet its resurgence in x generates, in the corresponding Borel £-plane,
close to 10! distinct singularities, living on as many Riemann sheets. Sit-
uations like this may seem well-nigh intractable, yet the tool-kit presented
here, in §2-84, leads to a complete, surveyable description of all their aspects.
This should never be lost sight of when assessing the cost-effectiveness of the
analytico-combinatorial apparatus introduced here.

Moreover, while combinatorics may dominate our treatment of coequa-
tional resurgence, when it comes to stating the results, it is two other notions
that occupy center-stage. They are:

(i) the weighted multiplication or rather its Borel image, the weighted con-
volution, which generate the specific ‘resurgence monomials’ which in turn
manifest co-equational resurgence at the most basic level.?

(ii) the tessellation coefficients, indispensable but also sufficient for express-
ing the alien derivatives of these convolution products.

The passage from (i) to (ii) is precisely where combinatorics comes in:
the integrals underlying weighted convolution are so intricate, so impossibly
ramified, that the rules governing their alien differentiation cannot be estab-
lished directly, but only over the detour through a special set of functions
(- the hyperlogarithms -) sufficiently numerous to reflect the general picture,
yet simple enough to allow a complete formalisation.

Multizeta algebra: monocolours and bicolours.

Soon after their introduction in Analysis, the scrambling operators and the
flexion structure were found relevant to multizeta arithmetics, and began to
be successfully applied there. This should not come as a surprise, since the
multizetas are, among other things, one of the most basic systems of monics
(they are the main transcendental ingredient in the make-up of the Stokes
constants of local resonant diffeomorphisms) and the most seminal instance
of arithmetical dimorphy.

We have already devoted several investigations to the subject, and are
planning many more, but in this paper (§5-§7) we concentrate on just two
classes of multizetas — the monocolours and bicolours — and keep the focus

2More precisely, everything rests on two weighted multiplications, wemu® and welu®,
and the corresponding weighted convolution, weco® and welo®. The symmetral operations
wemu® /weco® are essential for understanding the Second Bridge Equation; the alternal
operations welu®/welo® for understanding the Third Bridge Equation.



on one main issue: the search for a suitable filtration, as a way of overcoming
the curse of retro-action. Let us explain.

Multizetas, whether taken in scalar form or collected inside the more
convenient generating series zag®/zig®, admit three basic filtrations: by total
weight s, by length 7, and by degree® d = s — 7.

The s-filtration is fine as far as it goes: the two basic ‘symmetries’ (i.e. the
two, conjecturedly exhaustive, systems of ‘quadratic relations’) constraining
the multizetas do indeed respect the filtration and even the gradation by
weight, but as s increases, the multizetas of weight < s get much too numer-
ous for practical handling, especially in the case of bicolours.

The s-filtration, when refined by the s-filtration, looks more promising,
but it remains blighted by the curse of retro-action. That curse, moreover,
manifests in two sharply different, almost complementary ways for mono-
colours and bicolours, especially when one works in the relevant Lie algebra,
namely ARI il poy monocolours, the two symmetries nicely allow the con-

ent

struction of a system of generators following the (s, r)-filtration, but do not

fully determine the decomposition of the general element of ARI Wi i) terms

ent
of these generators: at each level (s,7) there is generally an indeterminacy
which gets removed only when we proceed? to the level (s,r + 2). For bi-
colours, the position is exactly the reverse: once we get hold of a system of

generators, the decomposition of the general element of ARI a5 fully deter-

ent
mined at each level (s,r), but the generators themselves resist construction
according the (s, r)-filtration: at most levels (s,r) there appear parasitical
degrees of freedom, which get removed only when we proceed to the higher
levels (s,7 4+ 1), (s,7 + 2) etc.

That leaves the s-filtration refined by the d-filtration (d = s—r). It suffers
from neither drawback (- no retro-action there, at least for bicolours -) but,
starting as it does from low values of d and correspondingly high values of r,
it saddles us with cumbersome polynomials of r variables.

These two distinct forms which retro-action can assume call for quite
distinct remedies.

For monocolours, the best (though by no means the only) way out of
trouble is to move from the polynomial to the perinomal setting. i.e. to work
with plurivariate meromorphic functions with a very specific pole structure.
We show in §7 how this simple and very natural trick enforces rigidity by

removing all indeterminacy not only in the stepwise construction (along the
al/il

i but also in the stepwise de-

r-filtration) of canonical generators of ARI

3s0-called, because in the approach based on the generating series zag®, d does indeed

correspond to the global polynomial degree in the u-variables.
4as explained in §5.7.



il
I8 0 terms of

composition (again along the r-filtration) of elements of AR
these generators.

For bicolours, the key notion is satellisation, i.e. the replacement of the
huge quantity of multizetas (consequent on the introduction of colours) by
sparse ‘boundary data’ or ‘satellites’, far smaller in size yet containing all
the information, and that too in algorithmically retrievable form. There are
three such ‘boundary systems’, each self-sufficient, but all three contributing
in an essential way to the overall picture. The lower or root satellisation sa
retains only the bicolours of zero degree.> The first upper satellisation sa*,
retains only the ‘monochromous bicolours’, i.e. the all-whites (colour 0) and
the all-blacks (colour 1). The second upper satellisation sa** resembles the
first in outward shape, but results from a completely different construction.®

Two remarkable, hitherto unnoticed phenomena are, in combination, re-
sponsible for the success of the satellisation scheme. First, the basic ‘sym-
metries’ that underpin multizeta dimorphy” impose on the bicolours a strong
rigidity which makes it possible to recover the ‘whole’ from suitable ‘parts’,
far smaller and easier to handle, much as harmonicity or analyticity makes it
possible to recover the whole of a function from its boundary data. Second, in
the ARI algebra and the flexion structure in general, we observe a quite un-
expected affinity of behaviour between v-dependent, discrete bimoulds® and
u-dependent, polynomial-valued bimoulds.? As explained in §6, this discrete
< polynomial duality governs the whole system of correspondences between
the three satellites as also between each satellite and the ‘global picture’.

Specific new results.

e We give (§1.2-§1.5) a systematic account of the three scrambling oper-
ators, their main properties and chief applications to date.

e While reviewing in §2 the subject of hyperlogarithms, we introduce
(§2.4), parallel to the classical moulds Lan®/Lin® expressive of hyper-

5all their partial weights s; are therefore equal to 1.

61t derives from the zero-degree multizetas by a procedure known as amplification.

"They are technically known as symmetrality/symmetrelity when we work with the
scalar multizetas, and symmetality/symmetrility (vesp alternality/alternility) when we turn
to the corresponding group (resp. algebra) of generating series. Mark the alternation of
the three root vowels a/e/i. In all, we get six distinct symmetries, whose definitions are
recalled in §8.1.2.

8more precisely, bimoulds that depend only on two-valued colours vj (usually noted €;)
that range through the discrete ring %Z/Z.

9%i.e. bimoulds that depend only on the complex variables u;. Concretely, this is the
passage sa — sa** described at length in §6.3.



logarithmic dimorphy (dimorphy I), a new pair Lag®/Lig® that mani-
fests dimorphy in a completely new way (dimorphy II). Dimorphy aside,
the moulds Lag®/Lig® have their autonomous interest: as shown to-
wards the end (§2.6-§2.7), they connect the behaviour of hyperloga-
rithmic monomials at the antipodes 0 and oo.

e We introduce and investigate (§3.2-§3.4) two weighted multiplications
wemu, yemu and their Borel images, the weighted convolutions weco,
yeco. Of these, weco alone is of direct relevance to the study of singular
perturbations, but it is only in relation with the other three ‘products’
that it assumes its real significance.

e We derive (§3.5) the basic duality result: subjecting simple poles at v;
to weco with weights u; is essentially the same as subjecting simple poles
at u; to yeco with weights v;. In both cases, the scramble transform
governs the combinatorics.

e We define and investigate (§3.7) two generalised scramble transforms,
the u-augmented and v-augmented scrambles, that will be required to
calculate the action on arbitrary ramified functions of the four weighted
products.

e We extend the scope of functional dimorphy by showing (§3.8) that the
hyperlogarithmic monomials are stable not only under convolution and
point-wise multiplication'?, but also under their weighted counterparts
weco, yeco and wemu, yemau.

e Turning (§4) to the study of perturbed differential systems, we intro-
duce and investigate (§4.4-§4.7) the specific resurgence monomials S*
and 7°*, along with several variants necessary for tackling co-equational
resurgence.

e The monics answering to the monomials §* and T* are the so-called
tessellation coefficients tes®. Arguably the most emblematic and ar-
resting feature of co-equational resurgence, they supplant in this con-
text the familiar Stokes constants of equational resurgence. They are
integer-valued, piece-wise constant functions on C?", with domains of
constancy separated by homographic hypersurfaces. Their simplicity is
deceptive and the list of their properties (as given in §4.8-§4.9) certainly
far from exhaustive.

Owhat matters here is not the (quite predictable) stability of the hyperlogarithms under
these four operations, but the underlying mould transforms with their rich properties.



Equipped with this analytical machinery, we are in a position (§4.9-
§4.10) to derive the Bridge equations II and III that describe (through
the whole range of possible situations, from linear to non-linear, from
meromorphic to hyperlogarithmic to general) the divergence /resurgence
of our model system when we expand its solution in power series of the
perturbation parameter ¢ = 1/x. Despite a definite kinship with the
first Bridge equation BE; (which describes equational resurgence, i.e.
the resurgence in the system’s own critical variable z), equations BE
and BE 1 are more complex by several orders of magnitude. In general,
four successive ‘layers of complexity’ have to be distinguished between
the raw data (i.e. the perturbed system) and the actual ingredients of
BE; and BE ;. In some favourable situations, though, the four layers
may reduce to three or just two.

We then leave Analysis and turn to our second field of applications —
Multizeta Algebra. After some sketchy reminders (§5.5-§5.7), we estab-
lish (§5.8) the independence of the basic bicolour bialternals. Though
this was a conjecture of long standing, its proof relies on a transparent
formula and turns out to be surprisingly, almost embarrassingly simple.

With a view to drastically simplify the study of bicolours, we introduce
(8§6.1-86.3) the three basic ‘satellites’ or ‘systems of boundary values’:
sa, sa*, sa**.

We show (§6.4) how ‘og 2’ (— the only bicolour of weight 1 —) compli-
cates the construction of the satellites, twists their mutual correspon-
dences, and obscures their links with the global algebra of bicolours.
This probably explains why the very feasibility of ‘satellisation’” had
hitherto gone unnoticed.

We give (§6.5) an elegant formula for deriving the odd-degree compo-
nents of bimoulds in ARI fol/;*l from their even-degree components. The
formula admits a restriction to the satellites. Besides Bernoulli-related
numbers &,, it makes massive use of the polar function P. It calls
therefore for the ARI-framework, and cannot be replicated in any of

the alternative settings commonly used in multizeta algebra.

We show (§6.7-86.8) that the first and second upper satellites, sa*
and sa**, despite being total strangers resulting from unrelated con-
structions, in fact correspond under a remarkable involution K. That
involution respects the d- rather than the r-filtration, but we revert
to the more convenient r-filtration via an explicit algebra isomorphism
that exchanges d and r.

10



e The section culminates (§6.6) in the ‘Green-like’ formulae, based on
viscram and discram, which lead from the ‘boundary data’ (i.e. any
one of the three satellites) to the full system of bicolours. Here again,
we cannot dispense with the polar function P or the ARI-GARI frame-
work.

e Turning (§7) to monocolours, we give (§7.5) three pairs of formulae!!
that highlight the contrast between the rigidity of the perinomal and
the looseness of the polynomial framework.

e We show (§7.4) how, thanks to the independence of the perinomal gen-
erators we can overcome the ‘curse of retro-action’ for monocolours.

e The polynomial generators have their use, too. They acquire rigidity
if we impose arithmetical constraints on their denominators by ban-
ning large prime numbers. We give (§7.5) formulae that describe these
generators up to length 3 (hence also, due to parity, up to length 4).

e The last section, alongside reminders (§8.1) and extensive tables (§8.3,
§8.7, §8.8, §8.9), presents some scattered results (§8.2, §8.6) and con-
jectures (§8.4, §8.5) about multizetas and the flexion structure. In
particular, we point out (§8.4) a rather mysterious phenomenon of
arithmetical interdependence (modulo Bernoulli-related numbers) for
the length-4 bialternals (the classical carma bialternals).

1.2 Origin and properties of scram.

This section assumes some familiarity with mould algebra. Absent such
familiarity, a quick glance at the reminders in §8.1 is recommended.
Origin:

The scramble operator is a bimould transform

scram i M® > SM®  with  SM"™ =Y A& M (2)
p w (ul,. ,uT) w' (u’l,,u;) A
an = 3 = 5 =
Vlyeons Uy vy, UL w

that we first introduced in the late 1980’s for calculating the weighted convolu-
tion products'? weco' et - e (€) of simple polar functions ¢;(€) := (€ — a;)~".

See Propositions 7.1, 7.2, 7.3.
12They are central to co-equational resurgence. See §4 infra.

11



It soon gave rise to the so-called flexion structure, with the algebra ARI and
the group GARI as its centre piece. These tools were later brought to bear
on multizeta arithmetics.

Construction: In the expansion (2) of SM* all new indices u; either reduce
to some original u; or to a gapless sum of such wu;’s, while all new indices v;
either reduce to some original v; or to a pairwise difference of (not necessarily
consecutive) v;’s. Moreover, the ‘scalar product’ is preserved: > u;v; =
> vl These, incidentally, are standard features of the flexion structure, as
are the shorthand notations for partial sums and pairwise differences:

Wi ji=up+ e U , Visj 1= U — U (3)

.,

To actually define the expansion (2) we proceed by induction on r and make
use of the index removal operators cutfi"°® and cutla™ (fi for first, la for last):

Mw2vr f g = wy

cutfi®® M)W = 4
(cu ) { 0 otherwise (4)

Mwrvrt Gf g = w,

cutla®o M )Wi--wr  — 5
( ) { 0 otherwise (5)

We have the choice between two very dissimilar, yet equivalent inductions:

Forward induction:

Let SM*® := scramM*® and w = (1‘)1 ’:::’;“). For r = 1, we start the induction

by imposing SM*' := M"' and for 7 > 2 by imposing cutlay; SM™ = 0
except for wy of the form ("), (, v ).(, s ), in which case we set:

Vi —vip1 )\ v —vi—

(cutlaﬁf)SM)%}:::::ﬁ: ) — gy G ) ©)
(cutlayi—+ gar) L) — g ) (1< <) (7)
(cutlalz - sp) (D _ gD (1 << @

The lower index M in cutla’y) signals that this operator is made to act, not
on SM*, but linearly on the various M*-summands of the expansion (2).
Backward induction:

Let again SM*® := scramM*® and w = (”1“’") This time, we impose

V1 y-e0 Ur

cutfiyp SM* = 0 except for wy of the form (" "") with i < j < 7, in

12



which case we set:

u1+m+uj

(cutfi,, " )SM)w = symlin(SM i”SMﬁ'j, SME’) (9)

. . UL yeen, Uj— . Ujg] yenes U — u; 7}
Wlthw:( ’ 711)7w:( i+15 7])7w:(j+17 ’ 'r) and
V1 5wy Vi—1 Vit1,e-0 V5 Vj+1 50005 Ur

G = (1) SME St = SM e e

The bilinear operators symlin (‘symmetral linearisation’) and concat (‘con-
catenation’ — of frequent occurence in the sequel) are so defined:

symlin(SM*", SM*") = Y SM™ (10)
w e sha(w?!, w?)
concat(SM™', SM™*) = SM©' v’ (11)

Remark: As is well known, the relation S« S¢* = D wesha(w!,w?) O charac-
terises symmetral moulds. For such moulds, (9) simplifies:

u1+...+uj )

cutfi,, " SM)Y = SM¥ . "“SMY  SM® 12
M i i

The backward induction, however, always applies (with symlin defined as in
(10)), whether SM* is symmetral or not.'3

Analytical expression:

The forward induction makes it clear that scramA“"~"“r involves r!! :=
1.3.5...(2.r = 1) summands. Of these, (r!!'+1)/2 are preceded by a plus
sign, and the remaining (r!!—1)/2 by a minus sign. Thus, for r = 1,2,3, we
find:

(scramM)(Z}) = M)

(scram M)(Zi oa) = M) 4 Cesten) - o)

(scram M)(Z}’,Z;’:fg): LM Gerenes) 1 G Y e ) — A Cr s )
AR )
LM ) e )
M) e ) 1 g g
—M(u113§731v2?2202?2 ) _ M(ulﬁg’Sivﬁivaz)
M el e ) A ) - NS e )

13In actual fact, SM*® is symmetral if and only if M* is.
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Main properties.

(i) Turning uninflected into inflected operations:

When acting on alternals, scram turns the ordinary lu bracket into ari, and
when acting on symmetrals, it turns ordinary mould multiplication mu into
the gar: product:

scram.lu(A®, B*) = ari(scram.A*, scram.B®) (13)

scram.mu(R*, S*) = gari(scram.R® scram.S*®) (14)

Actually, for (14) to hold, it is enough for the second factor S*® be symmetral.
In (13), though, both factors have to be alternal.

(ii) Respecting simple symmetries:

{A® alternal} == {scram.A* alternal} (15)

{S* symmetral} == {scram.A® symmetral} (16)

(iii) Creating double symmetries:

If A* is alternal and even separately in each w;,'* then scram.A* is bialternal.
Likewise, if S*® is symmetral and even separately in each w;, them scram.S*®
is bisymmetral.'®

1.3 Origin and properties of discram.
Origin:

The operator discram arose almost accidentally, while searching for a means
of expressing all bicolored multizetas from a very small subset — the subset
of ‘all-blacks’.!® Unlike scram, discram acts not on bimoulds, but on moulds
M 17T Like scram, discram produces bimoulds, but of a very special sort:
their lower indices v; = ¢; range through %Z/Z. They are ‘colours’, either 0

in the obvious sense that AG Wi ertr = AW Ve, € {41},

15Recall that M* is said to be bialternal (resp. bisymmetral) iff M* and swap.M*® are
both alternal (resp. symmetral), with swap denoting the basic flexion involution: see §5.1
or §8.1.4.

16je. the subset of multizetas carrying the sole colour % See §6.2. There is no strict
equivalent for more than two colours, nor can there be.

17In this paper, we shall have to handle moulds nearly as often as bimoulds. As far as
feasible, we shall use curly capitals A®, B*... for moulds and ordinary capitals A®, B°®... for
bimoulds.
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(‘white’) or 3 (‘black’).

discram : M — Sy, with S = > X MY (17)
u/
w = ("ot ,ou = (uy, ..o ul)
and €L e 6{
€1,...,6 € 5L/ 7 ;o Ay = *1
Construction:

(i) We start from the expansion (2) of scram.M®.

/
UL ey U

(ii) To each of the sequences w' = (} r) occurring on the right-hand side,
1

/
..... vy,

we attach two elementary sequences

#(wl) = (6/17 "'>€;~) ) V(wl) = (O-ia "'707,")

defined in this way:

, 0 if at least one vy, in w' is of type v; — v, (18)
€. =
' s otherwise
-1 i €=0
R A (19
+ Zf € = 5
(iii) For each sequence (e, ...,€,) we set:
(ul AAAAA ur) Y 1,7
S/\/? ..... er — Z )\gl MOLUL Ot (20)
pw(w')=(e1;....er)
The only elementary cases are
(¢ .
Sy = M (‘all-blacks") (21)
UY yeney ur
S/(v? **** o) _ 0 (‘all-whites") (22)

For most other sequences (e, ..., €,.) the right-hand side of (20) inevitably
carries a rather large number of summands, since according to (17) the 7!!
terms in the expansion of scram.M™ get redistributed among only 2" se-
quences (€1, ..., €.).

Main properties:

(i) Turning uninflected into inflected operations:
When acting on alternals, discram turns the ordinary lu bracket into arz, and
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when acting on symmetrals, it turns ordinary mould multiplication mu into
the gar: product:

discram . 1lu(A®, B*) = ari(discram.A*, discram.B°*) (23)
discram . mu(R*,S*) gari(discram.R°*, discram.S*) (24)

Once again, for (24) to hold, it is enough for the second factor S* to be
symmetral.

(ii) Respecting simple symmetries:

{A* alternal} == {discram.A* alternal} (25)

{S°® symmetral} == {discram.S°® symmetral} (26)

(iii) Creating double symmetries: We know of no simple, non-tautological
necessary and sufficient condition on M* for S}, to be bialternal or bisym-
metral, but there is an elementary sufficient (far from necessary) condition:
if M* is even separately in each u; and alternal (resp. symmetral), then S},
is bialternal (resp. bisymmeral).

(iv) “Recovering the whole from a part”:

If a bimould M*® with lower indices ¢; € %Z/Z is bialternal and if we set
(“1 ,,,,, ur)

MUt = N3 27 then the reconstitution identity holds:

(discram. M) e e = M) (e, ) (0, ..., 0) (27)

1.4 Origin and properties of viscram.
Origin:

Here also, the prime impulse came from multizeta algebra.!®. But although
viscram has a definition patterned on that of discram, in outward shape it
more closely resembles scram. Like scram, it turns bimoulds into bimoulds:

viscram : M® — USSM®  with YSSMY = Z Eapr MY (28)

and w = ( "), ew, = +1

w

However, compared with the sequences w’ of (2), the new sequences w”
exhibit slight sign changes, which look innocuous enough but greatly enhance
the properties and usefulness of wviscram.

18See §4.6.
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Construction:

We start from (2) and define p(w’), v(w') exactly as in §1.3. But this time
we retain all lower indices v; and merely change the signs in front of some of
them, using the o; of (19):

,,,,,

visgrCor ) o 3y, Aot o) (29)

Since the upper and lower indices undergo exactly the same sign changes, we
still have conservation of the scalar product Y u; v; = > uf v! in (28).

i
Main properties:

(i) Turning uninflected into inflected operations:

When acting on neg-invariant'® alternals, viscram turns the ordinary lu bracket
into ari, and when acting on neg-invariant symmetrals, it turns ordinary
mould multiplication mu into the gari product:

viscram . lu(A®, B*) = ari(viscram.A®, viscram.B®) (30)

viscram . mu(R*,S*) = gari(viscram.R®, viscram.S*) (31)

As usual, for (31) to hold, it is enough for the second factor to be symmetral.
(ii) Respecting simple symmetries or improving on them:

{A® alternal} == {viscram.A® alternal} (32)

{S*® symmetral} = {viscram.A* symmetral} (33)

If on top of the simple symmetry, we impose the mild requirement of neg-
invariance on A*® and S°, then wviscram.A*® acquires push-invariance on top
of its alternality: this amounts to “one symmetry and a half”. Likewise,
viscram.S® acquires gush-invariance® on top of its symmetrality.

(iii) Creating double symmetries:

If A® is alternal and even separately in each w;, them wviscram.A® coincides
with scram.A*® and is therefore bialternal. Likewise, if S* is symmetral and
even separately in each w;, them wviscram.S*® coincides with scram.S*®, which
makes it bisymmetral.

(iv) Respecting double symmetries:

{A* bialternal} —> {viscram.A* = (2" — 1).4%} (34)

19We recall that neg MWirWr 1= MW= Wr,
20 gush-invariance is the natural equivalent in GARI of push-invariance in ARI. See [Es],
§2.4, (2.76).
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Here, r(w) denotes of course the length of w. The above relation means that,
up to a simple renormalisation, the viscram transform leaves all bialternals
invariant. This is a huge improvement on scram. For the rest, property (i) for
scram is slightly stronger than (i) for viscram, but property (ii) for viscram
is much stronger than (ii) for scram. So — advantage viscram!

1.5 The scrambling operators: synopsis.

Origin and progeny:

operator origin

scram

discram  multizeta algebra
wiscram — multizeta algebra

Synoptic analytical expression:

ug,uQ )

(scram M)( g orleg)

| (viscram M)( v

uy , ug uy , ug
0 ) | M)

w2, uy wyg , —up
—|—M( vy ,v1:2) | —|—M( vg a'“2:1)

u1,2 , u2 uy 2, —u2
—M( o] 71)2;1) | —M( v1 1")1:2)

18

progeny

flexion structure
flexion structure

analysis, weighted convolution co-equational resurgence

| (discram M)(Zi:g) (e1,e2)
Mo
Mee 0
M ()



ul,u2,u3 . u,uz,u3 . up,uz,u3

(scram M)(”l’vz»vs) | (viscram M)(vlvvzv%) | (discram M)( D23 (e1,e0,63)
Uy, U2 U Uy, u u

_}_M(vi,v;,ﬂg) | +M(vi7v§:v?3,) | +M(u1,u2,uS) (%7%’%)
uyp o, U3, U3 uyl o, U3, U3

_M(vl g ,v3;2) | —M('Ul , U3 ,v2;3) | _M(“17u2,37*u3) (%7%’(»
u u , w u y —U y U

MU k) | T el | o Mlnzeueaee)
uyp o, U3, U2 Uy o, U3 5 U

—|—M(v1 .3 ,v2;3) | +M(v1 . 3 ,v3;2) | +M(u1,u2,3,—uQ) (%707%>
u 72 ,u u y TUQ 5 U

M et ) s )| o M)
u , U3 , U u s U3, U

MO ) e ) oMz
u u s u u —u u

FMURT R ) | MU e ) | g Mze s
u u u u —u u

+M( E ) | +M( 550 ey v | M2z —uzu)
U2, Ul o, U3 U2, —ul U3

+M( vg ,01:2,1;3) | +M( vy, vail 7“3) | +M(“1727*“17“3) (0’%7%)
U ,u3 , U u U3, U

F MO T ) e e ) M)
u u u u —u u

MR | R LD | pqaemwane)
u1,2,3, U3 , U2 u1,2,3 , —U3, —U2

P L) R ) | pMmzsswsw) (L0 0)
1,23, U1 , U3 u1,2,3, U1, —U3

—M( v L via v3:2) | — M v, v, v2;3) | _M(U1,2,3,—u1,—u3) (07 %7 O)
u 3, ugz , u u 3, —u3z , —u

_M( 1152’5 , v3:32 , v1;12) | —M( 1133’3 , v2:§ ) vzj) | _M(u17273,—u3,—u1) .......

v1,2,3, U1 o, U2 ) 2,3 U1, 7“2)

-|-M( V3, v1:3 5 v2:3 | —‘,—M(Mv’s ) U3:1 5 U3:2 ‘ +M(u172,3,—u1,—u2) (0, 0 l)

Synoptic properties:
e All three scrambling operators respect simple symmetries.

e When made to act on bimoulds separately even in each index, they
even turn simple into double symmetries.

e When restricted to a proper setting, they have the remarkable prop-
erty of turning the uninflected operations lu, mu into their inflected
counterparts ari, gart.

e Only wiscram has the distinction of leaving bialternals essentially in-
variant: it merely multiplies them by an elementary factor (27(*) —1).

The above list of properties is far from exhaustive. There is in fact ev-
ery reason to believe that the scrambling operators are robust mathematical

19



objects, destined to occur in more areas than the two (— singular perturba-
tions and multizeta algebra —) examined in this paper, and that they possess
more useful variants than the three just reviewed in this section. Consider
for example the statements in §4.8 about the local constancy and global non-
constancy of the bimould scram.V* derived from the hyperlogarithmic mould
V*. These statements reflect a central fact about hyperlogarithms, rather re-
condite perhaps but ultimately not-to-be-missed. Which again means that,
had scram not already been in existence, any thorough-going investigation
of hyperlogarithms would have led to its discovery.

2 Hyperlogarithmic monomials and monics.

2.1 Ordering the hyperlogarithmic chaos.

The present section collects a number of results about hyperlogarithms —
some well-known, some new — for future use in section 4 (on singular and
singularly perturbed systems). Within its very limited scope, it also aims
at clarification. The fact is that hyperlogarithms are Protean creatures that
possess a baffling wealth of properties; crop up in the most varied contexts?!;
and are capable of a bewildering number of largely equivalent but unequally
convenient definitions. To bring order to this jungle-like growth, there is
nothing like going back to the basics and keeping three central facts firmly
in mind:

(i) Hyperlogarithmic monomials (multiply indexed functions of one complex
variable) approximate (in the topology of uniform convergence on all com-
pacts) any ramified function, in particular any resurgent function on its Borel
plane. This suggests applying to them the machinery of resurgence, with its
structuring power.

(i) Hyperlogarithmic monics (multiply indexed constants) are the transcen-
dental ingredient of nearly all Stokes constants and local analytic invariants
encountered in Analysis or Analytic Geometry, and their presence, as resur-
gence coefficients, on the right-hand side of resurgence equations, has the
merit of suggesting the appropriate indexation, expressive of the underlying
symmetries.

(iii) The whole hyperlogarithmic domain is shot-through, permeated, in-
formed, and dominated by the fact of dimorphy, which however assumes
very different forms for monomials and monics. For monomials, it means sta-
bility, as functions, under two distinct, independent products: convolution
and point-wise multiplication. For monics, it means obeying, as numbers,

21To form an idea of the breadth of applications, see for instance [G],[LD],[L],[W].
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two distinct, independent ‘multiplication tables’, each attached to a special
encoding. Startingly, dimorphy for monics manifests in two quite different
and at first sight unrelated modes: dimorphy I links the classical moulds
Lan®, Lin® (it also contains multizeta dimorphy as a special case); whereas
dimorphy II links two new moulds Lag®, Lig®, both of which arise when we
compare the behaviour of hyperlogarithmic monomials at the antipodes 0
and 0.

A useful lemma: the pre/postposition of illicit indices.

Before starting, here are two simple mould identitities that we shall use
repeatedly to deal with troublesome indices, in initial (or final) position.

Lemma 2.1 (Postposition of illicit indices.) Assume that w consists of
an initial sequence 1 made exclusively of illicit elements; of a first licit ele-
ment w;; and of an arbitrary final sequence o, which may contain both licit
and illicit elements. Then, given any alternal A* or symmetral S® well-
defined except when illicit indices occur in initial position, and provided we
agree on the defintion of S™ when 1 consists only of illicit indices, the ele-
mentary identities

Ao (_1)r(n) Z AwoT (35)
Tesha(n; o)

_|_(_1>r(?7) Zresha(ﬁ;a’) SenT

ST (Caygny

nn=n

gnene (36)

o
. )Sw“T

T"esha(r}” ;o

extend the definition of A® or S*® to all sequences w while preserving their
symmetries.

Usually, though by no means always, we take S™ := 0 for purely illicit se-
quences 7). Needless to say, the lemma also works in reverse, for the preposi-
tion of illicit indices.

2.2 (-friendly monomials and monics.
Incremental vs positional indexation.

The point-wise multiplication of ramified functions leaves the singularities in
place, while convolution adds singularities, in the sense that:
(singularity over wy)=*(singularity over wy)=> (singularities over w; + ws).

This forces us to juggle two systems of notation:
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e incremental, with sequences (wy, ..., w,) (Wi = a; — ;1)

e positional, with sequences [aq, ..., a,] (0 = wy + ... +w;)

O-friendly monomials in the a and w-encodings:

As analytic germs in 7 at the origin, the monomials 9’(7), V*(7) are unam-
biguously defined by the integrals

9[041 ..... a,n](T) — J‘ dTr . J d7—2 f d’rl (al :+: 0) (37)
0

o Tr — O 0o T2 — Qg T — Qg

pereen(ry = pleveediny ith o = w4 4w (Vi) (38)

Ounly the variants Y* and PI*) (stable under . and * ; see below) are strictly
hyperlogarithmic, but is the variants V* and VI* (stable under *) that are
more commonly used in resurgent analysis:

plavead(ry = g plovedir) (39)

Vet (n) = g, YT (40)

—~
<)
R
<)
R
N
S
1]
<)
2
S
S~—
-
=

—~
<)
€
*)
<)
E\
—
3
I
<)
€
2
™
N

—
<>
E\
%)
A )
E\
N
S
S~—
If
A )
€
2
™~
o
S~—

(41) says that V [*] is symmetral relative to pointwise multiplication. (42)

and (43) say that V* and V* are symmetral relative to the convolutions *
and * respectively.

Remark 1: Here * stands for the convolution

(1 7 Bo)lr) = f " B — 1) d Bo(ra) (44)

whose unit (namely e (7) = 1) coincides with the unit of point-wise multi-
plication — a definite advantage in this context. To fall back on the more
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familiar convolution # or simply * (whose unit is the dirac at 0):

(3138)() = f Bi(r — ) olire) dry (45)

it is enough to change ¥;(7) to 3;(7) := 0, ¥i(7).

Remark 2: When some «;’s coincide or, equivalently, when some w;-sums
vanish, the definition (37) remains in force, but the conversion rule (38) has
to be slightly modified.?? Indeed, in the extreme case when all o;’s and
therefore all w;’s vanish, to ensure the double symmetrality, the definitions
have to be:

7 times

p [0::0] (r) = (IOE!T)* (a-encoding) (46)
—~ ’Totim:‘ or o (log )" ;
P00 () = [TT(F(IM))]G:O = B 4 ... (w-encoding) (47)

with a difference (the dots in (46)) polynomial in log 7 of degree r—1:

y % N (_1)7“1@ (v = Euler constant)

This, however, applies only for zero sequences in initial position.

o-friendly monics.

In the incremental encoding, the hyperlogarithmic monics V* are defined
inductively by:

Aw1+---+wTVWLW’WT(Z) = JWieewr Z P Wi VwHi,...,wr(Z) (48)

Wit1+...+wr=0

and in the positional encoding by the usual re-indexation:
V[al,...,ar] = J/ana2—al..ar—ary (49)

The hyperlogarithmic monomials V* and their monics V'* are central to equa-
tional resurgence: V* serves to expand the resurgent functions that crop up
in that context, and V* is the transcendental ingredient that enters, as ele-
mentary building block, the calculation of most Stokes constants.

22The modification is imposed by the need to adopt two different re-normalisations in
presence of divergence. It has an exact analogue for multizetas, namely the factor man®
which tweaks the conversion rule from zag® to zig®. See §5.2.
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As we shall see in §4, V* and V'* also enter the definition of the far more
complez, double-indexed monomials S and the arguably simpler monics tes®
(known as tessellation coefficients) which between them govern co-equational
resurgence.

Lastly, parallel with these o-friendly pairs (V*,V*) and (S°*, tes®), we have
the A-friendly pairs (U*,U*) and (Z°, des®), which come into their own in
synthesis problems®® but will seldom be needed in the present investigation?*.
Still, for the sake of completeness, let us define (U*,U*) in terms of (V*,V*)
by the following mould identities:

UoVe=I", U =V0oU , V=UDoOV (50)

Here, o denotes the standard mould composition?, and I* the unit for mould
composition: [ =1 (resp. 0) if r(w) =1 (resp. £ 1).
The A-friendliness is apparent in the resurgence equations verified by U*:

uwz,...,wr N —
Awo U (Z) _ (Z) Zf Wy = w1 (51)
0 if wo F wy
which are indeed simpler than those verified by V*:
A V9(2) = >, V¥ V(2) (52)
|w'|=wo

The inevitable downside is a more complicated behaviour under ordinary
differentiation 0,.

2.3 Index dependence of monomials and monics.

In the sequel, a large number of identities involving hyperlogarithmic mono-
mials and monics shall be proved by differentiation with respect to their
variable and their indices, and that too in both models (multiplicative and
convolutive) and in both encodings (incremental and positional). So let us
collect in one place, once and for all, the relevant formulae:

2i.e. when we look for local objects (differential systems or diffeomorphisms) that admit

a given system {A,} of holomorphic invariants. For a systematic treatment, see J.E.,
Twisted Resurgence Monomials and canonical-spherical synthesis of Local Objects., 2002,
Edinburgh.

24They shall occur but once, in §4.8, to derive the piece-wise constant tessellation coef-
ficients tes® from the semi-constant vtes®.

25see §8.1.3
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Monomials in incremental indexation.

W10y, V1 (2) = 20,V (2
W1 (O, + 2) PO (2
W; (O, + 2) V& (
Wy (0, + 2) YOI (2
2(0, + |w]) V(2

= —1—w z2V"(2)
_Vw1+w2,...,wr(2)

)
)
) _ +Vw1,...,wj_1+wj,...,wr(Z) - Vw1,...,wj-+wj+1,...,w,~(z)
)
)

N

_’_Vw1,..‘,wr71+wr (Z) _ le,...,wr,l (Z)
_ _le,...,wr_l (Z)

= —((¢—w)™!

Monics in incremental indexation.

wlﬁle“’l = O,
W10y, V2 = —Verter —
Wy, Vorer = pVerter = 4]
wla th-n,wr — _Vw1+w2,.--,wr
w1
wa Vw1,...,wT — +Vw1,...,wj,1+wj,...,wT _Vw1,...,wj+wj+1,...,wr
] wj
wraWva17---7wT — +VW17---7"JT—1+WT

For perspective, we also mention the very different (non-linear) differential
properties of the A-friendly monics:

ww'=w U‘-"'/U“’” ww'=w Uw,Uw,,

0w, U™ = Z 2

. / . "
Wiy Ew Wy Ew

(53)

|| jw’|
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Monomials in positional indexation.

0oy V() = (=)' = (1) ™!
o Y1(¢) = (¢ —an) ™

Oa, P Lot ar-](g) = § — pleaidia1(() ((aj_aj—1)71+(04j+1_04j)71)

Ly [0 —1,05,8541,-- ] (C) (Oéj+1 _aj)_l

\
<)
B
2
L
Q
a
—~
I
~—
~—~
—
Q
3
\
Q
S
L
~—
L
+
—
I
\
Q
S
~—
L
N~—

The hat ™ atop an index «a; always signals the omission of ;.
Monics in positional indexation.

Oay V1ore2l = —y 18l ((ay) (o —an) ™) = —(a1) ™ = (g — )™
8a2V[a1’a2] = +V[&1’a2](0é2—0[1>_1 = (062—041)_1

{_V[al,az ..... ar] (al_l + (az—m)*l)

+V[...,&j717a]’70‘j+17"'] (Oéj—aj—l)_l
aOC].‘/[OQ 77777 041"] _ _V[...,O{jfl,aj,ajJrl;m]((O[j—ogj_l)fl+(Oéj+1_aj)71)

Q1,00 O] e P e |
+V koo fied (a4 —ay)

e _ [V (0, 0 )
o _V[””%_Q’ar_l’ar]((ar—l—ar—Q)_l+(oz,~—ozr_1)_1)

aarv[al ..... ar| _ +V[a1 ..... Qr—1,0r] (ar_ar—l)_l

Transition equations for the monics.

Outside a finite number of singular points, the resurgence monomials V*
are ramified, holomorphic functions of their indices w; or «; and of their
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variable z (in the multiplicative plane) or ¢ (in the Borel plane). Not so the
corresponding monics V'*: these are uniform, non-ramified analytic functions
of their indices on a number of domains of C", but undergo discontinuous

changes of determination from domain to domain®® according to the formula:
D wjtogw, VEEr = Qg VoW Wi (54)

Wiyt twr
Dﬂv[al’m’ar] =D o V[a1 ..... ar| = 27 V[al,...,ai] V[Oéi+1—ai ..... ar—a;] (55>

with jump operators

D, F(x):=lim(F(x +ie) — F(zx —i¢)) (t,ee RT) (56)

€—>

2.4 The monics Lan®/Lin® and Lag®/Lig®. Double arith-
metical dimorphy.

The classical monics Lan®/Lin®.

For scalar «y, 8; in the unit disk and positive integers, let us set:

i=r O/-m
Lanaly---yar e Z H B (57)
L, i=1 m; + ... + my
L (B Br o 57“4
Lln( S ey sr) = Z n_il e # (58)
1 r

I<n,y<---<nq

and by means of the correspondence

[s1—1] [sr—1] :
Lan® ' @t ® Ar = Lintst e sr (59)

8_1] s—1 times {al = 51,&2 = 61/827 cee ’ar == 61-.-ﬁr

with ool*~Y :=(00,...,0) and
Bl = alaﬂ? = 042/@1, “'7ﬁr = O‘T/arfl

let us extend the definition of Lan® to mixed sequences consisting of indices
a; either in the unit disk or equal to oo. Clearly:

- - = 1
Lan®trr — (*1)71(04) V[O‘Tlv-'vo‘l 1](1) with n(OZ) Zai:*:oo (60)
;] <1 or =

26The reason for this lies in their definition (48): it involves the operators A,,,, which

are themselves uniformly defined for all wy € C, := C — {0}, but whose action on a given
resurgent function is of course discontinuous in wy
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First arithmetical dimorphy.

It is well-known that the moulds Lan® and Lin® are respectively symmetral
and symmetrel®’, with neither symmetry implying the other. This elemen-
tary but far-reaching fact is the first manifestation of arithmetical dimorphy.
We shall soon encounter a second one, no less remarkable and apparently
new.

The monics Lag®/Lig®. Differential characterisation.

Consider these two differential systems:

1
Ony Lag™ = — (61)
aq
at,ag 1 aq,a 1 aq,a ag,a
aalLag D ar Lag b _Acxl—a2 (Lag 1A 2 _La‘g ' 2) (62)
aOQLagahaz — _|_a1ia2 (Lago‘l"m _ Lagahaz)
B R
1 ’ geey
a Lagal""ar _ + 01—1 Lagoq a2 a
a1 _a1ia2 (Laga1,az,-~7ar _ Laga1,a2,-~7ar>
1 7"'5/\‘7 geey & 7"7,\'7"'7 T
4 a La arar +aj71_aj (Lagal -1 « _Lagal aj o ) (63)
a; g _a._}x'_H (Lagal,...,&j,...,ar . Lagal,..,&j_;_h...,ar)
J J
\aarLagal,..,aT — +ar717aT (Lagal,...,ar,har _ La‘gal,..,a,«,hoq)
Here, the hats @; signal the removal of a; from the ambient sequence.
i 1
O, Lig”t = — (64)
w1
aw1Ligw1,w2 — WLI Ligw1+w2 (65)
O, Ligh™? = w% (Lig"* — Lig“**+?)
3 yeenWr _ 1 3 yeenWr
awl ngw1 w _ w_l ngw1+WQ w
s W, W _ 1 f Wy, W W41, W P Wy Wi 1 F Wiy W
0., Lig” -2 (Ligtwstwis — Lig®trwi-1tes ) (66)
awTLing...,wT _ wL (Ligwl,...,wr_1 o Ligwl,...,wr_1+wr)
Proposition 2.1 (Main determination of Lag*® and Lig®.) .
The above differential systems, together with the initial conditions
Lag"'=0 ,  Ligh'=0 (67)
2TMind the fact, though, that here the symmetrel contractions (fl) + (fj) — (ffgj)
are additive in the s;’s but multiplicative in the 3;’s. Thus, the first symmetrelity relation

8 8 B, B By, B 18
reads Lin(si)Lin(sg) = Lin(si L) + Lin(sg L) + Lin(511+522).
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unambiguously define two moulds Lag® and Lig®, symmetral and holomorphic
on their principal domains:

{a; e C — [—0,0]} , {wi+ ... +w; e C—[-0,0]} (68)

Proposition 2.2 (Link between Lag® and Lig°®.) .
On their principal domains, the two moulds are connected by:

Lag‘“""’” = Docjer LgH T (69)
ngwl, ) Zog‘jgr wl,w1+w2, W1t twj h’r—j
with lao = 110 = 1,1&1 = 111 =0 (70)

and ZQSn 1an " = eXp( 22<n CT " ) (71)
Sy lint® = exp(+ 3, 2 gn)

Short proofs: The very form of our differential systems and that of the initial
conditions guarantees the symmetrality of the solutions. Their holomorphy
(on the principal domains, not beyond!) results from the fact that the poles
(o; — air1)~" are w; ' are only apparent. Lastly, since the two differential
systems correspond under the change of variable a; = wy + ... + w; and since
their general solutions are of the form

Lag® = Lag) x Const; , Lig® = Ligj x Const} (72)

where Lagg), Lig) denote particular solutions and Const], Consts stand for
constant moulds,?® it follows that the distinguished solutions Lag®, Lig® of
Proposition 2.1 necessarily relate as in (69). As for the exact values (71) of
the connecting constants li,, la, in terms of the zeta function, these will be
established in §2.7. For the moment, all we know is:

la, := Lagh®" (since Ligh! = 0) (73)
li, := Ligh %0 (since Lag" ' = 0) (74)

= (141t (1+ ) lat) (75)

The monics Lag®/Lig°®. Analytical expression.

Proposition 2.3 Let sa® be the symmetral mould defined by
(—1)rtmttne T, —ni+”1’+m if n. +0
sa =400 if n=0"=(0,...,0)
(—1)T_i Zn”esha(n’;o[’"*i]) sa”"’”i Zf n = (n’, ng, O[T_i]), n; =*= 0
28

i.e. moulds that depend only on the sequence length r.
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Then, for the principal determination of Lag®:

Lag1+n,...,1+7-r = Z satbr T{“ C T <|7'1’ < 1) (76)

T
o<sn;

Proof. by checking that the expansions (76) verify the differential system
(61)-(63).

Hyperlogarithms under dilations.

{Laglal,...,lar _ Zzzg Lagal""’ai (l?fi)ig;l (77)

s lwy,..lwy o i=r s wi,.w; (logl)r?
ng ! = Zizo ng ! %
These identities, which easily follow from (72), suggest that the pair Lag®/Lig*,
as a multivariate extension of the log function, is no less natural a choice than
the pair Lan®/Lin®.

Second arithmetical dimorphy.

The simultaneous symmetrality of Lag® and Lig®, together with the conver-
sion formulae (69), is the announced second manifestation of arithmetical
dimorphy. Though we may reasonably conjecture® that it algebraically fol-
lows from the first dimorphy (symmetrality of Lan® and symmetrelity of
Lin®), the implication should be rather non-trivial. In any case, dimorphy I
and II differ in two essential respects:

(i) While dimorphy I neatly restricts to the multizetas, whether mono- or
multi-coloured (go to the limit and take the a;’s of Lan® and the ;s of Lin®
equal to unit roots), dimorphy II does not and cannot : when restricting the
a;’s of Lag® to the set £ := {0} u; {e; — 1} (with e; running through all
unit roots, so as to get Lag™ equal to a pure superposition of multizetas),
the symmetrality relations for Lag® will keep us in £, but the symmetrality
relations for Lig*® (once rephrased from the w; to the a; variables) will nec-
essarily take us beyond £.

(ii) The conversion rule Lan® < Lin® involves simple zeta values ((n), but
only sparingly and accidentally as it were, namely when we consider the limit
cases a;; T 1 and 3; 1 1 and want to correctly renormalise in the few divergent
cases.®® On the contrary, the presence of simple zeta values in the conversion
rule Lag® < Lig*® has nothing to do with divergence or renormalistion; the
((n) are there in all cases, even the most regular ones.

29A11 tests so far bear this out.
30 Correctly, that is to say, under preservation of the double symmetry.
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Multiple links between Lan® and Lag®.

Lan® and Lag® can be expressed in terms of each other. Thus:
Lan™ ™ = (—1)" corLag' ™1~ (78)
where corLag® denotes the core of Lag®:

corLag®t %" = Z (=1)™@) Lag@r2r  with n(a) :221 (79)

ofe{lo} o)=1
Conversely:
Lagt™ = —Lan™-Lan” = —Lan™
Lag™™" = 4+Lan™™ + Lan®™+Lan™% + Lan™"”
_ T1,72,T3 __ 0,72,7T3 __ 71,00,73 __ 00,00,7T3
Lagl_ﬁ’l_”’l_”’ _ Lan Lan Lan Lan
—Lan™™® — Lan®™% — Lan™** — Lan®**

Here, Lan® denotes the familiar mould of (57)-(59), but extended to the
irregular case when the sequence a may end with a few co’s. The symmetral
extension uses the identity (36) of Lemma 2.1 but in reverse (preposition
instead of postposition) together with the convention Lan®* = 0. The
regular terms (in black) are given directly by (57)-(59) and the irregular
terms (in red) derive therefrom under preposition of the oo’s.

2.5 Hyperlogarithms under translation.

Proposition 2.4 (The addition law for hyperlogarithms) .
For suitable determinations of our multivalued functions®', we have:

VIt +t) =Yl x plehil(zy) (80)

Or again, more explicitely

]’)[al,...,ar](tl_’_t2):]’}[al,“.,ar]dl)_i_ Z ]’)[al,...,aj,l](tl)]’)[ajftl,...,arftl](w) (81)

1<g<r

Proof: 1t is again a question of checking that the above addition formula is
stable under 0,,, 0y, 0y,, with the proper limit conditions. Thus, using the
rules of §2.4 and applying 0;, to the identity (81) with r = ry, we find the
same identity with r = ro — 1.

31The addition formula holds unproblematically in the ‘normal configuration’, i.e. when
ti,t > 0 and «; < 0 (Vi), and should be continuously extended starting from that
configuration.
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2.6 Polar exchange in the convolutive plane.
Polar inversion ¢ <> (L.

It was while investigating the polar exchange 07 <> oo™ for hyperlogarithms
(in the convolutive plane) that the mould Lag® forced itself on our attention.
To lighten notations and dodge determination issues, let us set:

Lo () = plan *ar](c) (0<¢,0< ) (82)

1

jjal ..... ar(C) = V[—al ..... —ay ]<C_1) _ L:O‘l_l ..... ay (C_l) (83)

As ramified functions of ¢, both £(¢) and £4(¢) have all their singularities
over the points ;. So they ought to be closely connected. Indeed:

Proposition 2.5 (The polar exchange L* < L}).
As analytic germs at 0% and oo™ respectively, L* and L correspond under
the following involutive relations:

QL yeeny (78 QAL e ar
Lprn(¢) = ) Ll Q) (0 4 0) (84)
€;€{0,1}
ar,. o e
LOV(C) = Y L) (a; + 0) (85)
€;€{0,1}
QY ey apr €101 5., ErQp —
L g = dE A
. using (36) otherwise
thh @ ey @ £Elal N e 7 1 (86)
Eéel ,,,,, GT)(C) _ ﬁ Zf 61 —
using (36) otherwise
E( o oT)(O _ ZO@'@ Lag?l ,,,,, ar (+;:gici)):—2
and (o) ooty (=log¢)r—? (87)
‘Cﬁ ) = Zosigr Lag™' R T

Interpretation and proof: To begin with, observe that it is Lagg* (vesp. Lag®)
that enters the definition (86) of £(a) (resp. Eé")) and not the other way

-1
, and the mould elements L1,

indirectly by the rule (86) supplemented by the convention (86) when the
first ¢;’s are all 0 (divergent case).

So much for the interpretation. As for the proof, it relies, as so often, on
wholesale differentiation. We know how to partial-differentiate the monomi-

als £, L§ (see in (§2.3) the rules for VL) and the monics Lag®, Lagg® (see
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§2.4) and therefore the mixed monomials Lag((:), Lagég) as well. With some
patience and Sitzfleisch, we can therefore check the differential stability of
(84) and (85).

Remark: In the above Proposition, it is essential to assume that each «;
is £ 0. If we want to remove that assumption (to capture, for example, the
case of the classical polylogarithms), we must modify (82)-(83) in two ways:
(i) put on the left-hand side a parity factor (—1)™® with n(a) =D =0 1
(ii) restrict the sums on the right-hand side by imposing ¢; =1 when «; =0.

Thus, in the general situation the involution governing the polar exchange
becomes:

e;=11if a;=0
(e Lper@ = ) L) (89)
€i€{0,1}ifai#0
e;=11if a;=0
n(a Q1O (e
(@) Loy = YL ©) (89)

62‘6{0,1} ’Lf Ozi:*:o

Integral expression of Lag®.

We already found power series expansions for Lag® (cf Proposition 2.3). By
invoking Proposition 2.5 and setting ¢ = 1 to kill off log ¢ in (86), we can
now, based on (84)-(85), express Lag® or Lag; in terms of £L*(1) and L(1)
(both are simultaneously needed), leading to interesting integral expressions.
Before spelling these out, let us introduce some convenient abbreviations:

<L1LT‘ = S0<t1<---<tr<1 Ll...LT dtldt,« (90)
Ry R.) =8y R R dty...dl,
1 1 1 1

with L; .= —— ; R; := —— = = (91)
ti + a; tz‘ + a; ti ti

The integral expansions then assume the form:

Lag™ = —<L1} - |R1>

Lag® " = +(LiLs| + (Li|Rs) + |R1Re) + |miRo) + |Rim2)
—(L1LyLs| — (L1Lo|Rs) — (Li|RaRs) — |[R1R2R3)

Lag® 2 = & —(Ly|mRs) — (L1|Roms) — |miRaRs) — |RimaRs) — | Ry Rotrs)
—‘7717T2R3> - ‘7T1R27T3> - ‘317T27T3>
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Lagst = +(Li| +|R)
Lag;®* = +(LoLy| + (La|Ry > +|ReR1) — (Lom| — (ma Ly
+(LsLyLy| + (LsLo|Ry) + (Ls|RaRy) + |RsRo Ry )
Lagy*** = § —(Lsmy|Ry) — (m3Lo|R1) — (LsLoms| — (LymaeLa| — (m3Lo R
+<L37r27rg} + <7T3L27T1| + <7r37T2L1}

The terms in red, with integrands m; directly abutting a marker < or >,
correspond to divergent integrals and must be ‘renormalised’ by index post-
or prepostion, once again using Lemma 2.1. If we now turn to the ‘core’ of
Lag®, whose definition we recall:

corLag®r = Z (—=1)™@) Lag®r=  with n(a) := Zl (92)

ar/ie{lvai} a,/L-=1

we see immediately that the factors m; disappear from the integrals, while
the distinct factors L; and R; make way for identical factors L, and R,, both

equal to —— — ——. The corresponding integrals therefore simplify:

ti+an ti+1°

{corLago“"”’o‘" = (1) ot et e 1 (ﬁ - ﬁ) dty ...dt, (93)
corLagi =+ {1l (tiiai - ﬁ) dty ...dt,
and so do the power series expansions:
corLagl 147 — Zlgni<_1)r+m+m+m% o)
corLag;”l"“’HT" = 21@(—1)’"%

2.7 Polar exchange in the multiplicative plane.

Like Lag® in the preceding section, the mould Lig® is linked to the polar
exchange 07 < oo™ for hyperlogarithms, but this time in the multiplicative
plane, and in the incremental rather than positional encoding. We first
introduce suitable notations: R

(i) Let V*(z) be the Laplace transform of V(() along R*.

(ii) Let Ve*(2) be the same, but with an exponential factor el**,

(iii) Let Ven®(z) be the same again, but with all w; changed to —w;

Close to oo, Ven®(z) is adequately described by its exponential factor
times an asymptotic power series in z7!. Close to 0%, it is exactly described
by a polynomial in log z, of degree r(e) and with coefficients Ven}(z) that are
entire functions of z. The link between the two turns out to be the mould
Lig® of §2.4, or rather its parity-modified variant palLig®. Explicitely:
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Proposition 2.6 (Polar exchange Ven® < Ven}) .

Ven® and Ven;, relate according to the mould equation:

Ven®(z) = palig® x Logg® (z) x Ven}(z) (95)
Venwl ..... W (Z) = YW wr (Z) e—(wl-i-..wr)z
L' W1 yeeny Wy - _1 TL. W1 yeens Wy
with | PRLETTT = (T Lig
Logg™ = =85 (y = Euler constant)
Vent“r(z) = enlire function of z

The mould Ven;, in turn is entirely determined by the system:
20, Veny(z) = 1° x Ven}(z) — Veny(z) x len®(z) (96)

Veny (0) =0
19 =Ten?(2) := 0

with
[ :=1; Ten*'(z) := e ¥1*

Proof: Establishing (95) is essentially a matter of solving, for z close to
0%, the characteristic mould equation zd,Ven®(z) = —Ven® x I* of Ven®.
The (necessarily symmetral) mould paLig® simply embodies the integration
constants. To show that it actually coincides with Lig® (up to the innocuous
parity factor), we must show that it verifies (up to the trivial sign changes
introduced by the parity factor) the characteristic differential system (64)-
(66). To do this, it is enough to partial differentiate (95) in each w; by using
the rules of §2.3 and then let z go to 0 and remark that d,, Ven(z) | 0 as z
goes to 0.

Connection constants [i,.

The only point left pending concerns the connection constants /i, of (69).
Denoting “Ven; the mould inverse of Veny, we may rewrite (95) as :

paLig® = Ven®(z) x Logg® (2) x “Ven$(z) (97)
L WieWr (y+log )"
with 088 " (98)
Weng 0t = (=1)" Venyrt
Hence
paLig® = Ven®(e™7) x Wen_(e™?) (99)
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with

Ven 1 (z) = f H
2<2r<...<21<+00 Zi

Wen T (2) = > (=)
1<j<r
with D= {0< 2 <
Using (74) we may write:

r—1 times

hr _ Ligl, 0,...,0 _ (_1)7‘

- <—1>’”{
- <—1>’”{

e—wi 2
dzy...dz,
e—w]-zj _ 1 e—wizi 1
| | g B
D, %) i<j Fi sy~

Ziv1 < ... < Z
CUPRSNES:
Zji—1 < ...<21

+"Yen, 7 (e7)

—z1dz1 dzr
+ Se*7<zr<-~~<z1<+oo € z1 " zZp

—z1 _1)dz dzr
+ Se—“f<zr<-~<z1<+oo(e 1> z1 77 oz

e~ % log z)™ 1
+§ S URE— de
e (e7#1) (y+log 2)™ !
+ S+0 z . (r—gl)! dz

Eventually, setting li(t) := 1+ >;,_, li, t", we find for ¢ < 0:

+00 e
li(t) = 1-— tf e Pyt e dy + tJ zt e dz
0

= T(1—t)e ™

0
—t _
= Lt e e [ ] e
r)
= exp "
(Kr =)

which establishes (71).

2.8 Summary.
o-friendly A-friendly

(907 V.) - (90’ V.)
(8*,tes®) « (Z°,des")

Relevant to :

equational resurgence
co-equational resurgence
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Functional dimorphy V*  symmetral relative to
VIl symmetral relative to .

Lan® symmetral
First arithmetical dimorphy : Y

Lin®  symmetrel
Lag® symmetral

Second arithmetical dimorphy : _
Lig®  symmetral

Lan® : leads to the first standard encoding for multizetas.

Lin® : leads to the second standard encoding for multizetas.

Lig® : governs the multiplicative polar inversion z <> z~!

{Lag' . governs the convolutive polar inversion ¢ « (!
{Lan' : behaves nicely under shifts.

Lag® : behaves nicely under dilations.

3 Weighted products and augmented scram-
bles.

3.1 Introduction.

This section, rather heavy on combinatorics, is there mainly to disencumber
the next one (on singularly perturbed systems) but it also has its autonomous
interest. It deals with three connected topics: weighted products, augmented
scrambles, extended hyperlogarithmic dimorphy.

Weighted products.

There are four such products — two weighted convolutions, weco and yeco,
which operate in the Borel plane, and two weighted mutltiplications, wemu
and yemu, which operate in the multiplicative or ‘geometric’ plane. From
the point of view of applications, it is the convolution weco that matters
most, since it governs the way singularities combine in all problems of co-
equational resurgence. The companion yeco, despite having few applications
at the moment, has its importance too, because it fills a hole in the overall
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picture and brings out a remarkable duality®?: the u;-weighted weco con-
volution of simple poles at the points v; is essentially the same as the the
vi-weighted yeco convolution of simple poles at the points w;. Lastly, the
weighted multiplications wemu/yemu, being the Laplace images of the more
complex convolutions weco/yeco, shed light on these, especially on their non-
obvious symmetrality. When applied to hyperlogarithms, they also round up
the picture of dimorphy and give rise to interesting functional transforms.

Augmented scrambles.

The u- or v-augmented scrambles extend the ordinary scrambles to the case
of indices u; = (u; ;) or v; = (v;;), which may themselves be scalar sequences
of arbitrary length. These highly complex mould transforms, the u-scramble
and v-scramble, induce in turn functional transforms that are stable under
alien derivation and strictly indispensible for the weighted convolution of
general ramified functions. Each of these transforms verifies a forward in-
duction (each step adding a final weight) and a backward induction (each
step adding an initial weight), which between them provide two alternative
definitions/constructions and clarify the action of alien derivations.

Extended hyperlogarithmic dimorphy.

Hyperlogarithms are stable not just under ordinary multiplication and ordi-
nary convolution (simple dimorphy), but also under their weighted counter-
parts wemu/yemu and weco/yeco (extended dimorphy). While the ordinary
scramble is enough to calculate the weighted convolutions of simple poles,
when it comes to hyperlogarithms the augmented scrambles are needed.

3.2 The basic weighted convolutions weco/ yeco.

Proposition 3.1 (The weighted convolution weco.) .

321t also leads to the tessellation constants tes™, dual to the constants tes¥. See §4.8.
Although the latter alone shall be required here, they really come to life within the pair
(tes®, tes™).
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For u; € C and ¢;(€) € C{£}, the following integrals

Do = Lo (106)

Uy U

up bx N §itus&=¢
weco'al 52 (€) :Jo C2(&2) dS2 61(51)u—1 with {Z: :1: 51(511@)_1 (107)

(5108 SOHI & (&) d& Sﬁ Cr1(&r-1) d&ror - 108
e © = { ﬁj C3(Es) d&s o Ca(&) dé 01(51) 1o
ur &y + "'+Ur€r=§
with O = (§— (W& +  +u &) (u+ - +u)™

Opp1:=E&(up + -+ )t

unambiguously define germs wecole1 1 Z:)(f) e C{¢} provided uy +...+u; % 0.
The mould weco® (&) is symmetral relative to the ordinary (i.e. non-weighted)
convolution product in &.

Proposition 3.2 (The weighted convolution yeco.) .

For v; € C and ¢;(€) € C{£}, the following integrals

(Mey - L~ &
yeco3() = ~ai(>

) (109)

(2 2)

¥ o RPN St =¢
yeco &1’ (€) :fo a(&r) d 02(52)1}—2 with {;}; :1251{512_@2)_1 (110)

0o ~ 01 ~
S &i(&)d C2(&2) &z ...
yeco(a} YYYY gT)(é‘) Se* 01 21,\ 51 SQ* 2 52 2 X (111)
So Cro1(&—1) d&r Cr(fr)v_r
Ulfl—i-""“vrfr:é
) L 5 L Vi—v +2
with 90 = oimvg 9] = vyr1— v]+2 Zl<z<g Vi1 Jv]Jrg gz

0 =0, 0f=—(&G+--+&)

J

unambiguously define germs yeco(gl1 e (€) € C{¢} provided v; + vjy1. The
mould yeco®(§) is symmetral relative to the (ordinary) convolution product
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A more symmetrical definition reads

wecolat e )(€) f (6. e(&)dEy .. dg (112)

W“’l ,,,,, Up
yeco'el e (€)= f (&) .. (&) dey .. d,  (113)
Y V1sees vy

with integration on a contorted multi-path in the standard case of positive
weights 0 < u; (resp. real decreasing weights 0 < v, < v,_; < --- < ;) and
positive end-point 0 < &:

fulfl +.oué =§
Wutestr — () < &« < fr—1 < e < 62 < 51 (114)

\(Ul + ...+ UZ> &+ (ui+1§i+1 + ...+ ur&) <& (2 <1 < T)

(164 v & =€
le,...,Ur = < 0 < 5@ R = §T (VZ < 7") (115)
(0 <&+ +&)vi + (Vg + o+ &) (Vi)

While these integral representations have their use for majorising the
weighted convolution products; for establishing the symmetrality of the moulds
weco®(€) and yeco®(€)?3; even for predicting where its singlarities will project
on the &-plane, they are pretty useless for finding the precise addresses of
these singularities on the wildly ramified -surface, and totally hopeless for
deriving the corresponding resurgence equations. Fortunately, however, when
the inputs ¢; are simple poles or polylogarithms or even arbitrary ramified
functions, there exist for weco® transparent formulae that answer all these
questions, as we shall see in the sequel.

3.3 The basic weighted multiplications wemu/yemu.

Proposition 3.3 (The weighted multiplications wemu/yemu.) .

Parallel with the weighted convolutions weco/yeco, we have two weighted
multiplications wemu/yemu that act on analytic germs at infinity in the
multiplicative plane:

(ci(x),...,co(x)) e C{z™)" { (01 ur (116)

yemu' <t e’ () € C{z™!}

33although that property results even more simply from the symmetrality of wemu®(z)
and yemu®(z): cf §3.3, §3.4.
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For weights such that u; + -+ +u; + 0 and v; # v;41, they are defined by the
integrals

UY yeey U 1 U yeeey Uy
wemu' et e ) () 1= ) %Sa(z} ’’’’’ o) (@) ey (21)..cr(xy) dmy...dz, (117)
me)"
T
(1)1,4.,117‘) 1 '(’Ul ,,,,, ’UT)
yemu cioer’(z) 1= @niy Siter e (2)ey ()0 (2y) day...dx, (118)
I

with kernels

ut s ur = 1
S (xl ,,,,, mr) — 119
a (%) H (ur+...4u) x—(x1+. . .425) (119)

g 1 e 1
Sl(zl ,,,,, zr)(x) — _— H (120)

Up T—Xp ;7 (Ui_vi+1) xr— (%‘—Iiﬂ)

and with integration along loops T'; large enough to fall within the domains
of definition of the integrands c;. The variable x itself must be chosen large
enough for the kernels Sa®(x) and Si*(z) to remain pole-free while the integra-
tion variables x; run through these loops I';. The resulting moulds wemu® (z)
and yemu®(x) are symmetral relative to ordinary multiplication.

Proof: The only point that needs proving — the symmetrality of wemu®(z)
and yemu®(x) — plainly results from the symmetrality of the moulds sa®, si°:

{sa“l’“’“r = P(u) P(urs) ... P(uy,.,)

‘ (121)
givLrtr = P(U1:2> P(’Ug;g) . P(”UT)

on which the kernels Sa®(x), Si°(x) are patterned. However, a remark is in
order here, to preempt a possible objection. As we shall see (cf §3.5 and
§3.8), systematic sequence reversions occur when we go from the wemu to
the yemu products of test functions (or to the corresponding convolutions).
This raises a question: might not an alternative, order-reversed definition 4
of si® remove that discrepancy? The answer to that is no. Besides, the very
fact that sa® and si® both result from the same symmetral mould

Sl on) — @(Ulu,l,uz )@Zéfl‘;") o Qz(ulvt:j_u;fl)Qz(ult',frur) (122)
under specialisation of the flexion unit®® ¢\’ to P(uy) and P(v;) respec-
tively, shows that the joint definitions chosen for sa® and si*® are truly coher-
ent.

e iU = P(vy) P(va.) ... P(Vpary).
35 A flexion unit is any two-variable meromorphic function verifying the seminal identity

u

U (i) — o) e(2) | e(L) e(hL)
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Remark: We clearly have weighted distributivity of the x-differentiation and
x-shift relative to the weighted multiplications:

Z w; wernu' et ¢ U ::)(ac) (0:=0,) (123)

1<i<r

¥
=
@D
=
e

=
Il

T wemu' - Z:)(x) — wemu'=1 &1 :i:f:v:zr)(x) (Ti=e% 7, :=e“"7%) (124)

3.4 From wemu/yemu to weco/yeco.

Proposition 3.4 Just as ordinary convolution is the Borel image of ordinary
multiplication, the weighted convolutions weco, yeco are the Borel images of
the weighted multiplications wemu, yemu:

(@), e(@) S E(E),...,8(8)
wemu' <1 :::::Z:)(l‘) Bordl wecolal ) (€) (125)
yemu'er o) (z) B0 yecola e (g) (126)
Proof: Obvious for r =1 since wemu(zll)(x) = ¢1(wz), yemu(zi)(x) = ¢1(v1x)
and weco(ell)(af) = uil@l(u%), yeco(ai)(:c) = %Al(i) But even for r > 1 the

argument is straightforward:

(i) assume 0 < uj, 0 < v, < .. <v; and 1 < Rz

(i) write ¢;(x;) = (2mi)~" §¢(&;) exp(a;;)da;

(iii) calculate the weighted convolutions for inputs ¢;(€) := e®¢
(iv) expand the result into exponential sums.

..........

(711 »»»»» ’li'r)

wecors (€)= Z we(§) H wen,; g 1_[ Well j (127)

1<s<r 1<i<s s<j<r
Gy a) ~
yecord () = Y ye() [ ] veny, [ ven,, (128)
1<s<r 1<i<s Ss<j<r
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with monomials we, yé and scalars wen, yen given by?6

X1+ ... + x4

Wers(€) = (=1)" " (ur + ... +us) " exp(€ R ) (129)
Pore(6) = (“1)7 (00 = ve) ™ expl€ ) (130)
(e F e w) (ug F e+ )
VT T e + ) (ot xj) (131)
@i vi) (v = vjea)
YU = |y — o) (23— 210) (152

—~

Step (v) amounts to Laplace-transforming we(§), ye(§) to we(z), ye(z):

_ 1+ ... +Tg
s = (=1)"*s +odug) T (- 133
wers(@) = (=1)" (s s) (x u1+...+u5> (133)
rts r_9 Ts — Tst+1\1

ve,s(z) = (1) (vs — ve1)" " (7 — —) (134)

Vs — Us+1

This leads to the relations

Sati e ) (@) = Y we(e) [ weny [ weny, (135)

1<s<r 1<i<s s<j<r
Gilar 10 :':)(x) = Z ye(x) H yen, 1_[ yen, ; (136)

1<s<r 1<i<s s<j<r

which are nothing but the simple element decomposition of the kernels Sa®(x)
and Si®(x) viewed as rational functions of .

3.5 Weighted convolution of simple poles. Duality.

Remarkably, one and the same operation — the scramble transform — describes
how the weco-convolution with weights u; acts on simple poles at v;, and how
the yeco-convolution with weights v; acts on simple poles at u;. Here is the
precise dual statement:

Proposition 3.5 (Weighted convolution of poles.) .
Under the usual restrictions on the weights uy + ... + u; + 0,v; £+ v;41, the
identities hold:

. A’U‘ (111 ,,,,, 'Lﬁr) ~ ('U'l ..... ur)

¢j:=V% = weco &’ = (scram.)) w1 o vr (137)
A Dy (BLo 2y awyn (B
cji="V% = yeco &’ = (scram.”V) v1 - vr (138)

36When variables x,,1 or weights v,,1 occur in the formulae (for s = r), they should of
course be set equal to 0.
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Comments. Here, the convolands are simple poles:

S (139)

—wj §—wj

V(€)=

and the scramble transform acts on the bimoulds V' () , ™V (¢):

V VY e v (5) = i}ulvl ..... urvr(g) ’ ZUV VY e, v (5) = ivﬁulvl ..... urvr<£) (140)

derived from the simple moulds V*(£) , “V*(€):

$ yeeesWrp — 1 g d&r—l '52 dﬁ
v (§) T (Wit twr) SO Er—1— (Wit Fwe1) 770 §r71iw1 (141)

iUl}wl,--qwr(f) = (-1)" Peorseon (€)

Proof: Here, partial differentiation of the identities (137)-(138) in each u;
and v; is not the shortest cut. A simpler approach consists in injecting an
extraneous parameter z into all indices v; while leaving the wu; alone, and
that too in both cases. Concretely, we set v; := z + «;, regard the «a; as
constants, and z-differentiate the identities (137)-(138) by taking advantage
of the absence of z from the many terms of the form (u;, + ... +w;,)(v;, —vj,)-
The proof is straightforward in the case of weco (where z gets tagged to the
poles v;; cf §4.4 for details) but less direct in the case of yeco (where z gets
tagged to the weights v;).

3.6 Weighted multiplication of simple logarithms. Du-
ality redux.

Since it is the monomials }*(x) rather that the Ve (z) = 0, V*(x) that are
stable under ordinary multiplication” , we must apply the weighted multi-
plications wemu , yemu not to simple poles V¥i(x) = (z—w;)~! but to simple

logarithms V¥ (z) = log(1—x/w;). Or rather, to get uniform germs in x at
infinity®® and avoid determination issues, we shall take as multiplicands the

37See (41). By the way, we should not be shocked by the appearance, here and through-
out this section, of the multiplicative variable x (rather than &) inside the convolutive

monomials V* and V* : this interference of the multiplicative and convolutive structures
is what monomial dimorphy is all about.

38Extending the weighted products to the case of multiplicands ¢;(x) ramified at infinity
requires little more than a trifling modification of the integration paths: just replace the
loops T'; in (117)-(118) by vertical lines L; slightly inclined leftwards at both extremities
to ensure convergence. But here we plump for simplicity and don’t want to bother with
this complication, however minor.
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simple logarithms £} (x) = log(1 + a;/z) as defined in §2.6 and expand their

weighted products as superpositions of hyperlogarithmic terms /Lf LB (x),
again defined as in §2.6.

Proposition 3.6 (wemu product of simple logarithms Eua) .

Ul

The procedure for calculating wemu Zh

,,,,,

¢ (z) is as follows:

(i) Start from the standard expansion scram S¥ = 3  o(w,w’) S¥ where
o(w,w) € {1}, w = (7)), w = (Z:I ”Zé) and u; = Y€ ;u; with
€, € {0, 1}

(ii) Replace each summand o(w,w’) S(”’1 """ ) by the cluster

Ui = 260U
o(w,w') Y 7(n) S(a’f?m ) ai(n) = e (142)
N1 50N n = (7717 sy 777“)
(n) = (—1)x0-m)

with n; taking the value 1 if the last occurrence of u; in u’ is single®, and
taking the values 0 or 1 otherwise. The new sign factor T(n) is + (resp —)
if there is an even (resp odd) number of zeros in the sequence n.

-----

ul 7
(iii) Replace each term gle i by the hyperlogarithms E ().

For instance, at depth r» = 3, the term S (07 10 o) produces a simple pair

(1"1217;3 ) (U12,u3 ) u1) (u123 U120 1

Glora b i) gCa” ud ) while S v2:3 . v12’ spawns a four term cluster
(u1Y2’3 ,u1,2 7“1 (U123 , 1,2, “1 “123 “‘12 7"1) '“'123 U2, ul)

S 1230 ko by ) — G b1z s b2 S b1,3 > + S 2 b oo b1

Now, to the yemu product. Here, we take elementary multiplicands of
the form ¢;(x) = i”ﬁg‘i = —ﬁj‘fi and express the result as superposition of
terms of the form "Lt Fr = (—1)" LI,

Proposition 3.7 (yemu product of simple logarithms Z’“K,ﬁo‘) .

(; v}n """ wper )
w T
wegd s g

The procedure for calculating yemu (x) is as follows:

(i) Start from the standard expansion scram S¥ = Y o(w,w’) S¥" where
ow,w) e {£1}, w = ("), w' = (Z} =Y and uf = e u; with
1

V1 yeeey U , vl

39that is to say, if the last u}, in u’ that effectively contains u; (i.e. €, ; = 1) contains
nothing else (i.e uj, = u;).
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€ € {1}

uh
(ii) Replace each summand o(w,w’) glof ) by the cluster
v; = €50
o) .., af.(m) / — ome(y
U(w,w’) Z 7_(,'7) S( Ve ol ) 041(77) Zez,] 15 & (143)
N1 yeeyMr n = (7717 ceey 771“)
) = ()R

with m; taking the value 1 if the first occurrence of v; in v' is single *°, and
taking the values 0 or 1 otherwise. The new sign factor T(n) is + (resp —)
if there is an even (resp odd) number of zeros in the sequence n.

/
/ ’ o o
1 5o Qp 1 , /7‘)

(11i) Replace each term S(“ll """ o) by the hyperlogarithm *L," ™ (x).

There are two main differences between the wemu and yeco products. One is
obvious: unlike the upper indices u; = > ¢; ju;, which may be sums of up to
r original indices u;, the lower indices v; = )] ¢; jv; are either differences v;,—
Vj,, or single terms v;,. The second difference is more significant: whereas the
procedure for calculating wemu guarantees that all sums o/(n) are nonzero,
the procedure for yemu allows terms o/(n) which (in the case of differences)
may be zero. The corresponding hyperlogarithms E; in (iii), being = 0, may
be removed from the expansion.

Thus, at depth r = 3, the term SCos o ) produces a two term

b3 , b1:2 , b b3 , —bg , by ug , u2 3, U123
sum S0 o1z iv) — §G3 ez ) whereas the term S vsz vt w”) produces
b3:2 5 b2:1 , b1 b3:2 , —b1 ; b1 —bg , ba:1 , by 0, =by, by
a larger sum S(v3:2 Loan o) — §luaa egn ) 5(1’3:2  vaiy ) vr) + S(v3:2 ) vt ) v1)

the last term of which may be omitted on account of the zero it carries.
uy o, wr ) ( v, v

( a ar PeY
The weighted products wemu “ e by () and yemu ¢
mentioned in Table §8.9 up to depth r = 3.

3.7 The augmented scrambles.
Some heuristics.

So far, so simple: we are lucky in having one single mould transform, the
scramble, that accounts for all four weighted products weco /yeco, wemu,/yemu
when the inputs are simple poles or simple logarithms. But what about
the case of hyperlogarithmic inputs of arbitrary depth, defined by scalar
sequences of arbitrary length? Clearly, if there exist generalised scrambles

40i.e. if the last v}, in v’ that effectively contains v; (with ¢; ; = 1) contains nothing else

(i.e v, = vj).
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capable of dealing with them, they must carry lower indices v; (for weco and
wemu) or upper indices u; (for yeco and yemu) that are themselves scalar
sequences of arbitrary length. For convenience, we shall systematically use
the following notations:

U, = (ulvu;7vuf’u1) H Q;k = (uuu;a’uf) H *ﬂi = (u;77uf7uj)
v; = (vh@ga "'>U§7UJ> H Q;k = (viavz{a"'uvg) H *ﬂi = (Uz/'a'“vvgavz)

But do such generalised or ‘augmented’ scrambles exist at all? They do,
and the present section is devoted to their construction. As with the ordinary
scramble, that construction relies in each case on two dissimilar yet equivalent
inductions — forward and backward — both of which are indispensible for a
rounded picture. We begin with the defining formulae. The next section
shall validate them after the event and dispel their seeming artificiality by
providing the link with the weighted convolution products.

The v-augmentend scramble vscram.

The indices of the simple scramble were of the form w; = (1*). We now move
on to indices w; = ().

Forward induction for vscram : MY — SM*¥:

For r=1 and w, = (Zi) = (vl,vi,v?.l..,vf,vl) we start the induction by setting:

up, U1, ulo, Ul “1
! "_ 1 M T i)

SM(Z}) = M(Ul 711’1—1;1,1)1—11171;1 vy oo v, —v;

To continue the induction, we must distinguish four cases, depending on the
nature of the last index wy of the sequences w in the various summands M®™
occuring in the expansion of SM*:

w = (") with #(s,) =1 ond 7= #w)  (144)
(%
U; .
wy = (UZT _ U;;) with #(v;) = 2 (145)
Uj : ; —
wy = <UZ _ UZ'T+1> with i <r = #(w) (146)
wy = (UZ B UJ_1> with 1 <14 (147)

The linear operators cutla}; are defined as in §1.2. They act by removing
the last index of M™ (not of SM* !) if that last index happens to be wy,
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and by annihilating M* otherwise. We set:

cutlay? SM®1%r =0 if wy not of type (144)-(147)

ur

(,1)
cutla,’t SM @i — f G2t (148)
(UTuj”?) w w w w¥ w : * Wi

cutla,,/ * SM*v%r = L SMHr-iBr qith w; = <v*) (149)

G, +
cutla,, "' SM®vtr = 4 2 SM* ity (150)

ﬂ:r, i+ € W2+1+1

(i) _

cutla,® "t SM L = Z S i i (151)
GEW

—1,1

with indices w;;,; and w;", ; running through the sets

Win = U {( i )} (152)

v v
= 1 1
ﬂﬂi‘,z‘HESha(ﬂfﬁ?H) Lkl T

Wo, = U {(Uzi‘ﬁvﬁ” )} (153)

* ¥ —~i—1,20 Yi—1
v¥_ esha(vl 1uF) )

When each v; reduces to a single element v;, the case (149) is auto-
matically ruled out, and the rules (150)-(153) simplify to the earlier rules
(6),(7),(8) governing the ordinary scramble.

Interpretation: To construct the set W%, of indices w;;,, we always take
u;+u;y1 as upper index. To define the lower indices, we start from the se-
quences vy, vy, obtained by depriving v;, v,,; of their last element ol o +1-
Next, we con51der all sequences v7; 1 obtainable by shuffling the sequences
v, vi,,. Lastly, to each of these v},; we attach, as last element, the last
element Uz‘T+1 of v;,1. Since # (v}, U;—l) = #(vf) + #(vfy) — 1, the rule (150)
amounts to a proper recursion.

Of course, when either v; or v,,; reduce to a single element, the set Wlt "
also reduces to a single element. And when both v, or v,,; reduce to a single

clement, the set W%, ,’s single element is (“ljfi“), so that we fall back on

the induction rule (7) for the ordinary scramble.
The same remarks apply for the set W, ,. We may note in passing
that the induction steps (149),(150),(151) essentially respect the left-right

symmetry.*! So we might expect the generalised scramble to obey a backward

Uy,

41 Apart from the opposite signs in front of the right-hand sides of (150) and (151).
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induction very similar to the forward one. As we shall see in a moment, this
is not at all the case. The reason lies in the innocuous-looking rule (148),
which on its own completely upsets the left-right symmetry.

Backward induction for vscram : MY — SM%:

The linear operators cutfiy} are defined as in §1.2. They act by removing the
first index of M™ (not of SM*® !) if that first index happens to be wy, and
by annihilating M™ otherwise.

The backward induction says that the only operators cutfi}; acting non-
trivially (i.e. without yielding 0) on the SM* (viewed as a sum of M™
summands) are those with initial indices wy of the form ("), where
v; is the first element of some sequence v, with 1 < ¢ < j . And for those
particular wy, the backward induction rule reads:

(u1+...+uj )

cutfi,, " ~SM* = symlin (concat (symlin(SM UQ, “SM %), tiSMU%Z') , SM ﬁ)
with {w: (wla-'er) ’

w:: (ﬂi_,'_l,...,wj) ;

= (Ql? "'7&1‘—1)

= (wj-&-l?"'?ﬂr

(154)

[STRISE

Some of the three factor sequences w, w, W, may be empty, and so may the
index w; after removal of v;: see (157). The operators concat and symlin are
defined as in §1.2. They act directly on the SM*® terms, not on their M*
summands. Regarding the four SM*®-terms occurring on the right-hand side
of (154), the notations are as follows:

SM’U()El """" Uy — SM(U17UO ........ V=00 (155)
i (E :: Z’“) , (s ui
Mo, T o= (=1)"SM o s v1-v0 (156)
Copat ot o) e
FOM, S oY A R (v; gets removed)  (157)
Here and henceforth, we use the self-explanatory shorthand:
v; — Vg = (v; — Vo,V — Vo, Uf —vg...) if ;= (v;,05,00.) (158)

Proposition 3.8 The forward-going formulae (144)-(147), which tell us how
to add an index in final position, and the backward-going formulae (154),
which tell us how to add an index in initial position, are equivalent. They
define the v-augmented scramble transform vscram, which turns symmetral
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(resp. alternal) w;-indexed bimoulds into symmetral (resp. alternal) w,-
indexed bimoulds:

vscram : M®— SM* with SME:2€$, M (159)
wl
!/ /
and w:(ul,...,ur)’ w,:(u},...,u7,>’ 1
Vyyeey U, v ., U

The w'-sequences on the right-hand side of (159) tend to be much longer than
the w-sequence on the left-hand side, since their common length 1’ is Y, #(v;).
Their most important feature*?, however, has to do with their contracted
initial sums sz uivl, which are all of the form:

1 )
Wy vl 4 Ul = | ut v o U v (160)

relative to some factorisation w = w' ... w®@ and to a selection of indices
Vix, each of which belongs to the lower sequence v, of some simple index
w;, = (1) inside w'.
Vi

Idea of proof: Guessing the form of the induction rules was the difficult part;
checking their validity is the easy bit. Thus, the compatibility of the forward
and backward inductions readily follows from the commutation relations:
[cutlaly}, cutfizi] SM® = 0. And to verify that wvscram preserves bimould
symmetrality (resp. alternality), it is enough to check that each operator
cutfiy; (or each cutla}y} if we prefer) turns any given symmetrality (resp.
alternality) relation into ‘shorter’ relations of the same type.*?

The u-augmented scramble uscram.

We now move from indices w; = (%) to indices w; = (37).
K2

k3

Forward induction for uscram : M¥ — SM™:

i " t T
For r=1 and w; = (%11) = (“1’“1’";’1""“1’“1) we start the induction by setting:

o) = ppGer el Sl el (161)

421t shall determine the form of the alien derivations A, that act effectively on the
monomials S*(z). See §4.7 below.

431n fact, in order to find the form of the alien derivatives of the monomials S¥, we shall
perform in §2.9 an operation which is tantamount to iterating the backward induction rule
for the generalised scramble.
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For r > 1, we let the linear operators cutlalyy act non-trivially on SM™ for

only three types of indices:

T
wy = (UT> with r = #(w) (162)
vy
!
wo = ( i ) with 1<i<r—1 (163)
Ui — Vit1
!
wo = ( i ) with 2<r<r (164)
Vi — Ui—1

and we define their action as follows:

T

g o o U yeeny Uy H:«k
cutlag\?) SM 1% = 4 symlin (S]\/[(”i """ ”r—i), SM o )) (165)
uf : (B sit) o (5
vy ) T symlin (SM Vi vie1 G v ),
cutla,,” "' SM """ = 4 concat T (166)
( 1,z+} gl o Lit2 ,,T)
SM Vi1 y VG 5een vy
1 U geeey u;_ A;k
(o)) o symlm(SM(“} """ “i—g), s )),
cutla,, "' SM """ = —concat W (167)
(7271’ 1,1 > Li41> 777)

SM vi_1 y Vil seee vy

Pay attention:
(i) In (165-167), an upper star u} signals that the sequence u; has its last
element removed. If u; had only one element to start with, then u} is empty

*
and SM%) = 1.
(ii) In (166), the u-sequence atop v is the lone index w; 441 :=u;+u 41 built
from the initial indices of u; and u,; and followed by the sequence u?; (i.e.
w;,; deprived of its last element u,, ).
(iii) In (167), the u-sequence atop v, is the sequence u}; (i.e. u,, deprived
of its last element u];_l) followed by the lone index w; ;= +w; built from
the initial indices of u, ; and ;.

Backward induction for uscram : MY — SM™:

Here again, we let the linear operators cutfiy? act non-trivially on SM™ for
only three types of indices:

Wy = Zi) with = 4(u;) =1 1.e uy = (u1)
wy = (2 with 1<i<r and 2 < #(u;)
wy — 'mhﬁwg with 1<i<j<r

o1



and define their action as follows:

g 1+

cutfi,, SN L — symlin(ﬂ%gl""’w“"@, SM@“’“"@T) (169)
Only the last identity calls for explanation. It uses the standard notation:

(21 ,,(%1)11 ,,,,, 27«) ( uq BRI (zfﬁ,.)u ,,,,, Uy )

LMU;;l AAAAA 37 s vy - L]w‘ VI=Vj e —vi /e, vr—v; (170)
with an g-marked mould LM*® that is alternal. As a consequence
LM (@) Ny (171)

wesha(w' ,w )
where W is simply w” in reverse order. It is enough, therefore, to know
LM*® when the (unique) g-marked index is in final position. The definition
is simple enough when that index @' is of the form (%l)ﬁ = (:l)ﬁ, i.e. when
#(u;) = 1. In that case, the formula reads:
(il ,,,,, T (i )H) (ﬁ1 b E«L—l)

W V] ey Vi1V — SM V1 seees Vi—1 (172)

When #(u;) = 2, the definition of LM*® is slightly more complex and not
entirely self-contained, i.e. not entirely in terms of SM*. This hardly matters,
however, since there is a simple and closed system expressing cutfi*® LM® in
terms of LM*® alone. But since, for the particular applications we have in
mind, the u-augmented scramble matters less than the v-augmented one, we
may gloss over these details.

Proposition 3.9 The forward-going formulae (144)-(147), which tell us how
to add an indez in final position, and the backward-going formulae (168)-
(169), which tell us how to add an index in initial position, are equivalent.
They define the u-augmented scramble transform uscram, which turns sym-
metral (resp. alternal) w;-indexed bimoulds into symmetral (resp. alternal)
w;-indexed bimoulds:

uscram : M®+— SM* with SM®™ = Z €s, MY (173)
w/
Uy yoony U uh .l —
d W = Y1 s Ly ’LU,: 1> > Y w/:+1
an (Ul,...,vr> 7 (v{,...,v;,)  Cw T



The w'-sequences on the right-hand side of (173) tend to be much longer
than the w-sequence on the left-hand side, since their common length 1’ is
> #(u;). Their main feature, however, has to do with their contracted initial
sums Y. ui v, which are all of the form:

(2 ’L7
/ / A <o <
Uy Ut F UGV = U Vg e Uy U (174)

with individual indices vy, multiplied by composite terms u; consisting of
(i) the sum of some non-empty initial subsequence of u;,
(i3) plus possibly the sums of some final subsequences of other u;’s (j # i).

The proof runs parallel to that of Proposition 3.8.

Complexity level of the augmented scrambles.

Let us focus on the wv-scramble. The number p(w) = wp(dy,...,d.) (resp.
pt(w) = p*(dy,...,d.) ) of all summands (resp. of summands preceded by
the sign +) in the standard expansion (159) of SM* clearly depends only on
the lengths d; := #(v;) of the partial sequences v,. The forward induction
leads to simple recursion formulae for p and p* := pt — =

pu(dy) = p(dy) = 1 (dy = 1) (175)
xUdy = 1Y) uldy, ... dr)
wldyy o dy) =3+ e x(di > 1) pldy, o d— 1, dy) (176)
+ Ycier ot (dy, L d+ iy — 1, )
e d, {+x {dy = 1)) p*(dy, ..., dvs) )
+ Y i X > 1) (s di =1, )

where x(S) denotes the characteristic function of a set S. That recursion in
turn leads to the exact formulae:

(dy +---+d.—1)! 1
= 1
o) = gy (v o) 0

*  (di++d - 1)
1% (dla"'vdr) - (dl—].) d _1 I ( dr> (179)
2<i<r
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The numbers p(dy, ..., d,) especially tend to be huge. Thus:

(dl,-t'u,dr) | wldy, ..., dy) | w*(dy, ..., dy)

(L,...,1) | 1.35.(2r—1) = ril | 1= 1
(5,5,5) | 20135106 ~ 2.9107 | 126126 ~ 1.210°
(4,5,6) | 22855560 ~ 2.3107 | 76440 ~ 7.610*
(6,5,4) | 23963940 ~ 2.4107 | 140140 ~ 1.410°

(4,4,4,4) | 10050665625 ~ 1.010" | 2627625 ~ 2.6 10°

(1,3,5,7) | 349098750 ~ 0.410° | 30030 ~ 3.010*

(7,5,3,1) | 539188650 ~ 0.5107 | 1051050 ~ 1.010°

(3,3,3,3,3) | 60575515000 ~ 6.0101 | 1401400 ~ 1.410°
(1,2,3,4,5) | 6067061000 ~ 610° | 40040 ~ 4.010*
(5,4,3,2,1) | 9641071440 ~ 9.610° | 1681680 ~ 1.710°

Remark: scrambling and symmetral linearisation.
When applied to a symmetral M*, the augmented scrambles produce a sym-

metral SM* defined as a sum of symmetral M*-summands. This opens two
paths for the calculation of products SM%'. SM%" or SM™ . SM™". Thus, for
vscram we get the diagram:

/ ” symmetral linearisatiom
SMY' . SMw v — > SMw

M?®-expansion l l M?*®-expansion l Me-expansion
(Z Ew/Mw/) . (Z ew,/M’w”) Symmetralﬂ)ealrisation Z ewa

The path expansion followed by linearisation always leads to a number of
M*-summands considerably less than the path linearisation followed by ex-
pansion, but the latter gives rise to massive (pair-wise) cancellations, ensuring
the same end result.

3.8 Weighted products of hyperlogarithms.

We now have all the wherewithal to calculate the weighted products of hy-
perlogarithms of any depth.

Weighted convolution of hyperlogarithms.

Here is the dual statement that extends (137)-(139), with the familiar se-
quence reversion from weco to yeco:
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Proposition 3.1 (Weighted convolution of hyperlogarithms.)

D3[vg,0) 00 (U1 ury N
= Pt = weco @ &’ = (vscram.)) v e o (180)
V] .., vy ~ (31 ’“'vﬂ'r)

/C\j = 9[Qj]
/C\j ::ivi}gj _ ivi}u]',u;-,..,u} - yeco(al ,,,,, an) = (uscram'ivz) ol o
Comments: Pay attention: R
(i) with weco, the inputs ¢; := VL'l are given in positional notation.

~ O us T . . .
(ii) with yeco, the inputs ¢; := V""" are given in incremental notation.
(iii) in both indentities (180)-(181), the augmented scrambles are made to act
on the bimoulds ¥V and ®V derived from the moulds V* and #“V*, themselves
taken in incremental notation. See §2.2.

Sketch of proof: Proceeding as in the case of Proposition 3.5, we attach a
variable z to the lower indices v; and then differentiate in z. In the case of
uscram, this is straightforward, since the v;’s denote weights and are simple
indices. But in the case of vscram, the v,’s encode multiple hyperlogarithmic
singularities v, := (v;,v/,...,v]) in positional notation, so that z must be

- Ug

attached to all subindices v;, v}, ..., v; . For applications, see §4.4-§4.5.

Weighted multiplication of hyperlogarithms.

Just as the ordinary scramble holds the key to the weighted multiplication
of simple logarithms (see §3.6), the augmented scrambles unlock the rules
for multiplying the hyperlogarithms — especially the sort that is holomorphic
(rather than ramified) at infinity, i.e £; (for wemu) and L3 (for yemu). But
the actual formulae are rather complex and won’t be required here, so we
can dispense with them.

Scrambles and arborification.

In view of the very large number of terms produced by the scramble trans-
forms, especially the augmented variants, it is some comfort to know that
arborification does not significantly complicate the picture (though a priori
it might) and often even simplifies it. We shall return to the question in
84, in connexion with weco and its alternal offshoot welo. Be it enough to
mention here that the formula (178) for counting the M-summands produced
by wscram retains its validity for arborescent indices w=. Simply, the sums
d; + -+ +d, on the right-hand side of (178) must now be taken according to
the arborescent order <.
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4 Singularly perturbed systems and co-equational
resurgence.

4.1 Equational vs co-equational resurgence.
Model problem.

Consider the following paradigmatic instance of a doubly singular differential
system, by which we mean a system not only singular in itself (i.e. relative
to the time variable t) but also singularly perturbed (by a small parameter
e~0):

0 = et?ay' + Ny +0(tey', ...,y (1<i<v) (182)
0 (variable)

e ~ 0 (parameter)

¢

It is advisable, both techically and theoretically, to change to the problem’s
‘critical variables’ z and ‘critical parameter’ x, i.e. to set

z:=1/t~00 | x:=1le~w (183)

so as to prepare for working in the conjugate Borel planes ¢ and £. This
leads to the system:

0.Y = xzAY + B(z,z,Y) with (184)
Y ={Y", B={B, A= diag.matr.{\;}
B eC{z"ha 'YL ... )Y} or eC{z",Y!,....Y"}

From the viewpoint of z-resurgence, choosing the series B’ independent of
z, i.e. taking them in C{z7!, Y} rather than C{z~' 27! Y}, makes little
difference to the resurgence pattern in the £-plane, and none at all to the
location of the singularities. So we shall henceforth stick with this simplifying
assumption.

To respect homogeneity, we may re-write our system thus:

14+n;=0
Y = aNY'+ ) BL (Y[ (1<i<w) (185)
n;=04f j+i
or in compact form:
‘ ‘ 14+n;=0 '
oYl = Y </\,~x+ 3 B;(z)Y”> (1<i<v) (186)
n;=04f j+i
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with coefficients B! (z) € C{z7'} analytic at infinity and z-free.
Let us assume that the multipliers )\; are neither resonant nor quasi-resonant.**
The general solution, with its full set {7q,...,7,} of integration parameters,

may be formally*® expanded in powers of either z=! or 7 !:

~ ~

Y =Y(z,2,7) e C[[z7  or 27| @ C{my 2 e, ... 1,2/ e} (187)

with p; € C denoting the coefficient of 27" in B(z) = Bj__ (%)

To get rid of the ramifications z”* (which complicate the formal expan-
sions® without adding anything of substance to the Analysis) we shall set
not only p; = 0 but also Bj(z) = 0.4

Double divergence, double resurgence.

Separating the exponentials from the power series, we get for (186) a formal
solution of type:

1+n;=0
}N/i(z, T, T)= }N/i(z, x) + Z Yi(z,z) ™ ePit=nA>)ze (188)

n;=0f j+i

As just pointed out, our formal solution 17, or rather its components }N/jL,
can be expanded in power series of 27! or z7!. Both types of expansions
are generically divergent yet Borel-summable, but with distinctive singular
points, singularities and resurgence patterns. Some form of the Bridge equa-
tion applies in both situations, but with distinct index reservoirs €2; and
above all with this crucial difference: whereas the ordinary, first-order dif-
ferential operators A, that govern the z-resurgence in BE; do not depend
on z, the differential operators P, that govern the z-resurgence in BE; have
coefficients that are themselves divergent-resurgent in x and therefore require

a third Bridge equation BEg3 for their description:

Equational resurgence: Y =Y (z,x,7) (expanded in 27! with z fixed)

BE; : A,Y = A, Y Y woe (189)

“4meaning that the combinations —\; + an>0 n;A) are all + 0 and do not approximate

0 abnormally fast (diophantine condition).

45The tildas, as usual in resurgence theory, signal formalness. They are often omitted
when the very context implies formalness.

46keeping the ‘residues’ p; would merely force us to replace the exponential blocks
e(it<mA>) 2z in (188) by the mixed blocks zPit<mp> cAit<mA>)zz,

47 As soon as we assume p; = 0, a simple, analytic change of coordinates can also remove
the whole of Bg(z).
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Co-equational resurgence: Y = SN/(z, z,7) (expanded in 7! with z fixed)

BE, : A,Y =B, Y VY wo € (190)
BE; : Ay By, = Flupu ({Po,}) Y wo € Qs (191)

Despite these far-going differences, there is bound to be a certain kinship
between the two types of resurgence, since in the special case when B! (z) =
i /z with B!, scalar, the variable z and the perturbation parameter z coalesce
due to the underlying homogeneousness, so that the z- and x-expansions
assume the same form (192) with Y?(zx) and Y (2z) € C[[(zz)7!]]:

J¥i
Yi(z,z,7) = Y'(zz)+ 2 Z Yi(za) mr™ eit<nA>)ze (192)

n;=20n;=>—1

It is this loose kinship, or lax ‘duality’, together with the closeness of the
operators A, of BE; and P,, of BE, (both are ‘autark’ functions of x), that
justifies the label equational for the z-resurgence (z being the variable with
respect to which we differentiate in the system (186)) and co-equational for
the x-resurgence. FEquational resurgence is by far the simpler of the two,
since the general shape of BE; with its operators A, and their indices w,
can be inferred from purely formal considerations, directly from the differen-
tial system (186). Equations BE, and BE3 with their index reservoirs 2,
23, are harder to derive, yet here too we are fortunate in having a general
machinery, with a strong algebraic-combinatorial flavour to it, that addresses
the general case.

The normalisers ©*!.

Rather than handling the general solution Y of our system, it is often advan-
tageous to work with the information-equivalent but more flexible normalis-
ing operators ©*!:

1<r ul oL, ur

O = 1+ Z 6'“'“)/\/(331 """ B"TT)(z,:B) Di ...Di (193)
1k, Mk
1<r N( “1_1 ,,,,, 1;_7“ ) ] )

O = 14 D (—L)eltEW e By ) Di LD (194)
kMg
=< My, A > Dik = 77% 7% Q.

with e == Ty ’ m T T (195)
1<y <v | TP Ti €T
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and with a symmetral mould we inductively defined by W? =1 and

Since W* is symmetral, the operators © and ©~! are (mutually inverse)
formal automorphisms of C[[7]] := C[[7,...,7]]:

0 (Bi(m)-a(m) = (0531(m) (69'7a(r))  (@ieClirT)  (197)

Moreover, they exchange the general solution Y of our system (186) and the
elementary general solution Y, of the corresponding (linear) normal system:

YL =NaYl o Yielzr,T) =747 (1<i<v) (198)

@?i(z,x,'r) Y? (z,z,7) ; ©F Ly (z,x,’r)E}N/i(z,x,T) (199)

nor nor

To check this, we first observe that the induction rule (196) translates into
the following interaction between 0, and ©:

0.0 =0 0, — (ZeWB;(z)D;) O  (withu:=<mn,A>) (200)

i,

0,07 =070, +06° (Ze“‘“B’ D! ) (with u:=<mn,X>) (201)

Next, we define a ‘tentative’ solution Yien of our basic system (186) by setting
Yien := ©7Y,0:. Applying both sides of (201) to Yy, we find successively:*®
az(ailyvnor = @ z nor + @ Z eusz] > Ynzor (202)

0Vin = O\ 2V + 071 2 BL(2) Y (Yaor)")  (203)

nor

az},\//;:en = )\ X }/ten + 2 BZ Y:cten(Yten) (204)

Since the last equation (204) coincides with our initial system (186), it follows
that Yien = Y, which establishes (199).

48We use the fact that ©~! is an automorphism to change © 1 (Vo)™ to (07 V0,)™.
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4.2 Biresurgent monomials and weighted products.
Elementary multilinear inputs: biresurgent monomials.

In the above expansions of ©F, the sensitive (i.e. generically divergent)
ingredients are symmetral monomials W*(z, x) carrying a two-tier indexation
(ge ) = (y7) with scalar ‘frequencies’ u; € C and germs b;(z) € C{z™'}
anaiytic at z = o0. Dispensing for simplicity with the tilda and removing the
exponential factors, the induction rule (196) can be rewritten as
(ul ,,,,, u»,») ("1 vvvvv “r—l)

(0, + |u|x) Wrbr o) (zox) = Wb b1 /(2 1) b(2) (205)
with biresurgent monomials W*(z,x) (- separately resurgent in z and z -)
that hold the key to everything.

Equational resurgence: Under the z-Borel tranform

. .—n Cn_l T . YA e
Bt MO W) = B(G)
the induction rule (205) becomes
() U (i)
WAt J(( ) = Wit b (G ) b (C=G) dze - (206)
(—lulz Jo

and readily yields all the information we need: location of singularities,
Stokes constants, pattern of z-resurgence, etc.

Coequational resurgence: Under the z-Borel tranform

n—1
B, : a7 " (nf—l)! . W*(z,x) — B (2,€)

things are far more complex. The induction rule takes the form of a partial
differential equation:

-------

0.+ Jul o) BV 8z e = — (TG 62 (207)
with the boundary condition : B:,;VV(Zi s Z:)(z, 0)=0 (Vr=2) (208)

For r = 1, by solving (207) in decreasing powers of = and then applying the
Borel transform x — &, we find:

Wl (z2) = = Y (wa) " (<) bi(z) = (209)
B (e — - Zi—(_fﬁl)n () = —hz- ) W)



,,,,,,,

If » > 2, no such simplistic formula can be expected for B, W( b1 e br )(z, §),
and we must resort to weco, the first basic weighted convolution introduced in
§3.3. We briefly recall its definition along with that of wemu, the associated
weighted multiplication. Parallel with the symmetral operations weco, wemu,
we then introduce two alternal look-alikes, welo, welu. These newcomers
are indispensable for alien-differentiating not just weco, wemu but also welo,
welu, i.e. themselves, thus leading to a closed system. We conclude by listing
some salient properties of these four weighted products.

The symmetral products weco, wemu and biresurgence.

For u; € C and ¢;(§) € C{¢}, by setting weco(gll)(é’) = u_1 ez £ -) and, for r > 2:
O o
(& 5 — 0* (&) d&; Sé Cro1(§rn) dérn 211
weco ) { () des 1 Balt) s Pu(6) 21y
ulfl "'+ur£r:£
with 61 = (5—(ui&—k~--+ur§T))(u1+~~-+ui,1)_1

0* ::f(ul"’_“"i_ur)il

we unambiguously define germs weco' et i er) (&) € C{¢&} provided none of the
partial sums uy + ... + u; vanishes. The mould weco® is symmetral relative
to the (ordinary) convolution product.

Just as ordinary convolution is the Borel image of ordinary multiplication,
the weighted convolution weco is the Borel image of a weighted multiplication
wemu:

Borel ~ ~
ai(@), . elz) 228 2,86 (212)
wemu'at o) () 228 wecola e (g) (213)

For inputs ¢;(z) € C{z™'}, i.e. holomorphic at infinity, and non-vanishing
u;-sums, weighted multiplication can be defined by the integrals:

(1 cl x1)...c(x.) dxy ... dx,

wemu er’(x):= 3@ — (214)
@m)" T2 ((un . Hw) a— (21 +. . +ay))

with z; running through large enough loops I'; and with x larger still to
ensure a non-vanishing denominator [ [(...).

However, resurgent functions ¢;(£), even if holomorphic at £ = 0, have
Laplace images ¢;(x) that are ramified at x = oo rather than holomorphic.
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For these, the integration paths have to be modified. Assume for simplicity
that 0 < w; and 1 << z. Then integration in (214) must be along broken
lines L; of vertical middle part, with abscissae large enough, and with both
extremities tweaked to the left.

Meanwhile, weco® and wemu® answer our immediate concern— expressing
the biresurgent monomials VW* in the planes £ and z. Indeed:

Proposition 4.1 The biresurgent monomials W*(z, x) and their Borel trans-
forms x — £ can be expressed in terms of weighted products:

B ) (2 €) = weco'd UE) (&) with 6(€) == —bi(z— &) (215)
T wr ” +100
W ) (2, ) = wemulel e ) (€) with () = f Gi(€) e de (216)

with z chosen close enough to oo for the inputs ¢;(€) to be reqular at & = 0.

The proof, tedious but straightforward, lies in checking that the weighted
convolution integrals (211) with the inputs ¢; as in (215) do indeed verify the
partial differential relation (207) together with the limit condition (208).

The primary identity is of course (215), based on convolution. Its mul-
tiplicative counterpart (216) is merely derivative. Being notationally more
convenient, however, the multiplicative variant shall often be preferred in
statements to the convolutive one, although all proofs and calculations rely
on the convolutive model.

We may note in passing a seeming incongruity: formula (215) uses inputs
¢; (analytic germs at 0 in the convolutive &-plane) defined directly as z-
translates of b; (analytic germs at co in the multiplicative z-plane). But this
interference of the two structures (convolutive and multiplicative) cannot be
helped: it is a standing feature of coequational resurgence.

Alternal marking.

One can easily check that the mould transforms almark and almalk:
almark(M)tl""’tg""’tr := concat <symlin(]\4t1 """ t"‘l,i”Mt“l"“’t’"),MtE) (217)

almalk(M)tl"”’tE’”"tT := concat <Mt§,symlin(wM“’”"ti*,Mt"“"”’tr)) (218)

ithl,...,tr = (_1)r Mtr,...,tl
with symlin( MY, M) := Dtesha(t, ) M? (219)
concat (Mot Mflittentr) = Jf1otr
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turn any mould M*® into marked moulds M*, M* of alternal type. Here,
‘marked’ means that we distinguish one of the indices t; by marking it with
the sign f. If M* itself is alternal, then M* = M*®* = M°, but otherwise all
three moulds tend to be quite distinct. If on the other hand M* is symmetral,
as will be the case in most of our applications, then the factor “M* occur-
ing in the definitions (217)-(218) coincides with the multiplicative inverse
momuM®.

Of course, when the marked index is tg happens to be the first or the
last, only the right or left subsequence is left standing in the definitions
(217)-(218). Thus, if M* := almarkM*, we get:

Mihtatats . prtatstzn

Mt17tn27t3,t4 = +Mt1,t4,t3,t2 +Mt4,t1,t3,t2 +Mt4,t3,t1,t2
Mt1,t2,t§7t4 - _Mt1,t2,t4,t3 _ Mt1,t47t2,t3 _ Mt4,t17t2,t3

Mt17t27t37ti o _|_Mt1,t2,t3,t4

The alternal products welo, welu and alien-differential closure.

In co-equational resurgence, one constantly requires the alternal weighted
products welu/welo derived from the symmetral wemu/weco by right alternal
marking:

welu® := almark.(wemu®) ; welo® := almark.(weco®) (220)

(r 1)!
i—)!(r—
of type wemu/weco, the form of the integrals does not become significantly
more complex. The same is true on the multiplicative side: the passage from
wemu to welu reduces to replacing a fully factorisable kernel S® by an equally

factorisable S°:

Although this defines welu/welo as large sums of ; . distinct terms

(ul yees Ug ,..,ur) UT ey Uy

wemu' €1 o <i 1 or (1.) _ W SF. S(zl e Z:)( )ch(xl)d:cl
UL 5ees (Ug \B ooy U UL 5ees (U \f oo U
welula (N0 () = WSD Sl EDRIED () [T el
Slar 1w ) () = T2 ((w + o+ w) e — (21 + .+ xl)>
Uj—
Tj—

i (L Ui
5 ::::<;‘zi>”::::::>($):{(—1) SRR

(221)
x;)dx;

D) §% 550 (1) x (222)
((u1 +.otu) e — (x + . +x,4)) -

This would not be the case at all, had we defined welu® and S*® based on the
left alternal marking almalk. Thus, of the two alternal markings, the one we
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require also happens to be the simpler of the pair (at least in this particular
instance). Similar sweeping simplifications occur in the definition of the
integration multi-path behind the alternal convolution welo. The reader is
invited to work out the form of that multi-path for himself.

Remark 1: Simple vs weighted convolution.

The basic weighted convolution weco is symmetral, but otherwise devoid of
any associativity-like properties. The following pair of formulae bring out
the difference with ordinary convolution:

~ ~ ~ : ~ £t
(€% €, )(€) = Esptts, (§) with  €,(§) == (s—1) (223)
(e, "len)g) = o Lo
weco 1 r (&) = Esypors, (&) H stosr (224)

The symmetral mould H*® does not depend on &. For any fixed positive
integers s1, the coefficient H(s) is a rational funcion in the weights u;, of the
form:

gla g — pla i) H (g + -+ + ay)f It E) (225)

The numerator P(s) is a homogeneous polynomial, with non-negative integer
coefficients and with total degree in u:

UL yeeney Up 1
deg(P(S% """" Sr)) = Z (r—j)s;—=r(r—1) if s, €N (226)
1<g<r—1 2
This makes H* homogeneous in u of total degree d = — > s;.
(i) For identical powers s; = s > 0 and a fixed set of weights {ui,...,u,},

the coefficients H(s) are always largest (resp. smallest) when the weights u;
are arranged in increasing (resp. decreasing) order.

(ii) Conversely, for identical weights u; = v > 0 and a fixed set of positive
powers {si,...,s,}, the coefficients H(s) are always largest (resp. smallest)
when the weights u; are arranged in decreasing (resp. increasing) order.

(iii) Since the weighted convolution product remains defined for all complex
valued weights s; (see below), the coefficients H (5) possess an analytic ex-
tension to the whole of C27, single-valued in s but multivalued in w, with
singularity locus u;{u; + ... + u; = 0}.

(iv) For real positive powers s;, the influence of the weights is strongest (resp.

weakest) when the powers increase to 400 (resp. decrease to 0). In particu-
( 1:11 ,,,,, 7:: )

,,,,,

lar, limg, ;o H = % irrespective of the weights u;.
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(v) Apart from symmetrality, u-homogeneousness, and the s-shift relations

...........

Ui S; (v U1 ury
H 81 yeens sp/ — —H 51 yeeey 1+s; 4eeey sr 227
Z Sl _|_ oo _|_ ST ( )

1<i<r
which simply reflect (123), the coefficients H(s) do not appear to be subject
to other algebraic constraints.
(vi) Whereas r-multiple convolution products tend to decrease like Const/r!,
r-multiple weighted convolution products tend to decrease like Const/(r!)%.
This is particularly obvious for positive weights wu;, which imply positive
coefficients H*. That precludes sign compentations in the following sum

Ug(1) 1o ’jo(r))

Z Weco(%(l) AAAAA 2ot

oG,

(ar

“NE) (228

(g) = (Weco(gll) % -+ - % WECO

and makes each of its summands, on average, equal to 1/r! times the right-
hand side of (228), which is itself small of order 1/r!. This, however, appears

AAAAA

to lead to an anomaly: the very same biresurgent monomials Wl )(z, x)
give rise, in the (-plane, essentially? to ordinary convolution products that
decrease roughly like C /7!, and in the &-plane to weighted convolution prod-
ucts that decrease roughly like Cy/(r!)%. The answer lies simply with the
convolands, which differ in both cases: in the (-plane, we have the rather
small b;(¢), and in the &-plane the much larger™ ¢;(€) := —b;(z — £). So on
the whole things balance out just fine.

Remark 2: The case of non-integrable minors ¢;.

Like with ordinary convolution, when dealing with convolands ¢; that are
non-integrable at ¢ = 0, we must resort to so-called majors® ¢; and replace
the path integrals (211) by suitable loop integrals that avoid the origin. Or
again, we may go to the multiplicative xz-plane; calculate the wemu integrals
on tweaked vertical lines L;; and then revert to the {-plane.

In particular, when all convolands ¢; are equal to the convolution unit
d (dirac distribution at the origin), we find that the weighted convolution

ceases to depend on the weights:

,,,,, 5)(5)5— YUty ..., Uy (229)

OIndeed, if we neglect the factors (¢ — |u|x)~* which have almost no impact on the rate
of decrease at a given (, the induction (206) amounts to an ordinary convolution product
with r factors.

50Compare for instance b;(¢) 1= ¢"~1/(n; — 1)! and b;(z) := 2=,

Minors and majors relate as follows: ¢;(§) = —5 (&;(£e™¢) — &;(e7™%)).
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Remark 3: Weighted convolution and the diracs.

This last remark takes us to the case when one or several convolands ¢; are
equal to 6. When only one is a dirac, and the others are regular, we find 0
unless the dirac ends the sequence:

(711 seens "i'rfl . ~
Uy, U eco 1 er—1 if ¢ =290
(572506 = {w € if (230)

0 otherwise

When k convolands ¢; are equal to § and the others are regular, we find again
0 unless all regular factors come first in the sequence, and all diracs last:

1 (U1 o Yr—k ) =R . N
(Gt ) = {F weco ek (5) Zf Cr—k+1 = Cr—f42 = ... Cp = J

0 otherwise

These rules are clearly compatible with the symmetrality of weco®.

Remark 4: The case of vanishing sums u; + - - - + u;.

When some of the partial sums u; + - - - + u; vanish, the integration multi-
path in (211) ceases to be finite. This either renders the integral meaningless
(when the germs ¢; cannot be continued to infinity) or again (when they
can, but display singularities) this opens the way to indeterminacies. In our
problem, however, two fortunate circumstances save the day:

(i) in the Second Bridge Equation, the ¢; that occur are all of the form
¢i(&) = =bi(z — &), with z large and b; analytic and small at c0. So here
we have in the &-plane a privileged path to infinity®?, which we choose. We
shall see in §4.6 how this translates in analytical terms: we must replace the
resurgence monomials S*(x) by the amended monomials S¥ ().

(ii) in the Third Bridge Equation, the convolands ¢; carry no z-shift, but here
all terms with vanishing sums u; + - - - + u; cancel out!

Remark 5: The need for a detour through combinatorics.

After the weighted convolution products, the other tool required for master-
ing coequational resurgence is a recipe for alien-differentiating these prod-
ucts, more precisely, for expressing A, weco's &) and A welold &) in
terms of weighted convolutions of the alien derivatives A, ¢; of the individual

convolands. However, the integrals (211) that define weighted convolution,

"Znamely arg(z — &) = arg(z).
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and especially their analytic continuation in the large®® are so impossibly
long, intricate and contorted that they defy visualisation. So an analytical-
combinatorial approach is required instead. It relies on well-chosen con-
volands ¢;, with well-chosen meaning three things:
(i) the ¢; should be stable under weighted convolution and alien differentia-
tion,
(i) they should be simple enough to yield explicit formulae for both opera-
tions,
(i) they should be numerous enough to approximate all ramified functions.
Fortunately, there exists a set of functions that meets all three condi-
tions and that will eventually yield the rules for alien-differentiating our
weighted convolution products: these auxiliary functions are the hyperloga-
rithms, which we examined at some length in §2; to which we shall briefly
return in the coming §4.3; and on which most of the present section’s subse-
quent developments shall be based.

Remark 6: The weighted products under arborification.

We already noted at the very end of §3.8 that (anti)arborification does not
significantly complicate the symmetral products weco, wemu. We may now
add that the (left) alternal marking (see supra) also smoothly interacts with
the alternal products weco, wemu. One verifies indeed that marking a given
element of a given (anti)arborescent sequence amounts to no more than a
slight modification of the arborescent order:

(i) no nodes get destroyed or created

i) the marked element w? becomes the new (anti)root.

iii) the part of the tree previously issuing from wf retains its order.

iv) the part of the tree previously preceding wf has its order reversed
v) the rest of the tree retains its order.

(
(
(
(

4.3 The elementary monomials V*(z) and monics V°.

The z-resurgence (‘equational’), which manifests in the dual {-plane, turns
out to be totally independent of what singularities the coefficients B, (2) of
our model system (186) may or may not possess: they depend only on its
‘multipliers’ \;. The z-resurgence (‘co-equational’), however, which manifests
in the dual &-plane, depends on the multipliers \; and the singularities of the
B:,(z), which live directly in the z-plane, at or over some points ;.

53technically: the weightedly self-symmetrical and self-symmetrically shrinkable multi-
paths that we would have to consider for a direct ‘geometric’ treatment.
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The same holds for our resurgence-carrying monomials W*: the singu-
larities of B, W in the (-plane depend only on the weights w;, while those
of B, W in the &-plane depend on the u;’s and on the singularities a; of the
coefficients b;(z) in the z-plane. More concretely, the former singularities lie
over points of the form z (u; + - -+ + ;) and the latter over subtle bilinear
combinations of the wu;’s and the differences z — a;.

So we find ourselves once again facing this unusual but inescapable inter-
ference of two structures:

(i) the multiplicative structure, which leaves the singularities in place,
(ii) the convolutive structure, which adds singularities, in the sense that:
(singularity over wy)x(singularity over wy)= (singularities over w; + ws).

Then, messing up things still further, we must contend with the weighted
convolution weco, which also adds singularities, but via weighted rather than
straightforward sums. This forces us to juggle two systems of notation:

e incremental, with sequences (w1, ..., w,) (Wi = — ;1)
e positional, with sequences [aq, ..., a,] (i =wy + ... +wy)

As already pointed out, the ideal tool for understanding this hybrid struc-
ture is the hyperlogarithms, with their two encodings®, their stability under
two products® and two sets of exotic derivations % and, not least, their den-
sity property: any given resurgent function in the Borel plane is the limit,
uniformly on any compact set of its Riemann surface, of a suitable series
of hyperlogarithms. We simply recall the bare essentials and refer to §2 for
details.

Hyperlogarithms in the a and w-encodings:

_ T T3 T2
ooy o [ [ [
0

0o Tr— Qp 0o T2— Q2 1T

]’}wl,...,wr(,r) = 9[a17-~~7ar](7—) ’U}Zth o = a)1++WZ (VZ) (232)
yleved(zy = o, pleaelr) (233)
VO (r) = 0 PR () (234)

54
55
56

i.e. incremental and positional.

i.e. ordinary pointwise multiplication and convolution.

i.e. the alien derivations A, and the less important foreign derivations V,,, (which
shall play no part in this paper).
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Functional dimorphy:
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(235) says that VI*l is symmetral relative to pointwise multiplication. (236)

and (237) say that V* and V* are symmetral relative to the convolutions *
and * respectively.

Hyperlogarithmic monics.

In the incremental encoding, the hyperlogarithmic monics V* are defined
inductively by:

Dy, VIO () = Vom0 NV et P () (238)

Wi41+...+wr=0

and in the positional encoding by the usual re-indexation:
V [Ocl,...,ar] = Val,aQ—a17...,a7-—Oér71 (239)

The hyperlogarithmic monics are central to equational resurgence, where they
serve as elementary building blocks in the calculation of the Stokes constants,
and to co-equational resurgence, where they enter the definition of the im-
portant tessellation and texture coefficients.

Index dependence of the monomials and monics.

In §2.3 we showed how monomials and monics respond to partial differen-
tiation relative to their indices or variables. We also mentioned the jump
formulae (54)-(55) that express the discontinuities incurred by the (uniform)
monics V'* when we cross from one domain of holomorphy to the next. Most
statements to follow in this section rely for their proofs on the repeated use
of both sets of formulae.
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4.4 The special monomials S°(x).

To construct the monomials S*(z) and the associated tesselation coefficients
tes® , we first turn the moulds V*(x),V* into bimoulds V*(z), V* and then
subject them to the scramble transform:

S*(z) :=scram.V*(x)  with Yo 1UL:)(J:) =P ULt () (240)
tes® = S* :=scram.V*®  with y“ﬁi S (241)

Thus, we the usual shorthand u; o 1= uy + ug, v1.2 := v1 — v2, We get:

Sti)(z) = Vuvi(z)
S(E ’22)@:) e V’Ul V1, U2 UQ(SL') _ VUI,Q V1, U2 V2:1 (;C) + Vu1,2 V2, U] V1:2 (iIZ’)

Proposition 4.2 (Weighted convolution for polar inputs) .

We assume here that all partial sums u; + --- + u; are £ 0, so that all
integration bounds 0; in (211) are finite. Then the weighted convolution of
simple polar functions 7;(£) = (E—a;)~ ! coincides with the x-Borel transform
S*(§) of the bimould S*(x) for indices w; = (). Similarly, the bi-resurgent
monomials 5" W*(z,x) of (205) with polar inputs b;(2) := (z—a;)™!, coincide
with the bimouls S*(x) for indices w; = (" ). In other words:

zZ—0y

wecolmi ) () = Sler e () with  m(€) = o (242)
UL yeeey ur u yeeey  UP 1
Wl ) (2 ) = SCma e () with bi(2) = (243)
AN 07

Sketch of proof: Based on the rules of §2.4 for the w;-differentiation of the
hyperlogarithmic monomials V', we find that the S*(x), defined as superpo-
sitions of V(x)-monomials, verify

(0, + Ju(e)| ) S* () = =S*(x)xT* (244)
T = — = L gmem =0 if r el (245)

4.5 The augmented monomials S*(xz) and S} ().

Definition 4.1 (The augmented monomials S*(z)) .
The monomials S*(x) are simply the v-augmented scramble transform of the

,,,,,,,,

familiar hyperlogarithmic bimould plo “r)(x) 1= ) VLU ()

STviewed as resurgent functions of their second variable z, in any of the multiplicative

models — formal or geometric.
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Since V*(z) and V*(x) are both symmetral, S*(x) is symmetral as well.
Although the lower indices v; in w are going to reflect inputs VI*! taken

in positional notation, the monomial §* should rather be expressed as sums

of V* taken in incremental notation. At depth 1 this may seem the wrong

choice, since for w, = (7;1) = (v1 U?lv,_, ) we get:
A s UV e

Sﬂl(fﬂ) = V[ul'ul,l,ulvl,...,ulv/l’,v’l”...]<x>

Y uL vl yur(vi—v1) ur (v =) ur (v —of).. (Q?)

But starting from depth 2 the incremental notation commends itself. For
instance, with w, = (vuz, ), wy = (v;‘i/ ), we find in the incremental notation:
yUs

1,V
(¥15u2)

Stoi v (l’) = UV U2V2,U2Vgl 9, ULV (ZE) 4 ) %12V2,U1201:2,U12Vo1 1, ULV /0! (l‘)
+Vu1v1,ugvz,u1v1/:1,u2v2/:2 (.’L‘) _Vulzvl,uzv2;1,ul’vl/:l,’uzvz/a (x)
_|_Vu1’l)1,u1’l)1/:1,’U42’L)2,’U42’U2/:2 (17) _VU12U1 yU120V17.1,U2V5.17,U2Vo/ .o (IE)
4 ) ¥12V1,U1202:1,U1 V7 19,U2Vo1 o (:L‘) — ) U1202,U1201:2,U1201/.1,U2Vg1 1/ (l‘)
4 ) ¥12V1,U1202:1,U12Vo1 19, ULV of (.T) — ) U1201,U1202:1,U1201/:9,U2 Vg1 1/ (SIZ)
4 ) ¥12V2,U12V01 0, ULV 0/, UL V1 (l‘) — ) U12V2,U1201:2,U2Vp/ 1, ULV (ZE)

_|_Vu12112,U1U1;2,U2U2/;2,U101/;1 (ZL’) _Vumvl yU2V2:1,U2Vo/ .9,U1V 7, ({L‘)

P U1202,U1V1:2,U1 V)11, U2Vg1 (l‘)

which would look more unwieldy in the positional notation.?®

According to (215), the biresurgent monomials W*(z, z) with inputs b;(2)
reduce, in the ¢-plane, to weighted convolution products with inputs ¢;(§) :=
bi(z —&). Thus, to get rid of the variable z in b;(z — £) for hyperlogarithmic
data b;, we require an addition identity for hyperlogarithms:

Proposition 4.3 (The addition law for hyperlogarithms) .
For suitable determinations of our multivalued functions®, we have:

Pleerlz —g) = = 3} plavesil(z) Ploesecede)  (246)

1<jy<r

This is simply a variant of (80) better suited to the present context. Note
the unusual juxtaposition of monomials ¥V and V. To derive (246) from (80),

set t; = 2,t, = —¢ in (80), use the homogeneousness YI*=(—¢) = ple—l¢),
and apply 0.

58Beside the usual abbreviations U2 1= Up+Ug, V12 1= V1 — Vg We write v 1= v] —v1.
59See the important remark below
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Definition 4.2 (The general monomials S2 (z)).

The monomials S, (x) carry lower indices of the form

v,=z—q,=(z—a,z—a,z—al,...) (247)

and are derived from the monomials 8*(x) under the adjunction of corrective,

x-constant, z-dependent terms of type 9[0‘](2), which should be taken as = —1
when a reduces to the empty sequence:

(O T ) QZF**Q Ofak Ofak ( ul** """ YT )
Seor ™ () i= Y (=) VIETl(z). L YleFl(z) § el e ) (248)
afaf*=q,
@ = (i), el ™) rma = (2= a2 —afTY)
with o = (o, o),y o™ (0 <m; <ny)
ar* = (agmi), s agni_l)) , 2o =(z— ozgmi), 2 — agni_l))

Note that in (248) the sequences a are always + (J, unlike the sequences
af*, which turn empty when m; = 0, in which case one should of course set

]7@(2’) := —1. As a consequence:

Scor 1T () = Stemay Z*ér)(x) + shorter monomials

Proposition 4.4 (Weighted convolution with hyperlog inputs) .

We still assume here that all partial sums uy + --- +u; are = 0. Then the
weighted convolution of hyperlogarithmic functions m;(€) = VI@i-1(€) co-
incides with the x-Borel transform 3\3(5) of the bimould S*(x) for indices
w, = (Z’) = (" ). Similarly, the bi-resurgent monomials W*(z,z) of

(205) with hyperlogarithmic inputs by(z) = V0o-1(2), when viewed as
resurgent functions of their second variable x, coincide with the corrected
bimould S¢,, () for indices w; = (", )= (,_ % ., ).

weo® ) - SETIE with m(e) = DEede)  (219)
W(bl AAAAA 7;:)(2,735) = Seir e () with bi(2) = ]/}[ai,aé,...](z) (250)

Sketch of proof: As in the case of the simple S¥(x), it is a matter of pure com-
binatorial drudgery. Here again, we make massive use of the differentiation
rules of §2.4 to check that

(0, + (uy + -+ + uy) &) SLr 2 () = —S¥rr1 () x Plrl(z)  (251)
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Mark the alternation of variables:  inside S%(z) but z inside VI(z). Note,
too, that the presence of the multiplicative variable z alongside the hat over V
(indicative of the Borel plane) is no misprint, but just another manifestation
of the interference of the multiplicative and convolutive structures.

Remark 1: Both S .(z) and V*(z) behave as symmetral moulds under

ordinary multiplication (as power series of z7!). The existence of a unique
expansion of S (x) into a finite sum of V¥ (x)-terms leads therefore to a
commutative diagram:

w' w” symmetral linearisatiom w
Scor * Scor Z cor
hyperlogarithmic l l hyperlogarithmic l hyperlogarithmic
expansion expansion expansion
/ " symmetral linearisation
(2w V) * (e V) — 2 €V

The same already holds true, of course, for the mould S%(z) but this im-
mediately follows from the construction of S¥(x) (Definition 4.1) combined
with the earlier commutative diagram involving SM* and M™ (at the end
of §3.7). The point here is the preservation of the diagram’s commutativity
after the change (248) from S%(x) to S% (z).

Remark 2: Bounds for 8%(¢) to 8% (¢). The huge number of hyperloga-

rithmic summands V*(z) present in the expansion of S%(z) and S (x) (see
the remark towards the end of §3.7) doesn’t prevent our monomials from ad-
mitting excellent bounds on the compact sets of the ramified Borel &-‘plane’.
The hyperlogarithmic expansions are useful, indispensable even, for under-
standing the resurgence pattern. But for the purpose of majorisation one
should turn directly to the weighted convolution product weco®. The corre-
sponding integral may look messy, but it leads to even better bounds than
the ordinary convolution integral: for r convolands, a second factor %, comes

into play instead of just one!

4.6 Vanishing u;-sums and amended monomials S, (z).

When some of the partial sums (u; + - - - + ;) vanish, some of the end points
0; in the multiple integral (211) become infinite. Since we consider integrands
of the form ¢;(§) := b;(2—¢&) for z large and for inputs b;(z) which, even when
ramified away from oo, are assumed to be analytic in some neighbourhood of
o0, this is no obstacle to the continued existence of the weighted convolution:
we can always arrange for all integration variables £ to move within the safe
neighbourhood of co. However, the analytic expression of W*(z, z) in terms

73



of §*(z) (polar case) or S

cor
to resort to ‘amended’ monomials S, () or S¢

coram
polar case:

(x) (ramified case) ceases to be valid, forcing us
(x). Let us begin with the

Proposition 4.5 (z-derivative of S*(x)) .

In presence of vanishing u;-sums, the z-deriwative of Sleman 1 Z*gr)(m) no
longer verifies the relation (244), but a modified form of it:

(0, +|ule)|2) S*(x) = =S°(z) x T* + H*(x) x S*(x) (252)

The definition of the elementary alternal bimoulds J°* remains unchanged,
but a corrective alternal bimould H® comes into play:

1
JU = — T =0 i vt (253)
U1
/ " Sw/ Wi g Sw// ) - O
0 otherwise
U yeeey upr UL yeees ur
S,L(}jvl ,,,,, Ur)(x) = S(yl:j ,,,,, UT])(,Z') ’wlth 'UZ] = ,UZ _ U] (255)

Sketch of proof: The vanishing of v;-differences modifies the behaviour of S¥
under 0,,, while the vanishing of partial u;-sums modifies the behaviour of
S* under 0,, (mark the criss-cross). The exact rules are these:

J

0,8 = Plvy) Y, d(lulyu?]) SV SIS (257)

wlewaS:’w

0S¥ = P(u;) (5(vj_1 — ) ST 4 6 (u; —vj+1>swj*j*1) (256)

with ¢ standing here for the discrete dirac.%® From (256) we then derive the
modified formula (252) with its corrective term H*(z) x S*(z).

Let us now decompose H"™ into a finite sum of terms 7—[}]‘; = S;‘;/ J Wi ”iS;‘j’”
and then set

|lwt|=0,...,|]ws|=0
w L w? w* Vo geney Vjg
K®(z) := D D HE () HY () A (258)
wrw® =w Vs Vjg

with an elementary symmetral mould unambiguously defined by the condi-
tions

1 1
0, Xt = Ve tsml (recall that vy 1= ) (259)
Vs Z— Qg

XVt~ ( ‘ (log 2)* for z ~ o on main sheet  (260)
s!
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We are then in a position to construct the amended mould S;,,
So(z) = K*(x) x §*(2) (261)

Proposition 4.6 (The amended monomials S, (z)) .
As the product of two symmetral factors, the bimould S, () is symmetral
and clearly verifies

U;

1
(0 + [ty ) Sty () = =Sy () — (wi = (

)) (262)

zZ—Qy

Changing S8*(x) to S;,.(x), we can extend the earlier identities (242)-(243)
to identities valid in all cases:

weeo 4 e = St for i) = = (263)
UT yeeey ur UL ey ur 1
WL ) = St @) for b= —— (264)

4.7 Alien derivatives of the monomials S*(z).

In a sense, we already ‘know’ the answer: having expanded S*(x) and S, ()
into finite sums of hyperlogarithms V*(z) and possessing with formula (52)
a prescription for alien-differentiating each V*(x), we have all it takes to
calculate A,,,S*(x) and A, S5, (x). In practice, however, we require explicit

and compact formulae covering each of the many possible situations. This is
the object of the present section.

The special monomials S*(z).

Proposition 4.7 (Alien derivatives of S¥(z)) .
The only alien derivations A, acting effectively on a given monomial S*(x) =
Slor 1ok ) correspond either to simple indices wy of the form
W = W.W,. W. W
wo = |u| v, with o B
|| =[] + v, + [t

or to composite ones of the form

) 5 , w = whw,.w ... W ws,. w0
wo = U v s + .o + U s with , y
[u*| = U] + uiw + U’
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For a simple index wy, the operator A, acts as follows:
Doy SP(x) = T (x) S¥(x) (265)

Tu'ml'; = S wSu‘;
wWW . QW wQwW
T =8 S

ivSwl,.,.,wr — (_1)7“ Swr,...,wl (266)

with

For a composite index wy, the action involves a new ingredient: the locally
constant bimould tes®, or tessellation bimould, defined as the scramble trans-
form of the hyperlogarithmic mould V'* or rather its bimould extension V*:

[ul] ..., |u®| . .1 RPN _,
By 8(x) = tesl 5D gt (g gt (1) () (267)
with tes® := scram.V* and Vet o) = Yo (268)

The general monomials S%(z).
To enunciate suitably compact statements, we need the following:

Definition 4.3 (Notion of v,-splitting) .
Let v, be some element (- first, middle, last -) of some lower index v, inside

a sequence w = (Zi Z: Z:) A v, -splitting of w is a joint factorisation

of all v; such that
v, = (u;,07) if v+ v, (only vi may be &)
v, = (v, v, 07) (both v, and v’ may be &)
To each v,-splitting we associate
e a non-ordered sequence {v'} consisting of ordered sequences v,
e two ordered sequences w" and w"

e a lone index w’, (that may be empty)

defined in this way:

(v} = (W0t 0

<Q” = (w],...,w! ...) = (z,i, Zﬁ, ::::) with w, earlier than w,
@' = (el w,) = (0 with w; later than w,
(we = () (wh =g if v} :=0)



Proposition 4.8 (Alien derivatives of S%(z)) .

As was the case with simple monomials S* (x), the only alien derivations A,
acting effectively on a general monomial S¥(x) = St Ty ) correspond

to indices wy either simple (269) or composite (270):
w=w.w,ww

wo = |u| vy with {~ . — 7 (269)
[u| = || + us + U]

Z [uf| v with {7

1<i<s

{w — wlw,, @t . W, 05T 210)

[ut| = |4} + wy + |6
but with this important difference that v, (resp. v;.) now denotes some ele-
ment® of the sequence v, (resp. v,,).

For a simple index wy, the action of A, involves the so-called texture mould
tex® which, unlike the tessellation bimould, doesn’t depend on the weights u;:

Ay S®(x) = ) texith 7" witai (1) S () (271)
Vy-split
’Twl’ﬂi@z := concat <symlin(5@1 “’Sﬂz) 5%)
with ﬁl’ﬂi’ﬂz := concat (symlin(S;" “’S“’ ) Sw*> (272)

teX{Ulym = } Zyesha(yl;...;ys) V[y’v*]

When w, = & the definition of Tutwiw® reduces to
Tutuwiw? :symlin(Sﬂ1 z'”892) = Sw'  ivgw?
and due to summetrality we always have :

w = w in reverse order

wWSw = (—1)" ) ST with
r(w) = length of w

For a composite index wq, the action involves both tes® and tex®:
..... ) ) j=s " w’{ﬁ wI” .
A, S (x Z Vtes “1 ”1* """ sosi ) (1 Ty 77 (2)) S®(x) (273)
Vy-splits j=1

with vtes® := vscram.V* (see §5.7). The sum (271) extends to all v,-splittings
of (w, w,, Q), and the sum (273) to all v,-splittings (@’ w Wi W) of w?. For
sequences w of type w (i.e. with lower indices v, = v; of length 1), all texture
coefficients degenerate to tez{z} = 1, so that (271) reduces to (265) and (273)
to (267).

51not necessarily the first or last, but any element.
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Examples. The above statements may at first confuse in their conciseness.
So, even before turning to their proof, let us illustrate them in four typical
situations. For this monomial S% of depth 4:

(“17“21“3”’44)

( ul o, u2 , U3 7u4)
SY .— S'vy,vg,03,947 = 8§

vl,vll ,vQ,vé,vg 5 v3,vé s VY4

let us calculate the alien derivatives A,,, S* for two simple indices wy, ws and
then two composite indices ws, wy:

P . /
W1 1= U1,2,3,4 V2 , W2 = U123V,

P / . /
W3 1= U2 V2 + U3 4 Vg , W4 i= ULV F U234 Uy

Case 1: Applying the rules, we find:

( Ul o, U2 G\, U3 ,ug
+ vl,vll, v’2,v’2’ ,v3,vé,1}4 {@}

5 texXy,
(“ ,( /“2//))1, “3/ ,u4)
VY s Vg,V » V3,V V4 V1
Py e k) o o)
( ul/’( /u2// u’uls’ml { }
V],V Vo, Vo 5 V4 v3
+To PP T teXay,
“/1,( u2 ﬁ,u37u4)
1

e

1
/
1

Uy 2,34 V2

/ "

V7 5 Vo,V v’Ul7U4 v1,U3
+7:)2 272 3 teXiQ ’ }

with
( ( uq , U4 us N u9
(™ ua i ws iy 48 V1:2:V12 5 V425 V8:2:V30 0 5 Vol 190 Vol o

Nyl T ! ug uy s u3 s ug

7;)21;171)1 Vg:Vg v3,V3 V4 — { +S(U4;27’01¢2»U1/:2,U3;2,U3/:2»’02/;2,1)2//:2)
( uq > usz , ul s ug )
4+ & V425 V3:2:V30:0 5 V1:2:V17.0 5 Vol 190Vl g
( ( uy o, ugq o, ug s ug )
4+ V1720 V425 UB:2: V005 Vol 0ol o
( ug o, UL, ug s ug )
= { 48 42 V17:20 V32,0309 Vol 20Vl o
( ug > u3 y Ul ug )
4+ & V425 V3:2:V37.9 5 V1719 5 Vol 95090 o

Uy, U2 g, U3 ,uq
T(ul g o gt o)
v2

\
( ( uy , U4 o, U3, ug )
4+ & V12V V42 Vgl o Va0 Vol o
u u u
opr o D504 (w4 w o ug . owp
7:;2 TR 3 = { 48 V4250120172 V3.2 0 Vol 2 V2l 2
("4 ug ., upoo, o up )
4+ V425 V3005 V125V /10 Vol 100 Vol o
( ( u] o, Uq4 5, U3Z ug )
(U“1( 2 )8 M3 ua) 481720 V4:25 Vg 0 Vol g Vaig
s , s Uy
ol Nl ! ! » Uy R u
7;)2 o 3 = < —|—S(”412’“1/:2’”3/;27”2/:2*”2”;2
(“4 U3 o, ul o, ug )
480420V Viri2 0 Vorin Varia
\

_i_v[vlﬂfsﬂfz]

texi?l = Vlval = 1 texivi} = ylovwe]  paylost = prlvsve]  pogdvivs} =
V2 ’ v2 ’ v2 ’ 2 + Vs vive]
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Case 2: This time, we get a non-trivial factor S®. We find:

r (U o(UF "3))
T, SO e

U2u1,(u2)u
Sw +T;17 R 03 8(“4 tex{vl’W}
= = < uy U2, U3
+7.(/'u1,v11(v ) a’US S(u4) teX{'UZ:U?)}

Uy
(CDCEE3) ug
, , V1,02,V
\_’_7;/1 57 vy S( )teX{l 2,03}
2

)

!
Uy 2,3YV2

with 7° factors simpler than in case 1:

ul Lu2Nf, U3 Copori Conrs Copnor)
(vl’v'lv(v/g’) sv3.,0h ) —|—S 1:2/°Y17:2/ > ¥3:2/> V3020 2 Vol .o/
7;/ - ug , uq , U9
2 _|_S V3,071V .9/ V1,90V 1.9/ s Vol .of
ul u3 ug
(u1 (Zj )n:v:i ) +S(”1’:2’ 1 V3:2/75 2! :”2”:2’)
7;/ = u3 y Ul u2 )
2 B LR TR TR TR VR Y
uq , uz o, u2
(“E’l ,( ol )ti:’:3) —|—S(“1;2/*“1/;2’ 1 U310l > Vol iof )
7;/ = ( uz ul ;U2 )
2 _|_S Val.of s V1:2,V17,91 » Vol .ol
’LL1 3 ’LL3 ) u2
(Uh(iz)p ) —|—S(“1’:2/ » Vgl iof ’"2”:2’)

7—”1’ vl oov3t
, =

vl u3,u1,u2)

+S(”3’:2’ $V11i9l > Vol of
but with more complex texture coefficients. Thus:

{v1 v ’03} _|_V[”lv”27U3’v/2] 4 V[Ulyv&vz,vé] 4 V[UQ:ULU&UIQ]
b b

teX ! ! !
4V 2wz on05] 4y [ssvn2,05] 4 Y/ [0s,02,01,05]

Case 3: Here the inversion S* — “S* implicit in the definition of 7 intro-
duces a minus sign. We find:

UL 2 (U3 > ud (“12- 434

'Ul U ) 'U 'U N /

A S e 7; " yes "2 vats
Uy pUyFUg 4vs O T (u1 (2,08 (%’,)uﬂ%) u1,2 , u3,4

Nl Y R , /
+ T V2 Tg Y47 ytes V1v2ovsvy

with
up o, U2 )jj) w ug N\, ug
/ i 1 ) u2 uq
7:)21;171)1’ vy, v — S(v1=2’1}1’:2’v2’:2’u2”:2) T(/( ) ,v4) _ _8(“4 3/)
v
3
(P 200 uyp ug (U3)frud) uy
7:}21)1’ 2 = S Y1/ 2’”2’2’”2”2) ; 7;% G5 vat _S(v4:3/)
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Case 4: Here we find, again in accordance with the general rules, that the
indices v9 and v3 exchange positions inside vtes®.

(“Z)ﬁ, u3 ,u4) uy, %2 34

(19

( " !
v v s V3,Vq 5 V4 N i
A w +7:)1 ! 7:;/ 2 3 vtes Y1 va,vy
w 2
Uy vy Hly 3 4) S (DD ((Cp)n3-ma) 1, M2,34 Ui, M2,34
+7;1 1 T/ 9 V3 Y4 (VteS v1!1;2,u3,v’2 +VteS v1,1,3,v2ﬂ/2 )
U2
with
(O3l uq ((07): 13,04 ug o, wz o, ug
y “ :S(“l/:l) - T, I R 8(“4:2"”3:2“”3/;2"“2”;2/)
1 ) v
2
(“1 ))i w “2))1,“37“4 uy ug ug
7;(1 o] ) _ S(“l’l:l) i T(,(vé’ ,vé,v4) _ S(U432’:U3/12/:U2”:2l)
)

U3
Short proof of Proposition 4.8: The index postponement identity.
(post, A)*@i® = (—1)"@) 2 ABwi VA® € alternal (274)
esha(w,w)

applies only for alternal moulds A®, but since the expansion on the right-hand
side of (274) is fully determined, it follows that the postponement operators
always verify

post; post; = post; (i, 7) (275)

whether the moulds on which they are made to act are alternal or not. If we
now write the backward induction rule in the case W = ¢, we get

Jul . i
cutﬁi\ji )SMH = concat (symlin(SM2, “SM2), SM“)

Formally, this is nothing but a postponement identity for the index w,, fol-
lowed by the removal of the first element v; of v, and by the subtraction of
that same v; from all elements of all lower sequences v;. We can easily iterate
the process. For a v,-splitting of w and v°® € sha({v'})

v° = (vy,...,00) € sha({v'}) = sha(v};...;2))

T

let us calculate

[l (o | |

( —v3, v = _ v§—v$ v$
cutfi,* " cutfi,,” "' ...cutf,? ' cutfi,,} SM*
Using the crucial identity (275) , we arrive at a result
concat (symlin(SM%/ , “SM U%N ), SMy,* )
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that does not depend on the choice of v° in sha({v'}).
As a consequence, if we now calculate

Aufos S (T) = A(u(vs—03)+ul(vg —05_y )+l (w3 —09) + ul (1) S 2 (T)

and apply the backward induction rule (154) and the prescription (83) for
alien-differentiation , we find

Doy 88(r) = 3 (V) TR ()

Vy-split

which, in view of the definition of tex*® (see after (271)), is exactly the identity
(271) in the case W = J. The argument for proving (271) when @ + ¥ is
no different.

Lastly, to establish and interpret (273) for composite indices wy of type
(270), the only additional result required is the factorisation lemma for vtes®
in Proposition 4.13.

4.8 The tessellation coefficients tes®.

Since the tesselation coefficients tes® := (scram.V )™, their v-augmented
variant vtes® := (vscram.V )™, and the closely related tes®, despite being
defined in terms of the transcendental hyperlogarithms V| turn out to pos-
sess remarkable properties of local-constancy in their upper and lower indices,
and since both encapsulate some sort of ‘universal geometry’ that governs
co-equational resurgence, we must pause to take a closer look at them.

The simple tesselation bimould tes®.

We recall its definition, which is based on the scramble transform of the
monics V'* taken in incremental notation:

. UL yeens up
tes® = scram . M. wzth M( V] e ’Ur) c= U1V Ur Ur

= tes¥ = Ew,ez,zw’ with eﬁ,e{il} , Z‘ez,‘:r!!

The natural setting for studying tes® is the biprojective space P™" equal to C*"
quotiented by the relation {w! ~ w?} < {u! = \u?, v! = pov? (\, ue C*)}.
But rather than using biprojectivity to get rid of two coordinates (u;, v;), it
is often useful, on the contrary, to resort to the augmented or long notation,
by adding two redundant coordinates (ug,vo). The long coordinates (u?,v?)
relate to the short ones (u;, v;) under the rules:

w=u v = — ) (I1<i<r) (276)

(2
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The long u are constrained by u) + --- + u’ = 0 while the long v} are,
dually, regarded as defined up to a common additive constant. Thus we
have <u’,v”>=<u,v>.The indices i of the long coordinates are viewed as
elements of Z,,1 = Z/(r+1)Z with the natural circular ordering on number
triplets circ(i; < 1o < i3) that goes with it. Lastly, we require 72 —1 basic

‘homographies’ H; ; on P™", defined by:
Hj(w) = QF;(w)/Q7;(w) (i—Jj*0:i,j€Za) (277)

:‘j(w) = Z uz (UZ — vf) (278)
circ(i<q<j)

) = Y W@ —) = <wv>-Qw)  (279)

circ(j<q<i)

Proposition 4.9 (Local constancy of tes™) .

Outside a finite number of hypersurfaces S(H; j(w)) = 0 of C*" (see supra),
the tessellation coefficients tes®™ are constant in each upper index u; and each
lower index v;.

Sketch of proof: By repeated application of the formulae in §2.4 for the
partial differentiation of the hyperlogarithmic monics followed by intelligent
regroupings (based on the backward induction rule for scram) of the numer-
ous terms thus obtained, one finds that each partial derivative 0,,tes” or
Oy, tes®™ is = 0.

Except at depth » = 1, where we have tes"' = 1, the tessellation coeffi-
cients are not globally constant. Indeed:

Proposition 4.10 (The jump rule for tes™) .

It is only when w crosses a hypersurface H; = {w € C*; H;;(w) € RY}
that tes™ can change its value. More precisely, let w be any point on H;rj
and let w,w™ be two points close by, with Sw™ > 0, Sw~ < 0. Then

+ Kok

_ ) "
— — T
tes¥ tesv 271 tes™ tes™ 280
L Uil yeeey Up  yeeny Uy : . .
with w" (lefvi yeees Up—Dj 4uesy vjva') Cll"C(Z <Ps j) € ZT+1
w** = ( Uil e Ug e Ui—1 ) circ(j <q< ’L) € Zyi1
Vjp1=Vi yeey Vg=Vi yere, Vim1—V;

Proof: Start from the hyperlogarithmic expansion of tes®, apply the jump
formula (54) to each individual hyperlogarithmic summand, and then com-
petently regroup the terms.

This begs for an alternative, simpler expression of tes™, or rather, to get

rid of the 27 factors, of its normalized variant tesy € Z:

fes®lr W = (2f)T el (281)

nor
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The following induction rule, itself based on the jump formula (54) applied
to each individual hyperlogarithmic summand, provides such an elementary
alternative:

Proposition 4.11 (Calculation of tes") .
We fix some c € C* and set R.: z€ C— R(cz) e R. Then we define:

/ _ / —

o= <u v><u, o>, g¥ = <!, Rpv'><u, Rpv>"1 (282)
" _ " _

7= < v'><u,v>"" ) g2 = <u, Ryv"><u, Rgv>""1 (283)

From these scalars we construct the crucial sign factor sig which takes its
values in {—1,0,1}. Here, the abbreviation si(.) stands for sign((.)).

(si( S — f") = si(g' —gw")) x

. w'aw” . w aw” 1 . w' w' . w' w'

sig” " =sigt " = 3 (1 + Si(f¥ /gw) si(fy —g¥ ))>< (284)
(1 +si(fy"/g") si(fe" —gw"))

Next, from the pair (w',w") we derive a pair (w*, w**) by setting:

_ / _ ’
u* = vt =0 <u,v>" Y - R <u, Roos>T S (285)
_ ” _ ”
u** =’ v = <u,v>" S¢Y — R <u, Rov>" SFY (286)

or more symmetrically:

v’ §RC’UI v” §Rc’U”
*._ det <u,v> <u,R.v> #* . _ et <u,v> <u,R.v>
v L e / / / m / ) v L e 4 " " % "
x<u,v > <UL,V > x<u, v > <UL It >

<u,v> <u,R.v> <u,v> <u,R.v>

L]
nor

Lastly, from all these ingredients, we construct an auzilliary bimould urtes
by setting:
urtes® = Z sig? ™" tes®” tesW ((w’,w”) + (w*,w**)) (287)

nor nor nor
w/'w’"=w

Then the tessellation bimould can be inductively calculated from:

nor

test ., = Z push” urtes;, (Vee C*) (288)

0<n<r(s)

Proof: The jump formula (54) makes it clear that the locally conctant tes®
can change values only when w crosses one of the r? — 1 hypersurfaces
S(Hij(w)) = 0, which themselves can be derived from the r — 1 hyper-

o <u/,v'>
surfaces <& =

= 0 under repeated application of the (r + 1)-potent
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push-transform. We also note that tes” takes the same value at the points
u

w=(¥) and w = (¥) with ¥ := v <u,v>"", and further that tes®> = 0 at
the semi-real point w = (%) with v := R.v <u,R.v>"". So it all becomes a
question of comparing tes® and tes?. To that end, we set w(t) := (vqé)) with
v(t) ;= v+t.(v—wv). The line {w(t);t € R} joins the point w (for t = 0) and

. B / /

the point w (for ¢ = 1) and crosses the hypersurface =277~ = 0, for some
9

critical ¢ = o, at a third point w*w*™* = (¥,%., ), with u*, v*, u**, v** as

above. Lastly, regarding the three factors in the expression (284) of sig?s ",
their interpretation is as follows:

(i) the first factor is +2 (resp.0) if w and w lie on distinct sides of the hy-
persurface %j:,::zi = 0 (resp. on the same side).

(ii) the second factor is 2 (resp.0) if the critical value t; is > 0 (resp.< 0).
(iii) the third factor is 2 (resp.0) if the critical value ¢y is < 1 (resp.> 1).
Thus, formulae (287)-(288) exactly reflect the changes which tes® undergoes
when w moves from the semi-real w to w ~ w after crossing some of the

r? — 1 hypersurfaces S(H, ;(w)) =0. O

Remark 1: In the induction (288) we might exchange everywhere the role of
u and v and still get the correct answer tes? ., but via a different auxilliary
bimould urtes?

nor:

Remark 2: The above induction for tes® is elementary®® in the sense of
being non-transcendental: it depends only on the sign function. But on the
face of it, it looks non-intrinsical. Indeed, the partial sum relative to the
choice ¢ = €:

1oa * ok
= Z sigh "™ tesnatesne:  (289)

. ’ n * k3k
urtesy’ := Z sig" " tesp, tesy, )

nor nor

w/'w”"=w w/w”"=w

is polarised, i.e. O-dependent. However, its push-invariant offshoot :

nor

tess,, = Z push” urtes; (290)

0<n<r(w)

is duly unpolarised. We might of course remove the polarisation in wurtesg
itself by replacing it by this isotropic variant:

21

urtesy df (291)

urtes;, = —
21 Jo

but at the cost of rendering it less elementary, since urtes;,, would assume its
value in R rather than {—1,0, 1}. It would also depend hyperlogarithmically

52and easily programmable.
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on its indices, and thus take us back to something rather like the original
formula tes* := > €, V¥ which we precisely wanted to get away from.
Thus, the alternative so far for our bimould tes® is: either an intrinsical but
heavily transcendental expression, or an elementary but heavily polarised one.

Remark 3: Let h;; := sign(SH, ;(w)).
(i) For r = 1, we have trivially tes** = 1.
(ii) For r = 2, we find:

U1V u2(02 - Ul)

H(]J(’ll]) = —, HLQ(w) =, HQ,()(’IU) =

UgUs (w1 + ug)vy

and the corresponding signs h; ; determine tes™:

ot {ﬂm iff o (w) = hya(w) = hog(w) = +1 00)

0 otherwise

(iii) For r > 3, the r* — 1 independent signs {h;;; i,j € Z,41,j —i + r} do
not suffice to determine tes®, except in some very special cases, like:

{hij(w) = +1 Vi, j} = {tes" " = (+2mi)" "'} (293)
{hij(w) = —1 Vi, j} = {tes" " = (=2mi)""'} (294)

Remark 4: To be able to determine the tessellation coefficients purely in

terms of ‘signs’, we must revert to their expression as sums of 7!! hyperloga-
rithms tes? := Y 6,V = >l e, V¥“r and set:

w

ZjQ <j<Js J

i - Diin<i<i Wi Vi1,72,73
hj17j27j3 (w> = SZgn%(%) 0< i . . (295)
SN <J]2<J)3sr

Unfortunately, these 7}, ; , (w) are far too numerous (even taking into ac-
count their dependence relations) to be of practical assistance, and we know
of no simple rule for inferring tes® from them. So, at the moment, the

induction formula (288) remains the simplest way of calculating tes®.

Proposition 4.12 (Main properties of tes®) .
P;: tes® is invariant under the involution swap and the iden-potent push:

( ) ( Ve ey, v3—vy , VQ—U3 , '111—'112) 2 .
SWap.A V1 seens vy — A uyt...tur ..., uytugtug , uptugy, up (Swap — lden)

(u1 ,,,,, ur) (*ul'“*uT 0 N ) “7‘*1) 1
push. A\ et oo/ = AV =or e e o) (push™ ! = iden)
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Ps: the bimould tes® s bialternal, i.e. alternal and of alternal swappee.

Ps: tes!,. assumes all its values in Z and |tes* | < (r — 1)I(r + 1)!

(absurdly unsharp estimate)

P,: As r increases, the set where tes™ £ 0 has surprisingly small Lebesgue
measure on S*" (S being the Riemann sphere), as shown by the following
formulae, where P(|tes™| = n) is the probability for tes” to be equal to +n
when w is picked at random on S*":

test =1

tes®12 € {0, £1} P(|tes 2| = 1) ~ 0.21
teswiw2ws e {0, +1} P(|tes 23| = 1) ~ 0.026
P(Jtesi-w1| = 1) ~ 0.0037

tesWtr1 e 10, +1, £2
{ } P(|tes® 4| = 2) ~ 0.0000037

Ps: in presence of vanishing u;-sums, we no longer have local constancy in
the v;’s.

Pg: conversely, in presence of v;-repetitions, we no longer have local con-
stancy in the u;’s.

P;: in the semi-real (or semi-aligned) case, i.e. when either all u;’s or all
v;’s are aligned with the origin, the tessellation coefficients altogether exit the
picture, since in that case tes” " =0 as soon as 2 < r.

Ps: for v fized, the hypersurfaces S(H, ;j(w)) = 0 limit® but do not sepa-
rate® the sets Ty = {w, tes® = k}.

At first sight, the swap-invariance of tes® is quite startling, since the involu-
tion swap exchanges the upper and lower indices which, in this context, have
completely different origin, being respectively ‘weights’ and ‘singularities’.
However, we saw in Proposition 3.5 that going from the convolution weco to
yeco has precisely the effect of exchanging ‘weights’ and ‘singularities’.

The texture mould tex®.

We recall its definition, which is based on the monics V [*] taken in positional
notation:

tex{vi} =1, tex{ﬂ*ﬁ“'?ﬂs} t= Z V] (296)

vesha(vy;...;u,)

63that is to say, the boundaries of these sets lie on the hypersurfaces.
64that is to say, none of the three sets can be defined in terms of the sole signs h; j(w) :=
sign((H; ;(w))), at least for r = 3. See Remark 3 and 4 supra.
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The system of texture coefficients is stable under differentiation:

{ Uqse- ,~Hi§-~~§ﬂr} 1 -1
0 sl ) THeXu ((via) ™+ (vig —vi1) ™)
i1 VO = (V15050 3552}
V1 i||2 r —1
+ter* (Ui,g — Ui,l)
{vyses, g5}
ttexo, T (v — v po1)
{vi;50,) (LR RS -1 -1
avi,kteX’U*l = —texu, ' ((Uzk _Ui,k—l) + (Ui,k+1 _Uz',k) )
{01550, 575580
ttexo, T (0 g1 — Vi) T
U 7 !7 7 !v —_—
T B O
1<i<sr

Here, Uik and Y 55T

and v* is simply v, minus its last element v]. If v, happens to be the last
element of v;, the corresponding identity should be changed to:

denote the sequence v; minus its element v; 5, or v; j+1,

{’Ula ’774Hk/7\1;”';2r}(

. +tex Vil — Ui k— -1
Oy, bexiai-itr) — T 1) B B
—texy, ((Uzk — Vip—1) " 4 (Ve — Vig) )

These identities are clearly compatible with the 0-order homogeneity of the
texture coefficients:

v*av* +ZZU““&” . tex{vl’ 2t = ()

For single-element sequences v, = {v;}, the whole system reduces to:

6U1tex{”1’ k= tex{”l’ Bird ()7 (0 — ;)7 (297)
av*tex{vl’ sob =y Z tex{vl’ 03 ’”’“}(v*—vi)*l (298)
1<ikr

where 0; signals the omission of the term v;.

The v-augmented tesselation bimoulds vtes®* and tes®.

To enuntiate the main statement, we require the lower (or positional) mould
composition o, which is what becomes of ordinary mould composition o when
we switch from the incremental indexation wi,ws... to the positional one
Qq, ..., with wy = a1 and w; = a; — ;1 for 2 < i. Here is the formula:

1<s
(A =poctes{an= 3 poees T ™) (209)
a=a1ai1...a Qg 1<k<s
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o;,) with the convention C’g‘iz’al = C2" for the first term in the product

[1(...). Of course, some of the factor sequences o, even all of them, may be
empty. Thus, retaining only the two ‘extreme’ terms in Y (...), (299) reads:

Adrer = BarGesar (L ) + Botrtr Qo1 Qea=ar ar=ar—

Proposition 4.13 (Local constancy properties of vtes® and tes®.)
The coefficients vtes® := (vscram V)% are locally constant in each upper
index u; (standing for a weight) but not in the indices v;, v, v} ... (standing
for singular points) that constitute the lower sequences v,. However, they
admit a unique decomposition of the form:

vtes® = tes® o VI

[.] _ 2 . .
with {V 0-monics in (300)

positional notation

with the second factor V1%l fully absorbing the non-elementary part of the
v,;-dependence, and with a first factor tes* that is locally constant in each u;
and each v;,vi,v!... These tes? are known as the v-augmented tesselation
coefficients. Implicitely defined by (300), they are explicitely given by:

tes® = vtes® o Ul (301)

, Ul = A-monics in
with o ,
positional notation
Up to the predictable factor (2mi)" @~ and barring the case of alignments,
the tes* are integer-valued like the non-augmented tes® and, again like these,
tend to vanish ‘most of the time’, especially at large depths r. At depth 1, on
the other hand, we have tes¥t = 1 and vtes?r = Vil

Comments: The lower mould composition o in (300) and (301) leaves the w;
unchanged. It affects each v, separately, and all together multilinearly. Thus,
for sequences v, of length m;, the number of summands on the right-hand
sides of (300) and (301) is 22(™~1. Let us show on an example how this
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works out, with the usual abbreviations:%®

vtest it bt o Ul Ul 1y o2 Ulew o] a1 los)
( uy o, ul

+vtes v1,v] s Dg,vh,08 Zj )U[U1]U[U1/;1]U[v2vvl2]U[U2”;2’]U[U3]

f

Ul vl

_|_Vtes(v1ﬂ’/1 » vg,05,05 Z: )U[U1]U[”1’:1]U[U2]U[’U2/:27U2”;2]U[U3]

up o, ul o ug
Yl uLo o ugy +VteS(”1’”,1 » U205, 5 vg )U[UﬂU[W’:ﬂU[va”/zavé/]U[”S]
teS V1,V] > V2,V5,Vg 5 V3 :< up u

> U3
Hvtes td ) vaehad o) Ul I Tve Ulew ol loara o]
ul o, ul > U3
+Vtes(61,v’1 > 62,1)’2,11’2/ ) vg )U[Dl’vll]U[v2’vl2]U[v2”:2,]U[v3]
ur o, ul » U3
vt oo v o Ul e Ul oo Ules]
Ul vl

> U3
L vtes P s oot vy oLt ez g gl es]

For greater clarity, we wrote down all U®-factors, though of course most of
them, being of depth 1 and therefore equal to 1, do not contribute anything.

Proof: The first step is to work out, based on the hyperlogarithmic expansions
of vtes® := (vscramV')* and the formulae of §2.3, the differential properties
of vtes®. We find:

UYL ey Uy yees ur)
Hvtes ML (L))
. . (1 . ur Vi, j Vi j—1
UY 5.y UP [EEE) VREEEEE)
O, ves'en o) = +vtes T R ( ; - . ) (302)
7 Vi j Vil Vi Vi -1
UY ey Uy ooy ur)
+vtes gL AT % ( - ’ )

’U'L',jf'vi,j+1
Here (v;1,v;2,...,v;,,) denotes the terms of the sequences v;, and V5 stands
for the sequence v; deprived of its j* term v; ;. Predictably, special rules
apply for extreme values of j. Let 17,75, T3 denote the three terms on the
right-hand side of (302). The modifications read:
(1) if v; ; is the first element v; ; of v,, then 7} should be omitted,
(2) if v; ; is the last-but-one element v; ,,_; of v;, then T3 should be omitted,
(3) if v;; is the last element v;,, of v;, then Ty and T3 should be omitted.%

The second step is to recall the differential properties of the monics V[*]
taken in positional notation:

4 Vlar@i—rsar] ( 1 )

=01

aajv[al,...,ar] = {4Vl dar (L 1) (303)

L RS N R R |

+V[a1...,aj+1,...,ar] > (_ 1 )

QA —Qj+1

65Thus, vgr.o stands for v4§ — v and hat-carrying indices should be omitted.
56In other words, we should omit all terms involving either of the non-existent indices
v;,—1 and v; , 41 Or again the last index v; , .
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(303) is similar in shape to (302), with exactly the same exclusion rules
applying to the ‘extreme’ cases (1),(2),(3).

The third step is to write vtes® in the form of a lower composition product
tes® o VIl without prejudging the properties of the unknow bimould tes®.
We then differentiate the identity (300) taking the rules (302) and (303) into
account, and find that our coefficients tes® are indeed locally constant in all
indices v; j, and of course in all indices u;.

Remark 5: The jump rules for tes®.
In practice, to calculate the v-augmented tesselation coefficients tes®, one
uses neither (300) nor (301) but rather formulae analogous to those of Propo-
sition 4.13 and based on jump rules similar to those of Proposition 4.22. The
jump rules; in turn, are derived from the decomposition (300) and the pri-
mary jump rules (54). Here is a typical example:

Let o = wyv] + ... + w;v] and B = ui+1vj+1 + ... + u)l, where U]T as usual
denotes the last element of v;. Then the jump rule, like in the non-augmented
case (280), amounts to a simple sequence splitting.

(304)

2wt tes¥iro%i tegWitir oWy

{Dg vtes®i®r = 21 vtes®roWi vtegWitto¥e

Do teg®ir¥r
B

Remark 6: The duality tes® <> tes®™.

Like the simple tesselation coefficients tes™, the v-augmented coefficients
tes® are complex and fascinating objects that would deserve a whole mono-
graph. In fact, they should be studied in parallel with their dual image, the
u-augmented coefficients tes®, whose very construction runs parallel to that
of Proposition 4.13 . Here are the key formulae, with the positional making
way for the incremental notation, and the lower mould composition o for the
standard composition o.

Ve — V' — utes® := (uscram.V)* (305)
- - V* = 0-friendl )
utes® = tes® o V*  with o friendly momlcs (306)
in incremental notation
- - U* = A-friendl )
tes® = utes® o U with o Jriendly momcs (307)
in tncremental notation
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4.9 The three Bridge equations at the molecular level.
Equational resurgence. First Bridge equation.

At the monomial level, the alien derivatives in z are exceedingly simple, and
totally insensitive to the ramifications that the lower indices b;(z) (they are
regular germs at 00) may or may not possess away from oo:

G)Ga)=(0) .
AWS () = > WEe(@) W) (z,2) (308)
w=z |ul|
The new ingredients — the alternal monics W*(x) — do not depend on z.
They are well-defined entire functions of x — Stokes constants, basically. The
above equation can therefore be indefinitely iterated and contains all the
information about the z-resurgence of W*(z, z).

Coequational resurgence. From the atomic to the molecular level.

The position is altogether different, and far more complex, with the z-
resurgence. Our monomials W(s)(z, z) must now be viewed as weighted
products wemu'e)(x), and their Borel transforms as weighted convolutions
weco's)(€). The z-dependence migrates to the lower indices ¢;, which are
themselves defined in terms of the b; via ¢;(§) := —b;(z — €). So, while the
z-resurgence demands only the local analyticity of the germs b;(z) at oo, in
order to get full z-resurgence®” we must assume the endless analytical con-
tinuability of these same b;(z2).

The alien derivatives in = of wemu'e)(z) still consist of two factors. One
of these (the analogue of the monics W* in the z-resurgence) sheds its z-
dependence, but both retain their dependence on, and resurgence in, x. This
complicates the calculation of higher-order alien derivatives. It also forces
us to negotiate two quite distinct levels of complexity: even when the data
¢; (the ‘atoms‘) are simple (poles or hyperlogarithms), their weighted convo-
lutions (the ‘molecules‘) tend to be superpositions of huge numbers of such
atoms. This accounts for the emergence®® of completely new properties and
operations (the flexion structure).

67 Actually, even when the b;(z) are not endlessly continuable, something of the x-
resurgence survives — all the relations namely which do not take us outside the maximum
domain of definition of these b;(z).

58somewhat like in organic chemistry, one might be tempted to say.
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Ridding the general tessellator of the v-dependence.

The aim is to move from the general tessellation coefficients vtes® which are
locally u-constant (like the special tes™) but not locally v-constant (unlike
the tes™), to coefficients tes® (or their variant Tes*) that are locally u- and
v-constant and (barring the case of alignments) assume integer values. The
reason for the absence of local vw-constancy in the vtes® is of course that
the formula we gave in §4 7 for A,S%(x) involves shifts that apply to the
sequences v, := [v;, v}, v!...] defining the hyperlogarithm subordinated to a
given weight u;, and not shifts bearing on the variable of that hyperlogarithm
(in the {-plane). It is precisely the v-dependent part of vtes® (essentially, the
‘texture’ part) that, in accordance with the addition formula (246) combines
with the shift on v, = [v;,v],v...] to produce what is ultimately needed — a
shift purely on the variable £&. In concrete terms, it takes us from formula
(309)% to formula (310) and then to (311):

l/

Awo Sw Z VteS Ul V1% o us_us* (1_[7;";: ’wJ )> Sﬁ(iﬂ) (309)

Vy-splits j=1
\u\ O ] i=s " w"E aipd” ~
Do) = Y tes bt ) (T 720452 () $90) (310)
vy-splits j=1
w (1wt w) 3T i\ o
Doy 82(x) = 3 Tes\ B 0% ( S @)) S (z) (311)
Vy-shifts Jj=1

In (310) tes® denotes the discrete valued, v-augmented tessellator defined
sgn o MY w]//

implicitely by (300) and explicitely by (301), and each factor Tw ST s

Hcor

defined as in (272), but preceded by the (unwritten) monic V' [ and with
the subfactors Sij* replaced by Si*Hcor’ like in (248) but with v;, in place of
z — aj.

Formula (311) is just a variant of (310), but it gives us more flexibility and
prepares the ground for the general formulae of Proposition 4.14 and 4.15.
Note that the factor sequences w?” now make way for the full sequences w?
and that the monics V%) vanish. If T, denotes a simple wy-shift, any
mixed operator T'A,, := kaﬁwkﬂ...ﬁwl can be replaced by a superposition
(with integer coefficients of 0 sum) of ramified shifts Ty symbolised by broken
lines ¥ of summits v; = wy, vy = w; + wy ete, with a definite prescripition
for circumventing each summit. One simply goes from (310) to (311) by
performing the dual basis changes TA, — Ty , tes® — Tes®™.

%9first mentioned in §4.7 as (273) and illustrated there by four examples.

92



However, the hyperlogarithms being ramified, a shift operator on them
cannot be defined by a single complex scalar v, but
(i) either by taut broken™ lines ¥ = [vy, v, ..., v;] starting at the origin and
ending at v
(ii) or (preferably) by concatenations A, ... A,, followed by a straight shift
Vj41+... 0. The new tessellation coefficients 7™ remain discrete valued and
retain the double local constancy (in the upper and lower indices), barring
the usual exceptions™

From the hyperlogarithmic S® to the general weco'c<).

Let RES,., be the algebra of regular resurgent functions, i.e. of all @(x)
such that ¢(§) and all its (simple and multiple) alien derivatives are regu-
lar (non-ramified) germs at the origin £ = 0. Since the hyperlogarithms (as
functions of &) span a dense subspace of RES reg (for that space’s natural
topology), the information we have collected on the behaviour of hyperloga-
rithms under weighted convolutions is sufficient to determine the properties
of that operation on RES,.,. Actually, if we were to allow vanishing indices
w; (in the incremental notation) or identical consecutive indices «; (in the
positional natation), the enlarged class of hyperlogarithms so defined would
become dense in the whole RES , and their behaviour under weighted con-
volution (readily given by an easy extension of the formulae of §2.7) would

completely clarify the situation in RES itself. But for the moment let us
stick with RES ;.

Alien derivatives of weighted products.

Although the system of all symmetral weighted convolutions weco is closed
under alien differentiation, in order to get compact expressions (and for other
reasons as well) we must supplement it with the alternal weighted convolu-
tions welo, whose definition we recall:™

(B0 oly (M ””) (312)

concat (symlin(weco Lo Gt hyeco Gl ©n )weco %

Owith summits at the singular points of the test function.

“Lor, in the case of intervening singularities, by an unambiguous prescription for bypass-
ing them, e.g. by systematic right or left circumvention.

™j.e. vanishing partial sums of u;’s or partial coinciding of v;’s.

for details, see §2.2.
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When ¢; = 1, i.e. when ¢; is the convolution unit ¢, the definition reduces to

(B2 s (U)o ur UL U1y . (U1
welo™ @1 v 87 e’ = weco PGl (1vweco EALR ) (313)
UL e ’jj—l Ur oo 7fj+1) .
= weco 1 G-1" x weco o G+ (—1)7 (314)

This is a case of frequent occurence, because in the applications the marked
index is usually of the form (1", ), which A,¢; often equal to Const.J.
Second Bridge equation.

Purely for notational convenience, we shall state the results in the z-plane,
i.e. in terms of the multiplicative counterparts. We also use the basis
{T, Tes*}introduced earlier in this subsection, but the transposition to the
basis {T'A,, tes*} is immediate. To lighten notations, we write v¢(&) for
Ts¢(€) and likewise Uc(z) for the Borel pull-back of T¢(€).

wemu and welu of weco and welo.

Proposition 4.14 (Alien derivatives of wemu, hence weco) .
The only alien derivatives A, acting effectively on wermnu' e - C:)(x) corre-

spond either to simple (s = 1) or composite (s > 1) indices wy of the form
wu?. vt lutut = u
A ch 0 and () e ()

i

wo = [u'v) + -+ [ufv] with

is

(315)

with each factor sequence (%) re-indexed for convenience as (Z,i Tk ). The
1o o

corresponding alien derivative is given by:

(u’f ,,,,, ( uf, )ﬁ ,,,,, uf, )
UL ..., Up vk ck ..., A k J s sk ok
Aggwemu'et en) (z) = b

Third Bridge equation.

Let us now move on to the welu products. Since they resolve themselves into
sums (314) of wemu’s and we have just seen how to alien-differentiate these,
the lazy option would be to declare that we already know, in principle, how
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to alien-differentiate the welu’s, and leave it at that. But that would yield
unwieldy expressions; worse, it would obscure important cancellations and
encumber us with parasitical terms.

Consider for instance a length-9 term like wely' e (S ( ) with
the marker £ on the 5-th index. Formula (313) produces 70 summands, all of

Ug(1) o ua(S),“‘5 . o
the form wemu<°<’<1> """ Co(8) ) (x). Taken singly, some respond non-trivially

to alien derivations A, with indices such as
W=1uvy , W=1uv +uggvs , W=1uU V1 +UV2+ UrggVg , E€lC

and yield non-zero terms, which however vanish from the final result, due to
cancellations resulting from the alternality of welu® or that of Tes® or both.
For other indices again, such as

W=1uUpaV1 +U3Vs , W=1UrgolUg , W = U123VU3+ Us56789V7 , €lC

the non-zero terms do not vanish, but eventually re-group with others and
coalesce into single terms. When these cancellations and these re-orderings
are taken into account, we get a result that is not only simpler and more
elegant, but also relies on welu alone, thus leading to a self-contained (and
indefinitely iterable) third Bridge equation.

Proposition 4.15 (Alien derivatives of welu, hence welo) .

UL ey ey Up
The only alien derivatives A, acting effectively on welu'et - ZRORES CT)(x)
correspond either to simple (s = 1) or composite (s > 1) indices wy of three
possible types — initial, final, global. Respectively:

- u' ufut=u o (W)Pe (Y,
mni 1 S| S ith uk ! 317
we = |lut|v;, + - 4 Ut o) wi Akck+0and(;) (1:":) (317)
lk lk
. . wul ot = ()P (M
" utol £+ e o with koo 318
o =l e Tl oY AL ok Lo and (e B
l . ut o uf=u
glo L4 ... Sl wi 1
wy = |lutlv;, 4 -+ [uf| v with Akc +Oand( ) (1::) (319)
”‘k
uk
with each factor sequence (’c‘:) re-indezed for convenience as ( ,if :C;k), The

Tk
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corresponding alien derivatives are given by:

( ( lwtl |u®| )
sl ol ., TS,
+Z§k0vemk Teg M vir 0y v V1P 1o
J
k uk uk
e G (0 )y )
L Cl seeey ci /ey, Cr — Hh i
winiwelu J (z) = 1 [Ticpe, Welu ik () x
o))
* ., c: ) e
welu " “i I 5 ()
( g el )
- ZUkOVer/Uk Teg M1y 70 O s 1
k uk f k
(B s (g )2 o (ﬁgizf S L ) s )
. Cl yeeny c:/ .. cr — o 7 Tk Tk
Aw{;nwelu ’ (:L") ) 1_[1<k;<s welu e l‘) X
(*ul (zj)ﬁ.. :u*)
 welu e R ers/ (1)
( ( b s lw?| )
S =S
+ ka over vF Teg M1ty ULretrs 2o
UY eey uj ’j, Up k k k
A gloWelu(Cl ----- (e CT)(x) = ( L ( Ui, )’j ««««« ury, )
wWo ’U’f clf ’’’’ Aﬂk "f ””” 'Erk T
[ i<k, welu )

Remark 1: In the last equation the marking (of the j-th index, on the left-
hand side) disappears and is replaced by the marking of the i;-index of the
factor sequence (Z: ) that contains (72]1)tt This general rule — when occuring
instde the same sequence, the second marking abolishes the first — results from
a simple, but not entirely trivial combinatorial fact: let M* be the alternal
marking of some mould M* (with # as marker), and let M* be the alternal

marking of M*® (with # as new marker). Then # replaces (and removes) .
Thus:

Mttt vste gttt ot

If the initial mould M* is already alternal, this is obvious, since in that case
almark amounts to the postponement identity of a marked index for alternal
moulds. But the statement holds for any M®*.

u ey (U )j, Uy
Cop 20 (G “T)(a:) = 0 whenever the g-marked index

Remark 2: A welu
0

cj is = 1 (i.e. when ¢; = §). Since this marked index in practice is itself

an alien derivative, this is often the case — and always so for meromorphic

convolands ¢;.

96



Discrete coequational resurgence. Some examples.
Example 1: the case u;,v; € N.

Let Ram(N) be the space spanned by the hyperlogarithmic monomials taken
in incremental notation Y« (&) (w; € N*). Let &€& = £-tn-1* with
e; € {+} be the point of C — N* of address™ €, and let 7¢(¢) be the element
of Ram(N) with a simple pole (of residue 1) at £€ and nowhere else. Since {7€}
is clearly an alternative basis of Ram(N) and since Ram(N) is itself stable
under convolution and weighted convolution (for weights u; in N*), both
products can be expressed in that basis, leading for these two structures to
a discretisation of sorts:

€:=(€1,...,€n1,0)
(= 7)) = D HI 7€) < €= (i, Einptse) (320)

n=ny+ ns

( €:=(€1,...,€q_1,0)
UL yeeny ur €1 ,..us €p €
(7761 ,,,,, € )(g) :Z Ke 7T (5) €; 1= (Ei,la ceey Gimg—1; .) (321)

n=uyng+- -+ un,

weco

In the case of convolution, we arrive at a structure already known from an-
other context: the Solomon algebra, with structure coefficients H®* € Z. In
the case of weighted convolution, the structure coefficients K* are in Q. The
theory provides for these K* a rather weird expression, polynomial in the hy-
perlogarithmic monics v*. However, based on the jump rules for these mon-
ics, this expression translates into a more convenient induction rule, which
in turn induces algebraic relations between the transcendental monics.

Example 2: the case u;,v; € Z or u;,v; € Z + iZ.

The construction can be repeated for wu;,v; ranging through various dis-
crete rings such as Z or Z + iZ or complex quadratic rings. Here, the self-
symmetrically shrinkable integration multi-paths for convolution, simple or
weighted, soon become so unimaginably complex that the hyperlogarithmic
expression for the structure constants K* looks, by comparison, simple.

T¢€ is defined as the point accessible from 0 by moving forward under right (resp. left)
circumvention of j if €; = + (resp. —)
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4.10 The three Bridge equations at the global level.
Equational resurgence. First Bridge equation.

It is the classical identity:
BE1 [A,,07']=A,07"! (322)

with A, := e “* A, (z-resurgence) and

A, = —Z(—1)TZW(B% 33335)@) Di: Diz ... D
— —2(_7“—1)TZW(B% 333333%)(3;) [.[Di1, D& ] ... i |

Since any two D, and A, commute”, formula (322) lends itself to indefinite
iteration (but mark the order on both sides):

(A, ... [Au,, [Ay,07'].] = Ay, A, ... A, O (323)

To prepare for the comparison with coequational resurgence, let us also men-
tion the case of a singular, singularly perturbed Riccati equation:

.Y =2Y +b_(2) +by(2)YV? (bi(2) e 271 C{z71)) (324)
Its general solution may be written in the form:

Te*Ti(z,2) + Ta(z, x)

Y(z,a;7) =
(z,2:7) Te*T3(z,2) + Ty(z, x)

(325)

T T2]_1

with det[ T, =

where 7 is the integration parameter and the 7T admit the expansions:’®
Ti(z,x) =14+ Y Witrt=(z ) |, Ty(z,z) = DW= (2 )
T3(z,x) = DIWuetin (zog) L Ty(z,x) = 14+ D Wit (2, x)

Ti(¢, z) and Tg(( x) have all their singularities over {0,z u, }.
TQ(C x) and T4(C x) have all their singularities over {0,z u_}.
The (very elementary) resurgence equations read in this case:

Amu+T1 =ay Ty Amu+T2 =0 Azu+T3 = Q4 T AmquTél =0
Awu,T2 = 0_ T1 Aa:u,Tl =0 Awu,TZL = 0_ T3 Axu,T?) =0
"the D,,, being ordinary differential operators in the integration parameters 7y, ..., 7,.

"6The four T} carry only monomials W* with alternating sequences w = (u+, us, u+...).
So for each W it is enough to mention the first and last term.
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Coequational resurgence. From the molecular to the higher levels.

Coequational resurgence already forced us to distinguish two levels of com-
plexity — ‘atomic’ and ‘molecular’. 1t will shortly impose two more:

(i) a ‘microscopic’ level. The objects here are derivation operators @, ob-
tained by contracting alternal products welu with ordinary differential oper-
ators. The resulting sums being usually infinite, the gap from molecular to
microscopic is large.”

(ii) a ‘macroscopic’level. The objects here are new derivation operators P,
obtained by contracting the tessellation mould with the previous Q.. These
new sums, too, tend to be infinite, making the gap from microscopic to
macroscopic as large as the earlier ones, although in some relatively rare but
important instances the relation between the Q,,’s and the P,’s simplifies.

Some heuristics.

1) Recall first that alternate moulds A®, when contacted with ordinary deriva-
tions, always produce formal derivations:

w (%) 1 w w!
ZA Lo Tle . ..Dw,« Z ; A r["[DwUDwz] """ Dwr]

1
Z ; AUJ17~~~»WT [le ...... [Dwr_17 DUJT]"]

2) The distance between the P,’s and the Q,’s will be least when the tes-
sellation coefficients Tes® connecting the two will be simplest. In the case of
elementary indices w; = ('), Tes® coincides with fes* and each of the four
following conditions, when met, tends to simplify the coefficients:
(i) no vanishing u;-sums.
(ii) no identical consecutive v;’s.
(iii) all u; are aligned with the origin
(iv) all v; are aligned with the origin

Imposing (i) in our model equation amounts to imposing that the critical
coefficients B!, in our model problem of §4.1 (i.e. the v coefficients without
Y factors in front of them) vanish.” This renders the problem uninteresting,
as its reduces each component Y} of the general solution to a finite sum of
monomials W*(z, x).

"Teven if the convergence of these infinite sums in the space of resurgent functions is not

really an issue.
"8This is the so-called unilateral case, where all weights have the form u := ngo N A,
as opposed to the general or sesquilateral case, where u := —\; + ZniZO N Ag.
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Imposing (ii) means restricting oneself to the linear case, which leads to
interesting results provided we are dealing not with a single equation, but
with a true system, i.e. when v > 2.

The conditions (iii) or (iv), are perfectly reasonable. They lead to massive
simplifications by ensuring that tes” = 0 for all w of length r(w) > 1 that
meet the conditions (i) and (ii). For w of length 1 we have of course tes** = 1.

3) We should expect, and do in fact get, particularly simple results when the
convolands ¢; are meromorphic, or hyperlogarithmic, or again, like in the case
(335) infra, when they enjoy special closure properties under w-shifts and A~
derivations, globally for the same w’s. In any case, since ¢;(§) = —b;(z — &),
it stands to reason that to get full z-resurgence we must assume each b;(z)
to possess endless analytic continuation (on the Riemann sphere, starting
from o0), whereas for z-resurgence it was enough for the b;(z) to be locally
analytic at oo (with suitable uniformity conditions in 7, of course).

Some examples.

Let us give some illustrations, mostly in the meromorphic context. To lighten
notations, we write the results when our model system (185) reduces to
a single (non-linear) equation, i.e. when v = 1, because in that case the
operators D!, = 7,7™0,, correspond one-to-one with the weights u and can be
re-indexed as Dy, = 77+10.. The transposition to the case v > 1 offers mainly
notational complications but still deserves special consideration because it
allows non-aligned weights u =< A\, n >.

Second Bridge equation.

(BE2) A, 07 = P,O! (326)

with A, = e “*A, (z-resurgence) and:

WY yeees Uy
Pw = Z TeS(Z*D‘I vvvvv Z*QT)@[Z;] .. Q[Z:] (327)
2ui(z—oy)=
(7% UG jj ..... Uy
Qpuoji= €™’ > welu o1 5 (aage a0 ) - Dy, (328)
> ui=ug

Here Tes® coincides with the elementary tes®.

100



Third Bridge equation.

(BE3) AWQ[“O] _ {+ Zu1+u2:uo Pwv[Zé] Q[Zg] (329)
=0 — D tus=uo QU1 P2
with
Zui:UO u Up
Pw’[zg] = Z TeS(aojal - ao*ar)Q[Zi] e Q[Zi] (330)

Sui(ap—a;)=w
Remark 1: With the notations of (330), the operator P,, of BE2 may be
rewritten as P, = >, Pw,[j]' It should be noted that P, in BE2 is locally
(though not globally) constant in z, just as the operators P, » | in BE3 are
@0
locally (though not globally) constant in «p.
Remark 2: In the important instances when the tessellation coefficients
Tes” " turn trivial (i.e. = 1 for r = 1 and = 0 for r + 1), the Third
Bridge equation simplifies:
ut(p—o )=w
(BE3)  A,Qpuy = > [Qy, Q

u1+u2=uop

Zﬁl] (331)

and one can checks the equality of the exponential factors on both sides:

(i) A, carries a factor e7“* = e

(i)  Qquoj carries a factor "0 ® = g(tituz)ane
@0

Ul T

—uj(a@p—a1) x

(iii) ~ @Qw carries a factor e
ay

(iv)  Qqu2q carries a factor e"2?0®
0

Remark 3. (BE2) and (BE3) also extend in the opposite direction, when
the inputs b;(z) (and thus ¢;(€)) are no longer meromorpic, but hyperloga-
rithmic, or general ramified functions. But we must now switch to a multiple
indexation «; — ¢&; and the third Bridge equation becomes saddled with a
third term, corresponding to the case A% welu® of Proposition 2.16. We get:

+ D tupmup P[] Qpu2]

(XO 1)0
(BE3) AWQ[;%] = - Zu1+ugzu0 Q[gé] ]P)wv[;?)] (332)

+Pw7[% ]

&Q
Remark4: the meromorphic Riccati case.

Let us return to the equation (324) but from the point of view of coequational
resurgence.

(BE2) ALYz, x) = PY_(2)Y""(z, 1) (333)

w|z
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Yl z,x) = 1+ Zwemu(zz o e 32)@)
s U ey u AR ERReY u_ o, u
Qm(x) = Z Z welu' e e G I Cﬁi)(x)
s UL ey U_ ey u y U_
Qﬂz(x) = Z Z welu et e o G P, C—Hi)(q;)
+ Cot vy e o)
Pl.(x) = Yjtes ™t Qb (2)Q), (2) ... Q) (@)Qf, (2)
- e
P (z) i= ) tes ™2t anhl( 2)Q, (¥) - Q_, (2)Qy; ()

(z) Q)" (z)
(BE3)  AQ(@) = | A (334)
| —Qp"(x) Fjj;(x)
o O P P
Qllz () ZZWGM el Tl ali”(x)
Copis vigei 0 v v B N
sz 17 Ztes 1108 Vigii ot Vi gt Yipd H|“Z( )Q“|’LQ’L( )QH\lr—ll(x) H|Z7"L(x)

U Ug e,

U4
wHZ .ZU Etes Vi Vigii v Vig_ 10 Yipid QH|7,12( ) Hllzl(x) H‘Z'r 11( >QH|1T2< )

Remark 5: the hyperelliptic Riccati case.
This is again the case 0,Y = zY + b_(2) + b, (2) Y? but with

z)
bi(2) := £H(2) with {z=2z(q) =] W(q)zdq (335)
Wi(g):=¢" +a¢g" '+ +a

This Riccati equation is of course in relation with the much investigated

Schrédinger equation 62(q) = %fW(q)iﬁ(q) (z = 2). Tt is also one of those

instances where, due to the self-reproduction properties of b4 (z) under shifts,
the relation between the P,’s and the Q,’s simplifies dramatically.

Before winding up this section, let us mention two elementary applications
and sketch a promising line of research.

Application 1: Finding the singularities in the ¢{-plane.

(i) In the Second Bridge equation: all the singularities always lie over some
linear combination of frequencies and singularities v; == z — a;. Since the
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weights u; may add up to zero™, the corresponding combinations > u; v; will
be independent of z. But a proper determination®® of weco®(¢) will always
eliminate these parasitical, z-independent singularities from BE2.

(i) In the Third Bridge equation: the singularities always lie over some linear
combination of frequencies and singularities v;—v; := a;—q; of the individual
coefficients.

Application 2: Establishing the convergence in the ¢-plane.

It can (very easily) be established, first in the star of holomorphy; and then
gradually extended to the adjacent sheets by using the alien derivatives. Here
again, multipath deformations would be impractical.

Remark 3: Finding ‘interesting’ instances, with finitely many gen-
erators and/or simple Q,-to-P, relations .

Since BE2 and BE3 give the alien derivatives of the QQ,’s in terms of the P,,’s,
and these in turn are expressible as sums of multibrackets of Q,’s, BE2 and
BE3 amount to a closed, indefinitely iterable system that contains all the
information about the z-resurgence. Together with the information about
weco and welo, BE2 and BE3 also give us a systematic tool for identifying
the situations that may narrow, or altogether remove, the gap between the
Qu’s and the P,’s. The Schrodinger-related Riccati equation (335) is an
important case in point. But it also tells us something else: namely, that
when spectacular simplifications occur, they may point to the existence of a
change of variable z — ¢ that renders the equation’s coefficients polynomial
or rational or otherwise elementary. In such situations, working directly in
the ¢-plane may well prove more expedient. But as tools for systematic
exploration and as vehicles of in-depth understanding, the z- and z-planes,
with their Borel counterparts ¢ and &, remain irreplaceable.

By way of conclusion.

At the end of this tour of coequational resurgence, we find a clear four level
stratification:

o The atomic level, inhabited by objects such as simple poles or hyper-
logarithms.

™at least in the general or sesquilateral case. See preceding footnote.
80As we saw, each vanishing partial sum u; + ... + u; introduces a ramification in the
determination of weco®(£), but there is always a privileged choice.
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e The molecular level, consisting of huge clusters of atoms, with unsus-
pected emergent properties.

e The microscopic level, consisting of derivation operators Q,, usually
infinite chains of molecules contracted by elementary derivation oper-
ators.

e The macroscopic level, consisting of new derivation operators P, as-
sembled from the earlier Q,,.

e The passage from the atomic to the molecular level is mediated on the
Analysis side by weighted convolution and on the combinatorial side by
the scrambling transform.

e The passage from the molecular to the microsopic level is rather me-
chanical — mere growth by accumulation.

e The passage from the microscopic to the macroscopic level, arguably
the most interesting of the three, is mediated by the tessellation coef-
ficients. While much is known about them, it would seem that just as
much remains to be discovered.

e To ensure equational resurgence, it is enough for the inputs b;(z) to be
holomorphic germs at infinity.¥! To ensure coequational resuregence,
the b;(z) must also be capable of endless analytic continuation.

e Equational resurgence typically involves Stokes constants that are tran-
scendental® to the inputs b;(z). Coequational resurgence typically
involves Stokes constants that are immanent®® to these same inputs.
And when the b;(2) are unramified (e.g. meromorphic), coequational
resurgence dispenses altogether with the continuous-valued Stokes con-
stants, and relies instead on the discrete, integer-valued tessellation
coefficients.

8land of course to verify uniform growth conditions in 1.

82In the sense that they cannot be detected directly on the germs b;(z), but only on
complex integrals involving the Borel transforms 31 &).

83In the sense that they can be detected directly on the functions b;(z), by looking at
their ramifications away from co.
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5 Multizeta algebra: the independence theo-
rem for bicolours.

This brief chapter is devoted to

(i) some sketchy reminders about the flexion structure and multizetas

(ii) a discussion of the phenomenon of retro-action — the central difficulty
which complicates the decomposition of multizetas into irreducibles but as-
sumes quite distinct forms for monocolours and bicolours and calls for dif-
ferent strategies.

(iii) the proof of the independence conjecture for the basic generators for
bicolours.

5.1 Reminders about the flexion structure.

Elementary flexions.

Bimoulds M* have a two-tier indexation e = w = (7! ") with upper u;’s
1 ey U

and lower v;’s that interact in a very special way, through four basic flexions

|,[ and || .

Thus, if w = w'.w” with w’ = (") and w” = (¥ " ")
U1, V2

V3, V4, U5

w/J _ <U1 , Ug ) [w// _ <u1,2,37u47u5>

U1:3, V2:3 U3 ,V4,7V5

'w’] _ (m ,U2,3,4,5> [w” _ <U3 , Ug , Us )

V1, U2 V3.2 , V4:2 , Us:2

, we set:

Throughout, we shall use the shorthand:
Wi k... = U + Uj + U... , Vij 1= V; — Uy

The products of upper and lower indices remain invariant, with the adventi-
tious indices (the ones in blue) cancelling out:

w = wlwll , w* — w/J [wl/ , w**

Ui v = QU v = Y ult opt
du; ndv; =) duf AdvF =)D dut* AdvF*
1 (] K 1

— | |[w’ =

The core involution swap.

Originally, we introduced the swap to couch the ‘dimorphic’ correspondence
between the two basic multizeta encodings into the form of an involution.
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Here is the definition:

R v3:4 5 Y2:3 U1:2)

{Bo = swap A.} — {B(“l ,,,,, vp ) — A(u1 ,,,,, o u1,2,3 5 ¥1,2 5 U1 } (336)

Once again, the invariance holds: Y u; v; = >3, Vi t1,..;
e The swap transform (swap? = id) is as central to flexion theory as the

Fourier transform (F?* = id) is to Analysis. There are even contexts where
the two coincide.

e Interesting bimoulds M* tend to possess a double symmetry: one for M*,
another for the swappee (swap.M?*).

Basic flexion operations: ari, gari.

Very loosely speaking, the flexion structure is the sum total of all interesting
operations that may be constructed from the four afore-mentioned flexions.
More specifically, one can show that, up to isomorphisms, there exist exactly
seven pairs {Lie algebra, Lie group} obtainable in this way. Of these sub-
structures, four have the added distinction of preserving double symmetries.
Moreover, when restricted to doubly symmetric bimoulds, these four sub-
structures actually coincide. So we choose to work with the simplest of the
four pairs: the Lie algebra ARI and the Lie Group GARI.
The Lie bracket ari and the pre-Lie law preari are defined as follows:

w = abc w = abc
N* = arit(B*)M* < N* = ' Meeptl— %' peleplb
ari(A®, B®) := arit(B*).A®* — arit(A*).B* + lu(A°®, B®)
preari(A®, B®) := arit(B*).A* + mu(A*, B*)
The corresponding associative law is denoted gari. It is linear in A® but
severely non-linear in B*:

w = [] a*bic?
N*=garit(B')M* < N = Y MPFIpe] poiple’ ple
gari(A®, B®*) := mu(garit(B*).A®, B®*) (B; := invmu B®)

The exponential from ARI to GARI, denoted expari®*, admits an ana-
lytical expression in terms of prear:, with pre-bracketting from left to right:
. (r times)
expariA® = A*+ Z preari(A®, ..., A®) (337)
2<r

preari(AS, ... A2) = preari(...(preari(A}, A3), ..., A2 (338)

84to distinguish it from the ordinary mould exponential expmu and from the other
exponentials attached to the seven flexion substructures previously alluded to.
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5.2 Multizetas and their generating series.
The coloured multizetas wa® and ze®.

We first define the scalar multizetas in the convergent or regular case. The
underlining signals convergence.

e Polylogarithmic integrals (aj = 0 or unit root; (zifl)))
1 t t
dt, Sodt > dt
W_aoa,...,as = (_1)80f . J 2 J ! (339)
0 Qs — T 0o G2 —ta )y a1 —t
o Harmonic sums (ej = 2™ =unit root; s; € N¥; (2) + (}))
2ol Domte™ e (e = €M) (340)

niy>...>n,>0

e Conditional conversion rule (assuming convergence, i.e. (5) (1):

7' 51 52 1o sp = Wael-“er,O[sT'_l],...,6162,0[‘92_1],61,0[31—1] (341)

e s = weight , r = length (or depth) , d := s—r = degree.

Algebraic constraints on the scalar multizetas.

(i) First symmetry: wa® is symmetral®, with a unique symmetral exten-
sion wa® — wa® such that wa® = wa' = 0.

186

(ii) Second symmetry: ze® is symmetrel®, with a unique symmetrel ex-

tension ze® — ze® such that ze(D) = 0.

(iii) Conversion rule: The conversion formula wa® <> ze® has a non-trivial

extension wa® < ze®, best expressed in terms of the generating series zag®
and zig®. Cf §5.2 infra.

(iv) Colour-consistency: If pe N, Qy:=Q/Z, Q,:= (%Z)/Z
M gel M T = gD with di=s - (342)
7;€Qp

(v) Standard conjecture: the above system (i)-(iv) of algebraic constraints
s exhaustive.

85¢cf §8.1.2
86cf §8.1.2
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Attached to each of the two encodings wa® and ze® there is a specific
symmetry type, which amounts to a specific way of multiplying the scalar
multizetas. This is the essence of arithmetical dimorphy — a phenomenon
that extends far beyond the multizetaic (and the larger hyperlogarithmic)
landscape but finds there its most striking manifestion.

Dropping the convergence assumption while preserving the symmmetries,
i.e. extending wa®, ze® to wa®, ze®, is a purely formal-algebraic affair, but
it comes at the cost of a slight complication in the conversion rule and
colour consistency constraints. The modified constraints are best expressed
in terms of the generating functions zag®, zig® and of two suitable elements
in centre(GARI) : see (629),(350) infra.

The generating series/functions zag® and zig®.

The first way of defining zag® and zig® is as generating series of the extended
scalar multizetas:

UL yeeey Up [5171] [5771] _1 _1 1
zag(el ,,,,, 57‘) — Z Waeho yeensr,0 u? ui22 uirﬂ” (343)
1Ss]'
X €1 eens er €1 5eeny er _1 _
ziglo o) Z zels Sr)Ufl R T (344)
1SSJ'

Here ¢; € Q, = %Z/Z and e; := exp(2mi€;).

A second, equivalent definition introduces zag® and zig® directly as multivari-

ate meromorphic functions of the u;’s and v;’s respectively: Setting P(t) :=

t

and using the usual abbreviations, that second definition reads:
zag® = lgm (dozag;, x cozag}) (345)
zig® = lgm (dozig}, x cozig}) (346)

dozag(zll o 7::) = Z 1_[ 6]-_mj P(ml,..,j — ul,..,j) <€j = €2ﬂij) (347)

1<m;<k 1<j<r

dozig(; e = Z H ej_nj P(n; —v;) <ej = 62’”7) (348)

k=n1>..>n,.>0 1<j<r

The dominant factors dozag®, dozig® require the corrective terms cozag®,
cozig® to ensure convergence.

Algebraic constraints on the generating series.

(i) First symmetry: zag® is symmetral.
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(ii) Second symmetry: zig*® is symmetril. Symmetrility is the inflected
counterpart of symmetrelity, with sums replaced multilinearly by polar dif-
ferences:

oy Ug s

. ey Ug G . (, “i,'j ,)
zig ) gl

'UZ'—’Uj

For details, see §8.1.2. As usual in the flexion context, P(t) := 1/t.

(iii) Conversion rule: It reads

swap.zig® {: gari(zag®, man®) = gari(man®, zag®) (349)
= mu(zag®, man®)
for a well-defined bimould man® of GARI cpe: see (354) below.
(iv) Colour-consistency: It reads
0 7ag® = gari(d, zag®, lagy) = gari(lag?, o, zag®) (350)
= mu(d, zag®, lag) (Vp e N)
for operators p, and d,, defined as follows:
U] yeeny up UL Heeny u/r
L zabg(ﬁl1 ----- o) = pT Z zag( ) (p-averaging) (351)
peg. =pe; / )
dp zagla i @) = p7gaglay ) (p-dilation) (352)
and for a well-defined bimoulds lag, of GARI.cnire: see (356) below.
The centre of GARI.
The elements ca® of GARI.cp. are all of the elementary form:
et S ur r C ] g ooy Up ) = O,...,O
calit i e €C o (o nvp) = ( ) (353)
0 otherwise

and verify for all Ma® € GARI:

gari(ca®, Ma®) = gari(Ma®, ca®) = mu(Ma®, ca®)
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The central elements man®, mane®, lag, featuring in the conversion rules
(629), (364) and in the colour consistency constraints (350) correspond to
constants man,, mane,, lag, , so defined:

Zmanrt" = exp(Z(—l)s_IC(s)ﬁ) (354)

1<r 2<s §
1
sin(ct)\ ? At At
o= ( ) -2ty 4o 355
1; fnane ct 12 " 1440 (355)

lag,, := (—IOgP)T:(—DT( D 10g(1—a)>r (356)

| |
rl r! =T a1

The parity condition for length-one components.

The sets GARI®/% resp. GARI®/* consisting of all bimoulds of type
symmetral /symmetral®” resp. symmetral /symmetril® and with length-one
components even in wy (i.e. S** = S™"1) are two important subgroups of
GARI

The sets GARI®/® resp. GARI®™/™ whose elements display the double
symmetry but whose length-1 components are not constrained by the parity
condition, are no subgroups of GARI, but they admit a right action of the
above subgroups:

GARI®/* GARI®/® — GARI®/ (357)
GARI®/™ GARI%=/® — GARI®/* (358)

The same applies to the sets ARI?% resp. ARI! consisting of all
bimoulds of type alternal/alternal resp. alternal/alternil and with length-
one components even in wi: they are subalgebras of ARI, whereas the sets
ARI™ resp. ART™™ are not.®

Our generating series zag® is in GARI®/* not in GARI*/*. However, it
can be factored into a three-term GARI-product, with one exceptional first
factor in GARI®/* and two main factors in GARI%/%

Adequation of the flexion structure to multizeta arithmetics.

(i) Moving from the scalar multizetas wa®/ze® to the generating series zag®/zig*
simplifies and compactifies everything.

87
88

i.e. symmetral and with a symmetral swappee.
i.e. symmetral and with a symmetril swappee.

89Tt should be noted that, for the components of length = > 2, bialternality implies
global parity, i.e. invariance under a simultaneous sign change of all w;’s. For r = 1, on
the other hand, the bialternality condition, being empty, implies nothing.
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(i) The series zag®/zig* clarify the expression of the double symmetry, con-
version rule (‘dimorphy’), colour consistency etc.

(iii) ARI and GARI, alone of all competing frameworks, allow poles at the ori-
gin, in the u; or v; variables. As a consequence, they alone can accommodate
such basic, even downright indispensible objects as the bimoulds pal®/pil®
and tal®/til*. See §5.3.

(iv) The series zag®/zig® can also be viewed as meromorphic functions in u
or v respectively, with simple multivariate poles over Z". This makes them
ideally suited for disentangling the algebraic identities between multizetas,
which seem to be wholly derivable from (iterated) polar identities of the form:

1 81,82 81,82 751752 51,82
01,

_ Z ( 01,02 01,02 ) _ Z ( o2 01,02 )
S1 89 o1 .02 o1 .. 02 o1 .02 o1 .02
ny Ny Ny Mo No Moy Ny" Mo Mg Ny

5.3 The basic polar/trigonometric bisymmetrals.

Set P(t) := % and Q(t) := —"—. Then there exists

t tan(wt)

(+) an essentially unique pair of ‘polar’ bimoulds pal®/pil* € GARI*™/* with
pal®" r-homogeneous in the terms P(u;) and P(uj+...+ug;).

(#+) an essentially unique pair of ‘trigonometric’ tal®/til* € GARI™® with
tal” " r-homogeneous® in the terms 72, Q(u;) and Q(uy+...+ug;).

These two bisymmetrals pal®/pil® and tal®/til*

(i) admit several equivalent definitions/characterisations,

(ii) possess no end of remarkable properties,

(iii) are key to the understanding of multizetas (many times over!),
(iv) cannot be defined in any of the alternative frameworks.

For details, we refer to [E5],[E6],[E7]. Here, we must be content with
the simplest characterisation of pal® and the simpler of its two ‘dimorphic’
definitions.

The simplest characterisation is this: pal® is the only bisymmetral bi-
mould such that

pal’ = —1P(uy) (359)
pal“V " polynomial in the P(u;) and P(uy + ... + ug;)

The simpler of its two ‘dimorphic’ definitions reads

dur.pal® = mu(pal®, dupal®) (360)

97 and Q(.) are both assigned degree 1, but 7 occurs only through its even powers.
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with the elementary mould derivation dur :
(dur.S) " i= (ug + ... + u,). S (361)
and with an elementary alternal mould dupal® defined by:
Dil(r—1 ~
= Q, 20<z<r 1% UL .o Ui ... Up

. _ 1 142
ZlgraT =: _1+ﬂ__§t+ﬁt

lwl 7777 Wr

dupa
(362)

The definition of tal® is similar, only more complex, and the conversion for-
mula for the pair tal®/til® involves the central bimould mane® in GARI cpire
defined supra in (355):

swap.pil®* = pal® (363)
swap.til® = gari(tal®, mane®) = gari(mane®, tal®) (364)

= mu(tal®, mane®)

To put some flesh on these definitions, here are the first values of tal* up
to depth 4. To obtain the corresponding values of pal®, it is enough to set
c=0and @ = P.

tal“t = —%Q(ul)
I = QUu)Q(un) + 15 Qu)Qun2) + o ¢
twlm,{;@mmmg<> .....
C Q(ul) +ta¢C Q(UQ) 4 c Q(U3)
720 Q(u1)Q(u2)Q(us)Q(us) + 135 Q(Ul)Q(u1,2)Q(u3)Q(u4)
240 Q(u1)Q(u2)Q(us)Q

talle = 0 — 32 Q(ur)Q(ug) + 1o ¢ Q(u1)Q(us) — g5 Qu2)Q(us)
1d? Qua)Qus) + 5k Qua)Q(u) + e Qun)Qura)
"’%02 Qu1)Q(uz) — 480 ? Qu1)Q(u1234) — ﬁCQ Q(u2)Q(u1,2,34)
+ 1510 Q(u3)Q(u12,3.4) — 755 ¢ Q(ua)Q(ur2,3.4) + 575 ¢

Since their length-1 components are odd functions of wy, the bimoulds pal®

and tal® are in GARI®/* but not in GARI®*/®. That prevents their gari
inverses ripal® and rital® from being bisymmetral. These are remarkable
nonetheless. Thus, one shows that ripal® is in GARI*/*.
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The double symmetry exchanger adari(pal®).

In multizeta algebra, the double symmetries that count most are al/il and
as/is, but we must also resort to the double symmetries al/al and as/as
which have the signal advantage of being iso-length, i.e. of corresponding to
constraints that involve only bimould components of the same length. Hence
the need for double symmetry exchangers, assembled from the bisymmetral
pal®:

GARI2/es "B G pRpasis

T expari T expari

ARIVal e ) prayil

and operating through adjoint action:

adgari(A®) B* := gari(A®, B®,invgari A®) (365)
adari(A®) := logari.adgari(A®).expari (366)

Mark here the first occurrence of pal®/pil® as invaluable flexion auxiliaries.
Before long, we shall come across two more.

5.4 The double trifactorisation of zag*®/zig®.
The basic trifactorisation.
We have the m2-isolating, parity-splitting identity:
zag" = gari(zagy, zagy, zagy,) (367)
gari(zagy,, zagy,) = gari(neg.pari.invgari.zag®, zag®) (368)

with neg.SWiWr 1= S§7Whn=Wr « papj SWLWr = (—1)7 SWr and

zag’ € GARI®™ zag® € GARI®/® jag’, € GARI®/E

even )’

Each factor admits a precise analytic description which lays bare the irre-
ducibles:

zag; = gari(tal®, invgari. pal®, expari.rgma®) (369)

zagy = expari( Z pi};"’skprgari(l¢ma;1, .., loma; )) (370)
k_even

zag, = expari(z 3Lk preari(lomay , ..., loma; )) (371)
k odd

This, incidentally, is already the second occurrence ez officio of pal®/pil®
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and the first appearance of tal®/til*. Here p%,, and p},, denote two alternal
moulds with values in the Q-ring of multizeta irreducibles. They are rigidly
determined by (370),(371).

The bimoulds r¢ma® and lgma® shall be examined more closely in §5.5.
Be it enough to say here that they are both in ARI% but intervene in very
different capacities. As a u-function, rema® must carry singularities at the
origin to cancel those of tal® and pal® and produce a singularity-free zag$.
The bimould [gma®, on the other hand, and its components [gma? of total
weight s, should from the start be free of poles at the origin, again to produce
singularity-free factors zag$, and zag$,,.

In the above formulae, preari denotes the pre-Lie product (338) behind
ari, and expari the natural exponential (337) from ARIto GARIL

An alternative expression for zag’, zag;, would be

zagy = 1° + Z pf}""s’“pr(;ari(l@ma;l, ..., lgmag ) (372)
k_even

zagy, = 1° + Z piy*Fpreari(lgmal , ..., lgma; ) (373)
k odd

with two symmetral moulds pf, pf, that are none other than the mould-
exponentials of the alternal moulds p3,;, p3;-

Note that whereas separating zag;, from the first two factors is easy
(the simple flexion formula (368) takes care of that), disentangling zag?,
from zag; is arduous and calls for the construction of an auxiliary bimould
rema®/remi® analogous to loma®/lomi®.

5.5 Singulators, singulates, singulands.

Bimoulds like lgma® are elements of ARI Z*fl/;*l, i.e. of type al/il with values

in the ring of w-polynomials. To construct such bimoulds, we require a
machinery for singularity compensation: we must not only shuttle back and
forth between ARI %fz/td and ARI foz/tﬂ but also, at every second induction step,
remove unwanted singular parts of type al/al. This, however, is easier said
than done. It calls for sophisticated operators capable of producing, from
regular bimoulds, any given bialternal singularity at the origin of the u-
multiplane.
(i) The operators in question are the singulators.
(ii) The regular inputs are the singulands.
(iii) The singular, bialternal outputs are the singulates.

Here again, for the third time, the pair pal®/pil® turns out to be the con-
struction’s essential ingredient, in combination with the elementary operators
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leng,., neginvar, pushinvar, mut. Here are the bare definitions.”*

We begin with the elementary singulators:
e Singulator slank,: linear operator, turns S*® into >°
e Singuland S*: regular, length-1 bimould (parity opposed to that of )
e Singulate X*: singular bialternal with polarity of order r—1

slank, : S* € BIMU, regutar — 5° € ARIZEL . (374)
2 slank,.S* = leng, .neginvar.(adari(pal®))*.mut(pal®).S*® (375)
= leng, .pushinvar.mut(neg.pal®).garit(pal®).S* (376)
with

mut(A*).M* = mu(invmu.A*, M*, A*) (377)
neginvar := id + neg (378)
pushinvar := Z(id + push + push?® + - - - + push’).leng, (379)

o<sr

By taking multiple ari-brackets (from left to right) of elementary singu-
lators slank,,, we easily arrive at the composite singulators:

slank,, . :  S* € BIMU, rqpuiar — 5° € ARIZ/2 (380)

r,singular

e Singulator slank,, ., : linear operator, turns S*® into X°.
e Singuland S°: regular bimould of length n bimould, with partial parities
in each w; opposed to 7;.

e Singulate X*: singular bialternal bimould with total polarity at the origin
of order r—n = >;(r;—1).

Symmetry-respecting singularity removal.

We are now in a position to construct elements lgma®/lomi® of ARI/Y
inductively on the length r (also known as depth). Start from length 1,
where the condition al/il reduces (mod length 2) to parity in w;. Assume we
have already reached some higher odd length r. Apply the double symmetry
exchanger adari(pal®)~! = adari(ripal®) so as to get into the more congenial
environment ARI%. Then leave the component of length r+1 as it is but
add a suitable singulate® to the component of length r+2. Lastly, apply

9For details, see [E6]. Regarding the inadequacy of ari-composition by u;? for the pur-
pose of correcting bialternal singularities, see Singulators vs Bisingulators on our home-

page.
92j e. a singulate constructed from a singuland verifying the desingularisation equations
which ensure regularity at the origin. In §7.6 we shall see an instance of desingularisation

equation and give its explicit solution.
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adari(pal®) to return to ARIY™ where loma®/lomi® is now defined and
reqular at uw = 0 up to length r + 2 inclusively.

lgma® |, e ARI%4 and regular at 0
| adari(pal®)™"
vilpma* |, e ARIZ/4 and singular at 0

} trivial extension

vilgma® |, e AR[Z/4 and singular at 0
(desingularisation)

| adari(pal®) with correction if r even

lgma®||, 42 e AR and regular at 0

So much for the general scheme, of which there exist three main specialisa-
tions, denoted by the vowels u/0/a in place of the unassigned, all-purpose
vowel g. See §5.6 and §5.7.

Constructing l¢ma® by desingularisation.

The first and simplest desingularisation occurs at length » = 3 with a com-
posite singuland 57’5

slank, .57 , = ari(slank,.S7, slanky.S3) with ST, = ST ® S5

For ST ,, the desingularisation equation reads:

(u17u2) “‘2 7“1,2) (“1 ’“‘1,2) u12 u2)
S P+ S Z1 - 59% 2T — S CEL = eqrlier terms

For uncoloureds and with conventional notations, we get:

SIH" + SW’MM2 — Syymte Gt — eqrlier terms

For the general singuland S;1», the desingularisation equation reads:

T ?

Z eJSU(ul;k W) = earlier terms (0 € SLi(Z), €, € {0, +1})

[

More generally, to proceed from length r to length r + 2 (r odd) in the
inductive construction of l¢gma®, composite singulands S7 . are required,
with2 <k <r+1,1 <, >, r,=r+2. The Correspondmg smgulates I
are obtained as am—products of the simple singulates X7 and have polarity
of order 2 + r — k at the origin of the u-space. The step r — r 4+ 2 actually
resolves itself into a sub-induction on k, from k = 2 (polarity of order r) to
k =1+ 1 (polarity of order 1).
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5.6 General difficulty: infinitude underlying the dou-
ble symmetry.

For any given length r, the first (resp. second) symmetry amounts to a set
of relations between A" and the various A%* (resp. between A" and the
various A7), where 0 € S, and 7 € &} := swap.S,.swap. Combining the
two symmetries forces us to work with the group < &,, &} > generated by
the classical symmetric group &, and its copy &). That larger group is
infinite as soon as r = 3.

This complicates matters, e.g. by precluding the existence of functional
projectors of ARI onto ARI®/ or ARTYY.

For r=2, < &5, 63 > essentially reduces (modulo parity) to the anhar-
monic group. This explains why length-2 multizetas are quite elementary
and decidedly atypical.

5.7 Difficulties proper to the monocolours and bicolours.
Generators and irreducibles.

It should be clear by now that the construction of a system {p**} of
irreducibles involves two very distinct steps:

(i) The construction of a system of generators {lgma?, s odd}, according to
the general scheme of §3.5.

(ii) The expression of elements of ARI?/L in terms of these generators.

All known algebraic relations between multizetas respect the s-gradation,
but the multizetas of a given weight s soon become too numerous for practi-
cal handling. Hence the need to work with the finer grained (s, r)-filtration.
Here, however, the nuisance of retro-action rears its head — a nuisance which
assumes two distinct, almost opposed forms for the monocolours and bi-
colours, and call for distinct remedies.

Retro-action for monocolours.

mono
can be carried out in accordance with the (s, r)-filtration. This means that

once all the relations implied by the two symmetries have been taken into
account up to length r, there is no retro-action to expect: the symmetry
relations for higher lengths »" induce no further constraints on the length-r
component.”

(i) The construction of a generating system {loma?,s = 3,5,7...} of ARI%/4

93This might a priori have been the case, since an alternality relation relative to two
partial sequence w', w? of lengths r1, 7o contrains all the sequences of length between
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(ii) However, the decomposition of an element of ARIT/L into multibrackets

of lema? cannot proceed entirely within the (s, r)-filtration. This is due the
well-known relations which exist between the length-1 bialternals, and which

induce on ARIY/Y non-trivial relations of type

Z Csy...om a?z'(l@magl, ., lgmal ) =0  mod length r+2 (381)
S1+:+Sp=s
As a consequence, when decomposing ARI%/! " into multibrackets of lgma?
according to the (s,r) filtration, parasitical degrees of liberty are liable to
appear at length r that will be removed only at length r+2.

(iii) The remedy lies in perinomal analysis.

Retro-action for bicolours.

With bicolours, the position is exactly the reverse.

(i) Once we get hold of any system of generators {lgma?l,s = 1,3,5...} (with
one generator for any odd weight and with nonzero length-1 components),
the decomposition of an element of ARI %j{ into multibrackets can proceed
smoothly in accordance with the (s, r)-filtration, because of an independence
lemma (see next section) that precludes any relation of ari-dependence be-

tween the [¢gma; in ARI/E

bico *

(il) However, the construction of such a system cannot proceed entirely within
the (s, r)-filtration. At each odd length r < s/3, we are saddled with (abun-
dant) parasitical degrees of freedom which manifest in the construction of
the length-r component of lgma?, and these won’t be removed until we pro-
ceed to much higher lengths (not just r+2). A glaring manifestation of this
phonomenon already occurs at length » = 1. The double symmetry condition
there is empty and therefore any choice of type

l@mas‘(uol) =auitt l@mag(%l) = Bui' (a,fe) (382)

would seem to be acceptable — which of course it is not, given that the
colour consistency relation (350) implies

a+pf=2""a (383)

Since the colour consistency constraints are themselves an algebraic conse-
quence of the double symmetry, (383) is a spectacular instance of retro-action.

sup(ry,re) and r1 + 7o
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(iii) Even adding the colour consistency constraints would not salvage the
(s,7)-scheme by ridding it of retro-action. At length r = 3, for instance, a
large number of parasitical degrees of freedom would remain. So we must
look elsewhere for a remedy — namely to the technique of satellisation, to
which the entire §6 will be devoted.

5.8 The independence theorem for bicolours.

Consider the homogeneous, length-1 elements of ARI that verify the
colour consistency condition (350). They are all of the form b3 with

(1) uht if € =0, VYd; € 2N*
ba,! = tlh —d ' 1 * (384)
Uy (2 1*1) Zf 61:§,Vd1€2N
“1 0 =2 =0
1 if =3

Proposition 5.1 The length-1 bialternals {bq,;d; = 0,2,4 ...} freely gener-
ate a subalgebra of ARIVY

Proof: Proving the independence of these b3 under the ari-bracket is the
same as proving that of the following Bj,

u d d y *
(eH uyt ™ if e=0,VdeN
Byt = {4 e ) (386)
ut' (1 —2%) if e=5,VdieN
“ 0 if e=0
Byt - 7o X (387)
1 Zf €1 = 5

for = 2 and even degrees dy, since 291 b3 = B [,—2. It is actually no
harder to prove the independence for all integers x > 2 and all degrees d;,
even or odd. To do that, it suffices to consider, for bimoulds M* with lower
indices v; = €; € %Z/Z, the ‘monochromous parts’ saj.M*® and sa”%.M’:
(Mg =sal M*} = (MUt = e %)) (388)
(M} =sal M} — (My" =M 237} (389)
2
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and to note how they behave under the ari-bracket:**

sag.ari(A®, B*) = ari(saj.A* saj.B*) (390)
- [ L)

The idea then is to introduce the moulds
“oi= Vd, € N (392)

and to compare the lu-brackets of the Aj with the ari-brackets of the Bj ,
or rather with the sa* part of these ari-brackets.

Let us fix a length2r and a total degree d := dy+- - -+d,.. For any sequence
d = (dy,...,d,) of non-negative integers d;, let us set

Ay = (AL, AL (393)

By = saj.ani(B],...,B]) (394)
Let &g = {A%, A, - . ,A:ln(hd)} be a basis of all alternal, polynomial-valued
moulds of length r and total degree d. The alternal, polynomial-valued mould
B; can be expressed in that basis. We find:

cd(0) =1

c0)=0if d+d (395)

B 22 & (x) Ay with & (z) e Z[z] and {
d/

The reason is quite simply that, according to formula (391), the z-constant
terms in B} can only come from the lu-bracketting. As a consequence, the
corresponding determinant, independent of the basis choice

det, 4(z) := Det [cgl (x);d, d'] =1+ Z”ymk:ck (Z Yrrk € L) (396)

is a polynomial in x, with integer coefficients and with 1 as constant term.
It is therefore + 0 for all integer values of x larger than 1. This establishes,
for all such values of x and in particular for x = 2, the ari-independence of
the bimoulds Bj. [

94see §4.2, where the procedure is systematised. Though the ‘monochromous parts’

sal.M*® and sa%.M*® are moulds, not bimoulds, we can subject them to all the flexion
2
operations by regarding them as bimoulds that do not depend on their lower indices.
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Remark 1: The above argument would collapse if we were to work with the
swappees C3 = swap.By :

o ah f e =0, Vd eN*
e ; 7 oa e (397)
! ot (L—a™) if e =5, Vd e N*
oL 0 1 =0
1 Zf €1 = 5
and their ‘monochromous parts’ sig.M* and sz”‘%.M *
(MG = st M} = (M = M ey (399)
1 ceey 1
M =i M) = My = MU (400)

For one thing, there would be no closed identities like (390)-(391) to describe
the ari-action on the new ‘parts’. Then we would find that there exist, even
for x = 2 and even degrees d;, non-trivial dependence relations of the form:

Z S sig.ari(Cy,,...,Cy) = 0 (cf e 2) (401)
di+-+dr=d

diyody o
Z ¢y siyari(Cy, .. CF)

di+-+dp=d

I

0 (cﬁ;eZ) (402)

2

though of course none of the form

Z et ari(Cy,...,Cy) = 0 (cte ) (403)

di++dr=d

Remark 2: The ari-independence of the al/al bimoulds b} of (384)-(385)
automatically implies the independence of every possible al/il extension *bj,
of these by, since the length-r component of any dependence relation

Z Cd1,...,dr ari(*b(}l, o 7*b¢.1r) = 0 (Cd c Z) (404)

di+--+dr=d

would amount to a dependence relation between the b3.. The situation is
quite different for the monocolour generators of ARI fo{ﬁ they too are conjec-
tured to be independent, but their length-1 components are not independent

in ARI*/4.

Remark 3: The only case relevant to multizeta algebra is when x = 2 and
all degrees d; are even.”> Remarkably, the case x = 2 is also the only one

9The case when z is an integer > 3 is of no direct relevance to the z-coloured multizetas.
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when the prime factor decomposition of the integers det, 4(x) is arithmetically
‘special’: it systematically displays (large) prime factors coming from the
Bernoulli numbers. Moreover, to take into account the exclusive presence
of even degrees d; and isolate the interesting part of det, 4(x), one should
change the expansion (395) to

° U ° . U Cd O == ]_
B3| even =; ct(x) Ay with % (x) e Z[z] and {cé/((())) 0 ded (405)

where BY |cven denotes the part of By even in each u;, and where A%, runs
through a basis of all alternal, polynomial-valued moulds that are also even in
each u;. The corresponding determinant det; ;(x), defined as (396) but with
all sequences d, d’ consisting only of even integers, is also an even function
of #. These more basic determinants det; ,(t) have been tabulated in §8.3
(in terms of ¢ := x?) and the reader may check on these tables how ‘special’
the case © = 2 (i.e. t = 4) really is, arithmetically speaking:

e det; 4(2) carries all large prime factors of Berg o with multiplicity one.

e det; 4(2) carries all large prime factors of Berg, Bery s, Bery_y... with
multiplicity one.

e det; ;(2) carries all large prime factors of all [];_,,s_,, Bers, usually
with higher multiplicities, as soon as r > 4.

Remark 4: Replacing in the previous argument (393)-(394) ari, lu by preari,
mu, i.e. setting:

Ay = mu(Ay,... AY) (406)
By = sa%.prgari(Bél, .., BY) (407)

and using the identities that describe the behavior of preari on saf, sa%:
2

sag.preari(A®, B*) = preari(saj.A°®, saj.B*®) (408)
sa}.preari(A®, B%) = arit(saj.B").(sa].A") + mu(sa].A*,sa1.B%)  (409)

we can easily establish the preari- independence of the generators By ;. How-
ever, we find that the determinants predet, ;(x) resp. predet; ;(z) calculated
from the coefficients ¢ () of the re-interpreted expansions (396) resp. (405)
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carry no new information: they turn out, unsurprisingly, to be entirely re-
ducible to the previous determinants det, 4(z) resp. dety ;(x). Concretely:

§ even 1<p
predet, H predet, ; s(x H detr a(z) (Vdeven = 2) (410)
2<6<d o
plr,pl4
§ even 1<P< -r
predet; ; H predet; ; s(v H det? 4 a(x) (Vdeven =2r) (411)
2r<6<d 2 olr, p| e

6 Multizeta algebra: the satellisation tech-
nique for bicolours.

Introduction.

The present chapter is devoted to the task of data reduction for bicolours.
As usual, rather than directly handling the scalar multizetas, we deal with
their generating functions A®, S*, at home in either ARIYL or GARIZ/* .

bico bico

AR[‘LZ/Ll 5 AO — {A €1 4ens er , U; € C , € € %Z/Z}

bico
GARIEE 5 §° = {s'aiia) | weC | eiz/z}

e We successively define three ‘satellites’ sa, sa™, sa™, consisting each
of a small number of boundary data.

e The lower or root satellite sa retains only the lower indices ¢;, i.e. the
colours 0 (white) and 1/2 (black) while discarding all multizetas with
partial weights s; strictly larger than 1.

e The first upper satellite sa* does the opposite: it retains only the upper
indices u; and sets all colours ¢; equal to either 0 (‘all-whites’ ) or 1/2

(‘all-blacks™).

e The second upper satellite sa** is deduced from sa under a construction
known as mould amplification, but in outward shape and behaviour
under ari/gari, it closely resembles sa*.

or GARI;>

e All these constructions, initially performed in ARI% bico bico?

acquire new significance when we move to AR Zféff or GARI ch/fs The
adjunction of the second symmetry rigidifies everything: each satellite
contains all the information, and the challenge is now to extract that

information.
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e One of the first consequences is the existence of quite remarkable for-
mulae expressing all mould components of odd degree in terms of those
of even degree.”

e Another consequence is the existence of an explicit procedure, based

on the operators discram and wviscram, for recovering the whole of a
mould M* in ARTY% or GARI®/% from the sole knowledge of its first

bico bico

upper satellite sa™ M*®.

e Yet another consequence is the existence of a remarkably explicit cor-
respondence between the two upper satellites sa*, sa™, so similar in
shape yet so different in origin. For the all-whites (correctly defined), we
have identity pure and simple ( saj = sa;*) while for the all-blacks the
correspondence sa’ < sa}* assumes the form of an involution K whose
definition, unexpeétedly, i?equires us to perform a length < degree ex-
changing isomorphism.

That said, it should be borne in mind that the whole business of satellisation,
fascinating though it may appear, is not an end in itself. It is there only to
pave the way for the real task: the explicit decomposition of bicolours into
irreducibles. But this is another story, to be told some other time.

6.1 The lower or root satellisation sa: zero-degree bi-
colours.

Zero-degree elements.

In the lower or root satellisation (noted “sa”), the only extremal data we
retain are the scalar multizetas Ze'*1 %) whose partial weights s; are all
equal to 1 or, what amounts to the same, whose total degree d := s —r is 0.
In terms of generating series, this amounts to setting all u;-variables equal

to 0.
o — A =sa.A® with AV = A(Eol e (412)
S*e GARI® > S§* =sa.S* with S .= 8lalla)  (413)

bico

A® ¢ ARI%

The extremal and penextremal algebra.

Needless to say, the extremal data sa.ARI Zjl»w and sa.GARI;;,, provide no
al

information at all regarding the — totally independent — rest of ARI;;, and

9and that too in every meaningful setting, i.e. in both upper satellites as well as in the
whole of ARI/™ or GARIS/E.

bico bico
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GARI3;,. Things change completely, however, if we adduce a second sym-

metry. We shall see in the sequel that the whole of ARI Zjlgjl (resp. GARI chf)
[il/ﬁ

bivo (resp. from the ex-

can be recovered from the extremal algebra sa. AR
185,

bieo ). This may sound improbable, if only because

tremal group sa.GAR

only the first symmetry of, say, ARI%ZJ, i.e. alternality, can be expressed
internally in sa.AR[Z\ZZl. The second symmetry, i.e. alternility, necessarily
takes us beyond the range of 0-degree elements. However, we shall see that
by considering the penextremal algebra, that is to say by retaining all terms
of degree 0 or 1 we can overcome the deadlock:

(i) a fraction of the alternility relations becomes expressible within the penex-
tremal algebra

(ii) that fraction turns out to be equivalent to the full alternility

(iii) the alternility relations so obtained can, after elimination of the degree-1
elements, be re-phrased purely in terms of the degree-0 elements, that is to
say, within the extremal algebra.

The colour-switch ideal.

For the moment we may note a simple but consequential — and easy to check
— fact: Those elements of the extremal algebra that are invariant under the
white <> black colour switch

s
—
2o
Qo
-
Il
s
—
2o
Qo
—
g
.
~~
==

1
»»»» €= - —¢€ 414
. (414)
constitute an ideal of the extremal algebra.
In the inter-satellite equivalences yet to emerge, this colour-switch ideal
in the root satellite shall correspond to the ideals of vanishing all-whites in
the first and second satellites.

6.2 The first upper satellisation sa*: all-whites and all-
blacks

The first upper satellisation (noted sa*), or first satellisation for short, pro-
ceeds in exactly the opposite direction. Instead of retaining the sole colours,
as in the root satellisation, we now nearly completely eliminate them, and
retain only monochrome multizetas, either fully painted in the colour 0 ( ‘all-
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whites” ) or in the colour § (‘all-blacks’):

; (Sag.A)ulv yUr o — ( 01 ..... 0 )
A* € ARIL,, — sa*.A* with (4 ey (415)
ico (S&;.A)ul" KT A % ..... %
(sag.S)uur = S0 )
S® e GARIL,;,, — sa*.S* with (U (416)
(sa"{ .S)ul" Ur = G g 7

The real justification for this drastic data restriction will emerge in the sequel.
But we may already observe that it has at least the merit of respecting the
ari/gari operations, in the sense that these remain expressible entirely within
the new framework.”” Indeed:

Proposition 6.1 (Impact of the first satellisation on ari/gari) .
Let as usual A®, B* etc stand for elements of ARI%CO and S*,T* etc stand
for elements of GARL. . Then:

bico
sag ari(A®, B®) = ari(saj A*,saj B®) (417)
sag preari(A®, B*) = preari(saj A°®,sa; B°®) (418)
say gari(S*®,T°) = gari(sag S®,say T°) (419)

—I—Iu(sag A, sa’% B*)

sag ari(A®, B®) = < +arit(sag B*) saj A* (420)
—arit(sag A*)saj B*
{+mu(sa’§ A, saj B*)

. (421)
+arit(sag B*) say A

saj preari(A®, B*) =
say gari(5®,T°) = mu((garit(saﬁ T*)sa} S*), say T'> (422)
6.3 The second upper satellisation sa**: amplification.

The amplification technique.

We have already used mould amplification in §5.2 to go from wa® to zag®.
We shall now use it once more to construct the second satellisation. Here are

97This is obvious enough for sa#, much less so for sa%. And it wouldn’t be true at all
2
if we had defined satellites si* A®, si*.S® based on the swappees, by setting:
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the basic facts about the amplification transform amp,,

(i) It acts on ordinary moulds M®.

(ii) It singles out the index w, for special treatment,

(iii) It adds a new indexation layer (here, the u; indices),

(iv) It preserves simple symmetries (alternality /symmetrality).
(v) It acts according to the formula®:

( M) o J T e S PR R 193
amp,,, = wtuth.ouyt (423)

osn,

(vi) If M* possesses no particular symmetry, the passage M* — amp,, M?*
entails an obvious loss of information, since the right-hand side of (423)
‘ignores’ all terms M“ with sequences w beginning with a string of w,’s.
(vii) If M* is alternal or symmetral, so is amp,, M?*, and there is no loss of
information, since in that case any M“ can be expressed in terms of M%“*
and some other M*', for indices w’ without initial w,.

(viii) Mould amplification nearly commutes with mould multiplication, but
with a corrective term that involves the special index w, and whose form
depends only on the symmetry type of the second factor. Thus, for B*
alternal and 7 symmetral, we get the identities:

amp,, (S* x T*) = (exp(T“*D,,) amp,, S*) x (amp,, T*) (424)
amp,, (A* x B*) = (amp,, A*) x (amp,, B*) + B** D, (amp,, A*) (425)

,,,,,,

with (D M) S 708 = (g 4 4 wy) MG

The amplification of elements of sa.ARI%  or sa.GARI%

bico bico*

We shall now amplify elements M*® of the extremal algebra or group. These
are bimoulds, but here we may treat them as plain moulds, with indices either

(8) or (7). That leaves only two possible amplications, namely amp o, and
2

ampgy. Since, in either case, all the lower indices on the right-hand side of
2

(423) will be the same, % or 0 respectively, we can ignore them as contributing

no information. So, for any bimould M*® in ARI 271*00 or GARIy; , we are
justified in setting:
amo M* := ampoysaM*® ,  amy M®:= amp((l))saM° (426)
0 2
n times
98Here, w,[k"] =0, ..,ws and uy__j 1= ug + .. + u; as usual.
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or more explicitely:

“—ni— —np—

0 ,0,.,0,,., 0,0,.,0
(amg. M )"t o= 3 Mlvzio o vz o o) gy (427)
osn,
«—nj|— “—np—>
o (0, 0 ,.., 0, ,..,0, 0 ,.., o) ny . ma n
e Ur 0,12 ,.., 12, ,..,0, 12 ,.., 1/2 v
(amy. M) = Z M : : wtuth.ooouyt o (428)
o<n,

The impact on ari/gari.

For M* in ARI%CO (resp. GARIY: ), the amplifications amg.M*® and amy.M*
automatically inherit alternality (resp. symmetrality). The real question
is: how will amplification impact lu/mu and ari/gari? For the uninflected
operations lu/mu, the answer is provided by the earlier formulae (424), (425).
Not so for ari/gari. In fact, to get manageable formulae, we must work, not
directly with amg.M*® and am.M*, but with suitable combinations of the
two. This, together with the proposition immediately to follow, is what
motivates our definition of the second satellisation, under the simplifying

(and provisional) assumption that the length-1 component of M* vanishes®:

Definition 6.1 (The second satellisation M*® — sa**.M*) .
For any A* in ARIZ  and any S* in GARL?Z  such that

bico bico

o (1) 0 (1)
A =A% =0, S0 =52 =0 (429)

we set:

sag. A* := —neg.amy A® + neg.am; A® (430)
sa*%* A* := —neg.am,A* (431)
sdp" S* = mu (invmu(neg.aunO S°),neg.amy S'> (432)
say’ S* = invmu(neg.am, S°) (433)

Here neg denotes the sign reversal of all indices, and invmu the inversion
(relative to the mould multiplication mu), which for symmetral moulds (such
as S*) reduces to a sequence reversion with or without sign change, depending
on parity:

(neg. M)t = MTUL T (434)

(invmu.M)“ovr = (=1)" MUt if M® symmetral (435)

971t is mainly the relations (440)-(442) that require this simplifying assumption. It will
be removed in the next section.
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Proposition 6.2 (Impact of the second satellisation on ari/gari) .
Let as usual A*, B* stand for elements of ARIZ  and S®,T* for elements of

bico

GARI;;, . Then
sag ari(A®, B®) = ari(say* A®,say" B®) (436)
say" preari(A®, B®) = preari(say® A°®, saj)" B*) (437)
say” gari(S*,T*) = gari(sag” S°, say 1) (438)

Moreover, provided that
0 (1) 0 (1) 0 (1) 0 (1)
A(o):A2 :B(O):B2 :O,S(O):T2 :S(O):T2 :O (439)
we have the further identities:

+lu(sa*%* A, saly" B*)
say” ari(A®, B*) = +arit(saf* B*) sa’y” A* (440)

—arit(saf* A*) say" B®

. +mu(satt A*, sa’* B*)
sa’y" preari(A®, B*) = o 2 (441)
2 +arit(saf* B*) szf"%* A*
saly gari(S*,T°) = mu((garit(sa"{)* T*)saly’ S°), say’ T‘) (442)

In other words, under the (crucial) assumption that all lenght-1 components
vanish, the second satellisation sa** affects ari/gari in exactly the same way
as does the first satellisation sa*.

Despite the formal similarity, the identities of Proposition 6.2 are com-
pletely different in nature from those of Proposition 6.1, and much deeper.
They also have this uncanny feature of relating the ari/gari operations on
sa.M*, which bear on the lower indices ¢;, to the utterly different ari/gari
operations on sa**.M*, which bear on the upper indices u;.

6.4 The mischief potential of log 2.

We are already familiar with the (mild) difficulties attendant on the diver-
gence of Zelo) ~ > n~L. They merely introduce a correcting factor man® in
the identity (629) connecting zag® and zig®.

We are also familiar with the (more serious) difficulties related to the
scalar multizetas that belong to C[[7?]]. These are responsible for the pres-
ence of an irregular first factor zag} in the trifactorisation (367) of zag®. That
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first factor belongs to GARI®™ but not GARIYY which causes no end of
difficulties.
We must now brace ourselves for the difficulties (of intermediate severity)

that result from Ze(v2) = S (=1)"tn~! =1log2, or in other words, from the

0
presence of non-zero length-1 components M G2) i the generic bimould M*®
that undergoes satellisation. (Let us recall that, taking our stand on the
. . 0 . (0
normalisation zaglo) = ziglo) = Q}, we have already, once and for all, ruled
out any non-zero components M (o).

Definition 6.2 (The second satellisation M*® — sa**.M* (bis)) .
0

(1)

In presence of a nonzero length-1 component M %’ the earlier definition of

sa** should be modified to:

0
sagt A® = —neg.amy A°* + neg.ami A'+A(%) I
sat" A® := —neg.am, A°® (443)
2
o) 0,
sag 9% 1= mu(e’s " invmu(neg.am, S*),neg.am S e )

sat" S° = invmu(amgS®) (444)

2

with ® denoting the elementary mould derivation:
(DAY = (ug A+ e+ owy) AN (445)

In order to fittingly describe the interaction of sa** with ari/gariin the most
general situation, we must now introduce two mould operators:

ut(A) B = —AV 9B (446)
gut(S*)B* = exp(-SVD)B (447)

ut(A*) is clearly a derivation relative to the mu-product, and gut(S*) an
automorphism, again relative to mu.

In view of (443)-(444) and given that (sa’;*.M)(O) = M for M* in

ARI Zjl.co or GARI;;, . the relevance of the operators ut(.A*) and gut(S*) is
fairly obvious, and we are now in a position to remove the restrictive assump-

tion of Proposition 6.2.

Proposition 6.3 (Impact of the second satellisation on ari/gari (bis))
For general elements A*, B* in ARIZ  and S, T* in GARIL. |, the earlier

bico bico’

130



identities (436)-(442) have to be supplemented by the following terms (in red
colour) to account for the presence of non-vanishing length-1 components:

sag ari(A*, B*) = ari(say* A®, say* B®) (448)
say" preari(A®, B®) = preari(saj® A®, saf)" B*) (449)
sag" gari(S*,T*) = gari(say” S°,say 1) (450)

+lu(sa*%* A® ,say” B )
saly ari(A®, B%) = +arit(sa* B*) sa *A'+ut( ay” B ) sa *A' (451)
—arit(saf* A*) sa’* B‘—ut(sa*l* A®) se ** VB
—I—mu(sal* A* sal* B*)

(452)
—l—arlt(saO*B )sal* A®+ut(s ay B® )saul* A®

saj preari(A®, B*) = {

saly gari(S*,T°) = mu((garit(sa}‘) T*).gut(say" 1°).say" S°Y, say’ T') (453)

= mu/( (gut.(sa%" T"*).garit(sa Sa1 S* Sa1 T° 454
((ent.(se'y 1) garit (s T°).saif* S°) , sl T°)  (454)

Proposition 6.4 (Impact of the second satellisation on ari/gari (ter))
The relations

W (A*B%) = Tu(A*,B)+A"D B — B'D A" (455)

= Iu(A°,B*)+ut(B°) A° — ut(A°) B° (456)
mu*(S*,7°) = mu(exp(—7"D)S*,T°) (457)
mu(gut(7°)S*, T*) (458)

define a modified Lie bracket lu* and a modified associative product mu*.
With them, the identities (451)-(454) simplify:
+lu* (sal* A*, sa?" B® )
sattari(A®, B®) = —i—arlt(sao* B* )sal* A* (459)
2

—arit(saf* A*) sal
+mu* (satt A* Sal** B*)
sa’y" preari(A®, B*) = _ 2 (460)
2 +arit(saf*B*) s 7** A*

sat" gari(S*,T°) = mu*(garit(saf* T )sal S, sal T*) (461)
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6.5 The double symmetry and the even-to-odd-degree
extrapolation.

. . !
So far, we have reviewed the properties of sa, sa*, sa** as defined on ARIY;

and GARIy; . Let us now move on to AR[%ZJ and GAR[%C/(%S. The in-
troduction of a second symmetry has momentous consequences, the first of
which is the possibility of deducing all odd-degree components of a bimould

M?* from its even-degree components.

alfil

bico *

Even-to-odd extrapolation in ARI

Let us work in the algebra ARI %Zfl for simplicity!? and consider there some

homogeneous element A* of total weight s, with its various components A|°T of
length r (1 < r < s) and total degree d = s — r. For the non-vanishing com-
ponent A} - of lowest length, the symmetry (al/il) actually implies (al/al),
i.e. bialternality. That component is therefore!®’ necessarily of even degree

dy. Let us now search for an explicit even-to-odd extrapolation formula:

(0,0ey 0, A% AL ooy Al ) = (0,0, 0, A% L AS gy A o) (462)

based on the five-step induction already mentioned in §3.5:

Step 1: Calculate Af = ngmmn A, e ARTY/L

|[ro+2n

Step 2: Calculate *A? ., := adari(ripal®). Aj,12n € AR[4Val
Step 3: Define *A}

[ro+2n
Step 4: Calculate Ay |, := adari(pal®).* A}, +2n € ARI&/i
Step 5: Define A|.|r0+2 n as the component of length ro+2n+1 of **A;O+2n

as *Ay .5, truncated at length ro+2n+1 (included!)

If we now denote by trunc, the linear operator which acts on moulds by
retaining only their components of length < r and if further we set

0, := trunc,  adari(pal®).trunc, . adari(ripal®) (463)
the above induction can be summarised as

_ {HTU-FQ’VL(A;OJ,-QTL+97”0+27’L—2(A;0+2n—2+ ......

. K (464)
...... +0rg42(Ap 0T 0 A7) ))

In theory, (464) could qualify as an even-to-odd extrapolation formula of type
(462). In practice, though, it is no good: pal® and its gari-inverse ripal® are

100analogous results hold for GARI ﬁc/;*s
101Gee [ET7], §7.
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very complex bimoulds; the adjoint action adari is itself a highly complex
operation; and as 2n grows, the number of terms on the right-hand side
of (464) becomes, prior to simplifications, fantastically large. The miracle,
however, is that sweeping simplification do occur, leading in the end to a
formula that is both practical and beautiful.
But before enuntiating it we need to get a few definitions out of way.
First, we require the constants &,:

- 202" Ber,,y if n odd (Ber, = Bernoulli number) (465)
n - 0 Zf n even
Thus  e=},6md  bmd 6= oY e g B g2

Next, we require two elementary symmetral bimoulds:

S =1 , S i=(—x)" P(uy)P(uy+ug) ... P(ui+. . .u,) (466)
D= " P(w) Pury ) .. Plus . ouy)  (467)

Lastly, we require operators £, constructed from the previous ingredients:

. @ M M (468)
M* = (id — 2B + 2 PBr). (527" x (garit(S2).M*) x S2) (469)

with {%RM)(% ***** 2 MUt ) Plug 4 ty)

We may note in passing that the operators £, form a group:
$Ho = id and 92 Dy = Doy (470)
The proof relies mainly on identities such as

(Br—Pr)M* = arit(M*)P* VM* (471)
Ss = expari(—x Pa®) (472)
with the elementary mould Pa®:

(U1 ury {P(ul) ’Lf r=1

0 otherwise

(473)
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Proposition 6.5 (Even-to-odd extrapolation on AR/
Let A* be a homogeneous element of AR[%ZJ of weight s and let A2,., (resp.
A..) the sum of its components of even (resp. odd) degree. These com-
ponents have of course lengths of opposite parities, and the extrapolation

formula reads:
A:)dd = (f—)I‘A;ven) Hrnzgn (474)

In other words, we expand ($),.A2,,,) as a formal power of z and then replace
each 2" by &,. Given that £y, = 0, this leaves in A?,, only components with
lengths of the right parity. Moreover, and though this is non-obvious, all
components of length » > s automatically vanish, as indeed they should.

Even-to-odd extrapolation in the first upper satellite.

The change 9, : M* — M* admits an internal restriction to the first upper

satellite.1? Indeed, one easily checks that:
saﬁ]v[/' = (id + 2Pr — 2Pr). (S 7" x (garit(S}).saf M*) x S2) (475)
~ +(S27! x (garit(S?).sat M*) x S®

wii o 17 (garit(5;) s M) x 55) (476)

’ +2 (Pr — Pr). (92" x (garit(Se).safM®) x S2)
(MG, M) = (sa%o.M*,sa"y.M*) (477)
(BM)r = (ug . ) T MO (478)
(DM = (ug+. . Fu,) MU (479)

and denoting for uniformity the bimoulds S?, 77 as simple moulds S;,7.°

(which is legitimate, since the former depend only on their upper indices),
the identitities (468)-(469) can be brought into more explicit shape:

(+T2 x Mo (SexT* xT2) x St

B = ] (1% T My (S x T % T2) x S? (450)
|+ T2 x Mo (S xZ* xT?) xSy xI*
’+7;‘x,/\/l'%o(8:;xf'x7;’)><8;

o (T < T x Mgo (St x T* x T?) x S (481)
T2 PAT, x MG (87 xI* xT) x S x I°

= @
I
A

102The fact is non trivial: it wouldn’t be true if we had defined that satellisation based
on swap.M*® rather than M*.
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where Z* denotes the identity mould.!%3

Proposition 6.6 (Even-to-odd extrapolation in the first upper satellite.)

Let A* be a homogeneous element of AR of weight s. Let Aj := saj.A*

bico

and A% = sa’;A' be its all-white and all-black parts. Then, to perform the
even-to-odd extrapolation, it suﬁces

(i) to substitute the pair (A . en; 1 Y even) fOr (MG, M '%) in (480)-(481),

(ii) to set x" := &, in the correspondmg pair (MO,M‘%).

Remark 1: Using the identities

SoxTr=1", DP=id, DS, =—a8S, xI*, DT> =zI" xT; (482)

together with the fact that ® is a derivation relative to mould multiplica-

tion, we can recast the correspondence (Aj, A3) — (Af, AY) into an almost
2 2

involutive form:

X (DM x T = (D.M) o (82 xI° x T7) (483)
(+(DM3)o (82 xI° x T7)
+(S;><I’ ’T')x(/\/l'%o('xI'xT'))
S;X(Q.M'%)x7z=< (S;XI'XT)X(M(')O( xI'xT‘)) (484)
(,/\/l'%o S'xI‘xT'))x(;xI'x )
[+ (Mo (S xI* x T2)) x (SexI* xT)

If we then set M3, = MY — MG, MY, = M3 — /\/l('), the above system
further simplifies

X (DM x T2 = (DM o (S xT° x T7) (485)

+(©.M'%:O) o (S xZI*xTr)
Six (DMyg) x T = +(S2x Tt x T7) x (M0 (St x It x 7)) (486)
—( '%:Oo (S xZ* xT2)) x (Se xI* xT)
Remark 2: organic moulds. The group identity $, $, = $,4, is inti-

mately connected with the strong stability — mainly under mould composi-

tion, but not only — of the so-called organic mould family generated by S?
and T7:

SexTr = 1°
SIT,oS8IT, = SIT;,, with — SIT.:=8) xI* x T}
SIT, . oS8IT,, = SIT,,  ywy with SIT, ., =2'8 xI*xT;

1037w = 1 gnd Z% % =0 if r + 1.
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The organic moulds occur in various other contexts, notably in alien calcu-
lus: they crucially enter the construction of the so-called organic derivations
A% which, unlike the standard derivations A, are well-behaved, that is to
say, possess optimal growth properties in w as |w| — o0.

6.6 Recovering the general bicolours from the all-blacks:
the operators discram and wviscram.

The formulae we are going to enuntiate now may be thought of as Green-like,
in the sense that they express the ‘whole picure’ (here: the whole of ARI Zjl(/:fjl)
from ‘boundary data’ (here: any of the three satellite systems).

We shall start from the first upper satellite sa* and show how to recover
everything from it (next proposition). Then, in the next two sections, we shall
show how to go directly from the second upper satellite sa** to the first, and
back. Since the lower satellite sa was, from the very start, in biconstructive
correspondence with sa**, that will automatically provide indirect paths from
sa and sa** to ARIY™. But to arrive at a truly satisfying picture, we shall

bico *
also sketch direct paths from sa and sa** to ARI %ég

Proposition 6.7 (Recovering ARIYE from sa* ARI/My

bico bico

Let A* be an element of AR[%(/:ZJ with (A§, AY) = (sag.A®, sa}.A*%) as usual.
Then the whole of A® is constructively determined by its all-black part .A'%,
and even by the sole even-degreed components of .A'%. Roughly speaking, the
all-white part A§ can be recovered from .A'% via the operator viscram, and
the terms of mized colour via the operator discram. The exact procedure,
rather involved but entirely constructive and formula-based, is set forth in
detasl below.

Ezxplicit procedure: To ease the exposition, we shall slightly depart from
the previous notations. We now decompose A®* and its image *A*® under
adari(pal®) into all-white parts W*, *IW* all-black parts B*, *B*, and (strictly)
mixed-colour parts M*®,*M?*.

A = W'+ M*°+ B* € ARI%g (487)
A = W 4+ *M*® +*B® € ARI%lo/r%entire (488)

For each mould, the length-r component is marked by a lower index r. We
can assume A* to be of weight s. The moulds of the upper series (487) have
at most s non-vanishing components (polynomial in w) while the moulds of
the lower series (488) usually have infinitely many components (rational in
u rather than polynomial).
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Let Ay be the lowest component of A®. It coincides with the lowest
component *A? of *A®, has even degree dy, and is automatically bialternal.'**
The aim is to construct the whole of A* from the data By, By 5, By 4.

T0?

Let us recall/introduce the operators trunc, and viscram®*:1%°
trunc, S* = S;+ ST +S5+---+S; (489)
viscram*S® = (27¢ —1)"'viscram S if deg(St) =d  (490)

Starting the induction: from B; to A; and A;

These three steps enlarge the even-degreed B, to the even-degreed A; :

Br, Ty (491)
. discram ° °

B, — M + B (492)

B, — A=W+ M+ B (493)

This one step takes us from the even-degreed A7 to the odd-degreed A ;:

truncy +1 adari(pal®
—

A (A=A but A, AL, (494)

r

* (]

A
— . . . . .

Continuing the induction: from B3 , to A ., and A5 . .,

The following step takes us from truncy, ,,—1 A* (already known) to *B3, .
(not yet known). It also produces parasitical terms **W5, . —~and **M;
which bear no relation to *W5, . ~and *Ms, . .

truncan adari(ripal®)

A;o +- Agn-i-ro—l + Bgn-i-ro - (495)
AN A+ A o W+ M+ B (496)

The genuine *Wy, ., and *My, . are produced by the next steps:

*

° viscram °
*B2n+r0 - *W2n+r0 (497)
*Re discim)m SN + *e (498)
2n+ro 2n+ro 2n+rg
*Bgn+ro - *Agn-&-ro = *W2.n+ro + *M2.n+7"o + *Bgn-i-ro (499)

We are now in full possession of trunca,,, “A* and can proceed in one step
to truncopry+1 A

truncanry+1 adari(pal®

k A@® k A@ ) ] o
Aro +-+ A2n+r0 - Am + 4+ A2n+r0+1 (500)

This completes the induction []

104That lowest length ro has the same parity as the weight s.
105 yiscram™ is a normalised variant of viscram. The normalising factor (27¢—1)~! stems
from the constraints of colour consistency. See (622).
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6.7 The double symmetry’s reflection in the extremal
algebra.

Introduction. The extremal and penextremal algebras.

The extremal algebra ARI %C/gext consists of bimoulds of degree d = 0 and
therefore » = s. Since all alternility relations commingle components of
various lengths and degrees, there would seem to be no way of expressing
these relations within ARI ,%lc/gm, at least not directly so. If however we
consider the slightly larger ‘penextremal’ algebra ARI l%lc/gpenext, consisting of
all bimoulds of degree 0 or 1, we can at least express weak alternility (see
below) there, since weak alternility involves only two consecutive component
lengths, namely r = s and r = s — 1. Improbable though it may sound, this
in fact implies full alternility. Moreover we shall find that, in the constraints
so obtained, the components of length 1 can be easily eliminated. This shall
leave us with a complete system of constraints, fully internal to the extremal
algebra ARI ai/il

bico.ext"

The dimorphy constraints in the extremal algebra.

Definition 6.3 (Weak symmetries) .

A bimould A® is said to be weakly alternal if it verifies only the alternality
relations Zwesha(w/7w,/) A"Y = 0 with w' of length 1 and w" of any length. The
same applies for weakly alternil.

Lemma 1: In a double symmetry, either symmetry may be weakened (with-
out incurring any loss), but not both simultaneously:

{al/al} = {alWeak/al} < {al/alweak} < {alweak/alweak}
falfil} < {al"¥/i} o {alfilve} o (apvek jjjent)

Lemma 2: A bimould A* of weight s in ARI{a)lig i1s enterily determined by
al/il

bico.oxt » that is to say by its values

its restriction to the extremal algebra ARI
0,., 0
Ala ) for all ¢ in {0, 3}
Let us now express the dimorphy constraints first within the penextremal,
then the extremal algebra. Any element A®* € ARI a may be expanded

bico.penext
in the form:

0 otherwise

AT =00 A N M) i T=s (501)
At =D e (A A A ) i r=s—1 (502)

uq dO y —
with Ayt = {“1 Veo=a (503)
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We must of course take all the multibrackets lu()\1 1 Noe,, ) tO get a basis

for the degree-1 alternals, but only some of the lu(\ o1 Aoe.) tO generate

the degree-0 alternals. Let us now express the weak alternality relations for
such a bimould A*. They read:

(swap.Wil.swap A)(Eol e = Z A 4+ Z AP P(uyy) (504)

Here Wil denotes the linearisation (resp. annihilation) operator for sym-
metril (resp. alternil) bimoulds, relative to the sequence splitting

1o . / "
w =ww with w = (wy,..,w,),w = (w),w" = (ws, .., w,)
Explicitly:
. w w’ 1% wi*l
(WiLA)® = > A¥ 4 > Plo—v) — AW (505)
w*esha(w’ ,w”) 2<i<r
wzth w].*i — ( U1, Ul UG SUg T, ) wi*l — ( U1, Ul tU; SUg T, )
Vi1, v Vi1 oe Y ce VT, v; SVG41s oee

We now plug (501) into >;* of (504) and (502) into >.** of (504). Simpli-
fications occur, leading to the disappearance of the wu; variables from both
numerators and denominators. Eventually, for sequences (i, ..., €s) ending
with €, = 0 and ¢, = %, we find respectively

0 =D HE G pam e o o (506)
€ yensl
0 = K;l’ 7669 1bel7 A _’_ZLGhM:Gs 1 51 ey (507)

with coefficients H?, K7, L; in Z. Eliminating the coefficients c* between
(506) and (507), we get the following 2571 structure constraints which char-
acterise the subalgebra ARIY™  of ARIZ

bico.ext bico.ext
RE = ), RygTpe (with R} € Z) (508)
€.e{0,}

The 257! relations R -1 are clearly not independent. However:

Conjecture: The first p, relations R%~1 are independent and imply all
others. Here, ‘first’ is relative to the order induced by n(e) := Y.€2" and
ps = 1+ds—dE, where ds resp. di denotes the dimension of the component
of weight s in the free Lie algebra L£ley, eq,e3,e4...] resp. Lley, es,es,e7. .. |
(es is assigned weight s ).
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Subalgebras: keeping track of push-invariance.

One can in similar fashion express the symmetry alternality+ pushu-invariancet®

first in the penextremal algebra and then, after elimination of the compo-
nents of degree 1, purely in the extremal algebra. This leads to an important
algebra ARI/P"™ Lalfway between ARIZ/E ,and AR Here, how-

bico.ext bico.ex bico.ext"

ever, bimoulds in ARI Zﬁéfus}w are not fully determined by their restriction

to ARIZ/P"™. 4 ensure complete rigidity, it takes the full dimorphy, i.e.

bico.ext

alternality (of the bimould itself) and alternility (of the swappee).

6.8 The degree-length exchanger dre. Co-satellites.

This section’s object is to prepare for one of our main results — the corre-
spondence between the first and second upper satellites. As it happens, the
correspondence in question is best understood following the (d 1,7 ) filtra-
tion, i.e. starting from low degrees d and correspondingly large lengths 7.
But r being the number of u;-variables, that filtration is rather unwieldy. So,
to fall back on the more familiar and tractable filtration (d |,r 1), we shall
resort to a suitable d < r exchanging isomorphism.

The Hoffman duality.

The classical Hoffman duality for monocolours
{r1-1} {rn—1} {dn—1} {d1-1)
Zed1+1,1 1 seendn+1,1 _ Ze?"n-i-l,l ,eeT1 41,1191 <VdJ,TJ > 1) (509)

easily follows from the integral representation (340) and does indead exchange
d and r, but it possesses no simple extension to bicolours. So we must come
up with something else.

The d < r exchanger dre.

18 e say that a polynomial-valued

In analogy with the situation in ARI,;,

mould is of weight s if each component of length » < s is a homogeneous
polynomials in wuq, ..., u, of total degree d = s — r, and each component of
length r > s vanishes. Any alternal polynomial-valued mould A°® of weight s
can be uniquely expressed as the O-amplification of an alternal, scalar-valued
mould X* of length s with discrete binary indices n; € {0,1}. If we now
take the 1-amplification of that same X*, we get a new alternal mould B of

weight s. Since the involution A* < B* so defined exchanges the degree d

106y shu-invariance is the tweaked form of push-invariance induced by the classical iso-
morphism adari(pal®) : ARI?Y/ — ARV,
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and length r of mould components, we call it the d < r-exchanger, or dre
for short. The same construction applies without modification to symmetral
moulds. Graphically:

A0 = ampX® <% B = am X° (X* binary alternal)
A e MU, 5 B e MUY,

S = ampY*® <% 70 = amv* (Y* binary symmetral)
S e MUE IS T e MUL

6.9 Correspondence of the two upper satellite systems.

We are now in a position to take up this chapter’s last remaining challenge,
i.e. finding a direct connection between the first and second upper satellites:

( ;O,A;%) = (sa(’]“.A',sa;A') (;078;%) = (sag‘.S',sa;S')
! !
(A;*O,A;*%) = (8a§*,A°7sa2*,A') ( ;*078;*%) = (saj*. -,saz*.s.)

A* c ART/HE S* e GARI%/E

bico bico

Equivalence of the all-whites.

Proposition 6.8 (Coincidence of saj and sa}*) .

Provided we adopt for sa§* the correct definitions (443)-(444) that take into
account the perturbations introduced by length-1 components, we find that the
all-whites of both upper satellites exactly coincide:

= Al VA® € ARILY (510)
% = St VS* e GARILY (511)

Involutive correspondence between the all-blacks.

The correspondence between the all-blacks is more recondite. To express it,
we require a mould derivation K and an involutive mould automorphism K.

Here are the definitions:!%7
"= P =L
KM® = arit(Pa®). M* —lu(Pa®, M*)  with P (1) ow (512)
Pattotri=0 af r 41
& =dre. e’ . dre. pari (513)

107Recall that pari multiplies mould or bimould components of depth r by (—1)" and
that neg changes the sign of each index w;.
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A more explicit formula for K’s action reads:

e Uj—15Uj U [ AR — s Uj—1,Uj [ .
+ gy (MotimttsF M=ty P(u;)

ICM ULy Up
o {— By (Mot At Pluy)

As for the involutive character of R, it results from:

K

dre.e” . dre.pari = dre. e’ .neg.dre = dre.neg.e ™ . dre = pari.dre.e ™™ . dre

Proposition 6.9 (Involutive correspondence between sa’ and sa%*) .
2 2
Provided we adopt for sa*; the correct definitions (443)-(444) that take into

account the perturbations introduced by length-1 components, we find that the
all-blacks of both upper satellites correspond under the involution K:

e AL VA* € ARIE (514)
S, s, VS € GARIE/® (515)
2 2

Remark 1: Given that each upper satellite contains ‘all the information’,
the existence of a more or less explicit correspondence between the two was a
foregone conclusion. The surprise, though, is that the correspondence should
operate, not between the pairs (Ao, Asy) < (Awso, Assy), but separately
between the all-whites and all-blacks: Ao <> Asso, Asy < Ausy.

Remark 2: The identity saj = sag* is easy to spot (less so to prove) in

the algrebra ARI ‘,j{ﬁ;l, because there the presence of a length-1 component

AGR) hardly affects the shape of sa**.A®*. See (443). This is no longer the
case in the group GARI%C/OLS, where the presence of a length-1 component
S(ik) upsets everything, as obvious from the formula (444). This must be
the reason why so remarkable, so fundamental, and so simple an identity as

sag.zag® = sal*.zag® had escaped notice for so long.

Remark 3: The involutive correspondence 8 : saf e sa’f;k2 was even less
conspicuous and we confess that it took us quite some time to figure it out.
The thing is that the low-length components (- on which one tends to focus-)
hardly bear any resemblance in A, /o and A,,i/2. It is only when we focus
on the low-degree components that a pattern begins to emerge.

6.10 Recapitulation: the circulation of information.
A telling analogy.

To appreciate the minor miracles of bicolour satellisation, which begin —
but do not end — with the recoverability of the whole from small parts, the

142



analogy with functions defined on the closed unit disk may not be out of
place. The two, largely self-explanatory pictures below show how the whole
(in blue) and the three systems of boundary data (in black) relate to each other
in both situations. The black arrows depict the circulation of information
under the weaker assumptions (- one single symmetry for bicolours; mere
smoothness for functions -), while the red arrows show what new channels of
communication suddenly open under the stronger assumptions (- dimorphy
i.e. a double symmetry for bicolours; harmonicity for functions-).

{zag® symmetral} Fig. 1 {zig® symmetril}
zag(uo1 s uOT)
* u ur
sa = Zag( P )
e T N\
s {Zag(lﬁl o Z:)} N\
/S ANN
0 ey 0 amp.zag)@1ur)
sa = {Zag(q ,,,,, e»,«) } > Sa** — { ((am;.zaz))<ul ,,,,, ur) }
{F smooth} Fig. 2 {F harmonic}

sa* = {F(nl»w)(o,o);meN}

4 T N\
S {F(zl,zz);xfﬂs%gl} N\
s ASN
sa= {F(xl,u);x%ﬂgzl} ——> sa** = {?n : neZ}

Let us now collect in one place, for easier survey, all the main formulae per-
taining to satellisation and co-satellisation.!8

108j . upper satellisation followed by the d <> r exchange dre.
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Lower satellisation of bicolours.

AREE >4 3 A GARIEES S =3 &
Acter = AL ) ’ Seteer — gl )

First (upper) satellisation of bicolours.

al/il o sa¥ . as/is o sa¥ °
ARIbico 5 A - A G‘Al%lbico 55 - §

1 seees Up UY yeney Up
617. € — ( 0 ..., 0 ) , §61,...,6T _ ( o 0 )
(""11 ----- ulr ) (“11 ..... Ul'r )

Ael, ,Ep A D ARERE 5 7 §€11, JE€p _ S 5 3

Second (upper) satellisation of bicolours.

ARI 5 A4° 5 A GARIZE® 5 g0 2 g
(1)
é; = —neg.am,; A* +neg.am% Av A\ e
A’l = —neg.am,; A°*
2

),

S, = mu(e" B

S = invmu(amgS®)

.invmu(neg.am, S°*), neg.ami S°, e’

with the mould derivation ©:
(QA)UL...,'M = (ul 4+ .+ ur) Autur

and the amplification operators amg, amy:

«ni— “—np—>

0.,0,.,0,,., 0,0,.,0
ULyeesUp o (20 s 0y e 20 0) 51, n2 Ny
(amg.M) Ti= Doen, MY R 3 K R W
u " (0 0 l 0, ,.., 0, OH.,T.L.T,HO) n1 n
Tyeen — 0, Y2 ,..,12,,.,0, 12 .., 12 r
(amy.M) "= Doen, M v I Tk T S T

First and second co-satellisation of bicolours.

ARE 5 40 %5 9 —dre. A° , GARIZEsg % &* .= de.S
AREZL 5 40 ®0 9ti—dre. A° |, GARIZEs g 5 &° .= dre.S*

with the d < r-exchanger dre introduced in §4.8.
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First and second (upper) satellisation of ari/gari.

(A, B*) 5o (S°,7*) =R
sa* | sa* | sa* sa* | sa* | sa*

(AL AL BB 2 {ee) (ShSIh T Ty > {RILRY)

Cy = In( A3, BY) + anit(By).Aj — anit(A3) By = ari(45,B;)  (516)
(

Ci = lu(Aj, B}) + arit(B). A} — arit(A7).B] 517)
R = mu(garit(75).S5, 75) = gari(S5, T5) (518)
R} — mu(garit(T3).83, T3) (519)

(Ao7 Bo) ﬂ; C* (S.7TO) gir)i R*

(145,43}, (s, B GG (s 8'} {I;,T‘}) TORLRS)

C; = lu(As, BY) + arit(B;). A — arit(A%).B; = ari(A7, B;) (520)

gi ™ (4%, BY) + arit(B;). éi - arlt(é[')) :1 (521)
R} = mu(garit(7}).S:,T7) = gari(S:, T7) (522)
R = mu”(garit(7;).85,75) (523)
with
(A%, B*) = lu(A*,B)+A°DB —B'D A (524)
mu*(S*,T°) = mu(exp(-T"D).8*,T°) (525)
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First and second (upper) co-satellisation of ari/gari.

(4%, B°) = ooc (8°,7°) =
saf | sa | saf saf | sa | sa’
. . . . ari® . . . . . . garit . .
({gO’g%}W{Eovz%}) - {gmg%} ({ng%}a{zmz%}) - {gmﬁ%}

&5 = lu(2Ag, By) + arit(By) 2Ap — arit(2A5). By = ari(2Ag, Bg)  (526)

—lF (25, BY) + A (T, BY) - B lu(Z°, 2A3)
g = +1u (205, .%) + hl ( 1.3) (527)
+arit(Bg) 27 — arit(25).B1
with the composition unit Z* and the tweaked Lie bracket lu® + lu*:
7% =1 VYuy , I =0 Vr#£1 (528)
(A%, B%) = lu(A*,B)-A"DB +B°DA° (529)
(A.,B.) ﬂ C* (SQ’T.) ?il)l R*
saf | saf | sa® saf | saf | saf
. . o arif . . . . . garitt . .
(125201 {8,, 87} — {&.&) (S8 g5 — (&8
& = (A, By) + arit(B7) AT — arit(A]).B. = ari(A, B7) (530)
~luf(U3,B%) + 2. A7 In(Z0,B) - 2. B (T, A
-2 T2 -2 -2 -2
¢ = +luﬁ(ga,§ ) + lu? (911,% ) (531)

+arit(B7) 2% — arlt(‘«’:l;)él

Thus, the formulae for ari® and ari® differ only by the presence of a fac-
tor 2 in front of the two corrective terms 2% . 1lu(Z*,B°%) and B? .1u(Z°*,A°).
-2 -2 -2 -2

There exist similar formulae for gari® and gari®.
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Counting our luck and listing our gains.

Satellisation succeeds only thanks to an tmprobable string of good luck:

Fluke 1: The drastic restriction sa to the extremal algebra (d = 0) does
not involve any loss of information, nor does the equally drastic restriction
sa* to the all-whites and all-blacks .

Fluke 2: The amplification, which takes us from sa to sa**, turns the sub-
tractive e;-flexions into additive u;-flexions.

Fluke 3: All the constraints flowing from the double symmetry ( ‘dimorphy’)
can be expressed internally within each satellite system.

Fluke 4: The ari/gari operations can also be expressed internally within
each satellite system.

Fluke 5: Despite their completely different origin, the two upper satellisa-
tions sa* and sa™* are easily convertible into each other: the all-whiles sag
and sag* simply coincide, while the all-blacks sa"% and sa”%* get exchanged
under a remarkable involution K.

Fluke 6: There is an effective procedure, based on the operators discram
and wviscram, for recovering the whole of AR]Z\Z;J or GAR]Z\Z%Z from each
satellite.

Satellisation also brings huge rewards:

Gain 1: It makes possible a dramatic data reduction, by showing how to
recover all the information from the all-whites+all-blacks, or even from the
sole all-blacks, or even from the all-blacks of even degree.

Gain 2: In combination with the d < r exchanger, satellisation, or rather
the dual ‘co-satellisation’, enables one to work entirely within the (s,d)-
filtration, and thus to overcome the ‘curse of retro-action’.

Gain 3: Satellisation extends ‘perinomal’ irreducible analysis (luma®-based)
to the case of bicolours, and it eases ‘arithmetical” irreducible analysis (loma®-
or lama®-based) for both monocolours and bicolours (see §7.4-§7.6).

7 Multizeta algebra: decomposing the mono-
colours into irreducibles.

In this brief section, we return to the monocolours. Since the independence
theorem for length-1 bicolour bialternals has no exact equivalent for mono-
colours, we are led to explore various alternative settings in search of ‘rigid-
ity’, so as to ensure the uniqueness of decomposition.
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We shall compare four main settings:

i) Z/pZ-supported bialternals,

ii) Z-supported bialternals,

iii) polynomial-valued bialternals.
iv) perinomal bialternals,

We shall then try to show how deeply the four situations differ in regard
to ‘rigidity’ by comparing the strikingly different forms which the ari-oddari-
conversion formulae'% assume in each case.

Lastly (— and briefly, because this doesn’t fall within the purview of this
investigation and will be treated at length in a follow-up paper —), we shall
sketch the two main strategies for decomposing the monocolours into remark-
able (‘canonical’) systems of irreducibles, and examine in some detail how

this works out up to length r = 4.

(
(
(
(

7.1 Polynomial bialternals.

This subsection is purely for perspective and contains no new information.
(i) Tt gives, subject (for r = 4) to the Broadhurst-Kreimer conjectures, the
dimensions dim, 4 of the polynomial bialternals (for monocolours).

(ii) It gives, subject to a further classical conjecture saying that all bialternals
are semi-freely''” generated by the so-called ekmag, (length-1) and carmag,
(length-4), the dimensions dimelem, 4 of the ‘elementary’ bialternals (gener-
ated by the ekma3,), and the complementary dimensions of the ‘exceptional’
bialternals dimexcep, q := dim, 4 — dimelem, 4.

(iii) For comparison, it also gives the dimensions dimfree, 4 of all alternals
freely genrated under the lu-bracket by the ekma3, (1 < d), or again the
dimensions of all bicolour bialternals generated by the length-1 bicolour gen-
erators (leaving out the one of degree 0).

109] e. the formulae for mutual conversion of the length-2 bialternals generated, in each

setting, by the bracket ari and the pseudo-bracket oddarsi.
110j e, without other relations between the ekmaj ; than the well-known relations in
length 2, and all those generated by them.
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In each case the dimensions are given via generating series.!!!

dimfree; (t)
dimfrees(t)
dimfrees(t)
dimfreey(t)
dimfrees(t)

dimfreeg(t)

dimy () =
dimy(t) =
dims(t) =
dimy(t) =
dims(t) =

dimg(t) :=

(1=
(12 (1 -4
T
B th
(122 (1 —t4)2
3 t17 (1 +t°)
T APt (1)
Y1+ 12+ 211 + 245 4+ 3¢5 + 2412 + t19)
(1= 2)2 (1 — 92 (1 5) (1 - £12)
t2
(1—-1¢)
tﬁ

(1—2) (1—19)
(1 + 2 —th)
(1—2) (1 — 4 (1 —15)
(1 + 2" + 10 4+ 8 + 2410 4 14 — ¢16)
(1= ) (1—15) (1 —15) (1 — 172)
HO(1+262 + 3¢ + 310+ 2¢18)
(1—24)2 (1 —10)2 (1 —¢19)
21+ 282 + 3¢ + -+ 283 — 32 + 34

(I1—=22) (1 —t4) (1 —6) (1 —¢8) (1 —¢t12) (1 — t18)

WiThus dim,.(t) = > dim, 4t ete.
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t2

dimeleml(t) = m

. 0
dimelemy(t) = =@ (1=

, (1 — %+t
dimelems(t) = =01

: 01+ 2 + 2t + 10 + 2¢8 + 10 — ¢16)
dimelemy(t) = =0 1= (1=

_ (14202 4t 10— 215 — "2 — M 4 1'9)
dimelem;(t) = =3 (=2 (1= o) (1= )

t14 1 2t2 4t4 "'—t28—t30—t32

dimelemg(t) = (1426 +4¢ + )

(1—12) (1— %) (1 —15) (1 — £5) (1 — £12) (1 — ¢15)

dimexcep,(t) = 0 for i=1,2,3

. ts
dimexcep,(t) = (1— %) (1 — ¢9)
| 410
dimexceps (t) 1 — ) (1) (11
121 _ 44 _ 946 L 948
dimexcepg (1) i {+2¢)

(=2 (1= ) (1— oy
The exact numerators in dimg(t) and dimelemg(t) are respectively
t12 (142824314 +416 4684610461247 #1444 416 15418 44420424224 2424 132 1434)
1 (122 + 4t 4510+ T B+ T 04711246 11446 410 +5 118 4342042422 1424 426 428 _430_432)
£10
(1 —1t4)(1—19)
Lastly, let us recall this central fact: to each missing (elementary) bialternal

of depth 2 there corresponds a supernumerary (non-elementary) bialternal of
depth 4, with an explicit formula*'? giving the latter in terms of the former.t'3

dimfree, (t) — dimy(t) = #* dimexcep, (t) =

(532)

7.2 Discrete-periodical bialternals.

We have a somewhat similar situation on Z/p.Z. There, the length-1 bialter-
nals eda,:

(533)

GH 1 4f uy==4n modp
eda,' = _
0 otherwise

"2hased on adari(pal®) and therefore exclusive to the ARI/GARI setting.
13See [E5],§17, (106)-(108) or [E6], §7.3 and §7.9.
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are not free under ari, and do not generate all bialternals. As in the polyno-
mial case, there are ‘missing bialternals’ in depth 2 and ‘exceptional’ bialter-
nals in depth 4. Here, however, there is no known procedure for generating
the exceptional, depth-4 bialternals from the missing, depth-2 bialternals.
Besides, when counting the dependence relations between the ari-brackets
of the eda; , one should rule out two semi-trivial instances, involving:
(i) elements of type edag or ¥, eda,,, which belong to the centre of ARI
(ii) for non-prime values of p, relations induced by ‘earlier’ relations in Z/q Z,
with ¢|p.
The following generating series reldiscs(t) resp. reldiscy(t) enumerates
the independent relations involving the all the generators eda,, with n in the
interval [1,.., [5]] resp. [1,..,[5] —1].

: t

reldiscy(t) = IO (534)
. * L t8

reldiscy (t) = A= @21 (535)

The first exceptional bialternal of depth 4 appears for p = 5. It is necessarily
exceptional since for p = 5 there exist no depth-2 bialternals.

Remark: There is a distinct notion of discrete periodic bialternals, namely
with indices u;/v; in Z/pZ and with bimoulds also taking their values in Z/pZ.
The bialternals there are strictly more numerous than when the bimoulds take
the values in Q (or, what amounts to the same, R or C.) but they are all
obtainable by restricting on Z/pZ the polynomial bialternals (see preceding
section).

For p prime, though, there is no difference. Thus, in either case, for p = 2
or 3, there are no depth-4 bialternals. For p = 5, there is only one depth-4
bialternal and it is of the exceptional type. For p = 7, there are three regular
and three exceptional bialternals. Etc.

7.3 General discrete bialternals.

Let us now move from Z/pZ-supported to Z-supported bialternals.

Finitely-supported bialternals.

Here, the picture changes. The suitably redefined elementary eda,,

(536)

eday,! ‘
0 otherwise

) {1 if up=+n
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are ari-, even preari-independent provided we restrict ourselves to finite com-
binations (537).

n; >0
S = 2 Mot pr(;ari(eda;“ ...,eda; ) (537)

ni+..+n,.<Const

Proof: Let us show that S; = 0 implies ¢™ = 0. Assume the opposite and
set 1, = supyo|n|. Then let n be a particular sequence of length 7 with
|n| = n,. For any j in [1,r], any factorisation n = (n/,n;,n”), and w of the
form

w = (u) with uw = (n',—n,,n")
v

the identity holds

"

SU=(-1y7 Y (538)
n”esha(n’,n")
with n” denoting n” in reverse order. For j = 1 this reduces to
SY = (—1) I ith w = (1, Ny .., Ny M) (539)

implying S? #+ 0. Contradiction. [].

Remark: The above independence statement no longer holds if we replace
the di-atomic eda, by the mono-atomic da; defined as in (536) but with
“u; =n” in place of “u; = +n”. Indeed, take the ari < oddar: conversion
formulae (565) or (566) infra and re-write them in terms of the atoms da,,.
They yield non-trivial finite sums S*® = me Cnymy 0ri(day, , day, ) with some

non-vanishing coefficients ¢,, but an identically vanishing S*®. The same would
apply with preari in place of ari.

Bialternals with unbounded support.

The examples of the preceding section (with w; € Z/p.Z) immediately yield,
for any depth r > 2, sums of type 5* = >, 7 Cny,.n, ari(day,, ..., day, )
with infinitely many non-zero coefficients ¢, »,, p-periodical in each n;,

but with S* = 0.

Bialternals with unbounded support but decreasing at infinity.

If we impose a sufficient rate of decrease on the coefficients ¢,, as n in-
creases'!'* and corresponding bounds on |S*| as w increases, we recover the
unicity of decomposition of Z"-supported bialternals as multibrackets of ele-

L]
mentary generators edan]_.

4Bounds of type |c,| < Const.|n|~! are more than enough.
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7.4 Perinomal bialternals.
Standard and symbolic expansions for perinomals.

Perinomal bimoulds are meromorphic functions of either w or v, but with a
very peculiar pole structure: their poles lie over Z" and are of eupolar type,
i.e. they admit standard expansions of the form

1§k§f€r UL —M] ey Uy —Mp MY ey mp Py— (QT)'
S(Zi ’Z:) o Z sB( v1=n] e vp—ng )C( Ny ey npe ) Ry 1= TorD1 1) (540)
- rk rk
cr . = constants

Here, B denotes a polar flexion unit, necessarily of the form:

a,feC

" (541
usually P 1’ = P(uy) or P(vq)

and {¥B; ;1 < k < k,} denotes the standard basis of the length-r component
Flez,.(B3) of the monogenous flexion algebra generated by .

The standard expansions (540), with their infinite sums, are rather un-
wieldy, especially when it comes to performing flexion operation on them. So
we often replace them by the information-equivalent symbolic forms (542),
which carry only a finite number of summands:

1<k<k, o

5'( gi ,,,,, o) Z ‘Brj; ,,,,, T 7«3; ,,,,, Oy (542)

The change from standard to symbolic (‘encoding’) has the advantage of

commuting with all flexion operations''® and of being reversible (‘decoding’):
standard : S3, 83 — S5 = ari(S;,53) or preari(S},Ss)
encoding iTidecod’ing B 7encoﬁing l,T decoding B B
symbolic : .S — 53 =ari(S},S5) or preari(S7,Ss)

Symbolic expansions for the perinomal bialternals.

Let us apply the procedure to calculate the length-r perinomal bialternals

Raiy := Z et ) a?i(epaizrsf), . ,epaizrsr)) (543)

WSy /mu, swap, ari/gari, arit/garit, preari etc. It also commutes with the full set of
flexion unit identities. All these, in turn, derive from the basic (characteristic) identity:

Ul

DR = R 4 p B,
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generated by the elementary bialternals
w1 ulfml) (u1+m1)

epai ity 1=+ — gl (544)
ni

Setting

T yeens mr) €1M] ,..ny ermr)

e ) D o=en. er%gém o (545)

eie{J_rl}
we find the symbolic, easily decodable expansions Raif = 2B €

L ug L Gyh)
(r=1) ‘/]31,11 =‘J3(“1) G o=

)

up , ug w “ my , my my , my mi2, my
;Uf ,vz) _ q3( 32’2);43(1)1:12) : c;”il ) nz) — sz 7n2) + C; ng v”1:2)

(7”22) (hl’uz) (“1,2) (42 (;ﬂl’m2) (12 (M2 M2
vy, v/ : 2 ) . ny,mg’/ _ \mp,mg’/ Vngmoy
2,2 =P o P’ <y =G Cy

For r = 3, the standard basis of Flexs has got five elements:

(sr2eus) (o)

3’1;11 , vg , V3 — ;B( vg fp(:jz;g, )fp(”1112)

;1521 Lvglvg) _ p G g lend)
(r—=3) éifgi Lvs ) _ p e ok (e,

Gyt tog) _ (M2 q(128)q(12)
3”41 URCIR I m v1 7,13 v3:1 7,13 v2:3
(zu.l,’u.2,’u.3) u2,3

| 3:}51 »v2 5 v ;B(uvl );’B( V9.1 )m(ﬂ232)

and the corresponding coefficients &35, have got six summands each:

(mlvm21m3) (ml?m21m3) m1 o, M2.3 m2) (m1,27 m1 vm3)
Q: ny , n2, N3 =c ny ., n2, N3 _|_ Is ny ., m3 ,Nn23 + I nz ,n1:2, N3
3,1 = C3 3 3
(™12 M3 ™) (M1,2,3 5 ™15 M2 ) (M1,2,3 5 ™1,25 ™1 )
ng , n3 , ni.2 n ni.3 , ng. n no9.3 , N1,
+ 03 3 + 63 3 > 3 3 + CS 3 > 3 1:2
(M1 ™2, M3 (M1 ™2, M3 (M1 m23 5, M2 (M2 M2 My
Q:gnl > 2, N3 =c ny , n2 , N3 + IS ny ., M3 ,Nn2:3 ny 5, n2:1, N3
2 - 3 3
b
(m1,2 , m3, mg ) (7n172’3 , m1 , mg ) (7n17273 y M2, M2 )
—c ny , M3, N2l + I n3 > M1:3 5> M2:3 n3 > M1:3 5 M2:1
3 3 3
(™10 m2 M3 (™1 m2 M3 (M1,20 ™My ™12, Mg, My
€ ny , n2 , N3 =c nyp o, M2, N3 + c n2 ,n1:2, N3 + I n2 5 M3 5 N1:2
3,3 3 3 3
(M1 ™23, M3y (M12,3 ™1 > M3 (M1,2,3 > M3 5 M
—c ny ., m2 ,MN3:2° c n2 > Mn1:2,M3:27 c n2 > M3:2, N2
3 3 3
my ., m2, m3 my ., ma, m3 myl ., Mm23, M2 m12, mz ,m3
€( ny o, N2, N3 ) — C( ny o, M2, N3 ) + C ny ., m3 n2:3) ( n1 > Mn2:1, N3 )
3.4 3 3
(M2, M3, ma ) (M1,2,3 5 M3 > M2 ) (M1,2,3 5 M2,3 5 M2 )
—c ny o, M3, N2 +c my o 5> M3, M2:17 c ny 5 M3:1 5> M2:3
3 3 3
(ml7m27m3) (ml*m27m3) (ml,Z’ m2 7m3) (m1,27m3* m2)
Q:3Tél > M2, N3 — 03'"‘1 > M2, N3 _ CS n1 o, M2:1, N3 ny M3, N21
I
(M1 m2,3, m3 ) (M1,2,35 ™3 5 M2 ) (M1,2,3 5 M2,3 5 ™3 )

n n2 n3:2 ni n3:1 > "2:1 ni n2:1 > "3:2
_ C3 s ) + 63 s B + C3 s )
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Perinomal rigidity.

In practice, the perinomal bialternals that matter most depend only on one
set of variables (u or v):

Ra;y = Z (ma,....m arl(epa ...,epay, ) (546)
m;EN*

Ri? = Z A rane arl(epl ;.. €piy ) (547)
n;EN*

They correspond to the one-variable flexion units ‘,B(Zi) = P(uy) or P(vy) and
are generated by the elementary epa;, or epiy:
epam: = P(u; —my)— P(uy +my) (548)

ul

epi(ﬁf) = P(v; —ny) — P(vr + ny) (549)

One obtains their symbolic (and standard) expansions by specialising the
earlier formulae for Rai®, which means replacing ¢! by ca® or ci*:

Camh...,mr - Sgn(ml)...sgn(mr) %\nm1|,...,|mr| (mz EZ*)
cimemr o~ sn(ny)..sgn(ny) ’Ylnll,..-7|nr-| (n; € Z%)

and ignoring in €, the irrelevant sequence of indices (either n or m).

The main fact about the expansions (546) or (547) is their uniqueness:
(Rap = 0) = (o =0} (R =0} & e =0p (550)

There even exists an effective algorithm for deducing the 77 from the €,
These facts, which we have barely sketched here, are central to the peri-
nomal decomposition of multizetas into irreducibles.

7.5 Comparing various flexion settings.
Two operations producing depth-2 bialternality: ari and oddar: .

By suitably modifying the signs in front of the six summands of ari(A®, B*)
for length-1 bimoulds A®, B*, we can define a pseudo-bracket''® oddari that

16 pseudo because oddari cannot be extended to a genuine Lie bracket for factors A®, B*
of arbitrary lengths.
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turns each pair (A*, B*) of odd!''", length-1 bimoulds into a length-2 bialter-
nal — exactly as ari does with pairs of even bimoulds.

ari : ARI?VGH X ARI?VGI’I N ARI;;I/QI
oddari : ARISY x ARIJM — ARI;*I/a*l

Here are the definitions, with C* := ari(A*, B*) and D*® := oddari(A*, B*):

) LA R +A<“12 B At gl
Cloiws) = (1) 4(2) (M (v 2) (551)

~BODAGD — B 4G 4 U GE)

(m12) +AGD B — AU BLiL) 1 A L)
D v1,v2 = (ul) ( (u12 ( uy ) u12) (552)

~BUDAGD 1 BN A — g 4G5

Due to the rigidity statements of the preceding sections, there must exist,
in each setting, precise formulae for converting oddari-brackets into sums of
ari-brackets, and vice versa. Even when there is no rigidity and therefore
no uniqueness, as with polynomial-valued bialternals, there exist privileged
formulae. In any case, the conversion formulae have the merit of bringing
the specificity of each setting into sharp relief. So let us review them one by
one.

The ari-oddari conversion for polynomial-valued bialternals.

Consider the elementary bialternals

ul)

esa, ' = uf! (for dy even > 2) (553)
uy
osag ! = ul! (for 61 odd = 1) (554)
cesay 4, = ari(esay ,esay ) (dy,dy even) (555)
oosag, 5, = oddari(osag ,osas,) (01,02 odd) (556)

and let xor (resp. 7ok, Bar) be the integers (resp. rationals) defined by:

2k
i t2 = o t (557)

t h(t/2)
Z o 2% — / Z Oy 12 (558)
o<k o<k

7] e. with AW, B¥* odd functions of wy.

tanh tanh(¢/2)

156



Proposition 7.1 (First ari-oddari conversion law.)

1 01+02=d1+d2 1
. L .
5 008858 = Z Tivdi—di 7y ©O53G, g, (559)
L 1+461<dy 1
1 di+da=01+02 1
. L .
77 €e8Ag, 4, 1= Z 04, -1-5, 51 00885, 5, (560)
1 d1<1+61 r

Remarkably, the above identities are valid for all pairs (d1, d2) (resp. (di,ds)),
not just those that verify ”251 < Xoy+6, (resp. & < Xg,+4,). Simply, under
these restrictions, the expansions on the right-hand sides of (559) and (560)

become unique.!!®

The ari-oddari conversion for discrete bialternals.

Let 6 be the discrete dirac (§(0) := 1,d(n) := 0 if n £ 0) and consider the
elementary bialternals

Gh)

edan = &(u; —ny)+0(ur +ny) (or sinh(nju)) (561)
oda(n”ll) = O(u; —nq) —0(ug +mnq) (or cosh(niuy)) (562)
eeda, .. 1= ari(eda, ,eda; ), oodaj . :=oddari(oda; ,oda; ) (563)

together with the operator f§:

0 if np = ne
(fM)nh?w = Mn17n2_n1 Zf Nng >Ny (564)
MTH*HQ,TLQ Zf ny > Na

In view of the statements in §7.3, the conversion law is rigidly determined:

Proposition 7.2 (Second ari-oddari conversion law.)

ooda, . = eeda; . +2 Z (fkeedau);h712 (565)
1<k

eeda; , = ooda; , +2 Z (—1)"”()"“ooda);w2 (566)
1<k

The two sums ), are clearly finite.

18 When we don’t have 12‘51 < X, +96, (resp. % < Xdy +ds ), the conversion formula is not

rigidly determined, but the simplest expansions are still given by (559) (resp. (560)).
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The ari-oddar: conversion for perinomal bialternals.

Consider now the polar-perinomal bialternals

epa(n”f) = P(uy—ny) — P(uy+ny) (567)
uy
opa(n”f) = P(uy—ny) + P(us+ny) (568)
eepa$, ,, := ari(epa;, ,epa; ) , oopaj, . :=oddari(opa; ,opa;,)  (569)

Here again, the conversion formulae are rigidly determined, but in place of
the ‘contracting’ f, they involve a ‘dilating’ operator g:

(gM)m,nz = Mm,nz-i-m + Mn1+n2,n2 (570)

Proposition 7.3 (Third ari-oddari conversion law) .

oopay, .. = —eepa, , — 2 Z (gk eepa);hn2 (571)
1<k
1<k

The two sums ), are always infinite.

Remark 1: The conversion formulae for the swappees

(epay, opas,) == (epiy, opis)

retain their form, but with a sign change in the structure constants.

Remark 2: The change from ¢ to exp also involves a sign change in the
structure constants, because it amounts to a Fourier transform, which itself
amounts to a swap transform. This explains why in (561)-(562) eda, may
be replaced by sinh(niu;) and oda,, may be replaced by cosh(niu,), despite
opposite parities.

7.6 ‘Arithmetical’ vs ‘perinomal’ generators.

According to the desingularisation scheme of §5.4-§5.5, any given system of
generators {lomaj,} of ARI il 16ads to a systems {p*r°r} of multizeta irre-
ducibles. In the case of monocolours, the best way to overcome the nuisance
of ‘retro-action’ is to resort to the well-defined system of perinomal genera-

tors {luma"‘s}, whose characteristic property is that they sum to a bimould
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luma® = 3} lumaj,, each component of which is meromorphic in w, with peri-
nomal multi-poles over the multi-integers. We can then take full advantage
of the strong rigidity properties of these functions, of which we have just
caught a glimpse in §7.4.

But two parallel systems of generators, {lamaj,} and {lomaj,}, also com-
mend themselves to our attention on account of their arithmetical simplicity:
they possess only small prime factors on their denominators. Of the two,
{lomaj,} is (slightly) arithmetically less simple, but it carries a far lesser
number of distinct coefficients, as a result of sharing the basic symmetry
properties''? of {lumaj}.

We shall now describe in great detail all three systems up to length 4
inclusively'?” — not just for their own sake, but also to derive the three parallel
systems of exceptional bialternals of lentgth 4 (the so-called cgrma).'?!

The alternative aritmetical/perinomal.
The loma® denerators up to length 4.
Following the general scheme of §3.5 and setting

slang,, . := adari(pal®)slank,, ., (573)

we can express the first four components of the generic element loma® of
ARI®V with the help of just two singulands S¢$ and 591 5. We find:

lgma™! = (slang,.S¢1)" = Sei"
lgma““? = (slang;.Sg;)"*""?
! {sgs;“ P(us) — S6% P(us) — So Pluy)
2 | Soi? P(u1z) — Soi™ P(ug) + Se'? P(uy)
lgma“*"“»" = (slang,.S@;)"*""*"* + (slangm.S(Z)1,2)u1’w7u3

H9CF (581) infra.

120We already gave a cursory treatment of these questions in [E6], but it seems to have
been thoroughly misunderstood in some quarters. In any case, the detailed arithmetical
description of the singulands Saj , and So7 5 and their coefficients given towards the end
of this section is new.

121We recall that these cgrma biaternals (which stand in one-to-one correspondence with
the length-2 dependence relations verified by the ekma bialternals) are conjectured to ex-
haust all exceptional length-4 bialternals (and in fact to account for all ‘missing’ bialternal
generators of ARIVal),
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Or explicitly:

lgma®t“24s =

gt %fj(uz) P(ug3) — § P(ug) P(u123) — 75 P(uas) P(us)
— 5 P(u12) P(u123) + 1—12 P(us3) P(u123)

LSyt z ]j(um) P(us) — 1 P(u1) P(us) + 15 P(u1) P(us3)
— & P(u12) Puiag) + 15 P(ur) Pugs)

e 3 P(ug) P(uiz) — § P(ug) P(uizs) + g P(ur) P(u1a3)

—5 P(ur) Pu1z) — 15 P(ur) Plus)

wios é P(uy) P(uy2) + %P(u%) P(u3) — iP(ul) P(us)
oo { J) Pluss) — b Pus) Plus)

12 (
s ) 1 Plur) Plug) — 3 P(ug) P(us)
S 112
O L Puy) Plusas) — L P(ur) Pluras)
w23 }LP(ul) P(Ug) — iP(Ul)P Ug)
59 +1 P(us) P(uras) — 1 P(us) Plusas)

—35 801" (P(us) + P(ugs)) + 5 501%™ (P(ugs) + P(u123))
+3 So1%" (P(U12) + Pluizs)) — 580%™ (P(u1) + P( um))
S (P + P LS (P P}

1 S@uz "2 (P(ug) + Pluisg)) — 5 S@W e (P(ul) + P(u123))

sy (o) - Pl LSoi () + Pluz)

sl
(P(us

1 S(Z)u123 , U3

Ulz)) + 3 S@ul 128 (P<U3) - P(“12))
P(ugs)) + 5 S01%"" (P(uy) — P(ugs))
+ S¢u123 ,u12 (P(Ul) o P( )) +1 S@u123 ,u23 ( (UB) ( ))

+3 501%™ (P(ug) — Pluiz) + P(“23 P(uzs))
11 S¢u3 1 ( (us) + (u12) — P(uo3) — U123))
+1ggte (P(u) u12) + P(u3) + P(us))

1 L gguzuizs (p uy) ug) — P(ug2) uzs))

The length-4 expression automatically follows:122

lpma™ > = (slang,.Sg; )" "> > 4 (slang, .50 p)" """ (577)

U1,u2,u3,uq

However, we shall refrain here from expanding lgma into S¢°*-summands

as the sum would run into hundreds of terms.

122with operators slank,, . ,. asin §5.5.
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For any input Sg¢}* even in u;, the second component lgma""** as defined
by the above formula is automatically polynomial in uy,us. It is also an
easy matter to check that the third component lgma“" " is polynomial
in uy, ug, uz if and only if the singuland Sg], verifies the desingularisation
criterion:

FSOl" o+ Salys - Soly" - Sapy
+& (P(UQ) Sg"12 — P(u12) S¢"* — P(u2) S¢"* + P(u12) SQUl)

(578)

Note that despite the presence of poles P(.), the second line in (578) is
automatically polynomial in wuy,us. Of course, when fulfilled, the desingu-
larisation criterion (578) ensures the polynomialness not just of lgma"* 2"
but of lgma“"*"“>"* as well. To make the components of length 5 and 6
polynomial, five higher-order singulands'?® must be added, each subject to
their own desingularisation criteria. And so on, for each pair (27/,27" + 1).

The first arithmetical generators lamaj,/lami],.

These particular generators correspond to ‘lacunary’ singulands Saj 5.

Proposition 7.4 (Best aritmetical singuland Saj,) .

For any odd weight s =5 there exists a unique singuland of the form1%

uL,U2 28 ,,8—2—-26
Say ) = Z Sagss—2-25 UT° Us (579)

lé(sg[s;l]_[s-é—l]

that verifies the desingularisation criterion (578). The largest prime factor
pa, on the denominators of the coefficients sa, 4 is always pa, < 55_1

Proof: 1t relies on the formulae:

22m (4k+1)! (6k+1)(2k+1)

SAak—2m2k+2m—1 = laim (2k+2m+1)1(2k)!(2m+2)!  (4k—2m)(4k—2m—1) paLm(k)
sa —la 22m (4k+3)! 1 a (k’)
dk—2m+2,2k+2m—1 = 183,m QT 2m1 1)1(2k+ 1)1(2m 1 2)! (Ak—2m+ 2) (k—2m+3) Pa3,m

i 22m (4k+3)! (6k+5)(k+1)
SA4k—2m+2,2k+2m+1 = 185, m GrTam 312k 1)@ 2 @h—2m+2)(Th—2mT3) pas (k)

(i) with simple rational coefficients la; ,,
(ii) with polynomials pa () in Z[z]'*

(iii) of degrees deg(pa,,,) = 4m — 1 ,deg(pay,,) = 4m, deg(pas,,) = 4m
(iv) and determined inductively on m by difference equations.

. L] L] L] L] L]
1230 wit: S¢1,4,5®2,375¢1,1,375¢1,2,275¢1,1,1,2~
124the case s = 3 does not arise, since lgma;}"“*"* = 0.

I3
125 1

except for the term pa1,o(k) = 2kt1
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The second arithmetical generators lomaj,/lomi],

These generators correspond to singulands Sof , even more ‘lacunary’ than
the earlier Saj , but they are marginally less simple, arithmetically speaking.
Their main feature, though, is that of sharing the fundamental symmetry of
the perinomal singulands Suj , (see infra), namely:

50“1’“2 50“2’u1 U, Su“l’"2 Su“"”ul Uy (580)

Proposition 7.5 (Second best arithmetical singuland Sof,) .
For any odd weight s = 5 there exists a unique singuland of the form

w2 26 s-5-26 , .28 s-5-206
So; e = Ui U Z 80255226 (ul us + u3® ug ) (581)
1<6<[252]

that verifies the desingularisation criterion (578). The largest prime factor

; : : 25—5
po, on the denominators of the coefficients sop 4 is always po, < =72,

Proof: Similar to the earlier proof for Saj ,, but based on these new formulae:

B 27 (6k+1)!(2k+m)! (k—1)! (2k+1)

802k —2m—2,4k+2m+1 = lOLm Gram DI m)iemTa)  @h—am—T) PO 01,m (k)
B 27 (6k+1)!(2k+m)! (k—1)! 1

SO4k—2m2k+2m+1 = 103m (Ak+2mt DI (dk— 1)1 (k—m+ 1)1(2m+2)l (2k—2m+1) P03, (F)
B 2™ (6k+3)!(2k-+m+1)!(k)! (6k+5)

SO%k—2m 2k+2m+3 = 105.m (@k+2m+3)1(4k+2) (k—m+1)(2m+2)| 2k—2m+1) PO 05.1m (k)

with deg(po, ,,) = 2m — 1 deg(po5 m) =2m +1, deg(pos,,) = 2m + 1 and

the exceptlonal term po, 4(k) = 2k+1

Remark about the arithmetical singulands.

If we were to look for solutions Saj 5, of the desingularisation criterion
(578) similar to Saj 5, in (579), with ¢ running through a support set DaJ 5
of the same cardinality, for instance with Daj 5, = [1 +n, [551] — [££1] + n]
for n small, we would in nearly all cases get a unique solutlon but without
the bonus of small prime numbers in the denominators.

Likewise, if we were to look for solutions Soj o, of the desingularisation
criterion (578) similar to Sof 5 in (581), with the same symmetry constraint
Soy'y s uz = Soy’%f uy and with 0 running through a support set Doj 5, of
the same cardinality, for instance with Doj 5, = [1+n, [=52] +n] for n small,
we would also in nearly all cases get a unique solution, but again without the
bonus of small prime numbers in the denominators.
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The perinomal generators lumaj,/lumij,.

We now move on to a very different class of generators, the lumaj,, whose
characteristic feature (as also that of the underlying singulands) is that of
adding up to meromorphic functions with perinomal poles.

Proposition 7.6 (Perinomal singuland Suj,) .
Both the global meromorphic singuland Suj ,

Sups™ i= Y mPur +m)Pluz +n9) = Y Suyy? (582)

n;EZ* s odd

N L]
and its homogenous components Suj o

1 51+0 =253
U1,U2 261, 202+1
Sujh? = 5 Z SUgg, 20,41 UT ' Uy (583)
1<51752\%
Basy B2sy B2s; B2oy
SU26,,26,+1 = =
with Rl Pt (584)
/6 .__ Bernoulli(24) - Z 6 t25 . let4l
26 - (29)! 0<6 1729 T 21

verify the desingularisation equation (578). They are in fact its unique peri-
nomal solution. They cannot be beaten for explicitness, but the denominators
Bs—s of their coefficients su, , may involve large prime factors. This sets them
sharply apart from the ‘arithmetical’ singulates.

The associated exceptional bialternals.

For any system {l(z)maH's; s = 3,5...}, a combination of type

s;=3

hg® = Z Csy,s, ari(lomaj; lomaj, ) (585)

S1+s2=s

has a length-4 component hgj that is bialternal if and only if its length-2
component hgy (and therefore hgj too) vanish. That condition in turn is
equivalent to:

$;=3
0 = Z Csys, ari(ekmaf, , ekmaj, ) (586)
S1+s2=s
ekma®! := y$™!
with ls = 1 _ (587)
ekma”;"“’ Ti=0 aif r>1
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Proposition 7.7 (Distinguished pre-corma relations) . Let

s+4 s—2 s+4 s—2 s—4

ools) = [+ ] of() = ] - 1+ ] (589)

For any even weight s = 8 there exist o5(s) independent bialternals of weight
s, and for any even weight s = 16 and + 14, there exist exactly o}(s) de-
pendence relations'?S between the bialternals of weight s. Amongst these, we
have an arithmetically privileged system. Indeed, for 1 < k < o*(s), we find

+ari (ekmai1+2ag (8)+k> ekmaﬁs—l—%z (S)+k)

0= i ' (589)
+ 21@@2(3) C1426,5—-1-25 arl(ekma”H%, ekmaHFk%)

with rational coefficients C]f+25,5—1—25 that are arithmetically regular in the
sense that the largest prime factor p on their denominators is always < s—>.

Proof: Tt relies on formulae closely parallel to those mentioned supra for the
singulands Saj ,, Sof, and their coefficients.

*; s = 3,5..} there corre-

Is?

sponds a system {cgrma, ;; 1 <k < 0j(s)} of exceptional bialternals:

The bottom-line is that to any system {lgma

cormay ! = he Lt cormay T =0 if r+4 (590)

+ari (1@maﬁ1+202 (s)+k> lgmaﬁsflfmﬁ (s) +k)

with hej, = (591)

k . . °
+ 21@@2(3) Cl426,5-1-25 arl(lgma”H%, lgmaHs—l—Qé)

(modulo depth 5). In particular, to the three systems {lomajy; ¢ = a/o/u}
there correspond the three systems {cormaf, ,; ¢ = a/o/u}. The first two
(with a or o) are arithmetically simple (no prime factors larger than s — 5 on
the denominators) and the last one is particularly explicit.

Thus, while the elementary length-4 bialternals (i.e. those generated by
the ekmais) do not appear to possess really privileged bases, the conceptually
more complex exceptional bialternals, strangely, do. Moreover, as we shall see
in §6.4, at any given weight s, they are, though independent, yet connected by
a mysterious dependence relation modulo 8%, where 3} denotes the essential
part of the Bernoulli numerators, i.e. these numerators pruned of all their
small prime factors (those less than s).

126Gticklers for exactness would say : o (s) independent dependence relations.
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8 Complements and tables.

8.1 Basic reminders about resurgence, moulds and bi-
moulds.

This brief subsection serves no other purpose than recalling some elementary
definitions and fixing the corresponding notations.

8.1.1. Alien derivations and displays.

Alien derivations are noted A,, (resp. A,) in the multiplicative (resp. convo-
lutive) models. In the multiplicative model, we also have the 0,-commuting
variant A, and the corresponding z-constant pseudovariables Z*:

[0, A,] =0

592
0, Ly =0 (592)

A, :=eFA, {

From these are formed the ‘displays’ dpl($), which automatically extend
relations R involving resurgent functions ¢; and the operations (+, x, o):

dpL(P) = §+ DD Z A, AL (593)
1<r w;
{R(&1,¢2,...) = 0} = {R(dpl(¢1), dpl($2), ... ) = 0} (594)

8.1.2. Basic symmetry types for moulds and bimoulds.

A* alternal < 0 = Dveshaw w47 VW W"
S* symmetral < SY'SY = Y wesha(e! w") O Vw' W'
A* alternel < 0 = Dweshe(w w”) A« Vo', w”
S* symmetrel < SY'SY = Y weshe(w w) S Vo', W'
A* alternil < 0 = D weshi(w w4 Vw', w”
S* symmetril < SwSY = Zweshi(w,7w,,) SY  Vw', w”

(i) sha(w',w") is the set of all shufflings of the sequences w',w'.

(ii) she(w',w") allows order-compatible contractions w; + wj

(iii) shi(w',w") allows order-compatible contractions w; @ wj and to each
such contraction (multilinearly) associates a pair:

/7 " ’ "
- U +u;
L, UpTU 7 J o

SRRV BN G VA , 1
(AC.., ) g )P(U’._v’.’) with P(t) := -
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8.1.3. Basic mould operations.

C* =mu(A*,B*) = A*x B* = C* = > AYB"
C* =ko(A*,B*) = A0 B* « C" = Y. AWlh=hwipy’ pu’

1<s
lu(A®, B®) := mu(A°®, B*) —mu(B*, A*)

The units for mould multiplication resp. composition are 1° resp. Id*:

19=1 ; 1" =04 r£0
[d*=1 ; Id“" =0 if r+1

8.1.4. Basic bimould operations.
Systematic abbreviations: W ;.. = U; + Uj + Up... , Viyj 1= V; — U;
Main unary operations:
{B* =parid'} = (595)
{B* =negA*} — (596)
{B* =antiA®} = {Brwr) = glrw)} (597)
{B' = swapA'} = (598)
{B* =push A*} — {B(Zl ,,,,, o) — AL S0 e L va 0 } (599)

All are involutions, except push, which is idempotent of order r + 1:

push = neg.anti.swap.anti.swap , push™™ =id at depth r

The four basic flexions |,| and |, |.
They are always defined relative to a factorisation of w. Thus, if w = w’.w”

with w’ = (") and w” = (¥ " ") we set:
V1, V2 V3 , V4, Us

w/J _ (ul , Ug ) [w// _ <u1,2,37u47u5)

V1:3 , V2:3 U3 ,V4,Vs

'w'] _ (m ,uQ,3,4,5> [w” _ (U3 , Ug , Us )

V1, U2 V3.2 , V4:2 , Us:2
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The ari/gari structure. The Lie bracket ari, the pre-Lie law preari, and the
mu-derivation arit(A®) are defined by:

w = abc w = abc
N* = arit(B*)M* < N* = Y Meeptl— X' peleplb
ari(A*, B*) := arit(B*®).A® — arit(A*).B* + lu(A*, B®)
preari(A®, B®) := arit(B*).A* + mu(A*, B*)

The associative law gari and mu-automorphisms garit(A*®) are defined by:

w = [ a’bic?
N*=garit(B*)M* < N* = ' MP'Pipet] patiple ple
gari(A®, B®) := mu(garit(B°®).A*, B*) (B

*

S

= invmu B*)

8.2 The operations lu/mu and ari/gari: so different, yet
so close.

Despite the sharp differences — in shape, complexity, sophistication, proper-
ties — between the homely, uninflected operations lu/mu and their inflected
counterparts ari/gari, there is no lack of pathways and correspondences be-
tween the two domains. Let us mention but four such pathways.

8.2.1. Origin of the flexion structure in mould algebra.

Moulds of the form M?% = A®*x Id*x A} with A®*x A} =1° are stable under
(mould) composition, and the equivalence holds:

A B C

v-constant

(ML = Mo M3y} = {C° = gari(4®,B*)} { (600)

Interpretation: the left identity in (600) involves u-indexed moulds A*, B*,
C™ ; the right identity re-uses those same moulds, but viewed as bimoulds
AG) BG), %) constant in v.

Strictly speaking, (600) derives gari only for u-dependent bimoulds, but
once a flexion operation is defined on the w;’s, it uniquely extends to the v;’s,
and vice versa. Besides, the gari operation for v-dependent bimoulds can
also be derived in a similar way, based on the lower mould composition o

introduced in (299).

A, B, C*

u-constant

ML =M o M3y} = {C° =gari(4°,B%)} { (601)
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By the way, the quickest way to check the associativity of gari is actually
by using the mould-to-bimould correspondence of formulae (600)-(601).

The ari-bracket, needless to say, is capable of a similar derivation, from
purely uninflected mould operations.

8.2.2. scram/viscram as bridges between non-inflected and inflected.

As already noted in §1, scram and viscram turn lu/mu into ari/gari when
acting on alternals/symmetrals. In the case of viscram, one must also assume
the neg-invariance '*7 of the arguments A°®, B*, R*, S°*.

scram.lu(A®, B*) = ari(scram.A®, scram.B*) (602)
scram.mu(R*, S*) = gari(scram.R®, scram.S*®) (603)
viscram . lu(A®, B*) = ari(viscram.A®, viscram.B®) (604)
viscram . mu(R*,S*) = gari(viscram.R®, viscram.S*) (605)

8.2.3. Internal flexion substructures where ari ~ lu and gari ~ mu.

A bimould A* is said to be internal if, for all r, it verifies two dual properties:

{ug + ... u, £ 0} = {A(zi ) = (} (606)

{v; — v = const; Vi} = {A(zi ) Z A('“'l """ “'T)} (607)

Internals constitute an ideal ARI; e of ARI resp. a normal subgroup
GARI; e of GARI. The elements of the corresponding quotients are re-
ferred to as externals:

ARLtorn = ARI/ARIinern (608)
GARLygern = GARI/GARILpem (609)

The crux, however, at least from this section’s viewpoint, is this: when
restricted to internals, the ari bracket reduces (up to order) to the lu bracket,
and the gari product reduces (again up to order) to the mu product:

ari(A*, B*) = lu(B*, A*) , VA®, B* € ARLintern (610)
gari(A®, B*) = mu(B*, A®) , VA* B* € GARLjytern (611)
The identity (611) is particularly striking, as it connects the gari-product,

which is linear in its first argument but highly non-linear in the second, to
the bilinear mu-product.

127j e. invariance under the change w — —w.
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8.2.4. Another flexion substructure where ari ~ lu and gari ~ mu

Let l@ﬁl be the weight-1 generator of AR[%%;
uy 0 . —
loy 7 =0 df Tl l@ﬁfl) = { i a

1 if € := (612)

o= O

The so-called ‘colour-swicth’ ideal ARI®/E .= ari(loj;, ARIY 1) generated

bico* bico

by l@ﬁl is characterised by any of the three following properties:

(1) sa.A* is invariant under the switch ¢ < & — ¢ VA®* € ART/%

2 bico*
(ZZ) SCI,;.A. =0 VA® e AR]Z\ZZJ*
(ZZZ) SCL;.CLTZ.(A.’B.) = lu(saZA.7saZB’) VAO’B. c AR[Z\,%ZJ*

The last identity is yet another instance of ari reducing to lu.

8.3 The non-vanishing determinants behind the inde-
pendence of the bicolour generators.

Here are the first determinants det; ,(x), det; 4(x), det} 4(v) related to the
expansions (375) and the independence theorem for bicolour generators. To
simplify, we give their expression in terms of ¢ := 22 and after factorisation.
The properties mentioned at the end of §5.8, Remark 3 (regarding the sys-
tematic occurence of Bernoulli numbers when = = 2 i.e. t = 4) are easy to
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check on these polynomials.

detd ¢ 1—t) (1+5t+312)

(
det ¢ 1—t) (1+14 t+141%4+121¢3)

= (1-1)
= (1-1)
det |, = (1—t) (1+28¢+681>—186¢—242¢*—335°—38810-132¢"—-78¢%)
= (1-1)
= (1-1)

detd |, 1—t) (1—2) (1+44 t+113 12 —1540 3 —1473 ¢4 —2224 152266 162404 t7 —682 t3—816 ¢°)
det¥ 4 1—¢)3 (1467 t+406 t2—4949 t3—26348 t* —63628 1> — 172470 t5—195653 t' —126185 8

—46598 t°—10837t104+148108 t11 +293092 ¢12 + 338388 13 +272508 t14 + 198298 15
+177792 16 +58188 t17+21996 £18)

det 1o = (1) (1—t?) (14+91¢+67512—14627 3101013 t*—280923 t°—1435701 t° —2666839 t"
—2584726 18 —2527926 t°—2320040 10 —3326922 t11 — 1668990 ¢12 —411564 '3 +1053724 ¢ 14
+971728¢15+979812¢16+721968 t17+1802856 ¢18+337212 t1°+234072 20)

det} o = (1—t)3 (1—t3) (1+121¢+1359 % —32180 3 —399947 t* —1835023 t° —11185716 ¢ —52269321 ¢”
—137804883 t8 244724288 t°—120412367 t10—385583935 t11 —1034912118 t12—651619915 ¢13
—441792167 14569706696 t1° 571598493 +16 —140742595 t17— 172000763 t '8 + 435966682 ¢ 1°
+991769202 ¢20 4785612744 t21 4620751262 +22+813401872 t23 +877320078 t24 +580476302 ¢2°

+487631332 26 +111355464 27 +232438932 28 459619348 ¢2° +24120828 +30)

detf g = (1-t) (1+9t+232+713)
detd o = (1=8)2 (145 ¢+t —15¢3—11¢4) (1427 t+196 1% +194 ¢34+ 1421¢%)
det¥ |, = (1—t)3 (14+72¢+1836t2+19479 3+ 75638 t*+58044 5 +421323 0+2091202 t7 —2919364 t°

—12020401 t°—23718680 ¢1°—29632044 t11 —27041474 t12—18620272 t13 —6653096 t 14 —2356984 1)

detf |, = (1—t) (14+13t+5912+99 343 ¢*)

det} , = (1=t)2 (145¢+312) (14+41—212—13¢%) (1440 ¢+547 124274213 +2664 t* +1650 °)

det} , = (1—-t)° (14+5¢—t2—25¢3—13¢*+35¢5+271%) (14133 ¢47564 t2+240867 3 +4727566 ¢* +59397187 t°
+481146696 t0 42469970604 t7+7500150554 ¢3+ 7969894970 t —44183297627 ¢1°0 —248885402276 1
—796111962965 t12—4021650070796 13 —11629580824379 14 +1023971816277 t1°+49784572223508 ¢16
+139955874257862 17 +228311239164350 18 +271152533003464 t19+-246093900307300 ¢2°

+165974984510692 ¢3! +84693433549488 22 +-26943862007448 23 +6658284781512 ¢24)

8.4 Unexpected arithmetical interdependence of the
length-4 bialternals.

Let By, be the n'® Bernoulli number, and let 8% be the essential part of its
numerator, that is to say, numer(Bg,) deprived of its small prime factors p
(of all p < 2n — 5 to be precise).
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The exceptional bialernals, or cérma® bialternals, have length 4, and three
distinguished systems {carmaj, ;}, {corma}_,}, {curmaj,,} have been con-
structed here at the end of §7.7. The first such bialternal occurs at weight
s = 12 and in that particular instance all three constructions coincide:

Carmajyy, = COrMajyy = CUrmajyy

This is but natural, since they could only differ by natural bialternals, which
do not yet exist at weight s = 12. But the surprise is that all the (rational)
coefficients of this unique cgrmay,,, have numerators divisible by i, =
691, although nothing in the way they are constructed would lead one to
expect such improbable divisibility.!?® This makes one wonder whether the
phenomenon, in some form or other, extends to higher weights. Well, the
empirical data suggest, overwhelmingly, that it does: for all weights s up
to s = 60, we found that, given any basis {e? } of natural, length-4,

51,52,53,54
weight-s bialternals,'?® there exist unique relations™® of the form:

. . o %
Z ba j, carmay, ;, + Z Cls 50,55,51 Coyosps5.0s = 0 mod 3 (613)

k<o¥(s) 2.8i=$
[ ) L] *
Z bos k cormayj, , + Z T L. mod 3 (614)
k<o¥(s) disi=s
. . . *
Z bu,  curmal ;. + 2 CUs, sg,55,50 Coyap.3,85 = 0 mod [ (615)
k<o¥(s) > si=s

Remark 1: The identities (613) and (614) make full sense, since by con-
struction all the denominators in carmayj . or cormap , are invertible mod
B¥. But the third identity (615) also makes sense when the denominators
» .80 < s — 2 of the lumaj entering the construction of curmap ,, are co-
prime with §,. That appears to be almost always the case: the large prime
factors of a given Bernoulli number do not seem to recur in the next consec-
utive numbers.
Remark 2: Clearly, the existence (resp. uniqueness) of the relation (613) is
equivalent to the existence (resp. uniqueness) of (614) — and also to that of
(615), modulo the caveat of Remark 1. But we prefer to consider all three
systems to help identify hidden patterns, also for guidance in the search for a

128This applies even to curmag,, o the lurmajs, lurmajs, lurmaj; and lurmafy that enter
its construction do involve Bernoulli numbers, but smaller ones.

Phwith €3, o, . s, i=0ari (ekmaly, , ekmal,,, ekmaj,, , ekmaj,,) and bracketting from right
to left. We must of course pick the basis elements e that themselves verify no
trivial dependence relations mod 8¥, but that poses no difficulty.

$1,82,83,54
B0unique, of course, up to multiplication by any invertible factor modulo ;.
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series of ‘remarkable’ and exact (as opposed to reduced mod (¥) bialternals
standind ‘behind’ these relations. But so far no such pattern and no such
back-stage bialternals have emerged.

Remark 3: All the numerical data show that (with the trivial exception
of s = 12), the identities (613),(614),(615) always involve a non-zero second
sum consisting of natural bialternals. Again based on empirical evidence, this
still holds true if, taking advantage of the latitude allowed in the construc-
tion of the exceptional bialternals,'3! we replace the first sums (consisting of
o3 (s) = O(s) terms) by larger sums (consisting of o3*(s) = O(s?) terms) and
correspondingly shrink the second sums (which still retains O(s*) terms).

Some examples.
The first dependence relations with o} (s) = 1 is for s = 16, 8j; = 3617:

cormag, +1805e3557 + 1115€555, =0 mod 3617
carmaf;sq + 2675€5 337 +518e335, =0 mod 3617
curmags, + 1111 e3 357 +3436e535; =0 mod 3617

For s = 18, we get the following relations mod f;5 = 43867:

cormay,s ; + 38314 €5 559 + 413€5 557 +41405€5 357 + 11781 €555, =0
carmay g, + 2708153539 + 16590 €55 57 + 2381 €5 357 +5152¢e5 555 =0
curmag, ¢ | + 383143359 + 413 €35 37 + 16938 €5 357 + 374065555 =0
For s = 20, we get these relations, mod g5, = 174611 = 283 x 617:
cormajy ; + 21797 €3 3311 + 6686€5 359 + 801523 ;5 54
+154426 €5, 57 + 55432€} 559 + 170246 €2 5, =0 mod 283 x 617
carmary, | + 936153551, + 1067450355 4 + 1507156354
+123787¢€5 ;57 + 12924 €} 559 + 16025€2 55, =0 mod 283 x 617
curmatyy | + 50086 ¢35 511 + 6911463554 + 65057 55 5
+61841 €5 73, + 1539125 359 + 225265 55, =0 mod 283 x 617

31Indeed, for any given odd weight s, there exist exactly [#£1] degrees of liberty in the

construction of the singuland-based lgma?, since the general solution of the desingular-
isation equation (605) for Sgj , depends on exactly that number of parameters. As a

consequence, the latitude in the determination of the corresponding c@rmaﬁs , bialternals

isof*(s) < ;;Oidgsfg[%] = O(s?) and definitely of order O(s?). Note that the relevant

sum here is Y[#141], not Y ;[#F][222], since in the construction (605) of cormaj, ; the
length-3 components of lgmaj,, get bracketed with the length-1 components of lgmaj,,.
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The first relations with o} (s) = 2 appear with s = 28. Neglecting the second
sum (i.e. the natural bialternals), we find:

3148968694 cormaysg 1 + 522158523 cormayagp + ... =0 mod 9349 x 362903
325201091 carmaypg ; + 2689482059 carmayag o + ... =0 mod 9349 x 362903
933645869 curmayog 1 + 1708525547 curmayjsg o +...= 0  mod 9349 x 362903

The reason behind these extraordinary relations (which have no equivalent
modulo any number my of the form [, p;" but other than 57) is totally
unclear to us. Nor could we find any privileged and uniformly defined series
{bial?} of bialternals which, after reduction modulo ¥, would produce these
relations.

8.5 Spectral analysis of the push operator acting on the
eupolars.

Eigenspaces of push and their dimensions DP, ;.

Let Flex = Flex(€) be the monogenous flexion structure generated by a flex-
ion unit € (all such Flez (&) are isomorphic) and let Flez, be its component of
length r (i.e. the component containing the bimoulds of length ). The push-
operator, when restricted to Flex,, has order r+1. For any d|r+1, let Flex, 4
be the subspace of Flex, spanned by all push eigenvectors with eigenvalues
that are exactly unit roots of order d. Lastly, let DF. 4 = dim(Flez,).

Main conjecture.

The dimensions of the eigenspaces of push are given by:

(27)! 1 Z (2d)! @ r+1 r+1 (616)

DP,s =2 - :
TR 2r + 2 ,dd =)

d|(r+1

Here, the one-argument ®(.) is Euler’s classical totient function:

o) = [[@F—p") if d=]]n" (617)

n;=1 ni=1

and the two-argument ®(.,.) admits these two equivalent definitions:

@(d, 5) = q)(d)‘|p;+yi=p?+ui=---=0 'Lf 5 = H plyl (618)
v; =0
®(d,s) = 1_[ ([Vi—ni]er?i - [l/i—ni+1]+p?i_1) (619)
ni=1,v;,=20



with the sign function [m]* := 1 if m > 0 and [m]* := 0 if m < 0. If the
prime factor p; occurs in the decomposition of d but not in that of J, we
should set v; := 0 in formula (619).

Clearly:

®(d,1) = p(d) = Mobius function
®(d,d) = ®(d) = Euler's totient function

The following easy-to-check identities shall also prove useful:

ods)= N )i, (620)
Sxld, 640 *
Vn > 0(d,6)®(nfs) = n if d=1

o — 0 if d+1 and dn (621

Properties of the dimensions DP, ; .

Property 1: The formulae (616) holds true for all pairs (r,d) up to r = 10.

Property 2: It yields previously conjectured formulae in the special cases
d =1 (since ®(d, 1) = u(d)) and d = r+1 (since ®(r+1,7+1) = &(r+1))

while preserving the general expression of DP, 4 as a pondered sum of me-
(24)!

dian binomial coefficients oTar-

(2r)!
rlirtl)!
Flez,(€) of the monogenous flexion algebra. Indeed, due to the above identity

. r)! r !
(616), the sum 35, , ;) PDy,5 ®(5) reduces to the difference 2 (f! r)! -1 (Tﬁ)!tfll)!,
(2r)!

which is equal to the expected dimension S

Property 3: It also yields the proper dimension for the component

Property 4: Lastly, and even more convincingly, it yields an integer for

each eigenspace of push, despite expressing DP, 5 as a sum of fractional terms

1 (24d)! (I)(T-H ﬂ)

2r+2 dd! d07s

Remark 1: (616) easily implies 61|02 = DP, 5, < DP, s,

Remark 2: There is an alternative, simpler expression for DP, 4. Let
Xpush (75 ) be the characteristic polynomial of the push operator restricted
to Flex,(€). Then (616) amounts to saying that

Xpusn(r, 1) = [ ] (1 — 7)™ (622)

o'|r+1
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with
DP}y = Y. DPsp(5/8) (623)
8’8|r+1

The remarkable thing, though, is that, for any given value of §, the coefficients
DP?;, unlike the earlier DF, 5 assume ony two distinct values. In fact, r is
necessarily of the form né — 1 and we have

DPfs 15 = —B5<0  V¥n>1 (625)
with
_, (@2n-2)!
Q= 2n| Eiie ;u n/d (626)
B = Z (627)
d|n
Thus

[, as,...] = [1,1,1,2,3,9,19, 58, 160, 499, 1527, 4940 . . . ]
(81, Bo, ... ] = [1,1,3,8,25, 75,245,800, 2700, 9225, 32065, 112632 . . . |

The factorisation (622) therefore becomes

d<r+1

Xpush (1, £) = (L= 7)ot TT (1= 0)~ (628)

olr+1
which implies for the dimensions DP, s the alternative expression:

& <r+1
DP,s = a,1 — Z Bs (in particular DP, .11 = oy41) (629)

818" |r+1

To show that (629) with «,, and 3, as in (626)-(627) is truly equivalent to
the earlier expression (616), it is enough to plug the identity (629) into (616).

8.6 The lifted variants of the ar: bracket.

To each flexion unit € there corresponds a flexion algebra Flez and a lift
operator le acting on it:

e A® := arit(A°®) €° (630)

e - Flex — Flex
ARI — ARI

The lift le and its powers clearly preserve alternality. More significantly:
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Proposition 8.1 Although le" .Flex and le".ARI are but small subspaces of
Flex and ARI, these subspaces are stable under the ari-bracket.

ari - (le".Flex, , le" . Flex,,) — " Flex, 1ryin (631)
(" ARI, ,le". ARI,,) — " ARIL, try4n
This induces a series of lifted Lie brackets arile,,:
Fl Fl —  Fl
arﬂen A ( ex'r‘la 6$7”2) exr1+7‘2+n (632)
(AR[T17 ARIT2) - AR[?‘1+T‘2+7L
characterised by
ari(le" A%, [e"B*) = [e"arile,(A°®, B®) (633)
and acting according to the formula
—arit(le" A*) B* it(le" B*) A*
ariley (A°, B%) o= | AUl A BT anig(le” B°) (634)
=, u(le™ A®, le™ B*)

For n = 0, ariley = ari and we recover the usual definition of the ari bracket:
ari(A®, B®) = —arit(A*) B* + arit(B*®) A* + lu(A*, B®) (635)

For the polar flexion units €* = Pa® resp. Pi® with Pa"' = P(uy) = 1/uy
and Pi¥" = P(v;) = 1/vy, the pair (le,arile,) is denoted (la,arila,) resp.
(li,arili,). Only this second pair of operations is of practical importance,

because it alone preserves entireness, and that too only when the bimoulds

depend on the sole lower indices v;. Thus arili, : AR ™" — ARI%™".

8.7 Tables: the satellites sa, sa*, sa™ up to weight 9.

For the first 11 linear generators of ARI /i up to weight 7:

bico

e =ari (M}, M},,,..., M},)

‘51752 ~~~~~ Sk

we tabulate here all three satellites sa, sa*, sa** with the following convenient
abbreviations:

%

, saﬁlM‘ =: B*

sagM*® = A* | sa’%]\/[' =: 1
. safMe = B°
1 L

sa.M*® =:C* .
sag*M*® = A* | say* M* =:

oy |
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(i)For the lower satellite saM*, we give the list of values {C1, ¢; € {0, 3}}
in lexicographic order.

(ii) We tabulate the all-white upper satellites sa§M*® = sag*M* only for MHl’
MH‘B, Mus’ MH7 since in all other cases they are = 0.

(iii) For a given weight s, the all-black upper satellites sa%.M* and sa%*.M*
differ more and more as the degree d increases. ’ :

(iv) Dually, for a given weight s, the co-satellites saﬂl.M * and saﬁf.M * differ
2 2

more and more as the length » = s — d increases.

(v) The lowest-degree non-vanishing satellites sa1 M* and sai . M* coincide

up to sign, and so do the lowest-length non- vamshlng co- satelhtes sa Mo

and sa¥ . M*. In fact:
2

sat . M® = (—1)" Sa1 M for lowest degree d
2

saf M* = (—1)" Saﬁf.M' for lowest length r
2 2

(vi) The lowest-degree non-vanishing satellites sa’ .M* and sa’}*.M* are marked
2

2
in red when they coincide; in blue when they have opposite signs.
(vii) The lowest-length non-vanishing co-satellites sa’ .M* and sa¥.M* are

2 2

marked in red when they coincide; in blue when they carry opposite signs.
(viii) For easier comparison, we resisted factorising the degree-1 components;
nor did we factor out the prime integer 7 common to all components of all
satellites of MH3 1 M|T3 110 M‘T3 1.3 MITS,LLl,l

C[l] = {07 1}7 Al — 07 5?11] —1.B“ = BV — 1 B/U — _
C[3] = {07_%74%7%7__ 14751;70}
= AT = Al An g,
_ =[3]
B, = —éuf B“l 2 — Ly 4+ L,
Bq[i] _ +%u2 Bul a2 _iu_ + iu
:[3]1 81 12 [u1 ug 83 ! 83 ’
§[3] = 3w ‘3 = +3U — U2
B, = +5ui g‘;’“‘z = —Zuy + Lup
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=0

%Ul yU2 =0

ul,u2,u3 o 7 T 7
B3 = —|—8u1 U2 + U3

Uul,u2,us3
é[&l]

u,u2,u3
By

ulug,u3 7 T 7
By = Fgun— U2 + gus

_ 7 7
= —gul + ZUQ — U3

=0

178



Cls) = {o,
0,0,0 0,23 20 63
7327 23 29 81 2
) ﬂ 3277564, 64) —3200, 7 4=1§=367457 S
PN 369 . 1 3 375 61" o0 a2
- 6 64> %3264 646 520 —4,1,0}
Aul ) ‘ )T 320 ) 0
+u
1
U1 _Q 4
ELS] 161
1
S
1 _ 4
%[5] +uy
ur __ 4
2 T +uq
AU17U2 _ Uul,u
A, _A,2:_2u3_12 1
o, T T e i e
B — 429,34 23,9 23 ’
2903 + Buduy — 2302 — 29,3
Bu17u2 1 3 2 b 32"
B = —Lud - 29 2u2 4+ 29 312 g
R U2 o 64U1UQ+ 2
B — 33,3 _ 125,92 ”
‘" 333 — 125, u+125uu 33,3
PR 1Uy + 55Us
~u, 35 U7 64U1U2 + ulu% + gg’ug
,U2,U3 Uu,uU2,u
A ) ;U3
BE]M N A5] = +ou? — —u1u2 —qud + 3uqus — 2
B~ B2 By~ 83— By + By 4 P
Bu1,u2,u3 — +53 2 123 16,2 3ZUIU3 + U2U3 i 33 2
u ) u? — 64U1U2*63 2+123u 123 ‘o
§51, 2,U3 __ 29 2 17 e o o 2 + 63U2
5 —iU gt + g ” s
s _ 3$ 2 cUs + TgUUs — 1 ous — 222
:[5] 3_2 1+ i Uuo — 2 27 32 3 u3
64 1U2 1 u2 S5 U1U 27
R A = —U1 + 3Us — 2U3U4
D5 = —U1 + 3U2 — 3U3U4

UL ,y...,Usg
2
1yeeesUd 15
B _ 15, _ 45
1[?] +igU gl + Doy — 13y
2[51]””#4 _ 16 16 4

= —Up; + 3Ugy — 3U3U4
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B3y
Biin” =
By
Bisaij

Bu LyeenyUd

571,1]

B'u 1,

‘311]

UL,y..., U4
By
UL yeeey U

=[3,1,1]

4

:_|_Z
= +1 U1_

- __u]. + _U/Q -

- “qul
Sud — 4 7 SU1

ZU1U2

+ UU2—4

7.3
gU2

7..2
1“3

7
——ul + uluQ—i- u2

4

7,2

“UrUs + §u2u3 — gU3

=0
7,2
= +t3u

_7I
18
21

8 U + *Ug —
- *11/2 —|'

Urug — Tud + Tuuz — Tugus + Luj

7

8
z 11/4

Uy

ud —

=0

21
——u1 + —u2 — gus+ u4
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31 279 31 465 93 93 93 31 155 93 93

Cisay = {0,0,0, 55,0, =57 500,051 — 60 00 5> ~ 16 ~ 5200 ~ 3 0 150 61
0,9 219 31 93 465 93 155 (. o 155 93 465 _ 93  _ 31 279 93
180640 64200 80 64716° 32 17320167 640 8° 64 64 8
93 _ 93 155 _ _ 31 _ 93 93 93 465 31 279 31
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ﬁ[3,1,171,1] = —4U] + TUuy; — Fuz + Tuy — 4 U
21 2 | 21 21,2 91 35 63, 2
—Zul + Tutug + Suy — Fuuz — Fuguz — U3
UL,eyU5 21 35 _ 35 21,2 7 21
§[3,1,1 1,1] +EUIUL + 5 UUg — FTUIUg + FUG — FJUIU5 + T ULUs
91 21 21 2
—gUsUs + FTUsU5 — T U5
EB’UJ ,,,,, us =0
2031,1,1,1]
21 2 21 21 2 | 91 35 63,2
+§u1 - IulUQ - ?UQ + §U1U3 + §U,2U3 =+ IuS
Ui,enus ) 21 _ 35 35 21,2 7 21
231,111 S U1l — FUgUy + “FUSUL — S UG + UIUs — T ULUs
+%U3U5 — 24—IU4U5 + %U%
ws Ty 83,0 35, 35, 435, T,
5[371,171,1] - +§U1 38 Ug + 7 U3 7 U4 + 3 Us §u@
ULy UG ) 35 35 35 35
B a1 11q = TeUl T U2+ U3 — Py + FUs — g
[3,1,1,1,1]
B UL U6
2[31,1,1,1]
ur,..ue T 35 35 35 35 7
2[371717171] = s + g U2 — U3 + ZUs— FUs + sUe

8.8 Tables: ordinary and augmented scrambles.

Zi i), we set m(w) = (#vy, ..., #v,). The
following table gives, for low signatures m(w), the number p = p* + p~
of terms on the right-hand side of (161), with u* denoting the number of

summands preceded by the sign +.

For a double sequence w = (

+

moop=pt T m po=pt+p

3
=

I
=
+
=

(1,1) 3= 2+1 (1,1,1) 15= 8+7 (1,1,1,1) 105 = 53+52
(1,2) 5= 3+2 (1,1,2) 35=18+17 (1,1,1,2) 315 = 1584157
(2,1) 6= 4+2 (1,2,1) 42=22+20 (1,1,2,1) 378 = 190+188
(1,3) 7= 443 (2,1,1) 45=24+21 (1,2,1,1) 405 = 2044201
(2,2) 15= 9+6 (1,1,3) 63=232+31 (2,1,1,1) 420 = 2124208
(3,1) 9= 6+3 (1,3,1) 81 =42+39 (1,1,1,3) 693 = 3474346
(1,4) 9= 5+4 (3,1,1) 90 =48+42 (1,1,3,1) 891 = 447+444
(2,3) 28 =16+12 (1,2,2) 135 =69+66 (1,3,1,1) 990 = 4984492
(3,2) 30 =18+12 (2,1,2) 140 = 72468 (3,1,1,1) 1050 = 530+520
(4,1) 12= 8+4 (2,2,1) 168 = 83+80
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8.8.1. The ordinary scramble.

The following tables give the ordinary scramble SM*® :=

scram.M*® up to

depth r = 4.

S

GUCETE g ) )

Ao v ey M e es) e ) — G 1S )

u12 , w1l o, U3
—{—M( vg :vl:zzvs)

Ul , U3, Ul
+M( vy , v3 7v1:2)

u123 , U23 5 U3
—|—M( vy o, v2:1 vv3:2) —

(*123 > w1 5 U3 )
— V2, V1:2 5 V3:2

("123 > w1, U2 )
+ v3 5 V135 V2:3

192

u1z , u2 U3
(U1 :ﬂ2:1av3)
u12 , Uz, U2
(v1 7v37v2;1)

(u123 > U235 U2

v1

> U3:1 5 V2:3

(“1237 uz o, Ul )

v2

(“‘123 > U125 U2 )

v3

> V3:2 5 V1:2

> V1:3 5 ¥2:3

u123, u3 , ug
)—|—M( v1 vv3:1vv2:1)
u123 , 12 , Ul
+M( v3 :v2:3:v1:2)



u4)
uz , ud
. 9
n U?:A)
Vot i
. 9
15” SR 8
(’Ul ? uy o, v
12 ’v1;2 , . uz
+ (u2 ’ L ¥
]‘1 v27u?1,v3,u4
+ ]\1(%11 ’v2.’ iz ) vt
25 “g , V. o
— ul , U B y
( v2 ug :v2:1 ,u1
25 '
i e oo
> U3 Ll .
12 v 7 :
— (%2 ’ , Uy o
2 7u§ o =
uy ), U, " o
+ o uzs v E
\/z . il
: e Lot vss
y U3 , Vg4 o
1 - ;
+ L L
/\4 v u23 v, g
1 - ’ 4
— (21 , | %2 .
u23 . X
+ /\/1 (ui s 5 : v3:4
: &l o Uy
— (“1 ; V9 u34 : s 4
vl u v3 o 1:)4
uy o, v, - |
+ /\/i ( = 5 > V2:1 uy
> v | 4
123 V3. > ¥
— (“u1 ? uy ,'u2:3 u4
, L | 4
123 , U1, 2 U
+ (uv3 w1 : vsy | u
, L | 4
123 v, e v
"l_ (“ug ’ ug . ’u2
23 » v3:2 » o P
(\/1 1 :
— (uug ? u3 11)4 : :
, 3 ’
d o uq v
— (“vl uyp e :
» e ug v3
1 >
+ (uv3 ) b s
, L Y
123 v i U
+ ("33 s
u123 : v3.2 S v
: /\4 s
( v9 , Ugq ol ;
(\/j 3 . : 1
U2 ’ . :
— ( v3 , Ug : vay | >
[\/2 3 s % :2
U192 s bh L
+ ( v1 uy , A g
. p : :2
ui2 , - g
+ ( v2 , Uy ol o
(‘/{ 3 . : 2
— w12 : 1 :
( vy U234 : vgo s
> A
— uy o, v2 b y
(vl ’ U234 : vy >
s
uy vyq b L
+ (vl ’ U234 voos B
7‘1 3, .
uy v3 u4, -
+ (vl ’ u234 : 04 | i
> o
— uy v3 B o
(vl ’ u34 : vo 12
)
w12 o
R (‘/2 ( vl o 3
: 4
2
1
3
4
4

—

cN
:”ww
ﬁ..,_.m
ol

)

N

u
)
. v1:
kg v3:4 » N
(“12: v4 b :vg:
v u34 ol :
+M(u12: vy uy L
v u34 Lok :
) -
+M(’:112, i o
u34 . :
+M 2 vy 5 P
M( U1 , U34 : ol
u12 o
_ ( .

" "Ul:2
u34 : V4.3 » uzl)
b A,
( v2 u34 : v3:4 u34)
u12 : vy o P
— (vl uq ; vg o
U2 v1:2 sy : o
J— ( v2 u - - )
+M v | o
( v R u21 : vy | u43)
+M ui2 ; V9. et >
( vl 3 ) v3 Y u4)
12 » V1.2 ’ :
— (%2 ) ul% : V1.2 : u4)
X - u2 , U4
_M(“ig, . oo o
23 > v1:3 o .
+M(u11;3 ’u1231U4,’Uu2 )
s
123 , V9. ! Py
_ (“v33,u1§:v4,‘uj)
12 vy, . *
+ (uu3 ’ u2ii : v3.9 ’ u4)
,
i P o » V4
— (u'ul ? u23 :v2:3 - )
2 2 03:2
+ (”11)1 u2?i sy s i
,
M 123 vy, L Py
_]\4—(uul3 : 'u,2;i o : u12)
w12 v3: . >
+ ( v1 :u4,v2:3 )
u123 » U4, 28 Py
_M( v3 , Uy : v1.3 b )
u123 vy s s
+ (U3 :u4252:1,u2)
— u123 , Vg4 _ : Py
( v1 , Uy : v3.1 u23)
U123 vq o UQ:
+ ( v1 1;234 Tv3a s
— uy vq B : -
(v1 ’u234 X V94 b
+M uy vyq wny :’U4:3
(ul ’u234 L v3 ’ u34)
*M(iﬁy v§4’:jé,v3'u34)
uQ s »u2 ) P
+M(iﬁ : v2u1 :v2:47 u32)
34 > V1:4 . -
_M(ulvi ’ uq : V4.2 u32)
34 V1.2 “ : p
+ (u11;22 ’ uy : v1.2 u12)
34 V4.2 vy b
+M(u11;22 ? Uy : V3.2 u23)
34 > V4.2 b P
+ (ulfz ’ uy : v1.3 » u23)
34 > V4.3 b : Uz:
+ (u11)23 ’ uq : v4.3 u21)
34 > v1:3 v P
_ (”11;23 ’ Uy :U3;1 , u43)
34 > v4:1 | P
— (ulv21 ’ 0 V9.3 » u12)
s L ’ :
9 u - 5 U1
_ (u11;3 ’ uli : v3:4 7 u34)
" P vl v3;
—_ (ulq_;24 ’ “12 V1.9 > )
4> 4 2 Y
3 vy 1
+M “11]24 ’ 12 » V4.3 » by )
( 4 mz .
3 V1. 4 .
+M U1U23 ’ 2 vl . )
( U13 ' 7 1
34 j vy, b P
+M("1v2:3 o
> 2
234 Lo,
—l—.M(ulU4
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M

+
M

-l-M( =

_|_

+M

+%( ;
_.I_

+M

+M

M
+
+M

M
_|_
+M

+M

+M

+M

+M

34
&
234
(112
u1234
(112
u1234
(13
u1234
(12
u1234

34
(12
34
(2
234
(112
U1234
(12
u1234
&
234
(112
U1234

34
(12
u1234
(12
U1234
(112
u1234
(12
234
(12
234
(112
u1234
(12
234
(12
234
(12
34
(12
u1234
(1@
u1234
(112
U1234
(12
U1234
(12
234
(12
234
(12
34
("2
234
(12
U1234
(12
u1234
(12
u1234
(12

34
(12

w12
V1:4
u12
v2:3
u12
v2:3
u34
V4:1
u34
V4:1
u34
v3:2
u34
v3:2
u34
v4:2
u34
V4:2
u34
v3:1
u34
v3:1
ul
v1:4
uq
V4:1
ul
V1:4
uq
V4:1
uq
V4:3
Uy
V4:3
ul
v1:2
ul
v1:2
w123
v3:4
u123
v1:4
U123
v2:4
U123
v2:4
U234
v3:1
U234
v3:1
U234
v4:1
U234
v2:1
U123
v3:4
U123
v3:4
u123
V1:4
U123
v1:4
U234
v4:1
U234
v4:1
U234
v2:1
U234
v2:1

)

)

u2
v2:1
Ug
v4:3
ul
v1:2
u
v2:1
u3
v3:4
ul
v1:2
uq
V4:3
u3
v3:4
Ul
v1:2
Uq
V4:3
u2
v2:1
u23
v3:4
u23
v3:1
u23
V2:4
u23
v2:1
u12
v1:3
w12
v2:3
u34
v3:2
u3zq
V4:2
uy
v1:3
u3
v3:1
ul
v1:2
u3
v3:2
u2
v2:3
Uy
v4:3
u2
v2:4
uq
v4:2
u12
v2:3
u12
v1:3
u23
v2:1
u23
v3:1
u23
v2:4
u23
v3:4
u34
v4:2
u3q
v3:2



8.8.2 The v-augmented scramble.

The following tables give, for general signatures m(w) := (my, ma, ...), the
v-augmented scramble SM*® := vscram.M?*.

= (172) y U1 = (Ul) y Vo = (U%vé)

(u15u2) u17u2,'u2) (U125 U2 5 U2 ) u127u1,U2)
SMG ) = b ) g e ) g e
(U125 w125 w2 (W12 w12 5 w1

— M v2 vz v N V2 s Varg s Vi

= (27 1) U = (UlaUD y Up = (UQ)

(ul s u2) (ul PR u2) (7J‘12 > u12 » U1 ) (u1 s U2, UR )
SM* v1 vz’ = 4 Mv1o v 2 +M" vt VUL P2 P
(uIQ s U2 o, up ) ('“‘121 up o, up ) (u12, U2 5 u2 )

— M v vt N2 vz vyt N VL Vg Vo

= (173) y U = (Ul) y Vg = (U27Uéavé’)

(U1 u2) (v1-u2, up o, Uz (v12> vz, wg o, ug
SM w127 = 4 N[ P12 Varg s Vony — M v v Varg s Vangr
(U125 ®12 5 U121 (2> w12, w2, U
+M V2 s Vol s Volligf 2 Vign’ N V2 5 V1:2 5 Voriq s Vonof
(U125 v12 > w1 o, Uz ) (“125 ®12 5 U125 U
+ M v2 o Varo s Vi s Voot [N V2 5 Varig s V1ol 0 Vo

(U125 U1 s ug o, ug

+ M2 V12 s varg s vongr

= (272) y U = (UlaUD y U = (U%Ué)

(ul,ug) (“lvqu uz o, Ul ) (u12v“127 ui2 5 Ul )
SM 12’ = NV v25 Verg s Vi + M v2 o2 Varg s Vi
(410 U2, w1, up oy (w12 w2 . w1, ug oy
+ Mo v2 s vy Yo — M U121 Vg s Vol
(41 w1 ug, ug oy (w12 w1z . up o, up
+ M v v2s 02/42 — M v ving o Vaars o Varg
(w12 w12 > w1, ) (w12 w12 vz . up
+ M vrov2a 7”1'2*”2/2 — M V22 Yy s Vary
(W12 w12 0 w12 . Ul (w12 w12 w1z . Uy
H+ M v ov2in s varg s Vi [N U1 5 V2l s Varig s Vgl
(w12 w12 . w1, Ul (w12 w12, uz Uy
+ M v2 o voros Yoo vt — [ 2 o vl Vg s V1
(W12 w1 uz o, oup oy (w12 uz o uz Uy

+ M v2 V12 varg s Vg — M v v Varg s vy
(U125 w1, w1 o, up

_|_M V2 5 VL2 5 Vi s Vgl
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SM

u u u
(o1 )3 03)

vy = (1}17,0/17,01/) )

— +M VY 5 Vg s VNt s V2
+M V] 5 V2, Uyl s VM)
+ MUt Yo s Vi

(ul , oul o, uy o, ug)
(“1 ,ug , uyp o, Ul )
(“12 > U125 U125 Ul )

(“127“12’ up o, Ul

w12, w1 o, Ul o, Ul
( )

_|_]\/[ V2 5 V1:2 5 Vylag s Vgl
m = (1,1,2)

;v =(v) o, v

(ul,uQ,uS, us )

= 4+ M v1-v2:93,v5;3

ujl2 , U3, ul 5 U3
( )
_|_M V2 5 V3 5 V1:2 5 Vgl.g
(4125 ¥1 U3, uz )
_|_M V2 , V1:2 5 V3, Vgl.g
ui2 , w3z, uz , U
_|_M( v2 V3, Vgl.g »U1:2)
(415 u23, U2, uz
+ M v1o v3 s v2i3, varg
(41235 u3 , uz , U3 )
+M* v1o s vgrg s v2il
(4123 u3 , Uz, u3 )
+ M v vs1 s v vy
(41> u23 5 u23 5 U
+ M v U3 vang s Vo
(4123 > %123, uz , U3 )
_|_M v3 o, V1:3 > Vgl o U2:1
(U123 > %125 Ul o, U3 )
+M" v3 s v23sv2, vag
(U123 > u23 , U3, u3 )
+ M 12 U325 ey
(123> u1 o, U2z . U
+M V3 > V1:3 > Vgli3 o Yo.3/
(%123 > ¥123 > u23 5 U3 )
+ M vs o Y13 V21, Vg
(“123 > U123 Ul 5 U2 )
_|_M V3 > V330 Y13/ Vou3/
(“123 5 U125 Uz, Ul )

_|_M V3 5 V2:3 5 Vgr.3 5 V1:2

(“123 > U123 5 U125 U1 )

+ M U3 V3o Va0 V12)
(11235 U1, Uz, ug )

+ M vs V13 V23 Vyrg
U123 5 U23 5 U2z, U3 )

_|_]\/[( Ul 5 VU3:1 5 V2:3 5 Vgl.g

195

vy = (v2)

up, up o, u2, uUp )

+M( V1 5 Uyl 5 V25 Uyaql

u12 , U122 , U125 U2

—M( SRR T I VAT ST

w12, u12 > U2 o, Ul )

—M( R SRS US B B UG LA T

U2, U2 o, Ul “1)

+ M2 v v“1”:1/) —M( V15 V2:1 s Vysiy s Vs

(v2)

(“12 ¥2 U3, U3
— M v1oov2i1 U3, vy
(412> 43, U3 5 U3 )
— M v oov3 s vzrg s 2
(U1, u23, U3, U3
— M v v2 s vsi2, vy
(“125 U3, U2 5 U3
— M v1 o3 v2in s vz
(U1, u23, U235 U3
— M v vs s v23, V30
(“123 5 Ul 5 U3 5 U3
— M v2 »v12,v3:25 V3.3
(“123 5 U3, Uz, Ul
— M v2 sv3:2,v3.35 V12
(“123 5 U3, Ul 5 U3
—M" v2 »v3:2,v1:25 V3.3
(123 5 U125 U2 5 U3
—M" v3 >V, v2i1 5 V33
(“123 > ¥12 5 U3, U2
_M V3 > V1:3 Vgr.3 5 V2:1
(123 5 123 5 U412, U2 )
—M" v3 s vsiigo vug o V2
(123 > U123 U23 » U2
— M v3 > v13 s vgrg s Vo
(“123 > ¥23 5 u23 5 U2
— M v1 Y31 V33 Vo
(“123 > U123, U3 Ul )

Us = (U?n Ui/’))

— /\4 V3 5, V2:3 5 Vgl.g » V1:2
u123 , ¥123 > U1 , U3 )

— /\4 V3 5 V2:3 5 V1:2 5 Vglg
(“‘123 > 23, U2 , U3 )

_ /\j V1 5 V3:1 5 Y2:3 5 Vg/.3

(“‘123 up o, u23 , U3 )
V3 5 V1:3 5 V2:3 5 V3/.9

—M



SIS

=(1,2,1)

u1 7“27“3)
vy, v, ¥3

vy = (v1)

(u11u21 u2 ,u3)
= +M V1, V2, Ygl.g 5 V3

(ul,u23, u U2)

H+ M v va s v2i3 5, varg
(“120 w1 U3, U2
vz » V1:2 5, U3 5 Vgl

+

(41> u23 5 U235 U2

+ M1 v2 g2 vy
u12 U3, Ul o, U2

+M( vy, V3, V1.2 ’U2/.2)

(u1237 U o, uz o, Uz
+M » V1:3 5 V2:3 5 Vgl.g
(W12 w1, uz U3
+ M v2 12 varg - U8
(412> “12 5 Ul 5 U3)
+ M U2 Vo2 V1o U3
(412> 435> U125 U1
+ M v2 V35 Vg V12
(4125 ¥12 5 U3, Ul Y
_|_M V2 5 Uglig s V3 s Vy.of
(“123 5 U3 5 U 5 U
+M » V3:1 5 V2:1 5 Vol.g
(123 5 U235 U3 5 U
+M » V2:1 5 V3:2 5 Vol.g
M(U123 U123, UL2 5 Ul
+ 0 U3:2 0 Valiz o V1aof
(123 > u23 , u23 5 U3
+M ) V2:1 5 Volig s Vgiof
(%123 > U123, U23 5 U3
+M V125 Yol s Vgiof
(123 5 u123, U1, U2 )

_|_M ) V3:2 5 V1:3 5 Vgl.3
u1237 Uz o u12 U3

+M » V3:2 5 V1:2 5 Vgl
u123 U123, U3, U

+M s V1:2 5 V3:1 5 Vol
(123 5 ¥12 5 ulz 5 Ul
+M » V2:3 5 Vgl.g » Vy.of
M(u1237 Ul o U2z, U2 )

+ > V1:2 5 V3:2 5 Vgl.3
u1237U127 vl U2 )

_|_M ) V2:3 5 V1:2 5 Vgl.o

196

—M(
M(

uy o,
vy,

U123

u123
v2

U123
v1

y Ug = (U3>

uz , w3z, u2 )
’U2 ) ’U3 ,’1)2/

y U o, U2 1“3)
) U2:1 5 Vgl.g 5 V3

y U o, u3z ., U )
» V2:1 5 V3 5 Vgl.o

U3, U2, U2
» V3 5 V1:2 5 Vol
u23, Uz, U
V2 5 V3:2 5 Vgl
ul2 g o, U3
U112 5 Vol s V3
»Ul2 , U3, U
U112 5 V3 5 Vol
PU3, U2, up
) V35 V21 5 Uol.g
u23 , U23 , U3
V2 > Yol Vgiof

; U23 , U , U )
> U3:1 5 V2:3 5 Vgl.g

» U123 5> U23 5 U2 )

,’012,’1}31,’[)2/3
>y U12 5 U12 , U2 )
> V2:3 5 V1:2 5 Vol
;o ul o, U3 o, ug )
> V1:2 5 V3:2 5 Vgl.g
y U125 UQ o, U )
) V1:3 5 V2:1 5 Vgl.g
» U123 5, U3 o, Ul

) 'U2/‘2 ) 'U3.2l ) U142/
U123, 12, U2 )
» V3:2 5 V1:3 5 Vol.q
UL, U2z, U3
P VL2 0 Valig 0 Vgif

) U123 5 Ul o, U3

P V2l Yri2f o Vgiof
pu3 o, oul o U
» U3:2 5 V1:2) 5 Vol.g
Uz, ULy, Ul
1 U3:2 5 Volig o Yo/

» U235 U23 , U2 )
» U2:1 5 V3:2 5 Vgl.3



m = (27 L, 1) y U1 = (1)1,1)/1) y  Ug = (U2> y U = (U3>

(¥15 U2, U3 (U1 w1 uz, Uy (U1-u2,u3, ul oy
SM w1 02,037 = 4[N U110 v25 3 + M v1ov2 s vs vy
(U152, w1 ug) (U1 w1 o, u23, U3
+M vl 5 V2, Ui/ > V3 _M V] 5 Vqrq s V25 V3:2
(v1-u23, Ul o, U2 (%125 U3, uz 5 Ul
+ M1 U3 g s v23 — M v1ov3 s vgr s vy
(%12, U3, vl o, Ul (%12 U2, Ul u3)
+M V2 5, V35 V1:2 5 Yyl _M V1 o, V2:1 5 Yqr.1 5 V3
(%12 u1 U3, Ul (“1-u23, uz Ul
+ M v2 vz V3 vy — M vro vz s vsi2, vy
(Ul, 'u.l ,u23 > u2 ) (11,12 5 1L2 ,'LL3, Ul )
+M V] 5 Vqr.q s V3 5 V2:3 _M V1 5 V2:1 5 V35 Yyl
(4125 w1, Ul U3y (U415 u23, Ul o, U3 )
+ M v2 vz 010 U8 — M vro vz vy s 32
(Y15 u23 s Uz o, Ul (4125 ui2 5 w2 U3
+ M v1eovs v vy —M" U1 v o 3
(4125 %125 w1, U3 (4125435 U125 U2 )
+ M U2 v 0 U8 — M U1 Vs vy Yy
(%125 U35 U125 Ul (4125 412 5 U3, U2
+ M v vs s v Vg — M U1t U3 Vg
(4125 %12, U3, g (¥123 5 ¥z, v, Ul

V2 5 V3:2 5 V1:2 5 Vq/q

FMU e e )y
(%1235 vl o, up o, Ul

+M" v3 o vi3s Y235 Vg M
(4123 u1 5 Ul o, U2 )

+M Y3 > V1:3 5 Y979 5> V2:3 _M
(4123 U3, U2, Ul )

+ M v1ovsid s v Vg —M
(4123 > w23, U3, ul )

+ M v v2n s U325, Vg —M
(4123 > u23 , U1, U3 )

+M" vrov2n s vy VB2 —M
(123> %12 5 Ul U1 (“123 > v12 5, U2, U1 )

+ M vs o v23, V12 vy — M V3 VLB Y2l vin
u123 > 4123 5 u23 , U3 u123 5 u23 , Ul 5 U2
( ) ( )

+ M vt Vo o V32 — M v1oovsasvirg s v2:i3
(%1235 U123 5 U12 Ul ) (%1235 U123 5 U3, Ul )

_|_M V1 s V3:1 5 V2:3 5 Vi/.g — M v1os v Y32, Vg
(%1235 ¥z, ul2 5 U2 (“123 > U123 5 U23 5 U )

+ M v vz v vt N VL s Vara s Vgl o V23
(4123 > %123, w1, U2 ) (41235 ¥12 5 12 5 U2 )

+ M v vs s vy v2i3 — M v3 13 vy Yoy
(4123 > ¥123 5 U3 ., Uz ) (4123 > %123 5 %12 5 U2 )

+ M v ot s vt — N[ VL V3L s Vir s Yoy
(®123 5> U125 U125 U1 )

_|_M v3 5 V1:3 5 Y2:1 5 Yq/.g

(u1237 up o, w3z o, U1 )
v2 5 V1:2 5 V3:2 5 Vy/.q

(u123 > U235 U2 o, Ul )
V1 5 V3:1 5 Y2:3 5 Vil

(u123, ugz o, U125, U1
V1 5 V3:1 5 V2:1 5 Yqyl.9

(u123 > U123, Y1 o, U3 )
vl o, Y2:1 5 Vqyr.9 5 V3:2

(u123’ up o, Ul 'u3)
V2 5 V1:2 5 Uyl 5 V32

8.8.3. The u-augmented scramble.

The following tables give, for general signatures m(w) := (my, mo,...), the
u-augmented scramble SM*® := uscram.M®.
m:= (172) Uy = (ul) Uy = (u27u,2)
(31’32) Uy, U2, Uys u2,u1,u2,) U, Uygr, UL )

SM vy, V9 :—i—M("-’lerv”Z)—i—M("-’lelv”Z +M(v2,v2 ;V1:2

Y122/ 0 W1/ Yol U2 Uygrs Uyl Y122/ U2 5 U/
—|—M( v ,v1:2,v2:1) — M(v2» vl 7v2;1) —M( u] ,U2:1»v2:1)
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= (27 1) Uy = (ulvué) Uy = (UQ)

uq,u2 wy,Uyr, U2 Uy, Ugrg, Uyt 11720 Y1 5 Uq/
SM('Ulv'UQ) —|—M(U1’v1,v2)—|—M(v1’v2 7v12)—|—M( V1.2, v12)

UL Uyrgs U2 Y1172 %10 Uy/
—M(’Ul’ v1 ;v2:1) — ]\/[( v1 »v2:1vv1:2)

= (173) y Uy = (ul) y  Us = (u27u/27u/2/)

up,u3 UL 5 UQ 5 Ug/ 5 Ugl ug ,uq / 7
M(vl v2) M(u17v2,1)22,1;22) M(v2’v1:v22:v22)
+ +
ug 75U ey U 5 Uny/ /o Ul
+M(v2:v22:v1,v22) —|—M(v27v22, 5 ,v1:2)
u, u12/2// ) 12// ) u2// 22/2// ) 12/2// ) u2/ ) u2//
(v27 9", vl 7v2;1) M( , V12 V31, U2;1)
( (u2 Uqoloh > Ugt > Uglt )
(

U, Ugs s U 12//,u2//) u 2 N !
2 1 »V2:1,Y2:1

_/\4 v, v , V] ,V9:1

U«122/2// y UD , Ugs s Ugl )
—M sV2:1592:1 5 v2:1

= (272) N (ulvu/1> y  Ug = (u27ul2)

uy,u2 UY Ul 5 U, Uyt U, UQ , Ul , Ugs
SM(”1:”2) :+M(v1av11av2:v22) —}—M(Ulzvz»vll»sz)
UQ, UL 5 Ups  Ugs U, U, Ugrgf 5 Ugs
+M(v2,v1,v1,v2 +M(v1,u2, vg vv1:2)
(U241 Uy Uy (U2 uqyrgrs U1 sy

+M vy ,v1, V9 ,V1:.Q +M vy, V9 ,V1:2,V1:2

(U1 Uplgol »Uylgl s Ugl ) ( 11/22/, UL 5 UIof 5 Uyl )

+ M v, w27 v e —|—Z\4 V125 V1:2 5 V2:1
( 11/22/ s U lof s Uylgl > Uy (ul YU, Ugrgl 5 Ug) )
+M L s ,v217v12 — M v 2, v vsn
U, UL 5 Ugror 5 Ugs U, Uprgors U2 s Ugs
MG R ) MG ek )
(ug Uyqlof s Uylol » Uyt ) (u11/22/, UQ ,Ugrgr, Uys )
— MV v2, 017 v 12 — M v w2, Y21 v
( 1/22/1 1/22/ 1“1/2/ ) u2/ )
M s V2 s U1 U3l

= (37 1) y Uy = (ubu,lvu/l/) y Ug = (UQ)

wq U U, Uqs ”,uQ UL 5 Uqy s Uqp Uqn
SpmGrie) = G A ) LMo W )
'U41 u u u y 'LLl u u
MG ) Tk Ll el
uy ’ No > UD UL Ut Moy s Ut s Ul
—M(U1:011: 11)1271)2-1) —M(”la 1v1127U12:12:”11:2)
( 1/1//2!“1/1//21 ull ) 1//)
,

—-M

v2:1 > V1:25Y1:2

= (17 172) , Uy = (ul) y Uy = (Ug) , Uz = (Usaué)
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uy, U &3)

SM(vl , Vg, V3

m:=(1,2,1) ,

M)
MG )
N VAT BT )
MU o s )
F MU S e )
G TR )
PG R e )
MG )
+ MUEY o 3 )
P M B R )
M )
M e )
R )
Vi O
o B )
(“3-123/> U1 > U3l )

— M v3, 2 ,vi2,v3i2
U35 Ujgal, UL, U2
_M(v;g, v3 7v1;3»v2:1)

(%1233 U3 5 Ugr o U1
_M V2 ,v3:2,V3:2,Y1:2

(“12337> U1 0 U3 o Uy
—M* 927 ,vi2,v32,v3i2

(12337 > %123/ Y3/ 0 U2 )
_M v3 o, V1:3 ,V3:15Y2:1

(12337 > %123/ > %23/ » U3/ )
—M* 937, v13 , 021 vz

uy = (u1)
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Uy = (u27u/2> ’

P MG 0E )

A M 3
MG o)
P MU )
P MG E )
+M(Z§’u%3l ’1:113 71}1;23)

(u3 yUpggl, U2, UL )

+M v3, U3 ,v2:3,v1:2
U193/ U3, U, U2

+M( vl ,v3:1,v3:1 7“2:1)
Ui933/ » U3 »Uggl s Ugs

+M( U] 5 V3:15 Y2:1 ’”3:2)
%1233/ > W33/ U3 > U3/

+M( vl o, V2.1 7”3:2»1)3:2)
%1233/ %123/ U3l U2

+M( V3, V1:3 5, v3:1 7”2:3)
(u3-12, Uz sugl)

_ V3, V1 ,v2:1, V3
(u3,u12,u3/7 u2 )

_M v3, V1 , V3 ,02:1

Ui ,uU3, U ,Uqs
_M( v1:v3:v2:1:“3§)

3 tyggls Uyl o U1 )
v3, V2 ,V3:2,v1:2

(

(1> %233/> U3 > Ugl )
vy, v2 ,V3:2,v3:2

(

(

W3, tygglotiagls U2 )
v3, VY1 ,v3:1,Y2:3

f1233/0 U3 o UL 5 Uy )
vy ,V3:2,V1:2,93:2

(%1233 U3 »Ugzr s U2 )
_M vl ,V3:1,V3:1 > V2:3

(12337 233/ » Y23/ > 3/ )
_M V] 5 V3:1 5 V2:3,V3:2

us = (us)



Uy, g, u3 )

ug , Uy, u2,,u3)
v1, V2,93

+M vy, V1, vy , V3
UQ ,Uqor, UL U3
+ M vz 32 orta g
U9, Ul , 2/3,u2/)
+M

v2,V1, V3 ,Y2:3

SM ¢

U, Upgrg s Ul 5 Ugs )
+ M v2, v3T,v13,v3:3
U2,Uygrg, U3 5 Ugs )

+ M w2, v17,vs1,v30

U2, Uygrg s tygrs U1
—|—M v, V3 5 v2:3, v12)
+M

“122' Upgr U3, Ugl )
+M

s U125 V35 V31
+M
+M

(
(
(
(
(
(
(
(
(
(
+M
iy iy
M(
(
(
(
(
(
&
("
("
(
(

“122’37 UL, w2 gl
1 V1:35Y2:3 5 V2:3
“122/37 w2, U3, gl
V2:15V3:1 5 V2:1
“122/37 w2 s Ugrgs U3 )
V215 ¥2:1 5 V3:2
“1 2’3’“122’* 1270 Yol )
» U2:3 5 V1:2502:1

s UT2 5 3, v23
U5 Uygr s U3, Ugr
vg, v] ,v3,v3:1
U, U, Ugrg s u3)

— M viv2, 927, v3:2
ug,u 12/3,u17u3)
vg, V3" ,v1:2,v3:2

122/,u3, u9g ,u2/)
Ul V3, v2:1,92:1
"122” w2, U3, gl
»V2:15 V35 v2:1

—-M

U1, Uoolg ol Yol )
Vi, V25 v3:2,v2:3
122'3’ U2 s Uigls Yol
1U2:35 V1:3 5 V2:1
u 2/37 uQ 71142/377!2/)
1 U2:15 V301 5 V2:3
“1 2/3’“122" u2 o Ul
) U1:3
1

—M
—-M
-M
—-M
—M

»U2:1 5 V2:1
w 22’3’“22/3* u2 o Ul
» U3:1 5 V2:3502:3
122’3’“12’3*”12’7 vl
y U3:2 5 ¥2:3 5 V1:2

= (1,2,1)

y Uy = (ul) )
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M
M
M
M
)M

= (Ug) )

U, U, Ugs 5 U3
+ M s vz»vz’va)
U U, Uyl Ugs
+ M v1ive, O3 7v23)
U, Upgr s U, UL
—|—Z\4 v, V2 U3, v12)
UL, Ugorg s U 5 Ugs

A M v B g s
+M
+M
+M
+M
+M
+M

)
122/’“3 U2/ Yol )
U35 V125 V21

)
)

“2,Uygr3, Uglg s U3
V2, V1 5, V2:1,Y3:2

“122’ gl Ugl 5 U3
) V1125 V2:15 V3

“122’3’ w3 o U2 gl
»U3:15v2:1 5 92:1

“122’3’ u2 U1 gl
1 V2:35V1:3 5 V2:3

u122/3* w2 sUygrs U1
1 V2:35 V2:3 5 V1:2

U1 2/3*" 273> %alg Ul )
) U2:1 5 ¥3:2 5 V2:3

(
(
(
(
("
(
(
(
(
(
+m
PR )
(V251 g %3
(
(
("
(
(
("
("
("
(
("

— M v2iv1, 027, v3:2
U, Upof 5 Ugs 7u3)

— M w2 o1 svdias v
Uz, Upgrgs U3 5 Ul
— M v2s V27, v3:2,v102

122/7 U 5 Ugs ,u3)
U1 ,v2:1,v2:15 Y3
w2, Uygrg, Ualg s Ul )
v, V] ,v3:1,v2:3

U2, U9l35 Yol Yol )
Ch

—-M

v3
122’3’ U1 o Ugrgs Ugl )
) V1:25 V3:2 5, V2:3

u 2973 u3 ,u12,, 2/)
U2 5 03:25 V112 5 V2:1

Uy 2/3,u 237 U1 > Ugl
) U3:2 5 V1:352:3

u122/3*"12’37 U3 o Yol
) V1:2 5 ¥3:15Y2:1

» U1:3502:1

122’3’"12’37“2’3’ “3
» U125 V2:1 5 V3:2

g = (ug, uz)



ul,uqs,ug, U3
=+ M 101502, U3)
U, Uqrg, Uy s U3
+ M v, 02" v, vs)
UY Uz Uys 5 U
+ M v, v s, U23)
+M
U, Uqglgg s U , UD
+ M 1o %1123%3171121)
U1, Ugr93, Uyrg s Uyl
—|—M vi, VU3 ,v2:3, v12)
“11/23’ U3 s Uyrgs U/
+M sU3:15v2:1 012)
+M
+M s V21 V12, 03:2
UL, Uprg s U2 7'u,3)
— M v1s 01 w2103

Uy, uqs, U3, U3 )
V1, V1, V2 ,73:2

U1-Uyr93, Uyl s U3 )
vy

11/2, Uy, uqs ,ug)
»V1:25Y1:2, Y3

“11’237“1’23* U3 b Ui
s V2:1 5 ¥3:25 V112

V2 5 V1:2,Y3:2

U1, U/935 Uy U2 )
—M'v1, vs
11’2’“1'2’“3* “17)

5 V2:1 5 V35 V1:2
u 1/237 Ul oo Uyl U3 Y

1 V1:2 5 V1:2 5 V3:2
u11/237 u3z , uy vull )

1 V3:25V1:2 5 V1:2
w 1’23’“1’23* Yo U2

» U3:1 5 V1:3502:3

» V1:3 5 Y2:1
—-M
-M
-M
—-M

(
(
(
(*
(
(
(
(
(w2822l 23 )
(
(
(
(
(
("1
(
("1
M(

> V3:1 »V2:3,V1:2
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“11/23 M1/930 1790 U1/

Up,Uyrg, U3, U 1/)

v2 ,V3,v1:2

u11/2 » Ul U3,

+M v
+ M 1,1, vz 023
1/2,713, Uy, uqs )
+M
“17)
$V1:25 V35 V12
+ M v, vi7v2i1,v3:2
1/23, up g, U3
+M
"11'23’ ot T SRR U
1V1:35 ¥2:3 5 V1:2
“11’23’“11’2* U1 vy
+M s V2:35V1:2 1112)
+M s 931 5 V1:3 5 v2:1
U1, uysp, U3, U

Ul uUqs U3, U )
SV3 5 V1525 V152
+M
UL, Uq/g3, U3, U3 )
$V1:3591:3 5 V2:3
+M
—M' v,

» V3, v2:1

Uy, Uqrg3s UZ 5 Ug/
V1, Y2 ,V3:2,V1:2
UL s Uyrgg s U3, U

)
—M' v, v vz, vzs)
)
)

M “11'2’“1’2’ Uy U3

» ¥2:15,Y1:2, Y3

u 1/2 YU 5 Uprg, Uyl

» V35 V2:1 5 V1:2

(

(

(1

(

(

(1

(

(

(“11/23’“1/23*“1’2’ w2

(

(

(

(

("1
AT
Cagae 400

M( 11’23’"11:;2:1;%’%::11’2)



8.9 Tables: weighted multiplication.

Here is the wemu product of simple logarithms, with the notations
of Proposition 3.6.

WS(le)
st
ws'

uyp,uz,u3
by, by, b3

)
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up
= +5'
(v (U125 w1 U2, 1) (4125 u2) “12’“2)
= +S'b1. 5512”’1 _S by b1 Sblzvbz _|_S by by
N u N uy , 2,3 , ug ul ug 3,
__}_S(bll,b;:bg)_S(bl’b2,37b3)+s b1, by . )
(u , U2,3 “2) (ul,ugg,ug “12,u3,u1)
_|_Sb17b23 — G'b1 s b +Sb12,b3,b1
2,u3,u1) “127”37”2) (“12,U3,U2)
_S bl by Sb127b37b2 _|_S , by, by
u12,u1,ug u12, uy , ug u1,2 , ug , ug
+S(b1727b1 ) S( blvbS)—S(b1:2’b2’b3)
u1 2, ug ,u3) u1,2,3 , U3, uz) (“1,2,3 s U3, U
+S 62 , by, + S b1,2,3 » by , by’ S ba3 b3, b
“1,2,3,u1,u3) (u1,2,37U1 7“3) (“1,2,3,u3vu1)
_Sb123,b11b3 +S by,3 b1, b3 _Sb1’2’3’b3’b1
(u1,2,3,u37u1) (“1,2,37u1 7u2) (u1,2,37u1,u2)
+S b13 , b3 , by _|_S 51,273,171,172 _S 5172 , b1, b
(V12,3 12,3, u3) (Y123, 12,3, u3) (“1,23 > 3 7U3)
Sb123’b2,3’b3 _S b2,3 »b23.037 _ GV brg b3,
172’3 , u2.3, u3 u1,2,3 , 42,3, uz) (u1,2,3 ;> U2.3, uz)
+S ;b3 S b1,2,3 » ba 3 » + 5 P23 sb23 b
( 1,2,3a“2,37u2) (V12,3123 u2) (¥1,2,3 41,2, u2)
4G bi2 b2 sb27 QY by s by s bp’ . Ghbiaz s bra s b2
(“1,2,3 5 41,2, uz )y (Y1235 u1,2 , u2) ("1,2,3 5 41,2 U2y
+8 b12 sbr2ob2” 4 G ba3 s b s b2t QY by s by b
(U1,2,3 541,25 0 (“1,2,3 5 41,2 upy (“1,2,3 5 41,2 U1y
+S b1,23 0120017 G big sbr2sb17 _ GYbyg s b o b1
1,2,3 P U12 U1y
_|_S , by b1



Here is the yemu product of simple logarithms, with the notations
of Proposition 3.7.

ysth) = st
ystiig) = 45610 4 GRud) _ (3l — gGhgD 4 Gt
ystnand) = gl glidii) 4 glingieg?)
_gtE) 4 gGhget) ¢ gtingEd) _ gl ing)
1S — (g as) — Gt 4 gGh et
+S0GRa ) — g(3ing i)
CSUETED) L gUhE wed) 5 )

by, b2:1,03:2 by, b2:1, —b2 by, —by, b3
+S(v17v2;1av3:2) — S(Uls”2:17’03:2) — S(v17v2;11v3:2)

b3, b2:3,01:2 b3 ,b2:3, —ba b3, —=b3, b1
+S(U37v2:3’v1:2) — S(U3’v2:3vv1:2) — S(U3»v2:3w1:2)

b3, b1:3,b2:1 b3,b1:3, b1 b3, —bg, b
—S(vsvv1:3vv2;1) + S(v3vv1;3w2:1) + S(vsvv1:3vv2:1)

b1 ,03:1 5 b2:1 by, —b1 b1 by ,b3:1,—b1 by, —b1,=b1
—|—S(U1703:1av2:1) — S(Ula”3:1w2:1) — (U17v3:1,v2:1) + S(Ula”3:lv”2:1)

(527b1:2’b3:2) (b2’—b2vb3:2) (b2»b1:2’—52) (b2’—b27—b2)
— S v, v1i2,03:2 + v2,v1:2,v3:27 4 v25V1:2,93:27 — V25 Y1:25 V3:2

b2 ,03:2,b1:2 by, —ba, b1:2 bg, b3:2, —b2 by, —ba, —ba
—S(”27v3:21'”1:2) + S(vzav3:27v1;2) + S(U2,v3:2,v1:2) — S(vzavs:zyvm)

b3,b1:3,02:3 b3, —b3, b2:3 b3,b1:3, b3 bz, —bg , —b3
+S(U37v1:3’v2:3) B SIC A S (3015 vang) + 8(03’111:37”2:3)
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