The scrambling operators applied to multizeta algebra and singular perturbation analysis.

Jean Ecalle,
Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS,
Université Paris-Saclay, 91405 Orsay, France

Abstract. The present paper addresses two seemingly unrelated topics – the analysis of singular-and-singularly-perturbed differential systems; and the arithmetics of multizetas – but with a strong unifying thread, provided by the three scrambling operators.

The operators in question – scram, viscram, discram – properly belong to the field of combinatorics and mould algebra. Their properties are many, but one stands out: generating rich symmetries and sophisticated operations out of poorer or more elementary ones.

The formal solutions of singular differential systems, when expanded in inverse-power series of the ‘critical variable’ \(z \), tend to exhibit divergence, but of a regular and well-understood type: resummable and resurgent, with a resurgence regime completely governed by the now classical Bridge equation. When one introduces a singular perturbation parameter \(\epsilon \) and expands the solution in powers of the same, divergence and resurgence still rule the show, but the picture becomes incomparably more complex: the resurgence calls for two new Bridge equations, not one; the familiar Stokes constants make way for the radically different tessellation coefficients; and it takes the operator scram to fully unravel the mechanisms responsible for this new level of complexity.

The closely related operators viscram and discram, on their part, render distinguished services in multizeta algebra, especially for dissecting what is arguably the most pivotal case: the bicoloured multizetas. For one thing, they assist in proving the independence of the standard system of bicolour generators. But their real contribution lies elsewhere. The fact is that, due to the simultaneous play of weights \(s_i \in \mathbb{N}^* \) and colours \(\epsilon_i \in \mathbb{Z}/\mathbb{Z} \), there exist for any given (large) total weight \(s \), a huge number of \(k \)-coloured multizetas. Yet there is a saving grace: the double symmetry (known as arithmetical dimorphy) which constrains these multizetas induces so strong a rigidity that the whole information can be recovered from relatively sparse boundary data (somewhat like with harmonic or analytic functions). The phenomenon is particularly striking in the case of bicolours (\(k=2 \)) and their
three satellites: the ‘lower satellite’ \(sa \), with all degrees set equal to 0; the ‘first upper satellite’ \(sa^* \), with all colours (simultaneously) set equal to 0 or \(\frac{1}{2} \); and the ‘second upper satellite’ \(sa^{**} \), similar in shape to the first, but completely different in origin. We show, with ample assistance from viscram and discram, how each of these three satellite systems not only morphs into the other two, but also leads to the complete system of bicolours – each conversion finding its expression in remarkably explicit formulae.

Contents

1 Introduction. The three scrambling operators. 4
 1.1 Roadmap and main results. 4
 1.2 Origin and properties of \(\text{scram} \). 11
 1.3 Origin and properties of \(\text{discram} \). 14
 1.4 Origin and properties of \(\text{viscram} \). 16
 1.5 The scrambling operators: synopsis. 18

2 Hyperlogarithmic monomials and monics. 20
 2.1 Ordering the hyperlogarithmic chaos. 20
 2.2 \(\hat{c} \)-friendly monomials and monics. 21
 2.3 Index dependence of monomials and monics. 24
 2.4 The monics \(\text{Lan}^*/\text{Lin}^* \) and \(\text{Lag}^*/\text{Lig}^* \). Double arithmetical dimorphy. 27
 2.5 Hyperlogarithms under translation. 31
 2.6 Polar exchange in the convolutive plane. 32
 2.7 Polar exchange in the multiplicative plane. 34
 2.8 Summary. 36

3 Weighted products and augmented scrambles. 37
 3.1 Introduction. 37
 3.2 The basic weighted convolutions \(\text{weco}/\text{yeco} \). 38
 3.3 The basic weighted multiplications \(\text{wemu}/\text{yemu} \). 40
 3.4 From \(\text{wemu}/\text{yemu} \) to \(\text{weco}/\text{yeco} \). 42
 3.5 Weighted convolution of simple poles. Duality. 43
 3.6 Weighted multiplication of simple logarithms. Duality redux. 44
 3.7 The augmented scrambles. 46
 3.8 Weighted products of hyperlogarithms. 54

4 Singularly perturbed systems and co-equational resurgence. 56
 4.1 Equational vs co-equational resurgence. 56
 4.2 Biresurgent monomials and weighted products. 60
4.3 The elementary monomials $V^\bullet(z)$ and monics V^\bullet. 67
4.4 The special monomials $S^\bullet(x)$. .. 70
4.5 The augmented monomials $S^\bullet(x)$ and $S^\bullet_{am}(x)$ 70
4.6 Vanishing u_r-sums and amended monomials $S^\bullet_{am}(x)$. 73
4.7 Alien derivatives of the monomials $S^\bullet(x)$. 75
4.8 The tessellation coefficients tes^\bullet. 81
4.9 The three Bridge equations at the molecular level. 91
4.10 The three Bridge equations at the global level. 98

5 Multizeta algebra: the independence theorem for bicolours.105
5.1 Reminders about the flexion structure. 105
5.2 Multizetas and their generating series. 107
5.3 The basic polar/trigonometric bisymmetrals. 111
5.4 The double trifactorisation of zag^\bullet/zig^\bullet. 113
5.5 Singulators, singulates, singulands. 114
5.6 General difficulty: infinitude underlying the double symmetry. 117
5.7 Difficulties proper to the monocolours and bicolours. 117
5.8 The independence theorem for bicolours. 119

6 Multizeta algebra: the satellisation technique for bicolours.123
6.1 The lower or root satellisation sa: zero-degree bicolours. .. 124
6.2 The first upper satellisation sa^\ast: all-whites and all-blacks . 125
6.3 The second upper satellisation $sa^{\ast\ast}$: amplification. 126
6.4 The mischief potential of log 2. .. 129
6.5 The double symmetry and the even-to-odd-degree extrapolation.132
6.6 Recovering the general bicolours from the all-blacks: the op-
erators $discram$ and $viscram$. ... 136
6.7 The double symmetry’s reflection in the extremal algebra. 138
6.8 The degree-length exchanger dre. Co-satellites. 140
6.9 Correspondence of the two upper satellite systems. 141
6.10 Recapitulation: the circulation of information. 142

7 Multizeta algebra: decomposing the monocolours into irre-
ducibles. 147
7.1 Polynomial bialternals. .. 148
7.2 Discrete-periodical bialternals. 150
7.3 General discrete bialternals. ... 151
7.4 Perinomal bialternals. .. 153
7.5 Comparing various flexion settings. 155
7.6 ‘Arithmetical’ vs ‘perinomal’ generators. 158
8 Complements and tables.
8.1 Basic reminders about resurgence, moulds and bimoulds. . . . 165
8.2 The operations lu/mu and $ari/gari$: so different, yet so close. . 167
8.3 The non-vanishing determinants behind the independence of
the bicolour generators. 169
8.4 Unexpected arithmetical interdependence of the length-4 bial-
ternals. 170
8.5 Spectral analysis of the $push$ operator acting on the eupolars. 173
8.6 The $lifted$ variants of the ari bracket. 175
8.7 Tables: the satellites sa, sa^*, sa^{**} up to weight 9. 176
8.8 Tables: ordinary and augmented scrambles. 191
8.9 Tables: weighted multiplication. 202

1 Introduction. The three scrambling opera-
tors.

1.1 Roadmap and main results.

The present paper is about a new family of operators – the scrambling opera-
tors – and their wide-ranging applications to Combinatorics, Algebra, and
Analysis. In keeping with this prospectus, and although we shall present a
fairly large number of new results along the way, our chief concern shall be
one of bridge building and unification, of bringing order and structure to a
seemingly loosely-knit, in places even chaotic mathematical subject matter.

The scrambling operators.

They are three in number\footnote{Not counting two generalisations of scram, to wit the u- and v-augmented scrambles.} – scram, discram, viscram – and their proper setting
is at the intersection of combinatorics and mould algebra. The secret of
their usefulness lies in their two main properties. First, they turn the straight-
forward, uncomplicated, uninflected mould operations into the subtler, more
complex, inflected operations which govern bimould algebra. Second, they
transmute simple symmetries into double ones. Some of them, like viscram,
also preserve double symmetries. This makes them ideally suited for tackling
arithmetical dimorphy.
Singularly perturbed differential systems and co-equational resurgence.

There is a distinct kinship, but also a sharp gap in complexity, between \textit{equational resurgence} (i.e. the divergence-resurgence relative to the \textit{critical variable} of a singular differential system) and \textit{co-equational resurgence} (i.e. the divergence-resurgence relative to a \textit{critical parameter} in such a system). The gap manifests at every level. At the global level: while equational resurgence is entirely described by \textit{one} so-called Bridge equation (relating alien and ordinary differential operators), co-equational resurgence calls for \textit{two} Bridge equations, each of a far more intricate structure. At the analytical level: while equational resurgence and equational Stokes analysis require only simple \textit{resurgence monomials} (elementary resurgent functions) and \textit{monics} (elementary transcendental numbers), co-equational resurgence calls for incomparably more complex monomials and an altogether new type of monics, the discrete-valued \textit{tessellation coefficients}, which largely replace the familiar, continuous-valued Stokes constants. Lastly, at the methodological level, we have this major complication: while the shape and nature of equational resurgence may be established almost calculation-free, by formal manipulations involving the alien derivations and supplemented by only a modicum of Analysis, co-equational resurgence allows no such short-cuts, not even for performing the very first step: locating the singularities on the various Riemann sheets of the ‘Borel plane’.

As it happens, this gap in complexity faithfully reflects the divide between \textit{uninflected mould algebra}, developed in the late seventies, largely as a handtool for equational resurgence, and \textit{inflected bimould algebra}, developed from the mid-eighties for tackling co-equational resurgence. We survey (and update) the question in sections §2 and §3, and then tackle perturbed differential systems in §4.

An outstanding feature of co-equational resurgence is the centrality of \textit{combinatorics} to the subject – a combinatorics moreover that is entirely dominated by the scramble transform, and even, in the case of ramified \(z\)-data, by a generalised version of it. One may balk at the complexity of certain developments, and resent the notational acrobatics they force on one, but one would do well to remember two things. First, the combinatorics in question has nothing artificial about it: it is entirely, rigidly, univocally imposed by the nature of this particular, very prevalent form of resurgence. Second, while the combinatorics is complex enough in its own terms, it neatly disentangles and tidies up mathematical situations that are incomparably \textit{more} complex. Consider for instance this system, with generic, depth-4 hyperlogarithmic
coefficients b_i:

$$ (\partial_z + \omega_i x) Y_i(z) = Y_{i-1}(z) b_i(z) \quad (1 \leq i \leq 4, Y_0 \equiv 1) \quad (1) $$

It is a honest-to-goodness differential system, linear to boot, and fairly simple. Yet its resurgence in x generates, in the corresponding Borel ξ-plane, close to 10^{10} distinct singularities, living on as many Riemann sheets. Situations like this may seem well-nigh intractable, yet the tool-kit presented here, in §2-§4, leads to a complete, surveyable description of all their aspects. This should never be lost sight of when assessing the cost-effectiveness of the analytico-combinatorial apparatus introduced here.

Moreover, while combinatorics may dominate our treatment of coequational resurgence, when it comes to stating the results, it is two other notions that occupy center-stage. They are:

(i) the weighted multiplication or rather its Borel image, the weighted convolution, which generate the specific ‘resurgence monomials’ which in turn manifest co-equational resurgence at the most basic level.\(^2\)

(ii) the tessellation coefficients, indispensable but also sufficient for expressing the alien derivatives of these convolution products.

The passage from (i) to (ii) is precisely where combinatorics comes in: the integrals underlying weighted convolution are so intricate, so impossibly ramified, that the rules governing their alien differentiation cannot be established directly, but only over the detour through a special set of functions (the hyperlogarithms) sufficiently numerous to reflect the general picture, yet simple enough to allow a complete formalisation.

Multizeta algebra: monocolours and bicolours.

Soon after their introduction in Analysis, the scrambling operators and the flexion structure were found relevant to multizeta arithmetics, and began to be successfully applied there. This should not come as a surprise, since the multizetas are, among other things, one of the most basic systems of monics (they are the main transcendental ingredient in the make-up of the Stokes constants of local resonant diffeomorphisms) and the most seminal instance of arithmetical dimorphy.

We have already devoted several investigations to the subject, and are planning many more, but in this paper (§5-§7) we concentrate on just two classes of multizetas – the monocolours and bicolours – and keep the focus

\(^2\)More precisely, everything rests on two weighted multiplications, $wemu^*$ and $welu^*$, and the corresponding weighted convolution, $weco^*$ and $welo^*$. The symmetrical operations $wemu^*/weco^*$ are essential for understanding the Second Bridge Equation; the alternating operations $welu^*/welo^*$ for understanding the Third Bridge Equation.
on one main issue: the search for a suitable filtration, as a way of overcoming the curse of retro-action. Let us explain.

Multizetas, whether taken in scalar form or collected inside the more convenient generating series zag^*/zig^*, admit three basic filtrations: by total weight s, by length r, and by degree $d = s - r$.

The s-filtration is fine as far as it goes: the two basic ‘symmetries’ (i.e. the two, conjecturally exhaustive, systems of ‘quadratic relations’) constraining the multizetas do indeed respect the filtration and even the gradation by weight, but as s increases, the multizetas of weight $\leq s$ get much too numerous for practical handling, especially in the case of bicolours.

The s-filtration, when refined by the s-filtration, looks more promising, but it remains blighted by the curse of retro-action. That curse, moreover, manifests in two sharply different, almost complementary ways for monocolours and bicolours, especially when one works in the relevant Lie algebra, namely $ART^{2l/d}_{ent}$. For monocolours, the two symmetries nicely allow the construction of a system of generators following the (s, r)-filtration, but do not fully determine the decomposition of the general element of $ART^{2l/d}_{ent}$ in terms of these generators: at each level (s, r) there is generally an indeterminacy which gets removed only when we proceed to the level $(s, r + 1)$. For bicolours, the position is exactly the reverse: once we get hold of a system of generators, the decomposition of the general element of $ART^{2l/d}_{ent}$ is fully determined at each level (s, r), but the generators themselves resist construction according the (s, r)-filtration: at most levels (s, r) there appear parasitical degrees of freedom, which get removed only when we proceed to the higher levels $(s, r + 1), (s, r + 2)$ etc.

That leaves the s-filtration refined by the d-filtration ($d = s - r$). It suffers from neither drawback (no retro-action there, at least for bicolours) but, starting as it does from low values of d and correspondingly high values of r, it saddles us with cumbersome polynomials of r variables.

These two distinct forms which retro-action can assume call for quite distinct remedies.

For monocolours, the best (though by no means the only) way out of trouble is to move from the polynomial to the perinomal setting. i.e. to work with plurivariate meromorphic functions with a very specific pole structure. We show in §7 how this simple and very natural trick enforces rigidity by removing all indeterminacy not only in the stepwise construction (along the r-filtration) of canonical generators of $ART^{2l/d}_{ent}$ but also in the stepwise de-

\[\text{\footnotesize{3}}\text{so-called, because in the approach based on the generating series } zag^*, d \text{ does indeed correspond to the global polynomial degree in the } u-\text{variables.} \]

\[\text{\footnotesize{4}}\text{as explained in §5.7.} \]
composition (again along the r-filtration) of elements of $ARI_{\text{ent/d}}$ in terms of these generators.

For bicolours, the key notion is satellisation, i.e. the replacement of the huge quantity of multizetas (consequent on the introduction of colours) by sparse ‘boundary data’ or ‘satellites’, far smaller in size yet containing all the information, and that too in algorithmically retrievable form. There are three such ‘boundary systems’, each self-sufficient, but all three contributing in an essential way to the overall picture. The lower or root satellisation sa retains only the bicolours of zero degree.\footnote{All their partial weights s_i are therefore equal to 1.} The first upper satellisation sa^*, retains only the ‘monochromous bicolours’, i.e. the all-whites (colour 0) and the all-blacks (colour $\frac{1}{2}$). The second upper satellisation sa^{**} resembles the first in outward shape, but results from a completely different construction.\footnote{It derives from the zero-degree multizetas by a procedure known as amplification.}

Two remarkable, hitherto unnoticed phenomena are, in combination, responsible for the success of the satellisation scheme. First, the basic ‘symmetries’ that underpin multizeta dimorphy\footnote{They are technically known as symmetrality/symmetrelity when we work with the scalar multizetas, and symmetality/symmetrelity (resp alternality/alternility) when we turn to the corresponding group (resp. algebra) of generating series. Mark the alternation of the three root vowels $a/e/i$. In all, we get six distinct symmetries, whose definitions are recalled in §8.1.2.} impose on the bicolours a strong rigidity which makes it possible to recover the ‘whole’ from suitable ‘parts’, far smaller and easier to handle, much as harmonicity or analyticity makes it possible to recover the whole of a function from its boundary data. Second, in the ARI algebra and the flexion structure in general, we observe a quite unexpected affinity of behaviour between v-dependent, discrete bimoulds and u-dependent, polynomial-valued bimoulds.\footnote{More precisely, bimoulds that depend only on two-valued colours v_j (usually noted ϵ_j) that range through the discrete ring $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$.} As explained in §6, this discrete ↔ polynomial duality governs the whole system of correspondences between the three satellites as also between each satellite and the ‘global picture’.

Specific new results.

- We give (§1.2–§1.5) a systematic account of the three scrambling operators, their main properties and chief applications to date.

- While reviewing in §2 the subject of hyperlogarithms, we introduce (§2.4), parallel to the classical moulds Lan^*/Lin^* expressive of hyper-
logarithmic dimorphy (dimorphy I), a new pair Lag^*/Lig^* that manifests dimorphy in a completely new way (dimorphy II). Dimorphy aside, the moulds Lag^*/Lig^* have their autonomous interest: as shown towards the end (§2.6-§2.7), they connect the behaviour of hyperlogarithmic monomials at the antipodes 0 and ∞.

- We introduce and investigate (§3.2-§3.4) two weighted multiplications $wemu$, $yemu$ and their Borel images, the weighted convolutions $weco$, $yeco$. Of these, $weco$ alone is of direct relevance to the study of singular perturbations, but it is only in relation with the other three ‘products’ that it assumes its real significance.

- We derive (§3.5) the basic duality result: subjecting simple poles at v_i to $weco$ with weights u_i is essentially the same as subjecting simple poles at u_i to $yeco$ with weights v_i. In both cases, the scramble transform governs the combinatorics.

- We define and investigate (§3.7) two generalised scramble transforms, the u-augmented and v-augmented scrambles, that will be required to calculate the action on arbitrary ramified functions of the four weighted products.

- We extend the scope of functional dimorphy by showing (§3.8) that the hyperlogarithmic monomials are stable not only under convolution and point-wise multiplication10, but also under their weighted counterparts $weco$, $yeco$ and $wemu$, $yemu$.

- Turning (§4) to the study of perturbed differential systems, we introduce and investigate (§4.4-§4.7) the specific resurgence monomials S^* and T^*, along with several variants necessary for tackling co-equational resurgence.

- The monics answering to the monomials S^* and T^* are the so-called tessellation coefficients tes^*. Arguably the most emblematic and arresting feature of co-equational resurgence, they supplant in this context the familiar Stokes constants of equational resurgence. They are integer-valued, piece-wise constant functions on \mathbb{C}^2, with domains of constancy separated by homographic hypersurfaces. Their simplicity is deceptive and the list of their properties (as given in §4.8-§4.9) certainly far from exhaustive.

10what matters here is not the (quite predictable) stability of the hyperlogarithms under these four operations, but the underlying mould transforms with their rich properties.
• Equipped with this analytical machinery, we are in a position (§4.9-§4.10) to derive the Bridge equations II and III that describe (through the whole range of possible situations, from linear to non-linear, from meromorphic to hyperlogarithmic to general) the divergence/resurgence of our model system when we expand its solution in power series of the perturbation parameter $\epsilon = 1/x$. Despite a definite kinship with the first Bridge equation BE_1 (which describes equational resurgence, i.e. the resurgence in the system’s own critical variable z), equations BE_{II} and BE_{III} are more complex by several orders of magnitude. In general, four successive ‘layers of complexity’ have to be distinguished between the raw data (i.e. the perturbed system) and the actual ingredients of BE_{II} and BE_{III}. In some favourable situations, though, the four layers may reduce to three or just two.

• We then leave Analysis and turn to our second field of applications – Multizeta Algebra. After some sketchy reminders (§5.5-§5.7), we establish (§5.8) the independence of the basic bicolour bialternals. Though this was a conjecture of long standing, its proof relies on a transparent formula and turns out to be surprisingly, almost embarrassingly simple.

• With a view to drastically simplify the study of bicolours, we introduce (§6.1-§6.3) the three basic ‘satellites’ or ‘systems of boundary values’: sa, sa^*, sa^{**}.

• We show (§6.4) how ‘$\log 2$’ (– the only bicolour of weight 1 –) complicates the construction of the satellites, twists their mutual correspondences, and obscures their links with the global algebra of bicolours. This probably explains why the very feasibility of ‘satellisation’ had hitherto gone unnoticed.

• We give (§6.5) an elegant formula for deriving the odd-degree components of bimoulds in ARI^{odd} from their even-degree components. The formula admits a restriction to the satellites. Besides Bernoulli-related numbers ξ_n, it makes massive use of the polar function P. It calls therefore for the ARI-framework, and cannot be replicated in any of the alternative settings commonly used in multizeta algebra.

• We show (§6.7-§6.8) that the first and second upper satellites, sa^* and sa^{**}, despite being total strangers resulting from unrelated constructions, in fact correspond under a remarkable involution \mathcal{R}. That involution respects the d- rather than the r-filtration, but we revert to the more convenient r-filtration via an explicit algebra isomorphism that exchanges d and r.

10
• The section culminates (§6.6) in the ‘Green-like’ formulae, based on \(\text{viscram} \) and \(\text{discram} \), which lead from the ‘boundary data’ (i.e. any one of the three satellites) to the full system of bicolours. Here again, we cannot dispense with the polar function \(P \) or the \textit{ARI-GARI} framework.

• Turning (§7) to monocolours, we give (§7.5) three pairs of formulae\(^{11}\) that highlight the contrast between the rigidity of the \textit{perinomal} and the looseness of the \textit{polynomial} framework.

• We show (§7.4) how, thanks to the independence of the \textit{perinomal generators} we can overcome the ‘curse of retro-action’ for monocolours.

• The \textit{polynomial generators} have their use, too. They acquire rigidity if we impose arithmetical constraints on their denominators by banning large prime numbers. We give (§7.5) formulae that describe these generators up to length 3 (hence also, due to parity, up to length 4).

• The last section, alongside reminders (§8.1) and extensive tables (§8.3, §8.7, §8.8, §8.9), presents some scattered results (§8.2, §8.6) and conjectures (§8.4, §8.5) about multizetas and the flexion structure. In particular, we point out (§8.4) a rather mysterious phenomenon of \textit{arithmetical interdependence} (modulo Bernoulli-related numbers) for the length-4 bialternals (the classical \textit{carma} bialternals).

1.2 Origin and properties of \textit{scram}.

This section assumes some familiarity with mould algebra. Absent such familiarity, a quick glance at the reminders in §8.1 is recommended.

Origin:

The scramble operator is a bimould transform

\[
\text{scram} : M^* \mapsto SM^* \quad \text{with} \quad SM^w = \sum_{w'} \lambda^w_{w'} M^{w'}
\]

(2)

and

\[
w = (u_1, \ldots, u_r) , \quad w' = (u'_1, \ldots, u'_r) , \quad \lambda^w_{w'} = \pm 1
\]

that we first introduced in the late 1980’s for calculating the \textit{weighted convolution} products\(^{12}\) \(\text{wecco}^{(v_1, \ldots, v_r)} (\xi) \) of simple polar functions \(c_i (\xi) := (\xi - \alpha_i)^{-1} \).

\(^{11}\)See Propositions 7.1, 7.2, 7.3.

\(^{12}\)They are central to co-equational resurgence. See §4 \textit{infra}.
It soon gave rise to the so-called flexion structure, with the algebra \(ARI \) and the group \(GARI \) as its centre piece. These tools were later brought to bear on multizeta arithmetics.

Construction: In the expansion (2) of \(SM^* \) all new indices \(u'_i \) either reduce to some original \(u_j \) or to a gapless sum of such \(u_j \)'s, while all new indices \(v'_i \) either reduce to some original \(v_j \) or to a pairwise difference of (not necessarily consecutive) \(v_j \)'s. Moreover, the ‘scalar product’ is preserved: \(\sum u_i v_i = \sum u'_i v'_i \). These, incidentally, are standard features of the flexion structure, as are the shorthand notations for partial sums and pairwise differences:

\[
u_{i,\ldots,j} := u_1 + \cdots + u_j \quad , \quad v_{i,j} := v_i - v_j \quad (3)
\]

To actually define the expansion (2) we proceed by induction on \(r \) and make use of the index removal operators \(\text{cutfi}^{w_0} \) and \(\text{cutla}^{w_0} \) (fi for first, la for last):

\[
\begin{align*}
\text{cutfi}^{w_0} M \left(w_1, \ldots, w_r \right) & = \\
\begin{cases}
M^{w_2, \ldots, w_r} & \text{if } w_0 = w_1 \\
0 & \text{otherwise}
\end{cases} \quad (4) \\
\text{cutla}^{w_0} M \left(w_1, \ldots, w_r \right) & = \\
\begin{cases}
M^{w_1, \ldots, w_{r-1}} & \text{if } w_0 = w_r \\
0 & \text{otherwise}
\end{cases} \quad (5)
\end{align*}
\]

We have the choice between two very dissimilar, yet equivalent inductions:

Forward induction:

Let \(SM^* := \text{scram} M^* \) and \(w = \left(u_1, \ldots, u_r \right) \). For \(r = 1 \), we start the induction by imposing \(SM^{u_1} := M^{u_1} \), and for \(r \geq 2 \) by imposing \(\text{cutla}_M^{u_1} SM^{w} = 0 \) except for \(w_0 \) of the form \(\left(v_1 \right), \left(u_i \right), \left(v_i - v_{i+1} \right), \left(v_i - v_{i-1} \right) \), in which case we set:

\[
\begin{align*}
\left(\text{cutla}_M^{u_1} \right) ^{w_1, \ldots, w_r} SM & = +SM^{u_1, \ldots, w_r-1} \quad (6) \\
\left(\text{cutla}_M^{v_i} \right) ^{w_1, \ldots, w_r} SM & = +SM^{u_1, \ldots, u_i + u_{i+1}, \ldots, w_r} \quad (7) \\
\left(\text{cutla}_M^{v_i} \right) ^{w_1, \ldots, w_r} SM & = -SM^{u_1, \ldots, u_{i-1}, u_i + u_{i+1}, \ldots, w_r} \quad (8)
\end{align*}
\]

The lower index \(M \) in \(\text{cutla}_M^{u_1} \) signals that this operator is made to act, not on \(SM^* \), but linearly on the various \(M^* \)-summands of the expansion (2).

Backward induction:

Let again \(SM^* := \text{scram} M^* \) and \(w = \left(u_1, \ldots, u_r \right) \). This time, we impose \(\text{cutfi}_M^{u_1} SM^{w} = 0 \) except for \(w_0 \) of the form \(\left(u_1 + \cdots + u_j \right) \) with \(i \leq j \leq r \), in
which case we set:

\[
\left(\text{cutfi}_M^{(u_1^1 \ldots u_j^j)} SM \right)^w = \text{symlin}(SM^{w_1}_{v_1}, \overset{\text{SM}}{\text{SM}}^{w_2}_{v_2}, SM^{w})
\]

(9)

with \(\tilde{w} = (u_1^1, \ldots, u_{i-1}^{i-1}) \), \(\tilde{w} = (u_{i+1}^{i+1}, \ldots, u_j^j) \), \(\tilde{w} = (u_{j+1}^{j+1}, \ldots, u_r^r) \) and

\[
\overset{\text{SM}}{\text{SM}}^{w_1 \ldots w_r} := (-1)^r SM^{w_r \ldots w_1}, \quad SM^{w_1} := SM^{v_1 - v_0 - v_r - v_r - v_r - \ldots}
\]

The bilinear operators symlin (‘symmetrical linearisation’) and concat (‘concatenation’ – of frequent occurrence in the sequel) are so defined:

\[
\text{symlin}(SM^{w_1}, SM^{w_2}) := \sum_{w \in \text{sha}(w_1, w^2)} SM^w
\]

(10)

\[
\text{concat}(SM^{w_1}, SM^{w_2}) := SM^{w_1 \cdot w_2}
\]

(11)

Remark: As is well known, the relation \(S^{w_1} S^{w_2} = \sum_{w \in \text{sha}(w_1, w_2)} S^w \) characterises symmetrical moulds. For such moulds, (9) simplifies:

\[
\left(\text{cutfi}_M^{(u_1^1 \ldots u_j^j)} SM \right)^w = SM^{w_1}_{v_1} \cdot \overset{\text{SM}}{\text{SM}}^{w_2}_{v_2}, SM^{w}
\]

(12)

The backward induction, however, \textit{always} applies (with symlin defined as in (10)), whether SM* is symmetrical or not.\(^{13}\)

Analytical expression:

The forward induction makes it clear that scram\(A^{w_1 \ldots w_r}\) involves \(r!! := 1.3.5 \ldots (2r - 1) \) summands. Of these, \((r!! + 1)/2 \) are preceded by a plus sign, and the remaining \((r!! - 1)/2 \) by a minus sign. Thus, for \(r = 1, 2, 3 \), we find:

\[
\begin{align*}
\text{scram } M^{(u_1^1)} &= M^{(v_1^1)} \\
\text{scram } M^{(u_1^1, u_2^2)} &= M^{(v_1^1, v_2^2)} + M^{(v_1^1, v_2^2, v_1^1, v_2^2)} - M^{(v_1^1, v_2^2, v_2^2, v_2^2)} \\
\text{scram } M^{(u_1^1, u_2^2, u_3^3)} &= +M^{(v_1^1, v_2^2, v_3^3)} + M^{(v_1^1, v_2^2, v_3^3)} - M^{(v_1^1, v_2^2, v_3^3)} + M^{(v_1^1, v_2^2, v_3^3, v_1^1, v_2^2, v_3^3)} - M^{(v_1^1, v_2^2, v_3^3, v_2^2, v_3^3, v_2^2, v_3^3)} + M^{(v_1^1, v_2^2, v_3^3, v_3^3, v_1^1, v_2^2, v_3^3)} - M^{(v_1^1, v_2^2, v_3^3, v_3^3, v_2^2, v_3^3, v_2^2, v_3^3)}
\end{align*}
\]

\(^{13}\)In actual fact, SM* is symmetrical if and only if M* is.
Main properties.

(i) Turning uninflected into inflected operations:
When acting on alternals, *scram* turns the ordinary *lu* bracket into *ari*, and when acting on symmetrals, it turns ordinary mould multiplication *mu* into the *gari* product:

\[\text{scram} \cdot \text{lu}(A^*, B^*) = \text{ari}(\text{scram} \cdot A^*, \text{scram} \cdot B^*) \] \hspace{1cm} (13)

\[\text{scram} \cdot \text{mu}(R^*, S^*) = \text{gari}(\text{scram} \cdot R^*, \text{scram} \cdot S^*) \] \hspace{1cm} (14)

Actually, for (14) to hold, it is enough for the second factor S^* be symmetral. In (13), though, both factors have to be alternal.

(ii) Respecting simple symmetries:

\[\{ A^* \text{ alternate} \} \implies \{ \text{scram} \cdot A^* \text{ alternate} \} \] \hspace{1cm} (15)

\[\{ S^* \text{ symmetrical} \} \implies \{ \text{scram} \cdot A^* \text{ symmetrical} \} \] \hspace{1cm} (16)

(iii) Creating double symmetries:
If A^* is alternal and *even* separately in each w_i, then *scram*. A^* is bialternal. Likewise, if S^* is symmetrical and *even* separately in each w_i, then *scram*. S^* is bisymmetrical.15

1.3 Origin and properties of *discram*.

Origin:
The operator *discram* arose almost accidentally, while searching for a means of expressing all bicolored multizetas from a very small subset – the subset of ‘all-blacks’.16 Unlike *scram*, *discram* acts not on bimoulds, but on moulds M^*.17 Like *scram*, *discram* produces bimoulds, but of a very special sort: their lower indices $v_i = \epsilon_i$ range through $\frac{1}{2} \mathbb{Z}/\mathbb{Z}$. They are ‘colours’, either 0

\[a_{w_1} \cdots w_r \epsilon \] \hspace{1cm} (14)

\[a_{w_1} \cdots w_r \epsilon \] \hspace{1cm} (15)

14Recall that M^* is said to be bialternal (resp. bisymmetrical) iff M^* and *swap*. M^* are both alternal (resp. symmetrical), with *swap* denoting the basic flexion involution: see §5.1 or §8.1.4.

15Recall that M^* is said to be bialternal (resp. bisymmetrical) iff M^* and *swap*. M^* are both alternal (resp. symmetrical), with *swap* denoting the basic flexion involution: see §5.1 or §8.1.4.

16Recall that M^* is said to be bialternal (resp. bisymmetrical) iff M^* and *swap*. M^* are both alternal (resp. symmetrical), with *swap* denoting the basic flexion involution: see §5.1 or §8.1.4.

17In this paper, we shall have to handle moulds nearly as often as bimoulds. As far as feasible, we shall use curly capitals A^*, B^*... for moulds and ordinary capitals A^*, B^*... for bimoulds.
discram : $\mathcal{M}^* \rightarrow S^*_\mathcal{M}$ with $S^*_\mathcal{M} = \sum_{u'} \lambda_{u'}^{w} \mathcal{M}^{u'}$ (17)

and

$$\begin{align*}
\begin{cases}
w = (u_1, \ldots, u_r) \\
\epsilon_1, \ldots, \epsilon_r \in \frac{1}{2}\mathbb{Z}/\mathbb{Z}
\end{cases},
\begin{cases}
u' = (u_1', \ldots, u_r') \\
\lambda_{u'}^{w} = \pm 1
\end{cases}
\end{align*}$$

Construction:

(i) We start from the expansion (2) of $\text{scram.} \mathcal{M}^*$.
(ii) To each of the sequences $w' = (u_1', \ldots, u_r')$ occurring on the right-hand side, we attach two elementary sequences

$$
\mu(w') = (\epsilon_1', \ldots, \epsilon_r'), \quad \nu(w') = (\sigma_1', \ldots, \sigma_r')
$$

defined in this way:

$$
\epsilon_i' = \begin{cases}
0 & \text{if at least one } v_k' \text{ in } w' \text{ is of type } v_i - v_j \\
\frac{1}{2} & \text{otherwise}
\end{cases} \quad \text{(18)}
$$

$$
\sigma_i' = \begin{cases}
-1 & \text{if } \epsilon_i' = 0 \\
1 & \text{if } \epsilon_i' = \frac{1}{2}
\end{cases} \quad \text{(19)}
$$

(iii) For each sequence $(\epsilon_1, \ldots, \epsilon_r)$ we set:

$$
S^{(\epsilon_1, \ldots, \epsilon_r)}_{\mathcal{M}} := \sum_{\mu(w') = (\epsilon_1', \ldots, \epsilon_r')} \lambda_{w'}^{u'} \mathcal{M}^{\sigma_1' u_1' \ldots \sigma_r' u_r'} \quad \text{(20)}
$$

The only elementary cases are

$$
S^{(\frac{1}{2}, \ldots, \frac{1}{2})}_{\mathcal{M}} = \mathcal{M}^{u_1 \ldots u_r} \quad \text{('all-blacks')} \quad \text{(21)}
$$

$$
S^{(0, \ldots, 0)}_{\mathcal{M}} = 0 \quad \text{('all-whites')} \quad \text{(22)}
$$

For most other sequences $(\epsilon_1, \ldots, \epsilon_r)$ the right-hand side of (20) inevitably carries a rather large number of summands, since according to (17) the $r!!$ terms in the expansion of $\text{scram.} \mathcal{M}^w$ get redistributed among only 2^r sequences $(\epsilon_1, \ldots, \epsilon_r)$.

Main properties:

(i) Turning uninflected into inflected operations:
When acting on alternals, discram turns the ordinary lu bracket into ari, and
when acting on symmetrals, it turns ordinary mould multiplication \(mu \) into the \(gari \) product:
\[
\text{discram} \cdot \text{lu} (A^*, B^*) = \text{ari} (\text{discram} \cdot A^*, \text{discram} \cdot B^*) \tag{23}
\]
\[
\text{discram} \cdot \text{mu} (R^*, S^*) = \text{gari} (\text{discram} \cdot R^*, \text{discram} \cdot S^*) \tag{24}
\]

Once again, for (24) to hold, it is enough for the second factor \(S^* \) to be symmetrical.

(ii) **Respecting simple symmetries:**
\[
\{ A^* \text{ alternal} \} \implies \{ \text{discram} \cdot A^* \text{ alternal} \} \tag{25}
\]
\[
\{ S^* \text{ symmetral} \} \implies \{ \text{discram} \cdot S^* \text{ symmetral} \} \tag{26}
\]

(iii) **Creating double symmetries:** We know of no simple, non-tautological necessary and sufficient condition on \(M^* \) for \(S^*_M \) to be bialternal or bisymmetrical, but there is an elementary sufficient (far from necessary) condition: if \(M^* \) is even separately in each \(u_i \) and alternal (resp. symmetrical), then \(S^*_M \) is bialternal (resp. bisymmetrical).

(iv) **“Recovering the whole from a part”:**
If a bimould \(M^* \) with lower indices \(\epsilon_i \in \frac{1}{2} \mathbb{Z} / \mathbb{Z} \) is bialternal and if we set
\[
M^{(u_1, \ldots, u_r)} := M^{\left(\frac{u_1}{2}, \ldots, \frac{u_r}{2}\right)},
\]
then the reconstitution identity holds:
\[
(\text{discram} \cdot M)_{\epsilon_1, \ldots, \epsilon_r} = M^{(u_1, \ldots, u_r)} \quad \forall (\epsilon_1, \ldots, \epsilon_r) \neq (0, \ldots, 0) \tag{27}
\]

1.4 Origin and properties of \(\text{viscram} \).

Origin:
Here also, the prime impulse came from multizeta algebra. But although \(\text{viscram} \) has a definition patterned on that of \(\text{discram} \), in outward shape it more closely resembles \(\text{scram} \). Like \(\text{scram} \), it turns bimoulds into bimoulds:

\[
\text{viscram} : M^* \mapsto \text{viscram} \cdot M^* \quad \text{with} \quad \text{viscram} \cdot M^* = \sum_{w''} \epsilon_{w''} M^{w''}, \quad w'' \quad \text{and} \quad w = (u_1, \ldots, u_r), \quad w'' = (u''_1, \ldots, u''_r), \quad \epsilon_{w''} = \pm 1 \tag{28}
\]

However, compared with the sequences \(w' \) of (2), the new sequences \(w'' \) exhibit slight sign changes, which look innocuous enough but greatly enhance the properties and usefulness of \(\text{viscram} \).

18See §4.6.
Construction:

We start from (2) and define $\mu(w'), \nu(w')$ exactly as in §1.3. But this time we retain all lower indices v'_i and merely change the signs in front of some of them, using the σ_i of (19):

$$\text{visSM}(w'_1, \ldots, w'_r) := \sum_{w''} \lambda^{w''}_{w''} M(w''_1, \ldots, w''_r)$$

(29)

Since the upper and lower indices undergo exactly the same sign changes, we still have conservation of the scalar product $\sum u_i v_i = \sum u''_i v''_i$ in (28).

Main properties:

(i) Turning uninflected into inflected operations:
When acting on neg-invariant alternals, viscram turns the ordinary lu bracket into ari, and when acting on neg-invariant symmetrals, it turns ordinary mould multiplication mu into the gar product:

$$\text{viscram}.lu(A^*, B^*) = ari(\text{viscram}.A^*, \text{viscram}.B^*)$$

(30)

and

$$\text{viscram}.mu(R^*, S^*) = gari(\text{viscram}.R^*, \text{viscram}.S^*)$$

(31)

As usual, for (31) to hold, it is enough for the second factor to be symmetral.

(ii) Respecting simple symmetries or improving on them:

$$\{A^* \text{ alternal} \} \implies \{\text{viscram}.A^* \text{ alternal}\}$$

(32)

$$\{S^* \text{ symmetral}\} \implies \{\text{viscram}.A^* \text{ symmetral}\}$$

(33)

If on top of the simple symmetry, we impose the mild requirement of neg-invariance on A^* and S^*, then viscram.A^* acquires push-invariance on top of its alternality: this amounts to “one symmetry and a half”. Likewise, viscram.S^* acquires gush-invariance on top of its symmetrality.

(iii) Creating double symmetries:
If A^* is alternal and even separately in each w_i, then viscram.A^* coincides with scram.A^* and is therefore bialternal. Likewise, if S^* is symmetral and even separately in each w_i, then viscram.S^* coincides with scram.S^*, which makes it bisymmetral.

(iv) Respecting double symmetries:

$$\{A^* \text{ bialternal}\} \implies \{\text{viscram}.A^w \equiv (2^{r(w)} - 1).A^w\}$$

(34)

19 We recall that $\text{neg} M^w_{w_1, \ldots, w_r} := M^{-w_1, \ldots, -w_r}$.

20 gush-invariance is the natural equivalent in GARI of push-invariance in ARI. See [E6], §2.4, (2.76).
Here, \(r(w) \) denotes of course the length of \(w \). The above relation means that, up to a simple renormalisation, the \textit{viscram} transform leaves all bialternals invariant. This is a huge improvement on \textit{scram}. For the rest, property (i) for \textit{scram} is slightly stronger than (i) for \textit{viscram}, but property (ii) for \textit{viscram} is much stronger than (ii) for \textit{scram}. So – advantage \textit{viscram}!

1.5 The scrambling operators: synopsis.

Origin and progeny:

\begin{align*}
\text{operator} & \quad \text{origin} & \quad \text{progeny} \\
\text{scram} & \quad \text{analysis, weighted convolution} & \quad \text{co-equational resurgence} \\
\text{discram} & \quad \text{multizeta algebra} & \quad \text{flexion structure} \\
\text{viscram} & \quad \text{multizeta algebra} & \quad \text{flexion structure}
\end{align*}

Synoptic analytical expression:

\begin{align*}
(scram \ M)^{v_1,v_2}_{u_1,u_2} & \quad (viscram \ M)^{v_1,v_2}_{u_1,u_2} & \quad (discram \ M)^{v_1,v_2}_{u_1,u_2} & \quad (scram \ M)^{v_1,v_2}_{u_1,u_2} \\
+M^{v_1,v_2}_{u_1,u_2} & \quad +M^{v_1,v_2}_{u_1,u_2} & \quad +M^{u_1,u_2}_{u_1,u_2} & \quad (\frac{1}{2}, \frac{1}{2}) \\
+M^{v_2,v_1}_{u_2,u_1} & \quad +M^{v_2,v_1}_{u_2,u_1} & \quad +M^{u_2,u_1}_{u_2,u_1} & \quad (0, \frac{1}{2}) \\
-M^{v_1,v_2}_{u_1,u_2} & \quad -M^{v_1,v_2}_{u_1,u_2} & \quad -M^{u_1,u_2}_{u_1,u_2} & \quad (\frac{3}{2}, 0)
\end{align*}
Synoptic properties:

- All three scrambling operators respect simple symmetries.
- When made to act on bimoulds separately even in each index, they even turn simple into double symmetries.
- When restricted to a proper setting, they have the remarkable property of turning the uninflected operations \(lu, mu \) into their inflected counterparts \(ari, garl \).
- Only \(viscram \) has the distinction of leaving bialternals essentially invariant: it merely multiplies them by an elementary factor \((2^r - 1)\).

The above list of properties is far from exhaustive. There is in fact every reason to believe that the scrambling operators are robust mathematical
objects, destined to occur in more areas than the two (– singular perturbations and multizeta algebra –) examined in this paper, and that they possess more useful variants than the three just reviewed in this section. Consider for example the statements in §4.8 about the local constancy and global non-constancy of the bimould scram_V^V derived from the hyperlogarithmic mould V^V. These statements reflect a central fact about hyperlogarithms, rather recondite perhaps but ultimately not-to-be-missed. Which again means that, had scram not already been in existence, any thorough-going investigation of hyperlogarithms would have led to its discovery.

2 Hyperlogarithmic monomials and monics.

2.1 Ordering the hyperlogarithmic chaos.

The present section collects a number of results about hyperlogarithms – some well-known, some new – for future use in section 4 (on singular and singularly perturbed systems). Within its very limited scope, it also aims at clarification. The fact is that hyperlogarithms are Protean creatures that possess a baffling wealth of properties; crop up in the most varied contexts21; and are capable of a bewildering number of largely equivalent but unequally convenient definitions. To bring order to this jungle-like growth, there is nothing like going back to the basics and keeping three central facts firmly in mind:

(i) Hyperlogarithmic monomials (multiply indexed functions of one complex variable) approximate (in the topology of uniform convergence on all compacts) any ramified function, in particular any resurgent function on its Borel plane. This suggests applying to them the machinery of resurgence, with its structuring power.

(ii) Hyperlogarithmic monics (multiply indexed constants) are the transcendental ingredient of nearly all Stokes constants and local analytic invariants encountered in Analysis or Analytic Geometry, and their presence, as resurgence coefficients, on the right-hand side of resurgence equations, has the merit of suggesting the appropriate indexation, expressive of the underlying symmetries.

(iii) The whole hyperlogarithmic domain is shot-through, permeated, informed, and dominated by the fact of dimorphy, which however assumes very different forms for monomials and monics. For monomials, it means stability, as functions, under two distinct, independent products: convolution and point-wise multiplication. For monics, it means obeying, as numbers,

21To form an idea of the breadth of applications, see for instance [G],[LD],[L],[W].
two distinct, independent ‘multiplication tables’, each attached to a special encoding. Startingly, dimorphy for monics manifests in two quite different and at first sight unrelated modes: *dimorphism I* links the classical moulds Lan^*, Lin^* (it also contains multizeta dimorphy as a special case); whereas *dimorphism II* links two new moulds Lag^*, Lig^*, both of which arise when we compare the behaviour of hyperlogarithmic monomials at the antipodes 0 and ∞.

A useful lemma: the pre/postposition of illicit indices.

Before starting, here are two simple mould identities that we shall use repeatedly to deal with troublesome indices, in initial (or final) position.

Lemma 2.1 (Postposition of illicit indices.) Assume that ω consists of an initial sequence η made exclusively of illicit elements; of a first licit element ω_i; and of an arbitrary final sequence σ, which may contain both licit and illicit elements. Then, given any alternal A^* or symmetral S^* well-defined except when illicit indices occur in initial position, and provided we agree on the definition of S^η when η consists only of illicit indices, the elementary identities

\[
A^{\eta, \omega_i, \sigma} = (-1)^{r(\eta)} \sum_{\tau \in \text{sha}(\eta ; \sigma)} A^{\omega_i, \tau}
\]

\[
S^{\eta, \omega_i, \sigma} = \begin{cases}
(-1)^{r(\eta)} \sum_{\tau \in \text{sha}(\eta ; \sigma)} S^{\omega_i, \tau} \\
+ \sum_{\eta' + \eta'' = \eta} (-1)^{r(\eta')} S^{\eta', \sigma} \sum_{\tau \in \text{sha}(\eta'' ; \sigma)} S^{\omega_i, \tau''}
\end{cases}
\]

extend the definition of A^* or S^* to all sequences ω while preserving their symmetries.

Usually, though by no means always, we take $S^n := 0$ for purely illicit sequences η. Needless to say, the lemma also works in reverse, for the preposition of illicit indices.

2.2 c^β-friendly monomials and monics.

Incremental vs positional indexation.

The point-wise multiplication of ramified functions leaves the singularities in place, while convolution adds singularities, in the sense that:

\[(\text{singularity over } \omega_1) \ast (\text{singularity over } \omega_2) \Rightarrow (\text{singularities over } \omega_1 + \omega_2).\]

This forces us to juggle two systems of notation:
incremental, with sequences \((\omega_1, \ldots, \omega_r)\quad (\omega_i = \alpha_i - \alpha_{i-1})\)

positional, with sequences \([\alpha_1, \ldots, \alpha_r]\) \quad (\alpha_i = \omega_1 + \ldots + \omega_i)\)

\(\partial\)-friendly monomials in the \(\alpha\) and \(\omega\)-encodings:

As analytic germs in \(\tau\) at the origin, the monomials \(\hat{\mathcal{V}}^\bullet(\tau), \hat{\mathcal{V}}^\star(\tau)\) are unambiguously defined by the integrals

\[
\hat{\mathcal{V}}^{[\alpha_1, \ldots, \alpha_r]}(\tau) := \int_0^\tau \frac{d\tau_r}{\tau_r - \alpha_r} \cdots \int_0^{\tau_2} \frac{d\tau_2}{\tau_2 - \alpha_2} \int_0^{\tau_1} \frac{d\tau_1}{\tau_1 - \alpha_1} \quad (\alpha_1 \neq 0) \quad (37)
\]

\[
\hat{\mathcal{V}}^{\omega_1, \ldots, \omega_i}(\tau) = \hat{\mathcal{V}}^{[\alpha_1, \ldots, \alpha_r]}(\tau) \quad \text{with} \quad \alpha_i \equiv \omega_1 + \ldots + \omega_i \quad (\forall i) \quad (38)
\]

Only the variants \(\hat{\mathcal{V}}^\star\) and \(\hat{\mathcal{V}}^{\star\star}\) (stable under \(\cdot\) and \(\overset{\wedge}{\ast}\); see below) are strictly hyperlogarithmic, but is the variants \(\hat{\mathcal{V}}^\bullet\) and \(\hat{\mathcal{V}}^{\bullet\bullet}\) (stable under \(\wedge\)) that are more commonly used in resurgent analysis:

\[
\hat{\mathcal{V}}^{[\alpha_1, \ldots, \alpha_r]}(\tau) := \partial_\tau \hat{\mathcal{V}}^{[\alpha_1, \ldots, \alpha_r]}(\tau) \quad (39)
\]

\[
\hat{\mathcal{V}}^{\omega_1, \ldots, \omega_i}(\tau) := \partial_\tau \hat{\mathcal{V}}^{\omega_1, \ldots, \omega_i}(\tau) \quad (40)
\]

Functional dimorphy. It takes the form:

\[
\left(\hat{\mathcal{V}}^{[\alpha']} \cdot \hat{\mathcal{V}}^{[\alpha'']} \right)(\tau) = \sum_{\alpha \text{sha} (\alpha', \alpha'')} \hat{\mathcal{V}}^{[\alpha]}(\tau) \quad (41)
\]

\[
\left(\hat{\mathcal{V}}^{\omega'} \ast \hat{\mathcal{V}}^{\omega''} \right)(\tau) = \sum_{\omega \text{sha} (\omega', \omega'')} \hat{\mathcal{V}}^{\omega}(\tau) \quad (42)
\]

\[
\left(\hat{\mathcal{V}}^{\omega'} \cap \hat{\mathcal{V}}^{\omega''} \right)(\tau) = \sum_{\omega \text{sha} (\omega', \omega'')} \hat{\mathcal{V}}^{\omega}(\tau) \quad (43)
\]

(41) says that \(\hat{\mathcal{V}}^{[\bullet]}\) is symmetrical relative to pointwise multiplication. (42) and (43) say that \(\hat{\mathcal{V}}^\bullet\) and \(\hat{\mathcal{V}}^{\bullet\bullet}\) are symmetrical relative to the convolutions \(\overset{\wedge}{\ast}\) and \(\overset{\cap}{\ast}\) respectively.

Remark 1: Here \(\overset{\wedge}{\ast}\) stands for the convolution

\[
\left(\hat{\varphi}_1 \overset{\wedge}{\ast} \hat{\varphi}_2 \right)(\tau) := \int_0^\tau \hat{\varphi}_1(\tau - \tau_2) \, d \hat{\varphi}_2(\tau_2) \quad (44)
\]

whose unit (namely \(\hat{e}(\tau) \equiv 1\)) coincides with the unit of point-wise multiplication – a definite advantage in this context. To fall back on the more
familiar convolution $\hat{\ast}$ or simply \ast (whose unit is the dirac at 0):

$$(\hat{\varphi}_1 \hat{\ast} \hat{\varphi}_2)(\tau) := \int_0^\tau \hat{\varphi}_1(\tau - \tau_2) \hat{\varphi}_2(\tau_2) \, d\tau_2 \quad (45)$$

it is enough to change $\hat{\varphi}_1(\tau)$ to $\hat{\varphi}_1(\tau) := \partial_\tau \hat{\varphi}_1(\tau)$.

Remark 2: When some α_i’s coincide or, equivalently, when some ω_i-sums vanish, the definition (37) remains in force, but the conversion rule (38) has to be slightly modified.

Indeed, in the extreme case when all α_i’s and therefore all ω_i’s vanish, to ensure the double symmetrality, the definitions have to be:

$$
\begin{align*}
\hat{V}^1_{0}^{0} (\tau) &= \frac{(\log \tau)^r}{\tau^r} \quad (\alpha\text{-encoding}) \quad (46) \\
\hat{V}^{0, \ldots, 0}_{0} (\tau) &= \left[\frac{\partial_{\tau^r}}{\tau^r} \left(\frac{\tau^\sigma}{\Gamma(1+\tau)} \right) \right]_{\sigma=0} = \frac{(\log \tau)^r}{\tau^r} + \ldots \quad (\omega\text{-encoding}) \quad (47)
\end{align*}
$$

with a difference (the dots in (46)) polynomial in $\log \tau$ of degree $r-1$:

$$
\gamma \frac{(\log \tau)^{r-1}}{(r-1)!} + \cdots + (-1)^{r-1} \frac{\zeta(r)}{r} \quad (\gamma = \text{Euler constant})
$$

This, however, applies only for zero sequences in initial position.

∂-friendly monics.

In the incremental encoding, the hyperlogarithmic monics V^\bullet are defined inductively by:

$$
\Delta_{\omega_1 + \cdots + \omega_r} V^{\omega_1, \ldots, \omega_r} (z) = V^{\omega_1, \ldots, \omega_r} + \sum_{\omega_{i+1} + \cdots + \omega_r = 0} V^{\omega_1, \ldots, \omega_i} V^{\omega_{i+1}, \ldots, \omega_r} (z) \quad (48)
$$

and in the positional encoding by the usual re-indexation:

$$
V^{[\alpha_1, \ldots, \alpha_r]} = V^{\alpha_1, \alpha_2 - \alpha_1, \ldots, \alpha_r - \alpha_{r-1}} \quad (49)
$$

The hyperlogarithmic monomials V^\bullet and their monics V^\ast are central to *equational resurgence*: V^\bullet serves to expand the resurgent functions that crop up in that context, and V^\ast is the transcendental ingredient that enters, as elementary building block, the calculation of most Stokes constants.

22The modification is imposed by the need to adopt two different *re-normalisations* in presence of divergence. It has an exact analogue for multizetas, namely the factor man^\ast which tweaks the conversion rule from zag^\ast to zig^\ast. See §5.2.
As we shall see in §4, \(V^* \) and \(V^* \) also enter the definition of the far more complex, double-indexed monomials \(S^* \) and the arguably simpler monics \(tes^* \) (known as tessellation coefficients) which between them govern co-equational resurgence.

Lastly, parallel with these \(\partial \)-friendly pairs \((V^*, V^*)\) and \((S^*, tes^*)\), we have the \(\Delta \)-friendly pairs \((U^*, U^*)\) and \((Z^*, des^*)\), which come into their own in synthesis problems\(^{23}\) but will seldom be needed in the present investigation\(^{24}\). Still, for the sake of completeness, let us define \((U^*, U^*)\) in terms of \((V^*, V^*)\) by the following mould identities:

\[
U^* \circ V^* \equiv I^* \quad , \quad U^* \equiv V^* \circ U^* \quad , \quad V^* \equiv U^* \circ V^*
\]
(50)

Here, \(\circ \) denotes the standard mould composition\(^{25}\), and \(I^* \) the unit for mould composition: \(I^\omega \equiv 1 \) (resp. 0) if \(r(\omega) = 1 \) (resp. \(\neq 1 \)).

The \(\Delta \)-friendliness is apparent in the resurgence equations verified by \(U^* \):

\[
\Delta_{\omega_0} U^{\omega_1, \ldots, \omega_r}(z) = \begin{cases}
U^{\omega_2, \ldots, \omega_r}(z) & \text{if } \omega_0 = \omega_1 \\
0 & \text{if } \omega_0 \neq \omega_1
\end{cases}
\]
(51)

which are indeed simpler than those verified by \(V^* \):

\[
\Delta_{\omega_0} V^\omega(z) = \sum_{|\omega'| = \omega_0} V^\omega' V^{\omega''}(z)
\]
(52)

The inevitable downside is a more complicated behaviour under ordinary differentiation \(\partial_z \).

2.3 Index dependence of monomials and monics.

In the sequel, a large number of identities involving hyperlogarithmic monomials and monics shall be proved by differentiation with respect to their variable and their indices, and that too in both models (multiplicative and convolutive) and in both encodings (incremental and positional). So let us collect in one place, once and for all, the relevant formulae:

\(^{23}\)i.e. when we look for local objects (differential systems or diffeomorphisms) that admit a given system \(\{ \omega \} \) of holomorphic invariants. For a systematic treatment, see J.E., Twisted Resurgence Monomials and canonical-spherical synthesis of Local Objects., 2002, Edinburgh.

\(^{24}\)They shall occur but once, in §4.8, to derive the piece-wise constant tessellation coefficients \(tes^w \) from the semi-constant \(vtes^w \).

\(^{25}\)see §8.1.3
Monomials in incremental indexation.

\[\omega_1 \partial_{\omega_1} V^{\omega_1}(z) = \partial_z V^{\omega_1}(z) = -1 - \omega_1 z V^{\omega_1}(z) \]
\[\omega_1 (\partial_{\omega_1} + z) V^{\omega_1,\omega_2}(z) = -V^{\omega_1 + \omega_2}(z) \]
\[\omega_1 (\partial_{\omega_1} + z) V^{\omega_1,\ldots,\omega_p}(z) = +V^{\omega_1,\ldots,\omega_{p-1}+\omega_1}(z) - V^{\omega_1,\ldots,\omega_{p-1}+\omega_1}(z) \]
\[\omega_p (\partial_{\omega_p} + z) V^{\omega_1,\ldots,\omega_{p-1},\omega_p}(z) = +V^{\omega_1,\ldots,\omega_{p-1}+\omega_1}(z) - V^{\omega_1,\ldots,\omega_{p-1}+\omega_1}(z) \]
\[z (\partial_z + |\omega|) V^{\omega_1,\ldots,\omega_p}(z) = -V^{\omega_1,\ldots,\omega_{p-1}+\omega_1}(z) \]

\[\omega_1 \partial_{\omega_1} \hat{V}^{\omega_1}(\zeta) = -\zeta \partial_\zeta \hat{V}^{\omega_1}(\zeta) = -\zeta (\zeta - \omega_1)^{-1} \]
\[\omega_1 (\partial_{\omega_1} + \partial_\zeta) \hat{V}^{\omega_1,\ldots,\omega_p}(\zeta) = -\hat{V}^{\omega_1+\omega_2,\ldots,\omega_p}(\zeta) \]
\[\omega_1 (\partial_{\omega_1} + \partial_\zeta) \hat{V}^{\omega_1,\ldots,\omega_p}(\zeta) = +\hat{V}^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\ldots,\omega_p}(\zeta) - \hat{V}^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\ldots,\omega_p}(\zeta) \]
\[\omega_p (\partial_{\omega_p} + \partial_\zeta) \hat{V}^{\omega_1,\ldots,\omega_{p-1},\omega_p}(\zeta) = +\hat{V}^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\omega_p}(\zeta) - \hat{V}^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\omega_p}(\zeta) \]
\[(\zeta - |\omega|) \partial_\zeta \hat{V}^{\omega_1,\ldots,\omega_p}(\zeta) = -\hat{V}^{\omega_1,\ldots,\omega_{p-1}+\omega_1}(\zeta) \]

Monomials in incremental indexation.

\[\omega_1 \partial_{\omega_1} V^{\omega_1} = 0, \]
\[\omega_1 \partial_{\omega_1} V^{\omega_1,\omega_2} = -V^{\omega_1+\omega_2} = -1 \]
\[\omega_2 \partial_{\omega_2} V^{\omega_1,\omega_2} = +V^{\omega_1+\omega_2} = +1 \]
\[\omega_1 \partial_{\omega_1} V^{\omega_1,\ldots,\omega_p} = -V^{\omega_1+\omega_2,\ldots,\omega_p} \]
\[\omega_1 \partial_{\omega_1} V^{\omega_1,\ldots,\omega_p} = +V^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\omega_p} - V^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\omega_p} \]
\[\omega_p \partial_{\omega_p} V^{\omega_1,\ldots,\omega_p} = +V^{\omega_1,\ldots,\omega_{p-1}+\omega_1,\omega_p} \]

For perspective, we also mention the very different (non-linear) differential monics:

\[\partial_{\omega} U^\omega = \sum_{\omega \in \mathbb{E}^\omega} \frac{U^\omega U^{\omega'} - \sum_{\omega' = 0}^{\omega} \frac{U^\omega U^{\omega'}}{|\omega'|}}{|\omega|} \]

(53)
Monomials in positional indexation.

\[\partial_{\alpha_1} \hat{V}^{[a_1]}(\zeta) = (\alpha_1 - \zeta)^{-1} - (\alpha_1)^{-1} \]

\[\partial_{\zeta} \hat{V}^{[a_1]}(\zeta) = (\zeta - \alpha_1)^{-1} \]

\[\partial_{a_1} \hat{V}^{[a_1,\ldots,a_r]}(\zeta) = \left\{ \begin{array}{l} - \hat{V}^{[a_1,\ldots,a_r]}(\zeta) (\alpha_1^{-1} + (a_2 - \alpha_1)^{-1}) \\ + \hat{V}^{[a_1,\ldots,a_r]}(\zeta) (a_2 - \alpha_1)^{-1} \end{array} \right\} \]

\[\partial_{\alpha_j} \hat{V}^{[a_1,\ldots,a_r]}(\zeta) = \left\{ \begin{array}{l} - \hat{V}^{[a_1,\ldots,a_j,\ldots]}(\zeta) (\alpha_j^{-1} + (a_{j+1} - \alpha_j)^{-1}) \\ + \hat{V}^{[a_1,\ldots,a_j,\ldots]}(\zeta) (a_{j+1} - \alpha_j)^{-1} \end{array} \right\} \]

\[\partial_{\alpha_r} \hat{V}^{[a_1,\ldots,a_r]}(\zeta) = \left\{ \begin{array}{l} + \hat{V}^{[a_1,\ldots,a_r]}(\zeta) (\alpha_r^{-1}) \\ - \hat{V}^{[a_1,\ldots,a_r,\ldots]}(\zeta) (\alpha_r^{-1} + (\zeta - \alpha_r)^{-1}) \end{array} \right\} \]

The hat \(\hat{\ } \) atop an index \(\alpha_j \) always signals the omission of \(\alpha_j \).

Monics in positional indexation.

\[\partial_{\alpha_1} V^{[a_1,\ldots,a_r]} = -V^{[\hat{a}_1,\ldots,a_r]}((\alpha_1)^{-1} + (a_2 - \alpha_1)^{-1}) = -(\alpha_1)^{-1} - (a_2 - \alpha_1)^{-1} \]

\[\partial_{\alpha_2} V^{[a_1,\ldots,a_r]} = +V^{[\hat{a}_1,\ldots,a_r]}(a_2 - \alpha_1)^{-1} = (a_2 - \alpha_1)^{-1} \]

\[\partial_{a_1} V^{[a_1,\ldots,a_r]} = \left\{ \begin{array}{l} -V^{[\hat{a}_1,\ldots,a_1]}(1^{-1} + (a_2 - \alpha_1)^{-1}) \\ +V^{[\hat{a}_1,\ldots,a_1]}(a_2 - \alpha_1)^{-1} \end{array} \right\} \]

\[\partial_{\alpha_j} V^{[a_1,\ldots,a_r]} = \left\{ \begin{array}{l} +V^{[\hat{a}_1,\ldots,a_j,\ldots]}(\alpha_j - \alpha_{j-1})^{-1} \\ -V^{[\hat{a}_1,\ldots,a_j,\ldots]}((\alpha_j - \alpha_{j-1})^{-1} + (a_{j+1} - \alpha_j)^{-1}) \\ +V^{[\hat{a}_1,\ldots,a_j,\ldots]}(a_{j+1} - \alpha_j)^{-1} \end{array} \right\} \]

\[\partial_{\alpha_r} V^{[a_1,\ldots,a_r]} = \left\{ \begin{array}{l} +V^{[\hat{a}_1,\ldots,a_r,\ldots]}(\alpha_r - \alpha_{r-1})^{-1} \\ -V^{[\hat{a}_1,\ldots,a_r,\ldots]}((\alpha_r - \alpha_{r-1})^{-1} + (\zeta - \alpha_r)^{-1}) \\ +V^{[\hat{a}_1,\ldots,a_r,\ldots]}(\zeta - \alpha_r)^{-1} \end{array} \right\} \]

Transition equations for the monics.

Outside a finite number of singular points, the resurgence monomials \(V^* \) are ramified, holomorphic functions of their indices \(\omega_i \) or \(\alpha_i \) and of their...
variable \(z \) (in the multiplicative plane) or \(\zeta \) (in the Borel plane). Not so the corresponding monics \(V^\ast \): these are uniform, non-ramified analytic functions of their indices on a number of domains of \(\mathbb{C}^r \), but undergo discontinuous changes of determination from domain to domain\(^{26}\) according to the formula:

\[
D_{\omega_1 + \cdots + \omega_r} V^{\omega_1, \ldots, \omega_r} = 2\pi i V^{\omega_1, \ldots, \omega_r} V^{\omega_1+1, \ldots, \omega_r} \\
D_{\alpha_1 \cdots \alpha_r} V^{[\alpha_1, \ldots, \alpha_r]} = 2\pi i V^{[\alpha_1, \ldots, \alpha_r]} V^{[\alpha_1+1, \ldots, \alpha_r-\alpha_r]}
\]

with jump operators

\[
D_z F(x) := \lim_{\epsilon \to 0} (F(x + i\epsilon) - F(x - i\epsilon)) \quad (t, \epsilon \in \mathbb{R}^+)
\]

2.4 The monics \(Lan^\ast/\text{Lin}^\ast \) and \(Lag^\ast/\text{Lig}^\ast \). Double arithmetical dimorphy.

The classical monics \(Lan^\ast/\text{Lin}^\ast \).

For scalar \(\alpha_i, \beta_i \) in the unit disk and positive integers, let us set:

\[
\text{Lan}^{\alpha_1, \ldots, \alpha_r} := \sum \prod_{1 \leq m_i \leq 1}^{i=r} \frac{\alpha_i^{m_i}}{m_i + \cdots + m_r} \\
\text{Lin}^{(\beta_1, \ldots, \beta_r)} := \sum \frac{\beta_1^{n_1}}{n_1} \cdots \frac{\beta_r^{n_r}}{n_r}
\]

and by means of the correspondence

\[
\text{Lan}^{x^{s-1}, \alpha_1, \ldots, \alpha_r} = \text{Lin}^{(\beta_1, \ldots, \beta_r)} \quad \text{with } \alpha_i \text{ \(s-1 \) times} \\
\text{Lin}^{(\beta_1, \ldots, \beta_r)} := (\infty, \ldots, \infty) \text{ \(s-1 \) times} \text{ and} \\
\begin{align*}
\alpha_1 &= \beta_1, \alpha_2 = \beta_1 \beta_2, \ldots, \alpha_r = \beta_1 \cdots \beta_r \\
\beta_1 &= \alpha_1, \beta_2 = \alpha_2 / \alpha_1, \ldots, \beta_r = \alpha_r / \alpha_{r-1}
\end{align*}
\]

let us extend the definition of \(Lan^\alpha \) to mixed sequences consisting of indices \(\alpha_i \) either in the unit disk or equal to \(\infty \). Clearly:

\[
\text{Lan}^{\alpha_1, \ldots, \alpha_r} = (-1)^{n(\alpha)} V^{[\alpha_1, \ldots, \alpha_r]}(1) \quad \text{with} \\
\begin{align*}
n(\alpha) &:= \sum_{\alpha_i = \infty} 1 \\
|\alpha_i| &< 1 \text{ or } \alpha = \infty
\end{align*}
\]

\(^{26}\)The reason for this lies in their definition (48): it involves the operators \(\Delta_{\omega_0} \), which are themselves uniformly defined for all \(\omega_0 \in \mathbb{C}_+ := \mathbb{C} - \{0\} \), but whose action on a given resurgent function is of course discontinuous in \(\omega_0 \)
First arithmetical dimorphy.

It is well-known that the moulds \textit{Lin}^* and \textit{Lig}^* are respectively \textit{symmetrel} and \textit{symmetrel}27, with neither symmetry implying the other. This elementary but far-reaching fact is the first manifestation of \textit{arithmetical dimorphy}. We shall soon encounter a second one, no less remarkable and apparently new.

The monics \textit{Lag}^*/\textit{Lig}^*. Differential characterisation.

Consider these two differential systems:

\[
\begin{aligned}
\hat{c}_{\alpha_1} \text{Lag}^{\alpha_1} &= \frac{1}{\alpha_1} \\
\begin{cases}
\hat{c}_{\alpha_1} \text{Lag}^{\alpha_1, \alpha_2} &= \frac{1}{\alpha_1} \text{Lag}^{\hat{\alpha}_1, \alpha_2} - \frac{1}{\alpha_1 - \alpha_2} (\text{Lag}^{\hat{\alpha}_1, \alpha_2} - \text{Lag}^{\alpha_1, \hat{\alpha}_2}) \\
\hat{c}_{\alpha_2} \text{Lag}^{\alpha_1, \alpha_2} &= + \frac{1}{\alpha_1 - \alpha_2} (\text{Lag}^{\hat{\alpha}_1, \alpha_2} - \text{Lag}^{\alpha_1, \hat{\alpha}_2})
\end{cases}
\end{aligned}
\]

(61)

\[
\begin{aligned}
\begin{cases}
\hat{c}_{\alpha_1} \text{Lag}^{\alpha_1, \ldots, \alpha_r} &= \left\{\begin{array}{l}
\frac{1}{\alpha_1} \text{Lag}^{\hat{\alpha}_1, \alpha_2, \ldots, \alpha_r} \\
- \frac{1}{\alpha_1 - \alpha_2} (\text{Lag}^{\hat{\alpha}_1, \alpha_2, \ldots, \alpha_r} - \text{Lag}^{\alpha_1, \hat{\alpha}_2, \ldots, \alpha_r}) \\
\frac{1}{\alpha_{j-1} - \alpha_j} (\text{Lag}^{\alpha_1, \ldots, \hat{\alpha}_j, \ldots, \alpha_r} - \text{Lag}^{\alpha_1, \ldots, \hat{\alpha}_j, \ldots, \alpha_r}) \\
- \frac{1}{\alpha_{j-1} - \alpha_j} (\text{Lag}^{\alpha_1, \ldots, \hat{\alpha}_j, \ldots, \alpha_r} - \text{Lag}^{\alpha_1, \ldots, \hat{\alpha}_j, \ldots, \alpha_r})
\end{array}\right.
\end{cases}
\end{aligned}
\]

(62)

(63)

Here, the hats \(\hat{\alpha}_i\) signal the removal of \(\alpha_i\) from the ambient sequence.

\[
\begin{aligned}
\hat{c}_{\omega_1} \text{Lig}^{\omega_1} &= \frac{1}{\omega_1} \\
\begin{cases}
\hat{c}_{\omega_1} \text{Lig}^{\omega_1, \omega_2} &= \frac{1}{\omega_1} \text{Lig}^{\omega_1, \omega_2} \\
\hat{c}_{\omega_2} \text{Lig}^{\omega_1, \omega_2} &= \frac{1}{\omega_2} (\text{Lig}^{\omega_1} - \text{Lig}^{\omega_1, \omega_2})
\end{cases}
\end{aligned}
\]

(64)

(65)

\[
\begin{aligned}
\begin{cases}
\hat{c}_{\omega_1} \text{Lig}^{\omega_1, \ldots, \omega_r} &= \frac{1}{\omega_1} \text{Lig}^{\omega_1, \omega_2, \ldots, \omega_r} \\
\hat{c}_{\omega_r} \text{Lig}^{\omega_1, \ldots, \omega_r} &= \frac{1}{\omega_r} (\text{Lig}^{\omega_1, \ldots, \omega_r} - \text{Lig}^{\omega_1, \ldots, \omega_r - 1 + \omega_r}) \\
\hat{c}_{\omega_r} \text{Lig}^{\omega_1, \ldots, \omega_r} &= \frac{1}{\omega_r} (\text{Lig}^{\omega_1, \ldots, \omega_r - 1 + \omega_r})
\end{cases}
\end{aligned}
\]

(66)

Proposition 2.1 (Main determination of \textit{Lag}^* and \textit{Lig}^*).

The above differential systems, together with the initial conditions

\[
\begin{aligned}
\text{Lag}^{1, \ldots, 1} = 0 \\
\text{Lig}^{1, \ldots, 1} = 0
\end{aligned}
\]

(67)

27Mind the fact, though, that here the symmetrel contractions \((\beta_i, \beta_j) \rightarrow (\beta_i, \beta_j)\) are additive in the \(s_i\)’s but multiplicative in the \(\beta_i\)’s. Thus, the first symmetrelity relation reads \(\text{Lin}^{(\beta_1), \text{Lin}^{(\beta_2)} = \text{Lin}^{(\beta_1, \beta_2)} + \text{Lin}^{(\beta_2, \beta_1)} + \text{Lin}^{(\beta_1, \beta_2)}\).
unambiguously define two moulds Lag^\bullet and Lig^\bullet, symmetral and holomorphic on their principal domains:

\[\{ \alpha_i \in \mathbb{C} - [-\infty, 0] \}, \quad \{ \omega_1 + \ldots + \omega_i \in \mathbb{C} - [-\infty, 0] \} \quad (68) \]

Proposition 2.2 (Link between Lag^\bullet and Lig^\bullet).

On their principal domains, the two moulds are connected by:

\[
\begin{align*}
\text{Lag}^{\alpha_1, \ldots, \alpha_r} & = \sum_{0 \leq j \leq r} \text{Lig}^{\alpha_1, \alpha_2 - \alpha_1, \ldots, \alpha_j - \alpha_{j-1}} \lambda_{r-j} \\
\text{Lig}^{\omega_1, \ldots, \omega_r} & = \sum_{0 \leq j \leq r} \text{Lag}^{\omega_1, \omega_2, \ldots, \omega_1 + \omega_2 + \ldots + \omega_j} \lambda_{r-j}
\end{align*}
\quad (69)
\]

with $\lambda_0 = \lambda_0 = 1, \lambda_1 = \lambda_1 = 0$.

and

\[
\begin{align*}
\sum_{2 \leq n} \lambda_n t^n & = \exp(-\sum_{2 \leq n} \frac{\zeta(n)}{n} t^n) \\
\sum_{2 \leq n} \lambda_n t^n & = \exp(+\sum_{2 \leq n} \frac{\zeta(n)}{n} t^n)
\end{align*}
\quad (71)
\]

Short proofs: The very form of our differential systems and that of the initial conditions guarantees the symmetrality of the solutions. Their holomorphy (on the principal domains, not beyond!) results from the fact that the poles $(\alpha_i - \alpha_{i+1})^{-1}$ are only apparent. Lastly, since the two differential systems correspond under the change of variable $\alpha_i = \omega_1 + \ldots + \omega_i$ and since their general solutions are of the form

\[\text{Lag}^\bullet = \text{Lag}_0^\bullet \times \text{Const}^\bullet, \quad \text{Lig}^\bullet = \text{Lig}_0^\bullet \times \text{Const}_1^\bullet \quad (72) \]

where $\text{Lag}_0^\bullet, \text{Lig}_0^\bullet$ denote particular solutions and $\text{Const}_1^\bullet, \text{Const}_2^\bullet$ stand for constant moulds,\(^{28}\) it follows that the distinguished solutions $\text{Lag}^\bullet, \text{Lig}^\bullet$ of Proposition 2.1 necessarily relate as in (69). As for the exact values (71) of the connecting constants $\lambda_r, \lambda_{r'}$ in terms of the zeta function, these will be established in §2.7. For the moment, all we know is:

\[
\begin{align*}
\lambda_r & := \text{Lag}^{1, \ldots, 1, 0, \ldots, 0}_{r-1 \, \text{times}} \quad (\text{since } \text{Lag}^{1, \ldots, 1} \equiv 0) \\
\lambda_{r'} & := \text{Lig}^{1, \ldots, 1, 0, \ldots, 0} \quad (\text{since } \text{Lag}^{1, \ldots, 1} \equiv 0) \\
1 & = (1 + \sum \lambda_r t^r) \left(1 + \sum \lambda_{r'} t^{r'}\right) \quad (75)
\end{align*}
\]

The monics $\text{Lag}^\bullet/\text{Lig}^\bullet$. Analytical expression.

Proposition 2.3 Let sa^\bullet be the symmetrical mould defined by

\[
\text{sa}^{n_1, \ldots, n_r} := \begin{cases}
-1 \times r + n_1 + \ldots + n_r & \text{if } n_r \neq 0 \\
0 & \text{if } n = 0^{[r]} = (0, \ldots, 0) \\
(-1)^{r-i} \sum_{\text{sha}(n', 0^{[r-i]})} \text{sa}^{n', n_i} & \text{if } n = (n', n_i, 0^{[r-i]}), n_i \neq 0
\end{cases}
\]

\(^{28}\)i.e. moulds that depend only on the sequence length r.

29
Then, for the principal determination of Lag°:

$$\text{Lag}^{1+\tau_1,\ldots,1+\tau_r} = \sum_{0\leq n_i} \text{sa}^{n_1,\ldots,n_r} \tau_1^{n_1} \ldots \tau_r^{n_r} \quad (|\tau_i| < 1) \quad (76)$$

Proof: by checking that the expansions (76) verify the differential system (61)-(63).

Hyperlogarithms under dilations.

$$\begin{align*}
\text{Lag}^{-\alpha_1,\ldots,-\alpha_r} &= \sum_{i=0}^{r} \text{Lag}_{\alpha_1,\ldots,\alpha_i} \frac{\log (1-t^i)}{(r-i)!} \\
\text{Lig}^{-\omega_1,\ldots,-\omega_r} &= \sum_{i=0}^{r} \text{Lig}_{\omega_1,\ldots,\omega_i} \frac{\log (1-t^i)}{(r-i)!}
\end{align*} \quad (77)$$

These identities, which easily follow from (72), suggest that the pair $\text{Lag}^\circ/\text{Lig}^\circ$, as a multivariate extension of the log function, is no less natural a choice than the pair $\text{Lan}^\circ/\text{Lin}^\circ$.

Second arithmetical dimorphy.

The simultaneous symmetrality of Lag° and Lig°, together with the conversion formulae (69), is the announced second manifestation of arithmetical dimorphy. Though we may reasonably conjecture\(^{29}\) that it algebraically follows from the first dimorphy (symmetrality of Lan° and symmetricaly of Lin°), the implication should be rather non-trivial. In any case, dimorphy I and II differ in two essential respects:

(i) While dimorphy I neatly restricts to the multizetas, whether mono- or multi-coloured (go to the limit and take the α_j’s of Lan° and the β_j’s of Lin° equal to unit roots), dimorphy II does not and cannot: when restricting the α_j’s of Lag° to the set $E := \{0\} \cup \{e_j - 1\}$ (with e_j running through all unit roots, so as to get Lag° equal to a pure superposition of multizetas), the symmetrality relations for Lag° will keep us in E, but the symmetrality relations for Lig° (once rephrased from the ω_j to the α_j variables) will necessarily take us beyond E.

(ii) The conversion rule $\text{Lan}^\circ \leftrightarrow \text{Lin}^\circ$ involves simple zeta values $\zeta(n)$, but only sparingly and accidentally as it were, namely when we consider the limit cases $\alpha_j \uparrow 1$ and $\beta_j \uparrow 1$ and want to correctly renormalise in the few divergent cases.\(^{30}\) On the contrary, the presence of simple zeta values in the conversion rule $\text{Lag}^\circ \leftrightarrow \text{Lig}^\circ$ has nothing to do with divergence or renormalistion; the $\zeta(n)$ are there in all cases, even the most regular ones.

\(^{29}\)All tests so far bear this out.

\(^{30}\)Correctly, that is to say, under preservation of the double symmetry.
Multiple links between Lan^* and Lag^*.

Lan^* and Lag^* can be expressed in terms of each other. Thus:

$$\text{Lan}^{\tau_1, \ldots, \tau_r} \equiv (-1)^r \text{corLag}^{1-\tau_1, \ldots, 1-\tau_r}$$

(78)

where corLag^* denotes the core of Lag^*:

$$\text{corLag}^\alpha_1, \ldots, \alpha_r = \sum_{\alpha_i \in \{1, \alpha_i\}} (-1)^n(\alpha') \text{Lag}^{\alpha'_1, \ldots, \alpha'_r} \quad \text{with} \quad n(\alpha') := \sum_{\alpha_i = 1} 1$$

(79)

Conversely:

$$\text{Lag}^{1-\tau_1} \equiv -\text{Lan}^{\tau_1} - \text{Lan}^{\infty, \infty} = -\text{Lan}^{\tau_1}$$

$$\text{Lag}^{1-\tau_1, 1-\tau_2} \equiv +\text{Lan}^{\tau_1, \tau_2} + \text{Lan}^{\infty, \tau_2 + \text{Lan}^{\tau_1, \infty} + \text{Lan}^{\infty, \infty}}$$

$$\text{Lag}^{1-\tau_1, 1-\tau_2, 1-\tau_3} \equiv \left\{ \begin{array}{l}
-\text{Lan}^{\tau_1, \tau_2, \tau_3} - \text{Lan}^{\infty, \tau_2, \tau_3} - \text{Lan}^{\tau_1, \infty, \tau_3} - \text{Lan}^{\infty, \infty, \tau_3} \\
-\text{Lan}^{\tau_1, \tau_2, \infty} - \text{Lan}^{\infty, \tau_2, \infty} - \text{Lan}^{\tau_1, \infty, \infty} - \text{Lan}^{\infty, \infty, \infty}
\end{array} \right. $$

Here, Lan^* denotes the familiar mould of (57)-(59), but extended to the irregular case when the sequence α may end with a few ∞'s. The symmetrical extension uses the identity (36) of Lemma 2.1 but in reverse (preposition instead of postposition) together with the convention $\text{Lan}^{\infty, \ldots, \infty} = 0$. The regular terms (in black) are given directly by (57)-(59) and the irregular terms (in red) derive therefrom under preposition of the ∞'s.

2.5 Hyperlogarithms under translation.

Proposition 2.4 (The addition law for hyperlogarithms).

For suitable determinations of our multivalued functions31, we have:

$$\text{V}^{[\bullet]}(t_1 + t_2) = \text{V}^{[\bullet]}(t_1) \times \text{V}^{[\bullet-t_1]}(t_2)$$

(80)

Or again, more explicitly

$$\text{V}^{[\alpha_1, \ldots, \alpha_r]}(t_1 + t_2) = \text{V}^{[\alpha_1, \ldots, \alpha_r]}(t_1) + \sum_{1 \leq j \leq r} \text{V}^{[\alpha_1, \ldots, \alpha_{j-1}]}(t_1) \text{V}^{[\alpha_j-1, \ldots, \alpha_r-1]}(t_2)$$

(81)

Proof: It is again a question of checking that the above addition formula is stable under $\partial_{\alpha_i}, \partial_{t_1}, \partial_{t_2}$, with the proper limit conditions. Thus, using the rules of §2.4 and applying ∂_{t_i} to the identity (81) with $r = r_0$, we find the same identity with $r = r_0 - 1$.

31The addition formula holds unproblematically in the ‘normal configuration’, i.e. when $t_1, t_2 > 0$ and $\alpha_i < 0 \quad (\forall i)$, and should be continuously extended starting from that configuration.
2.6 Polar exchange in the convolutive plane.

Polar inversion $\zeta \leftrightarrow \zeta^{-1}$.

It was while investigating the polar exchange $0^+ \leftrightarrow \infty^+$ for hyperlogarithms (in the convolutive plane) that the mould Lag^\bullet forced itself on our attention. To lighten notations and dodge determination issues, let us set:

\[
\mathcal{L}^{\alpha_1, \ldots, \alpha_r}(\zeta) := \widehat{\mathcal{V}}^{(-\alpha_1, \ldots, -\alpha_r)}(\zeta) \quad (0 < \zeta, 0 < \alpha_i) \quad (82)
\]

\[
\mathcal{L}_2^{\alpha_1, \ldots, \alpha_r}(\zeta) := \widehat{\mathcal{V}}^{(-\alpha_1^{-1}, \ldots, -\alpha_r^{-1})}(\zeta^{-1}) = \mathcal{L}^{\alpha_1^{-1}, \ldots, \alpha_r^{-1}}(\zeta^{-1}) \quad (83)
\]

As ramified functions of ζ, both $\mathcal{L}(\zeta)$ and $\mathcal{L}_2(\zeta)$ have all their singularities over the points α_i. So they ought to be closely connected. Indeed:

Proposition 2.5 (The polar exchange $\mathcal{L}^\bullet \leftrightarrow \mathcal{L}_2^\bullet$).

As analytic germs at 0^+ and ∞^+ respectively, \mathcal{L}^\bullet and \mathcal{L}_2^\bullet correspond under the following involutive relations:

\[
\mathcal{L}_2^{\alpha_1, \ldots, \alpha_r}(\zeta) = \sum_{\epsilon_i \in \{0,1\}} \mathcal{L}_2^{(\alpha_1, \ldots, \alpha_r)}(\epsilon_i \zeta) \quad (\alpha_i \neq 0) \quad (84)
\]

\[
\mathcal{L}^{\alpha_1, \ldots, \alpha_r}(\zeta) = \sum_{\epsilon_i \in \{0,1\}} \mathcal{L}_2^{(\alpha_1, \ldots, \alpha_r)}(\epsilon_i \zeta) \quad (\alpha_i \neq 0) \quad (85)
\]

with

\[
\mathcal{L}^{(\alpha_1, \ldots, \alpha_r)}(\epsilon_i \zeta) = \begin{cases}
\mathcal{L}^{(\epsilon_1 \alpha_1, \ldots, \epsilon_r \alpha_r)} \text{ if } \epsilon_1 = 1 \\
\mathcal{L}_2^{(\alpha_1, \ldots, \alpha_r)} \text{ using (86) otherwise}
\end{cases}
\]

\[
\mathcal{L}_2^{(\alpha_1, \ldots, \alpha_r)}(\epsilon_i \zeta) = \begin{cases}
\mathcal{L}^{(\epsilon_1 \alpha_1, \ldots, \epsilon_r \alpha_r)} \text{ if } \epsilon_1 = 1 \\
\mathcal{L}_2^{(\alpha_1, \ldots, \alpha_r)} \text{ using (86) otherwise}
\end{cases}
\]

and

\[
\mathcal{L}_2^{(\alpha_1, \ldots, \alpha_r)}(\zeta) = \sum_{0 \leq i \leq r} \text{Lag}^{\alpha_1, \ldots, \alpha_r} \frac{(-\log \zeta)^{-i}}{(-i)!} \quad (87)
\]

Interpretation and proof: To begin with, observe that it is Lag_1^α (resp. Lag_2^α) that enters the definition (86) of $\mathcal{L}_2^{(\alpha)}$ (resp. $\mathcal{L}_2^{(\alpha)}$) and not the other way round. Here, $\text{Lag}^{\alpha_1, \ldots, \alpha_r} := \text{Lag}^{\alpha_1^{-1}, \ldots, \alpha_r^{-1}}$, and the mould elements $\mathcal{L}^{(\epsilon_1 \alpha_1, \ldots, \epsilon_r \alpha_r)}$, $\mathcal{L}^{(\epsilon_1 \alpha_1, \ldots, \epsilon_r \alpha_r)}$ are defined either *directly*, when $\epsilon_1 \neq 0$ (convergent case) and *indirectly* by the rule (86) supplemented by the convention (86) when the first ϵ_1’s are all 0 (divergent case).

So much for the interpretation. As for the proof, it relies, as so often, on wholesale differentiation. We know how to partial-differentiate the monomials $\mathcal{L}^\alpha, \mathcal{L}_2^\alpha$ (see in (§2.3) the rules for $\widehat{\mathcal{V}}^{(\star)}$) and the monics $\text{Lag}_1^\alpha, \text{Lag}_2^\alpha$ (see
§2.4) and therefore the mixed monomials $\text{Lag}^\alpha_1, \text{Lag}^\alpha_2$ as well. With some patience and Sitzfleisch, we can therefore check the differential stability of (84) and (85).

Remark: In the above Proposition, it is essential to assume that each α_i is $\neq 0$. If we want to remove that assumption (to capture, for example, the case of the classical polylogarithms), we must modify (82)-(83) in two ways:

(i) put on the left-hand side a parity factor $(-1)^{\sum \alpha_i}$ with $n(\alpha) := \sum \alpha_i = 1$;

(ii) restrict the sums on the right-hand side by imposing $\epsilon_i = 1$ when $\alpha_i = 0$.

Thus, in the general situation the involution governing the polar exchange becomes:

$$(-1)^{n(\alpha)} \quad \mathcal{L}^{\alpha_1, \ldots, \alpha_r}_1(\zeta) = \sum_{\epsilon_i=1 \text{ if } \alpha_i=0}^{\epsilon_i=0 \text{ if } \alpha_i>0} \mathcal{L}^{(\alpha_1, \ldots, \alpha_r)}_\epsilon(\zeta)$$ \hspace{1cm} (88)

$$(-1)^{n(\alpha)} \quad \mathcal{L}^{\alpha_1, \ldots, \alpha_r}_2(\zeta) = \sum_{\epsilon_i=1 \text{ if } \alpha_i=0}^{\epsilon_i=0 \text{ if } \alpha_i>0} \mathcal{L}^{(\alpha_1, \ldots, \alpha_r)}_\epsilon(\zeta)$$ \hspace{1cm} (89)

Integral expression of Lag^α.

We already found power series expansions for Lag^α (cf Proposition 2.3). By invoking Proposition 2.5 and setting $\zeta = 1$ to kill off $\log \zeta$ in (86), we can now, based on (84)-(85), express Lag^α or Lag^α_2 in terms of $\mathcal{L}^\alpha(1)$ and $\mathcal{L}^\alpha_2(1)$ (both are simultaneously needed), leading to interesting integral expressions. Before spelling these out, let us introduce some convenient abbreviations:

$$\begin{align*}
\left< L_1 \ldots L_r \right> &:= \int_{t_1 < \ldots < t_r < 1} L_1 \ldots L_r \ dt_1 \ldots dt_r \\
\left| R_1 \ldots R_r \right> &:= \int_{t_1 < \ldots < t_r < \infty} R_1 \ldots R_r \ dt_1 \ldots dt_r
\end{align*}$$ \hspace{1cm} (90)

with $L_i := \frac{1}{t_i + \alpha_i}$; $R_i := \frac{1}{t_i + \alpha_i} - \frac{1}{t_i}$; $\pi_i := \frac{1}{t_i}$ \hspace{1cm} (91)

The integral expansions then assume the form:

$$\begin{align*}
\text{Lag}^\alpha_{1} &= -\langle L_1 \rangle - |R_1| \\
\text{Lag}^\alpha_{1,2} &= +\langle L_1 L_2 \rangle + \langle L_1 |R_2\rangle + |R_1 R_2| + |\pi_1 R_2| + |R_1 \pi_2| \\
&- \langle L_1 L_2 L_3 \rangle - \langle L_1 L_2 |R_3\rangle - \langle L_1 |R_2 R_3\rangle - |R_1 R_2 R_3|
\end{align*}$$

$$\begin{align*}
\text{Lag}^\alpha_{1,2,3} &= -\langle L_1 |\pi_2 R_3\rangle - \langle L_1 |R_2 \pi_3\rangle - |\pi_1 R_2 R_3| - |R_1 \pi_2 R_3| - |R_1 \pi_2 \pi_3| \\
&- |\pi_1 R_2 \pi_3| - |\pi_1 R_2 \pi_3| - |R_1 \pi_2 \pi_3|
\end{align*}$$
Lag$^{a_1}_{L_1} = + \langle L_1 \rangle + \langle R_1 \rangle$
Lag$^{a_1,a_2}_{L_1} = + \langle L_2 L_1 \rangle + \langle L_2 R_1 \rangle + \langle L_2 \rangle - \langle R_2 R_1 \rangle - \langle R_2 \rangle$
Lag$^{a_1,a_2,a_3}_{L_1} = \begin{cases} \langle L_3 L_2 L_1 \rangle + \langle L_3 L_2 R_1 \rangle + \langle L_3 R_2 R_1 \rangle + \langle L_3 \rangle - \langle R_3 R_2 \rangle - \langle R_3 \rangle \end{cases}

The terms in red, with integrands π_i directly abutting a marker \langle or \rangle, correspond to divergent integrals and must be ’renormalised’ by index post- or preposition, once again using Lemma 2.1. If we now turn to the ’core’ of Lag^*, whose definition we recall:

$$\text{corLag}^{a_1,\ldots,a_r}_{L_1} = \sum_{a_i \in \{1, a_i\}} (-1)^{n(a')} \text{Lag}^{a_1,\ldots,a_r}_{L_1} \quad \text{with} \quad n(a') := \sum_{a_i=1} 1 \quad \text{(92)}$$

we see immediately that the factors π_i disappear from the integrals, while the distinct factors L_i and R_i make way for identical factors \bar{L}_i and \bar{R}_i, both equal to $\frac{1}{t_i+a_i} - \frac{1}{t_i+1}$. The corresponding integrals therefore simplify:

$$\text{corLag}^{a_1,\ldots,a_r}_{L_1} = (-1)^r \int_{0<t_1<\cdots<t_r<+\infty} \prod \left(\frac{1}{t_i+a_i} - \frac{1}{t_i+1} \right) dt_1 \cdots dt_r$$

and so do the power series expansions:

$$\text{corLag}^{1+\tau_1,\ldots,1+\tau_r}_{L_1} = \sum_{1 \leq n_1 \leq +\tau_1, \ldots, 1 \leq n_r \leq +\tau_r} (-1)^r \prod_{i=1}^r \frac{n_i \cdots n_r}{n_i + \cdots + n_r} \quad \text{(94)}$$

2.7 Polar exchange in the multiplicative plane.

Like Lag^* in the preceding section, the mould Lig^* is linked to the polar exchange $0^+ \leftrightarrow \infty^+$ for hyperlogarithms, but this time in the multiplicative plane, and in the incremental rather than positional encoding. We first introduce suitable notations:

(i) Let $\mathcal{V}^*(z)$ be the Laplace transform of $\hat{\mathcal{V}}(\zeta)$ along \mathbb{R}^+.

(ii) Let $\mathcal{V}^e_*(z)$ be the same, but with an exponential factor $e^{\omega|z|}$.

(iii) Let $\text{Ven}^*(z)$ be the same again, but with all ω_i changed to $-\omega_i$.

Close to ∞^+, $\text{Ven}^*(z)$ is adequately described by its exponential factor times an asymptotic power series in z^{-1}. Close to 0^+, it is exactly described by a polynomial in $\log z$, of degree $r(\bullet)$ and with coefficients $\text{Ven}^*_n(z)$ that are entire functions of z. The link between the two turns out to be the mould Lig^* of §2.4, or rather its parity-modified variant $pa\text{Lig}^*$.

Explicitly:
Proposition 2.6 (Polar exchange $\mathcal{V}_{en}^* \leftrightarrow \mathcal{V}_{en}^*$).

\mathcal{V}_{en}^* and \mathcal{V}_{en}^* relate according to the mould equation:

$$\mathcal{V}_{en}^*(z) = \text{paLig}^* \times \text{Logg}^*_-(z) \times \mathcal{V}_{en}^*(z)$$

(95)

with

$$\begin{align*}
\mathcal{V}_{en}^{\omega_1,\ldots,\omega_r}(z) &:= \mathcal{V}^{-\omega_1,\ldots,-\omega_r}(z) e^{-(\omega_1+\ldots+\omega_r)z} \\
\text{paLig}^{\omega_1,\ldots,\omega_r} &:= (-1)^r \text{Lig}^{\omega_1,\ldots,\omega_r} \\
\text{Logg}^-_{\omega_1,\ldots,\omega_r} &:= \frac{(-\gamma-\log z)^r}{r!} \\
\mathcal{V}_{en}^*_{\omega_1,\ldots,\omega_r}(z) &:= \text{entire function of } z
\end{align*}$$

The mould \mathcal{V}_{en}^* in turn is entirely determined by the system:

$$z \partial_z \mathcal{V}_{en}^*(z) = I^* \times \mathcal{V}_{en}^*(z) - \mathcal{V}_{en}^*(z) \times \text{Ien}^*(z)$$

(96)

with

$$\begin{align*}
\mathcal{V}_{en}^*(0) &= 0 \\
I^0 &= \text{Ien}^0(z) := 0 \\
I^{\omega_1} &= 1 \\
\text{Ien}^{\omega_1}(z) &= e^{-\omega_1 z} \\
I^1,\ldots,\omega_r &= \text{Ien}^{\omega_1,\ldots,\omega_r}(z) := 0 \quad \forall r + 1
\end{align*}$$

Proof: Establishing (95) is essentially a matter of solving, for z close to 0^+, the characteristic mould equation $z \partial_z \mathcal{V}_{en}^*(z) = -\mathcal{V}_{en}^* \times I^*$ of \mathcal{V}_{en}^*. The (necessarily symmetral) mould paLig^* simply embodies the integration constants. To show that it actually coincides with Lig^* (up to the innocuous parity factor), we must show that it verifies (up to the trivial sign changes introduced by the parity factor) the characteristic differential system (64)-(66). To do this, it is enough to partial differentiate (95) in each ω_i by using the rules of §2.3 and then let z go to 0 and remark that $\partial_{\omega_i} \mathcal{V}_{en}^*(z) \downarrow 0$ as z goes to 0.

Connection constants li_r.

The only point left pending concerns the connection constants li_r of (69). Denoting $^n\mathcal{V}_{en}^*$ the mould inverse of \mathcal{V}_{en}^*, we may rewrite (95) as :

$$\text{paLig}^* = \mathcal{V}_{en}^*(z) \times \text{Logg}^*_+(z) \times ^n\mathcal{V}_{en}^*(z)$$

(97)

with

$$\begin{align*}
\text{Logg}^{\omega_1,\ldots,\omega_r}_+ &= \frac{(\gamma+\log z)^r}{r!} \\
^n\mathcal{V}_{en}^{\omega_1,\ldots,\omega_r} &= (-1)^r \mathcal{V}_{en}^{\omega_r,\ldots,\omega_1}
\end{align*}$$

Hence

$$\text{paLig}^* = \mathcal{V}_{en}^*(e^{-\gamma}) \times ^n\mathcal{V}_{en}^*(e^{-\gamma})$$

(99)
with
\[\mathcal{V} e n^{\omega_1, \ldots, \omega_r}(z) = \int_{\omega_1 < \omega_2 < \ldots < \omega_r} \prod_{i} \frac{e^{-\omega_i z_i}}{z_i} \, dz_1 \ldots dz_r \]
(100)

\[i \mathcal{V} e n^{\omega_1, \ldots, \omega_r}(z) = \sum_{1 \leq j \leq r} (-1)^{r-j} \int_{\mathcal{D}_j} \frac{e^{-\omega_j z_j}}{z_j} \prod_{i < j} \frac{e^{-\omega_i z_i}}{z_i} \frac{1}{z_j} \, dz_1 \ldots dz_r \]
(101)

with \(\mathcal{D}_j = \left\{ 0 < z_j < (z_{j+1} < \ldots < z_r) < z \right\} \)
(102)

Using (74) we may write:

\[\text{li}_r = \text{Lig}^{r-1 \text{ times}}_{1, 0, \ldots, 0} = (-1)^r \begin{cases} + \mathcal{V} e n^{1, 0, \ldots, 0} (e^{-\gamma}) \\ + i \mathcal{V} e n^{1, 0, \ldots, 0} (e^{-\gamma}) \end{cases} \]
(103)

\[= (-1)^r \left\{ \sum_{t} e^{-z_t} \prod_{i < j} \frac{e^{-\omega_i z_i}}{z_i} \frac{1}{z_j} d z_j \right\} \]
(104)

\[= (-1)^r \left\{ e^{-z_0} \prod_{i < j} \frac{e^{-\omega_i z_i}}{z_i} \frac{1}{z_j} d z_j \right\} \]
(105)

Eventually, setting \(\text{li}(t) := 1 + \sum_{i \leq r} \text{li}_i t^r \), we find for \(t < 0 \):

\[\text{li}(t) = 1 - t \int_0^{\gamma} e^{-z} z^{-t-1} e^{-\gamma t} \, dz + t \int_0^{\gamma} z^{-t-1} e^{-\gamma t} \, dz \]

\[= 1 - t \Gamma(-t) e^{-\gamma t} + t \left[- \frac{z^{-t}}{\Gamma(t)} \right]_{z=0}^{z=\gamma} e^{-\gamma t} \]

\[= \Gamma(1-t) e^{-\gamma t} = \exp \left(\sum_{2 \leq r} \frac{\zeta(r)}{r} t^r \right) \]

which establishes (71).

2.8 Summary.

<table>
<thead>
<tr>
<th>(\partial)-friendly</th>
<th>(\Delta)-friendly</th>
<th>Relevant to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\widehat{\mathcal{V}}^, V^))</td>
<td>((\widehat{\mathcal{V}}^, V^))</td>
<td>equational resurgence</td>
</tr>
<tr>
<td>((\widehat{S}^, \text{tes}^))</td>
<td>((\widehat{S}^, \text{des}^))</td>
<td>co-equational resurgence</td>
</tr>
</tbody>
</table>
Functional dimorphy:

\[\begin{align*}
\mathcal{V}^* & \quad \text{symmetrical relative to } \mathcal{V}^* \\
\mathcal{V}[\bullet] & \quad \text{symmetrical relative to } \bullet.
\end{align*} \]

First arithmetical dimorphy:

\[\begin{align*}
\text{Lan}^* & \quad \text{symmetrical} \\
\text{Lin}^* & \quad \text{symmetrical} \\
\text{Lag}^* & \quad \text{symmetrical} \\
\text{Lig}^* & \quad \text{symmetrical}
\end{align*} \]

Second arithmetical dimorphy:

\[\begin{align*}
\text{Lan}^* & \quad \text{leads to the first standard encoding for multizetas.} \\
\text{Lin}^* & \quad \text{leads to the second standard encoding for multizetas.} \\
\text{Lag}^* & \quad \text{governs the convolutive polar inversion } \zeta \leftrightarrow \zeta^{-1} \\
\text{Lig}^* & \quad \text{governs the multiplicative polar inversion } z \leftrightarrow z^{-1} \\
\text{Lan}^* & \quad \text{behaves nicely under shifts.} \\
\text{Lag}^* & \quad \text{behaves nicely under dilations.}
\end{align*} \]

3 Weighted products and augmented scrambles.

3.1 Introduction.

This section, rather heavy on combinatorics, is there mainly to disencumber the next one (on singularly perturbed systems) but it also has its autonomous interest. It deals with three connected topics: weighted products, augmented scrambles, extended hyperlogarithmic dimorphy.

Weighted products.

There are four such products – two weighted convolutions, \textit{weco} and \textit{yeco}, which operate in the Borel plane, and two weighted multiplications, \textit{wemu} and \textit{yemu}, which operate in the multiplicative or ‘geometric’ plane. From the point of view of applications, it is the convolution \textit{weco} that matters most, since it governs the way singularities combine in all problems of co-equational resurgence. The companion \textit{yeco}, despite having few applications at the moment, has its importance too, because it fills a hole in the overall
picture and brings out a remarkable duality32: the u_i-weighted weco convolution of simple poles at the points v_i is essentially the same as the v_i-weighted yeco convolution of simple poles at the points u_i. Lastly, the weighted multiplications $wemu/yemu$, being the Laplace images of the more complex convolutions $weco/yeco$, shed light on these, especially on their non-obvious symmetrality. When applied to hyperlogarithms, they also round up the picture of dimorphy and give rise to interesting functional transforms.

Augmented scrambles.

The u- or v-augmented scrambles extend the ordinary scrambles to the case of indices $u_i = (u_{i,j})$ or $v_i = (v_{i,j})$, which may themselves be scalar sequences of arbitrary length. These highly complex mould transforms, the u-scramble and v-scramble, induce in turn functional transforms that are stable under alien derivation and strictly indispensible for the weighted convolution of general ramified functions. Each of these transforms verifies a forward induction (each step adding a final weight) and a backward induction (each step adding an initial weight), which between them provide two alternative definitions/constructions and clarify the action of alien derivations.

Extended hyperlogarithmic dimorphy.

Hyperlogarithms are stable not just under ordinary multiplication and ordinary convolution (simple dimorphy), but also under their weighted counterparts $wemu/yemu$ and $weco/yeco$ (extended dimorphy). While the ordinary scramble is enough to calculate the weighted convolutions of simple poles, when it comes to hyperlogarithms the augmented scrambles are needed.

3.2 The basic weighted convolutions $weco$/ $yeco$.

Proposition 3.1 (The weighted convolution $weco$).

32It also leads to the tessellation constants tes^w, dual to the constants $tes^\overline{w}$. See §4.8. Although the latter alone shall be required here, they really come to life within the pair $(tes^\overline{w}, tes^w)$.

For \(u_i \in \mathbb{C} \) and \(\hat{c}_i(\xi) \in \mathbb{C}\{\xi}\), the following integrals

\[
\text{weco}^{(u_1)}(\xi) = \frac{1}{u_1} \hat{c}_1\left(\frac{\xi}{u_1}\right) \quad (106)
\]

\[
\text{weco}^{(u_1, u_2)}(\xi) = \int_0^{\theta_{u_1}} \hat{c}_2(\xi_2) d\xi_2 \hat{c}_1(\xi_1) \frac{1}{u_1} \quad \text{with} \quad \left\{ u_1 \xi_1 + u_2 \xi_2 = \xi \right. \quad \left. \theta_{u_1} := \xi (u_1 + u_2)^{-1} \right\} \quad (107)
\]

\[
\text{weco}^{(u_1, \ldots, u_r)}(\xi) = \left\{ \begin{array}{l}
\int_0^{\theta_{u_r}} \hat{c}_r(\xi_r) d\xi_r \int_0^{\theta_{u_{r-1}}} \hat{c}_{r-1}(\xi_{r-1}) d\xi_{r-1} \cdots \\
\ldots \int_0^{\theta_{u_2}} \hat{c}_2(\xi_2) d\xi_2 \int_0^{\theta_{u_1}} \hat{c}_1(\xi_1) \frac{1}{u_1} \end{array} \right. \\
\text{with} \quad \left\{ \begin{array}{l}
u_1 \xi_1 + \ldots + u_r \xi_r = \xi \\
\theta_{u_1} := (\xi - (u_1 \xi_1 + \cdots + u_r \xi_r))(u_1 + \cdots + u_{i-1})^{-1} \end{array} \right\} \quad (108)
\]

unambiguously define germs \(\text{weco}^{(u_1, \ldots, u_r)}(\xi) \in \mathbb{C}\{\xi}\) provided \(u_1 + \cdots + u_i \neq 0 \). The mould \(\text{weco}^\bullet(\xi) \) is symmetric relative to the ordinary (i.e. non-weighted) convolution product in \(\xi \).

Proposition 3.2 (The weighted convolution \(\text{yeco} \)).

For \(v_i \in \mathbb{C} \) and \(\hat{c}_i(\xi) \in \mathbb{C}\{\xi}\), the following integrals

\[
\text{yeco}^{(v_1)}(\xi) = \frac{1}{v_1} \hat{c}_1\left(\frac{\xi}{v_1}\right) \quad (109)
\]

\[
\text{yeco}^{(v_1, v_2)}(\xi) = \int_0^{\theta_{v_1}} \hat{c}_2(\xi_2) d\xi_2 \hat{c}_1(\xi_1) \frac{1}{v_2} \quad \text{with} \quad \left\{ v_1 \xi_1 + v_2 \xi_2 = \xi \right. \quad \left. \theta_{v_1} := \xi (v_1 - v_2)^{-1} \right\} \quad (110)
\]

\[
\text{yeco}^{(v_1, \ldots, v_r)}(\xi) = \left\{ \begin{array}{l}
\int_0^{\theta_{v_r}} \hat{c}_r(\xi_r) d\xi_r \int_0^{\theta_{v_{r-1}}} \hat{c}_{r-1}(\xi_{r-1}) d\xi_{r-1} \cdots \\
\ldots \int_0^{\theta_{v_2}} \hat{c}_2(\xi_2) d\xi_2 \int_0^{\theta_{v_1}} \hat{c}_1(\xi_1) \frac{1}{v_1} \end{array} \right. \\
\text{with} \quad \left\{ \begin{array}{l}
u_1 \xi_1 + \cdots + v_r \xi_r = \xi \\
\theta_{v_1} := \frac{\xi}{v_1 - v_2} , \quad \theta_{v_2} := \frac{\xi}{v_1 - v_2} - \sum_{1 \leq i \leq j} \frac{v_i - v_{j+2}}{v_j + 1 - v_{j+2}} \xi_i \\
\theta_{v_1} = 0 , \quad \theta_{v_2} = - (\xi_1 + \cdots + \xi_j) \end{array} \right\} \quad (111)
\]

unambiguously define germs \(\text{yeco}^{(v_1, \ldots, v_r)}(\xi) \in \mathbb{C}\{\xi\} \) provided \(v_i \neq v_{i+1} \). The mould \(\text{yeco}^\bullet(\xi) \) is symmetric relative to the (ordinary) convolution product in \(\xi \).

39
A more symmetrical definition reads

\[
\text{weco}^{(u_1, \ldots, u_r)}(\xi) := \int_{w^{u_1, \ldots, u_r}} c_1(\xi_1) \cdots c_r(\xi_r) \, d\xi_1 \cdots d\xi_r \quad (112)
\]

\[
\text{yeco}^{(v_1, \ldots, v_r)}(\xi) := \int_{y^{v_1, \ldots, v_r}} c_1(\xi_1) \cdots c_r(\xi_r) \, d\xi_1 \cdots d\xi_r \quad (113)
\]

with integration on a contorted multi-path in the standard case of positive weights \(0 < u_i\) (resp. real decreasing weights \(0 < v_i < v_{i-1} < \cdots < v_1\) and positive end-point \(0 < \xi\):

\[
W^{u_1, \ldots, u_r} = \begin{cases}
 u_1 \xi_1 + \cdots + u_r \xi_r = \xi \\
 0 < \xi_r < \xi_{r-1} < \cdots < \xi_2 < \xi_1 \\
 (u_1 + \cdots + u_i) \xi_i + (u_{i+1} \xi_{i+1} + \cdots + u_r \xi_r) < \xi \quad (2 \leq i \leq r)
\end{cases} \quad (114)
\]

\[
Y^{v_1, \ldots, v_r} = \begin{cases}
 v_1 \xi_1 + \cdots + v_r \xi_r = \xi \\
 0 \leq \xi_i + \cdots + \xi_r \quad (\forall i \leq r) \\
 0 < (\xi_1 + \cdots + \xi_i) v_i + (v_{i+1} \xi_{i+1} + \cdots + v_r \xi_r) \quad (\forall i \leq r)
\end{cases} \quad (115)
\]

While these integral representations have their use for majorising the weighted convolution products; for establishing the symmetrality of the moulds \(\text{weco}^*(\xi)\) and \(\text{yeco}^*(\xi)\); even for predicting where its singularities will project on the \(\xi\)-plane, they are pretty useless for finding the precise addresses of these singularities on the wildly ramified \(\xi\)-surface, and totally hopeless for deriving the corresponding resurgence equations. Fortunately, however, when the inputs \(\xi_i\) are simple poles or polylogarithms or even arbitrary ramified functions, there exist for \(\text{weco}^*\) transparent formulae that answer all these questions, as we shall see in the sequel.

3.3 The basic weighted multiplications \(\text{wemu/\text{yemu}}\)

Proposition 3.3 (The weighted multiplications \(\text{wemu/\text{yemu}}\)).

Parallel with the weighted convolutions \(\text{weco/yeco}\), we have two weighted multiplications \(\text{wemu/\text{yemu}}\) that act on analytic germs at infinity in the multiplicative plane:

\[
(c_1(x), \ldots, c_r(x)) \in \mathbb{C}\{x^{-1}\}^r \quad \mapsto \quad \begin{cases}
 \text{wemu}^{(u_1, \ldots, u_r)}(x) \in \mathbb{C}\{x^{-1}\} \\
 \text{yemu}^{(v_1, \ldots, v_r)}(x) \in \mathbb{C}\{x^{-1}\}
\end{cases} \quad (116)
\]

\(^{33}\)although that property results even more simply from the symmetrality of \(\text{wemu}^*(x)\) and \(\text{yemu}^*(x)\): cf \S 3.3, \S 3.4.
For weights such that \(u_1 + \cdots + u_r \neq 0 \) and \(v_i \neq v_{i+1} \), they are defined by the integrals

\[
\text{wemu}^{(u_1, \ldots, u_r)}(x) := \frac{1}{(2\pi i)^r} \int_{\Gamma_i} S^{(u_1, \ldots, u_r)}(x) c_1(x_1) \cdots c_r(x_r) \, dx_1 \cdots dx_r \tag{117}
\]

\[
\text{yemu}^{(v_1, \ldots, v_r)}(x) := \frac{1}{(2\pi i)^r} \int_{\Gamma_i} S^{(v_1, \ldots, v_r)}(x)c_1(x_1) \cdots c_r(x_r) \, dx_1 \cdots dx_r \tag{118}
\]

with kernels

\[
S^{(u_1, \ldots, u_r)}(x) = \prod_{i=1}^{i=r} \frac{1}{(u_1+ \cdots + u_i) x - (x_1+ \cdots + x_i)} \tag{119}
\]

\[
S^{(v_1, \ldots, v_r)}(x) = \frac{1}{v_r x - x_r} \prod_{i=1}^{i=r-1} \frac{1}{(v_i - v_{i+1}) x -(x_i - x_{i+1})} \tag{120}
\]

and with integration along loops \(\Gamma_i \) large enough to fall within the domains of definition of the integrands \(c_i \). The variable \(x \) itself must be chosen large enough for the kernels \(S^{(u_1, \ldots, u_r)}(x) \) and \(S^{(v_1, \ldots, v_r)}(x) \) to remain pole-free while the integration variables \(x_i \) run through these loops \(\Gamma_i \). The resulting moulds \(\text{wemu}^\bullet(x) \) and \(\text{yemu}^\bullet(x) \) are symmetrical relative to ordinary multiplication.

Proof: The only point that needs proving – the symmetricality of \(\text{wemu}^\bullet(x) \) and \(\text{yemu}^\bullet(x) \) – plainly results from the symmetricality of the moulds \(sa^\bullet, si^\bullet \):

\[
\begin{aligned}
\text{sa}^{u_1, \ldots, u_r} & := P(u_1) \cdots P(u_1, \ldots, u_r) \\
\text{si}^{v_1, \ldots, v_r} & := P(v_1) \cdots P(v_1, \ldots, v_r)
\end{aligned} \tag{121}
\]

on which the kernels \(S^{(u_1, \ldots, u_r)}(x) \) and \(S^{(v_1, \ldots, v_r)}(x) \) are patterned. However, a remark is in order here, to preempt a possible objection. As we shall see (cf. §3.5 and §3.8), systematic sequence reversions occur when we go from the \(\text{wemu} \) to the \(\text{yemu} \) products of test functions (or to the corresponding convolutions). This raises a question: might not an alternative, order-reversed definition of \(si^\bullet \) remove that discrepancy? The answer to that is no. Besides, the very fact that \(sa^\bullet \) and \(si^\bullet \) both result from the same symmetrical mould

\[
\mathcal{G}^{(u_1, \ldots, u_r)} := \mathcal{E}^{(u_1)} \cdots \mathcal{E}^{(u_1+\cdots+u_r)} \tag{122}
\]

under specialisation of the flexion unit \(\mathcal{E}^{(v_1)} \) to \(P(u_1) \) and \(P(v_1) \) respectively, shows that the joint definitions chosen for \(sa^\bullet \) and \(si^\bullet \) are truly coherent.

\(^{34}\) i.e. \(si^{v_1, \ldots, v_r} := P(v_1) \cdots P(v_r) \).

\(^{35}\) A flexion unit is any two-variable meromorphic function verifying the seminal identity \(\mathcal{E}^{(v_1)} \mathcal{E}^{(v_1)} = \mathcal{E}^{(v_1, v_2)} + \mathcal{E}^{(v_1, v_3)} + \mathcal{E}^{(v_1, v_4)} \).
Remark: We clearly have *weighted distributivity* of the x-differentiation and x-shift relative to the weighted multiplications:

\[
\hat{\partial} \text{wemu}^{(u_1, \ldots, u_r)} (x) = \sum_{1 \leq i \leq r} u_i \text{wemu}^{(u_1, \ldots, u_i, \ldots, u_r)} (x) \quad (\hat{\partial} := \hat{\partial}_x)
\]

\[
\tau \text{wemu}^{(u_1, \ldots, u_r)} (x) = \text{wemu}^{(u_1, \ldots, u_r)} \text{wco} \text{wemu}^{(u_1, \ldots, u_r)} (x) \quad (\tau := e^{u_1 \hat{\partial}})
\]

3.4 **From wemu/yemu to weco/yeco.**

Proposition 3.4 Just as ordinary convolution is the Borel image of ordinary multiplication, the weighted convolutions weco, yeco are the Borel images of the weighted multiplications wemu, yemu:

\[
c_1(x), \ldots, c_r(x) \xrightarrow{\text{Borel}} \hat{c}_1(\xi), \ldots, \hat{c}_r(\xi)
\]

\[
\text{wemu}^{(u_1, \ldots, u_r)} (x) \xrightarrow{\text{Borel}} \text{weco}^{(u_1, \ldots, u_r)} (\xi)
\]

\[
\text{yemu}^{(v_1, \ldots, v_r)} (x) \xrightarrow{\text{Borel}} \text{yeco}^{(v_1, \ldots, v_r)} (\xi)
\]

Proof: Obvious for $r = 1$ since \(\text{wemu}^{(u_1)} (x) = c_1(u_1 x)\), \(\text{yemu}^{(v_1)} (x) = c_1(v_1 x)\) and \(\text{weco}^{(e_{\xi})} (x) = \frac{1}{u_1} \hat{c}_1(\frac{\xi}{u_1})\), \(\text{yeco}^{(e_{\xi})} (x) = \frac{1}{v_1} \hat{c}_1(\frac{\xi}{v_1})\). But even for $r > 1$ the argument is straightforward:

(i) assume $0 < u_j$, $0 < v_i < \ldots < v_1$ and $1 \ll \Re x$

(ii) write $c_j(x_j) = (2\pi i)^{-1} \hat{c}_j(\xi_j) \exp(x_j \xi_j) dx_j$

(iii) calculate the weighted convolutions for inputs $\hat{c}_i(\xi) := e^{v_i \xi}$

(iv) expand the result into exponential sums.

(v) subject \(\text{weco}^{(v_1, \ldots, v_r)} (\xi)\) and \(\text{yeco}^{(v_1, \ldots, v_r)} (\xi)\) to the Laplace transform.

By the time we reach step (iv), we find:

\[
\text{weco}^{(v_1, \ldots, v_r)} (\xi) = \sum_{1 \leq s \leq r} \text{we}^{(v_1, \ldots, v_s)} \prod_{1 \leq i < s} \text{wem}_{i,s} \prod_{s < j \leq r} \text{wem}_{s,j}
\]

\[
\text{yeco}^{(v_1, \ldots, v_r)} (\xi) = \sum_{1 \leq s \leq r} \text{ye}^{(v_1, \ldots, v_s)} \prod_{1 \leq i < s} \text{yen}_{i,s} \prod_{s < j \leq r} \text{yen}_{s,j}
\]
with monomials \(\hat{\omega}_{e,r,s}(\xi) = (-1)^{r+s}(u_1 + ... + u_s)^{-2} \exp\left(\xi \frac{x_1 + ... + x_s}{u_1 + ... + u_s}\right) \) (129)
\[\hat{\omega}_{e,r,s}(\xi) = (-1)^{r+s}(v_s - v_{s+1})^{-2} \exp\left(\xi \frac{x_s - x_{s+1}}{v_s - v_{s+1}}\right) \] (130)
\[\text{wen}_{i,j} = \begin{pmatrix} u_1 + ... + u_i \\ x_1 + ... + x_i \end{pmatrix} \begin{pmatrix} u_1 + ... + u_j \\ x_1 + ... + x_j \end{pmatrix} \] (131)
\[\text{yen}_{i,j} = \begin{pmatrix} v_i - v_{i+1} \\ x_i - x_{i+1} \end{pmatrix} \begin{pmatrix} v_j - v_{j+1} \\ x_j - x_{j+1} \end{pmatrix} \] (132)

Step (v) amounts to Laplace-transforming \(\hat{\omega}(\xi), \hat{\gamma}(\xi) \) to \(\omega(x), \gamma(x) \):
\[\omega_{e,r,s}(x) = (-1)^{r+s}(u_1 + ... + u_s)^{-2} (x - \frac{x_1 + ... + x_s}{u_1 + ... + u_s})^{-1} \] (133)
\[\gamma_{e,r,s}(x) = (-1)^{r+s}(v_s - v_{s+1})^{-2} (x - \frac{x_s - x_{s+1}}{v_s - v_{s+1}})^{-1} \] (134)

This leads to the relations
\[S_{a}^{(v_1 \ldots v_r)}(x) = \sum_{1 \leq s \leq r} \omega(x) \prod_{1 \leq i < s} \text{wen}_{i,s} \prod_{s < j \leq r} \text{wen}_{s,j} \] (135)
\[S_{i}^{(v_1 \ldots v_r)}(x) = \sum_{1 \leq s \leq r} \gamma(x) \prod_{1 \leq i < s} \text{yen}_{i,s} \prod_{s < j \leq r} \text{yen}_{s,j} \] (136)

which are nothing but the simple element decomposition of the kernels \(S_{a}^{*}(x) \) and \(S_{i}^{*}(x) \) viewed as rational functions of \(x \).

3.5 Weighted convolution of simple poles. Duality.

Remarkably, one and the same operation – the scramble transform – describes how the \(\omega_{e} \)-convolution with weights \(u_i \) acts on simple poles at \(v_i \), and how the \(\gamma_{e} \)-convolution with weights \(v_i \) acts on simple poles at \(u_i \). Here is the precise dual statement:

Proposition 3.5 (Weighted convolution of poles.)

*Under the usual restrictions on the weights \(u_1 + ... + u_i = 0, v_i + v_{i+1} \), the identities hold:

\[\hat{c}_j := \hat{\nu}_{v_j} \Rightarrow \omega_{e}^{(v_1 \ldots v_r)} = (\text{scramb}_{\nu}^{(v_1 \ldots v_r)}) \] (137)
\[\hat{c}_j := \nu_{v_j} \Rightarrow \gamma_{e}^{(v_1 \ldots v_r)} = (\text{scramb}_{\nu}^{(v_1 \ldots v_r)}) \] (138)

When variables \(x_{r+1} \) or weights \(v_{r+1} \) occur in the formulae (for \(s = r \)), they should of course be set equal to 0.
Comments. Here, the convolands are simple poles:

$$\hat{V}^{\omega_i}(\xi) := \frac{1}{\xi - \omega_j}, \quad iv\hat{V}^{\omega_i}(\xi) = -\frac{1}{\xi - \omega_j},$$

and the scramble transform acts on the bimoulds \(\hat{V}^\star(\xi), \ iv\hat{V}^\star(\xi):\)

$$\hat{V}^{(u_1, \ldots, u_r)}(\xi) := \hat{V}^{u_1v_1, \ldots, u_r v_r}(\xi), \quad iv\hat{V}^{(u_1, \ldots, u_r)}(\xi) := iv\hat{V}^{u_1v_1, \ldots, u_r v_r}(\xi)$$

derived from the simple moulds \(\hat{V}^\star(\xi), \ iv\hat{V}^\star(\xi):\)

$$\begin{cases}
\hat{V}^{\omega_1, \ldots, \omega_r}(\xi) &= \frac{1}{\xi - (\omega_1 + \ldots + \omega_r)} \prod_0^\xi \frac{d\xi_{r-1}}{\xi_{r-1} - (\omega_1 + \ldots + \omega_{r-1})} \cdots \prod_0^{\xi_2} \frac{d\xi_1}{\xi_{r-1} - \omega_1} \\
iv\hat{V}^{\omega_1, \ldots, \omega_r}(\xi) &= (-1)^r \hat{V}^{\omega_r, \ldots, \omega_1}(\xi)
\end{cases} \tag{141}$$

Proof: Here, partial differentiation of the identities (137)-(138) in each \(u_i\) and \(v_i\) is not the shortest cut. A simpler approach consists in injecting an extraneous parameter \(z\) into all indices \(v_i\) while leaving the \(u_i\) alone, and that too in both cases. Concretely, we set \(v_i := z + \alpha_i\), regard the \(\alpha_i\) as constants, and \(z\)-differentiate the identities (137)-(138) by taking advantage of the absence of \(z\) from the many terms of the form \((u_{i_1} + \ldots + u_{i_2})(v_j - v_{j_2})\). The proof is straightforward in the case of \(weco\) (where \(z\) gets tagged to the poles \(v_i\); cf §4.4 for details) but less direct in the case of \(yeco\) (where \(z\) gets tagged to the weights \(v_i\)).

3.6 Weighted multiplication of simple logarithms. Duality redux.

Since it is the monomials \(\hat{V}^\star(x)\) rather that the \(\hat{V}^\star(x) = \partial_x \hat{V}^\star(x)\) that are stable under ordinary multiplication\(^{37}\), we must apply the weighted multiplications \(wemu, yemu\) not to simple poles \(\hat{V}^{\omega_i}(x) = (x - \omega_i)^{-1}\) but to simple logarithms \(\hat{V}^{\omega_i}(x) = \log(1 - x/\omega_i)\). Or rather, to get uniform germs in \(x\) at infinity\(^{38}\) and avoid determination issues, we shall take as multiplicands the

\(^{37}\) See (41). By the way, we should not be shocked by the appearance, here and throughout this section, of the multiplicative variable \(x\) (rather than \(\xi\)) inside the convolutive monomials \(\hat{V}^\star\) and \(\hat{V}^\star\): this interference of the multiplicative and convolutive structures is what monomial dimorphy is all about.

\(^{38}\) Extending the weighted products to the case of multiplicands \(c_i(x)\) ramified at infinity requires little more than a trifling modification of the integration paths: just replace the loops \(\Gamma_i\) in (117)-(118) by vertical lines \(L_i\) slightly inclined leftwards at both extremities to ensure convergence. But here we plump for simplicity and don’t want to bother with this complication, however minor.
Proposition 3.6 (wemu product of simple logarithms $\mathcal{L}_z^\alpha(x)$).

The procedure for calculating $\mathcal{L}_z^\alpha(x)$ is as follows:

(i) Start from the standard expansion $\mathcal{S}_\sigma(x) = \sum v_i \sigma(x, w^i) S^w$ where $\sigma(x, w^i) = \sum u_j \epsilon_i u_j$ with $\epsilon_i u_j = \sum \epsilon_{i,j} u_j$.

(ii) Replace each summand $\sigma(x, w^i) S^w$ by the cluster

$$\sigma(x, w^i) S^w = \sum_{\eta} \eta \int \frac{\tau(\eta)}{\alpha(\eta)} \left(\prod_{\eta} \frac{\alpha'_{\eta}(\eta)}{\alpha_{\eta}(\eta)} \right)$$

with η_j taking the value 1 if the last occurrence of u_j in w^i is single, and taking the values 0 or 1 otherwise. The new sign factor $\tau(\eta)$ is + (resp -) if there is an even (resp odd) number of zeros in the sequence η.

(iii) Replace each term $S^{u_1 \cdots u_r}$ by the hyperlogarithms $\mathcal{L}_z^{\eta_1 \cdots \eta_r}(x)$.

For instance, at depth $r = 3$, the term $S^{u_1 \cdot u_2 \cdot u_3}$ produces a simple pair $S^{u_1 \cdot u_2 \cdot u_3} - S^{u_2 \cdot u_3 \cdot u_1}$, while $S^{u_1 \cdot u_2 \cdot u_3 \cdot u_4}$ spawns a four-term cluster $S^{u_1 \cdot u_2 \cdot u_3 \cdot u_4} - S^{u_1 \cdot u_2 \cdot u_4 \cdot u_3} - S^{u_1 \cdot u_3 \cdot u_2 \cdot u_4} + S^{u_1 \cdot u_3 \cdot u_4 \cdot u_2}$.

Now, to the yemu product. Here, we take elementary multiplicants of the form $c_i(x) = \mathcal{L}_z^{\alpha_i} := -\mathcal{L}_z^{\alpha_i}$ and express the result as superposition of terms of the form $\mathcal{L}_z^{\beta_1 \cdots \beta_r} := (-1)^r \mathcal{L}_z^{\beta_1 \cdots \beta_r}$.

Proposition 3.7 (yemu product of simple logarithms $\mathcal{L}_z^\alpha(x)$).

The procedure for calculating yemu $\mathcal{L}_z^{\alpha_1 \cdots \alpha_r}(x)$ is as follows:

(i) Start from the standard expansion scam $S^w = \sum w^i \sigma(x, w^i) S^w$ where $\sigma(x, w^i) \in \{\pm 1\}$, $w = (u_1 \cdots u_r)$, $w^i = (u'_1 \cdots u'_r)$ and $u'_i = \sum \epsilon_{i,j} u_j$ with $\epsilon_{i,j} = \epsilon_{i,j} u_j$.

\[\text{that is to say, if the last } u'_k \text{ in } w^i \text{ that effectively contains } u_j \text{ (i.e. } \epsilon_{i,j} = 1) \text{ contains nothing else (i.e } u'_k = u_j).\]
\(\epsilon_{ij} \in \{ \pm 1 \} \)

(ii) Replace each summand \(\sigma(w, w') S(v_1' \ldots v_r') \) by the cluster

\[
\begin{aligned}
\sigma(w, w') \sum_{\eta} \tau(\eta) S(\alpha_1(\eta) \ldots \alpha_r(\eta)) & \quad \begin{cases}
 v'_i & = \sum \epsilon_{i,j} v_j \\
 \alpha'_i(\eta) & = \sum \epsilon_{i,j} \eta_j \alpha_j \\
 \eta & = (\eta_1, \ldots, \eta_r) \\
 \tau(\eta) & = (-1)^{\sum (1-\eta_j)}
\end{cases}
\end{aligned}
\]

with \(\eta_j \) taking the value 1 if the first occurrence of \(v_j \) in \(w' \) is single, and taking the values 0 or 1 otherwise. The new sign factor \(\tau(\eta) \) is + (resp -) if there is an even (resp odd) number of zeros in the sequence \(\eta \).

(iii) Replace each term \(S(v_1' \ldots v_r') \) by the hyperlogarithm \(L_x v_1' \ldots v_r' \)(x).

There are two main differences between the \(wemu \) and \(yeco \) products. One is obvious: unlike the upper indices \(u'_i = \sum \epsilon_{i,j} u_j \), which may be sums of up to \(r \) original indices \(u_j \), the lower indices \(v'_i = \sum \epsilon_{i,j} v_j \) are either differences \(v_j - v_{js} \) or single terms \(v_j \). The second difference is more significant: whereas the procedure for calculating \(wemu \) guarantees that all sums \(\alpha'(\eta) \) are nonzero, the procedure for \(yemu \) allows terms \(\alpha'(\eta) \) which (in the case of differences) may be zero. The corresponding hyperlogarithms \(L_x \) in (iii), being \(\equiv 0 \), may be removed from the expansion.

Thus, at depth \(r = 3 \), the term \(S(v_3' \cdot v_1' \cdot v_2') \) produces a two term sum \(S(v_3' \cdot v_1' \cdot v_2') - S(v_3' \cdot v_2' \cdot v_1') \) whereas the term \(S(v_3' \cdot v_1' \cdot v_2') \) produces a larger sum \(S(v_3' \cdot v_1' \cdot v_2') - S(v_3' \cdot v_1' \cdot v_2') - S(v_3' \cdot v_2' \cdot v_1') + S(v_3' \cdot v_2' \cdot v_1') \), the last term of which may be omitted on account of the zero it carries.

The weighted products \(wemu \) and \(yemu \) are mentioned in Table 8.9 up to depth \(r = 3 \).

3.7 The augmented scrambles.

Some heuristics.

So far, so simple: we are lucky in having one single mould transform, the scramble, that accounts for all four weighted products \(weco/yeco, wemu/yemu \) when the inputs are simple poles or simple logarithms. But what about the case of hyperlogarithmic inputs of arbitrary depth, defined by scalar sequences of arbitrary length? Clearly, if there exist generalised scrambles

\[\text{40} \text{i.e. if the last } v_k' \text{ in } w' \text{ that effectively contains } v_j \text{ (with } \epsilon_{i,j} = 1 \text{) contains nothing else (i.e } v_k' = v_j). \]

46
capable of dealing with them, they must carry lower indices v_i (for weco and wemu) or upper indices u_i (for yeco and yemu) that are themselves scalar sequences of arbitrary length. For convenience, we shall systematically use the following notations:

$$
\begin{align*}
&u_i = (u_i, u'_i, \ldots, u^+_i, u^+_i) \\
&v_i = (v_i, v'_i, \ldots, v^+_i, v^+_i)
\end{align*}
$$

But do such generalised or ‘augmented’ scrambles exist at all? They do, and the present section is devoted to their construction. As with the ordinary scramble, that construction relies in each case on two dissimilar yet equivalent inductions – forward and backward – both of which are indispensible for a rounded picture. We begin with the defining formulae. The next section shall validate them after the event and dispel their seeming artificiality by providing the link with the weighted convolution products.

The v-augmented scramble $vscram$.

The indices of the simple scramble were of the form $w_i = (u_i)$. We now move on to indices $w_i = (u_i)$.

Forward induction for $vscram$: $M^w \mapsto SM^w$:

For $r=1$ and $w_1 = (u_1)$, we start the induction by setting:

$$SM^{(u_1)} := M^{(u_1, u'_1, v'_1, \ldots, v^+_1, v^+_1)}$$

To continue the induction, we must distinguish four cases, depending on the nature of the last index w_0 of the sequences w in the various summands M^w occuring in the expansion of SM^w:

$$
\begin{align*}
&w_0 = \left(\begin{array}{c} u_r \\ v_r \end{array}\right) \quad \text{with} \quad \#(v_r) = 1 \quad \text{and} \quad r = \#(w) \quad (144) \\
&w_0 = \left(\begin{array}{c} u_i \\ v^+_i - v^+_i \end{array}\right) \quad \text{with} \quad \#(v_i) \geq 2 \quad (145) \\
&w_0 = \left(\begin{array}{c} u_i \\ v^+_i - v^+_i \end{array}\right) \quad \text{with} \quad i < r = \#(w) \quad (146) \\
&w_0 = \left(\begin{array}{c} u_i \\ v^+_i - v^+_i \end{array}\right) \quad \text{with} \quad 1 < i \quad (147)
\end{align*}
$$

The linear operators cutlaw_0 are defined as in §1.2. They act by removing the last index of M^w (not of SM^w!) if that last index happens to be w_0.

47
and by annihilating M^w otherwise. We set:

$$\text{cutla}_{M}^{(w)} SM^{w_1 \ldots w_r} = \begin{cases} 0 & \text{if } w_0 \text{ not of type (144)-(147)} \\ + SM^{w_1 \ldots w_{r-1}} & \end{cases}$$

(148)

$$\text{cutla}_{v_i}^{(w)} SM^{w_1 \ldots w_r} = + SM^{w_1 \ldots w_r} = \sum_{v_i \in \text{cutla}_{v_i}^{(w)}} \left(\begin{array}{l} w \left(u_i \right) \\ w_r \end{array} \right)$$

(149)

$$\text{cutla}_{M}^{(u_i)} SM^{w_1 \ldots w_r} = \begin{cases} + \sum_{w_i \in W_{i,i+1}} SM^{w_i \ldots w_{i+1} \ldots w_r} & \text{with } w_i = \left(\begin{array}{l} u_i \\ v_i \end{array} \right) \\ - \sum_{w_i \in W_{i,i-1}} SM^{w_i \ldots w_i-1 \ldots w_r} & \end{cases}$$

(150)

(151)

with indices w_{i+1} and w_{i-1} running through the sets

$$W_{i,i+1}^+ := \bigcup_{i,i+1 \in \text{set}(\Sigma_i^{+}, \Sigma_i^{+})} \left(\begin{array}{l} u_i + v_{i+1} \\ \Sigma_{i+1}^{+} \end{array} \right)$$

(152)

$$W_{i,i-1}^- := \bigcup_{i,i-1 \in \text{set}(\Sigma_i^{-}, \Sigma_i^{-})} \left(\begin{array}{l} u_i - v_{i-1} \\ \Sigma_{i-1}^{-} \end{array} \right)$$

(153)

When each v_i reduces to a single element v_i, the case (149) is automatically ruled out, and the rules (150)-(153) simplify to the earlier rules (6),(7),(8) governing the ordinary scramble.

Interpretation: To construct the set $W_{i,i+1}^+$ of indices $w_{i,i+1}$ we always take $u_i + v_{i+1}$ as upper index. To define the lower indices, we start from the sequences $\Sigma_i^{+}, \Sigma_i^{+}$ obtained by depriving $\Sigma_i^{+}, \Sigma_i^{+}$ of their last element v_i, v_i^{+}. Next, we consider all sequences Σ_i^{+} obtainable by shuffling the sequences $\Sigma_i^{+}, \Sigma_i^{+}$. Lastly, to each of these Σ_i^{+} we attach, as last element, the last element v_i^{+} of Σ_i^{+}. Since $\#(\Sigma_{i,i+1}^{+}, v_{i+1}) = \#(\Sigma_i^{+}) + \#(\Sigma_i^{+}) - 1$, the rule (150) amounts to a proper recursion.

Of course, when either v_i or v_{i+1} reduce to a single element, the set $W_{i,i+1}^+$ also reduces to a single element. And when both v_i or v_{i+1} reduce to a single element, the set $W_{i,i+1}^+$'s single element is $(u_i + v_{i+1})$, so that we fall back on the induction rule (7) for the ordinary scramble.

The same remarks apply for the set $W_{i,i-1}^-$.

41 Apart from the opposite signs in front of the right-hand sides of (150) and (151).
induction very similar to the forward one. As we shall see in a moment, this is not at all the case. The reason lies in the innocuous-looking rule (148), which on its own completely upsets the left-right symmetry.

Backward induction for vs\textsc{ram} \(M^w \rightarrow SM^w\):

The linear operators cutfi\textsc{w}_{M} are defined as in §1.2. They act by removing the first index of \(M^w\) (not of \(SM^w\)!) if that first index happens to be \(w_0\), and by annihilating \(M^w\) otherwise.

The backward induction says that the only operators cutfi\textsc{w}_{M} acting non-trivially (i.e. without yielding 0) on the \(SM^w\) (viewed as a sum of \(M^w\) summands) are those with initial indices \(w_0\) of the form \(\left(u_1^{\prime}, \ldots, u_j^{\prime}\right)\), where \(v_i\) is the first element of some sequence \(v_i\) with \(1 \leq i \leq j\). And for those particular \(w_0\), the backward induction rule reads:

\[
\text{cutfi}_M^{(u_1^{\prime}, \ldots, u_j^{\prime})} SM^w = \text{symlin} \left(\text{concat} \left(\text{symlin} \left(SM^w_{v_i}, SM^w_{v_j}, SM^w_{v_k}, SM^w_{v_l} \right) \right) \right)
\]

\[\text{with } \begin{align*}
\underline{w} & := (w_1, \ldots, w_r), \\
\underline{\bar{w}} & := (w_{j+1}, \ldots, w_r)
\end{align*}
\]

(154)

Some of the three factor sequences \(\underline{w}, \underline{\bar{w}}, \underline{\bar{w}}\), may be empty, and so may the index \(w_i\) after removal of \(v_i\): see (157). The operators \(\text{concat}\) and \(\text{symlin}\) are defined as in §1.2. They act directly on the \(SM^*\) terms, not on their \(M^*\) summands. Regarding the four \(SM^*\)-terms occurring on the right-hand side of (154), the notations are as follows:

\[
SM^w_{v_0, v_1, \ldots, v_r} := SM_{v_1, \ldots, v_r, v_0, \ldots, v_0}
\]

(155)

\[
\text{ns} SM^w_{v_0, v_1, \ldots, v_r} := (-1)^r SM_{v_0, v_1, \ldots, v_r, v_0, \ldots, v_0}
\]

(156)

\[
\text{f} SM^w_{v_0, v_1, \ldots, v_r} := \ddot{\text{SM}}_{v_0, v_1, \ldots, v_r, v_0, \ldots, v_0} (v_i \text{ gets removed})
\]

(157)

Here and henceforth, we use the self-explanatory shorthand:

\[
v_i - v_0 := (v_i - v_0, v_i' - v_0, v_i'' - v_0, \ldots)
\]

\[v_i := (v_i, v_i', v_i'', \ldots)
\]

(158)

Proposition 3.8 The forward-going formulae (144)-(147), which tell us how to add an index in final position, and the backward-going formulae (154), which tell us how to add an index in initial position, are equivalent. They define the \(v\)-augmented scramble transform \(\text{vs}\text{scram}\), which turns symmetrical
(resp. alternate) w_i-indexed bimoulds into symmetrical (resp. alternate) w_i-indexed bimoulds:

\[
\text{vscram} : M^* \rightarrow SM^* \quad \text{with} \quad SM^w = \sum_{w'} c^w_{w'} M^{w'}
\] (159)

and \(w = (u_1, \ldots, u_r) \), \(w' = (u'_1, \ldots, u'_{r'}) \), \(c^w_{w'} = \pm 1 \)

The \(w' \)-sequences on the right-hand side of (159) tend to be much longer than the \(w \)-sequence on the left-hand side, since their common length \(\rho = \sum \#(v_i) \). Their most important feature, however, has to do with their contracted initial sums

\[
u_1 v_1' + \cdots + u_s v_s' = |u^1| v_{1s} + \cdots + |u^s| v_{ss}
\] (160)

relative to some factorisation \(w = w^1 \cdots w^s \bar{w} \) and to a selection of indices \(v_{is} \), each of which belongs to the lower sequence \(v_{is} \) of some simple index \(w_{is} = (u_{is}) \) inside \(w^i \).

Idea of proof: Guessing the form of the induction rules was the difficult part; checking their validity is the easy bit. Thus, the compatibility of the forward and backward inductions readily follows from the commutation relations:

\[
[\text{cutla}_M^{\omega_1}, \text{cutfi}_M^{\omega_2}] SM^* = 0.
\]

And to verify that \(\text{vscram} \) preserves bimould symmetricality (resp. alternality), it is enough to check that each operator \(\text{cutfi}_M^{\omega_2} \) (or each \(\text{cutla}_M^{\omega_1} \) if we prefer) turns any given symmetricality (resp. alternality) relation into 'shorter' relations of the same type.\(^{43}\)

The \(u \)-augmented scramble \(\text{uscram} \).

We now move from indices \(w_i = (u_i) \) to indices \(\overline{w}_i = (\frac{u_i}{v_i}) \).

Forward induction for \(\text{uscram} : M^w \rightarrow SM^w \):

For \(r=1 \) and \(\overline{w}_1 = (\frac{u_1}{v_1}) = (u_1, u'_1, v'_1, \ldots, u^1_1, v^1_1) \) we start the induction by setting:

\[
SM^{(u_1)} := M^{(u_1, u'_1, v'_1, \ldots, u^1_1, v^1_1)}
\] (161)

\(^{42}\)It shall determine the form of the alien derivations \(\Delta_{w_0} \) that act effectively on the monomials \(S^{w_0}(x) \). See §4.7 below.

\(^{43}\)In fact, in order to find the form of the alien derivatives of the monomials \(S^w \), we shall perform in §2.9 an operation which is tantamount to iterating the backward induction rule for the generalised scramble.
For $r > 1$, we let the linear operators $cutl_{M}^{u_{0}}$ act non-trivially on SM^{w} for only three types of indices:

\[
\begin{align*}
w_{0} &= \begin{pmatrix} u_{r}^{\dagger} \\ v_{r} \end{pmatrix} \quad \text{with} \quad r = \#(w) \quad (162) \\
w_{0} &= \begin{pmatrix} u_{i}^{\dagger} \\ v_{i} - v_{i+1} \end{pmatrix} \quad \text{with} \quad 1 \leq i \leq r - 1 \quad (163) \\
w_{0} &= \begin{pmatrix} u_{i}^{\dagger} \\ v_{i} - v_{i-1} \end{pmatrix} \quad \text{with} \quad 2 \leq r \leq r \quad (164)
\end{align*}
\]

and we define their action as follows:

\[
\begin{align*}
cutl_{M}^{(\frac{u_{i}^{\dagger}}{v_{i}})} SM^{w_{1}, \ldots, w_{r}} &= + \text{symlin} \left(SM^{\left(\frac{u_{i}}{v_{i}}, \ldots, \frac{u_{r-1}}{v_{r-1}}\right)}, SM^{\left(\frac{u_{r}}{v_{r}}\right)} \right) \quad (165) \\
cutl_{M}^{(\frac{u_{i}}{v_{i}}, \ldots, \frac{u_{r}}{v_{r}})} SM^{w_{1}, \ldots, w_{r}} &= + \text{concat} \left\{ \right. \\
& \text{symlin} \left(SM^{\left(\frac{u_{i}}{v_{i}}, \ldots, \frac{u_{r}}{v_{r}}\right)}, SM^{\left(\frac{u_{i+1}}{v_{i+1}}, \ldots, \frac{u_{r}}{v_{r}}\right)} \right), \\
& SM^{\left(\frac{u_{r}}{v_{r}}, \ldots, \frac{u_{r}}{v_{r}}\right)} \left. \right\} \quad (166) \\
cutl_{M}^{(\frac{u_{i}}{v_{i}}, \ldots, \frac{u_{r}}{v_{r}})} SM^{w_{1}, \ldots, w_{r}} &= - \text{concat} \left\{ \right. \\
& \text{symlin} \left(SM^{\left(\frac{u_{i}}{v_{i}}, \ldots, \frac{u_{r}}{v_{r}}\right)}, SM^{\left(\frac{u_{r}}{v_{r}}, \ldots, \frac{u_{r}}{v_{r}}\right)} \right), \\
& SM^{\left(\frac{u_{r}}{v_{r}}, \ldots, \frac{u_{r}}{v_{r}}\right)} \left. \right\} \quad (167)
\end{align*}
\]

Pay attention:

(i) In (165-167), an upper star u^{\dagger} signals that the sequence u_{i} has its last element removed. If u_{i} had only one element to start with, then u_{i}^{\dagger} is empty and $SM^{\left(\frac{u_{i}^{\dagger}}{v_{i}}\right)} \equiv 1$.

(ii) In (166), the u-sequence atop v_{i+1} is the lone index $u_{i+1} := u_{i} + u_{i+1}$ built from the initial indices of u_{i} and u_{i+1} and followed by the sequence u_{i+1}^{\dagger} (i.e. u_{i+1} deprived of its last element u_{i+1}).

(iii) In (167), the u-sequence atop v_{i-1} is the sequence u_{i-1}^{\dagger} (i.e. u_{i-1} deprived of its last element u_{i-1}^{\dagger}) followed by the lone index $u_{i-1,i} = u_{i-1} + u_{i}$ built from the initial indices of u_{i-1} and u_{i}.

Backward induction for uscram : $M^{w} \hookrightarrow SM^{w}$:

Here again, we let the linear operators $cutf_{M}^{u_{0}}$ act non-trivially on SM^{w} for only three types of indices:

\[
\begin{align*}
w_{0} &= \begin{pmatrix} u_{1} \\ v_{1} \end{pmatrix} \quad \text{with} \quad r = \#(u_{1}) = 1 \quad i.e. \quad u_{1} = (u_{1}) \\
w_{0} &= \begin{pmatrix} u_{i} \\ v_{i} \end{pmatrix} \quad \text{with} \quad 1 \leq i \leq r \quad \text{and} \quad 2 \leq \#(u_{i}) \\
w_{0} &= \begin{pmatrix} |u_{1}| + \ldots + |u_{j}| \\ v_{i} \end{pmatrix} \quad \text{with} \quad 1 \leq i \leq j \leq r
\end{align*}
\]
and define their action as follows:
\[
\begin{align*}
&\text{cutfi}_M^{(w_i)} \ SM w_1, \ldots, w_r = SM w_2, \ldots, w_r \\
&\text{cutfi}_M^{(w_i)} \ SM w_1, \ldots, w_r = SM w_1, \ldots, w_i, w_r \\
&\text{smw}_1, \ldots, w_r, \ldots, \text{smw}_1, \ldots, w_r
\end{align*}
\] (168)
\[
\text{cutfi}_M^{(\sum_{j=1}^{n-1} w_i)} \ SM w_1, \ldots, w_r = \text{symlin}(LM w_1, \ldots, w_i, \ldots, w_j, SM w_{j+1}, \ldots, w_r) \quad (169)
\]

Only the last identity calls for explanation. It uses the standard notation:
\[
LM_{v_j} \ w_1, \ldots, (v_i) = LM_{v_j} \ w_1, \ldots, (v_i) \quad (170)
\]

with an \(\hat{w}\)-marked mould \(LM^*\) that is alternal. As a consequence
\[
LM^{\tilde{w}}, \tilde{w}_1, \tilde{w}_r := (\tilde{w}) \sum_{\tilde{w} \in \text{sha}(\hat{w}, \tilde{w})} LM^{\hat{w}}, \tilde{w}_1, \tilde{w}_r \quad (171)
\]

where \(\tilde{w}^*\) is simply \(\hat{w}^*\) in reverse order. It is enough, therefore, to know \(LM^*\) when the (unique) \(\hat{w}\)-marked index is in final position. The definition is simple enough when that index \(\tilde{w}_i\) is of the form \((\tilde{w}_i) = (w_i)\), i.e. when \(\#(\tilde{w}_i) = 1\). In that case, the formula reads:
\[
LM_{v_j}^{\tilde{w}_i, \ldots, v_i-1, (w_i)} = SM_{v_j}^{\tilde{w}_i, \ldots, v_i-1} \quad (172)
\]

When \(\#(\tilde{w}_i) \geq 2\), the definition of \(LM^*\) is slightly more complex and not entirely self-contained, i.e. not entirely in terms of \(SM^*\). This hardly matters, however, since there is a simple and closed system expressing \(\text{cutfi}^{\tilde{w}_0} LM^*\) in terms of \(LM^*\) alone. But since, for the particular applications we have in mind, the \(u\)-augmented scramble matters less than the \(v\)-augmented one, we may gloss over these details.

Proposition 3.9 The forward-going formulae (144)-(147), which tell us how to add an index in final position, and the backward-going formulae (168)-(169), which tell us how to add an index in initial position, are equivalent. They define the \(u\)-augmented scramble transform \(\text{uscrum}\), which turns symmetrical (resp. alternal) \(w_i\)-indexed bimoulds into symmetrical (resp. alternal) \(w_i\)-indexed bimoulds:
\[
\text{uscrum} : \ M^* \mapsto SM^* \quad \text{with} \quad SM^\hat{w} = \sum_{w'} \epsilon_{\hat{w}}^{w'} M^{w'} \quad (173)
\]
\[
\text{and} \quad \hat{w} = (u_1, \ldots, u_r) \quad , \quad w' = (u'_1, \ldots, u'_r) \quad , \quad \epsilon_{\hat{w}}^{w'} = \pm 1
\] 52
The w'-sequences on the right-hand side of (173) tend to be much longer than the \overline{w}-sequence on the left-hand side, since their common length r' is $\sum \#(w_i)$. Their main feature, however, has to do with their contracted initial sums $\sum u'_i v'_i$, which are all of the form:

$$u'_1 v'_1 + \cdots + u'_s v'_s = u^c_i v_i + \cdots + u^c_n v_n$$

(174)

with individual indices v_k multiplied by composite terms u^c_k consisting of

(i) the sum of some non-empty initial subsequence of u^c_k;

(ii) plus possibly the sums of some final subsequences of other u_j's ($j \neq i_k$).

The proof runs parallel to that of Proposition 3.8.

Complexity level of the augmented scrambles.

Let us focus on the v-scramble. The number $\mu(\overline{w}) = \mu(d_1, \ldots, d_r)$ (resp. $\mu^\pm(\overline{w}) = \mu^\pm(d_1, \ldots, d_r)$) of all summands (resp. of summands preceded by the sign \pm) in the standard expansion (159) of SM^* clearly depends only on the lengths $d_i := \#(\overline{u}_i)$ of the partial sequences \overline{u}_i. The forward induction leads to simple recursion formulae for μ and μ^*:

$$\mu(d_1) = \mu^*(d_1) = 1 \quad (d_1 \geq 1)$$

(175)

$$\mu(d_1, \ldots, d_r) = \begin{cases}
+ \chi(\{d_1 = 1\}) \mu(d_1, \ldots, d_{r-1}) \\
+ \sum_{1 \leq i \leq r} \chi(\{d_i > 1\}) \mu(d_1, \ldots, d_i - 1, \ldots, d_r) \\
+ \sum_{1 \leq i \leq r-1} \left(\frac{(d_i + d_{i+1} - 2)!}{(d_i-1)!(d_{i+1}-1)!}\right) \mu(d_1, \ldots, d_i + d_{i+1} - 1, \ldots, d_r)
\end{cases}$$

(176)

$$\mu^*(d_1, \ldots, d_r) = \begin{cases}
+ \chi(\{d_1 = 1\}) \mu^*(d_1, \ldots, d_{r-1}) \\
+ \sum_{1 \leq i \leq r} \chi(\{d_i > 1\}) \mu^*(d_1, \ldots, d_i - 1, \ldots, d_r)
\end{cases}$$

(177)

where $\chi(S)$ denotes the characteristic function of a set S. That recursion in turn leads to the exact formulae:

$$\mu(d_1, \ldots, d_r) = \frac{(d_1 + \cdots + d_r - 1)!}{(d_1 - 1)! \cdots (d_r - 1)!} \prod_{2 \leq i \leq r} \left(2 + \frac{1}{d_i + \cdots + d_r}\right)$$

(178)

$$\mu^*(d_1, \ldots, d_r) = \frac{(d_1 + \cdots + d_r - 1)!}{(d_1 - 1)! \cdots (d_r - 1)!} \prod_{2 \leq i \leq r} \left(\frac{1}{d_i + \cdots + d_r}\right)$$

(179)
The numbers $\mu(d_1, \ldots, d_r)$ especially tend to be huge. Thus:

<table>
<thead>
<tr>
<th>(d_1, \ldots, d_r)</th>
<th>$\mu(d_1, \ldots, d_r)$</th>
<th>$\mu^*(d_1, \ldots, d_r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, \ldots, 1)$</td>
<td>$1.35 \ldots (2r-1)$</td>
<td>$r!!$</td>
</tr>
<tr>
<td>$(5, 5, 5)$</td>
<td>$29135106 \sim 2.9 \times 10^7$</td>
<td>$126126 \sim 1.2 \times 10^5$</td>
</tr>
<tr>
<td>$(4, 5, 6)$</td>
<td>$22855560 \sim 2.3 \times 10^7$</td>
<td>$76440 \sim 7.6 \times 10^4$</td>
</tr>
<tr>
<td>$(6, 5, 4)$</td>
<td>$23963940 \sim 2.4 \times 10^7$</td>
<td>$140140 \sim 1.4 \times 10^5$</td>
</tr>
<tr>
<td>$(4, 4, 4, 4)$</td>
<td>$10050665625 \sim 1.0 \times 10^{10}$</td>
<td>$2627625 \sim 2.6 \times 10^6$</td>
</tr>
<tr>
<td>$(1, 3, 5, 7)$</td>
<td>$349098750 \sim 0.4 \times 10^9$</td>
<td>$30030 \sim 3.0 \times 10^4$</td>
</tr>
<tr>
<td>$(7, 5, 3, 1)$</td>
<td>$539188650 \sim 0.5 \times 10^9$</td>
<td>$1051050 \sim 1.0 \times 10^6$</td>
</tr>
<tr>
<td>$(3, 3, 3, 3)$</td>
<td>$60575515000 \sim 6.0 \times 10^{10}$</td>
<td>$1401400 \sim 1.4 \times 10^6$</td>
</tr>
<tr>
<td>$(1, 2, 3, 4, 5)$</td>
<td>$6067061000 \sim 6.1 \times 10^9$</td>
<td>$40040 \sim 4.0 \times 10^4$</td>
</tr>
<tr>
<td>$(5, 4, 3, 2, 1)$</td>
<td>$9641071440 \sim 9.6 \times 10^9$</td>
<td>$1681680 \sim 1.7 \times 10^6$</td>
</tr>
</tbody>
</table>

Remark: scrambling and symmetrical linearisation. When applied to a symmetrical M^*, the augmented scrambles produce a symmetrical SM^* defined as a sum of symmetrical M^*-summands. This opens two paths for the calculation of products SM^w, SM^w or SM^w. Thus, for $escram$ we get the diagram:

\[
\begin{array}{c}
SM^w \cdot SM^w' \\
\downarrow \text{symmetrical linearisation} \\
\sum SM^w \\
\end{array}
\]
\[
\begin{array}{c}
M^*-\text{expansion} \\
\downarrow \text{symmetrical linearisation} \\
\sum \epsilon_w M^w \\
\end{array}
\]

The path $expansion$ followed by $linearisation$ always leads to a number of M^*-summands considerably less than the path $linearisation$ followed by $expansion$, but the latter gives rise to massive (pair-wise) cancellations, ensuring the same end result.

3.8 Weighted products of hyperlogarithms.

We now have all the wherewithal to calculate the weighted products of hyperlogarithms of any depth.

Weighted convolution of hyperlogarithms.

Here is the dual statement that extends (137)-(139), with the familiar sequence reversion from $weco$ to $yeco$.
Proposition 3.1 (Weighted convolution of hyperlogarithms.)

\[\hat{c}_j := \hat{\mathcal{V}}^{z_j} = \hat{\mathcal{V}}^{[v_j, \ldots, v_r]} \Rightarrow \text{weco}^{(\hat{\mathcal{V}}^{z_j})} = (\text{vscram} \hat{\mathcal{V}}^{z_j}) \quad (180) \]

\[\hat{c}_j := i^{v_j} \hat{\mathcal{V}}^{u_j} = i^{v_j} \hat{\mathcal{V}}^{[u_j, \ldots, u_r]} \Rightarrow \text{yeco}^{(\hat{\mathcal{V}}^{z_j})} = (\text{uscram} \hat{\mathcal{V}}^{z_j}) \quad (181) \]

Comments: Pay attention:

(i) with weco, the inputs \(\hat{c}_j := \hat{\mathcal{V}}^{[v_j, \ldots, v_r]} \) are given in \textit{positional} notation.

(ii) with yeco, the inputs \(\hat{c}_j := \hat{\mathcal{V}}^{[u_j, \ldots, u_r]} \) are given in \textit{incremental} notation.

(iii) in both identities (180)-(181), the augmented scrambles are made to act on the bimoulds \(\hat{\mathcal{V}}^{\bullet} \) and \(\hat{\mathcal{V}}^{\bullet} \) derived from the moulds \(\mathcal{V}^{\bullet} \) and \(\mathcal{V}^{\bullet} \), themselves taken in \textit{incremental} notation. See §2.2.

Sketch of proof: Proceeding as in the case of Proposition 3.5, we attach a variable \(z \) to the lower indices \(v_i \) and then differentiate in \(z \). In the case of uscram, this is straightforward, since the \(v_i \)'s denote weights and are simple indices. But in the case of vsram, the \(v_i \)'s encode multiple hyperlogarithmic singularities \(v_i := (v_i, v'_i, \ldots, v'^{r_i}_i) \) in \textit{positional notation}, so that \(z \) must be attached to all subindices \(v_i, v'_i, \ldots, v'^{r_i}_i \). For applications, see §4.4-§4.5.

Weighted multiplication of hyperlogarithms.

Just as the ordinary scramble holds the key to the weighted multiplication of simple logarithms (see §3.6), the augmented scrambles unlock the rules for multiplying the hyperlogarithms – especially the sort that is holomorphic (rather than ramified) at infinity, i.e \(\mathcal{L}^{\ast}_1 \) (for wemu) and \(\mathcal{L}^{\ast}_1 \) (for yemu). But the actual formulae are rather complex and won’t be required here, so we can dispense with them.

Scrambles and arborification.

In view of the very large number of terms produced by the scramble transforms, especially the augmented variants, it is some comfort to know that \textit{arborification} does not significantly complicate the picture (though \textit{a priori} it might) and often even simplifies it. We shall return to the question in §4, in connexion with weco and its alteral offshoot welo. Be it enough to mention here that the formula (178) for counting the \(M \)-summands produced by vsram retains its validity for arborescent indices \(w^< \). Simply, the sums \(d_i + \cdots + d_r \) on the right-hand side of (178) must now be taken according to the arborescent order \(< \).
4 Singularly perturbed systems and co-equational resurgence.

4.1 Equational vs co-equational resurgence.

Model problem.
Consider the following paradigmatic instance of a doubly singular differential system, by which we mean a system not only singular in itself (i.e. relative to the time variable t) but also singularly perturbed (by a small parameter $\epsilon \sim 0$):

$$
0 = \epsilon t^2 \partial_t y^i + \lambda_i y^i + b'(t, \epsilon, y^1, \ldots, y^\nu) \quad (1 \leq i \leq \nu) \quad (182)
$$

$$
t \sim 0 \quad (\text{variable})
$$

$$
\epsilon \sim 0 \quad (\text{parameter})
$$

It is advisable, both technically and theoretically, to change to the problem’s ‘critical variables’ z and ‘critical parameter’ x, i.e. to set

$$
z := 1/t \sim \infty, \quad x := 1/\epsilon \sim \infty \quad (183)
$$

so as to prepare for working in the conjugate Borel planes ζ and ξ. This leads to the system:

$$
\partial_z Y = x \Lambda Y + B(z, x, Y) \quad \text{with} \quad Y = \{Y^i\}, \quad B = \{B^i\}, \quad \Lambda = \text{diag.matr.}\{\lambda_i\}
$$

$$
B^i \in \mathbb{C}\{z^{-1}, x^{-1}, Y^1, \ldots, Y^\nu\} \quad \text{or} \quad \Lambda \in \mathbb{C}\{z^{-1}, Y^1, \ldots, Y^\nu\} \quad (184)
$$

From the viewpoint of x-resurgence, choosing the series B^i independent of x, i.e. taking them in $\mathbb{C}\{z^{-1}, Y\}$ rather than $\mathbb{C}\{z^{-1}, x^{-1}, Y\}$, makes little difference to the resurgence pattern in the ξ-plane, and none at all to the location of the singularities. So we shall henceforth stick with this simplifying assumption.

To respect homogeneity, we may re-write our system thus:

$$
\partial_z Y^i = x \lambda_i Y^i + \sum_{n_1, \ldots, n_\nu \geq 0, j \neq i} B^i_{n_1, \ldots, n_\nu} (z) Y^i \prod (Y^j)^{n_j} \quad (1 \leq i \leq \nu) \quad (185)
$$

or in compact form:

$$
\partial_z Y^i = Y^i \left(\lambda_i x + \sum_{n_1, \ldots, n_\nu \geq 0, j \neq i} B^i_{n_1, \ldots, n_\nu} (z) Y^n \right) \quad (1 \leq i \leq \nu) \quad (186)
$$
with coefficients $B^i_n(z) \in \mathbb{C}\{z^{-1}\}$ analytic at infinity and x-free. Let us assume that the multipliers λ_i are neither resonant nor quasi-resonant. The general solution, with its full set $\{\tau_1, \ldots, \tau_\nu\}$ of integration parameters, may be formally expanded in powers of either z^{-1} or x^{-1}:

$$\tilde{Y} = \tilde{Y}(z, x, \tau) \in \mathbb{C}\{[z^{-1} \text{ or } x^{-1}]\} \otimes \mathbb{C}\{\tau_1 z^{\rho_1} e^{\lambda_1 z x}, \ldots, \tau_\nu z^{\rho_\nu} e^{\lambda_\nu z x}\}$$ \hspace{1cm} (187)

with $\rho_i \in \mathbb{C}$ denoting the coefficient of z^{-1} in $B^i_0(z) = B^i_0, \ldots, 0(z)$.

To get rid of the ramifications z^{ρ_i} (which complicate the formal expansions without adding anything of substance to the Analysis) we shall set not only $\rho_i \equiv 0$ but also $B^i_0(z) \equiv 0$. \hspace{1cm} (188)

Double divergence, double resurgence.

Separating the exponentials from the power series, we get for (186) a formal solution of type:

$$\tilde{Y}^i(z, x, \tau) = \tilde{Y}^i(z, x) + \sum_{n_j \geq 0 \forall j \neq i} \tilde{Y}^i(z, x) \tau_i \tau^n e^{(\lambda_i + <n, \lambda>) z x}$$ \hspace{1cm} (189)

As just pointed out, our formal solution \tilde{Y}, or rather its components \tilde{Y}^i_n, can be expanded in power series of z^{-1} or x^{-1}. Both types of expansions are generically divergent yet Borel-summable, but with distinctive singular points, singularities and resurgence patterns. Some form of the Bridge equation applies in both situations, but with distinct index reservoirs Ω_i and above all with this crucial difference: whereas the ordinary, first-order differential operators A_ω that govern the z-resurgence in BE_1 do not depend on z, the differential operators P_ω that govern the x-resurgence in BE_2 have coefficients that are themselves divergent-resurgent in x and therefore require a third Bridge equation BE_3 for their description:

Equational resurgence: $\tilde{Y} = \tilde{Y}(z, x, \tau)$ (expanded in z^{-1} with x fixed)

\[\text{BE}_1 : \quad \Delta_{\omega_0} \tilde{Y} = A_{\omega_0} \tilde{Y} \quad \forall \ \omega_0 \in \Omega_1 \] \hspace{1cm} (190)

44meaning that the combinations $-\lambda_i + \sum_{n_j \geq 0} n_j \lambda$ are all $\neq 0$ and do not approximate 0 abnormally fast (diophantine condition).

45The tildas, as usual in resurgence theory, signal formalness. They are often omitted when the very context implies formalness.

46keeping the ‘residues’ ρ_i would merely force us to replace the exponential blocks $e^{(\lambda_i + <n, \lambda>) z x}$ in (189) by the mixed blocks $z^{\rho_i + <n, \rho>} e^{(\lambda_i + <n, \lambda>) z x}$.

47As soon as we assume $\rho_i \equiv 0$, a simple, analytic change of coordinates can also remove the whole of $B^i_0(z)$.
Co-equational resurgence: \(\tilde{Y} = \tilde{Y}(z, x, \tau) \) (expanded in \(x^{-1} \) with \(z \) fixed)

\[
\begin{align*}
\text{BE}_2 & : \quad \Delta_{\omega_0} \tilde{Y} = \tilde{\Phi}_{\omega_0} \tilde{Y} \quad \forall \ \omega_0 \in \Omega_2 \\
\text{BE}_3 & : \quad \Delta_{\omega_0} \tilde{\Phi}_{\omega_1} = F_{\omega_0, \omega_1} \left(\{ \tilde{\Phi}_{\omega_j} \} \right) \quad \forall \ \omega_0 \in \Omega_3
\end{align*}
\]

Despite these far-going differences, there is bound to be a certain kinship between the two types of resurgence, since in the special case when \(B_n(z) = \beta_n/z \) with \(\beta_n \) scalar, the variable \(z \) and the perturbation parameter \(x \) coalesce due to the underlying homogeneity, so that the \(z \)- and \(x \)-expansions assume the same form (192) with \(\tilde{Y}_i(zx) \) and \(\tilde{Y}_n(zx) \in \mathbb{C}[[zx^{-1}]] \):

\[
\tilde{Y}_i(z, x, \tau) = \tilde{Y}_i(zx) + \sum_{n_j \geq 0} \sum_{n_i \geq -1} \tilde{Y}_n(zx) \tau_i \tau^n e^{(\lambda_i + <n, \lambda> \cdot zx)}
\]

It is this loose kinship, or lax ‘duality’, together with the closeness of the operators \(\mathbb{A}_\omega \) of \(\text{BE}_1 \) and \(\mathbb{P}_\omega \) of \(\text{BE}_2 \) (both are ‘autark’ functions of \(x \)), that justifies the label \textit{equational} for the \(z \)-resurgence (\(z \) being the variable with respect to which we differentiate in the system (186)) and \textit{co-equational} for the \(x \)-resurgence. \textit{Equational resurgence} is by far the simpler of the two, since the general shape of \(\text{BE}_1 \) with its operators \(\mathbb{A}_\omega \) and their indices \(\omega \), can be inferred from purely formal considerations, directly from the differential system (186). Equations \(\text{BE}_2 \) and \(\text{BE}_3 \) with their index reservoirs \(\Omega_2 \), \(\Omega_3 \), are harder to derive, yet here too we are fortunate in having a general machinery, with a strong algebraic-combinatorial flavour to it, that addresses the general case.

The normalisers \(\Theta^\pm \).

Rather than handling the general solution \(\tilde{Y} \) of our system, it is often advantageous to work with the information-equivalent but more flexible \textit{normalising} operators \(\Theta^\pm \):

\[
\begin{align*}
\Theta &= 1 + \sum_{i_k, n_k} 1^{\leq r} e^{\langle u \rangle_{nx} \mathbb{W} \left(\begin{array}{c} u_1 \ldots u_r \\ n_1 \ldots n_r \end{array} \right) \left(z, x \right)} \mathbb{D}^{i_1}_{n_1} \ldots \mathbb{D}^{i_r}_{n_r} \\
\Theta^{-1} &= 1 + \sum_{i_k, n_k} (-1)^r e^{\langle u \rangle_{nx} \mathbb{W} \left(\begin{array}{c} u_1 \ldots u_r \\ n_1 \ldots n_r \end{array} \right) \left(z, x \right)} \mathbb{D}^{i_1}_{n_1} \ldots \mathbb{D}^{i_r}_{n_r}
\end{align*}
\]

with

\[
\begin{align*}
\langle u \rangle_k := \langle n_k, \lambda \rangle & , \quad \mathbb{D}^{i_k}_{n_k} := \mathfrak{T}^{m_k} \tau^{i_k} \tilde{\tau}^{r_k} \\
1 \leq i_k \leq \nu & , \quad \mathfrak{T}^{m_k} \tau^{i_k} \tilde{\tau}^{r_k} \in \mathfrak{T}^N
\end{align*}
\]

58
and with a symmetrical mould \(\mathcal{W}^\bullet \) inductively defined by \(\mathcal{W}^{\otimes} = 1 \) and
\[
\partial_z \left(e^{u|xz} \mathcal{W} \left(\frac{u^1}{b_n^1}, \ldots, \frac{u^r}{b_n^r} \right) (z, x) \right) = -e^{u|xz} \mathcal{W} \left(\frac{u^1}{b_n^1}, \ldots, \frac{u^{r-1}}{b_n^{r-1}} \right) (z, x) B_{n, z}^i (z) \tag{196}
\]

Since \(\mathcal{W}^\bullet \) is symmetrical, the operators \(\Theta \) and \(\Theta^{-1} \) are (mutually inverse) formal automorphisms of \(C[[\tau]] := C[[\tau_1, \ldots, \tau_r]] \):
\[
\Theta^{\pm 1} \left(\tilde{\varphi}_1(\tau), \tilde{\varphi}_2(\tau) \right) \equiv \left(\Theta^{\pm 1} \tilde{\varphi}_1(\tau) \right) \left(\Theta^{\pm 1} \tilde{\varphi}_2(\tau) \right) \quad (\tilde{\varphi}_i \in C[[\tau]]) \tag{197}
\]

Moreover, they exchange the general solution \(\tilde{Y} \) of our system (186) and the elementary general solution \(Y_{nor} \) of the corresponding (linear) normal system:
\[
\partial_z Y_{nor}^i = \lambda_i x Y_{nor}^i \quad ; \quad Y_{nor}(z, x, \tau) = \tau_i e^{\lambda_i x z} \quad (1 \leq i \leq \nu) \tag{198}
\]
\[
\Theta \tilde{Y}^i(z, x, \tau) \equiv Y_{nor}^i(z, x, \tau) \quad ; \quad \Theta^{-1} Y_{nor}^i(z, x, \tau) \equiv \tilde{Y}^i(z, x, \tau) \tag{199}
\]

To check this, we first observe that the induction rule (196) translates into the following interaction between \(\partial_z \) and \(\Theta^{\pm} \):
\[
\partial_z \Theta = \Theta \partial_z - \left(\sum_{i,n} e^{u|xz} B_{n, z}^i (z) \mathcal{D}_{n}^i \right) \Theta \quad \text{(with } u := < \mathbf{n}, \lambda >) \tag{200}
\]
\[
\partial_z \Theta^{-1} = \Theta^{-1} \partial_z + \Theta^{-1} \left(\sum_{i,n} e^{u|xz} B_{n, z}^i (z) \mathcal{D}_{n}^i \right) \quad \text{(with } u := < \mathbf{n}, \lambda >) \tag{201}
\]

Next, we define a ‘tentative’ solution \(\tilde{Y}_{ten} \) of our basic system (186) by setting \(\tilde{Y}_{ten} := \Theta^{-1} Y_{nor} \). Applying both sides of (201) to \(Y_{nor} \), we find successively:
\[
\partial_z \Theta^{-1} Y_{nor} = \Theta^{-1} \partial_z Y_{nor} + \Theta^{-1} \left(\sum_{j,n} e^{u|xz} B_{n, z}^j (z) \mathcal{D}_{n}^j \right) Y_{nor}^i \tag{202}
\]
\[
\partial_z \tilde{Y}_{ten} = \Theta^{-1} \lambda_i x Y_{nor} + \Theta^{-1} \left(\sum_{n} B_{n, z}^i (z) Y_{nor}^i (Y_{nor})^n \right) \tag{203}
\]
\[
\partial_z \tilde{Y}_{ten} = \lambda_i x \tilde{Y}_{ten} + \sum_{n} B_{n, z}^i (z) \tilde{Y}_{ten}^i (\tilde{Y}_{ten})^n \tag{204}
\]

Since the last equation (204) coincides with our initial system (186), it follows that \(\tilde{Y}_{ten} = \tilde{Y} \), which establishes (199).

\[\text{48} \text{We use the fact that } \Theta^{-1} \text{ is an automorphism to change } \Theta^{-1} (Y_{nor})^n \text{ to } (\Theta^{-1} Y_{nor})^n.\]
4.2 Biresurgent monomials and weighted products.

Elementary multilinear inputs: biresurgent monomials.

In the above expansions of Θ^\pm, the sensitive (i.e. generically divergent) ingredients are symmetrical monomials $W^\ast(z, x)$ carrying a two-tier indexation \((u_i, b_i)\) with scalar ‘frequencies’ \(u_i \in \mathbb{C}\) and germs \(b_i(z) \in \mathbb{C}\{z^{-1}\}\) analytic at \(z = \infty\). Dispensing for simplicity with the tilda and removing the exponential factors, the induction rule (196) can be rewritten as

\[
(\partial_z + |u| \partial_x) W^{(u_1, \ldots, u_r)}(z, x) = - W^{(u_1, \ldots, u_{r-1})}(z, x) b_r(z)
\]

with biresurgent monomials $W^\ast(z, x)$ (- separately resurgent in \(z\) and \(x\) -) that hold the key to everything.

Equational resurgence: Under the \(z\)-Borel transform

\[
B_z : z^{-n} \mapsto \frac{\zeta^{n-1}}{(n-1)!}, \quad b(z) \mapsto \hat{b}(\zeta), \quad W^\ast(z, x) \mapsto \hat{W}^\ast(\zeta, x)
\]

the induction rule (205) becomes

\[
\hat{W}^{(u_1, \ldots, u_r)}(\zeta, x) = \frac{1}{\zeta - |u| x} \int_0^\zeta \hat{W}^{(u_1, \ldots, u_{r-1})}(\zeta_1, x) b_r(\zeta - \zeta_1) \, dz_1
\]

and readily yields all the information we need: location of singularities, Stokes constants, pattern of \(z\)-resurgence, etc.

Coequational resurgence: Under the \(x\)-Borel tranform

\[
B_x : x^{-n} \mapsto \frac{\zeta^{n-1}}{(n-1)!}, \quad W^\ast(z, x) \mapsto B_x W^\ast(z, \xi)
\]

things are far more complex. The induction rule takes the form of a partial differential equation:

\[
(\partial_z + |u| \partial_\xi) B_x W^{(u_1, \ldots, u_r)}(z, \xi) = - B_x W^{(u_1, \ldots, u_{r-1})}(z, \xi) b_r(z)
\]

with the boundary condition :

\[
B_x W^{(u_1, \ldots, u_r)}(z, 0) = 0 \quad (\forall r \geq 2)
\]

For \(r = 1\), by solving (207) in decreasing powers of \(x\) and then applying the Borel transform \(x \rightarrow \xi\), we find:

\[
W^{(u_1)}(z, x) = - \sum_{n \geq 0} (u_1 x)^{-1-n} (-\partial_z)^n b_1(z) \quad \implies
\]

\[
B_x W^{(u_1)}(z, \xi) = - \sum_{n \geq 0} \frac{(-\xi/u_1)^n}{n!} \partial_z^n b_1(z) = - \frac{1}{u_1} b_1(z - \frac{\xi}{u_1})
\]
If \(r \geq 2 \), no such simplistic formula can be expected for \(B_r \mathcal{W}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(z, \xi) \), and we must resort to \(\text{weco} \), the first basic weighted convolution introduced in §3.3. We briefly recall its definition along with that of \(\text{wemu} \), the associated weighted multiplication. Parallel with the symmetral operations \(\text{weco}, \text{wemu} \), we then introduce two alternal look-alikes, \(\text{welo}, \text{welu} \). These newcomers are indispensable for alien-differentiating not just \(\text{weco}, \text{wemu} \) but also \(\text{welo}, \text{welu} \), i.e. themselves, thus leading to a closed system. We conclude by listing some salient properties of these four weighted products.

The symmetral products \(\text{weco}, \text{wemu} \) and biresurgence.

For \(u_i \in \mathbb{C} \) and \(\hat{c}_i(\xi) \in \mathbb{C}[\xi] \), by setting \(\text{weco}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(\xi) = \frac{1}{u_1} \hat{c}_1(\frac{\xi}{u_1}) \) and, for \(r \geq 2 \):

\[
\text{weco}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(\xi) = \left\{ \begin{array}{l}
\int_0^{\theta_1} \hat{c}_r(\xi_r) \, d\xi_r \int_{\xi_r}^{\theta_2} \hat{c}_{r-1}(\xi_{r-1}) \, d\xi_{r-1} \ldots \\
\quad \ldots \int_{\xi_3}^{\theta_3} \hat{c}_2(\xi_2) \, d\xi_2 \hat{c}_1(\xi_1) \frac{1}{u_1}
\end{array} \right. \quad (211)
\]

with

\[
\begin{align*}
\theta_1 & := (\xi - (u_1 \xi_1 + \cdots + u_r \xi_r))/(u_1 + \cdots + u_{i-1})^{-1} \\
\theta_* & := \xi (u_1 + \cdots + u_r)^{-1}
\end{align*}
\]

we unambiguously define germs \(\text{weco}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(\xi) \in \mathbb{C}[\xi] \) provided none of the partial sums \(u_1 + \cdots + u_i \) vanishes. The mould \(\text{weco}^* \) is symmetrical relative to the (ordinary) convolution product.

Just as ordinary convolution is the Borel image of ordinary multiplication, the weighted convolution \(\text{weco} \) is the Borel image of a weighted multiplication \(\text{wemu} \):

\[
c_1(x), \ldots, c_r(x) \xrightarrow{\text{Borel}} \hat{c}_1(\xi), \ldots, \hat{c}_r(\xi) \quad (212)
\]

\[
\text{wemu}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(x) \xrightarrow{\text{Borel}} \text{weco}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(\xi) \quad (213)
\]

For inputs \(c_i(x) \in \mathbb{C}\{x^{-1}\} \), i.e. holomorphic at infinity, and non-vanishing \(u_i \)-sums, weighted multiplication can be defined by the integrals:

\[
\text{wemu}^{(\frac{u_1}{\xi_1}, \ldots, \frac{u_r}{\xi_r})}(x) := \frac{1}{(2\pi i)^r} \int_{\Gamma_i} \prod_{i=1}^{r} \left(u_1 + \cdots + u_i \right) \, dx_1 \ldots dx_r \quad (214)
\]

with \(x_i \) running through large enough loops \(\Gamma_i \) and with \(x \) larger still to ensure a non-vanishing denominator \(\prod(...) \).

However, resurgent functions \(\hat{c}_i(\xi) \), even if holomorphic at \(\xi = 0 \), have Laplace images \(c_i(x) \) that are ramified at \(x = \infty \) rather than holomorphic.
For these, the integration paths have to be modified. Assume for simplicity that $0 < u_i$ and $1 \ll x$. Then integration in (214) must be along broken lines L_i of vertical middle part, with abscissae large enough, and with both extremities tweaked to the left.

Meanwhile, weco^* and wemu^* answer our immediate concern—expressing the biresurgent monomials \mathcal{W}^* in the planes ξ and x. Indeed:

Proposition 4.1 The biresurgent monomials $\mathcal{W}^*(z, x)$ and their Borel transforms $x \to \xi$ can be expressed in terms of weighted products:

$$
\mathcal{B}_x \mathcal{W}^\left(^{n_1 \ldots n_r}_{\xi_i \ldots \xi_r}\right)(z, \xi) = \text{weco}^\left(^{n_1 \ldots n_r}_{\xi_i \ldots \xi_r}\right)(\xi) \quad \text{with} \quad \widehat{c}_i(\xi) := -b_i(z - \xi) \quad (215)
$$

$$
\mathcal{W}^\left(^{n_1 \ldots n_r}_{\xi_i \ldots \xi_r}\right)(z, x) = \text{wemu}^\left(^{n_1 \ldots n_r}_{\xi_i \ldots \xi_r}\right)(\xi) \quad \text{with} \quad c_i(x) := \int_{\xi_i}^{+\infty} \widehat{c}_i(\xi) e^{-\pi \xi} d\xi \quad (216)
$$

with z chosen close enough to ∞ for the inputs $\widehat{c}_i(\xi)$ to be regular at $\xi = 0$.

The proof, tedious but straightforward, lies in checking that the weighted convolution integrals (211) with the inputs \widehat{c}_i as in (215) do indeed verify the partial differential relation (207) together with the limit condition (208).

The primary identity is of course (215), based on convolution. Its multiplicative counterpart (216) is merely derivative. Being notationally more convenient, however, the multiplicative variant shall often be preferred in *statements* to the convolutive one, although all proofs and calculations rely on the convolutive model.

We may note in passing a seeming incongruity: formula (215) uses inputs \widehat{c}_i (analytic germs at 0 in the convolutive ξ-plane) defined directly as z-translates of b_i (analytic germs at ∞ in the multiplicative z-plane). But this interference of the two structures (convolutive and multiplicative) cannot be helped: it is a standing feature of coequational resurgence.

Alternal marking.

One can easily check that the mould transforms *almark* and *almalk*:

$$
almark(M)^{t_1, \ldots, t_r} := \text{concat} \left(\text{symlin}(M^{t_1, \ldots, t_i-1}, \overset{\text{in}}{M}^{t_{i+1}, \ldots, t_r}), M^{t_i} \right) \quad (217)
almark(M)^{t_1, \ldots, t_r} := \text{concat} \left(M^{t_i}, \text{symlin}(\overset{\text{in}}{M}^{t_1, \ldots, t_i-1}, M^{t_{i+1}, \ldots, t_r}) \right) \quad (218)
$$

with

$$
\overset{\text{in}}{M}^{t_1, \ldots, t_r} := (-1)^r M^{t_{r}, \ldots, t_1}
\text{symlin}(M^t, M^{t''}) := \sum_{t \in \text{sha}(t', t'')} M^t
\text{concat}(M^{t_1, \ldots, t_i}, M^{t_{i+1}, \ldots, t_r}) := M^{t_1, \ldots, t_r} \quad (219)
$$
turn any mould M^* into marked moulds $\overline{M^*}$, $\overline{M^*}$ of alternate type. Here, ‘marked’ means that we distinguish one of the indices t_i by marking it with the sign marked. If M^* itself is alternate, then $M^* = \overline{M^*} = \overline{M^*}$; but otherwise all three moulds tend to be quite distinct. If on the other hand M^* is symmetrical, as will be the case in most of our applications, then the factor $\overline{wemu M^*}$ occurring in the definitions (217)-(218) coincides with the multiplicative inverse $\overline{inv mu M^*}$.

Of course, when the marked index is t_i happens to be the first or the last, only the right or left subsequence is left standing in the definitions (217)-(218). Thus, if $M^* := \text{almark} M^*$, we get:

$$M^*_{t_1 t_3 t_4} := -M^*_{t_1 t_3 t_4}$$
$$M^*_{t_1 t_3 t_4} := +M^*_{t_1 t_3 t_4} + M^*_{t_1 t_3 t_4} + M^*_{t_1 t_3 t_4}$$
$$M^*_{t_1 t_3 t_4} := -M^*_{t_1 t_3 t_4} - M^*_{t_1 t_3 t_4} - M^*_{t_1 t_3 t_4}$$
$$M^*_{t_1 t_3 t_4} := +M^*_{t_1 t_3 t_4}$$

The alternate products welo, welu and alien-differential closure.

In co-equational resurgence, one constantly requires the alternate weighted products welu/wemu derived from the symmetrical wemu/weco by right alternate marking:

$$\text{welu}^* := \text{almark} \cdot (\text{wemu}^*) \quad ; \quad \text{welo}^* := \text{almark} \cdot (\text{weco}^*) \quad (220)$$

Although this defines welu/welo as large sums of $\frac{(r-1)!}{(t-1)!(t-r)!}$ distinct terms of type wemu/weco, the form of the integrals does not become significantly more complex. The same is true on the multiplicative side: the passage from wemu to welu reduces to replacing a fully factorisable kernel S^* by an equally factorisable S^*:

$$\begin{align*}
\text{wemu}^{\mu_1 \cdots \mu_r}_{\nu_1 \cdots \nu_r} (x) &= \frac{1}{(2\pi i)^r} \int_{\Gamma} S^{\mu_1 \cdots \mu_r\nu_1 \cdots \nu_r} (x) \prod c_i(x_i) dx_i \\
\text{welu}^{\mu_1 \cdots \mu_r}_{\nu_1 \cdots \nu_r} (x) &= \frac{1}{(2\pi i)^r} \int_{\Gamma} S^{\mu_1 \cdots \mu_r\nu_1 \cdots \nu_r} (x) \prod c_i(x_i) dx_i \quad (221) \\
S^{\mu_1 \cdots \mu_r\nu_1 \cdots \nu_r}_{\nu_1 \cdots \nu_r} (x) &= \prod_{i=1}^{r-1} \left((u_1 + \cdots + u_i) x - (x_1 + \cdots + x_i) \left((u_1 + \cdots + u_r) x - (x_1 + \cdots + x_r) \right)^{-1} \right) (222) \\
S^{\mu_1 \cdots \mu_r\nu_1 \cdots \nu_r}_{\nu_1 \cdots \nu_r} (x) &= \left(-1 \right)^{r-j} S^{\mu_1 \cdots \mu_{j-1} \nu_{j+1}} (x) \left(S^{\nu_r \cdots \nu_j \cdots \nu_{j+1}} (x) \right) \left((u_1 + \cdots + u_r) x - (x_1 + \cdots + x_r) \right)^{-1} \right)
\end{align*}$$

This would not be the case at all, had we defined welu^* and S^* based on the left alternate marking almark. Thus, of the two alternate markings, the one we
require also happens to be the simpler of the pair (at least in this particular instance). Similar sweeping simplifications occur in the definition of the integration multi-path behind the alternal convolution $welo$. The reader is invited to work out the form of that multi-path for himself.

Remark 1: Simple vs weighted convolution.

The basic weighted convolution $weco$ is symmetrical, but otherwise devoid of any associativity-like properties. The following pair of formulae bring out the difference with ordinary convolution:

\[
(weco^{s_1, \ldots, s_r})(\xi) = \hat{w}_{s_1 + \cdots + s_r} \left(\xi \right) = \hat{w}_{s_1} \left(\xi \right) \quad \text{with} \quad \hat{w}_{s_1} \left(\xi \right) := \frac{\xi^{s_1 - 1}}{(s_1 - 1)!}
\]

\[
(weco^{s_1, \ldots, s_r})(\xi) = \hat{w}_{s_1 + \cdots + s_r} \left(\xi \right) H^{s_1, \ldots, s_r}
\]

The symmetrical mould H^* does not depend on ξ. For any fixed positive integers s_1, the coefficient H^{s_1, \ldots, s_r} is a rational function in the weights u_i, of the form:

\[
H^{s_1, \ldots, s_r} = P^{s_1, \ldots, s_r} \prod_{1 \leq j \leq r} (u_1 + \cdots + u_j)^{r - 1 - (s_1 + \cdots + s_j)}
\]

The numerator P^{s_1, \ldots, s_r} is a homogeneous polynomial, with non-negative integer coefficients and with total degree in u:

\[
\deg(P^{s_1, \ldots, s_r}) = \sum_{1 \leq j \leq r - 1} (r - j) s_j - \frac{1}{2} r (r - 1) \quad \text{if} \quad s_i \in \mathbb{N}
\]

This makes H^* homogeneous in u of total degree $d = -\sum s_i$.

(i) For identical powers $s_i \equiv s > 0$ and a fixed set of weights $\{u_1, \ldots, u_r\}$, the coefficients H^{s_1, \ldots, s_r} are always largest (resp. smallest) when the weights u_i are arranged in increasing (resp. decreasing) order.

(ii) Conversely, for identical weights $u_i \equiv u > 0$ and a fixed set of positive powers $\{s_1, \ldots, s_r\}$, the coefficients H^{s_1, \ldots, s_r} are always largest (resp. smallest) when the weights u_i are arranged in decreasing (resp. increasing) order.

(iii) Since the weighted convolution product remains defined for all complex valued weights s_i (see below), the coefficients H^{s_1, \ldots, s_r} possess an analytic extension to the whole of \mathbb{C}^2r, single-valued in s but multivalued in u, with singularity locus $\cup_i \{u_1 + \cdots + u_i = 0\}$.

(iv) For real positive powers s_i, the influence of the weights is strongest (resp. weakest) when the powers increase to $+\infty$ (resp. decrease to 0). In particular, $\lim_{s_i \to 0} H^{s_1, \ldots, s_r} = \frac{1}{r!}$ irrespective of the weights u_i. 64
(v) Apart from symmetrality, u-homogeneousness, and the s-shift relations
\[H^{(u_1, \ldots, u_r)}_{s_1, \ldots, s_r} = \sum_{1 \leq i \leq r} \frac{u_i s_i}{s_1 + \cdots + s_r} H^{(u_1, \ldots, u_i, 1, \ldots, u_r)}_{s_1, \ldots, 1 + s_i, \ldots, s_r} \]
(227)
which simply reflect (123), the coefficients $H^{(u)}$ do not appear to be subject to other algebraic constraints.

(vi) Whereas r-multiple convolution products tend to decrease like $\text{Const}/r!$, r-multiple weighted convolution products tend to decrease like $\text{Const}/(r!)^2$. This is particularly obvious for positive weights u_i, which imply positive coefficients H^\bullet. That precludes sign complications in the following sum
\[\sum_{\sigma \in \mathcal{S}_r} \text{weco}^{(u_{r(1)}, \ldots, u_{r(r)})}_{(s_{r(1)}, \ldots, s_{r(r)})} (\xi) \equiv \left(\text{weco}^{(u_1)}_{c_1} \ast \cdots \ast \text{weco}^{(u_r)}_{c_r} \right)(\xi) \]
(228)
and makes each of its summands, on average, equal to $1/r!$ times the right-hand side of (228), which is itself small of order $1/r!$. This, however, appears to lead to an anomaly: the very same biresurgent monomials $\mathcal{W}^{(u_1, \ldots, u_r)}_{b_1, \ldots, b_r}(z, x)$ give rise, in the ζ-plane, essentially to ordinary convolution products that decrease roughly like $C_1/r!$, and in the ξ-plane to weighted convolution products that decrease roughly like $C_2/(r!)^2$. The answer lies simply with the convolands, which differ in both cases: in the ζ-plane, we have the rather small $b_i(\zeta)$, and in the ξ-plane the much larger $\hat{c}_i(\xi) := -b_i(z - \xi)$. So on the whole things balance out just fine.

Remark 2: The case of non-integrable minors \hat{c}_i.

Like with ordinary convolution, when dealing with convolands \hat{c}_j that are non-integrable at $\xi = 0$, we must resort to so-called majors c_j and replace the path integrals (211) by suitable loop integrals that avoid the origin. Or again, we may go to the multiplicative x-plane; calculate the wemu integrals on tweaked vertical lines L_i; and then revert to the ξ-plane.

In particular, when all convolands \hat{c}_j are equal to the convolution unit δ (dirac distribution at the origin), we find that the weighted convolution ceases to depend on the weights:
\[\text{weco}^{(u_1, \ldots, u_r)}_{\delta}(\xi) \equiv \frac{1}{r!} \delta \quad \forall u_1, \ldots, u_r \]
(229)

\(^{49}\)Indeed, if we neglect the factors $(\zeta - |x|^{-1})$ which have almost no impact on the rate of decrease at a given ζ, the induction (206) amounts to an ordinary convolution product with r factors.

\(^{50}\)Compare for instance $\tilde{b}_i(\zeta) := \zeta^{n_i - 1}/(n_i - 1)!$ and $b_i(z) := z^{-n_i}$.

\(^{51}\)Minors and majors relate as follows: $\tilde{c}_j(\xi) = -\frac{1}{2\pi i} (\tilde{c}_j(\xi e^{\pi i}) - \tilde{c}_j(\xi e^{-\pi i}))$.

65
Remark 3: Weighted convolution and the diracs.

This last remark takes us to the case when one or several convolands \(\widehat{c}_i \) are equal to \(\delta \). When only one is a dirac, and the others are regular, we find 0 unless the dirac ends the sequence:

\[
\text{weco}(\xi_1, \ldots, \xi_r)(\xi) = \begin{cases}
\text{weco}(\xi_1, \ldots, \xi_{r-1})(\xi) & \text{if } \widehat{c}_r = \delta \\
0 & \text{otherwise}
\end{cases}
\] (230)

When \(k \) convolands \(\widehat{c}_i \) are equal to \(\delta \) and the others are regular, we find again 0 unless all regular factors come first in the sequence, and all diracs last:

\[
\text{weco}(\xi_1, \ldots, \xi_r)(\xi) = \begin{cases}
\frac{1}{k!} \text{weco}(\xi_1, \ldots, \xi_{r-k})(\xi) & \text{if } \widehat{c}_{r-k+1} = \widehat{c}_{r-k+2} = \ldots \widehat{c}_r = \delta \\
0 & \text{otherwise}
\end{cases}
\]

These rules are clearly compatible with the symmetrality of \(\text{weco}^* \).

Remark 4: The case of vanishing sums \(u_1 + \cdots + u_i \).

When some of the partial sums \(u_1 + \cdots + u_i \) vanish, the integration multi-path in (211) ceases to be finite. This either renders the integral meaningless (when the germs \(\widehat{c}_i \) cannot be continued to infinity) or again (when they can, but display singularities) this opens the way to indeterminacies. In our problem, however, two fortunate circumstances save the day:

(i) in the Second Bridge Equation, the \(\widehat{c}_i \) that occur are all of the form \(\widehat{c}_i(\xi) = -b_i(z - \xi) \), with \(z \) large and \(b_i \) analytic and small at \(\infty \). So here we have in the \(\xi \)-plane a privileged path to infinity\(^{52} \), which we choose. We shall see in §4.6 how this translates in analytical terms: we must replace the resurgence monomials \(S^w(x) \) by the amended monomials \(S^{aw}(x) \).

(ii) in the Third Bridge Equation, the convolands \(\widehat{c}_i \) carry no \(z \)-shift, but here all terms with vanishing sums \(u_1 + \cdots + u_i \) cancel out!

Remark 5: The need for a detour through combinatorics.

After the weighted convolution products, the other tool required for mastering coequational resurgence is a recipe for alien-differentiating these products, more precisely, for expressing \(\widehat{\Delta}_\omega \text{weco}(\xi_1, \ldots, \xi_r) \) and \(\widehat{\Delta}_\omega \text{welo}(\xi_1, \ldots, \xi_r) \) in terms of weighted convolutions of the alien derivatives \(\Delta_\omega \widehat{c}_i \) of the individual convolands. However, the integrals (211) that define weighted convolution,

\(^{52}\text{namely } \arg(z - \xi) = \arg(z)\).
and especially their analytic continuation in the large53 are so impossibly long, intricate and contorted that they defy visualisation. So an analytical-combinatorial approach is required instead. It relies on well-chosen convolands \(\hat{c}_j \), with well-chosen meaning three things:

(i) the \(\hat{c}_j \) should be stable under weighted convolution and alien differentiation,

(ii) they should be simple enough to yield explicit formulae for both operations,

(ii) they should be numerous enough to approximate all ramified functions.

Fortunately, there exists a set of functions that meets all three conditions and that will eventually yield the rules for alien-differentiating our weighted convolution products: these auxiliary functions are the hyperlogarithms, which we examined at some length in \S2; to which we shall briefly return in the coming \S4.3; and on which most of the present section’s subsequent developments shall be based.

\textbf{Remark 6: The weighted products under arborification.}

We already noted at the very end of \S3.8 that (anti)arborification does not significantly complicate the symmetrical products \(\text{weco}, \text{wemu} \). We may now add that the (left) alternal marking (see supra) also smoothly interacts with the alternal products \(\text{weco}, \text{wemu} \). One verifies indeed that marking a given element of a given (anti)arborescent sequence amounts to no more than a slight modification of the arborescent order:

(i) no nodes get destroyed or created

(ii) the marked element \(\omega_7^i \) becomes the new (anti)root.

(iii) the part of the tree previously issuing from \(\omega_7^i \) retains its order.

(iv) the part of the tree previously preceding \(\omega_7^i \) has its order reversed

(v) the rest of the tree retains its order.

\textbf{4.3 The elementary monomials} \(V^*(z) \) and monics \(V^* \).

The \(z \)-resurgence (‘equational’), which manifests in the dual \(\zeta \)-plane, turns out to be totally independent of what singularities the coefficients \(B_n^\omega(z) \) of our model system (186) may or may not possess: they depend only on its ‘multipliers’ \(\lambda_i \). The \(x \)-resurgence (‘co-equational’), however, which manifests in the dual \(\xi \)-plane, depends on the multipliers \(\lambda_i \) and the singularities of the \(B_n(\omega) \), which live directly in the \(z \)-plane, \textit{at} or \textit{over} some points \(\alpha_j \).

53Technically: the \textit{weightedly self-symmetrical} and \textit{self-symmetrically shrinkable} multi-paths that we would have to consider for a direct ‘geometric’ treatment.
The same holds for our resurgence-carrying monomials W^*: the singularities of $B_z W$ in the ζ-plane depend only on the weights u_i, while those of $B_x W$ in the ξ-plane depend on the weights u_i and on the singularities α_i of the coefficients $b_i(z)$ in the z-plane. More concretely, the former singularities lie over points of the form $x(u_1 + \cdots + u_i)$ and the latter over subtle bilinear combinations of the u_i's and the differences $z - \alpha_i$.

So we find ourselves once again facing this unusual but inescapable interference of two structures:

(i) the multiplicative structure, which leaves the singularities in place,

(ii) the convolutive structure, which adds singularities, in the sense that:

(singularity over ω_1)\ast(singularity over $\omega_2) \Rightarrow ($singularities over $\omega_1 + \omega_2$).

Then, messing up things still further, we must contend with the weighted convolution weco, which also adds singularities, but via weighted rather than straightforward sums. This forces us to juggle two systems of notation:

- **incremental**, with sequences $(\omega_1, \ldots, \omega_r)$ ($\omega_i = \alpha_i - \alpha_{i-1}$)
- **positional**, with sequences $[\alpha_1, \ldots, \alpha_r]$ ($\alpha_i = \omega_1 + \cdots + \omega_i$)

As already pointed out, the ideal tool for understanding this hybrid structure is the hyperlogarithms, with their two encodings54, their stability under two products55 and two sets of exotic derivations56 and, not least, their density property: any given resurgent function in the Borel plane is the limit, uniformly on any compact set of its Riemann surface, of a suitable series of hyperlogarithms. We simply recall the bare essentials and refer to §2 for details.

Hyperlogarithms in the α and ω-encodings:

$$\hat{V}[^{\alpha_1, \ldots, \alpha_r}] (\tau) := \int_0^\tau \frac{d\tau_r}{\tau_r - \alpha_r} \cdots \int_0^{\tau_3} \frac{d\tau_2}{\tau_2 - \alpha_2} \int_0^{\tau_2} \frac{d\tau_1}{\tau_1 - \alpha_1}$$

$$(231)$$

$$\hat{V}[^{\omega_1, \ldots, \omega_r}] (\tau) \equiv \hat{V}[^{\alpha_1, \ldots, \alpha_r}] (\tau) \text{ with } \alpha_i = \omega_1 + \cdots + \omega_i \; (\forall i)$$

$$(232)$$

$$\hat{V}[^{\alpha_1, \ldots, \alpha_r}] (\tau) := \hat{\partial}_\tau \hat{V}[^{\alpha_1, \ldots, \alpha_r}] (\tau)$$

$$(233)$$

$$\hat{V}[^{\omega_1, \ldots, \omega_r}] (\tau) := \hat{\partial}_\tau \hat{V}[^{\omega_1, \ldots, \omega_r}] (\tau)$$

$$(234)$$

54i.e. incremental and positional.

55i.e. ordinary pointwise multiplication and convolution.

56i.e. the alien derivations Δ_{ω_0} and the less important foreign derivations ∇_{ω_0} (which shall play no part in this paper).
Functional dimorphy:

\[
\begin{align*}
(\tilde{\psi}^{[\alpha]}, \tilde{\psi}^{[\alpha']}) (\tau) &= \sum_{\alpha \in \text{sha}(\alpha', \alpha'')} \tilde{\psi}^{[\alpha]} (\tau) & (235) \\
(\tilde{\psi}^{\omega'} \overset{\ominus}{*} \tilde{\psi}^{\omega''}) (\tau) &= \sum_{\omega \in \text{sha}(\omega', \omega'')} \tilde{\psi}^{\omega} (\tau) & (236) \\
(\hat{\psi}^{\omega'} \overset{\ominus}{*} \hat{\psi}^{\omega''}) (\tau) &= \sum_{\omega \in \text{sha}(\omega', \omega'')} \hat{\psi}^{\omega} (\tau) & (237)
\end{align*}
\]

(235) says that \(\tilde{\psi}^{[\bullet]}\) is symmetrical relative to pointwise multiplication. (236) and (237) say that \(\tilde{\psi}^{\bullet}\) and \(\hat{\psi}^{\bullet}\) are symmetrical relative to the convolutions \(\overset{\ominus}{*}\) and \(\overset{\ominus}{\ast}\) respectively.

Hyperlogarithmic monics.

In the \textit{incremental} encoding, the hyperlogarithmic monics \(V^\bullet\) are defined inductively by:

\[
\Delta_{\omega_1+\ldots+\omega_r} V^{\omega_1,\ldots,\omega_r} (z) = V^{\omega_1,\ldots,\omega_r} + \sum_{\omega_{i+1}+\ldots+\omega_r=0} V^{\omega_1,\ldots,\omega_i} V^{\omega_{i+1},\ldots,\omega_r} (z)
\]

and in the \textit{positional} encoding by the usual re-indexation:

\[
V^{[\alpha_1,\ldots,\alpha_r]} = V^{\alpha_1,\alpha_2-\alpha_1,\ldots,\alpha_r-\alpha_{r-1}}
\]

The hyperlogarithmic monics are central to \textit{equational resurgence}, where they serve as elementary building blocks in the calculation of the Stokes constants, and to \textit{co-equational resurgence}, where they enter the definition of the important \textit{tessellation} and \textit{texture} coefficients.

Index dependence of the monomials and monics.

In §2.3 we showed how monomials and monics respond to partial differentiation relative to their indices or variables. We also mentioned the jump formulae (54)-(55) that express the discontinuities incurred by the (uniform) monics \(V^\bullet\) when we cross from one domain of holomorphy to the next. Most statements to follow in this section rely for their proofs on the repeated use of both sets of formulae.
4.4 The special monomials $S^\star(x)$.

To construct the monomials $S^\star(x)$ and the associated tessellation coefficients tes^\star, we first turn the moulds $V^\star(x), V^\star$ into bimoulds $V^\star(x), V^\star$ and then subject them to the scramble transform:

$$S^\star(x) := \text{scram} \cdot V^\star(x) \quad \text{with} \quad V^{(u_1, \ldots, u_r)}(x) := V^{u_1 v_1, \ldots, u_r v_r}(x) \quad (240)$$

$$\text{tes}^\star := \text{scram} \cdot V^\star \quad \text{with} \quad V^{(u_1, \ldots, u_r)} := V^{u_1 v_1, \ldots, u_r v_r} \quad (241)$$

Thus, we the usual shorthand $u_{1,2} := u_1 + u_2$, $v_{1,2} := v_1 - v_2$, we get:

$$S^{(u_1)}(x) := V^{u_1 v_1}(x)$$

$$S^{(u_1, u_2)}(x) := V^{u_1 v_1, u_2 v_2}(x) - V^{u_1, v_1} v_1 v_2(1) + V^{u_1, v_2} v_1 v_2(2)$$

Proposition 4.2 (Weighted convolution for polar inputs).

We assume here that all partial sums $u_1 + \cdots + u_r$ are $\not= 0$, so that all integration bounds θ_i in (211) are finite. Then the weighted convolution of simple polar functions $\pi_i(\xi) = (\xi - \alpha_i)^{-1}$ coincides with the x-Borel transform $\hat{S}^\star(\xi)$ of the bimould $S^\star(x)$ for indices $w_i = (\frac{u_i}{\alpha_i})$. Similarly, the bi-resurgent monomials $W^\star(z, x)$ of (205) with polar inputs $b_i(z) := (z - \alpha_i)^{-1}$, coincide with the bimoulds $S^\star(x)$ for indices $w_i = (\frac{u_i}{\alpha_i})$. In other words:

$$\text{weco}^{(u_1, \ldots, u_r)}(\xi) = \hat{S}^{(u_1, \ldots, u_r)}(\xi) \quad \text{with} \quad \pi_i(\xi) = \frac{1}{\xi - \alpha_i} \quad (242)$$

$$W^{(u_1, \ldots, u_r)}(z, x) = S^{(z - \alpha_1, \ldots, z - \alpha_r)}(x) \quad \text{with} \quad b_i(z) = \frac{1}{z - \alpha_i} \quad (243)$$

Sketch of proof: Based on the rules of §2.4 for the ω_r-differentiation of the hyperlogarithmic monomials \mathcal{V}, we find that the $S^\star(x)$, defined as superpositions of $\mathcal{V}(x)$-monomials, verify

$$(\hat{\omega}_z + \mathcal{u}(\star)) S^\star(x) = -S^\star(x) \times \mathcal{J}^\star \quad (244)$$

$$\mathcal{J}^{w_1} := \frac{1}{v_1} = \frac{1}{z - \alpha_1}, \quad \mathcal{J}^{w_1, \ldots, w_r} = 0 \quad \text{if} \quad r + 1 \quad (245)$$

4.5 The augmented monomials $S^\bullet(x)$ and $S^\bullet_{\text{cor}}(x)$.

Definition 4.1 (The augmented monomials $S^\bullet(x)$).

The monomials $S^\bullet(x)$ are simply the ν-augmented scramble transform of the familiar hyperlogarithmic bimould $V^{(u_1, \ldots, u_r)}(x) := V^{u_1 v_1, \ldots, u_r v_r}(x)$

57Viewed as resurgent functions of their second variable x, in any of the multiplicative models—formal or geometric.
Since $\mathcal{V}^*(x)$ and $\mathcal{V}^*(x)$ are both symmetrical, $\mathcal{S}^*(x)$ is symmetrical as well.

Although the lower indices v_i in \mathbf{w} are going to reflect inputs \mathcal{V}^* taken in positional notation, the monomial \mathcal{S}^* should rather be expressed as sums of \mathcal{V}^* taken in incremental notation. At depth 1 this may seem the wrong choice, since for $\mathbf{w}_1 = \left(\begin{array}{c} u_1 \\ v_1 \end{array} \right) = \left(\begin{array}{c} u_1 \\ v_1, v_1' \end{array} \right)$ we get:

$$
\mathcal{S}^{w_1}(x) := \mathcal{V}^{\left[u_1, v_1, 1, u_1 v_1, \ldots, u_1 v_1', v_1'' \ldots \right]}(x) := \mathcal{V}^{u_1 v_1, u_1 v_1', u_1 (v_1 - v_1), u_2 (v_1'' - v_1')}(x)
$$

But starting from depth 2 the incremental notation commends itself. For instance, with $\mathbf{w}_1 = \left(\begin{array}{c} u_1 \\ v_1, v_1' \end{array} \right)$, $\mathbf{w}_2 = \left(\begin{array}{c} u_2 \\ v_2, v_2' \end{array} \right)$; we find in the incremental notation:

$$
\mathcal{S}^{(w_1, w_2)}(x) = +\mathcal{V}^{u_1 v_1, u_2 v_2, u_2 v_2', u_2 v_2', 1}(x) + \mathcal{V}^{u_1 v_1, u_2 v_1', u_2 v_1', u_2 v_2', 1}(x) - \mathcal{V}^{u_1 v_1, u_2 v_1', u_1 v_1', u_2 v_2', 1}(x) - \mathcal{V}^{u_1 v_1, u_1 v_1', u_1 v_1', u_2 v_2', 1}(x) + \mathcal{V}^{u_1 v_1, u_1 v_1', u_2 v_2', u_1 v_1', 1}(x) - \mathcal{V}^{u_1 v_1, u_2 v_1', u_1 v_1', u_2 v_1', 1}(x) + \mathcal{V}^{u_1 v_1, u_1 v_1', u_2 v_2', u_1 v_1', 1}(x) + \mathcal{V}^{u_1 v_1, u_1 v_1', u_2 v_2', u_1 v_1', 1}(x)
$$

which would look more unwieldy in the positional notation.\(^{58}\)

According to (215), the biresurgent monomials $\mathcal{W}^*(z, x)$ with inputs $b_i(z)$ reduce, in the ξ-plane, to weighted convolution products with inputs $\hat{c}_i(\xi) := b_i(z - \xi)$. Thus, to get rid of the variable z in $b_i(z - \xi)$ for hyperlogarithmic data b_i, we require an addition identity for hyperlogarithms:

Proposition 4.3 (The addition law for hyperlogarithms).

For suitable determinations of our multivalued functions\(^{59}\), we have:

$$
\hat{\mathcal{V}}^{[\alpha_1, \ldots, \alpha_r]}(z - \xi) = - \sum_{1 \leq j \leq r} \hat{\mathcal{V}}^{[\alpha_1, \ldots, \alpha_j - 1]}(z) \hat{\mathcal{V}}^{[z - \alpha_j, \ldots, z - \alpha_r]}(\xi) \tag{246}
$$

This is simply a variant of (80) better suited to the present context. Note the unusual juxtaposition of monomials $\hat{\mathcal{V}}$ and $\hat{\mathcal{V}}$. To derive (246) from (80), set $t_1 = z, t_2 = -\xi$ in (80), use the homogeneous $\hat{\mathcal{V}}^{(1)}(-\xi) = \hat{\mathcal{V}}^{(z)}(\xi)$, and apply \hat{c}_ξ.

\(^{58}\)Beside the usual abbreviations $u_{1, 2} := u_1 + u_2, v_{1, 2} := v_1 - v_2$ we write $v_{1, -1} := v_1' - v_1$.

\(^{59}\)See the important remark below.
Definition 4.4 (The general monomials $S_{\text{cor}}^x(x)$).
The monomials $S_{\text{cor}}^x(x)$ carry lower indices of the form

$$u_i = z - \alpha_i = (z - \alpha_i, z - \alpha_i', z - \alpha_i'', \ldots)$$ \hspace{1cm} (247)

and are derived from the monomials $S^x(x)$ under the adjunction of corrective, x-constant, z-dependent terms of type $\hat{\wp}^{\alpha}(z)$, which should be taken as $\equiv -1$ when α reduces to the empty sequence:

$$S_{\text{cor}}^{(u_1 \ldots u_r)}(x) := \sum_{\alpha^* \alpha^{**} = \alpha} (-1)^{\alpha^* + \alpha^{**}} \hat{\wp}^{(\alpha^*)}(z) \ldots \hat{\wp}^{(\alpha^{**})}(z) S^{(\ldots \alpha^* \ldots \alpha^{**} \ldots)}(x)$$ \hspace{1cm} (248)

with

$$\alpha_i = (\alpha_i, \alpha_i', \ldots, \alpha_i^{(n_i-1)})$$
$$\alpha^*_i = (\alpha_i, \alpha_i', \ldots, \alpha_i^{(m_i-1)})$$
$$\alpha^{**}_i = (\alpha_i^{(m_i)}', \ldots, \alpha_i^{(n_i-1)})$$

Note that in (248) the sequences α^*_i are always \emptyset, unlike the sequences α^{**}_i, which turn empty when $m_i = 0$, in which case one should of course set $\hat{\wp}^{\emptyset}(z) := -1$. As a consequence:

$$S_{\text{cor}}^{(u_1 \ldots u_r)}(x) = S^{(u_1 \ldots u_r)}(x) + \text{shorter monomials}$$

Proposition 4.4 (Weighted convolution with hyperlog inputs).
We still assume here that all partial sums $u_1 + \cdots + u_i$ are $\neq 0$. Then the weighted convolution of hyperlogarithmic functions $\pi_i(\xi) = \wp^{[\alpha_i, \alpha_i', \ldots]}(\xi)$ coincides with the x-Borel transform $\hat{\wp}^x(\xi)$ of the bimould $S^x(x)$ for indices $w_i = (u_i)$ of $w_i = (\alpha_i, \alpha_i', \ldots)$. Similarly, the bi-resurgent monomials $W^x(z, x)$ of (205) with hyperlogarithmic inputs $b_i(z) = \hat{\wp}^{[\alpha_i, \alpha_i', \ldots]}(z)$, when viewed as resurgent functions of their second variable x, coincide with the corrected bimould $S_{\text{cor}}^x(x)$ for indices $w_i = (u_i)$ of $w_i = (\alpha_i, \alpha_i', \ldots)$.

\begin{align*}
\text{weco}^{(u_1 \ldots u_r)}(\xi) &= \hat{\wp}^{(u_1 \ldots u_r)}(\xi) \quad \text{with} \quad \pi_i(\xi) = \hat{\wp}^{[\alpha_i, \alpha_i', \ldots]}(\xi) \\
W^{(u_1 \ldots u_r)}(z, x) &= S_{\text{cor}}^{(u_1 \ldots u_r)}(x) \quad \text{with} \quad b_i(z) = \hat{\wp}^{[\alpha_i, \alpha_i', \ldots]}(z)
\end{align*}

Sketch of proof: As in the case of the simple $S^w(x)$, it is a matter of pure combinatorial drudgery. Here again, we make massive use of the differentiation rules of §2.4 to check that

$$(\partial_z + (u_1 + \cdots + u_r) x) S^{w_1 \ldots w_r}(x) = -S^{w_1 \ldots w_{r-1}}(x) \times \hat{\wp}^{[\alpha_r]}(z)$$ \hspace{1cm} (251)
Mark the alternation of variables: \(x \) inside \(S(x) \) but \(z \) inside \(\hat{V}(z) \). Note, too, that the presence of the multiplicative variable \(z \) alongside the hat over \(V \) (indicative of the Borel plane) is no misprint, but just another manifestation of the interference of the multiplicative and convolutive structures.

Remark 1: Both \(S'_s(x) \) and \(V'(x) \) behave as *symmetral* moulds under ordinary multiplication (as power series of \(x^{-1} \)). The existence of a unique expansion of \(S_w(x) \) into a finite sum of \(V_w(x) \)-terms leads therefore to a commutative diagram:

\[
\begin{array}{ccc}
S'_w \ast S'_w' & \xrightarrow{\text{symmetral linearisation}} & \sum S'_w \\
\downarrow \text{hyperlogarithmic expansion} & & \downarrow \text{hyperlogarithmic expansion} \\
(\sum \epsilon^w V'^w) \ast (\sum \epsilon^w V''^w) & \xrightarrow{\text{symmetral linearisation}} & \sum \epsilon^w V^w
\end{array}
\]

The same already holds true, of course, for the mould \(S_w(x) \) but this immediately follows from the construction of \(S_w(x) \) (Definition 4.1) combined with the earlier commutative diagram involving \(SM_w \) and \(M_w \) (at the end of §3.7). The point here is the preservation of the diagram’s commutativity *after* the change (248) from \(S_w(x) \) to \(S'_w(x) \).

Remark 2: Bounds for \(\hat{S}_w(\xi) \) to \(\hat{S}'_w(\xi) \). The huge number of hyperlogarithmic summands \(V'(x) \) present in the expansion of \(S_w(x) \) and \(S'_w(x) \) (see the remark towards the end of §3.7) doesn’t prevent our monomials from admitting excellent bounds on the compact sets of the ramified Borel \(\xi \)-‘plane’. The hyperlogarithmic expansions are useful, indispensable even, for understanding the resurgence pattern. But for the purpose of majorisation one should turn directly to the weighted convolution product \(weco^w \). The corresponding integral may look messy, but it leads to even better bounds than the ordinary convolution integral: for \(r \) convolands, a second factor \(\frac{1}{r!} \) comes into play instead of just one!

4.6 Vanishing \(u_i \)-sums and amended monomials \(S^*_{am}(x) \).

When some of the partial sums \(u_1 + \cdots + u_i \) vanish, some of the end points \(\theta_i \) in the multiple integral (211) become infinite. Since we consider integrands of the form \(\hat{c}_i(\xi) := b_i(z - \xi) \) for \(z \) large and for inputs \(b_i(z) \) which, even when ramified away from \(\infty \), are assumed to be analytic in some neighbourhood of \(\infty \), this is no obstacle to the continued existence of the weighted convolution: we can always arrange for all integration variables \(\xi \) to move within the safe neighbourhood of \(\infty \). However, the analytic expression of \(W^*(z, x) \) in terms
of \(S^*(x) \) (polar case) or \(S_{\text{cor}^*}(x) \) (ramified case) ceases to be valid, forcing us to resort to ‘amended’ monomials \(S^*_{\text{sm}}(x) \) or \(S^*_{\text{cor}^*}(x) \). Let us begin with the polar case:

Proposition 4.5 (z-derivative of \(S^*(x) \)).

In presence of vanishing \(u_i \)-sums, the z-derivative of \(S^{(p_1,...,p_r)}(x) \) no longer verifies the relation (244), but a modified form of it:

\[
(\partial_z + |u(\cdot)| x) S^*(x) = - S^*(x) \times J^* + H^*(x) \times S^*(x) \tag{252}
\]

The definition of the elementary alternal bimoulds \(J^* \) remains unchanged, but a corrective alternal bimould \(H^* \) comes into play:

\[
J^{w_1} := \frac{1}{v_1}, \quad J^{w_1,...,w_r} = 0 \text{ if } r + 1 \tag{253}
\]

\[
H^w(x) := \begin{cases}
 \sum w^{w_j} S^{w_j}(x) J^{w_j} \text{ inv} S^{w_j}(x) & \text{if } |u| = 0 \\
 0 & \text{otherwise}
\end{cases} \tag{254}
\]

\[
S^{(u_1,...,u_r)}_{v_1,...,v_r}(x) := S^{(u_1,...,u_r)}(x) \text{ with } v_{i,j} := v_i - v_j \tag{255}
\]

Sketch of proof: The vanishing of \(v_i \)-differences modifies the behaviour of \(S^w \) under \(\partial_{v_i} \), while the vanishing of partial \(u_i \)-sums modifies the behaviour of \(S^w \) under \(\partial_v \) (mark the criss-cross). The exact rules are these:

\[
\partial_{v_j} S^w = P(u_j) \left(\delta(v_{j-1} - v_j) S^{w^-_{j-1}} + \delta(v_j - v_{j+1}) S^{w^+_{j+1}} \right) \tag{256}
\]

\[
\partial_v S^w = P(v_j) \sum_{w^{j} w_j w^3} \delta(|u^j u_j u^2|) S^{w^+_{j+1}} S^{w^+_{j+1}} S^{w^3} \tag{257}
\]

with \(\delta \) standing here for the discrete dirac.\(^6\)

From (256) we then derive the modified formula (252) with its corrective term \(H^*(x) \times S^*(x) \).

Let us now decompose \(H^w \) into a finite sum of terms \(H^w_{v_j} := S_{v_j} J^{w_j} S_{v_j} \) and then set

\[
K^w(x) := \sum_{w^{j} w_j w^3} H_{v_{j1},...,v_{j_s}}^{w_j}(x) \prod_{v_{j1},...,v_{j_s}} H_{v_{j1},...,v_{j_s}}^{w_j}(x) S^{v_{j1},...,v_{j_s}} \tag{258}
\]

with an elementary symmetrical mould unambiguously defined by the conditions

\[
\partial_z X^{v_1,...,v_s} = - X^{v_1,...,v_{s-1}} \frac{1}{v_s} \quad (\text{recall that } v_s := \frac{1}{z - \alpha_s}) \tag{259}
\]

\[
X^{v_1,...,v_s} \sim \frac{(-1)^s}{s!} (\log z)^s \quad \text{for } z \sim \infty \text{ on main sheet} \tag{260}
\]

\(^6\)\(\delta(0) = 1, \delta(t) = 0 \text{ if } t \neq 0. \)
We are then in a position to construct the amended mould \(S_{am}^\bullet\):

\[
S_{am}^\bullet(x) := \mathcal{K}^\bullet(x) \times S^\bullet(x)
\]

(261)

Proposition 4.6 (The amended monomials \(S_{am}^\bullet(x)\)).

As the product of two symmetral factors, the bimould \(S_{am}^\bullet(x)\) is symmetral and clearly verifies

\[
\left(\hat{c}_z + |u_1 + \ldots + u_r|, x\right) S_{am}^{u_1, \ldots, u_r}(x) := -S_{am}^{u_1, \ldots, u_{r-1}}(x) \frac{1}{v_r} \left(w_i := \left(\frac{u_i}{z - \alpha_i} \right) \right)
\]

(262)

Changing \(S^\bullet(x)\) to \(S_{am}^\bullet(x)\), we can extend the earlier identities (242)-(243) to identities valid in all cases:

\[
\text{weco}^{(u_1, \ldots, u_r)}(\xi) = \hat{S}_{am}^{(u_1, \ldots, u_r)}(\xi) \quad \text{for} \quad \pi_i(\xi) = \frac{1}{\xi - \alpha_i}
\]

(263)

\[
\mathcal{W}^{(b_1, \ldots, b_r)}(z, x) = \hat{S}_{am}^{(z - \alpha_1, \ldots, z - \alpha_r)}(x) \quad \text{for} \quad b_i(z) = \frac{1}{z - \alpha_i}
\]

(264)

4.7 Alien derivatives of the monomials \(S^\bullet(x)\).

In a sense, we already ‘know’ the answer: having expanded \(S^\bullet(x)\) and \(S_{am}^\bullet(x)\) into finite sums of hyperlogarithms \(V^\bullet(x)\) and possessing with formula (52) a prescription for alien-differentiating each \(V^\bullet(x)\), we have all it takes to calculate \(\Delta_{\omega_0}S^\bullet(x)\) and \(\Delta_{\omega_0}S_{cor}^\bullet(x)\). In practice, however, we require explicit and compact formulae covering each of the many possible situations. This is the object of the present section.

The special monomials \(S^w(x)\).

Proposition 4.7 (Alien derivatives of \(S^w(x)\)).

The only alien derivations \(\Delta_{\omega_0}\) acting effectively on a given monomial \(S^w(x) = S^{(w_1, \ldots, w_s, \ldots, w_r)}(x)\) correspond either to simple indices \(\omega_0\) of the form

\[
\omega_0 = |u| v_s \quad \text{with} \quad \left\{ \begin{array}{l}
w = \dot{w}, w_s, \ddot{w}, \bar{w} \\
|u| = |\dot{u}| + u_s + |\ddot{u}|
\end{array} \right.
\]

or to composite ones of the form

\[
\omega_0 = |u^1| v_{1,s} + \ldots + |u^s| v_{s,s} \quad \text{with} \quad \left\{ \begin{array}{l}
w = \dot{w}^1, w_{1,s}, \ddot{w}^1 \ldots \ddot{w}^s, w_{s,s}, \bar{w}^s, \bar{w} \\
|u^i| = |\dot{u}^i| + u_{i,s} + |\ddot{u}^i|
\end{array} \right.
\]
For a simple index \(\omega \), the operator \(\Delta_{\omega_0} \) acts as follows:

\[
\Delta_{\omega_0} S^w(x) = T_{v_\phi}^{w; \bar{w}}(x) S^{\bar{w}}(x)
\]

with

\[
\begin{align*}
T_{v_\phi}^{w; \bar{w}} &:= S^{w; \bar{w}} \\
T_{v_{\bar{\phi}}}^{w; \bar{w}} &:= S^{\bar{w}; w} \\
\bar{w}^{v_1, \ldots, v_r} &:= (-1)^r S^{w_1, \ldots, w_r} \\
S^{(v_1, \ldots, v_r)} &:= S^{(v_1^{-1}, \ldots, v_r^{-1})}
\end{align*}
\]

(266)

For a composite index \(\omega \), the action involves a new ingredient: the locally constant bimould \(\text{tes}^* \), or tessellation bimould, defined as the scramble transform of the hyperlogarithmic mould \(V^* \) or rather its bimould extension \(V^* \):

\[
\Delta_{\omega_0} S^w(x) = \text{tes}^{(w_1, \ldots, w_r)} T_{v_{\Phi}}^{w_1; \bar{w}_1} \ldots T_{v_{\bar{\Phi}}}^{w_r; \bar{w}_r} (x) S^{\bar{w}}(x)
\]

with \(\text{tes}^* := \text{scram} V^* \) and \(V^{(v_1, \ldots, v_r)} := V^{v_1^{-1}, v_2^{-1}, \ldots, v_r^{-1}} \)

(267)

(268)

The general monomials \(S^w(x) \).

To enunciate suitably compact statements, we need the following:

Definition 4.3 (Notion of \(v_s \)-splitting).

Let \(v_s \) be some element (- first, middle, last -) of some lower index \(v_s \) inside a sequence \(\bar{w} = (w_1, \ldots, w_k) \). A \(v_s \)-splitting of \(\bar{w} \) is a joint factorisation of all \(v_i \) such that

\[
\begin{align*}
\bar{v}_i &= (v'_i, v''_i) & \text{if } v_i = v_s & \text{(only } \bar{v}''_i \text{ may be } \emptyset) \\
\bar{v}_s &= (v'_s, v_s, v''_s) & \text{(both } v'_s \text{ and } \bar{v}''_s \text{ may be } \emptyset)
\end{align*}
\]

To each \(v_s \)-splitting we associate

- a non-ordered sequence \(\{v'_i\} \) consisting of ordered sequences \(v'_i \)
- two ordered sequences \(\bar{w}'' \) and \(\bar{w}''' \)
- a lone index \(\bar{w}''_s \) (that may be empty)

defined in this way:

\[
\left\{\begin{array}{l}
\{v'_i\} := \{v'_1, v'_2; \ldots; v'_s; \ldots; v'_{k-1}; v'_k\} \\
\bar{w}'' := (w''_1, \ldots, w''_k) = (u_1, \ldots, u_k) & \text{with } w_i \text{ earlier than } w_s \\
\bar{w}''' := (w'''_1, \ldots, w'''_k) = (w_1, \ldots, w_k) & \text{with } w_i \text{ later than } w_s \\
\bar{w}''_s := (w''_s) & (\bar{w}''_s := \emptyset \text{ if } v''_s := \emptyset)
\end{array}\right.
\]

(269)
Proposition 4.8 (Alien derivatives of $S^\omega(x)$).
As was the case with simple monomials $S^\omega(x)$, the only alien derivations Δ_{ω_0} acting effectively on a general monomial $S^\omega(x) = S^{(x_1, \ldots, x_p)}$ correspond to indices ω_0 either simple (269) or composite (270):

\begin{equation}
\omega_0 = |u| v_* \quad \text{with} \quad \begin{cases}
w = \tilde{w}, w_*, \tilde{w}, \tilde{w} \\
u = |\tilde{u}| + u_* + |\tilde{u}|
\end{cases}
\end{equation}

(269)

\begin{equation}
\omega_0 = \sum_{1 \leq i \leq s} |u^i| v_{i*} \quad \text{with} \quad \begin{cases}
w = \tilde{w}^1, w_{i*}, \tilde{w}^1, \ldots, \tilde{w}^s, w_{i*}, \tilde{w}^s, \tilde{w} \\
u = |\tilde{u}^i| + u_{i*} + |\tilde{u}^i|
\end{cases}
\end{equation}

(270)

but with this important difference that v_* (resp. v_{i*}) now denotes some element† of the sequence v_* (resp. v_{i*}).

For a simple index ω_0, the action of Δ_{ω_0} involves the so-called texture mould tex^\dagger which, unlike the tessellation bimould, doesn’t depend on the weights u_*:

\begin{equation}
\Delta_{\omega_0} S^\omega(x) = \sum_{v_*-\text{split}} \text{tex}^{(w)}(v_*) \mathcal{T}^{w_*, w_*}_{v_*} \cdot \tilde{w}^x(x) S^\omega(x)
\end{equation}

(271)

with

\begin{equation}
\mathcal{T}^{w_1, w_2, w_3}_{v_*} := \text{concat} \left(\text{symlin} \left(S^{w_1}, \text{inv}^{w_2} \right), S^{w_3} \right)
\end{equation}

(272)

When $w_* = \emptyset$ the definition of $\mathcal{T}^{w_1, w_2, w_3}_{v_*}$ reduces to

\begin{equation}
\mathcal{T}^{w_1, w_2, w_3}_{v_*} := \text{symlin} \left(S^{w_1}, \text{inv}^{w_2} \right) = S^{w_1} \cdot \text{inv}^{w_2}
\end{equation}

and due to summertime we always have:

\begin{equation}
\text{inv}^w = (-1)^{r(w)} S^\tilde{w} \quad \text{with} \quad \begin{cases}
\tilde{w} = w \quad \text{in reverse order} \\
r(w) = \text{length of } w
\end{cases}
\end{equation}

For a composite index ω_0, the action involves both tes^\dagger and tex^\dagger:

\begin{equation}
\Delta_{\omega_0} S^\omega(x) = \sum_{v_*-\text{split}} \text{vtes}^{(v^*_{i=1}, \ldots, v^*_{s=1})} \left(\prod_{j=1}^{j=s} \mathcal{T}^{w_{i*}, \rho_j}_{v_{i*}} \cdot \tilde{w}^y_j(x) \right) S^\omega(x)
\end{equation}

(273)

with $\text{vtes}^\dagger := \text{vscram} \cdot \mathcal{N}^\dagger$ (see §3.7). The sum (271) extends to all v_*-splittings of $(\tilde{w}, w_*, \tilde{w})$, and the sum (273) to all v_*-splittings $(\tilde{w}, w_{i*}, \tilde{w})$ of w_{i*}. For sequences w of type w (i.e., with lower indices $v_i = v_i$ of length 1), all texture coefficients degenerate to $\text{tex}^{(v^*_i)} = 1$, so that (271) reduces to (265) and (273) to (267).

†not necessarily the first or last, but any element.
Examples. The above statements may at first confuse in their conciseness. So, even before turning to their proof, let us illustrate them in four typical situations. For this monomial S^w of depth 4:

$$S^w := S^{(w_1, w_2, w_3, w_4)}_{(u_1, u_2, v_1, v_2, u_3, v_3, v_4, v_5, v_6)} = S^{(u_1, w_2, v_1, v_2, u_3, v_3, v_4)}_{(u_1, v_2, v_1, v_2, u_3, v_3, v_4)}$$

let us calculate the alien derivatives $\Delta_{\omega_1} S^w$ for two simple indices ω_1, ω_2 and then two composite indices ω_3, ω_4:

$$\begin{align*}
\omega_1 &:= u_{1,2,3,4} v_2, \\
\omega_2 &:= u_{1,2,3} v'_2, \\
\omega_3 &:= u_{1,2} v_2 + u_{3,4} v'_3, \\
\omega_4 &:= u_1 v_1 + u_{2,3,4} v'_2
\end{align*}$$

Case 1: Applying the rules, we find:

$$\Delta_{u_{1,2,3,4} v_2} S^w = \left\{ \begin{array}{l}
+T_{v_2}^{(u_1, w_2, v_1, v_2, u_3, v_3, v_4)} \text{tex}_{v_2}^2, \\
+T_{v_2}^{(u_1, w_2, v_1, v_2, u_3, v_3, v_4)} \text{tex}_{v_1}^3, \\
+T_{v_2}^{(u_1, w_2, v_1, v_2, u_3, v_3, v_4)} \text{tex}_{v_2}^3, \\
+T_{v_2}^{(u_1, w_2, v_1, v_2, u_3, v_3, v_4)} \text{tex}_{v_1}^3
\end{array} \right.$$

with

$$T_{v_2}^{(u_1, w_2, v_1, v_2, u_3, v_3, v_4)} = \left\{ \begin{array}{l}
+\text{S}^{(u_1, v_1, v_2, v_3, v_4)}_{(u_2, v_1, v_2, v_3, v_4)}, \\
+\text{S}^{(u_1, v_1, v_2, v_3, v_4)}_{(v_2, v_1, v_2, v_3, v_4)}, \\
+\text{S}^{(u_1, v_1, v_2, v_3, v_4)}_{(v_2, v_1, v_2, v_3, v_4)}, \\
+\text{S}^{(u_1, v_1, v_2, v_3, v_4)}_{(v_2, v_1, v_2, v_3, v_4)}
\end{array} \right.$$

$$\text{tex}_{v_2}^2 = v_{[v_2]}$$
Case 2: This time, we get a non-trivial factor \mathcal{S}^in. We find:

$$
\Delta_{u_1,2,v_2}^\text{in} S^\text{in} = \left\{ \begin{array}{l}
+ \mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} S^{(u_4)} \text{tex}_{v_2}^{(v_2)} \\
+ \mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} S^{(u_4)} \text{tex}_{v_2}^{(v_2)} \\
+ \mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} S^{(u_4)} \text{tex}_{v_2}^{(v_2)} \\
+ \mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} S^{(u_4)} \text{tex}_{v_2}^{(v_2)}
\end{array} \right.
$$

with \mathcal{T}^{*} factors simpler than in case 1:

$$
\mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} = \left\{ \begin{array}{l}
+ S^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} \\
+ S^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} \\
+ S^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} \\
+ S^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)}
\end{array} \right.
$$

but with more complex texture coefficients. Thus:

$$
\text{tex}_{v_2}^{(v_1, v_2, v_3, v_4)} = \left\{ \begin{array}{l}
+ V^{(v_1, v_2, v_3, v_4)} + V^{(v_2, v_3, v_4)} + V^{(v_2, v_3, v_4)} \\
+ V^{(v_1, v_2, v_3, v_4)} + V^{(v_2, v_3, v_4)} + V^{(v_2, v_3, v_4)}
\end{array} \right.
$$

Case 3: Here the inversion $\mathcal{S}^{*} \rightarrow \mathcal{S}^{*}$ implicit in the definition of \mathcal{T}^{*} introduces a minus sign. We find:

$$
\Delta_{u_1,2,v_2+u_3,v_3}^\text{in} S^\text{in} = \left\{ \begin{array}{l}
+ \mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} \mathcal{T}_{v_3}^{(u_3, \vec{v}_3, \vec{v}_4)} vtes^{(u_2, v_3, \vec{v}_4)} \\
+ \mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} \mathcal{T}_{v_3}^{(u_3, \vec{v}_3, \vec{v}_4)} vtes^{(u_2, v_3, \vec{v}_4)}
\end{array} \right.
$$

with

$$
\mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} = S^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} ; \quad \mathcal{T}_{v_3}^{(u_3, \vec{v}_3, \vec{v}_4)} = -S^{(u_3, \vec{v}_3, \vec{v}_4)}
$$

and

$$
\mathcal{T}_{v_2}^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} = S^{(u_1, v_1', v_2, \vec{v}_3, \vec{v}_4)} ; \quad \mathcal{T}_{v_3}^{(u_3, \vec{v}_3, \vec{v}_4)} = -S^{(u_3, \vec{v}_3, \vec{v}_4)}
$$

79
Short proof of Proposition 4.8: The index postponement identity.

\[(\text{post}_i A)^{[\omega]} \equiv (-1)^{i(\omega)} \sum_{\omega \in \text{sha}(\omega, \vec{\omega})} A^{[\omega]} \quad \forall A^\bullet \in \text{alternals} \quad (274)\]

applies only for alternals moulds \(A^\bullet\), but since the expansion on the right-hand side of (274) is fully determined, it follows that the postponement operators always verify

\[\text{post}_j \text{post}_i \equiv \text{post}_j \quad (\forall i, j) \quad (275)\]

whether the moulds on which they are made to act are alternal or not. If we now write the backward induction rule in the case \(\vec{w} = \emptyset\), we get

\[\text{cutfi}_{M}^{[\omega_i]} \text{SM}^{\vec{w}} = \text{concat} (\text{symlin}(\text{SM}^{\vec{w}}_{v_1}, \text{SM}^{\vec{w}}_{v_2}), \text{SM}^{\vec{w}}_{v_3})\]

Formally, this is nothing but a postponement identity for the index \(\vec{w}_i\), followed by the removal of the first element \(v_i\) of \(\vec{w}_i\) and by the subtraction of that same \(v_i\) from all elements of all lower sequences \(v_j\). We can easily iterate the process. For a \(v_i\)-splitting of \(\vec{w}\) and \(\vec{v} \in \text{sha}(\{v'_i\})\)

\[\vec{v} \equiv (v_1^0, \ldots, v_n^0) \in \text{sha}(\{v'_i\}) = \text{sha}(v'_1; \ldots; v'_r)\]

let us calculate

\[\text{cutfi}_{M}^{[\omega_i]} \text{cutfi}_{M}^{[\omega_{i-1}]} \ldots \text{cutfi}_{M}^{[\omega_2]} \text{cutfi}_{M}^{[\omega]} \text{SM}^{\vec{w}}\]

Using the crucial identity (275), we arrive at a result

\[\text{concat} (\text{symlin}(\text{SM}^{\vec{w}}_{v_1}, \text{SM}^{\vec{w}}_{v_2}), \text{SM}^{\vec{w}}_{v_3})\]
that does not depend on the choice of v^0 in $sha(\{v^i\})$.

As a consequence, if we now calculate

$$\Delta_{|v^0|v^0}S_{w^0}(x) = \Delta_{|v^0|v^0} + \Delta_{|v^0|v^0 + \Delta_{|v^0|v^0}} + \Delta_{|v^0|v^0 + \Delta_{|v^0|v^0}} + \Delta_{|v^0|v^0}$$

and apply the backward induction rule (154) and the prescription (83) for alien-differentiation, we find

$$\Delta_\omega S_{w^0}(x) = \sum_{v^0 \text{-split}} (\sum V[v^0,v^0]) T_{w^0}^{w^0} \Delta_{\omega_0} w^0(x)$$

which, in view of the definition of tes^* (see after (271)), is exactly the identity (271) in the case $\vec{w} = \emptyset$. The argument for proving (271) when $\vec{w} \neq \emptyset$ is no different.

Lastly, to establish and interpret (273) for composite indices ω_0 of type (270), the only additional result required is the factorisation lemma for $vtes$ in Proposition 4.13.

4.8 The tessellation coefficients tes^*.

Since the tessellation coefficients $tes^w := (scram \cdot V)^w$, their v-augmented variant $vtes^w := (vsram \cdot V)^w$, and the closely related tes^w, despite being defined in terms of the transcendental hyperlogarithms V^w, turn out to possess remarkable properties of local-constancy in their upper and lower indices, and since both encapsulate some sort of 'universal geometry' that governs co-equational resurgence, we must pause to take a closer look at them.

The simple tessellation bimould tes^*.

We recall its definition, which is based on the scramble transform of the monics V^* taken in incremental notation:

$$tes^* := \text{scram} \cdot V^* \text{ with } V^{(v_1, \ldots, v_r)} := V^{u_1, v_1, \ldots, v_r, v_r}$$

$$\Rightarrow tes^w := \sum_{w'} c_{w'}^{w} V^w \text{ with } c_{w'}^w \in \{\pm 1\}, \sum |c_{w'}^w| = r!!$$

The natural setting for studying tes^* is the biprojective space $\mathbb{P}^{r,r}$ equal to \mathbb{C}^{2r} quotiented by the relation $\{w^1 \sim w^2\} \Leftrightarrow \{u^1 = \lambda u^2, v^1 = \mu v^2 (\lambda, \mu \in \mathbb{C}^*)\}$. But rather than using biprojectivity to get rid of two coordinates (u_i, v_i), it is often useful, on the contrary, to resort to the augmented or long notation, by adding two redundant coordinates (u_0, v_0). The long coordinates (u_i^0, v_i^0) relate to the short ones (u_i, v_i) under the rules:

$$u_i = u_i^0 , \quad v_i = v_i^0 - v_0^0 \quad (1 \leq i \leq r)$$

(276)
The long \(u_i \) are constrained by \(u_0^r + \cdots + u_r = 0 \) while the long \(\nu_i \) are, dually, regarded as defined up to a common additive constant. Thus we have \(\langle u^r, v^r \rangle = \langle u, v \rangle \). The indices \(i \) of the long coordinates are viewed as elements of \(\mathbb{Z}_{r+1} = \mathbb{Z}/(r+1)\mathbb{Z} \) with the natural circular ordering on number triplets \(\text{circ}(i_1 < i_2 < i_3) \) that goes with it. Lastly, we require \(r^2 - 1 \) basic ‘homographies’ \(H_{i,j} \) on \(\mathbb{P}^{r,r} \), defined by:

\[
H_{i,j}(w) := Q_{i,j}^*(w)/Q_{i,j}^{**}(w) \quad (i - j \neq 0; i, j \in \mathbb{Z}_{r+1})
\]

\[
Q_{i,j}^*(w) := \sum_{\text{circ}(i < q < j)} u_q^r (v_q^r - v_i^r) \quad (277)
\]

\[
Q_{i,j}^{**}(w) := \sum_{\text{circ}(j < q < i)} u_q^r (v_q^r - v_i^r) = \langle u, v \rangle - Q_{i,j}^*(w) \quad (279)
\]

Proposition 4.9 (Local constancy of \(\text{tes}^w \)).

Outside a finite number of hypersurfaces \(\Im(H_{i,j}(w)) = 0 \) of \(\mathbb{C}^{2r} \) (see supra), the tessellation coefficients \(\text{tes}^w \) are constant in each upper index \(u_i \) and each lower index \(v_i \).

Sketch of proof: By repeated application of the formulae in §2.4 for the partial differentiation of the hyperlogarithmic monics followed by intelligent regroupings (based on the backward induction rule for \(\text{scram} \)) of the numerous terms thus obtained, one finds that each partial derivative \(\partial_{v_i} \text{tes}^w \) or \(\partial_{v_i} \text{tes}^w \) is \(\equiv 0 \).

Except at depth \(r = 1 \), where we have \(\text{tes}^{w_1} \equiv 1 \), the tessellation coefficients are not globally constant. Indeed:

Proposition 4.10 (The jump rule for \(\text{tes}^w \)).

*It is only when \(w \) crosses a hypersurface \(\mathcal{H}_{i,j}^+ = \{ w \in \mathbb{C}^{2r} ; H_{i,j}(w) \in \mathbb{R}^+ \} \) that \(\text{tes}^w \) can change its value. More precisely, let \(w \) be any point on \(\mathcal{H}_{i,j}^+ \) and let \(w^+, w^- \) be two points close by, with \(\Im w^+ > 0, \Im w^- < 0 \). Then

\[
\text{tes}^{w^+} - \text{tes}^{w^-} = 2\pi i \text{tes}^{w^*} \text{tes}^{w^{**}} \quad (280)
\]

with

\[
\begin{align*}
{w^*} := (u_{i+1} - v_{i+1}, \ldots, u_p - v_p, \ldots, u_j - v_j) \\
{w^{**}} := (u_{j+1} - v_{j+1}, \ldots, u_q - v_q, \ldots, u_{i-1} - v_{i-1})
\end{align*}
\]

\[
(\text{circ}(i < p < j) \in \mathbb{Z}_{r+1}) \quad (\text{circ}(j < q < i) \in \mathbb{Z}_{r+1})
\]

Proof: Start from the hyperlogarithmic expansion of \(\text{tes}^w \), apply the jump formula (54) to each individual hyperlogarithmic summand, and then competently regroup the terms.

This begs for an alternative, simpler expression of \(\text{tes}^w \), or rather, to get rid of the \(2\pi i \) factors, of its normalized variant \(\text{tes}_{\text{nor}}^w \in \mathbb{Z}:

\[
\text{tes}_{\text{nor}}^{w_1, \ldots, w_r} := (2\pi i)^{r-1} \text{tes}_{\text{nor}}^{w_1, \ldots, w_r} \quad (281)
\]
The following induction rule, itself based on the jump formula (54) applied to each individual hyperlogarithmic summand, provides such an elementary alternative:

Proposition 4.11 (Calculation of \(tes^w \)).

We fix some \(c \in \mathbb{C}^* \) and set \(R_c : z \in \mathbb{C} \mapsto R(cz) \in \mathbb{R} \). Then we define:

\[
\begin{align*}
 f_w' &= <u', v'> <u, v>^{-1}, \quad g_w' := <u', R_v v'> <u, R_v v>^{-1} \quad \text{(282)}
 \\
 f_w'' &= <u'', v''> <u, v>^{-1}, \quad g_w'' := <u'', R_v v''> <u, R_v v>^{-1} \quad \text{(283)}
\end{align*}
\]

From these scalars we construct the crucial sign factor \(\sigma \) which takes its values in \(\{-1, 0, 1\} \). Here, the abbreviation \(\sigma(.) \) stands for \(\text{sign}(\Im(.) \).

\[
\sigma_{w'} w'' = \sigma_c w', w'' := \frac{1}{8} \left(\left(\sigma(f_w' - f_w'') - \sigma(g_w' - g_w'') \right) \times \left(1 + \sigma(f_w'/g_w') \sigma(f_w''/g_w'') \right) \times \left(1 + \sigma(f_w'/g_w') \sigma(f_w''/g_w'') \right) \right)
\]

Next, from the pair \((w', w'')\) we derive a pair \((w^*, w^{**})\) by setting:

\[
\begin{align*}
 u^* &= u', \quad v^* := v' <u, v>^{-1} \Im g_w' - R_v v' <u, R_v v>^{-1} \Im f_w' \quad \text{(285)}
 \\
 u^{**} &= u'', \quad v^{**} := v'' <u, v>^{-1} \Im g_w'' - R_v v'' <u, R_v v>^{-1} \Im f_w'' \quad \text{(286)}
\end{align*}
\]
or more symmetrically:

\[
\begin{align*}
 v^* &= \det \left(\begin{array}{c} u' \\
 \Im u', v' \end{array} \right) \quad \text{and} \quad v^{**} = \det \left(\begin{array}{c} u'' \\
 \Im u'', v'' \end{array} \right)
\end{align*}
\]

Lastly, from all these ingredients, we construct an auxiliary bimould \(urtes_{nor} \) by setting:

\[
urtes_{nor}^* = \sum_{w'w'' = w} \sigma_{w'} w'' \tes_{nor} w^* \tes_{nor}^{**} \left((w', w'') + (w^*, w^{**})\right) \quad \text{(287)}
\]

Then the tessellation bimould can be inductively calculated from:

\[
\tes_{nor}^* = \sum_{0 \leq n \leq r(c)} \text{push}^n urtes_{nor}^* \quad (\forall c \in \mathbb{C}^*) \quad \text{(288)}
\]

Proof: The jump formula (54) makes it clear that the locally constant \(tes^w \) can change values only when \(w \) crosses one of the \(r^2 - 1 \) hypersurfaces \(\Im(H_{ij}(w)) = 0 \), which themselves can be derived from the \(r - 1 \) hypersurfaces \(\Im <u', v'> = 0 \) under repeated application of the \((r + 1)\)-potent
push-transform. We also note that \(\text{tes}^w \) takes the same value at the points \(w = \left(\begin{smallmatrix} u \\ v \end{smallmatrix} \right) \) and \(\overline{w} = \left(\begin{smallmatrix} u \\ v \end{smallmatrix} \right) \) with \(\overline{v} := \v u, v >^{-1} \), and further that \(\text{tes}^w = 0 \) at the semi-real point \(w = \left(\begin{smallmatrix} u \\ v \end{smallmatrix} \right) \) with \(v := \Re v, u, \Re v >^{-1} \). So it all becomes a question of comparing \(\text{tes}^w \) and \(\text{tes}^w \). To that end, we set \(w(t) := \left(\begin{smallmatrix} u \\ v(t) \end{smallmatrix} \right) \) with \(v(t) := v + t(\overline{v} - v) \). The line \(\{ w(t); t \in \mathbb{R} \} \) joins the point \(w \) (for \(t = 0 \)) and the point \(\overline{w} \) (for \(t = 1 \)) and crosses the hypersurface \(\Im < u', v' > = 0 \), for some critical \(t = t_0 \), at a third point \(w^*w^{**} = \left(\begin{smallmatrix} u' & u'' \\ v' & v'' \end{smallmatrix} \right) \), with \(u', v', u'', v'' \) as above. Lastly, regarding the three factors in the expression (284) of \(\text{sig}^w; w'' \), their interpretation is as follows:

(i) the first factor is \(\pm 2 \) (resp.0) if \(\overline{w} \) and \(w \) lie on distinct sides of the hypersurface \(\Re < u', v' > = 0 \) (resp. on the same side).

(ii) the second factor is 2 (resp.0) if the critical value \(t_0 \) is \(> 0 \) (resp. \(< 0 \)).

(iii) the third factor is 2 (resp.0) if the critical value \(t_0 \) is \(< 1 \) (resp. \(> 1 \)).

Thus, formulae (287)-(288) exactly reflect the changes which \(\text{tes}^w \) undergoes when \(w \) moves from the semi-real \(w \) to \(\overline{w} \sim w \) after crossing some of the \(r^2 - 1 \) hypersurfaces \(\Im (H_{ij}(w)) = 0 \).

Remark 1: In the induction (288) we might exchange everywhere the role of \(u \) and \(v \) and still get the correct answer \(\text{tes}^*_{nor} \), but via a different auxiliary bimould \(urtes^*_{nor} \).

Remark 2: The above induction for \(\text{tes}^* \) is elementary\(^6^2\) in the sense of being non-transcendental: it depends only on the \textit{sign function}. But on the face of it, it looks non-intrinsic. Indeed, the partial sum relative to the choice \(c = e^{i \theta} \):

\[
urtes^w_{\theta} := \sum_{w'w''=w} \text{sig}^w; w'' \text{tes}^*_{nor} \text{tes}^{**}_{nor} = \sum_{w'w''=w} \text{sig}^w; w'' \text{tes}^*_{nor} \text{tes}^{**}_{nor} \quad (289)
\]

is polarised, i.e. \(\theta \)-dependent. However, its \(\text{push} \)-invariant offshoot:

\[
\text{tes}^*_{nor} := \sum_{0 \leq \theta \leq \tau(w)} \text{push}^n \ urtes^w_{\theta} \quad (290)
\]

is duly unpolarised. We might of course remove the polarisation in \(urtes^*_{\theta} \) itself by replacing it by this isotropic variant:

\[
urtes^*_{iso} := \frac{1}{2 \pi} \int_{0}^{2 \pi} urtes^*_{\theta} d\theta \quad (291)
\]

but at the cost of rendering it less elementary, since \(urtes^*_{iso} \) would assume its value in \(\mathbb{R} \) rather than \(\{-1, 0, 1\} \). It would also depend hyperlogarithmically

\(^{62}\)and easily programmable.
on its indices, and thus take us back to something rather like the original formula $\text{tes}^{w} := \sum_{\epsilon} \epsilon_{w} V^{w}$ which we precisely wanted to get away from. Thus, the alternative so far for our bimould tes^{*} is: either an intrinsical but heavily transcendental expression, or an elementary but heavily polarised one.

Remark 3: Let $h_{i,j} := \text{sign} \left(\Re H_{i,j}(w) \right)$.

(i) For $r = 1$, we have trivially $\text{tes}^{w_{1}} \equiv 1$.

(ii) For $r = 2$, we find:

$$H_{0,1}(w) = \frac{u_{1}v_{1}}{u_{2}v_{2}}, \quad H_{1,2}(w) = \frac{u_{2}(v_{2} - v_{1})}{(u_{1} + u_{2})v_{1}}, \quad H_{2,0}(w) = \frac{(u_{1} + u_{2})v_{2}}{u_{1}(v_{1} - v_{2})}$$

and the corresponding signs $h_{i,j}$ determine tes^{w}:

$$\text{tes}^{w_{1},w_{2}} = \begin{cases} \pm 2\pi i & \text{iff } h_{0,1}(w) = h_{1,2}(w) = h_{2,0}(w) = \pm 1 \\ 0 & \text{otherwise} \end{cases} \quad (292)$$

(iii) For $r \geq 3$, the $r^{2} - 1$ independent signs $\{h_{i,j} ; i, j \in \mathbb{Z}_{r+1}, j - i \neq r\}$ do not suffice to determine tes^{w}, except in some very special cases, like:

$$\{h_{i,j}(w) \equiv +1 \; \forall i, j\} \implies \{\text{tes}^{w_{1},\ldots,w_{r}} = (+2\pi i)^{r-1}\} \quad (293)$$

$$\{h_{i,j}(w) \equiv -1 \; \forall i, j\} \implies \{\text{tes}^{w_{1},\ldots,w_{r}} = (-2\pi i)^{r-1}\} \quad (294)$$

Remark 4: To be able to determine the tessellation coefficients purely in terms of ‘signs’, we must revert to their expression as sums of $r!!$ hyperlogarithms $\text{tes}^{w} := \sum_{\epsilon} \epsilon_{w} V^{w} = \sum_{\epsilon} \epsilon_{w} V^{w_{1},\ldots,w_{r}}$ and set:

$$h^{i}_{j_{1},j_{2},j_{3}}(w) := \text{sign} \Im \left(\sum_{j_{1} < j_{2} < j_{3}} \omega^{j}_{j_{1},j_{2},j_{3}} \right) \quad \begin{cases} \forall j_{1}, j_{2}, j_{3} \\ 0 \leq j_{1} < j_{2} < j_{3} \leq r \end{cases} \quad (295)$$

Unfortunately, these $h^{i}_{j_{1},j_{2},j_{3}}(w)$ are far too numerous (even taking into account their dependence relations) to be of practical assistance, and we know of no simple rule for inferring tes^{w} from them. So, at the moment, the induction formula (288) remains the simplest way of calculating tes^{w}.

Proposition 4.12 (Main properties of tes^{*}).

P_{1}: tes^{*} is invariant under the involution swap and the iden-potent push:

$$\text{swap}.A^{(w_{1},\ldots,w_{r})} = A^{(w_{1},\ldots,w_{r})} \quad (\text{swap}^{2} = \text{iden})$$

$$\text{push}.A^{(\omega_{1},\ldots,\omega_{r})} = A^{(\omega_{1}^{-1},\omega_{1}^{-2},\ldots,\omega_{r}^{-1},\omega_{1}^{-1},\omega_{1}^{-2},\ldots,\omega_{r}^{-1})} \quad (\text{push}^{r+1} = \text{iden})$$
\[P_2: \text{the bimould } \text{tes}^* \text{ is bialternal, i.e. alternal and of alternal swappee.} \]

\[P_3: \text{tes}_{nor}^* \text{ assumes all its values in } \mathbb{Z} \text{ and } |\text{tes}^{w_1, \ldots, w_r}| < (r - 1)!(r + 1)! \text{ (absurdly unsharp estimate)} \]

\[P_4: \text{As } r \text{ increases, the set where } \text{tes}^w \neq 0 \text{ has surprisingly small Lebesgue measure on } \mathbb{S}^2r \text{ (} \mathbb{S} \text{ being the Riemann sphere), as shown by the following formulae, where } \mathcal{P}(|\text{tes}^w| = n) \text{ is the probability for } \text{tes}^w \text{ to be equal to } \pm n \text{ when } w \text{ is picked at random on } \mathbb{S}^2r:} \]

\[
\begin{align*}
\text{tes}^{w_1} &\equiv 1 \\
\text{tes}^{w_1, w_2} &\in \{0, \pm 1\} \quad \mathcal{P}(|\text{tes}^{w_1, w_2}| = 1) \sim 0.21 \\
\text{tes}^{w_1, w_2, w_3} &\in \{0, \pm 1\} \quad \mathcal{P}(|\text{tes}^{w_1, w_2, w_3}| = 1) \sim 0.026 \\
\text{tes}^{w_1, \ldots, w_4} &\in \{0, \pm 1, \pm 2\} \\
&\begin{cases}
\mathcal{P}(|\text{tes}^{w_1, \ldots, w_4}| = 1) \sim 0.0037 \\
\mathcal{P}(|\text{tes}^{w_1, \ldots, w_4}| = 2) \sim 0.0000037
\end{cases}
\end{align*}
\]

\[P_5: \text{in presence of vanishing } u_i \text{-sums, we no longer have local constancy in the } v_j \text{'s.} \]

\[P_6: \text{conversely, in presence of } v_i \text{-repetitions, we no longer have local constancy in the } u_j \text{'s.} \]

\[P_7: \text{in the semi-real (or semi-aligned) case, i.e. when either all } u_i \text{'s or all } v_i \text{'s are aligned with the origin, the tessellation coefficients altogether exit the picture, since in that case } \text{tes}^{w_1, \ldots, w_r} \equiv 0 \text{ as soon as } 2 \leq r. \]

\[P_8: \text{for } r \text{ fixed, the hypersurfaces } \Im(H_{i,j}(w)) = 0 \text{ limit}^{63} \text{ but do not separate}^{64} \text{ the sets } T_k := \{w, \text{tes}^w = k\}. \]

At first sight, the swap-invariance of \(\text{tes}^* \) is quite startling, since the involution \(\text{swap} \) exchanges the upper and lower indices which, in this context, have completely different origin, being respectively ‘weights’ and ‘singularities’. However, we saw in Proposition 3.5 that going from the convolution \(\text{weco} \) to \(\text{yeco} \) has precisely the effect of exchanging ‘weights’ and ‘singularities’.

The texture mould \(tex^* \).

We recall its definition, which is based on the monics \(V^{(*)} \) taken in positional notation:

\[
tex^{(\emptyset)}_{V^*} := 1, \quad tex^{(S_{1}S_{2}\ldots S_{n})}_{V^*} := \sum_{\alpha \in \text{shar}(S_{1}, \ldots, S_{n})} V[S_{\alpha}^{V^*}] \quad (296)
\]

\[^{63} \text{that is to say, the boundaries of these sets lie on the hypersurfaces.} \]

\[^{64} \text{that is to say, none of the three sets can be defined in terms of the sole signs } h_{i,j}(w) := \text{sign}(\Im(H_{i,j}(w))), \text{ at least for } r \geq 3. \text{ See Remark 3 and 4 supra.} \]

86
The system of texture coefficients is stable under differentiation:

\[
\hat{v}_{i,k} \text{tex}^{(\bar{v}_i; \bar{v}_{i,k})} = \begin{cases}
- \text{tex}^{(\bar{v}_i; \bar{v}_{i,k})} (v_i) \left((v_i) - 1 + (v_i - v_{i,1})^{-1} \right) \\
+ \text{tex}^{(\bar{v}_i; \bar{v}_{i,k})} (v_i - v_{i,1})^{-1}
\end{cases} \\
- \text{tex}^{(\bar{v}_i; \bar{v}_{i,k})} (v_i - v_{i,1})^{-1} \\
+ \text{tex}^{(\bar{v}_i; \bar{v}_{i,k})} (v_i - v_{i,1})^{-1}
\]

\[
\hat{v}_i \text{tex}^{(\bar{v}_i)} = + \sum_{1 \leq i \leq r} \text{tex}^{(\bar{v}_i; \bar{v}_i)} (v_i - v_i)\]

These identities are clearly compatible with the 0-order homogeneity of the texture coefficients:

\[
(v_i \hat{v}_i + \sum_{i} \sum_k v_{i,k} \hat{v}_{i,k}) \text{tex}^{(\bar{v}_i; \bar{v}_{i,k})} = 0
\]

For single-element sequences \(v_i = \{v_i\} \), the whole system reduces to:

\[
\hat{v}_i \text{tex}^{(v_i)} = - \text{tex}^{(v_i)} (v_i) \left((v_i) - 1 + (v_i - v_i)\right) \quad (297)
\]

\[
\hat{v}_i \text{tex}^{(v_i)} = + \sum_{1 \leq i \leq r} \text{tex}^{(v_i; v_i)} (v_i - v_i)\quad (298)
\]

where \(\hat{v}_i \) signals the omission of the term \(v_i \).

The v-augmented tessellation bimoulds \(\text{vtes}^* \) and \(\text{tes}^* \).

To enunciate the main statement, we require the lower (or positional) mould composition \(\odot \), which is what becomes of ordinary mould composition \(\circ \) when we switch from the incremental indexation \(\omega_1, \omega_2, \ldots \) to the positional one \(\alpha_1, \alpha_2, \ldots \), with \(\omega_1 = \alpha_1 \) and \(\omega_i = \alpha_i - \alpha_{i-1} \) for \(2 \leq i \). Here is the formula:

\[
\{ A^* = B^* \odot C^* \} \iff \{ A^\alpha = \sum_{\alpha = \alpha}^{B^{\alpha_1, \ldots, \alpha_1, 1 \leq k \leq s}} C^{\alpha_{k-1}} \} \quad (299)
\]
with the notation $C_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}: = C_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}$ and (since there is no index α_{0}) with the convention $C_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}} \equiv C_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}$ for the first term in the product $\prod(...).$ Of course, some of the factor sequences α^{i}, even all of them, may be empty. Thus, retaining only the two ‘extreme’ terms in $\sum(...),$ (299) reads:

$$A_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}} \equiv B_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}} + (\ldots \ldots) + B_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}} C_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}} \ldots C_{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}^{\alpha_{1}^{\ldots,\alpha_{r}}^{\ldots}}$$

Proposition 4.13 (Local constancy properties of $vtes^{w}$ and $tes^{w}.$)

The coefficients $vtes^{w} := (vscram^{V})^{w}$ are locally constant in each upper index u_{i} (standing for a weight) but not in the indices $v_{1}, v_{1}', v_{1}'' \ldots$ (standing for singular points) that constitute the lower sequences \underline{v}. However, they admit a unique decomposition of the form:

$$vtes^{\star} = tes^{\star} \circ V^{[\star]} \quad \text{with} \quad \begin{cases} V^{[\star]} = \mathcal{C}-\text{monics in} \vspace{5pt} \\
\text{positional notation} \end{cases} \quad (300)$$

with the second factor $V^{[\underline{w}]}$ fully absorbing the non-elementary part of the v_{i}-dependence, and with a first factor tes^{\star} that is locally constant in each u_{i} and each $v_{1}, v_{1}', v_{1}'' \ldots$ These tes^{w} are known as the v-augmented tessellation coefficients. Implicitly defined by (300), they are explicitly given by:

$$tes^{\star} = vtes^{\star} \circ U^{[\star]} \quad \text{with} \quad \begin{cases} U^{[\star]} = \Delta-\text{monics in} \vspace{5pt} \\
\text{positional notation} \end{cases} \quad (301)$$

Up to the predictable factor $(2\pi)^{r(w)-1}$ and barring the case of alignments, the tes^{\star} are integer-valued like the non-augmented tes^{\star} and, again like these, tend to vanish ‘most of the time’, especially at large depths $r.$ At depth 1, on the other hand, we have $tes^{\underline{w_{1}}} \equiv 1$ and $vtes^{\underline{w_{1}}} \equiv V^{[\underline{1}]}.$

Comments: The lower mould composition \circ in (300) and (301) leaves the u_{i} unchanged. It affects each v_{i} separately, and all together multilinearly. Thus, for sequences \underline{v} of length n_{i}, the number of summands on the right-hand sides of (300) and (301) is $2^{\sum(m_{i}-1)}.$ Let us show on an example how this
works out, with the usual abbreviations:

$$\text{vtes}^{\{u_1^1, u_2^1, u_3^1\}} = \begin{cases} +\text{vtes}^{\{u_1^1, u_2^1, u_3^3\}} U[v_1] U[v_1, v_2] U[v_2, v_2'] U[v_2', v_3] \\ +\text{vtes}^{\{u_1^1, u_2^2, u_3^2\}} U[v_1] U[v_1, v_2] U[v_2, v_2'] U[v_2', v_3] \\ +\text{vtes}^{\{u_1^1, u_2^2, u_3^3\}} U[v_1] U[v_1, v_2] U[v_2, v_2', v_3] \\ +\text{vtes}^{\{u_1^3, u_2^2, u_3^2\}} U[v_1, v_1'] U[v_2] U[v_2, v_2'] U[v_2', v_3] \\ +\text{vtes}^{\{u_1^3, u_2^2, u_3^3\}} U[v_1, v_1'] U[v_2] U[v_2, v_2', v_3] \\ +\text{vtes}^{\{u_1^3, u_2^3, u_3^2\}} U[v_1, v_1'] U[v_2, v_2'] U[v_2', v_3] \\ +\text{vtes}^{\{u_1^3, u_2^3, u_3^3\}} U[v_1, v_1'] U[v_2, v_2', v_3] U[v_3] \end{cases}$$

For greater clarity, we wrote down all U^*-factors, though of course most of them, being of depth 1 and therefore equal to 1, do not contribute anything.

Proof: The first step is to work out, based on the hyperlogarithmic expansions of $\text{vtes}^\bullet := (\text{uscr}m \mathcal{V})^\bullet$ and the formulae of §2.3, the differential properties of vtes^\bullet. We find:

$$\partial_{v_{i,j}} \text{vtes}^{\{u_1, \ldots, u_r\}} = \begin{cases} +\text{vtes}^{\{u_1, \ldots, u_i, \ldots, u_r\}} \times \left(\frac{1}{v_{i,j} - v_{i,j-1}} \right) \\ +\text{vtes}^{\{u_1, \ldots, u_i, \ldots, u_r\}} \times \left(\frac{1}{v_{i,j} - v_{i,j+1}} - \frac{1}{v_{i,j} - v_{i,j-1}} \right) \\ +\text{vtes}^{\{u_1, \ldots, u_i, \ldots, u_r\}} \times \left(-1 \frac{1}{v_{i,j} - v_{i,j+1}} \right) \end{cases} \quad (302)$$

Here $(v_{i,1}, v_{i,2}, \ldots, v_{i,r})$ denotes the terms of the sequences u_i, and $u_{i,j}$ stands for the sequence u_i deprived of its j^{th} term $v_{i,j}$. Predictably, special rules apply for extreme values of j. Let T_1, T_2, T_3 denote the three terms on the right-hand side of (302). The modifications read:

1. if $v_{i,j}$ is the first element $v_{i,1}$ of u_i, then T_1 should be omitted,
2. if $v_{i,j}$ is the last-but-one element $v_{i,r-1}$ of u_i, then T_3 should be omitted,
3. if $v_{i,j}$ is the last element $v_{i,r}$ of u_i, then T_2 and T_3 should be omitted.\(^{66}\)

The second step is to recall the differential properties of the monics $V^{[\bullet]}$ taken in positional notation:

$$\partial_{\alpha_j} V^{[\alpha_1, \ldots, \alpha_r]} = \begin{cases} +V^{[\alpha_1, \ldots, \hat{\alpha}_{j-1}, \ldots, \alpha_r]} \times \left(\frac{1}{\alpha_{j-\alpha_{j-1}}} \right) \\ +V^{[\alpha_1, \ldots, \hat{\alpha}_{j}, \ldots, \alpha_r]} \times \left(\frac{1}{\alpha_{j-\alpha_{j+1}} - \alpha_{j-\alpha_{j-1}}} \right) \\ +V^{[\alpha_1, \ldots, \hat{\alpha}_{j+1}, \ldots, \alpha_r]} \times \left(-1 \frac{1}{\alpha_{j-\alpha_{j+1}}} \right) \end{cases} \quad (303)$$

\(^{65}\)Thus, $v_{2', v_2'}$ stands for $v_{2'}^3 - v_{2'}^3$ and hat-carrying indices should be omitted.

\(^{66}\)In other words, we should omit all terms involving either of the non-existent indices $v_{i,-1}$ and $v_{i,r+1}$ or again the last index $v_{i,r}$.
(303) is similar in shape to (302), with exactly the same exclusion rules applying to the ‘extreme’ cases (1), (2), (3).

The third step is to write \(\text{vtes}^w \) in the form of a lower composition product \(\text{tes}^w \circ V^{(w)} \), without prejudging the properties of the unknown bimould \(\text{tes}^w \). We then differentiate the identity (300) taking the rules (302) and (303) into account, and find that our coefficients \(\text{tes}^w \) are indeed locally constant in all indices \(v_{i,j} \), and of course in all indices \(u_i \).

Remark 5: The jump rules for \(\text{tes}^w \).
In practice, to calculate the \(\text{v} \)-augmented tesselation coefficients \(\text{tes}^w \), one uses neither (300) nor (301) but rather formulae analogous to those of Proposition 4.13 and based on jump rules similar to those of Proposition 4.22. The jump rules, in turn, are derived from the decomposition (300) and the primary jump rules (54). Here is a typical example:

Let \(\alpha = u_1 v_1 + ... + u_i v_i \) and \(\beta = u_{i+1} v_{i+1} + ... + u_r v_r \), where \(v_j^+ \) as usual denotes the last element of \(v_j \). Then the jump rule, like in the non-augmented case (280), amounts to a simple sequence splitting.

\[
\begin{align*}
D_{\frac{\alpha}{\beta}} \text{vtes}^{w_1,\ldots,w_r} &= 2\pi i \text{vtes}^{w_1,\ldots,w_i} \text{vtes}^{w_{i+1},\ldots,w_r} \\
D_{\frac{\alpha}{\beta}} \text{tes}^{w_1,\ldots,w_r} &= 2\pi i \text{tes}^{w_1,\ldots,w_i} \text{tes}^{w_{i+1},\ldots,w_r}
\end{align*}
\] (304)

Remark 6: The duality \(\text{tes}^w \leftrightarrow \text{tes}^w \).
Like the simple tesselation coefficients \(\text{tes}^w \), the \(\text{v} \)-augmented coefficients \(\text{tes}^w \) are complex and fascinating objects that would deserve a whole monograph. In fact, they should be studied in parallel with their dual image, the \(\text{u} \)-augmented coefficients \(\text{tes}^w \), whose very construction runs parallel to that of Proposition 4.13. Here are the key formulae, with the positional making way for the incremental notation, and the lower mould composition \(\circ \) for the standard composition \(\circ \).

\[
\begin{align*}
V^* & \rightarrow V^* & \rightarrow \text{utes}^w := (\text{uscramp}V)^w \\
\text{utes}^w &= \text{tes}^w \circ V^* \quad \text{with} \quad \begin{cases} V^* = \partial\text{-friendly monics} \\
\text{in incremental notation} \end{cases} \\
\text{tes}^w &= \text{utes}^w \circ U^* \quad \text{with} \quad \begin{cases} U^* = \Delta\text{-friendly monics} \\
\text{in incremental notation} \end{cases}
\end{align*}
\] (305) (306) (307)
4.9 The three Bridge equations at the molecular level.

Equational resurgence. First Bridge equation.

At the monomial level, the alien derivatives in z are exceedingly simple, and totally insensitive to the ramifications that the lower indices $b_i(z)$ (they are regular germs at ∞) may or may not possess away from ∞:

$$
\Delta_0 \mathcal{W}^{(u_1)}(z,x) = \sum_{\omega=x|u^1|} W^{(u_1^1)}(x) \mathcal{W}^{(u_2^2)}(z,x)
$$

The new ingredients – the alternal monics $W' (x)$ – do not depend on z. They are well-defined entire functions of x – Stokes constants, basically. The above equation can therefore be indefinitely iterated and contains all the information about the z-resurgence of $\mathcal{W}^*(z,x)$.

Coequational resurgence. From the atomic to the molecular level.

The position is altogether different, and far more complex, with the x-resurgence. Our monomials $\mathcal{W}^{(u_1)}(z,x)$ must now be viewed as weighted products $wemu^{(x)}(x)$, and their Borel transforms as weighted convolutions $weco^{(x)}(\xi)$. The z-dependence migrates to the lower indices \hat{c}_i, which are themselves defined in terms of the b_i via $\hat{c}_i(\xi) := -b_i(z - \xi)$. So, while the z-resurgence demands only the local analyticity of the germs $b_i(z)$ at ∞, in order to get full x-resurgence\(^{67}\) we must assume the endless analytical continuability of these same $b_i(z)$.

The alien derivatives in x of $wemu^{(x)}(x)$ still consist of two factors. One of these (the analogue of the monics W^* in the z-resurgence) sheds its z-dependence, but both retain their dependence on, and resurgence in, x. This complicates the calculation of higher-order alien derivatives. It also forces us to negotiate two quite distinct levels of complexity: even when the data \hat{c}_i (the ‘atoms’) are simple (poles or hyperlogarithms), their weighted convolutions (the ‘molecules’) tend to be superpositions of huge numbers of such atoms. This accounts for the emergence\(^{68}\) of completely new properties and operations (the flexion structure).

\(^{67}\)Actually, even when the $b_i(z)$ are not endlessly continuable, something of the x-resurgence survives – all the relations namely which do not take us outside the maximum domain of definition of these $b_i(z)$.

\(^{68}\)Somewhat like in organic chemistry, one might be tempted to say.
Ridding the general tessellator of the v-dependence.

The aim is to move from the general tessellation coefficients v_{tes}^w which are locally u-constant (like the special tes^w) but not locally v-constant (unlike the tes^w, to coefficients tes^w (or their variant $T \text{est}^w$) that are locally u- and v-constant and (barring the case of alignments) assume integer values. The reason for the absence of local v-constancy in the v_{tes}^w is of course that the formula we gave in §4.7 for $\Delta_v S^w(x)$ involves shifts that apply to the sequences $v_i := [v_i, v'_i, v''_i ...]$ defining the hyperlogarithm subordinated to a given weight u_i, and not shifts bearing on the variable of that hyperlogarithm (in the ξ-plane). It is precisely the v-dependent part of v_{tes}^w (essentially, the ‘texture’ part) that, in accordance with the addition formula (246) combines with the shift on $v_i = [v_i, v'_i, v''_i ...]$ to produce what is ultimately needed – a shift purely on the variable ξ. In concrete terms, it takes us from formula (309) to formula (310) and then to (311):

\[
\Delta_{\omega_0} S^w(x) = \sum_{v_{\text{es}}-\text{splits}} v_{\text{tes}}^w \left[\begin{array}{c} u_1, \ldots, u_s \\ \xi, \ldots, \xi \end{array} \right] \left(\prod_{j=1}^{j=s} \mathcal{T}_{v_j}^{w_j, v_{\text{es}}^w} (x) \right) S^w(x) \tag{309}
\]

\[
\Delta_{\omega_0} S^w(x) = \sum_{v_{\text{es}}-\text{splits}} \text{Tes} \left[\begin{array}{c} u_1, \ldots, u_s \\ \xi, \ldots, \xi \end{array} \right] \left(\prod_{j=1}^{j=s} \mathcal{T}_{v_j}^{w_j, v_{\text{es}}^w} (x) \right) S^w(x) \tag{310}
\]

\[
\Delta_{\omega_0} S^w(x) = \sum_{v_{\text{es}}-\text{splits}} \text{Tes} \left[\begin{array}{c} u_1, \ldots, u_s \\ \xi, \ldots, \xi \end{array} \right] \left(\prod_{j=1}^{j=s} \mathcal{T}_{v_j}^{w_j, v_{\text{es}}^w} (x) \right) S^w(x) \tag{311}
\]

In (310) v_{tes}^w denotes the discrete valued, v-augmented tessellator defined implicitly by (300) and explicitly by (301), and each factor $\mathcal{T}_{v_j}^{w_j, v_{\text{es}}^w}$ is defined as in (272), but preceded by the (unwritten) monic $V^{(v'_i, v''_i)}$ and with the subfactors $S_{v_j}^w$ replaced by $S_{v_j}^w$ in place of $\omega - \alpha_j$.

Formula (311) is just a variant of (310), but it gives us more flexibility and prepares the ground for the general formulae of Proposition 4.14 and 4.15. Note that the factor sequences w_j^w now make way for the full sequences w_j and that the monics $V^{(v'_i, v''_i)}$ vanish. If T_{ω_0} denotes a simple ω_0-shift, any mixed operator $T \Delta_{\omega} := T_{\omega_0} \Delta_{\omega_{-1}} \ldots \Delta_{\omega_1}$ can be replaced by a superposition (with integer coefficients of 0 sum) of ramified shifts $T_{\bar{v}}$ symbolised by broken lines \bar{v} of summits $v_1 = \omega_1$, $v_2 = \omega_1 + \omega_2$ etc, with a definite prescription for circumventing each summit. One simply goes from (310) to (311) by performing the dual basis changes $T \Delta_{\omega} \to T_{\bar{v}}$, $v_{\text{tes}}^w \to v_{\text{est}}^w$.

\[^{69}\]first mentioned in §4.7 as (273) and illustrated there by four examples.
However, the hyperlogarithms being ramified, a shift operator on them cannot be defined by a single complex scalar v, but

(i) either by taut broken\(^{70}\) lines $\tilde{v} = [v_1, v_2, \ldots, v_k]$ starting at the origin and ending at v

(ii) or (preferably) by concatenations $\Delta v_1 \ldots \Delta v_i$ followed by a straight\(^{71}\) shift $v_{j+1} + \ldots + v_k$. The new tessellation coefficients T^s remain discrete valued and retain the double local constancy (in the upper and lower indices), barring the usual exceptions\(^{72}\)

From the hyperlogarithmic S^w to the general $weco^{(u)}$.

Let RES_{reg} be the algebra of regular resurgent functions, i.e. of all $\tilde{\varphi}(x)$ such that $\tilde{\varphi}(\xi)$ and all its (simple and multiple) alien derivatives are regular (non-ramified) germs at the origin $\xi = 0$. Since the hyperlogarithms (as functions of ξ) span a dense subspace of \overline{RES}_{reg} (for that space’s natural topology), the information we have collected on the behaviour of hyperlogarithms under weighted convolutions is sufficient to determine the properties of that operation on \overline{RES}_{reg}. Actually, if we were to allow vanishing indices ω_i (in the incremental notation) or identical consecutive indices α_i (in the positional notation), the enlarged class of hyperlogarithms so defined would become dense in the whole \overline{RES}, and their behaviour under weighted convolution (readily given by an easy extension of the formulae of §2.7) would completely clarify the situation in \overline{RES} itself. But for the moment let us stick with \overline{RES}_{reg}.

Alien derivatives of weighted products.

Although the system of all symmetrical weighted convolutions $weco$ is closed under alien differentiation, in order to get compact expressions (and for other reasons as well) we must supplement it with the alternal weighted convolutions $welo$, whose definition we recall:\(^{73}\)

\[
\begin{align*}
\text{welo}^{(u_1 \ldots u_j \ldots u_r)} = \\
\text{concat} \left(\text{symlin}(weco^{(e_1 \ldots e_{j-1}}), weco^{(e_{j+1} \ldots e_r)}) \right)
\end{align*}
\]

\(^{70}\)with summits at the singular points of the test function.

\(^{71}\)or, in the case of intervening singularities, by an unambiguous prescription for bypassing them, e.g. by systematic right or left circumvention.

\(^{72}\)i.e. vanishing partial sums of u_i’s or partial coinciding of v_i’s.

\(^{73}\)for details, see §2.2.
When $c_j = 1$, i.e. when \hat{c}_j is the convolution unit δ, the definition reduces to

$$\text{welo} \left(\begin{array}{c} u_1 \\ \vdots \\ u_r \end{array} \right) = \text{weco} \left(\begin{array}{c} u_1 \\ \vdots \\ u_{r-1} \end{array} \right) \ast \left(\begin{array}{c} \text{weco} \left(\begin{array}{c} u_{r+1} \\ \vdots \\ u_r \end{array} \right) \right)$$

or

$$\text{welo} \left(\begin{array}{c} u_1 \\ \vdots \\ u_r \end{array} \right) = \text{weco} \left(\begin{array}{c} u_1 \\ \vdots \\ u_{r-1} \end{array} \right) \ast \left(\begin{array}{c} \text{weco} \left(\begin{array}{c} u_r \\ \vdots \\ u_{r+1} \end{array} \right) \right) (-1)^{r-j}$$

This is a case of frequent occurence, because in the applications the marked index is usually of the form $(\Delta_n \hat{c}_i)$, which $\Delta_n \hat{c}_i$ often equal to $\text{Const.} \delta$.

Second Bridge equation.

Purely for notational convenience, we shall state the results in the x-plane, i.e. in terms of the multiplicative counterparts. We also use the basis $\{T_{\xi}, T_{\xi^2}\}$ introduced earlier in this subsection, but the transposition to the basis $\{T \Delta \xi, \text{tes}^2\}$ is immediate. To lighten notations, we write $\tilde{\nu} \hat{c}(\xi)$ for $T_{\xi} \hat{c}(\xi)$ and likewise $\hat{c}(x)$ for the Borel pull-back of $T_{\xi} \hat{c}(\xi)$.

Proposition 4.14 (Alien derivatives of wemu, hence weco).

The only alien derivatives Δ_{ω_0} acting effectively on $\text{wemu} \left(\begin{array}{c} u_1 \\ \vdots \\ u_r \end{array} \right)(x)$ correspond either to simple ($s = 1$) or composite ($s > 1$) indices ω_0 of the form

$$\omega_0 = |u^1| v_{i_1}^1 + \cdots + |u^s| v_{i_s}^s \quad \text{with} \quad \begin{cases} u^1 u^2 \cdots u^{s-1} u^s u^* = u \\ \Delta_{i_k} c_k = 0 \text{ and } (u^k_{i_k}) \in (u^k_{c_k}) \end{cases}$$

with each factor sequence $(u^k_{c_k})$ re-indexed for convenience as $(u^k_{c_k})$. The corresponding alien derivative is given by:

$$\Delta_{\omega_0} \text{wemu} \left(\begin{array}{c} u_1 \\ \vdots \\ u_r \end{array} \right) = \prod_{1 \leq k \leq s} \text{wemu} \left(\begin{array}{c} u^k_{c_k} \\ \vdots \\ u^k_{c_k} \end{array} \right) \left(\Delta_{i_k} c_k = 0 \right) \times \left(u^k_{c_k} \right)^*$$

Third Bridge equation.

Let us now move on to the welu products. Since they resolve themselves into sums (314) of wemu’s and we have just seen how to alien-differentiate these, the lazy option would be to declare that we already know, in principle, how
to alien-differentiate the welu's, and leave it at that. But that would yield unwieldy expressions; worse, it would obscure important cancellations and encumber us with parasitical terms.

Consider for instance a length-9 term like \(\text{welu} \left({^u_1} \ldots {^u_9} \right) \) with the marker \(\zeta \) on the 5-th index. Formula (313) produces 70 summands, all of the form \(\text{wemu} \left(\begin{array}{c} \sigma_1(3) \ldots \sigma_8(3) \sigma_5 \end{array} \right) \) \(\left(\begin{array}{c} \sigma_1(5) \ldots \sigma_8(5) \sigma_5 \end{array} \right) \). Taken singly, some respond non-trivially to alien derivations \(\Delta_\omega \) with indices such as

\[
\omega = u_1 v_1 , \quad \omega = u_1 v_1 + u_{8,9} v_8 , \quad \omega = u_1 v_1 + u_2 v_2 + u_{7,8,9} v_9 , \quad \text{etc}
\]

and yield non-zero terms, which however vanish from the final result, due to cancellations resulting from the alternality of \(\text{welu}^* \) or that of \(\text{Tes}^* \) or both. For other indices again, such as

\[
\omega = u_{1,2} v_1 + u_{2,3} v_4 , \quad \omega = u_{7,8,9} v_8 , \quad \omega = u_{1,2,3} v_3 + u_{4,5,6,7,8,9} v_7 , \quad \text{etc}
\]

the non-zero terms do not vanish, but eventually re-group with others and coalesce into single terms. When these cancellations and these re-orderings are taken into account, we get a result that is not only simpler and more elegant, but also relies on \(\text{welu} \) alone, thus leading to a self-contained (and indefinitely iterable) third Bridge equation.

Proposition 4.15 (Alien derivatives of \(\text{welu} \), hence \(\text{welo} \))

The only alien derivatives \(\Delta_\omega \) acting effectively on \(\text{welu} \left({^u_1} \ldots {^u_r} \right) \) \(\left({^v_1} \ldots {^v_r} \right) \) \((x) \) correspond either to simple \((s = 1) \) or composite \((s > 1) \) indices \(\omega \) of three possible types - initial, final, global. Respectively:

\[
\omega_0^{\text{ini}} = |u^1| v_{1_1}^1 + \ldots + |u^s| v_{i_s}^s \quad \text{with} \quad \begin{cases} u^1 \ldots u^s u^s = u, \\
\Delta_{v_{i_k}} c_k^j + 0 \quad \text{and} \quad (u_{c_k}^k) \in (u_{c_k}^k) \end{cases}
\]

(317)

\[
\omega_0^{\text{fin}} = |u^1| v_{1_1}^1 + \ldots + |u^s| v_{i_s}^s \quad \text{with} \quad \begin{cases} u^1 u^1 \ldots u^s = u, \\
\Delta_{v_{i_k}} c_k^j + 0 \quad \text{and} \quad (u_{c_k}^k) \in (u_{c_k}^k) \end{cases}
\]

(318)

\[
\omega_0^{\text{ glo}} = |u^1| v_{1_1}^1 + \ldots + |u^s| v_{i_s}^s \quad \text{with} \quad \begin{cases} u^1 \ldots u^s = u, \\
\Delta_{v_{i_k}} c_k^j + 0 \quad \text{and} \quad (u_{c_k}^k) \in (u_{c_k}^k) \end{cases}
\]

(319)

with each factor sequence \((u_{c_k}^k) \) re-indexed for convenience as \((u_{c_k}^k, \ldots, u_{c_k}^k) \). The
corresponding alien derivatives are given by:

\[\Delta_{w_0^{\alpha}} \text{welu} (\nu_1, ..., \nu_j, ..., \nu_r) (x) = \begin{cases} + \sum_{\nu_j \text{ over } v^k_{i_k}} \text{Tes} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) \times \left(\frac{u^k_{i_k}}{v^k_{i_k}} \right)^2 \Delta_{v^k_{i_k}} (x) \times \text{welu} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) (x) \\ \Pi_{1 \leq k \leq s} \text{welu} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) (x) \end{cases} \]

\[\Delta_{w_0^{\alpha}} \text{welu} (\nu_1, ..., \nu_j, ..., \nu_r) (x) = \begin{cases} - \sum_{\nu_j \text{ over } v^k_{i_k}} \text{Tes} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) \times \left(\frac{u^k_{i_k}}{v^k_{i_k}} \right)^2 \Delta_{v^k_{i_k}} (x) \times \text{welu} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) (x) \\ \Pi_{1 \leq k \leq s} \text{welu} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) (x) \end{cases} \]

\[\Delta_{w_0^{\alpha}} \text{welu} (\nu_1, ..., \nu_j, ..., \nu_r) (x) = \begin{cases} + \sum_{\nu_j \text{ over } v^k_{i_k}} \text{Tes} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) \times \left(\frac{u^k_{i_k}}{v^k_{i_k}} \right)^2 \Delta_{v^k_{i_k}} (x) \times \text{welu} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) (x) \\ \Pi_{1 \leq k \leq s} \text{welu} \left(\nu_1^{\nu_1}, ..., \nu_j^{\nu_j}, ..., \nu_r^{\nu_r} \right) (x) \end{cases} \]

Remark 1: In the last equation the marking (of the j-th index, on the left-hand side) disappears and is replaced by the marking of the \(i_k\)-index of the factor sequence \((u^k_{i_k})\) that contains \((u_j)^{\nu_j}\). This general rule – when occurring inside the same sequence, the second marking abolishes the first – results from a simple, but not entirely trivial combinatorial fact: let \(M^*\) be the alternal marking of some mould \(M\) (with \(\hat{\xi}\) as marker), and let \(\hat{M}^*\) be the alternal marking of \(M^*\) (with \# as new marker). Then \# replaces (and removes) \(\hat{\xi}\).

Thus:

\[\hat{M}^*_{\nu_1, \nu_2, ..., \nu_r} = M^*_{\nu_1, \nu_2, ..., \nu_r} \]

If the initial mould \(M\) is already alternal, this is obvious, since in that case almark amounts to the postponement identity of a marked index for alternal moulds. But the statement holds for any \(M^*\).

Remark 2: \(\Delta_{w_0^{\alpha}} \text{welu} (\nu_1, ..., \nu_j, ..., \nu_r) (x) = 0\) whenever the \(\hat{\xi}\)-marked index \(c_j\) is \(\equiv 1\) (i.e. when \(\hat{c}_j \equiv \delta\)). Since this marked index in practice is itself an alien derivative, this is often the case – and always so for meromorphic convolands \(\hat{c}_i\).
Discrete coequational resurgence. Some examples.

Example 1: the case \(u_i, v_i \in \mathbb{N} \).

Let \(\text{Ram}(\mathbb{N}) \) be the space spanned by the hyperlogarithmic monomials taken in incremental notation \(\hat{V}^{\omega_1, \ldots, \omega_s}(\xi) \) (\(\omega_i \in \mathbb{N}^* \)). Let \(\xi^\epsilon = \xi_1^{\epsilon_1} \cdots \xi_n^{\epsilon_n} \) with \(\epsilon_i \in \{\pm\} \) be the point of \(\mathbb{C} - \mathbb{N}^* \) of address \(\epsilon \), and let \(\pi^\epsilon(\xi) \) be the element of \(\text{Ram}(\mathbb{N}) \) with a simple pole (of residue 1) at \(\xi^\epsilon \) and nowhere else. Since \(\pi^\epsilon \) is clearly an alternative basis of \(\text{Ram}(\mathbb{N}) \) and since \(\text{Ram}(\mathbb{N}) \) is itself stable under convolution and weighted convolution (for weights \(u_i \) in \(\mathbb{N}^* \)), both products can be expressed in that basis, leading for these two structures to a discretisation of sorts:

\[
(\pi^\epsilon_1 * \pi^\epsilon_2)(\xi) = \sum_{\epsilon} H^\epsilon_1,\epsilon_2 \pi^\epsilon(\xi)
\]

\[
\text{weco}(\pi^\epsilon_1, \ldots, \pi^\epsilon_r)(\xi) = \sum_{\epsilon} K^\epsilon(\pi^\epsilon_1, \ldots, \pi^\epsilon_r) \pi^\epsilon(\xi)
\]

In the case of convolution, we arrive at a structure already known from another context: the Solomon algebra, with structure coefficients \(H^\epsilon \in \mathbb{Z} \). In the case of weighted convolution, the structure coefficients \(K^\epsilon \) are in \(\mathbb{Q} \). The theory provides for these \(K^\epsilon \) a rather weird expression, polynomial in the hyperlogarithmic monics \(v^\epsilon \). However, based on the jump rules for these monics, this expression translates into a more convenient induction rule, which in turn induces algebraic relations between the transcendental monics.

Example 2: the case \(u_i, v_i \in \mathbb{Z} \) or \(u_i, v_i \in \mathbb{Z} + i\mathbb{Z} \).

The construction can be repeated for \(u_i, v_i \) ranging through various discrete rings such as \(\mathbb{Z} \) or \(\mathbb{Z} + i\mathbb{Z} \) or complex quadratic rings. Here, the self-symmetrically shrinkable integration multi-paths for convolution, simple or weighted, soon become so unimaginably complex that the hyperlogarithmic expression for the structure constants \(K^\epsilon \) looks, by comparison, simple.

\(\xi^\epsilon \) is defined as the point accessible from 0 by moving forward under right (resp. left) circumvention of \(j \) if \(\epsilon_j = + \) (resp. \(-\)).
4.10 The three Bridge equations at the global level.

Equational resurgence. First Bridge equation.

It is the classical identity:

\[\text{BE1} \quad [\Delta_\omega, \Theta^{-1}] = A_\omega \Theta^{-1} \tag{322} \]

with \(\Delta_\omega := e^{-\omega z} \Delta_\omega \) (\(z \)-resurgence) and

\[
A_\omega = -\sum (-1)^r \sum W^{u_1 \ldots u_r}(x) \; D^i_{n_1} D^j_{n_2} \ldots D^l_{n_r}.
\]

Since any two \(D_{\omega_1} \) and \(A_{\omega_2} \) commute\(^75\), formula (322) lends itself to indefinite iteration (but mark the order on both sides):

\[[\Delta_\omega, \ldots [\Delta_\omega_2, [\Delta_\omega_1, \Theta^{-1}]]] = A_{\omega_1} A_{\omega_2} \ldots A_{\omega_i} \Theta^{-1} \tag{323} \]

To prepare for the comparison with coequational resurgence, let us also mention the case of a singular, singularly perturbed Riccati equation:

\[\partial_z Y = x Y + b_-(z) + b_+(z) Y^2 \quad (b_{\pm}(z) \in z^{-1} \mathbb{C}(z^{-1})) \tag{324} \]

Its general solution may be written in the form:

\[Y(z, x; \tau) = \frac{\tau e^z T_1(z, x) + T_2(z, x)}{\tau e^z T_3(z, x) + T_4(z, x)} \quad \text{with} \quad \det \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} = 1 \tag{325} \]

where \(\tau \) is the integration parameter and the \(T_i \) admit the expansions:\(^76\)

\[
T_1(z, x) = 1 + \sum \mathcal{W}^{u_+ \ldots u_-}(z, x), \quad T_2(z, x) = \sum \mathcal{W}^{u_- \ldots u_+}(z, x),
\]

\[
T_3(z, x) = \sum \mathcal{W}^{u_+ \ldots u_-}(z, x), \quad T_4(z, x) = 1 + \sum \mathcal{W}^{u_- \ldots u_+}(z, x).
\]

\(\hat{T}_1(\zeta, x) \) and \(\hat{T}_3(\zeta, x) \) have all their singularities over \(\{0, x_+\} \).

\(\hat{T}_2(\zeta, x) \) and \(\hat{T}_4(\zeta, x) \) have all their singularities over \(\{0, x_-\} \).

The (very elementary) resurgence equations read in this case:

\[
\Delta_{xu_+} T_1 = \alpha_+ T_2 \quad \Delta_{xu_-} T_2 = 0 \quad \Delta_{xu_+} T_3 = \alpha_+ T_4 \quad \Delta_{xu_-} T_4 = 0
\]

\[
\Delta_{xu_-} T_2 = \alpha_- T_1 \quad \Delta_{xu_+} T_1 = 0 \quad \Delta_{xu_-} T_3 = \alpha_- T_3 \quad \Delta_{xu_+} T_3 = 0
\]

\(^75\)the \(D_{\omega} \) being ordinary differential operators in the integration parameters \(\tau_1, \ldots, \tau_\nu \).

\(^76\)The four \(T_i \) carry only monomials \(\mathcal{W}^u \) with alternating sequences \(u = (u_\pm, u_\mp, u_{\pm \ldots}) \).

So for each \(\mathcal{W}^u \) it is enough to mention the first and last term.
Coequational resurgence. From the molecular to the higher levels.

Coequational resurgence already forced us to distinguish two levels of complexity – ‘atomic’ and ‘molecular’. It will shortly impose two more:
(i) a ‘microscopic’ level. The objects here are derivation operators Q_ω obtained by contracting alternal products $welu$ with ordinary differential operators. The resulting sums being usually infinite, the gap from molecular to microscopic is large.\footnote{\hfill even if the convergence of these infinite sums in the space of resurgent functions is not really an issue.}
(ii) a ‘macroscopic’ level. The objects here are new derivation operators P_ω obtained by contracting the tessellation mould with the previous Q_ω. These new sums, too, tend to be infinite, making the gap from microscopic to macroscopic as large as the earlier ones, although in some relatively rare but important instances the relation between the Q_ω’s and the P_ω’s simplifies.

Some heuristics.

1) Recall first that alternate moulds A^*, when contacted with ordinary derivations, always produce formal derivations:

$$
\sum A^{\omega_1,\ldots,\omega_r} D_{\omega_1} \ldots D_{\omega_r} = \sum_{r}^{1} A^{\omega_1,\ldots,\omega_r} [D_{\omega_1}, D_{\omega_2}, \ldots, D_{\omega_r}] \\
= \sum_{r}^{1} A^{\omega_1,\ldots,\omega_r} [D_{\omega_1}, \ldots, D_{\omega_{r-1}}, D_{\omega_r}].
$$

2) The distance between the P_ω’s and the Q_ω’s will be least when the tessellation coefficients Tes^* connecting the two will be simplest. In the case of elementary indices $u_i = \binom{w_i}{v_i}$, Tes^* coincides with tes^* and each of the four following conditions, when met, tends to simplify the coefficients:
(i) no vanishing u_i-sums.
(ii) no identical consecutive v_i’s.
(iii) all u_i are aligned with the origin
(iv) all v_i are aligned with the origin

Imposing (i) in our model equation amounts to imposing that the critical coefficients B_{n}^i in our model problem of §4.1 (i.e. the ν coefficients without Y factors in front of them) vanish.\footnote{\hfill This is the so-called unilateral case, where all weights have the form $u := \sum n_i \lambda_i$, as opposed to the general or sesquilateral case, where $u := -\lambda_j + \sum n_i \lambda_i$.} This renders the problem uninteresting, as its reduces each component Y_n^i of the general solution to a finite sum of monomials $W^*(z, x)$.

Imposing (ii) means restricting oneself to the linear case, which leads to interesting results provided we are dealing not with a single equation, but with a true system, i.e. when \(\nu \geq 2 \).

The conditions (iii) or (iv), are perfectly reasonable. They lead to massive simplifications by ensuring that \(\text{tes}^w = 0 \) for all \(w \) of length \(r(w) > 1 \) that meet the conditions (i) and (ii). For \(w \) of length 1 we have of course \(\text{tes}^w \equiv 1 \).

3) We should expect, and do in fact get, particularly simple results when the convolands \(\hat{c}_i \) are meromorphic, or hyperlogarithmic, or again, like in the case (335) infra, when they enjoy special closure properties under \(\omega \)-shifts and \(\Delta \omega \)-derivations, globally for the same \(\omega \)'s. In any case, since \(\hat{c}_i(\xi) = -b_i(z - \xi) \), it stands to reason that to get full \(x \)-resurgence we must assume each \(b_i(z) \) to possess endless analytic continuation (on the Riemann sphere, starting from \(\infty \)), whereas for \(z \)-resurgence it was enough for the \(b_i(z) \) to be locally analytic at \(\infty \) (with suitable uniformity conditions in \(i \), of course).

Some examples.

Let us give some illustrations, mostly in the meromorphic context. To lighten notations, we write the results when our model system (185) reduces to a single (non-linear) equation, i.e. when \(\nu = 1 \), because in that case the operators \(D_i^n = \tau_i \tau^n \hat{c}_i \) correspond one-to-one with the weights \(u \) and can be re-indexed as \(D[u] = \tau^n \hat{c}_i \). The transposition to the case \(\nu > 1 \) offers mainly notational complications but still deserves special consideration because it allows non-aligned weights \(u = \langle \lambda, n \rangle \).

Second Bridge equation.

\[(\text{BE2}) \quad [\Delta_\omega, \Theta^{-1}] = \mathbb{P}_\omega \Theta^{-1}\] \hspace{1cm} (326)

with \(\Delta_\omega := e^{-\omega x} \Delta_\omega \) (\(x \)-resurgence) and:

\[\mathbb{P}_\omega := \sum_{\sum u_i(z - \alpha_i) = \omega} \text{Tes}^{z_{-\alpha_1}, \ldots, z_{-\alpha_r}} Q_{u_1} \cdots Q_{u_r}\] \hspace{1cm} (327)

\[Q_{u_0} := e^{u_0 z} \sum_{\sum u_i = u_0} \text{welu}^{u_1_{-\alpha_1}, \ldots, u_r_{-\alpha_r}} (\Delta_{\alpha_1} z_{\alpha_1}) \cdots (\Delta_{\alpha_r} z_{\alpha_r}) D[i_1] \cdots D[i_r]\] \hspace{1cm} (328)

Here \(\text{Tes}^\bullet \) coincides with the elementary \(\text{tes}^\bullet \).
Third Bridge equation.

\[(BE3) \quad \Delta_{\omega} Q[u_{0}^{\omega}] = \begin{cases} + \sum_{u_1+u_2=u_0} P_{\omega,[\alpha_0]} Q[u_{1}^{\omega}] Q[u_{2}^{\omega}] \\ - \sum_{u_1+u_2=u_0} Q[u_{1}^{\omega}] P_{\omega,[\alpha_0]} Q[u_{2}^{\omega}] \end{cases} \quad (329)\]

with
\[
P_{\omega,[\alpha_0]} := \sum_{\alpha_i=\alpha_0} \operatorname{Tes}(u_{\alpha_0}^{\alpha_0} \cdots u_{\alpha_r}^{\alpha_r}) Q[u_{\alpha_1}^{\omega}] \cdots Q[u_{\alpha_r}^{\omega}] \quad (330)\]

Remark 1: With the notations of (330), the operator \(P_{\omega}\) of BE2 may be rewritten as \(P_{\omega} = \sum_{\omega} P_{\omega,[\alpha_0]}\). It should be noted that \(P_{\omega}\) in BE2 is locally (though not globally) constant in \(z\), just as the operators \(P_{\omega,[\alpha_0]}\) in BE3 are locally (though not globally) constant in \(\alpha_0\).

Remark 2: In the important instances when the tessellation coefficients \(T_{\text{tess}} u^{w_1 \cdots w_r}\) turn trivial (i.e. \(\equiv 1\) for \(r = 1\) and \(\equiv 0\) for \(r + 1\)), the Third Bridge equation simplifies:

\[(BE3) \quad \Delta_{\omega} Q[u_{0}^{\omega}] = \sum_{u_1+u_2=u_0} [Q[u_{1}^{\omega}] Q[u_{2}^{\omega}]] \quad (331)\]

and one can checks the equality of the exponential factors on both sides:

(i) \(\Delta_{\omega}\) carries a factor \(e^{-\omega x} = e^{u_1(\alpha_0-\alpha_1)x}\)

(ii) \(Q[u_{0}^{\omega}]\) carries a factor \(e^{u_0\alpha_0 x} = e^{(u_1+u_2)\alpha_0 x}\)

(iii) \(Q[u_{1}^{\omega}]\) carries a factor \(e^{u_1\alpha_1 x}\)

(iv) \(Q[u_{2}^{\omega}]\) carries a factor \(e^{u_2\alpha_0 x}\)

Remark 3. (BE2) and (BE3) also extend in the opposite direction, when the inputs \(b_i(z)\) (and thus \(\hat{c}_i(\xi)\)) are no longer meromorphic, but hyperlogarithmic, or general ramified functions. But we must now switch to a multiple indexation \(\alpha_i \to \hat{\alpha}_i\) and the third Bridge equation becomes saddled with a third term, corresponding to the case \(\Delta_{\omega}^{\text{gen}}\) of Proposition 2.16. We get:

\[(BE3) \quad \Delta_{\omega} Q[u_{0}^{\omega}] = \begin{cases} + \sum_{u_1+u_2=u_0} P_{\omega,[\alpha_0]} Q[u_{1}^{\omega}] Q[u_{2}^{\omega}] \\ - \sum_{u_1+u_2=u_0} Q[u_{1}^{\omega}] P_{\omega,[\alpha_0]} Q[u_{2}^{\omega}] \\ + P_{\omega,[\alpha_0]} \\
\end{cases} \quad (332)\]

Remark 4: the meromorphic Riccati case.

Let us return to the equation (324) but from the point of view of coequational resurgence.

\[(BE2) \quad \Delta_{\omega} Y^{\omega}(z, x) := P_{\omega,[\alpha_0]}(x) Y^{\omega}(z, x) \quad (333)\]
This is again the case.

Remark 5: the hyperelliptic Riccati case.

(i) In the Second Bridge equation: all the singularities always lie over some linear combination of frequencies and singularities $v_i := z - \alpha_i$. Since the
weights u_i may add up to zero79, the corresponding combinations $\sum u_i v_i$ will be independent of z. But a proper determination80 of $\text{weco}^*(\xi)$ will always eliminate these parasitical, z-independent singularities from BE2.

(ii) In the Third Bridge equation: the singularities always lie over some linear combination of frequencies and singularities $v_i - v_j := \alpha_j - \alpha_i$ of the individual coefficients.

Application 2: Establishing the convergence in the ξ-plane.

It can (very easily) be established, first in the star of holomorphy; and then gradually extended to the adjacent sheets by using the alien derivatives. Here again, multipath deformations would be impractical.

Remark 3: Finding ‘interesting’ instances, with finitely many generators and/or simple \mathbb{Q}_ω-to-\mathbb{P}_ω relations.

Since BE2 and BE3 give the alien derivatives of the \mathbb{Q}_ω’s in terms of the \mathbb{P}_ω’s, and these in turn are expressible as sums of multibrackets of \mathbb{Q}_ω’s, BE2 and BE3 amount to a closed, indefinitely iterable system that contains all the information about the x-resurgence. Together with the information about weco and welo, BE2 and BE3 also give us a systematic tool for identifying the situations that may narrow, or altogether remove, the gap between the \mathbb{Q}_ω’s and the \mathbb{P}_ω’s. The Schrödinger-related Riccati equation (335) is an important case in point. But it also tells us something else: namely, that when spectacular simplifications occur, they may point to the existence of a change of variable $z \rightarrow q$ that renders the equation’s coefficients polynomial or rational or otherwise elementary. In such situations, working directly in the q-plane may well prove more expedient. But as tools for systematic exploration and as vehicles of in-depth understanding, the z- and x-planes, with their Borel counterparts ζ and ξ, remain irreplaceable.

By way of conclusion.

At the end of this tour of coequational resurgence, we find a clear four level stratification:

- *The atomic level*, inhabited by objects such as simple poles or hyperlogarithms.

79at least in the general or sesquilateral case. See preceding footnote.

80As we saw, each vanishing partial sum $u_1 + \ldots + u_i$ introduces a ramification in the determination of $\text{weco}^*(\xi)$, but there is always a privileged choice.
• The molecular level, consisting of huge clusters of atoms, with unsuspected emergent properties.

• The microscopic level, consisting of derivation operators Q_ω, usually infinite chains of molecules contracted by elementary derivation operators.

• The macroscopic level, consisting of new derivation operators P_ω assembled from the earlier Q_ω.

• The passage from the atomic to the molecular level is mediated on the Analysis side by weighted convolution and on the combinatorial side by the scrambling transform.

• The passage from the molecular to the microscopic level is rather mechanical – mere growth by accumulation.

• The passage from the microscopic to the macroscopic level, arguably the most interesting of the three, is mediated by the tessellation coefficients. While much is known about them, it would seem that just as much remains to be discovered.

• To ensure equational resurgence, it is enough for the inputs $b_{i,p}(z)$ to be holomorphic germs at infinity.81 To ensure coequational resurgence, the $b_{i}(z)$ must also be capable of endless analytic continuation.

• Equational resurgence typically involves Stokes constants that are transcendental82 to the inputs $b_{i}(z)$. Coequational resurgence typically involves Stokes constants that are immanent83 to these same inputs. And when the $b_{i}(z)$ are unramified (e.g. meromorphic), coequational resurgence dispenses altogether with the continuous-valued Stokes constants, and relies instead on the discrete, integer-valued tessellation coefficients.

81 and of course to verify uniform growth conditions in i.

82 In the sense that they cannot be detected directly on the germs $b_{i}(z)$, but only on complex integrals involving the Borel transforms $b_{i}(\xi)$.

83 In the sense that they can be detected directly on the functions $b_{i}(z)$, by looking at their ramifications away from ∞.

104
5 Multizeta algebra: the independence theorem for bicolours.

This brief chapter is devoted to
(i) some sketchy reminders about the flexion structure and multizetas
(ii) a discussion of the phenomenon of retro-action – the central difficulty
which complicates the decomposition of multizetas into irreducibles but assumes quite distinct forms for monocolours and bicolours and calls for different strategies.
(iii) the proof of the independence conjecture for the basic generators for bicolours.

5.1 Reminders about the flexion structure.

Elementary flexions.

Bimoulds M^* have a two-tier indexation $\bullet = w = (u_1, \ldots, u_r \quad v_1, \ldots, v_r)$ with upper u_i’s and lower v_i’s that interact in a very special way, through four basic flexions \wedge, \wedge, $\check{\wedge}, \check{\wedge}$.

Thus, if $w = w'.w''$ with $w' = (u_1, u_2 \quad v_1, v_2)$ and $w'' = (u_3, u_4, u_5 \quad v_3, v_4, v_5)$, we set:

\[
\begin{align*}
 w' &= \left(\begin{array}{c} u_1, u_2 \\ v_1:3, v_2:3 \end{array} \right) \\
 w'' &= \left(\begin{array}{c} u_1:3, u_2:3 \\ v_1, v_2:3 \end{array} \right)
\end{align*}
\]

Throughout, we shall use the shorthand:

\[
u_{i,j,k,\ldots} := u_i + u_j + u_k + \ldots, \quad v_{i,j} := v_i - v_j
\]

The products of upper and lower indices remain invariant, with the adventitious indices (the ones in blue) cancelling out:

\[
w = w'w'', \quad w^* = w' \quad w'' = w' \quad w'' \Rightarrow \\
\sum u_i v_i = \sum u_i^* v_i^* = \sum u_i^{**} v_i^{**}
\]

\[
\sum du_i \wedge dv_i = \sum du_i^* \wedge dv_i^* = \sum du_i^{**} \wedge dv_i^{**}
\]

The core involution swap.

Originally, we introduced the swap to couch the ‘dimorphic’ correspondence between the two basic multizeta encodings into the form of an involution.
Here is the definition:

$$\{B^* = \text{swap } A^*\} \iff \{B^{(u_1, \ldots, v_r)} = A^{(u_1, \ldots, r_{1,2,3}, \ldots, v_{1,2,3}, \ldots, v_1,2,3)}\} \quad (336)$$

Once again, the invariance holds: $$\sum_i u_i v_i = \sum_i v_{i+1} u_{i+1, \ldots, i}$$

- The **swap** transform ($\text{swap}^2 = \text{id}$) is as central to flexion theory as the Fourier transform ($\mathcal{F}^4 = \text{id}$) is to Analysis. There are even contexts where the two coincide.

- Interesting bimoulds $$M^*$$ tend to possess a double symmetry: one for $$M^*$$, another for the swappee ($$\text{swap}^* M$$).

Basic flexion operations: $$ari$$, $$gari$$.

Very loosely speaking, the flexion structure is the sum total of all interesting operations that may be constructed from the four afore-mentioned flexions. More specifically, one can show that, up to isomorphisms, there exist exactly seven pairs $$\{\text{Lie algebra, Lie group}\}$$ obtainable in this way. Of these substructures, four have the added distinction of preserving double symmetries. Moreover, when restricted to doubly symmetric bimoulds, these four substructures actually coincide. So we choose to work with the simplest of the four pairs: the Lie algebra $$ARI$$ and the Lie Group $$GARI$$.

The Lie bracket $$ari$$ and the pre-Lie law $$preari$$ are defined as follows:

$$\begin{align*}
N^* = & \quad \text{ari}(B^*)M^* \iff \quad N^w = \sum_{a,b,c} M^{abc} B^b - \sum_{a,b} M^{a|bc} B^b \\
ari(A^*, B^*) := & \quad \text{ari}(B^*)A^* - \text{ari}(A^*)B^* + lu(A^*, B^*) \\
preari(A^*, B^*) := & \quad \text{ari}(B^*)A^* + \muu(A^*, B^*)
\end{align*}$$

The corresponding associative law is denoted $$gari$$. It is linear in $$A^*$$ but severely non-linear in $$B^*$$:

$$\begin{align*}
N^* = & \quad \text{gari}(B^*)M^* \iff \quad N^w = \sum M^{[b^1], [b^2], \ldots} B^{a^1} \ldots B^{a^n} B^{c^1} \ldots B^{c^n} \\
gari(A^*, B^*) := & \quad \muu(\text{gari}(B^*).A^*, B^*) \quad (B_*^n := \text{inv} \muu B^*)
\end{align*}$$

The exponential from $$ARI$$ to $$GARI$$, denoted $$\expari$$, admits an analytical expression in terms of $$preari$$, with pre-bracketing from left to right:

$$\begin{align*}
\expari A^* := & \quad A^* + \sum_{2 \leq r} \text{preari}^{(r \text{ times})}(\ldots (\text{preari}(A^*, \ldots, A^*) \\
\text{preari}(A^*, \ldots, A^*) := & \quad \text{preari}(\ldots (\text{preari}(A_1^*, A_2^*), \ldots, A^*) \quad (338)
\end{align*}$$

\text{---}

\text{To distinguish it from the ordinary mould exponential } \expmu \text{ and from the other exponentials attached to the seven flexion substructures previously alluded to.}
5.2 Multizetas and their generating series.

The coloured multizetas wa^* and ze^*.

We first define the scalar multizetas in the convergent or regular case. The underlining signals convergence.

- **Polylogarithmic integrals** ($\alpha_j = 0$ or unit root; $\frac{\alpha_1}{\alpha_s+1}$):

$$wa^{\alpha_1, \ldots, \alpha_s} := (-1)^{s_0} \int_0^1 \frac{dt_s}{\alpha_s - t_s} \ldots \int_0^{t_3} \frac{dt_2}{\alpha_2 - t_2} \int_0^{t_2} \frac{dt_1}{\alpha_1 - t_1}$$ \hspace{1cm} (339)

- **Harmonic sums** ($e_j = e^{2\pi i \epsilon_j}$ = unit root; $s_j \in \mathbb{N}^*$; $\left(\frac{e_{j_1}}{s_{j_1}}\right) \neq \left(\frac{1}{1}\right)$):

$$ze^\left(\begin{array}{c} e_{j_1} \vdots e_{j_r} \\ s_{j_1} \vdots s_{j_r} \end{array} \right) := \sum_{n_1 > \ldots > n_r > 0} n_{1}^{-s_{j_1}} e_{j_1}^{-n_1} \ldots n_{r}^{-s_{j_r}} e_{j_r}^{-n_r} \quad (e_j = e^{2\pi i \epsilon_j})$$ \hspace{1cm} (340)

- **Conditional conversion rule** (assuming convergence, i.e. $\left(\frac{e_{j_1}}{s_{j_1}}\right) \neq \left(\frac{1}{1}\right)$):

$$ze^\left(\begin{array}{c} e_{j_1} & \vdots & e_{j_r} \\ s_{j_1} & \vdots & s_{j_r} \end{array} \right) = wa^{e_{j_1} \ldots e_{j_r}, 0^{(s_{j_1}-1)}, \ldots, e_{j_2} e_{j_1}, 0^{(s_2-1)}, e_{j_1}, 0^{(s_1-1)}}$$ \hspace{1cm} (341)

- $s =$ weight, $r =$ length (or depth), $d := s - r =$ degree.

Algebraic constraints on the scalar multizetas.

(i) **First symmetry:** wa^* is symmetrel85, with a unique symmetrel extension $wa^* \rightarrow wa^*$ such that $wa^0 = wa^1 = 0$.

(ii) **Second symmetry:** ze^* is symmetrel86, with a unique symmetrel extension $ze^* \rightarrow ze^*$ such that $ze^{(1)} = 0$.

(iii) **Conversion rule:** The conversion formula $wa^* \leftrightarrow ze^*$ has a non-trivial extension $wa^* \leftrightarrow ze^*$, best expressed in terms of the generating series zag^* and zig^*. Cf §5.2 infra.

(iv) **Colour-consistency:** If $p \in \mathbb{N}$, $\mathbb{Q}_x := \mathbb{Q}/\mathbb{Z}$, $\mathbb{Q}_p := (\mathbb{Z}/p\mathbb{Z})/\mathbb{Z}$

$$\sum_{\tau_j \in \mathbb{Q}_p} ze^\left(\begin{array}{c} e_{j_1+\tau_j} \vdots e_{j_r+\tau_j} \\ s_{j_1} \vdots s_{j_r} \end{array} \right) \equiv p^{-d} ze^\left(\begin{array}{c} e_{j_1} \vdots e_{j_r} \\ s_{j_1} \vdots s_{j_r} \end{array} \right) \quad \text{with} \quad d := s - r$$ \hspace{1cm} (342)

(v) **Standard conjecture:** the above system (i)-(iv) of algebraic constraints is exhaustive.

85cf §8.1.2
86cf §8.1.2
Attached to each of the two encodings \(wa^* \) and \(ze^* \) there is a specific symmetry type, which amounts to a specific way of multiplying the scalar multizetas. This is the essence of arithmetical dimorphy — a phenomenon that extends far beyond the multizetaic (and the larger hyperlogarithmic) landscape but finds there its most striking manifestation.

Dropping the convergence assumption while preserving the symmetries, i.e. extending \(wa^*, ze^* \) to \(wa^*, ze^* \), is a purely formal-algebraic affair, but it comes at the cost of a slight complication in the conversion rule and colour consistency constraints. The modified constraints are best expressed in terms of the generating functions \(zag^* \), \(zig^* \) and of two suitable elements in \(centre(GARI) \); see (629),(350) infra.

The generating series/functions \(zag^* \) and \(zig^* \).

The first way of defining \(zag^* \) and \(zig^* \) is as generating series of the extended scalar multizetas:

\[
zag^{(s_1, \ldots, s_r)} := \sum_{1 \leq s_j} wa^{e_{1,0[s_{1-1}], \ldots, e_{r,0[r-1]}} u_1^{s_{1-1}} u_{1,2}^{s_2-1} \ldots u_{1,\ldots,r}^{s_r-1}} \tag{343}
\]

\[
zig^{(e_1, \ldots, e_r)} := \sum_{1 \leq s_j} ze^{e_{1,0[e_{1-1}], \ldots, e_{r,0[r-1]}} v_1^{s_{1-1}} \ldots v_r^{s_r-1}} \tag{344}
\]

Here \(\epsilon_j \in \mathbb{Q}_p = \frac{1}{p} \mathbb{Z}/\mathbb{Z} \) and \(\epsilon_j := \exp(2\pi i \epsilon_j) \).

A second, equivalent definition introduces \(zag^* \) and \(zig^* \) directly as multivariate meromorphic functions of the \(u_i \)'s and \(v_i \)'s respectively: Setting \(P(t) := \frac{1}{t} \) and using the usual abbreviations, that second definition reads:

\[
zag^* = \lim_{k \to -} \left(dozag^*_k \times cozag^*_k \right) \tag{355}
\]

\[
zig^* = \lim_{k \to -} \left(dozig^*_k \times cozig^*_k \right) \tag{356}
\]

\[
dozag^{(s_1, \ldots, s_r)} = \sum_{1 \leq m_j, s_k} \prod_{1 \leq j \leq r} e_j^{-m_j} P(m_1, \ldots, u_1, \ldots, j) - u_1, \ldots, j \right) \left(e_j = e^{2\pi i j} \right) \tag{347}
\]

\[
dozig^{(e_1, \ldots, e_r)} = \sum_{k \geq m_1, \ldots, m_r > 0} \prod_{1 \leq j \leq r} e_j^{-n_j} P(n_j - v_j) \left(e_j = e^{2\pi i j} \right) \tag{348}
\]

The dominant factors \(dozag^* \), \(dozig^* \) require the corrective terms \(cozag^* \), \(cozig^* \) to ensure convergence.

Algebraic constraints on the generating series.

(i) First symmetry: \(zag^* \) is symmetrical.
(ii) **Second symmetry:** zig^* is symmetrill. **Symmetrility** is the inflected counterpart of **symmetrelity**, with sums replaced multilinearly by polar differences:

$$
\text{zig}^{,...,w_i+w_j,...} \rightarrow \text{zig}^{(...,v_{i,j}...)} P(v_{i,j}) + \text{zig}^{(...,v_{j,i}...)} P(v_{j,i}) = \frac{\text{zig}^{(...,v_{i,j}...)} - \text{zig}^{(...,v_{j,i}...)}}{v_i - v_j}
$$

For details, see §8.1.2. As usual in the flexion context, $P(t) := 1/t$.

(iii) **Conversion rule:** It reads

$$
\text{swap.zig}^* \begin{cases}
\text{gari}(\text{zag}^*, \text{man}^*) = \text{gari}(\text{man}^*, \text{zag}^*) \\
\text{mu}(\text{zag}^*, \text{man}^*)
\end{cases} (349)
$$

for a well-defined bimould man^* of $\text{GARI}_{\text{centre}}$: see (354) below.

(iv) **Colour-consistency:** It reads

$$
\mu_p \text{zag}^* \begin{cases}
\text{gari}(\delta_p \text{zag}^*, \text{lag}^*) = \text{gari}(\text{lag}^*, \delta_p \text{zag}^*) \\
\mu(\delta_p \text{zag}^*, \text{lag}^*)
\end{cases} \quad (\forall p \in \mathbb{N}) (350)
$$

for operators μ_p and δ_p defined as follows:

$$
\mu_p \text{zag}^{(...,w_1,...,w_r)} := p^{-r} \sum_{p' \equiv p \mod p} \text{zag}^{(...,w_1,...,w_r)} \quad (p\text{-averaging}) (351)
$$

$$
\delta_p \text{zag}^{(...,w_1,...,w_r)} := p^{-r} \text{zag}^{(...,w_1/P,...,w_r/P)} \quad (p\text{-dilation}) (352)
$$

and for a well-defined bimoulds lag^*_p of $\text{GARI}_{\text{centre}}$: see (356) below.

The centre of GARI.

The elements ca^* of $\text{GARI}_{\text{centre}}$ are all of the elementary form:

$$
\text{ca}^{(...,v_1,...,v_r)} = \begin{cases}
\text{ca}_r \in \mathbb{C} & \text{if } (v_1, ..., v_r) = (0, ..., 0) \\
0 & \text{otherwise}
\end{cases} (353)
$$

and verify for all $\text{Ma}^* \in \text{GARI}$:

$$
\text{gari}(\text{ca}^*, \text{Ma}^*) = \text{gari}(\text{Ma}^*, \text{ca}^*) = \mu(\text{Ma}^*, \text{ca}^*)
$$

109
The central elements \(\text{man}^* \), \(\text{mane}^* \), \(\text{lag}_p^* \) featuring in the conversion rules (629), (364) and in the colour consistency constraints (350) correspond to constants \(\text{man}_r \), \(\text{mane}_r \), \(\text{lag}_p \) so defined:

\[
\sum_{1 \leq r} \text{man}_r t^r := \exp \left(\sum_{2 \leq s} (-1)^{s-1} \zeta(s) \frac{t^s}{s} \right)
\]

\[
\sum_{1 \leq r} \text{mane}_r t^r := \left(\frac{\sin(ct)}{ct} \right)^{\frac{1}{2}} = 1 - \frac{c^2 t^2}{12} + \frac{c^4 t^4}{1440} + \ldots
\]

\[
\text{lag}_{p,r} := \frac{(-\log p)^r}{r!} \left(\sum_{a^r = 1, a \neq 1} \log(1-a) \right)^r
\]

The parity condition for length-one components.

The sets \(\text{GARI}^{\text{as/as}} \) resp. \(\text{GARI}^{\text{as/is}} \) consisting of all bimoulds of type \text{symmetral/symmetral} \cite{symmetralsymmetrals} resp. \text{symmetral/symmetril} \cite{symmetrilsymmetrils} and with length-one components even in \(w_1 \) (i.e. \(S^{w_1} = S^{-w_1} \)) are two important subgroups of \(\text{GARI} \).

The sets \(\text{GARI}^{\text{as/as}} \) resp. \(\text{GARI}^{\text{as/is}} \) whose elements display the double symmetry but whose length-1 components are not constrained by the parity condition, are no subgroups of \(\text{GARI} \), but they admit a right action of the above subgroups:

\[
\text{GARI}^{\text{as/as}} \cdot \text{GARI}^{\text{as/as}} = \text{GARI}^{\text{as/as}} \quad (357)
\]

\[
\text{GARI}^{\text{as/is}} \cdot \text{GARI}^{\text{as/la}} = \text{GARI}^{\text{as/is}} \quad (358)
\]

The same applies to the sets \(\text{ARI}^{\text{al/al}} \) resp. \(\text{ARI}^{\text{al/ai}} \) consisting of all bimoulds of type \text{alternal/alternal} resp. \text{alternal/alternil} and with length-one components even in \(w_1 \): they are subalgebras of \(\text{ARI} \), whereas the sets \(\text{ARI}^{\text{al/al}} \) resp. \(\text{ARI}^{\text{al/ai}} \) are not. \cite{alternalsalternals}

Our generating series \(\text{zag}^* \) is in \(\text{GARI}^{\text{as/is}} \), not in \(\text{GARI}^{\text{as/is}} \). However, it can be factored into a three-term \(\text{GARI} \)-product, with one exceptional first factor in \(\text{GARI}^{\text{as/is}} \) and two main factors in \(\text{GARI}^{\text{as/is}} \)

Adequation of the flexion structure to multizeta arithmetics.

(i) Moving from the scalar multizetas \(\text{wa}^*/\text{ze}^* \) to the generating series \(\text{zag}^*/\text{zig}^* \) simplifies and *compactifies* everything.

\cite{symmetralsymmetrals}{i.e. symmetral and with a symmetral *swappee*.

\cite{symmetrilsymmetrils}{i.e. symmetral and with a symmetril *swappee*.

\cite{alternalsalternals}{It should be noted that, for the components of length \(r \geq 2 \), bialternality *implies* global parity, i.e. invariance under a simultaneous sign change of all \(w_i \)'s. For \(r = 1 \), on the other hand, the bialternality condition, being empty, implies nothing.
(ii) The series $\text{zag}^*/\text{zig}^*$ clarify the expression of the double symmetry, conversion rule ('dimorphy'), colour consistency etc.

(iii) ARI and GARI, alone of all competing frameworks, allow poles at the origin, in the u_i or v_i variables. As a consequence, they alone can accommodate such basic, even downright indispensible objects as the bimoulds $\text{pal}^*/\text{pil}^*$ and $\text{tal}^*/\text{til}^*$. See §5.3.

(iv) The series $\text{zag}^*/\text{zig}^*$ can also be viewed as meromorphic functions in u or v respectively, with simple multivariate poles over \mathbb{Z}. This makes them ideally suited for disentangling the algebraic identities between multizetas, which seem to be wholly derivable from (iterated) polar identities of the form:

$$
\frac{1}{n_1^{s_1} n_2^{s_2}} = \sum_{\sigma_1, \sigma_2} \left(\frac{\alpha_{\sigma_1, \sigma_2}}{n_1^{\sigma_1} n_2^{\sigma_2}} + \frac{\beta_{\sigma_1, \sigma_2}}{n_1^{\sigma_1} n_2^{\sigma_2}} \right) = \sum_{\sigma_1, \sigma_2} \left(\frac{\gamma_{\sigma_1, \sigma_2}}{n_1^{\sigma_1} n_2^{\sigma_2}} + \frac{\delta_{\sigma_1, \sigma_2}}{n_1^{\sigma_1} n_2^{\sigma_2}} \right)
$$

5.3 The basic polar/trigonometric bisymmetrals.

Set $P(t) := \frac{1}{t}$ and $Q(t) := \frac{\pi}{\tan(\pi t)}$. Then there exists

(*) an essentially unique pair of ‘polar’ bimoulds $\text{pal}^*/\text{pil}^* \in \text{GARI}^{\text{as}/*}$ with $\text{pal}^{w_1, \ldots, w_r}$ r-homogeneous in the terms $P(u_i)$ and $P(u_1 + \ldots + u_2)$.

(**) an essentially unique pair of ‘trigonometric’ $\text{tal}^*/\text{til}^* \in \text{GARI}^{\text{as}/*}$ with $\text{tal}^{w_1, \ldots, w_r}$ r-homogeneous90 in the terms π^2, $Q(u_i)$ and $Q(u_1 + \ldots + u_2)$.

These two bisymmetrals $\text{pal}^*/\text{pil}^*$ and $\text{tal}^*/\text{til}^*$

(i) admit several equivalent definitions/characterisations,
(ii) possess no end of remarkable properties,
(iii) are key to the understanding of multizetas (many times over!),
(iv) cannot be defined in any of the alternative frameworks.

For details, we refer to [E5],[E6],[E7]. Here, we must be content with the simplest characterisation of pal^* and the simpler of its two ‘dimorphic’ definitions.

The simplest characterisation is this: pal^* is the only bisymmetrical bimould such that

$$
\begin{aligned}
\text{pal}^{w_1} &= -\frac{1}{2} P(u_1) \\
\text{pal}^{w_1, \ldots, w_r} &= \text{polynomial in the } P(u_i) \text{ and } P(u_1 + \ldots + u_2)
\end{aligned}
$$

(359)

The simpler of its two ‘dimorphic’ definitions reads

$$
dur.\text{pal}^* = mu(\text{pal}^*, \text{dupal}^*)
$$

(360)

90 π and $Q(.)$ are both assigned degree 1, but π occurs only through its even powers.
with the elementary mould derivation \(\text{dur} \):

\[
(dur.S)^{u_1,...,u_r} := (u_1 + ... + u_r).S^{u_1,...,u_r}
\]

(361)

and with an elementary alternal mould \(\text{dupal}^* \) defined by:

\[
\begin{align*}
\text{dupal}^{u_1,...,u_r} & := \alpha_r \sum_{0 \leq i \leq r-1} \frac{(-1)^{i-1}(r-1)!}{i!(r-1-i)!} \ u_i \ ... \ \hat{u}_i \ ... \ u_r \\
\sum_{1 \leq r} \alpha_r & = -1 + \frac{t}{r-1} = -\frac{1}{2} t + \frac{1}{12} t^2 \ ...
\end{align*}
\]

(362)

The definition of \(\text{tal}^* \) is similar, only more complex, and the conversion formula for the pair \(\text{tal}^*/\text{til}^* \) involves the central bimould \(\text{mane}^* \) in \(\text{GARI}_{\text{centre}} \) defined \textit{supra} in (355):

\[
\begin{align*}
\text{swap.pil}^* &= \text{pal}^* \\
\text{swap.til}^* &= \text{gari}(\text{tal}^*, \text{mane}^*) = \text{gari}(\text{mane}^*, \text{tal}^*) \\
&= \mu(\text{tal}^*, \text{mane}^*)
\end{align*}
\]

(363)

(364)

To put some flesh on these definitions, here are the first values of \(\text{tal}^w \) up to depth 4. To obtain the corresponding values of \(\text{pat}^w \), it is enough to set \(c = 0 \) and \(Q = P \).

\[
\begin{align*}
\text{tal}^{w_1} & := -\frac{1}{2} Q(u_1) \\
\text{tal}^{w_1,w_2} & := +\frac{1}{12} Q(u_1)Q(u_2) + \frac{1}{12} Q(u_1)Q(u_{1,2}) + \frac{1}{24} c^2 \\
\text{tal}^{w_1,...,w_3} & := \left\{ \begin{array}{l}
-\frac{1}{24} c^2 Q(u_1)Q(u_3) \\
-\frac{1}{48} c^2 Q(u_1) + \frac{1}{24} c^2 Q(u_2) - \frac{1}{24} c^2 Q(u_3) \\
-\frac{1}{720} Q(u_1)Q(u_2)Q(u_3)Q(u_4) + \frac{1}{1920} Q(u_1)Q(u_{1,2})Q(u_3)Q(u_4) \\
-\frac{1}{1440} Q(u_1)Q(u_2)Q(u_{1,2,3,4}) + \frac{1}{1728} Q(u_1)Q(u_{1,2})Q(u_3)Q(u_{1,2,3,4}) \\
+ \frac{1}{2160} Q(u_1)Q(u_{1,2})Q(u_3)Q(u_{1,2,3,4}) + \frac{1}{720} Q(u_1)Q(u_{1,2})Q(u_4)Q(u_{1,2,3,4}) \\
-\frac{2}{5760} c^2 Q(u_1)Q(u_3) + \frac{19}{1440} c^2 Q(u_1)Q(u_4) - \frac{1}{480} c^2 Q(u_2)Q(u_3) \\
+ \frac{1}{1440} c^2 Q(u_2)Q(u_4) + \frac{1}{288} c^2 Q(u_3)Q(u_4) + \frac{1}{1728} c^2 Q(u_1)Q(u_{1,2}) \\
+ \frac{1}{720} c^2 Q(u_1)Q(u_{2,3,4}) - \frac{1}{288} c^2 Q(u_2)Q(u_{1,2,3,4}) - \frac{1}{288} c^2 Q(u_2)Q(u_{1,2,3,4}) \\
+ \frac{11}{1440} c^2 Q(u_3)Q(u_{1,2,3,4}) - \frac{1}{480} c^2 Q(u_3)Q(u_{1,2,3,4}) + \frac{7}{5760} c^4
\end{array} \right.
\end{align*}
\]

Since their length-1 components are odd functions of \(w_1 \), the bimoulds \(\text{pat}^* \) and \(\text{tal}^* \) are in \(\text{GARI}^{as/as} \) but not in \(\text{GARI}^{as/as} \). That prevents their \(\text{gari}^- \)-inverses \(\text{ripal}^* \) and \(\text{rital}^* \) from being bisymmetrical. These are remarkable nonetheless. Thus, one shows that \(\text{ripal}^* \) is in \(\text{GARI}^{as/as} \).
The double symmetry exchanger \(adari(pal^*) \).

In multizeta algebra, the double symmetries that count most are \(al/il \) and \(as/is \), but we must also resort to the double symmetries \(al/\bar{al} \) and \(as/\bar{as} \) which have the signal advantage of being iso-length, i.e. of corresponding to constraints that involve only bimould components of the same length. Hence the need for double symmetry exchangers, assembled from the bisymmetrical \(pal^* \):

\[
\begin{align*}
\text{GARI}_{as/is}^{al/\bar{al}} & \quad \xrightarrow{\text{adgar}(pal^*)} \quad \text{GARI}_{as/is}^{al/\bar{al}} \\
\uparrow \text{expari} & \quad \uparrow \text{expari}
\end{align*}
\]

and operating through adjoint action:

\[
\begin{align*}
\text{adgar}(A^*) B^* & := \text{gari}(A^*, B^*, \text{invgari} A^*) \quad (365) \\
\text{adari}(A^*) & := \logari.\text{adgar}(A^*).\text{expari} \quad (366)
\end{align*}
\]

Mark here the first occurrence of \(pal^*/pil^* \) as invaluable flexion auxiliaries. Before long, we shall come across two more.

5.4 The double trifactorisation of \(zag^*/zig^* \).

The basic trifactorisation.

We have the \(\pi^2 \)-isolating, parity-splitting identity:

\[
\begin{align*}
\text{zag}^* & = \text{gari}(\text{zag}^*, \text{zag}^*_{11}, \text{zag}^*_{111}) \quad (367) \\
\text{gari}(\text{zag}^*_{111}, \text{zag}^*_{1111}) & = \text{gari}(\text{neg.pari.invgari} \cdot \text{zag}^*, \text{zag}^*) \quad (368)
\end{align*}
\]

with \(\text{neg} . S^{w_1, \ldots, w_r} := S^{-w_1, \ldots, -w_r} \); \(\text{pari} . S^{w_1, \ldots, w_r} := (-1)^r S^{w_1, \ldots, w_r} \) and

\[
\text{zag}^*_{111} \in \text{GARI}_{as/is}^{al/\bar{al}}, \text{zag}^*_{1111} \in \text{GARI}_{as/is}^{al/\bar{al}} \text{even}, \text{zag}^*_{1111} \in \text{GARI}_{as/is}^{al/\bar{al}} \text{odd}
\]

Each factor admits a precise analytic description which lays bare the irreducibles:

\[
\begin{align*}
\text{zag}^*_{111} & = \text{gari} (\text{tal}^*, \text{invgari} \cdot \text{pal}^*, \text{expari} \cdot \text{roma}^*) \quad (369) \\
\text{zag}^*_{1111} & = \text{expari} (\sum_{k \text{ even}} \rho^{s_{111} \ldots s_{11111}} \text{preari}(\text{lo\textshrink{ma}}^*_{s_{11}}, \ldots, \text{lo\textshrink{ma}}^*_{s_{111}})) \quad (370) \\
\text{zag}^*_{11111} & = \text{expari} (\sum_{k \text{ odd}} \rho^{s_{1111} \ldots s_{111111}} \text{preari}(\text{lo\textshrink{ma}}^*_{s_{11}}, \ldots, \text{lo\textshrink{ma}}^*_{s_{111}})) \quad (371)
\end{align*}
\]

This, incidentally, is already the second occurrence \(ex officio \) of \(pal^*/pil^* \).
and the first appearance of \(\text{tal}^*/\text{til}^* \). Here \(\rho_{\text{III}}^* \) and \(\rho_{\text{III}}^* \) denote two alternal moulds with values in the \(\mathbb{Q} \)-ring of multizeta irreducibles. They are rigidly determined by (370), (371).

The bimoulds \(\text{roma}^* \) and \(\text{loma}^* \) shall be examined more closely in §5.5. Be it enough to say here that they are both in \(\text{ARI}^\text{al} \), but intervene in very different capacities. As a \(u \)-function, \(\text{roma}^* \) must carry singularities at the origin to cancel those of \(\text{tal}^* \) and \(\text{pal}^* \) and produce a singularity-free \(\text{zag}^* \). The bimould \(\text{loma}^* \), on the other hand, and its components \(\text{loma}^* \) of total weight \(s \), should from the start be free of poles at the origin, again to produce singularity-free factors \(\text{zag}^* \) and \(\text{zag}^* \).

In the above formulae, \(\text{preari} \) denotes the pre-Lie product (338) behind \(\text{ari} \), and \(\text{expari} \) the natural exponential (337) from \(\text{ARI} \) to \(\text{GARI} \).

An alternative expression for \(\text{zag}_{\text{III}}^* \), \(\text{zag}_{\text{III}}^* \) would be

\[
\begin{align*}
\text{zag}_{\text{III}}^* &= 1^* + \sum_{k \text{ even}} \rho_{\text{III}}^{s_1,\ldots,s_k} \text{preari}(\text{loma}_{s_1}^*,\ldots,\text{loma}_{s_k}^*) \\
\text{zag}_{\text{III}}^* &= 1^* + \sum_{k \text{ odd}} \rho_{\text{III}}^{s_1,\ldots,s_k} \text{preari}(\text{loma}_{s_1}^*,\ldots,\text{loma}_{s_k}^*)
\end{align*}
\]

with two symmetral moulds \(\rho_{\text{III}}^* \), \(\rho_{\text{III}}^* \) that are none other than the mould-exponentials of the alternal moulds \(\rho_{\text{III}}^* \), \(\rho_{\text{III}}^* \).

Note that whereas separating \(\text{zag}_{\text{III}}^* \) from the first two factors is easy (the simple flexion formula (368) takes care of that), disentangling \(\text{zag}_{\text{III}}^* \) from \(\text{zag}^* \) is arduous and calls for the construction of an auxiliary bimould \(\text{roma}^*/\text{romi}^* \) analogous to \(\text{loma}^*/\text{lomi}^* \).

5.5 Singulators, singulates, singulands.

Bimoulds like \(\text{loma}^* \) are elements of \(\text{ARI}_{\text{enl}}^{\text{al}} \), i.e. of type \(\text{al}/\text{i} \) with values in the ring of \(u \)-polynomials. To construct such bimoulds, we require a machinery for singularity compensation: we must not only shuttle back and forth between \(\text{ARI}_{\text{enl}}^{\text{al}} \) and \(\text{ARI}_{\text{enl}}^{\text{al}} \) but also, at every second induction step, remove unwanted singular parts of type \(\text{al}/\text{al} \). This, however, is easier said than done. It calls for sophisticated operators capable of producing, from regular bimoulds, any given bialternal singularity at the origin of the \(u \)-multiplane.

(i) The operators in question are the singulators.

(ii) The regular inputs are the singulands.

(iii) The singular, bialternal outputs are the singulates.

Here again, for the third time, the pair \(\text{pal}^*/\text{pil}^* \) turns out to be the construction’s essential ingredient, in combination with the elementary operators.
leng_, neginvar, pushinvar, mut. Here are the bare definitions.\footnote{For details, see [E6]. Regarding the inadequacy of \textit{ari}-composition by \(w_1^{-2}\) for the purpose of correcting bialternal singularities, see \textit{Singulators vs Bisingulators} on our homepage.}

We begin with the elementary singulators:

- Singulator \(\text{slank}_r\): linear operator, turns \(S^*\) into \(\Sigma^*\)
- Singuland \(S^*\): regular, length-1 bimould (parity opposed to that of \(r\))
- Singulate \(\Sigma^*\): singular bialternal with polarity of order \(r-1\)

\[
\begin{align*}
\text{slank}_r : & \quad S^* \in \text{BIMU}_{1,\text{regular}} \mapsto \Sigma^* \in \text{ARI}_{r,\text{singular}}^{\alpha l/\alpha l} \\
2 \text{slank}_r . S^* & = \text{leng}_r . \text{neginvar} . (\text{adari}(\text{pal}^*))^{-1} . \text{mut}(\text{pal}^*) . S^* \\
& = \text{leng}_r . \text{pushinvar} . \text{mut}(\text{neg} . \text{pal}^*) . \text{garit}(\text{pal}^*) . S^*
\end{align*}
\]

with

\[
\begin{align*}
\text{mut}(A^*).M^* & := \text{mu}(\text{invmu}.A^*, M^*, A^*) \\
\text{neginvar} & := \text{id} + \text{neg} \\
\text{pushinvar} & := \sum_{0 \leq r} (\text{id} + \text{push} + \text{push}^2 + \cdots + \text{push}^r) . \text{leng}_r
\end{align*}
\]

By taking multiple \(\text{ari}\)-brackets (from left to right) of elementary singulators \(\text{slank}_r\), we easily arrive at the composite singulators:

\[
\text{slank}_{r_1, \ldots, r_n} : \quad S^* \in \text{BIMU}_{n,\text{regular}} \mapsto \Sigma^* \in \text{ARI}_{r,\text{singular}}^{\alpha l/\alpha l}
\]

- Singulator \(\text{slank}_{r_1, \ldots, r_n}\): linear operator, turns \(S^*\) into \(\Sigma^*\).
- Singuland \(S^*\): regular bimould of length \(n\) bimould, with partial parities in each \(w_i\) opposed to \(r_i\).
- Singulate \(\Sigma^*\): singular bialternal bimould with total polarity at the origin of order \(r-n = \sum (r_i-1)\).

Symmetry-respecting singularity removal.

We are now in a position to construct elements \(\text{loma}^*/\text{lomi}^*\) of \(\text{ARI}_{\alpha l/\alpha l}^{\alpha l/\alpha l}\) inductively on the length \(r\) (also known as \textit{depth}). Start from length 1, where the condition \(\alpha l/\alpha l\) reduces (mod length 2) to \textit{parity in} \(w_1\). Assume we have already reached some higher \textit{odd} length \(r\). Apply the double symmetry exchanger \(\text{adari}(\text{pal}^*)^{-1} = \text{adari}(\text{ripal}^*)\) so as to get into the more congenial environment \(\text{ARI}_{\alpha l/\alpha l}^{\alpha l/\alpha l}\). Then leave the component of length \(r+1\) as it is but add a \textit{suitable singulate}\footnote{\textit{i.e.} a \textit{singulate} constructed from a \textit{singuland} verifying the \textit{desingularisation equations} which ensure regularity at the origin. In §7.6 we shall see an instance of \textit{desingularisation equation} and give its explicit solution.}\ to the component of length \(r+2\). Lastly, apply
adari(pal*) to return to ARI\textsuperscript{al/\tilde{d}}, where l\textit{oma}*/l\textit{omi}* is now defined and regular at \textbf{u} = 0 up to length \(r + 2 \) inclusively.

\[
\begin{align*}
\l\text{oma}*\|_{r} & \in \text{ARI}\textsuperscript{al/\tilde{d}} \quad \text{and regular at 0} \\
\downarrow \text{adari(pal*)}^{-1} \\
\v\l\text{oma}*\|_{r} & \in \text{ARI}\textsuperscript{al/\tilde{d}} \quad \text{and singular at 0} \\
\downarrow \text{trivial extension} \\
\v\l\text{oma}*\|_{r+1} & \in \text{ARI}\textsuperscript{al/\tilde{d}} \quad \text{(desingularisation)} \quad \text{and singular at 0} \\
\downarrow \text{adari(pal*)} \quad \text{with correction if } r \text{ even} \\
\l\text{oma}*\|_{r+2} & \in \text{ARI}\textsuperscript{al/\tilde{d}} \quad \text{and regular at 0}
\end{align*}
\]

So much for the general scheme, of which there exist three main specialisations, denoted by the vowels \(u/o/a \) in place of the unassigned, all-purpose vowel \(\text{\ddot{o}} \). See §5.6 and §5.7.

Constructing l\textit{oma}* by desingularisation.

The first and simplest desingularisation occurs at length \(r = 3 \) with a composite singuland \(S_{1,2}^{u_1, u_2} \):

\[
\text{slank}_{1,2}.S_{1,2}^{1} = \text{ari}(\text{slank}_1.S_1^1, \text{slank}_2.S_2^1) \quad \text{with} \quad S_{1,2}^{1} = S_1^1 \otimes S_2^1
\]

For \(S_{1,2}^{1} \), the desingularisation equation reads:

\[
S_{1,2}^{(u_1, u_2)} + S_{1,2}^{(u_2, u_1)} - S_{1,2}^{(u_1, 1)} - S_{1,2}^{(1, u_2)} = \text{earlier terms}
\]

For uncoloureds and with conventional notations, we get:

\[
S_{1,2}^{u_1, u_2} + S_{1,2}^{u_2, u_1} - S_{1,2}^{u_1, 1} - S_{1,2}^{1, u_2} = \text{earlier terms}
\]

For the general singuland \(S_{r_1, \ldots, r_k}^{u_1, \ldots, u_r} \), the desingularisation equation reads:

\[
\sum_\sigma \epsilon_\sigma S_{r_1, \ldots, r_k}^{\sigma(u_1, \ldots, u_k)} = \text{earlier terms} \quad (\sigma \in \text{SL}_k(\mathbb{Z}), \epsilon_\sigma \in \{0, \pm 1\})
\]

More generally, to proceed from length \(r \) to length \(r + 2 \) (\(r \) odd) in the inductive construction of l\textit{oma}*, composite singulands \(S_{r_1, \ldots, r_k}^{1} \) are required, with \(2 \leq k \leq r + 1, 1 \leq r_i \sum r_i = r + 2 \). The corresponding singulates \(\Sigma_{r_1, \ldots, r_k}^{1} \) are obtained as \(\text{ari} \)-products of the simple singulates \(\Sigma_{r_i}^{1} \) and have polarity of order \(2 + r - k \) at the origin of the \textbf{u}-space. The step \(r \to r + 2 \) actually resolves itself into a sub-induction on \(k \), from \(k = 2 \) (polarity of order \(r \)) to \(k = r + 1 \) (polarity of order 1).

116
5.6 General difficulty: infinitude underlying the double symmetry.

For any given length r, the first (resp. second) symmetry amounts to a set of relations between A^w and the various $A^{\sigma,w}$ (resp. between A^w and the various $A^{r,w}$), where $\sigma \in \mathcal{S}_r$ and $\tau \in \mathcal{S}_r^*: = swap.\mathcal{S}_r.swap$. Combining the two symmetries forces us to work with the group $< \mathcal{S}_r, \mathcal{S}_r^*>$ generated by the classical symmetric group \mathcal{S}_r and its copy \mathcal{S}_r^*. That larger group is infinite as soon as $r \geq 3$.

This complicates matters, e.g. by precluding the existence of functional projectors of ARI onto $ARI^{\overline{d}/\underline{d}}$ or $ARI^{\underline{d}/\overline{d}}$.

For $r = 2$, $< \mathcal{S}_2, \mathcal{S}_2^*>$ essentially reduces (modulo parity) to the anharmonic group. This explains why length-2 multizetas are quite elementary and decidedly atypical.

5.7 Difficulties proper to the monocolours and bicolours.

Generators and irreducibles.

It should be clear by now that the construction of a system $\{\rho^{s_1,\ldots,s_r}\}$ of irreducibles involves two very distinct steps:

(i) The construction of a system of generators $\{lma^*_s, s \text{ odd}\}$, according to the general scheme of §3.5.

(ii) The expression of elements of $ARI^{\overline{d}/\underline{d}}$ in terms of these generators.

All known algebraic relations between multizetas respect the s-gradation, but the multizetas of a given weight s soon become too numerous for practical handling. Hence the need to work with the finer grained (s, r)-filtration. Here, however, the nuisance of retro-action rears its head – a nuisance which assumes two distinct, almost opposed forms for the monocolours and bicolours, and call for distinct remedies.

Retro-action for monocolours.

(i) The construction of a generating system $\{lma^*_s, s = 3, 5, 7,\ldots\}$ of $ARI^{\overline{d}/\underline{d}}_{\text{mono}}$ can be carried out in accordance with the (s, r)-filtration. This means that once all the relations implied by the two symmetries have been taken into account up to length r, there is no retro-action to expect: the symmetry relations for higher lengths r' induce no further constraints on the length-r component.\footnote{This might a priori have been the case, since an alternality relation relative to two partial sequence w^1, w^2 of lengths r_1, r_2 contrains all the sequences of length between}
(ii) However, the decomposition of an element of $ARI^{al/\frac{dl}{mono}}$ into multibrackets of $loma^*_s$ cannot proceed entirely within the (s, r)-filtration. This is due to the well-known relations which exist between the length-1 bialternals, and which induce on $ARI^{al/\frac{dl}{mono}}$ non-trivial relations of type

$$\sum_{s_1+\ldots+s_n=s} c_{s_1,\ldots,s_n} ar\left(loma_{s_1}^*, \ldots, loma_{s_n}^*\right) \equiv 0 \mod length \ r+2 \tag{381}$$

As a consequence, when decomposing $ARI^{al/\frac{dl}{mono}}$ into multibrackets of $loma^*_s$ according to the (s, r) filtration, parasitical degrees of liberty are liable to appear at length r that will be removed only at length $r+2$.

(iii) The remedy lies in perinomal analysis.

Retro-action for bicourls.

With bicourls, the position is exactly the reverse.

(i) Once we get hold of any system of generators $\{loma^*_s, s = 1, 3, 5\ldots\}$ (with one generator for any odd weight and with nonzero length-1 components), the decomposition of an element of $ARI^{al/\frac{dl}{bico}}$ into multibrackets can proceed smoothly in accordance with the (s, r)-filtration, because of an independence lemma (see next section) that precludes any relation of arit-dependence between the $loma^*_s$ in $ARI^{al/\frac{dl}{bico}}$.

(ii) However, the construction of such a system cannot proceed entirely within the (s, r)-filtration. At each odd length $r < s/3$, we are saddled with (abundant) parasitical degrees of freedom which manifest in the construction of the length-r component of $loma^*_s$, and these won’t be removed until we proceed to much higher lengths (not just $r+2$). A glaring manifestation of this phenomenon already occurs at length $r = 1$. The double symmetry condition there is empty and therefore any choice of type

$$loma_s^{(\frac{\alpha}{\beta})} := \alpha u_1^{s_1-1}, \quad loma_s^{(\frac{\alpha s}{\beta})} := \beta u_1^{s_1-1} \quad (\alpha, \beta \in \mathbb{C}) \tag{382}$$

would seem to be acceptable — which of course it is not, given that the colour consistency relation (350) implies

$$\alpha + \beta = 2^{1-s_1} \alpha \tag{383}$$

Since the colour consistency constraints are themselves an algebraic consequence of the double symmetry, (383) is a spectacular instance of retro-action.
(iii) Even *adding* the colour consistency constraints would not salvage the
(s, r)-scheme by ridding it of retro-action. At length r = 3, for instance, a
large number of parasitical degrees of freedom would remain. So we must
look elsewhere for a remedy – namely to the technique of *satellisation*, to
which the entire §6 will be devoted.

5.8 The independence theorem for bicolours.

Consider the homogeneous, length-1 elements of \(ARI^{al/\overline{al}}\) that verify the
colour consistency condition (350). They are all of the form \(b^1_{d_1}\) with

\[
b^1_{d_1} = \begin{cases}
 u_1^{d_1} & \text{if } \epsilon_1 = 0, \forall d_1 \in 2\mathbb{N}^* \\
 u_1^{d_1} (2^{-d_1} - 1) & \text{if } \epsilon_1 = \frac{1}{2}, \forall d_1 \in 2\mathbb{N}^*
\end{cases}
\] \hspace{1cm} (384)

\[
b^1_{0} = \begin{cases}
 0 & \text{if } \epsilon_1 = 0 \\
 1 & \text{if } \epsilon_1 = \frac{1}{2}
\end{cases}
\] \hspace{1cm} (385)

Proposition 5.1 The length-1 bialternals \(\{b_{d_1}; d_1 = 0, 2, 4, \ldots\}\) freely generate a subalgebra of \(ARI^{al/\overline{al}}\).

Proof: Proving the independence of these \(b^1_{d_1}\), under the \(ari\)-bracket is the same as proving that of the following \(B^1_{d_1}\):

\[
B^1_{d_1} = \begin{cases}
 u_1^{d_1} x^{d_1} & \text{if } \epsilon_1 = 0, \forall d_1 \in \mathbb{N}^* \\
 u_1^{d_1} (1 - x^{d_1}) & \text{if } \epsilon_1 = \frac{1}{2}, \forall d_1 \in \mathbb{N}^*
\end{cases}
\] \hspace{1cm} (386)

\[
B^1_{0} = \begin{cases}
 0 & \text{if } \epsilon_1 = 0 \\
 1 & \text{if } \epsilon_1 = \frac{1}{2}
\end{cases}
\] \hspace{1cm} (387)

for \(x = 2\) and *even* degrees \(d_1\), since \(2^{d_1} b^1_{d_1} \equiv B^1_{d_1} \|_{x=2}\). It is actually no harder to prove the independence for all integers \(x \geq 2\) and all degrees \(d_1\), even or odd. To do that, it suffices to consider, for bimoulds \(M^*\) with lower indices \(v_i = \epsilon_i \in \frac{1}{2} \mathbb{Z}/\mathbb{Z}\), the ‘monochromous parts’ \(sa_0^* M^*\) and \(sa_{\frac{1}{2}}^* M^*\):

\[
\{ M^*_{0} = sa_0^* M^* \} \iff \{ M^*_{0}^{u_1^{v_1}, \ldots, u_r^{v_r}} = M^*_{0}^{u_1^{v_1}, \ldots, u_r^{v_r}} \} \] \hspace{1cm} (388)

\[
\{ M^*_{\frac{1}{2}} = sa_{\frac{1}{2}}^* M^* \} \iff \{ M^*_{\frac{1}{2}}^{u_1^{v_1}, \ldots, u_r^{v_r}} = M^*_{\frac{1}{2}}^{u_1^{v_1}, \ldots, u_r^{v_r}} \} \] \hspace{1cm} (389)
and to note how they behave under the ari-bracket:

\[
sa_0^* \text{ari}(A^*, B^*) = \text{ari}(sa_0^* A^*, sa_0^* B^*)
\]

\[
sa_2^* \text{ari}(A^*, B^*) = \begin{cases} +\text{ari}(sa_0^* B^*). (sa_2^*. A^*) - \text{ari}(sa_0^* A^*). (sa_2^*. B^*) \\ +\text{lu}(sa_2^* A^*, sa_2^* B^*) \end{cases}
\]

The idea then is to introduce the moulds

\[A_{d_1}^\bullet := u^{d_1} \quad \forall d_1 \in \mathbb{N} \]

and to compare the lu-brackets of the $A_{d_1}^\bullet$ with the ari-brackets of the $B_{d_4}^\bullet$, or rather with the sa_2^* part of these ari-brackets.

Let us fix a length r and a total degree $d := d_1 + \cdots + d_r$. For any sequence $d = (d_1, \ldots, d_r)$ of non-negative integers, let us set

\[
A_d^\bullet := \text{lu}(A_{d_1}^\bullet, \ldots, A_{d_r}^\bullet)
\]

\[
B_d^\bullet := sa_2^* \text{ari}(B_{d_1}^\bullet, \ldots, B_{d_r}^\bullet)
\]

Let $E_{r,d} = \{A_{d_1}^\bullet, A_{d_2}^\bullet, \ldots, A_{p(r,d)}^\bullet\}$ be a basis of all alternal, polynomial-valued moulds of length r and total degree d. The alternal, polynomial-valued mould B_d^\bullet can be expressed in that basis. We find:

\[
B_d^\bullet = \sum_{d'} c_d^{d'}(x) A_{d'}^\bullet \quad \text{with} \quad c_d^{d'}(x) \in \mathbb{Z}[x] \quad \text{and} \quad \begin{cases} c_d^{d'}(0) = 1 \\ c_d^{d'}(0) = 0 \quad \text{if} \quad d \neq d' \end{cases}
\]

The reason is quite simply that, according to formula (391), the x-constant terms in B_d^\bullet can only come from the lu-bracketting. As a consequence, the corresponding determinant, independent of the basis choice

\[
\det_{r,d}(x) := \text{Det}\left[c_d^{d'}(x); d, d' \right] = 1 + \sum_{r,x,k} \gamma_{r,r,k} x^k \quad \left(\sum_{r,r,k} \gamma_{r,r,k} \in \mathbb{Z} \right)
\]

is a polynomial in x, with integer coefficients and with 1 as constant term. It is therefore $\neq 0$ for all integer values of x larger than 1. This establishes, for all such values of x and in particular for $x = 2$, the ari-independence of the bimoulds B_d^\bullet. \square

\[94\text{see §4.2, where the procedure is systematised. Though the ‘monochromous parts’}

$sa_0^* \text{M}^*$ and $sa_2^* \text{M}^*$ are moulds, not bimoulds, we can subject them to all the flexion operations by regarding them as bimoulds that do not depend on their lower indices.}
Remark 1: The above argument would collapse if we were to work with the swappes $C_{d_i} := \text{swap}_{B_{d_i}^*}$:

$$C_{d_i}^{(\epsilon_1)} = \begin{cases} t_1^{d_i} x^{d_i} & \text{if } \epsilon_1 = 0, \forall d_i \in \mathbb{N}^* \\ t_1^{d_i} (1 - x^{d_i}) & \text{if } \epsilon_1 = \frac{1}{2}, \forall d_i \in \mathbb{N}^* \end{cases}$$

(397)

$$C_0^{(\epsilon_1)} = \begin{cases} 0 & \text{if } \epsilon_1 = 0 \\ 1 & \text{if } \epsilon_1 = \frac{1}{2} \end{cases}$$

(398)

and their 'monochromous parts' $s_{0\cdot} M^*$ and $s_{1\cdot} M^*$:

$$\{ M_0^* = s_{0\cdot} M^* \} \iff \{ M_0^{0\cdot \ldots \cdot 0} = M^{0\cdot \ldots \cdot 0} \}$$

(399)

$$\{ M_2^* = s_{1\cdot} M^* \} \iff \{ M_2^{0\cdot \ldots \cdot 0} = M^{0\cdot \ldots \cdot 0} \}$$

(400)

For one thing, there would be no closed identities like (390)-(391) to describe the ari-action on the new 'parts'. Then we would find that there exist, even for $x = 2$ and even degrees d_i, non-trivial dependence relations of the form:

$$\sum_{d_1 + \ldots + d_r = d} c_0^{d_1, \ldots, d_r} s_{0\cdot} ari(C_{d_1}^*, \ldots, C_{d_r}^*) = 0 \quad (c_d^d \in \mathbb{Z})$$

(401)

$$\sum_{d_1 + \ldots + d_r = d} c_{1\cdot}^{d_1, \ldots, d_r} s_{1\cdot} ari(C_{d_1}^*, \ldots, C_{d_r}^*) = 0 \quad (c_{1\cdot}^d \in \mathbb{Z})$$

(402)

though of course none of the form

$$\sum_{d_1 + \ldots + d_r = d} c_{d_1, \ldots, d_r} ari(C_{d_1}^*, \ldots, C_{d_r}^*) = 0 \quad (c_d^d \in \mathbb{Z})$$

(403)

Remark 2: The ari-independence of the al/\overline{al} bimoulds $b_{d_i}^*$ of (384)-(385) automatically implies the independence of every possible al/\overline{al} extension $^*b_{d_i}^*$ of these $b_{d_i}^*$, since the length-r component of any dependence relation

$$\sum_{d_1 + \ldots + d_r = d} c_{d_1, \ldots, d_r} ari(^*b_{d_1}^*, \ldots, ^*b_{d_r}^*) = 0 \quad (c_d^d \in \mathbb{Z})$$

(404)

would amount to a dependence relation between the $b_{d_i}^*$. The situation is quite different for the monocolour generators of $ARI_{al/\overline{al}}$; they too are conjectured to be independent, but their length-1 components are not independent in $ARI_{al/\overline{al}}$.

Remark 3: The only case relevant to multizeta algebra is when $x = 2$ and all degrees d_i are even.95 Remarkably, the case $x = 2$ is also the only one

95 The case when x is an integer ≥ 3 is of no direct relevance to the x-coloured multizetas.
when the prime factor decomposition of the integers $\text{det}_{r,d}(x)$ is arithmetically ‘special’: it systematically displays (large) prime factors coming from the Bernoulli numbers. Moreover, to take into account the exclusive presence of even degrees d_i and isolate the interesting part of $\text{det}_{r,d}(x)$, one should change the expansion (395) to

$$B^*_d \|_{\text{even}} = \sum_{d'} c^d_d(x) A^*_d \quad \text{with} \quad c^d_d(x) \in \mathbb{Z}[x] \quad \text{and} \quad \begin{cases} c^d_d(0) = 1 \\ c^d_d(0) = 0 \quad \text{if} \quad d \neq d' \end{cases} \quad (405)$$

where $B^*_d \|_{\text{even}}$ denotes the part of B^*_d even in each u_i, and where A^*_d runs through a basis of all alternating, polynomial-valued moulds that are also even in each u_i. The corresponding determinant $\text{det}^*_r,d(x)$, defined as (396) but with all sequences d, d' consisting only of even integers, is also an even function of x. These more basic determinants $\text{det}^*_r,d(t)$ have been tabulated in §8.3 (in terms of $t := x^2$) and the reader may check on these tables how ‘special’ the case $x = 2$ (i.e. $t = 4$) really is, arithmetically speaking:

- $\text{det}^*_{2,d}(2)$ carries all large prime factors of Ber_{d+2} with multiplicity one.
- $\text{det}^*_{3,d}(2)$ carries all large prime factors of $\text{Ber}_{d}, \text{Ber}_{d-2}, \text{Ber}_{d-4}...$ with multiplicity one.
- $\text{det}^*_{r,d}(2)$ carries all large prime factors of all $\prod_{\delta \leq d+2-r} \text{Ber}_\delta$, usually with higher multiplicities, as soon as $r \geq 4$.

Remark 4: Replacing in the previous argument (393)-(394) $\text{ari}, \mu u$ by $\text{preari}, \mu u$, i.e. setting:

$$\mathcal{A}^*_d \ := \ \mu \nu(\mathcal{A}^*_d_1, \ldots, \mathcal{A}^*_d_r) \quad (406)$$

$$\mathcal{B}^*_d \ := \ \text{sa}_2 \cdot \text{preari}(B^*_d_1, \ldots, B^*_d_r) \quad (407)$$

and using the identities that describe the behavior of preari on $\text{sa}_0^*, \text{sa}_2^*$:

$$\text{sa}_0^* \cdot \text{preari}(A^*, B^*) = \text{preari}(\text{sa}_0^* A^*, \text{sa}_0^* B^*) \quad (408)$$

$$\text{sa}_2^* \cdot \text{preari}(A^*, B^*) = \text{ari}(\text{sa}_0^* B^*). (\text{sa}_2^* A^*) + \mu u(\text{sa}_2^* A^*, \text{sa}_2^* B^*) \quad (409)$$

we can easily establish the preari-independence of the generators \mathcal{B}^*_r,d_i. However, we find that the determinants $\text{predet}_{r,d}(x)$ resp. $\text{predet}^*_{r,d}(x)$ calculated from the coefficients $c^d_d(x)$ of the re-interpreted expansions (395) resp. (405)
carry no new information: they turn out, unsurprisingly, to be entirely reducible to the previous determinants $\det_{r,d}(x)$ resp. $\det^*_{r,d}(x)$. Concretely:

\[
\predet_{r,d}(x) = \prod_{2 \leq \delta \leq d} \prod_{1 \leq \rho} \det_{\rho, \delta}(x) \quad (\forall d \text{ even } \geq 2)
\]

\[
\predet^*_{r,d}(x) = \prod_{2r \leq \delta \leq d-2} \prod_{1 \leq \rho} \det^*_{\rho, \delta}(x) \quad (\forall d \text{ even } \geq 2r)
\]

6 Multizeta algebra: the satellisation technique for bicouls.

Introduction.

The present chapter is devoted to the task of data reduction for bicouls. As usual, rather than directly handling the scalar multizetas, we deal with their generating functions A^*, S^*, at home in either $ARI_{bico}^{al/ul}$ or $GARI_{bico}^{as/ls}$:

\[
ARI_{bico}^{al/ul} \ni A^* = \left\{ A^{(u_1, \ldots, u_r)}, \ u_i \in \mathbb{C}, \ \epsilon_i \in \frac{1}{2} \mathbb{Z}/\mathbb{Z} \right\}
\]

\[
GARI_{bico}^{as/ls} \ni S^* = \left\{ S^{(u_1, \ldots, u_r)}, \ u_i \in \mathbb{C}, \ \epsilon_i \in \frac{1}{2} \mathbb{Z}/\mathbb{Z} \right\}
\]

- We successively define three ‘satellites’ sa, sa^*, sa^{**}, consisting each of a small number of boundary data.

- The lower or root satellite sa retains only the lower indices ϵ_i, i.e. the colours 0 (white) and 1/2 (black) while discarding all multizetas with partial weights s_i strictly larger than 1.

- The first upper satellite sa^* does the opposite: it retains only the upper indices u_i and sets all colours ϵ_i equal to either 0 (‘all-whites’) or 1/2 (‘all-blacks’).

- The second upper satellite sa^{**} is deduced from sa under a construction known as mould amplification, but in outward shape and behaviour under $ari/gari$, it closely resembles sa^*.

- All these constructions, initially performed in $ARI_{bico}^{al/ul}$ or $GARI_{bico}^{as/ls}$, acquire new significance when we move to $ARI_{bico}^{al/ul}$ or $GARI_{bico}^{as/ls}$. The adjunction of the second symmetry rigidifies everything: each satellite contains all the information, and the challenge is now to extract that information.
• One of the first consequences is the existence of quite remarkable formulae expressing all mould components of odd degree in terms of those of even degree.96

• Another consequence is the existence of an explicit procedure, based on the operators \textit{discram} and \textit{viscram}, for recovering the whole of a mould \(M^*\) in \(ARI_{\text{bico}}^{al/d}\) or \(GARI_{\text{bico}}^{as/is}\) from the sole knowledge of its first upper satellite \(sa^*.M^*\).

• Yet another consequence is the existence of a remarkably explicit correspondence between the two upper satellites \(sa^*, sa^{**}\), so similar in shape yet so different in origin. For the all-whites (correctly defined), we have identity pure and simple (\(sa^*_0 = sa^{**}_0\)) while for the all-blacks the correspondence \(sa^*_\tilde{z} \leftrightarrow sa^{**}_\tilde{z}\) assumes the form of an involution \(\mathcal{R}\) whose definition, unexpectedly, requires us to perform a length \(\leftrightarrow\) degree exchanging isomorphism.

That said, it should be borne in mind that the whole business of \textit{satellisation}, fascinating though it may appear, is not an end in itself. It is there only to pave the way for the real task: the explicit decomposition of bicolours into irreducibles. But this is another story, to be told some other time.

\section*{6.1 The lower or root satellisation \textit{sa}: zero-degree bicolours.}

\textbf{Zero-degree elements.}

In the \textit{lower} or \textit{root} satellisation (noted \textit{“sa”}), the only extremal data we retain are the scalar multizetas \(Ze^{(s_1, \ldots, s_r)}\) whose partial weights \(s_i\) are all equal to 1 or, what amounts to the same, whose total degree \(d := s - r\) is 0. In terms of generating series, this amounts to setting all \(u_i\)-variables equal to 0.

\begin{align*}
A^* \in ARI_{\text{bico}}^{al} \quad &\mapsto \quad A^* = sa.A^* \quad \text{with} \quad A^{e_1, \ldots, e_r} := A^{(0, 0, \ldots, 0)} \\
S^* \in GARI_{\text{bico}}^{as} \quad &\mapsto \quad S^* = sa.S^* \quad \text{with} \quad S^{e_1, \ldots, e_r} := S^{(0, 0, \ldots, 0)}
\end{align*}

\textbf{The extremal and penextremal algebra.}

Needless to say, the extremal data \(sa.ARI_{\text{bico}}^{al}\) and \(sa.GARI_{\text{bico}}^{as}\) provide no information at all regarding the – totally independent – rest of \(ARI_{\text{bico}}^{al}\) and

96and that too in every meaningful setting, i.e. in both upper satellites as well as in the whole of \(ARI_{\text{bico}}^{al/d}\) or \(GARI_{\text{bico}}^{as/is}\).
Things change completely, however, if we adduce a second symmetry. We shall see in the sequel that the whole of $ARI_{bico}^{al/d}$ (resp. $GARI_{bico}^{as/ls}$) can be recovered from the extremal algebra $sa.ARI_{bico}^{al/d}$ (resp. from the extremal group $sa.GARI_{bico}^{as/ls}$). This may sound improbable, if only because only the first symmetry of, say, $ARI_{bico}^{al/d}$, i.e. alternality, can be expressed internally in $sa.ARI_{bico}^{al/d}$. The second symmetry, i.e. alternility, necessarily takes us beyond the range of 0-degree elements. However, we shall see that by considering the penextremal algebra, that is to say by retaining all terms of degree 0 or 1 we can overcome the deadlock:

(i) a fraction of the alternility relations becomes expressible within the penextremal algebra
(ii) that fraction turns out to be equivalent to the full alternility
(iii) the alternility relations so obtained can, after elimination of the degree-1 elements, be re-phrased purely in terms of the degree-0 elements, that is to say, within the extremal algebra.

The colour-switch ideal.

For the moment we may note a simple but consequential – and easy to check – fact: Those elements of the extremal algebra that are invariant under the white \leftrightarrow black colour switch

$$A^{(0,\ldots,0)}_{\epsilon_1,\ldots,\epsilon_r} = A^{(0,\ldots,0)}_{\bar{\epsilon}_1,\ldots,\bar{\epsilon}_r} \quad \text{with} \quad \bar{\epsilon} := \frac{1}{2} - \epsilon \quad (414)$$

constitute an ideal of the extremal algebra.

In the inter-satellite equivalences yet to emerge, this colour-switch ideal in the root satellite shall correspond to the ideals of vanishing all-whites in the first and second satellites.

6.2 The first upper satellisation sa^*: all-whites and all-blacks

The first upper satellisation (noted sa^*), or first satellisation for short, proceeds in exactly the opposite direction. Instead of retaining the sole colours, as in the root satellisation, we now nearly completely eliminate them, and retain only monochrome multizetas, either fully painted in the colour 0 (‘all-
whites’ or in the colour \(\frac{1}{2} \) (‘all-blacks’):

\[
A^* \in \text{ARI}_{\text{bico}}^{\text{al}} \rightarrow \text{sa}^* A^* \quad \text{with} \quad \begin{cases}
\text{(sa}^0_0 A)_{u_1 \ldots u_r} := A_{\frac{u_1}{0} \ldots \frac{u_r}{0}} \\
\text{(sa}^\frac{1}{2}_0 A)_{u_1 \ldots u_r} := A_{\frac{u_1}{\frac{1}{2}} \ldots \frac{u_r}{\frac{1}{2}}}
\end{cases}
(415)
\]

\[
S^* \in \text{GARI}_{\text{bico}}^{\text{an}} \rightarrow \text{sa}^* S^* \quad \text{with} \quad \begin{cases}
\text{(sa}^0_0 S)_{u_1 \ldots u_r} := S_{\frac{u_1}{0} \ldots \frac{u_r}{0}} \\
\text{(sa}^\frac{1}{2}_0 S)_{u_1 \ldots u_r} := S_{\frac{u_1}{\frac{1}{2}} \ldots \frac{u_r}{\frac{1}{2}}}
\end{cases}
(416)
\]

The real justification for this drastic data restriction will emerge in the sequel. But we may already observe that it has at least the merit of respecting the \text{ari/gari} operations, in the sense that these remain expressible entirely \textit{within} the new framework.\(^{97}\)

\begin{proposition}[Impact of the first satellisation on \text{ari/gari}]
Let as usual \(A^*, B^* \) etc stand for elements of \(\text{ARI}_{\text{bico}}^{\text{al}} \) and \(S^*, T^* \) etc stand for elements of \(\text{GARI}_{\text{bico}}^{\text{an}} \). Then:

\[
sa^*_0 \text{ari}(A^*, B^*) = \text{ari}(sa^*_0 A^*, sa^*_0 B^*)
(417)
\]

\[
sa^*_0 \text{preari}(A^*, B^*) = \text{preari}(sa^*_0 A^*, sa^*_0 B^*)
(418)
\]

\[
sa^*_0 \text{gari}(S^*, T^*) = \text{gari}(sa^*_0 S^*, sa^*_0 T^*)
(419)
\]

\[
sa^*_\frac{1}{2} \text{ari}(A^*, B^*) = \begin{cases}
+\text{l}(sa^*_\frac{1}{2} A^*, sa^*_\frac{1}{2} B^*) \\
-\text{ari}(sa^*_0 A^*) sa^*_\frac{1}{2} B^*
\end{cases}
(420)
\]

\[
sa^*_\frac{1}{2} \text{preari}(A^*, B^*) = \begin{cases}
+\text{m}(sa^*_\frac{1}{2} A^*, sa^*_\frac{1}{2} B^*) \\
+\text{ari}(sa^*_0 B^*) sa^*_\frac{1}{2} A^*
\end{cases}
(421)
\]

\[
sa^*_\frac{1}{2} \text{gari}(S^*, T^*) = \text{m}(\text{gari}(sa^*_0 T^*) sa^*_\frac{1}{2} S^*), sa^*_\frac{1}{2} T^*)
(422)
\]

\subsection{The second upper satellisation \text{sa}**: amplification.}

The amplification technique.

We have already used mould amplification in §5.2 to go from \text{wa} to \text{zag}. We shall now use it once more to construct the \textit{second satellisation}. Here are

\(^{97}\)This is obvious enough for \(sa^*_0 \), much less so for \(sa^*_\frac{1}{2} \). And it wouldn’t be true at all if we had defined satellites \(si^*, A^*, si^*, S^* \) based on the \textit{swappies}, by setting:

\[
(\text{si}^0_0 A)_{v_1 \ldots v_r} := (\text{swap}. A)_{\frac{0}{v_1} \ldots \frac{0}{v_r}}
\]

\[
(\text{si}^\frac{1}{2}_0 A)_{v_1 \ldots v_r} := (\text{swap}. A)_{\frac{1}{2}v_1 \ldots \frac{1}{2}v_r}
\]

126
the basic facts about the amplification transform amp_{ω^*}:

(i) It acts on ordinary moulds M^*.
(ii) It singles out the index ω^* for special treatment,
(iii) It adds a new indexation layer (here, the u_i indices),
(iv) It preserves simple symmetries (alternality/symmetrality).
(v) It acts according to the formula\(^98\):

\[
(\text{amp}_{\omega^*} M)_{\omega_1^* \ldots \omega_r^*} := \sum_{0 \leq n_r} M_{\omega_1 \omega_2 \ldots \omega_r \omega_s} u_1^{n_1} u_2^{n_2} \ldots u_r^{n_r} \tag{423}
\]

(vi) If M^* possesses no particular symmetry, the passage $M^* \to \text{amp}_{\omega^*} M^*$ entails an obvious loss of information, since the right-hand side of (423) ‘ignores’ all terms M^ω with sequences ω beginning with a string of ω^*’s.

(vii) If M^* is alternal or symmetral, so is $\text{amp}_{\omega^*} M^*$, and there is no loss of information, since in that case any M^ω can be expressed in terms of M^{ω^*} and some other $M^{\omega'}$, for indices ω' without initial ω^*.

(viii) Mould amplification nearly commutes with mould multiplication, but with a corrective term that involves the special index ω^* and whose form depends only on the symmetry type of the second factor. Thus, for B^* alternal and T^* symmetral, we get the identities:

\[
\begin{align*}
\text{amp}_{\omega^*} (S^* \times T^*) &= (\exp(T^\omega \mathfrak{D}_u) \text{amp}_{\omega^*} S^*) \times (\text{amp}_{\omega^*} T^*) \tag{424} \\
\text{amp}_{\omega^*} (A^* \times B^*) &= (\text{amp}_{\omega^*} A^*) \times (\text{amp}_{\omega^*} B^*) + B^{\omega^*} \mathfrak{D}_u (\text{amp}_{\omega^*} A^*) \tag{425}
\end{align*}
\]

with $(\mathfrak{D}_u M)_{\omega_1^* \ldots \omega_r^*} := (u_1 + \cdots + u_r) M_{\omega_1 \omega_2 \ldots \omega_r}$.

The amplification of elements of $sa.ARI_{\text{bico}}^d$ or $sa.GARI_{\text{bico}}^d$.

We shall now amplify elements M^* of the extremal algebra or group. These are bimoulds, but here we may treat them as plain moulds, with indices either (0_0^0) or (0_1^0). That leaves only two possible amplifications, namely $\text{amp}_{(0_0^0)}$ and $\text{amp}_{(0_1^0)}$. Since, in either case, all the lower indices on the right-hand side of (423) will be the same, 1_2 or 0 respectively, we can ignore them as contributing no information. So, for any bimould M^* in ARI_{bico}^d or $GARI_{\text{bico}}^d$, we are justified in setting:

\[
\begin{align*}
\text{am}_0 M^* := \text{amp}_{(0_0^0)} sa M^* , \\
\text{am}_1^2 M^* := \text{amp}_{(0_1^0)} sa M^* \tag{426}
\end{align*}
\]

\(^98\)Here, $\omega_\up{n} := \omega_{\up{n}}, \ldots, \omega_\up{n}$ and $u_1, \ldots, j := u_1 + \ldots + u_j$ as usual.
or more explicitly:

\[
(\text{am}_0. M)_{u_1, \ldots, u_r} := \sum_{0 \leq n_r} M_{(0, 0, \ldots, 0; \frac{1}{2}, 0, \ldots, 0; 0, \ldots, 0)} u_1^{n_1} u_{1,2}^{n_2} \ldots u_{1,\ldots,r}^{n_r} \tag{427}
\]

\[
(\text{am} \frac{1}{2}. M)_{u_1, \ldots, u_r} := \sum_{0 \leq n_r} M_{(0, \frac{1}{2}, 0, \ldots, 0; \frac{1}{2}, \ldots, 0; 0, \ldots, 0)} u_1^{n_1} u_{1,2}^{n_2} \ldots u_{1,\ldots,r}^{n_r} \tag{428}
\]

The impact on ari/gari.

For \(M^* \) in \(\text{ARI}^{\text{al}}_{\text{bico}} \) (resp. \(\text{GARI}^{\text{as}}_{\text{bico}} \)), the amplifications \(\text{am}_0. M^* \) and \(\text{am} \frac{1}{2}. M^* \) automatically inherit alternality (resp. symmetrality). The real question is: how will amplification impact \(lu/\text{mu} \) and ari/gari? For the uninflected operations \(lu/\text{mu} \), the answer is provided by the earlier formulae (424), (425). Not so for ari/gari. In fact, to get manageable formulae, we must work, not directly with \(\text{am}_0. M^* \) and \(\text{am} \frac{1}{2}. M^* \), but with suitable combinations of the two. This, together with the proposition immediately to follow, is what motivates our definition of the second satellisation, under the simplifying (and provisional) assumption that the length-1 component of \(M^* \) vanishes\(^99\):

Definition 6.1 (The second satellisation \(M^* \mapsto sa^{**}. M^* \)).

For any \(A^* \) in \(\text{ARI}^{\text{al}}_{\text{bico}} \) and any \(S^* \) in \(\text{GARI}^{\text{as}}_{\text{bico}} \) such that

\[
A^* \begin{pmatrix} 0 \\ 0 \end{pmatrix} = A^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0, \quad S^* \begin{pmatrix} 0 \\ 0 \end{pmatrix} = S^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0 \tag{429}
\]

we set:

\[
\text{sa}_0^{**} A^* := -\text{neg}. \text{am}_0 A^* + \text{neg}. \text{am} \frac{1}{2} A^* \tag{430}
\]

\[
\text{sa}_1^{**} A^* := -\text{neg}. \text{am}_0 A^* \tag{431}
\]

\[
\text{sa}_0^{**} S^* := \text{mu} \left(\text{invmu}(\text{neg}. \text{am}_0 S^*), \text{neg}. \text{am} \frac{1}{2} S^* \right) \tag{432}
\]

\[
\text{sa}_1^{**} S^* := \text{invmu}(\text{neg}. \text{am}_0 S^*) \tag{433}
\]

Here \(\text{neg} \) denotes the sign reversal of all indices, and \(\text{invmu} \) the inversion (relative to the mould multiplication \(\text{mu} \)), which for symmetral moulds (such as \(S^* \)) reduces to a sequence reversion with or without sign change, depending on parity:

\[
(\text{neg}. M)_{u_1, \ldots, u_r} := M^{-u_1, \ldots, -u_r} \tag{434}
\]

\[
(\text{invmu}. M)_{u_1, \ldots, u_r} \equiv (-1)^r M^{u_r, \ldots, u_1} \text{ if } M^* \text{ symmetral} \tag{435}
\]

\(^{99}\)It is mainly the relations (440)-(442) that require this simplifying assumption. It will be removed in the next section.
Proposition 6.2 (Impact of the second satellisation on \(ari/gari \)). Let as usual \(A^*; B^* \) stand for elements of \(\text{ARI}_{\text{bico}}^* \) and \(S^*; T^* \) for elements of \(\text{GARI}_{\text{bico}}^* \). Then

\[
\begin{align*}
\text{sat}^* \text{ari}(A^*, B^*) &= \text{ari}(\text{sat}^* A^*, \text{sat}^* B^*) \\
\text{sat}^* \text{preari}(A^*, B^*) &= \text{preari}(\text{sat}^* A^*, \text{sat}^* B^*) \\
\text{sat}^* \text{gari}(S^*, T^*) &= \text{gari}(\text{sat}^* S^*, \text{sat}^* T^*)
\end{align*}
\]

(436) (437) (438)

Moreover, provided that

\[
\begin{align*}
A^{(0)} &= A^{(\frac{1}{2})} = B^{(0)} = B^{(\frac{1}{2})} = 0, \\
S^{(0)} &= T^{(\frac{1}{2})} = S^{(0)} = T^{(\frac{1}{2})} = 0
\end{align*}
\]

(439)

we have the further identities:

\[
\begin{align*}
\text{sat}^{**} \text{ari}(A^*, B^*) &= \begin{cases}
+\text{lu}(\text{sat}^{**} A^*, \text{sat}^{**} B^*) \\
+\text{arit}(\text{sat}^{**} B^*) \text{sat}^{**} A^* \\
-\text{arit}(\text{sat}^{**} A^*) \text{sat}^{**} B^*
\end{cases} \\
\text{sat}^{**} \text{preari}(A^*, B^*) &= \begin{cases}
+\text{mu}(\text{sat}^{**} A^*, \text{sat}^{**} B^*) \\
+\text{arit}(\text{sat}^{**} B^*) \text{sat}^{**} A^*
\end{cases} \\
\text{sat}^{**} \text{gari}(S^*, T^*) &= \text{mu}\left((\text{gari}(\text{sat}^{**} T^*) \text{sat}^{**} S^*), \text{sat}^{**} T^*)\right)
\end{align*}
\]

(440) (441) (442)

In other words, under the (crucial) assumption that all length-1 components vanish, the second satellisation \(\text{sat}^{**} \) affects \(ari/gari \) in exactly the same way as does the first satellisation \(\text{sat}^* \).

Despite the formal similarity, the identities of Proposition 6.2 are completely different in nature from those of Proposition 6.1, and much deeper. They also have this uncanny feature of relating the \(ari/gari \) operations on \(\text{sat}.M^* \), which bear on the lower indices \(\epsilon_i \), to the utterly different \(ari/gari \) operations on \(\text{sat}^{**}.M^* \), which bear on the upper indices \(u_i \).

6.4 The mischief potential of \(\log 2 \).

We are already familiar with the (mild) difficulties attendant on the divergence of \(\text{Ze}^{(0)}_0 \sim \sum n^{-1} \). They merely introduce a correcting factor \(\text{man}^* \) in the identity (629) connecting \(\text{zag}^* \) and \(\text{zig}^* \).

We are also familiar with the (more serious) difficulties related to the scalar multizetas that belong to \(\mathbb{C}[[\pi^2]] \). These are responsible for the presence of an irregular first factor \(\text{zag}^*_1 \) in the trifactorisation (367) of \(\text{zag}^* \). That
first factor belongs to $GARI^{al/d}$ but not $GARI^{al/d}$, which causes no end of difficulties.

We must now brace ourselves for the difficulties (of intermediate severity) that result from $Z^\ell_{(1/2)} = \sum (-1)^{n-1} n^{-1} = \log 2$, or in other words, from the presence of non-zero length-1 components $M_{(1/2)}$ in the generic bimould M^* that undergoes satellisation. (Let us recall that, taking our stand on the normalisation $zag^{(0)} = zig^{(0)} = 0$, we have already, once and for all, ruled out any non-zero components $M_{(0)}$).

Definition 6.2 (The second satellisation $M^* \mapsto sa^{} M^* \text{(bis)}$).**

In presence of a nonzero length-1 component $M_{(1/2)}$, the earlier definition of sa^{**} should be modified to:

\[
\begin{align*}
\text{sa}_{0}^{**} A^* & := -\text{neg.am}_0 A^* + \text{neg.am}_{1/2} A^* + A_{(1/2)} I^* \\
\text{sa}_{\frac{1}{2}}^{**} A^* & := -\text{neg.am}_0 A^* \tag{443}
\end{align*}
\]

\[
\begin{align*}
\text{sa}_{0}^{**} S^* & := \text{mu}(e^{-S_{(1/2)}} \text{invmu}(\text{neg.am}_0 S^*), \text{neg.am}_{1/2} S^*, e^{S_{(1/2)} I^*}) \\
\text{sa}_{\frac{1}{2}}^{**} S^* & := \text{invmu}(\text{am}_0 S^*) \tag{444}
\end{align*}
\]

with D denoting the elementary mould derivation:

\[
(DA)^{u_1,\cdots,u_r} := (u_1 + \cdots + u_r) A^{u_1,\cdots,u_r} \tag{445}
\]

In order to fittingly describe the interaction of sa^{**} with $ari/gari$ in the most general situation, we must now introduce two mould operators:

\[
\begin{align*}
\text{ut}(A^*) B^* & := -A^{(0)} D B^* \tag{446} \\
\text{gut}(S^*) B^* & := \exp(-S^{(0)} D) B^* \tag{447}
\end{align*}
\]

$ut(A^*)$ is clearly a derivation relative to the mu-product, and $gut(S^*)$ an automorphism, again relative to mu.

In view of (443)-(444) and given that $(sa^{**}_\frac{1}{2} M)^{(0)} = M_{(1/2)}$ for M^* in ARI_{bico}^{al} or $GARI_{bico}^{al}$, the relevance of the operators $ut(A^*)$ and $gut(S^*)$ is fairly obvious, and we are now in a position to remove the restrictive assumption of Proposition 6.2.

Proposition 6.3 (Impact of the second satellisation on $ari/gari$ (bis)).

For general elements A^*, B^* in ARI_{bico}^{al} and S^*, T^* in $GARI_{bico}^{al}$, the earlier
identities (436)-(442) have to be supplemented by the following terms (in red colour) to account for the presence of non-vanishing length-1 components:

\[\text{sa}_0^{**} \text{ari}(A^*, B^*) = \text{ari}(\text{sa}_0^{**} A^*, \text{sa}_0^{**} B^*) \]
\[(448) \]

\[\text{sa}_0^{**} \text{preari}(A^*, B^*) = \text{preari}(\text{sa}_0^{**} A^*, \text{sa}_0^{**} B^*) \]
\[(449) \]

\[\text{sa}_0^{**} \text{gari}(S^*, T^*) = \text{gari}(\text{sa}_0^{**} S^*, \text{sa}_0^{**} T^*) \]
\[(450) \]

\[\text{sa}_1^{**} \text{ari}(A^*, B^*) = \left\{ \begin{array}{l} +\text{lu}(\text{sa}_1^{**} A^*, \text{sa}_1^{**} B^*) \\
+\text{ari}(\text{sa}_0^{**} B^*) \text{sa}_1^{**} A^* +\text{ut}(\text{sa}_1^{**} B^*) \text{sa}_1^{**} A^* \\
-\text{ari}(\text{sa}_0^{**} A^*) \text{sa}_1^{**} B^* -\text{ut}(\text{sa}_1^{**} A^*) \text{sa}_1^{**} B^*
\end{array} \right. \]
\[(451) \]

\[\text{sa}_1^{**} \text{preari}(A^*, B^*) = \left\{ \begin{array}{l} +\text{mu}(\text{sa}_1^{**} A^*, \text{sa}_1^{**} B^*) \\
+\text{ari}(\text{sa}_0^{**} B^*) \text{sa}_1^{**} A^* +\text{ut}(\text{sa}_1^{**} B^*) \text{sa}_1^{**} A^*
\end{array} \right. \]
\[(452) \]

\[\text{sa}_1^{**} \text{gari}(S^*, T^*) = \text{mu}\left((\text{gar}(\text{sa}_0^{**} T^*).\text{gut}(\text{sa}_1^{**} T^*).\text{sa}_1^{**} S^*), \text{sa}_1^{**} T^* \right) \]
\[= \text{mu}\left((\text{gut}(\text{sa}_1^{**} T^*).\text{gar}(\text{sa}_0^{**} T^*).\text{sa}_1^{**} S^*), \text{sa}_1^{**} T^* \right) \]
\[(453) \]

\[(454) \]

Proposition 6.4 (Impact of the second satellisation on \text{ari}/\text{gari} (ter))

The relations

\[\text{lu}^*(A^*, B^*) := \text{lu}(A^*, B^*) + B^0 \cdot B^* - B^0 \cdot A^* \]
\[= \text{lu}(A^*, B^*) + \text{ut}(B^*).A^* - \text{ut}(A^*)B^* \]
\[(455) \]

\[\text{mu}^*(S^*, T^*) := \text{mu}(\exp(-T^0 \cdot D) S^*, T^*) \]
\[= \text{mu}(\text{gut}(T^*).S^*, T^*) \]
\[(456) \]

\[(457) \]

\[(458) \]

define a modified Lie bracket \text{lu}^* and a modified associative product \text{mu}^*. With them, the identities (451)-(454) simplify:

\[\text{sa}_1^{**} \text{ari}(A^*, B^*) = \left\{ \begin{array}{l} +\text{lu}^*(\text{sa}_1^{**} A^*, \text{sa}_1^{**} B^*) \\
+\text{ari}(\text{sa}_0^{**} B^*) \text{sa}_1^{**} A^* \\
-\text{ari}(\text{sa}_0^{**} A^*) \text{sa}_1^{**} B^*
\end{array} \right. \]
\[(459) \]

\[\text{sa}_1^{**} \text{preari}(A^*, B^*) = \left\{ \begin{array}{l} +\text{mu}^*(\text{sa}_1^{**} A^*, \text{sa}_1^{**} B^*) \\
+\text{ari}(\text{sa}_0^{**} B^*) \text{sa}_1^{**} A^*
\end{array} \right. \]
\[(460) \]

\[\text{sa}_1^{**} \text{gari}(S^*, T^*) = \text{mu}^*(\text{gar}(\text{sa}_0^{**} T^*) \text{sa}_1^{**} S^*, \text{sa}_1^{**} T^*) \]
\[(461) \]
6.5 The double symmetry and the even-to-odd-degree extrapolation.

So far, we have reviewed the properties of sa, sa^*, sa^{**} as defined on $ARI_{\text{bi}}^{al/d}$ and $GARI_{\text{bi}}^{as/iu}$. Let us now move on to $ARI_{\text{bi}}^{al/d}$ and $GARI_{\text{bi}}^{as/iu}$. The introduction of a second symmetry has momentous consequences, the first of which is the possibility of deducing all odd-degree components of a bimould M^* from its even-degree components.

Even-to-odd extrapolation in $ARI_{\text{bi}}^{al/d}$.

Let us work in the algebra $ARI_{\text{bi}}^{al/d}$ for simplicity100 and consider there some homogeneous element A^* of total weight s, with its various components A^*_r of length r ($1 \leq r \leq s$) and total degree $d = s - r$. For the non-vanishing component A^*_r, of lowest length, the symmetry (al/d) actually implies (al/d), i.e. bialternality. That component is therefore101 necessarily of even degree d_0. Let us now search for an explicit even-to-odd extrapolation formula:

$$(0, \ldots, 0, A^*_{r_0}, A^*_{r_0+2}, \ldots, A^*_{r_0+2n}, \ldots) \mapsto (0, \ldots, 0, A^*_{r_0+1}, A^*_{r_0+3}, \ldots, A^*_{r_0+2n+1}, \ldots) \quad (462)$$

based on the five-step induction already mentioned in §3.5:

Step 1: Calculate $A^*_{r_0+2n} := \sum_{r=r_0+2n} A_r \in ARI_{\text{bi}}^{al/d}$

Step 2: Calculate $A^*_{r_0+2n} := \text{adari}(\text{ripal}^*).A_{r_0+2n} \in ARI_{\text{bi}}^{al/d}$

Step 3: Define $A^*_{r_0+2n}$ as $A^*_{r_0+2n}$ truncated at length r_0+2n+1 (included!)

Step 4: Calculate $A^*_{r_0+2n} := \text{adari}(\text{pal}^*).A_{r_0+2n} \in ARI_{\text{bi}}^{al/d}$

Step 5: Define $A^*_{r_0+2n+1}$ as the component of length r_0+2n+1 of $A^*_{r_0+2n}$

If we now denote by trunc_r the linear operator which acts on moulds by retaining only their components of length $\leq r$ and if further we set

$$\theta_r := \text{trunc}_{r+1} \text{adari}(\text{pal}^*).\text{trunc}_r.\text{adari}(\text{ripal}^*) \quad (463)$$

the above induction can be summarised as

$$A^*_{r_0+2n+1} = \left(\theta_{r_0+2n} (A^*_{r_0+2n} + \theta_{r_0+2n-2} (A^*_{r_0+2n-2} + \ldots + \theta_{r_0+2} (A^*_{r_0+2} + \theta_{r_0} A^*_{r_0}) \ldots)) \right) \quad (464)$$

In theory, (464) could qualify as an even-to-odd extrapolation formula of type (462). In practice, though, it is no good: pal^* and its gari-inverse ripal^* are

100 analogous results hold for $GARI_{\text{bi}}^{as/iu}$.

101 See [E7], §7.
very complex bimoulds; the adjoint action adari is itself a highly complex operation; and as $2n$ grows, the number of terms on the right-hand side of (464) becomes, prior to simplifications, fantastically large. The miracle, however, is that sweeping simplification do occur, leading in the end to a formula that is both practical and beautiful.

But before enuntiating it we need to get a few definitions out of way.

First, we require the constants ξ_n:

$$\xi_n := \begin{cases} \frac{2(1-2^{n+1})}{n+1} & \text{if } n \text{ odd} \quad (\text{Ber}_n = \text{Bernoulli number}) \\ 0 & \text{if } n \text{ even} \end{cases}$$

(465)

Thus $\xi_1 = -\frac{1}{2}$, $\xi_3 = \frac{1}{4}$, $\xi_5 = -\frac{1}{2}$, $\xi_7 = -\frac{31}{4n}$, $\xi_9 = -\frac{461}{4}$, $\xi_{11} = -\frac{329569}{16}$.

Next, we require two elementary symmetrical bimoulds:

$$S_x^\varnothing := 1 \quad , \quad S_x^{\{u_1, \ldots, u_r\}} := (-x)^r P(u_1)P(u_1 + u_2) \ldots P(u_1 + \ldots + u_r)$$

(466)

$$T_x^\varnothing := 1 \quad , \quad T_x^{\{u_1, \ldots, u_r\}} := x^r P(u_1)P(u_1 - 1 + u_r) \ldots P(u_1 + \ldots + u_r)$$

(467)

Lastly, we require operators \mathfrak{H}_x constructed from the previous ingredients:

$$\mathfrak{H}_x : M^* \to \sim M^*$$

(468)

$$\sim M^* := (id - x \mathfrak{P}_L + x \mathfrak{P}_R).\left(S_x^{*^{-1}} \times \text{garit}(S_x^*).M^* \right) \times S_x^*$$

(469)

with

$$\left\{ \begin{array}{ll} (\mathfrak{P}_R M)^{\{u_1, \ldots, u_r\}} := M^{\{v_1, \ldots, v_r\}} P(u_1 + \ldots + u_r) \\ (\mathfrak{P}_L M)^{\{u_1, \ldots, u_r\}} := M^{\{v_1, \ldots, v_r\}} P(u_1 + \ldots + u_r) \end{array} \right.$$

We may note in passing that the operators \mathfrak{H}_x form a group:

$$\mathfrak{H}_0 = id \quad \text{and} \quad \mathfrak{H}_x \mathfrak{H}_y \equiv \mathfrak{H}_{x+y}$$

(470)

The proof relies mainly on identities such as

$$(\mathfrak{P}_R - \mathfrak{P}_L) M^* = \text{arit}(M^*) P^* \quad \forall M^*$$

(471)

$$S_x^* = \text{expari}(-x P^*)$$

(472)

with the elementary mould P^*:

$$P^*_{\{u_1, \ldots, u_r\}} := \begin{cases} P(u_1) & \text{if } r = 1 \\ 0 & \text{otherwise} \end{cases}$$

(473)
Proposition 6.5 (Even-to-odd extrapolation on $AR_{bico}^{al/d}$).

Let A^* be a homogeneous element of $AR_{bico}^{al/d}$ of weight s and let A_{even}^* (resp. A_{odd}^*) the sum of its components of even (resp. odd) degree. These components have of course lengths of opposite parities, and the extrapolation formula reads:

$$A_{odd}^* = (\mathcal{S}_x A_{even}^*) \| x^n = \xi$$ \hspace{1cm} (474)

In other words, we expand $(\mathcal{S}_x A_{even}^*)$ as a formal power of x and then replace each x^n by ξ. Given that $\xi_{2n} = 0$, this leaves in A_{odd}^* only components with lengths of the right parity. Moreover, and though this is non-obvious, all components of length $r > s$ automatically vanish, as indeed they should.

Even-to-odd extrapolation in the first upper satellite.

The change $\mathcal{S}_x : M^* \rightarrow \tilde{M}^*$ admits an internal restriction to the first upper satellite.\(^{102}\) Indeed, one easily checks that:

$$sa_0^* \tilde{M}^* := (id + x \mathcal{P}_R - x \mathcal{P}_L). (S_{x}^* - 1 \times (\text{garit}(S_{x}^*)sa_0^* M^*) \times S_{x}^*)$$ \hspace{1cm} (475)

$$sa_2^* \tilde{M}^* := \left\{ \begin{array}{l}
+ (S_{x}^* - 1 \times (\text{garit}(S_{x}^*)sa_2^* M^*) \times S_{x}^*) \\
+ x (\mathcal{P}_R - \mathcal{P}_L). (S_{x}^* - 1 \times (\text{garit}(S_{x}^*)sa_2^* M^*) \times S_{x}^*)
\end{array} \right. \hspace{1cm} (476)$$

$$\left(M_0^*, M_2^* \right) := (sa_0^* M^*, sa_2^* M^*)$$ \hspace{1cm} (477)

$$(\mathcal{P} M)_{u_1 \ldots \ldots u_r} := (u_1 + \ldots + u_r)^{-1} M^{u_1 \ldots \ldots u_r}$$ \hspace{1cm} (478)

$$(\mathcal{D} M)_{u_1 \ldots \ldots u_r} := (u_1 + \ldots + u_r) M^{u_1 \ldots \ldots u_r}$$ \hspace{1cm} (479)

and denoting for uniformity the bimoulds S_{x}^*, T_{x}^* as simple moulds S_{x}^*, T_{x}^* (which is legitimate, since the former depend only on their upper indices), the identities (468)-(469) can be brought into more explicit shape:

$$\tilde{M}_0^* = \left\{ \begin{array}{l}
+ T_{x}^* \times M_0^* \circ (S_{x}^* \times \mathcal{I}^* \times T_{x}^*) \times S_{x}^* \\
- x \mathcal{P}. (\mathcal{I}^* \times T_{x}^* \times M_0^* \circ (S_{x}^* \times \mathcal{I}^* \times T_{x}^*) \times S_{x}^*) \\
+ x \mathcal{P}. (T_{x}^* \times M_0^* \circ (S_{x}^* \times \mathcal{I}^* \times T_{x}^*) \times S_{x}^* \times \mathcal{I}^*)
\end{array} \right. \hspace{1cm} (480)$$

$$\tilde{M}_2^* = \left\{ \begin{array}{l}
+ T_{x}^* \times M_2^* \circ (S_{x}^* \times \mathcal{I}^* \times T_{x}^*) \times S_{x}^* \\
- x \mathcal{P}. (\mathcal{I}^* \times T_{x}^* \times M_2^* \circ (S_{x}^* \times \mathcal{I}^* \times T_{x}^*) \times S_{x}^*) \\
+ x \mathcal{P}. (T_{x}^* \times M_2^* \circ (S_{x}^* \times \mathcal{I}^* \times T_{x}^*) \times S_{x}^* \times \mathcal{I}^*)
\end{array} \right. \hspace{1cm} (481)$$

\(^{102}\)The fact is non trivial: it wouldn’t be true if we had defined that satellisation based on swap M^* rather than \tilde{M}^*.\]
where \(\mathcal{T}^* \) denotes the identity mould.\(^{103}\)

Proposition 6.6 (Even-to-odd extrapolation in the first upper satellite.)

Let \(A^* \) be a homogeneous element of \(\text{ARI}_{\text{odd}} \) of weight \(s \). Let \(A_0^* := s_a^* A^* \) and \(A_2^* := s_a^* A^* \) be its all-white and all-black parts. Then, to perform the even-to-odd extrapolation, it suffices

(i) to substitute the pair \((A_{0,\text{even}}^*, A_{2,\text{even}}) \) for \((M_0^*, M_2^*) \) in (480)-(481),

(ii) to set \(x^n := \xi_n \) in the corresponding pair \((\tilde{M}_0^*, \tilde{M}_2^*) \).

Remark 1: Using the identities

\[
S_x^* \times T_x^* = 1^* , \quad \mathcal{D} S_x^* = id , \quad \mathcal{D} S_x^* = -x S_x^* \times T_x^* , \quad \mathcal{T}_x^* = x T_x^* \times T_x^* \tag{482}
\]

together with the fact that \(\mathcal{D} \) is a derivation relative to mould multiplication, we can recast the correspondence \((A_0^*, A_2^*) \rightarrow (\tilde{A}_0^*, \tilde{A}_2^*) \) into an almost involutive form:

\[
S_x^* \times (\mathcal{D} \tilde{M}_0^*) \times T_x^* = (\mathcal{D} M_0^*) \circ (S_x^* \times T_x^*) \tag{483}
\]

\[
S_x^* \times (\mathcal{D} \tilde{M}_2^*) \times T_x^* = \begin{cases}
+ (\mathcal{D} M_2^*) \circ (S_x^* \times T_x^*) \\
+ (S_x^* \times T_x^*) \times (M_2^* \circ (S_x^* \times T_x^*)) \\
- (S_x^* \times T_x^*) \times (M_2^* \circ (S_x^* \times T_x^*)) \\
- (M_2^* \circ (S_x^* \times T_x^*)) \times (S_x^* \times T_x^*) \\
+ (M_2^* \circ (S_x^* \times T_x^*)) \times (S_x^* \times T_x^*)
\end{cases} \tag{484}
\]

If we then set \(M_{2,0}^* := M_2^* - M_0^* , \tilde{M}_{2,0}^* := \tilde{M}_2^* - \tilde{M}_0^* \), the above system further simplifies

\[
S_x^* \times (\mathcal{D} \tilde{M}_0^*) \times T_x^* = (\mathcal{D} M_0^*) \circ (S_x^* \times T_x^*) \tag{485}
\]

\[
S_x^* \times (\mathcal{D} \tilde{M}_2^*) \times T_x^* = \begin{cases}
+ (\mathcal{D} M_{2,0}^*) \circ (S_x^* \times T_x^*) \\
+ (S_x^* \times T_x^*) \times (M_{2,0}^* \circ (S_x^* \times T_x^*)) \\
- (M_{2,0}^* \circ (S_x^* \times T_x^*)) \times (S_x^* \times T_x^*)
\end{cases} \tag{486}
\]

Remark 2: organic moulds. The group identity \(\delta_x \delta_y = \delta_{x+y} \) is intimately connected with the strong stability – mainly under mould composition, but not only – of the so-called organic mould family generated by \(S_x^* \) and \(T_x^* \):

\[
S_x^* \times T_x^* = 1^* \quad \text{SIT}^*_x \circ \text{SIT}^*_y = \text{SIT}^*_{x+y} \quad \text{with} \quad \text{SIT}^*_x := S_x^* \times T_x^* \\
SIT^*_{x,x'} \circ \text{SIT}^*_{y,y'} = \text{SIT}^*_{x+y,x'+y'} \quad \text{with} \quad \text{SIT}^*_{x,x'} := x' S_x^* \times T_x^* \\
\]

\(^{103}\)\(\mathcal{T}^* \mathcal{T} \) is a representation of the identity in the corresponding mould family generated by \(S_x^* \) and \(T_x^* \).
The organic moulds occur in various other contexts, notably in alien calculus: they crucially enter the construction of the so-called organic derivations \(\Delta^\omega_{\text{org}} \) which, unlike the standard derivations \(\Delta^\omega \), are well-behaved, that is to say, possess optimal growth properties in \(\omega \) as \(|\omega| \to \infty \).

6.6 Recovering the general bicolours from the all-blacks: the operators discram and viscram.

The formulae we are going to enunciate now may be thought of as Green-like, in the sense that they express the ‘whole picture’ (here: the whole of \(\text{ARI}_\text{al}^{\text{il} \text{bico}} \)) from ‘boundary data’ (here: any of the three satellite systems).

We shall start from the first upper satellite \(sa^* \) and show how to recover everything from it (next proposition). Then, in the next two sections, we shall show how to go directly from the second upper satellite \(sa^{**} \) to the first, and back. Since the lower satellite \(sa \) was, from the very start, in biconstructive correspondence with \(sa^{**} \), that will automatically provide indirect paths from \(sa \) and \(sa^{**} \) to \(\text{ARI}_\text{al}^{\text{il} \text{bico}} \). But to arrive at a truly satisfying picture, we shall also sketch direct paths from \(sa \) and \(sa^{**} \) to \(\text{ARI}_\text{al}^{\text{il} \text{bico}} \).

Proposition 6.7 (Recovering \(\text{ARI}_\text{al}^{\text{il} \text{bico}} \) from \(sa^*, \text{ARI}_\text{al}^{\text{il} \text{bico}} \)).

Let \(A^* \) be an element of \(\text{ARI}_\text{al}^{\text{il} \text{bico}} \) with \((A^*_0, A^*_1) = (sa^*_0, A^*, sa^{**}_0, A^*) \) as usual. Then the whole of \(A^* \) is constructively determined by its all-black part \(A^*_1 \), and even by the sole even-degreed components of \(A^*_1 \). Roughly speaking, the all-white part \(A^*_0 \) can be recovered from \(A^*_1 \) via the operator viscram, and the terms of mixed colour via the operator discram. The exact procedure, rather involved but entirely constructive and formula-based, is set forth in detail below.

Explicit procedure: To ease the exposition, we shall slightly depart from the previous notations. We now decompose \(A^* \) and its image \(*A^* \) under \(\text{adari}(pa^*) \) into all-white parts \(W^* \), \(*W^* \), all-black parts \(B^* \), \(*B^* \), and (strictly) mixed-colour parts \(M^* \), \(*M^* \).

\[
A^* = W^* + M^* + B^* \in \text{ARI}_\text{al}^{\text{il} \text{bico}} \tag{487}
\]

\[
A^ = *W^* + *M^* + *B^* \in \text{ARI}_\text{al}^{\text{il} \text{bico}\text{-non-entire}} \tag{488}
\]

For each mould, the length-\(r \) component is marked by a lower index \(r \). We can assume \(A^* \) to be of weight \(s \). The moulds of the upper series (487) have at most \(s \) non-vanishing components (polynomial in \(u \)) while the moulds of the lower series (488) usually have infinitely many components (rational in \(u \) rather than polynomial).
Let $A_{r_0}^*$ be the lowest component of A^*. It coincides with the lowest component $^\ast A_{r_0}^*$ of $^\ast A^*$, has even degree d_0, and is automatically bialternal.\footnote{That lowest length r_0 has the same parity as the weight s.} The aim is to construct the whole of A^* from the data $B_{r_0}^*, B_{r_0+2}^*, B_{r_0+4}^*, \ldots$. Let us recall/introduce the operators trunc_r and viscram^*:\footnote{viscram^* is a normalised variant of viscram. The normalising factor $(2^{-d} - 1)^{-1}$ stems from the constraints of colour consistency. See (622).}

\[
\begin{align*}
\text{trunc}_r S_r^* & := S_0^* + S_1^* + S_2^* + \cdots + S_r^* \\
\text{viscram}^* S_r^* & := (2^{-d} - 1)^{-1} \text{viscram} S_r^* \text{ if } \deg(S_r^*) = d
\end{align*}
\]

(489) (490)

Starting the induction: from $B_{r_0}^*$ to $A_{r_0}^*$ and $A_{r_0+1}^*$

These three steps enlarge the even-degreed $B_{r_0}^*$ to the even-degreed $A_{r_0}^*$:

\[
\begin{align*}
B_{r_0}^* & \xrightarrow{\text{viscram}^*} W_{r_0}^* \\
B_{r_0}^* & \xrightarrow{\text{discram}} \quad M_{r_0}^* + B_{r_0}^* \\
B_{r_0}^* & \quad \rightarrow \quad A_{r_0}^* := W_{r_0}^* + M_{r_0}^* + B_{r_0}^*
\end{align*}
\]

(491) (492) (493)

This one step takes us from the even-degreed $A_{r_0}^*$ to the odd-degreed $A_{r_0+1}^*$:

\[
^* A_{r_0}^* \xrightarrow{\text{trunc}_{r_0+1} \text{adari} \text{(pal)*}} A_{r_0+1}^* \quad (A_{r_0}^* = ^* A_{r_0}^* \text{ but } A_{r_0+1}^* \neq ^* A_{r_0+1}^*)
\]

(494)

Continuing the induction: from $B_{2n+r_0}^*$ to $A_{2n+r_0}^*$ and $A_{2n+r_0+1}^*$

The following step takes us from $\text{trunc}_{2n+r_0} A^*$ (already known) to $^* B_{2n+r_0}^*$ (not yet known). It also produces parasitical terms $^* W_{2n+r_0}^*$ and $^* M_{2n+r_0}^*$ which bear no relation to $^* W_{2n+r_0}^*$ and $^* M_{2n+r_0}^*$:

\[
\begin{align*}
A_{r_0}^* + \cdots + A_{2n+r_0-1}^* + B_{2n+r_0}^* & \xrightarrow{\text{trunc}_{2n+r_0} \text{adari} \text{(pal)*}} A_{r_0}^* + \cdots + A_{2n+r_0-1}^* + \text{***} W_{2n+r_0}^* + \text{***} M_{2n+r_0}^* + ^* B_{2n+r_0}^*
\end{align*}
\]

(495) (496)

The genuine $^* W_{2n+r_0}^*$ and $^* M_{2n+r_0}^*$ are produced by the next steps:

\[
\begin{align*}
^* B_{2n+r_0}^* & \xrightarrow{\text{viscram}^*} ^* W_{2n+r_0}^* \\
^* B_{2n+r_0}^* & \xrightarrow{\text{discram}} ^* M_{2n+r_0}^* + ^* B_{2n+r_0}^* \\
^* B_{2n+r_0}^* & \quad \rightarrow \quad ^* A_{2n+r_0}^* := ^* W_{2n+r_0}^* + ^* M_{2n+r_0}^* + ^* B_{2n+r_0}^*
\end{align*}
\]

(497) (498) (499)

We are now in full possession of $\text{trunc}_{2n+r_0} A^*$ and can proceed in one step to $\text{trunc}_{2n+r_0+1} A^*$:

\[
\begin{align*}
^* A_{r_0}^* + \cdots + ^* A_{2n+r_0}^* & \xrightarrow{\text{trunc}_{2n+r_0+1} \text{adari} \text{(pal)*}} A_{r_0}^* + \cdots + A_{2n+r_0+1}^*
\end{align*}
\]

(500)

This completes the induction □
6.7 The double symmetry’s reflection in the extremal algebra.

Introduction. The extremal and penextremal algebras.

The extremal algebra $ARI_{\text{bico.ext}}^{al/d}$ consists of bimoulds of degree $d = 0$ and therefore $r = s$. Since all alternility relations commingle components of various lengths and degrees, there would seem to be no way of expressing these relations within $ARI_{\text{bico.ext}}^{al/d}$, at least not directly so. If however we consider the slightly larger ‘penextremal’ algebra $ARI_{\text{bico.peneext}}^{al/d}$, consisting of all bimoulds of degree 0 or 1, we can at least express weak alternility (see below) there, since weak alternility involves only two consecutive component lengths, namely $r = s$ and $r = s - 1$. Improbable though it may sound, this in fact implies full alternility. Moreover we shall find that, in the constraints so obtained, the components of length 1 can be easily eliminated. This shall leave us with a complete system of constraints, fully internal to the extremal algebra $ARI_{\text{bico.ext}}^{al/d}$.

The dimorphy constraints in the extremal algebra.

Definition 6.3 (Weak symmetries).

A bimould A^* is said to be weakly alternal if it verifies only the alternality relations $\sum_{w \in \text{sha}(w',w'')} A^w = 0$ with w' of length 1 and w'' of any length. The same applies for weakly alternil.

Lemma 1: In a double symmetry, either symmetry may be weakened (without incurring any loss), but not both simultaneously:

\[
\{\text{al} / \text{al}\} \leftrightarrow \{\text{al}^{\text{weak}} / \text{al}\} \leftrightarrow \{\text{al} / \text{il}\} \leftrightarrow \{\text{al}^{\text{weak}} / \text{il}\}
\]

Lemma 2: A bimould A^* of weight s in $ARI_{\text{bico}}^{al/d}$ is entirely determined by its restriction to the extremal algebra $ARI_{\text{bico.ext}}^{al/d}$, that is to say by its values $A^{(r_1, \ldots, r_s)}$ for all ϵ_i in $\{0, \frac{1}{2}\}$.

Let us now express the dimorphy constraints first within the penextremal, then the extremal algebra. Any element $A^* \in ARI_{\text{bico.peneext}}^{al/d}$ may be expanded in the form:

\[
A^* = \sum b^{r_1, \ldots, r_s} \lambda^d_{0, \epsilon_1, \ldots, \epsilon_s}\lambda^d_{0, \epsilon_2, \ldots, \epsilon_s} \ldots \lambda^d_{0, \epsilon_s} u_{1}^{\epsilon_0} \quad \text{if } r = s \quad (501)
\]

\[
A^* = \sum c^{r_1, \ldots, r_{s-1}} \lambda^d_{1, \epsilon_1, \ldots, \epsilon_{s-1}} \lambda^d_{0, \epsilon_2, \ldots, \epsilon_{s-1}} \lambda^d_{0, \epsilon_{s-1}} u_{d_0}^{\epsilon_0} \quad \text{if } r = s - 1 \quad (502)
\]

with $\lambda^d_{d_0, \epsilon_0} := \begin{cases} u_{d_0} & \text{if } \epsilon_0 = \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$ (503)
We must of course take all the multibrackets \(\tilde{u}(\lambda_{0}^{\bullet}, \ldots, \lambda_{0,\epsilon_{s-1}}^{\bullet}) \) to get a basis for the degree-1 alternals, but only some of the \(\tilde{u}(\lambda_{0,\epsilon_{0}}^{\bullet}, \ldots, \lambda_{0,\epsilon_{s}}^{\bullet}) \) to generate the degree-0 alternals. Let us now express the weak alternality relations for such a bimould \(A^{\bullet} \). They read:

\[
\text{(swap.Wil.swap } A)^{0} = \sum_{p} A^{w_{p}^{*}} + \sum_{q} A^{w_{q}^{*}} P(u_{s+}) \quad (504)
\]

Here \(\text{Wil} \) denotes the linearisation (resp. annihilation) operator for symmetrils (resp. alternils) bimoulds, relative to the sequence splitting

\[
w = w' w'' \quad \text{with} \quad w = (w_{1}, \ldots, w_{r}), \ w' = (w_{1}), \ w'' = (w_{2}, \ldots, w_{r})
\]

Explicitly:

\[
\text{(Wil.A)}^{w} = \sum_{w' \text{shat}(w', w'')} A^{w'} + \sum_{2 \leq i \leq r} P(v_{1} - v_{i}) (A^{u^{1i}} - A^{u^{i1}}) \quad (505)
\]

with \(\w_{1i} = (\ldots, v_{i-1}, v_{1}, v_{i+1}, \ldots) \) and \(\w_{i1} = (\ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots) \).

We now plug (501) into \(\sum_{s}^{*} \) of (504) and (502) into \(\sum_{s}^{**} \) of (504). Simplications occur, leading to the disappearance of the \(u_{i} \) variables from both numerators and denominators. Eventually, for sequences \((\epsilon_{1}, \ldots, \epsilon_{s}) \) ending with \(\epsilon_{s} = 0 \) and \(\epsilon_{s} = \frac{1}{2} \), we find respectively

\[
0 = \sum H_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} b_{1}^{\epsilon_{1}} \ldots b_{s}^{\epsilon_{s}} + \epsilon_{s+1} \quad (506)
\]

\[
0 = \sum K_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} b_{1}^{\epsilon_{1}} \ldots b_{s}^{\epsilon_{s}} + \sum L_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} \epsilon_{1}^{\epsilon_{s}+1} \epsilon_{2}^{\epsilon_{s}+1} \ldots (507)
\]

with coefficients \(H_{\bullet}, K_{\bullet}, L_{\bullet} \) in \(\mathbb{Z} \). Eliminating the coefficients \(c_{\bullet} \) between (506) and (507), we get the following \(2^{s-1} \) structure constraints which characterise the subalgebra \(ARI_{\text{bico.ext}}^{\text{bico.ext}} \) of \(ARI_{\text{bico.ext}}^{\text{bico.ext}} \):

\[
R_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} : \quad 0 = \sum_{\epsilon_{s} \in (0, \frac{1}{2})} R_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} b_{1}^{\epsilon_{1}} \ldots b_{s}^{\epsilon_{s}} \quad \text{(with } R_{\bullet}^{\bullet} \in \mathbb{Z}) \quad (508)
\]

The \(2^{s-1} \) relations \(R_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} \) are clearly not independent. However:

Conjecture: The first \(\rho_{s} \) relations \(R_{\epsilon_{1}, \ldots, \epsilon_{s-1}}^{\epsilon_{s}+1} \) are independent and imply all others. Here, ‘first’ is relative to the order induced by \(n(\epsilon) := \sum \epsilon_{i} 2^{i} \) and \(\rho_{s} := 1 + d_{s} - d_{s}^{*} \), where \(d_{s} \) resp. \(d_{s}^{*} \) denotes the dimension of the component of weight \(s \) in the free Lie algebra \(\mathfrak{L}[e_{1}, e_{2}, e_{3}, e_{4}, \ldots] \) resp. \(\mathfrak{L}[e_{1}, e_{3}, e_{5}, e_{7}, \ldots] \) (\(\epsilon_{s} \) is assigned weight \(s \)).
Subalgebras: keeping track of push-invariance.

One can in similar fashion express the symmetry alternality+ pushu-invariance\(^{106}\) first in the penextremal algebra and then, after elimination of the components of degree 1, purely in the extremal algebra. This leads to an important algebra \(ARI_{bico,ext}^{al/pushu}\) halfway between \(ARI_{bico,ext}^{al/pushu}\) and \(ARI_{bico,ext}^{al}\). Here, however, bimoulds in \(ARI_{bico}^{al/pushu}\) are not fully determined by their restriction to \(ARI_{bico,ext}^{al/pushu}\): to ensure complete rigidity, it takes the full dimorphy, i.e. alternality (of the bimould itself) and alternility (of the swappee).

6.8 The degree-length exchanger \(dre\). Co-satellites.

This section’s object is to prepare for one of our main results – the correspondence between the first and second upper satellites. As it happens, the correspondence in question is best understood following the \(pd\), filtration, i.e. starting from low degrees \(d\) and correspondingly large lengths \(r\). But \(r\) being the number of \(u_i\)-variables, that filtration is rather unwieldy. So, to fall back on the more familiar and tractable filtration \((d\downarrow, r\uparrow)\), we shall resort to a suitable \(d\leftrightarrow r\) exchanging isomorphism.

The Hoffman duality.

The classical Hoffman duality for monocolours

\[
Ze^{d_1+1,1^{(r_1-1)},...,d_n+1,1^{(r_n-1)}} = Ze^{r_n+1,1^{(d_n-1)},...,r_1+1,1^{(d_1-1)}} \quad (\forall d_j, r_j \geq 1) \tag{509}
\]

easily follows from the integral representation (340) and does indeed exchange \(d\) and \(r\), but it possesses no simple extension to bicolours. So we must come up with something else.

The \(d\leftrightarrow r\) exchanger \(dre\).

In analogy with the situation in \(ARI_{bico}^{al/pushu}\), we say that a polynomial-valued mould is of weight \(s\) if each component of length \(r \leq s\) is a homogeneous polynomials in \(u_1, \ldots, u_r\) of total degree \(d = s - r\), and each component of length \(r > s\) vanishes. Any alternal polynomial-valued mould \(A^*\) of weight \(s\) can be uniquely expressed as the 0-amplification of an alternal, scalar-valued mould \(X^*\) of length \(s\) with discrete binary indices \(\eta_j \in \{0, 1\}\). If we now take the 1-amplification of that same \(X^*\), we get a new alternal mould \(B^*\) of weight \(s\). Since the involution \(A^* \leftrightarrow B^*\) so defined exchanges the degree \(d\)

\(^{106}\)pushu-invariance is the tweaked form of push-invariance induced by the classical isomorphism \(adari(pai^*) : ARI_{bico}^{al/pushu} \rightarrow ARI_{bico}^{al/pushu}\).
and length \(r \) of mould components, we call it the \(d \leftrightarrow r \)-exchanger, or \(dre \) for short. The same construction applies without modification to symmetric moulds. Graphically:

\[
\begin{align*}
A^* &= am_0 X^* \xrightarrow{dre} B^* = am_1 X^* \quad (X^* \text{ binary alternal}) \\
A^* \in MU^al_{r,d} &\xrightarrow{dre} B^* \in MU^al_{d,r} \\
S^* &= am_0 Y^* \xrightarrow{dre} T^* = am_1 Y^* \quad (Y^* \text{ binary symmetric}) \\
S^* \in MU^as_{r,d} &\xrightarrow{dre} T^* \in MU^as_{d,r}
\end{align*}
\]

6.9 Correspondence of the two upper satellite systems.

We are now in a position to take up this chapter’s last remaining challenge, i.e. finding a direct connection between the first and second upper satellites:

\[
\begin{align*}
(A^*_{s\oplus 0}, A^*_{s\oplus 1}) := (sa^*_0 A^*, sa^*_1 A^*) \\
(S^*_{s\oplus 0}, S^*_{s\oplus 1}) := (sa^*_0 S^*, sa^*_1 S^*) \\
(A^*_{s\oplus 0}, A^*_{s\oplus 1}) := (sa^*_0 A^*, sa^*_1 A^*) \\
(S^*_{s\oplus 0}, S^*_{s\oplus 1}) := (sa^*_0 S^*, sa^*_1 S^*) \\
A^* \in ARI^{al/\bico}_{r,d} \\
S^* \in GARI^{as/\bico}_{r,d}
\end{align*}
\]

Equivalence of the all-whites.

Proposition 6.8 (Coincidence of \(sa^*_0 \) and \(sa^*_0^{**} \)).

Provided we adopt for \(sa^*_0^{**} \) the correct definitions (443)-(444) that take into account the perturbations introduced by length-1 components, we find that the all-whites of both upper satellites exactly coincide:

\[
\begin{align*}
A^*_{s\oplus 0} = A^*_{s\oplus 0} \\
\forall A^* \in ARI^{al/\bico}_{r,d} \\
S^*_{s\oplus 0} = S^*_{s\oplus 0} \\
\forall S^* \in GARI^{as/\bico}_{r,d}
\end{align*}
\]

Involutive correspondence between the all-blacks.

The correspondence between the all-blacks is more recondite. To express it, we require a mould derivation \(K \) and an involutive mould automorphism \(\kappa \).

Here are the definitions:\(^{107}\)

\[
\begin{align*}
K M^* = arit(Pa^*).M^* - lu(Pa^*, M^*) & \quad \text{with} \quad \left\{ \begin{array}{l}
P_{a^*}^{u_1} := P(u_1) = 1 \\
P_{a^*}^{u_1,...,u_r} := 0 \text{ if } r \neq 1 \\
\end{array} \right. \\
\kappa = \text{dre}. e^K \text{. dre}. \text{pari}
\end{align*}
\]

\(^{107}\)Recall that \(\text{pari} \) multiplies mould or bimould components of depth \(r \) by \((-1)^r \) and that \(\text{neg} \) changes the sign of each index \(w_i \).
A more explicit formula for K’s action reads:

$$(K \mathcal{M})^{u_1, \ldots, u_r} = \left\{ \begin{array}{ll} + \sum_{1 \leq j < r} (\mathcal{M}^{u_j - 1, u_j + 1} - \mathcal{M}^{u_j - 1, u_j + 1}) P(u_j) \\ - \sum_{1 \leq j \leq r} (\mathcal{M}^{u_j - 1, u_j + 1} - \mathcal{M}^{u_j - 1, u_j + 1}) P(u_j) \end{array} \right.$$

As for the involutive character of \mathcal{R}, it results from:

$$\text{dre} \cdot e^K \cdot \text{dre} \cdot \text{pari} = \text{dre} \cdot e^K \cdot \text{neg} \cdot \text{dre} = \text{dre} \cdot \text{neg} \cdot e^{-K} \cdot \text{dre}$$

Proposition 6.9 (Involutive correspondence between $sa_{1/2}^*$ and $sa_{1/2}^{**}$).

Provided we adopt for $sa_{1/2}^{**}$ the correct definitions (443)-(444) that take into account the perturbations introduced by length-1 components, we find that the all-blacks of both upper satellites correspond under the involution \mathcal{R}:

$$A_{*1/2}^* \leftrightarrow A_{**1/2}^* \quad \forall A^* \in ARIT^{al/d}_{bico}$$

$$S_{*1/2}^* \leftrightarrow S_{**1/2}^* \quad \forall S^* \in GARIT^{as/ix}_{bico}$$

Remark 1: Given that each upper satellite contains ‘all the information’, the existence of a more or less explicit correspondence between the two was a foregone conclusion. The surprise, though, is that the correspondence should operate, not between the pairs $(A_{*0}, A_{*1/2}) \leftrightarrow (A_{**0}, A_{**1/2})$, but separately between the all-whites and all-blacks: $A_{*0} \leftrightarrow A_{**0}$, $A_{*1/2} \leftrightarrow A_{**1/2}$.

Remark 2: The identity $sa_{0}^* = sa_{0}^{**}$ is easy to spot (less so to prove) in the algebra $ARIT^{al/d}_{bico}$, because there the presence of a length-1 component $A^{(*1/2)}$ hardly affects the shape of $sa^{**}.A^*$. See (443). This is no longer the case in the group $GARIT^{as/ix}_{bico}$, where the presence of a length-1 component $S^{(*1/2)}$ upsets everything, as obvious from the formula (444). This must be the reason why so remarkable, so fundamental, and so simple an identity as $sa_{0}^*, zag^* = sa_{0}^{**}, zag^*$ had escaped notice for so long.

Remark 3: The involutive correspondence $\mathcal{R} : sa_{1/2}^* \leftrightarrow sa_{1/2}^{**}$ was even less conspicuous and we confess that it took us quite some time to figure it out. The thing is that the low-length components (- on which one tends to focus-) hardly bear any resemblance in $A_{*1/2}$ and $A_{**1/2}$. It is only when we focus on the low-degree components that a pattern begins to emerge.

6.10 Recapitulation: the circulation of information.

A telling analogy.

To appreciate the minor miracles of bicolour satellisation, which begin – but do not end – with the recoverability of the whole from small parts, the
analogy with functions defined on the closed unit disk may not be out of
place. The two, largely self-explanatory pictures below show how the whole
(in blue) and the three systems of boundary data (in black) relate to each other
in both situations. The black arrows depict the circulation of information
under the weaker assumptions (one single symmetry for bicolours; mere
smoothness for functions -), while the red arrows show what new channels of
communication suddenly open under the stronger assumptions (dimorphy
i.e. a double symmetry for bicolours; harmonicity for functions-).

\[
\{\text{zag}^* \text{ symmetrical}\} \quad \text{Fig. 1} \quad \{\text{zig}^* \text{ symmetrical}\}
\]

\[
sa^* = \begin{cases}
\text{zag} \left(\begin{array}{ccc}
u_1 & \cdots & u_r \\
0 & & 0
\end{array} \right) \\
\text{zag} \left(\begin{array}{ccc}
u_1 & \cdots & u_r \\
\frac{1}{2} & & \frac{1}{2}
\end{array} \right)
\end{cases}
\]

\[
sa = \left\{ \text{zag} \left(\begin{array}{ccc}
u_1 & \cdots & u_r \\
0 & & 0
\end{array} \right) \right\}
\rightarrow
\quad
\rightarrow
\]

\[
sa^* = \left\{ \left(\text{am}_0 . \text{zag} \right) \left(\begin{array}{ccc}
u_1 & \cdots & u_r \\
0 & & 0
\end{array} \right) \right\}
\]

\[
\text{F smooth}
\]

\[
sa^* = \left\{ F^{(n_1, n_2)}(0,0) : n_i \in \mathbb{N} \right\}
\]

\[
sa = \left\{ F(x_1, x_2) : x_1^2 + x_2^2 = 1 \right\}
\rightarrow
\quad
\rightarrow
\]

\[
sa^* = \left\{ F_n : n \in \mathbb{Z} \right\}
\]

\[
\text{F harmonic}
\]

Let us now collect in one place, for easier survey, all the main formulae pertaining
to satellisation and co-satellisation.\footnote{i.e. upper satellisation followed by the \(d \leftrightarrow r\) exchange \(dre\).}

108
Lower satellisation of bicolours.

\[
\begin{align*}
\text{ARI}_\text{bico}^{\text{sat}} & \ni A^* \xrightarrow{\text{sa}} A^* & \text{GARI}_\text{bico}^{\text{sat}} & \ni S^* \xrightarrow{\text{sa}} S^* \\
A^{e_1, \ldots, e_r} & := A^{(0, \ldots, 0)}_{e_1, \ldots, e_r} & S^{e_1, \ldots, e_r} & := S^{(0, \ldots, 0)}_{e_1, \ldots, e_r}
\end{align*}
\]

First (upper) satellisation of bicolours.

\[
\begin{align*}
\text{ARI}_\text{bico}^{\text{sat}} & \ni A^* \xrightarrow{\text{sa}^*} A^* & \text{GARI}_\text{bico}^{\text{sat}} & \ni S^* \xrightarrow{\text{sa}^*} S^* \\
A^{e_1, \ldots, e_r} & := A^{(u_1, \ldots, u_r)}_{e_1, \ldots, e_r} & S^{e_1, \ldots, e_r} & := S^{(u_1, \ldots, u_r)}_{e_1, \ldots, e_r}
\end{align*}
\]

Second (upper) satellisation of bicolours.

\[
\begin{align*}
\text{ARI}_\text{bico}^{\text{sat}} & \ni A^* \xrightarrow{\text{sa}^{**}} A^* & \text{GARI}_\text{bico}^{\text{sat}} & \ni S^* \xrightarrow{\text{sa}^{**}} S^* \\
A^{e_1, \ldots, e_r} & := -\text{neg amat }_0 A^* + \text{neg amat }_2 A^* + \left(A\left(\frac{q}{2} \right) \right) I^* & S^{e_1, \ldots, e_r} & := \text{invmut amat }_0 S^* + \text{invmut amat }_2 S^* + e^{\left(\frac{q}{2} \right)} I^*
\end{align*}
\]

with the mould derivation \(\mathfrak{D} \):

\[
(\mathfrak{D}A)^{u_1, \ldots, u_r} := (u_1 + \cdots + u_r)A^{u_1, \ldots, u_r},
\]

and the amplification operators \(\text{amat }_0, \text{amat }_2 \):

\[
\begin{align*}
(\text{amat }_0 \cdot M)^{u_1, \ldots, u_r} & := \sum_{0 \leq \alpha} M^{(0, \ldots, 0)}_{0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0} u_1^{n_1} u_2^{n_2} \cdots u_r^{n_r} \\
(\text{amat }_2 \cdot M)^{u_1, \ldots, u_r} & := \sum_{0 \leq \alpha} M^{(0, \ldots, 0)}_{0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0, \ldots, 0} u_1^{n_1} u_2^{n_2} \cdots u_r^{n_r}
\end{align*}
\]

First and second co-satellisation of bicolours.

\[
\begin{align*}
\text{ARI}_\text{bico}^{\text{sat}} & \ni A^* \xrightarrow{\text{sa}^d} \mathfrak{A}^* := \text{drec } A^* & \text{GARI}_\text{bico}^{\text{sat}} & \ni S^* \xrightarrow{\text{sa}^d} \mathfrak{S}^* := \text{drec } S^* \\
\text{ARI}_\text{bico}^{\text{sat}} & \ni A^* \xrightarrow{\text{sa}^{d\#}} \mathfrak{A}^{\#} := \text{drec } A^* & \text{GARI}_\text{bico}^{\text{sat}} & \ni S^* \xrightarrow{\text{sa}^{d\#}} \mathfrak{S}^{\#} := \text{drec } S^*
\end{align*}
\]

with the \(d \leftrightarrow r \)-exchanger \(\text{drec } \) introduced in §4.8.
First and second (upper) satellisation of *ari/gari*.

<table>
<thead>
<tr>
<th>$(A^, B^)$</th>
<th>\rightarrow</th>
<th>C^*</th>
<th>$(S^, T^)$</th>
<th>\rightarrow</th>
<th>R^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa* \downarrow sa*</td>
<td>\rightarrow</td>
<td>C^*</td>
<td>\rightarrow</td>
<td>R^*</td>
<td></td>
</tr>
</tbody>
</table>

\[
C_0^* = \text{lu}(A_0^*, B_0^*) + \text{arit}(B_0^*) A_0^* - \text{arit}(A_0^*) B_0^* \equiv \text{ari}(A_0^*, B_0^*)
\]

\[
C_2^* = \text{lu}(A_2^*, B_2^*) + \text{arit}(B_2^*) A_2^* - \text{arit}(A_2^*) B_2^* \equiv \text{ari}(A_2^*, B_2^*)
\]

\[
R_0^* = \mu(\text{garit}(T_0^*), S_0^*, T_0^*) \equiv \text{gari}(S_0^*, T_0^*)
\]

\[
R_2^* = \mu(\text{garit}(T_2^*), S_2^*, T_2^*)
\]

<table>
<thead>
<tr>
<th>$(A^, B^)$</th>
<th>\rightarrow</th>
<th>C^*</th>
<th>$(S^, T^)$</th>
<th>\rightarrow</th>
<th>R^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa** \downarrow sa**</td>
<td>\rightarrow</td>
<td>C^*</td>
<td>\rightarrow</td>
<td>R^*</td>
<td></td>
</tr>
</tbody>
</table>

\[
C_0^* = \text{lu}(A_0^*, B_0^*) + \text{arit}(B_0^*) A_0^* - \text{arit}(A_0^*) B_0^* \equiv \text{ari}(A_0^*, B_0^*)
\]

\[
C_2^* = \text{lu}^*(A_2^*, B_2^*) + \text{arit}(B_2^*) A_2^* - \text{arit}(A_2^*) B_2^* \equiv \text{ari}^*(A_2^*, B_2^*)
\]

\[
R_0^* = \mu(\text{garit}(T_0^*), S_0^*, T_0^*) \equiv \text{gari}(S_0^*, T_0^*)
\]

\[
R_2^* = \mu^*(\text{garit}(T_2^*), S_2^*, T_2^*)
\]

with

\[
\text{lu}^*(A^*, B^*) := \text{lu}(A^*, B^*) + A^0 \odot B^* - B^0 \odot A^*
\]

\[
\mu^*(S^*, T^*) := \mu(\exp(-T^0 \odot), S^*, T^*)
\]
First and second (upper) co-satellisation of \(ari/gari \).

\[
\begin{array}{cccc}
(A^*, B^*) & \rightarrow & C^* & \rightarrow & (S^*, T^*) & \rightarrow & R^* \\
\text{sa}^2 \downarrow \text{sa}^2 & \downarrow \text{sa}^2 & \text{sa}^2 \downarrow \text{sa}^2 & \downarrow \text{sa}^2 \\
\{ \mathfrak{X}_0, \mathfrak{X}_1 \}, \{ \mathfrak{X}_0, \mathfrak{X}_2 \} & \rightarrow & \{ \mathfrak{X}_0, \mathfrak{X}_1 \} & \rightarrow & \{ \mathfrak{X}_0, \mathfrak{X}_2 \} & \rightarrow & \{ \mathfrak{X}_0, \mathfrak{X}_3 \}
\end{array}
\]

\[
\mathfrak{C}^*_0 = \text{lu}(\mathfrak{X}_0, \mathfrak{X}_1) + \text{arit}(\mathfrak{X}_0, \mathfrak{X}_1) \mathfrak{X}_0 - \text{arit}(\mathfrak{X}_0, \mathfrak{X}_1) \mathfrak{X}_1 = \text{ari}(\mathfrak{X}_0, \mathfrak{X}_1) \quad (526)
\]

\[
\mathfrak{C}^*_2 = \begin{cases}
-\text{lu}^2(\mathfrak{X}_0, \mathfrak{X}_1) + \mathfrak{X}_0^0 . \text{lu}(T^*, \mathfrak{X}_1) - \mathfrak{X}_1^0 . \text{lu}(T^*, \mathfrak{X}_0) \\
+\text{lu}^2(\mathfrak{X}_0, \mathfrak{X}_1) + \text{lu}^2(\mathfrak{X}_0, \mathfrak{X}_1) \\
+\text{arit}(\mathfrak{X}_0, \mathfrak{X}_1) - \text{arit}(\mathfrak{X}_0, \mathfrak{X}_1)
\end{cases}
\quad (527)
\]

with the composition unit \(T^* \) and the tweaked Lie bracket \(\text{lu}^2 + \text{lu}^4 \) :

\[
\begin{array}{ll}
T^*_{\mu v} := 1 & \forall u_1 \\
T^*_{\mu_1 \ldots \mu_r} := 0 & \forall r \neq 1 \\
\text{lu}^2(A^*, B^*) := \text{lu}(A^*, B^*) - A^0 \otimes B^0 + B^0 \otimes A^0
\end{array}
\quad (528)
\]

\[
\begin{array}{cccc}
(A^*, B^*) & \rightarrow & C^* & \rightarrow & (S^*, T^*) & \rightarrow & R^* \\
\text{sa}^{\#} \downarrow \text{sa}^{\#} & \downarrow \text{sa}^{\#} & \text{sa}^{\#} \downarrow \text{sa}^{\#} & \downarrow \text{sa}^{\#} \\
\{ \mathfrak{X}_0, \mathfrak{X}_1 \}, \{ \mathfrak{X}_0, \mathfrak{X}_2 \} & \rightarrow & \{ \mathfrak{X}_0, \mathfrak{X}_1 \} & \rightarrow & \{ \mathfrak{X}_0, \mathfrak{X}_2 \} & \rightarrow & \{ \mathfrak{X}_0, \mathfrak{X}_3 \}
\end{array}
\]

\[
\mathfrak{C}^*_0 = \text{lu}(\mathfrak{X}_0, \mathfrak{X}_1) + \text{arit}(\mathfrak{X}_0, \mathfrak{X}_1) \mathfrak{X}_0 - \text{arit}(\mathfrak{X}_0, \mathfrak{X}_1) \mathfrak{X}_1 = \text{ari}(\mathfrak{X}_0, \mathfrak{X}_1) \quad (530)
\]

\[
\mathfrak{C}^*_2 = \begin{cases}
-\text{lu}^2(\mathfrak{X}_0, \mathfrak{X}_1) + 2 \cdot \mathfrak{X}_0^0 . \text{lu}(T^*, \mathfrak{X}_1) - 2 \cdot \mathfrak{X}_1^0 . \text{lu}(T^*, \mathfrak{X}_0) \\
+\text{lu}^2(\mathfrak{X}_0, \mathfrak{X}_1) + \text{lu}^2(\mathfrak{X}_0, \mathfrak{X}_1) \\
+\text{arit}(\mathfrak{X}_0, \mathfrak{X}_1) - \text{arit}(\mathfrak{X}_0, \mathfrak{X}_1)
\end{cases}
\quad (531)
\]

Thus, the formulae for \(ari^\# \) and \(ari^{\#\#} \) differ only by the presence of a factor 2 in front of the two corrective terms \(\mathfrak{X}_0^0 . \text{lu}(T^*, \mathfrak{X}_1) \) and \(\mathfrak{X}_1^0 . \text{lu}(T^*, \mathfrak{X}_0) \). There exist similar formulae for \(gari^\# \) and \(gari^{\#\#} \).
Counting our luck and listing our gains.

Satellisation succeeds only thanks to an improbable string of good luck:

Fluke 1: The drastic restriction \(sa \) to the extremal algebra \((d = 0) \) does not involve any loss of information, nor does the equally drastic restriction \(sa^* \) to the all-whites and all-blacks.

Fluke 2: The amplification, which takes us from \(sa \) to \(sa^{**} \), turns the subtractive \(\epsilon_i \)-flexions into additive \(a_i \)-flexions.

Fluke 3: All the constraints flowing from the double symmetry (‘dimorphy’) can be expressed internally within each satellite system.

Fluke 4: The \(ari/gari \) operations can also be expressed internally within each satellite system.

Fluke 5: Despite their completely different origin, the two upper satellisations \(sa^* \) and \(sa^{**} \) are easily convertible into each other: the all-whites \(sa^*_0 \) and \(sa^{**}_0 \) simply coincide, while the all-blacks \(sa^*_2 \) and \(sa^{**}_2 \) get exchanged under a remarkable involution \(\mathcal{R} \).

Fluke 6: There is an effective procedure, based on the operators \(discram \) and \(viscram \), for recovering the whole of \(ARI^{al/d}_{bico} \) or \(GARI^{al/d}_{bico} \) from each satellite.

Satellisation also brings huge rewards:

Gain 1: It makes possible a dramatic data reduction, by showing how to recover all the information from the all-whites+all-blacks, or even from the sole all-blacks, or even from the all-blacks of even degree.

Gain 2: In combination with the \(d \leftrightarrow r \) exchanger, satellisation, or rather the dual ‘co-satellisation’, enables one to work entirely within the \((s,d) \)-filtration, and thus to overcome the ‘curse of retro-action’.

Gain 3: Satellisation extends ‘perinomal’ irreducible analysis (\(luma^* \)-based) to the case of bicolours, and it eases ‘arithmetical’ irreducible analysis (\(loma^* \)-or \(lama^* \)-based) for both monocolours and bicolours (see §7.4-§7.6).

7 Multizeta algebra: decomposing the monocolours into irreducibles.

In this brief section, we return to the monocolours. Since the independence theorem for length-1 bicolour bialternals has no exact equivalent for monocolours, we are led to explore various alternative settings in search of ‘rigidity’, so as to ensure the uniqueness of decomposition.
We shall compare four main settings:
(i) $\mathbb{Z}/p\mathbb{Z}$-supported bialternals,
(ii) \mathbb{Z}-supported bialternals,
(iii) polynomial-valued bialternals.
(iv) perinomal bialternals,

We shall then try to show how deeply the four situations differ in regard to ‘rigidity’ by comparing the strikingly different forms which the *ari-oddari* conversion formulae109 assume in each case.

Lastly (– and briefly, because this doesn’t fall within the purview of this investigation and will be treated at length in a follow-up paper –), we shall sketch the two main strategies for decomposing the monocolours into remarkable (‘canonical’) systems of irreducibles, and examine in some detail how this works out up to length $r = 4$.

7.1 Polynomial bialternals.

This subsection is purely for perspective and contains no new information.
(i) It gives, subject (for $r \geq 4$) to the Broadhurst-Kreimer conjectures, the dimensions $\dim_{r,d}$ of the polynomial bialternals (for monocolours).
(ii) It gives, subject to a further classical conjecture saying that all bialternals are semi-freely110 generated by the so-called \ekma_{2d} (length-1) and $\carta_{3d,k}$ (length-4), the dimensions $\dim\text{elem}_{r,d}$ of the ‘elementary’ bialternals (generated by the \ekma_{2d}), and the complementary dimensions of the ‘exceptional’ bialternals $\dim\text{excep}_{r,d} := \dim_{r,d} - \dim\text{elem}_{r,d}$.
(iii) For comparison, it also gives the dimensions $\dim\text{free}_{r,d}$ of all alternals freely generated under the lu-bracket by the \ekma_{2d} (1 $\leq d$), or again the dimensions of all bicolour bialternals generated by the length-1 bicolour generators (leaving out the one of degree 0).

109i.e. the formulae for mutual conversion of the length-2 bialternals generated, in each setting, by the bracket *ari* and the pseudo-bracket *oddari*.

110i.e. without other relations between the \ekma_{2d} than the well-known relations in length 2, and all those generated by them.
In each case the dimensions are given via generating series.111

\begin{align*}
\text{dimfree}_1(t) & = \frac{t^2}{(1 - t^2)} \\
\text{dimfree}_2(t) & = \frac{t^6}{(1 - t^2)(1 - t^4)} \\
\text{dimfree}_3(t) & = \frac{t^8}{(1 - t^2)^2 (1 - t^6)} \\
\text{dimfree}_4(t) & = \frac{t^{10}}{(1 - t^2)^2 (1 - t^4)^2} \\
\text{dimfree}_5(t) & = \frac{t^{12} (1 + t^6)}{(1 - t^2)^3 (1 - t^4) (1 - t^{10})} \\
\text{dimfree}_6(t) & = \frac{t^{14} (1 + t^2 + 2 t^4 + 2 t^6 + 3 t^8 + 2 t^{12} + t^{14})}{(1 - t^2)^2 (1 - t^4)^2 (1 - t^8) (1 - t^{12})}
\end{align*}

\begin{align*}
\text{dim}_1(t) & := \frac{t^2}{(1 - t^2)} \\
\text{dim}_2(t) & := \frac{t^6}{(1 - t^2)(1 - t^6)} \\
\text{dim}_3(t) & := \frac{t^8 (1 + t^2 - t^4)}{(1 - t^2)(1 - t^4)(1 - t^6)} \\
\text{dim}_4(t) & := \frac{t^{10} (1 + 2 t^4 + t^6 + t^8 + 2 t^{10} + t^{14} - t^{16})}{(1 - t^2)(1 - t^5)(1 - t^8)(1 - t^{12})} \\
\text{dim}_5(t) & := \frac{t^{10} (1 + 2 t^2 + 3 t^4 + 3 t^6 + 2 t^8)}{(1 - t^4)^2 (1 - t^6)^2 (1 - t^{10})} \\
\text{dim}_6(t) & := \frac{t^{12} (1 + 2 t^2 + 3 t^4 + \dots + 2 t^{24} - t^{32} + t^{34})}{(1 - t^2)(1 - t^4)(1 - t^6)(1 - t^8)(1 - t^{12})(1 - t^{18})}
\end{align*}

111Thus \(\text{dim}_r(t) = \sum \text{dim}_{r,d} t^d \) etc.
\[
dimelem_1(t) = \frac{t^2}{(1-t^2)}
\]
\[
dimelem_2(t) = \frac{1}{(1-t^2)(1-t^6)}
\]
\[
dimelem_3(t) = \frac{t^8}{(1-t^2)(1-t^4)(1-t^6)}
\]
\[
dimelem_4(t) = \frac{t^{10}(1+t^2+2t^4+t^6+2t^8+t^{10}+t^{16})}{(1-t^2)(1-t^6)(1-t^8)(1-t^{12})}
\]
\[
dimelem_5(t) = \frac{t^{12}(1+2t^2+t^4-t^6-2t^8-t^{12}-t^{14}+t^{18})}{(1-t^2)(1-t^4)^2(1-t^6)^2(1-t^{10})}
\]
\[
dimelem_6(t) = \frac{t^{14}(1+2t^2+4t^4+\cdots-t^{28}-t^{30}-t^{32})}{(1-t^2)(1-t^4)(1-t^6)(1-t^8)(1-t^{12})(1-t^{18})}
\]
\[
dimexcep_i(t) = 0 \quad \text{for } i = 1, 2, 3
\]
\[
dimexcep_4(t) = \frac{t^8}{(1-t^4)(1-t^6)}
\]
\[
dimexcep_5(t) = \frac{(1-t^2)(1-t^4)(1-t^6)}{t^{10}}
\]
\[
dimexcep_6(t) = \frac{(1-t^2)(1-t^4)^2(1-t^6)^2(1-t^{10})}{t^{12}(1-t^4-2t^6+2t^8)}
\]

The exact numerators in \(\dim_6(t) \) and \(\dimelem_6(t) \) are respectively
\[
\begin{align*}
t^{12} & \cdot (1+2t^2+3t^4+4t^6+6t^8+6t^{10}+6t^{12}+7t^{14}+4t^{16}+5t^{18}+4t^{20}+2t^{22}+2t^{24}+t^{26}+t^{28}+t^{30}+t^{32}) \\
\end{align*}
\]
\[
\begin{align*}
t^{14} & \cdot (1+2t^2+4t^4+5t^6+7t^8+7t^{10}+7t^{12}+6t^{14}+6t^{16}+5t^{18}+3t^{20}+2t^{22}+t^{24}+t^{26}+t^{28}+t^{30}+t^{32}) \\
\end{align*}
\]
\[
dimfree_2(t) - \dim_2(t) = t^2 \dimexcep_4(t) = \frac{t^{10}}{(1-t^4)(1-t^6)} \quad (532)
\]

Lastly, let us recall this central fact: to each missing (elementary) bialternal of depth 2 there corresponds a supernumerary (non-elementary) bialternal of depth 4, with an explicit formula112 giving the latter in terms of the former.113

7.2 Discrete-periodical bialternals.

We have a somewhat similar situation on \(\mathbb{Z}/p\mathbb{Z} \). There, the length-1 bialternals \(\text{eda}_n^* \):

\[
\text{eda}_n^{*(u_1)} = \begin{cases}
1 & \text{if } u_1 = \pm n \mod p \\
0 & \text{otherwise}
\end{cases} \quad (533)
\]

112based on \(\text{adari}(p\text{al}^*) \) and therefore exclusive to the ARI/GARI setting.

113See [E5], §17, (106)-(108) or [E6], §7.3 and §7.9.
are not free under \(\text{ari}\), and do not generate all bialternals. As in the polynomial case, there are ‘missing bialternals’ in depth 2 and ‘exceptional’ bialternals in depth 4. Here, however, there is no known procedure for generating the exceptional, depth-4 bialternals from the missing, depth-2 bialternals.

Besides, when counting the dependence relations between the \(\text{ari}\)-brackets of the \(\text{eda}_n^*\), one should rule out two semi-trivial instances, involving:

(i) elements of type \(\text{eda}_0^*\) or \(\sum_{n\neq 0} \text{eda}_n^*\), which belong to the centre of ARI

(ii) for non-prime values of \(p\), relations induced by ‘earlier’ relations in \(\mathbb{Z}/q\mathbb{Z}\), with \(q|p\).

The following generating series \(\text{reldisc}_2^*(t)\) resp. \(\text{reldisc}_3^*(t)\) enumerates the independent relations involving the all the generators \(\text{eda}_n^*\) with \(n\) in the interval \([1,\ldots,\left[\frac{p}{2}\right]]\) resp. \([1,\ldots,\left[\frac{p}{2}\right]-1]\).

\[
\text{reldisc}_2^*(t) := \frac{t^6}{(1-t)(1-t^2)(1-t^3)}
\]

\[
\text{reldisc}_3^*(t) := \frac{t^8}{(1-t^2)^2(1-t^3)}
\]

The first exceptional bialternal of depth 4 appears for \(p = 5\). It is necessarily exceptional since for \(p = 5\) there exist no depth-2 bialternals.

Remark: There is a distinct notion of discrete periodic bialternals, namely with indices \(u_i/v_i\) in \(\mathbb{Z}/p\mathbb{Z}\) and with bimoulds also taking their values in \(\mathbb{Z}/p\mathbb{Z}\). The bialternals there are strictly more numerous than when the bimoulds take the values in \(\mathbb{Q}\) (or, what amounts to the same, \(\mathbb{R}\) or \(\mathbb{C}\)) but they are all obtainable by restricting on \(\mathbb{Z}/p\mathbb{Z}\) the polynomial bialternals (see preceding section).

For \(p\) prime, though, there is no difference. Thus, in either case, for \(p = 2\) or 3, there are no depth-4 bialternals. For \(p = 5\), there is only one depth-4 bialternal and it is of the exceptional type. For \(p = 7\), there are three regular and three exceptional bialternals. Etc.

7.3 General discrete bialternals.

Let us now move from \(\mathbb{Z}/p\mathbb{Z}\)-supported to \(\mathbb{Z}\)-supported bialternals.

Finitely-supported bialternals.

Here, the picture changes. The suitably redefined elementary \(\text{eda}_n\)

\[
\text{eda}_n^{(u_1,v_1)} = \begin{cases}
1 & \text{if } u_1 = \pm n \\
0 & \text{otherwise}
\end{cases}
\]

151
are \(arih\)-, even \(prearih\)-independent provided we restrict ourselves to finite combinations (537).

\[
S_r^* = \sum_{n_1, \ldots, n_r \in \text{Const}} c_{n_1, \ldots, n_r} \text{prearih}(eda_{n_1}^*, \ldots, eda_{n_r}^*)
\] \hspace{1cm} (537)

Proof: Let us show that \(S_r^* = 0\) implies \(c^n = 0\). Assume the opposite and set \(n_\ast = \sup \{ n \in \mathbb{Z} : |n| \leq |n_\ast| \} \). Then let \(n = (n', n_\ast, \tilde{n}^\prime)\) be a particular sequence of length \(r\) with \(|n| = n_\ast\). For any \(j\) in \([1, r]\), any factorisation \(n = (n', n_j, n''')\), and \(w\) of the form

\[
w = \left(\begin{array}{c} u \\ v \end{array} \right) \quad \text{with} \quad u = (n', -n_\ast, \tilde{n}^\prime)
\]

the identity holds

\[
S^w = (-1)^{r-j} \sum_{n''\text{eshat}(n', n'')} c_{n_j, n''}
\] \hspace{1cm} (538)

with \(\tilde{n}''\) denoting \(n'''\) in reverse order. For \(j = 1\) this reduces to

\[
S^w = (-1)^{r-j} c_{n_1, n_2, \ldots, n_r} \quad \text{with} \quad u = (-n_\ast, n_r, \ldots, n_2, n_1)
\] \hspace{1cm} (539)

implying \(S_r^* \neq 0\). Contradiction. \(\square\).

Remark: The above independence statement no longer holds if we replace the di-atomic \(eda_n^*\) by the mono-atomic \(da_n^*\) defined as in (536) but with "\(u_1 = n\)" in place of "\(u_1 = \pm n\)". Indeed, take the \(arih \leftrightarrow oddarih\) conversion formulae (565) or (566) infra and re-write them in terms of the atoms \(da_n^*\). They yield non-trivial finite sums \(S^* = \sum_{n_1, n_2} c_{n_1, n_2} ari(da_{n_1}^*, da_{n_2}^*)\) with some non-vanishing coefficients \(c_n\) but an identically vanishing \(S^*\). The same would apply with \(prearih\) in place of \(arih\).

Bialternals with unbounded support.

The examples of the preceding section (with \(u_i \in \mathbb{Z}/p\mathbb{Z}\)) immediately yield, for any depth \(r \geq 2\), sums of type \(S^* = \sum_{n_j \in \mathbb{Z}} c_{n_1, \ldots, n_r} ari(da_{n_1}^*, \ldots, da_{n_r}^*)\) with infinitely many non-zero coefficients \(c_n\) but an identically vanishing \(S^*\). The same would apply with \(prearih\) in place of \(arih\).

Bialternals with unbounded support but decreasing at infinity.

If we impose a sufficient rate of decrease on the coefficients \(c_n\) as \(n\) increases\(^{114}\) and corresponding bounds on \(|S^w|\) as \(w\) increases, we recover the unicity of decomposition of \(Z^r\)-supported bialternals as multibrackets of elementary generators \(eda_{n_j}^*\).

\(^{114}\text{Bounds of type } |c_n| < \text{Const.}|n|^{-1} \text{ are more than enough.}\)
7.4 Perinomal bialternals.

Standard and symbolic expansions for perinomals.

Perinomal bimoulds are meromorphic functions of either \(u \) or \(v \), but with a very peculiar pole structure: their poles lie over \(\mathbb{Z}^{r} \) and are of eupolar type, i.e. they admit standard expansions of the form

\[
S_{u_1, \ldots, u_r} = \sum_{m_j, n_j \in \mathbb{Z}} \Psi_{r,k}^{(u_1 \ldots u_r)} \left(\frac{u_j - m_j}{\kappa_r}, \frac{v_j - n_j}{\kappa_r} \right) \left(\frac{m_j}{\kappa_r}, \frac{n_j}{\kappa_r} \right) \left(\kappa_r := \frac{(2r)!}{r!(r+1)!} \right)
\]

(540)

Here, \(\Psi \) denotes a polar flexion unit, necessarily of the form:

\[
\Psi_{v_1}^{(u_1)} = \alpha P(u_1) + \beta P(v_1) \quad \left\{ \begin{array}{l}
\alpha, \beta \in \mathbb{C} \\
\text{usually } \Psi_{v_1}^{(u_1)} = P(u_1) \text{ or } P(v_1)
\end{array} \right.
\]

(541)

and \(\{\Psi_{v_1}^{(u_1)}; 1 \leq k \leq \kappa_r \} \) denotes the standard basis of the length-\(r \) component \(\text{Flex}_r(\Psi) \) of the monogenous flexion algebra generated by \(\Psi \).

The standard expansions (540), with their infinite sums, are rather unwieldy, especially when it comes to performing flexion operation on them. So we often replace them by the information-equivalent symbolic forms (542), which carry only a finite number of summands:

\[
S_{v_1, \ldots, v_r} = \sum_{m_j, n_j \in \mathbb{Z}} \Psi_{r,k}^{(v_1 \ldots v_r)} \left(\frac{v_j - m_j}{\kappa_r}, \frac{v_j - n_j}{\kappa_r} \right) \left(\frac{m_j}{\kappa_r}, \frac{n_j}{\kappa_r} \right) \left(\kappa_r := \frac{(2r)!}{r!(r+1)!} \right)
\]

(542)

The change from standard to symbolic (‘encoding’) has the advantage of commuting with all flexion operations\(^{115}\) and of being reversible (‘decoding’):

\[
\begin{align*}
\text{standard} & : \quad S_1^*, S_2^* \quad \longrightarrow \quad S_3^* = \text{ari}(S_1^*, S_2^*) \quad \text{or} \quad \text{preari}(S_1^*, S_2^*) \\
\text{symbolic} & : \quad S_1^*, S_2^* \quad \longrightarrow \quad S_3^* = \text{ari}(S_1^*, S_2^*) \quad \text{or} \quad \text{preari}(S_1^*, S_2^*)
\end{align*}
\]

Symbolic expansions for the perinomal bialternals.

Let us apply the procedure to calculate the length-\(r \) perinomal bialternals

\[
\text{Rai}_r^* := \sum_{m_j, n_j \in \mathbb{Z}} \gamma_r^{(m_1 \ldots m_r)} \text{ari}(\text{epai}_{m_1}^*, \ldots, \text{epai}_{m_r}^*)
\]

(543)

\(\text{lu/mu, swap, ari/gari, arit/garit, preari etc.} \) It also commutes with the full set of flexion unit identities. All these, in turn, derive from the basic (characteristic) identity:

\[
\Psi_{v_1}^{(v_1)} \Psi_{v_2}^{(v_2)} = \Psi_{v_1}^{(v_1)} \Psi_{v_2}^{(v_2)} + \Psi_{v_2}^{(v_1)} \Psi_{v_1}^{(v_2)}
\]

153
generated by the elementary bialternals
\[\text{epai}_{(n_1)}^{(u_1)} := +\mathcal{P}_{(v_1-n_1)}^{(u_1-m_1)} - \mathcal{P}_{(v_1+n_1)}^{(u_1+m_1)} \] (544)

Setting
\[c_{r_1 \ldots r_r}^{(m_1, \ldots, m_r)} := \sum_{\epsilon \in \{\pm 1\}} \epsilon_1 \ldots \epsilon_r \gamma_{r_1}^{(m_1 \ldots m_r)} \] (545)

we find the symbolic, easily decodable expansions \(\text{Rai}_r^* = \sum \mathcal{R}_{r,k} \mathcal{E}_{r,k}^* \):

\[
\begin{align*}
(r = 1) & \quad \mathcal{P}_{(1,1)}^{(u_1)} = \mathcal{P}_{(v_1)}^{(u_1)} ; \quad \mathcal{E}_{(1,1)}^{(u_1)} = c_{1}^{(u_1)} \\
(r = 2) & \quad \mathcal{P}_{(2,1)}^{(u_1, v_2)} = \mathcal{P}_{(v_2)}^{(u_2, v_{1,2})} ; \quad \mathcal{E}_{(2,1)}^{(m_1, m_2)} = c_{2}^{(m_1, m_2)} + c_{2}^{(m_2, m_1)} \\
& \quad \mathcal{P}_{(2,2)}^{(u_1, v_2)} = \mathcal{P}_{(v_1)}^{(u_2, v_{2,1})} ; \quad \mathcal{E}_{(2,2)}^{(m_1, m_2)} = c_{2}^{(m_1, m_2)} - c_{2}^{(m_1, m_2)}
\end{align*}
\]

For \(r = 3 \), the standard basis of \(\text{Flex}_3 \) has got five elements:

\[
\begin{align*}
(r = 3) & \quad \mathcal{P}_{(3,1)}^{(u_1, v_2, v_3)} = \mathcal{P}_{(v_3)}^{(u_{1,2,3})} \mathcal{P}_{(v_{1,2})}^{(u_{1,2,3})} \mathcal{P}_{(v_{1,2})}^{(u_1)} \\
& \quad \mathcal{P}_{(3,2)}^{(u_1, v_2, v_3)} = \mathcal{P}_{(v_3)}^{(u_{1,2,3})} \mathcal{P}_{(v_{2,3})}^{(u_{1,2,3})} \mathcal{P}_{(v_{2,3})}^{(u_2)} \\
& \quad \mathcal{P}_{(3,3)}^{(u_1, v_2, v_3)} = \mathcal{P}_{(v_3)}^{(u_{1,2,3})} \mathcal{P}_{(v_{1,3})}^{(u_{1,2,3})} \mathcal{P}_{(v_{1,3})}^{(u_3)} \\
& \quad \mathcal{P}_{(3,4)}^{(u_1, v_2, v_3)} = \mathcal{P}_{(v_3)}^{(u_{1,2,3})} \mathcal{P}_{(v_{2,1})}^{(u_{1,2,3})} \mathcal{P}_{(v_{2,1})}^{(u_2)} \\
& \quad \mathcal{P}_{(3,5)}^{(u_1, v_2, v_3)} = \mathcal{P}_{(v_3)}^{(u_{1,2,3})} \mathcal{P}_{(v_{3,2})}^{(u_{1,2,3})} \mathcal{P}_{(v_{3,2})}^{(u_3)}
\end{align*}
\]

and the corresponding coefficients \(\mathcal{E}_{3,k}^* \) have got six summands each:

\[
\begin{align*}
\mathcal{C}_{3,1}^{(m_1, m_2, m_3)} &= c_{3}^{(m_1, m_2, m_3)} + c_{3}^{(m_1, m_2, m_3)} \\
& \quad + c_{3}^{(m_1, m_2, m_3)} \\
\mathcal{C}_{3,2}^{(m_1, m_2, m_3)} &= c_{3}^{(m_1, m_2, m_3)} + c_{3}^{(m_1, m_2, m_3)} \\
& \quad + c_{3}^{(m_1, m_2, m_3)} \\
\mathcal{C}_{3,3}^{(m_1, m_2, m_3)} &= c_{3}^{(m_1, m_2, m_3)} + c_{3}^{(m_1, m_2, m_3)} \\
& \quad + c_{3}^{(m_1, m_2, m_3)} \\
\mathcal{C}_{3,4}^{(m_1, m_2, m_3)} &= c_{3}^{(m_1, m_2, m_3)} + c_{3}^{(m_1, m_2, m_3)} \\
& \quad + c_{3}^{(m_1, m_2, m_3)} \\
\mathcal{C}_{3,5}^{(m_1, m_2, m_3)} &= c_{3}^{(m_1, m_2, m_3)} + c_{3}^{(m_1, m_2, m_3)} \\
& \quad + c_{3}^{(m_1, m_2, m_3)} \\
\end{align*}
\]
Perinomal rigidity.

In practice, the perinomal bialternals that matter most depend only on one set of variables (u or v):

\[R^*_r := \sum_{m_r \in \mathbb{N}^*} \gamma_r^{(m_1, \ldots, m_r)} \text{ari}(\text{epa}_{m_1}^*, \ldots, \text{epa}_{m_r}^*) \quad (546) \]

\[R^*_i := \sum_{n_r \in \mathbb{N}^*} \gamma_r^{(n_1, \ldots, n_r)} \text{ari}(\text{epi}_{n_1}^*, \ldots, \text{epi}_{n_r}^*) \quad (547) \]

They correspond to the one-variable flexion units $P^{(u_1)} = P(u_1)$ or $P(v_1)$ and are generated by the elementary epa_m^* or epi_n^*:

\[\text{epa}^{(u_1)}_{m_1} := P(u_1 - m_1) - P(u_1 + m_1) \quad (548) \]

\[\text{epi}^{(u_1)}_{n_1} := P(v_1 - n_1) - P(v_1 + n_1) \quad (549) \]

One obtains their symbolic (and standard) expansions by specialising the earlier formulae for \mathfrak{R}^*_r, which means replacing c_r^* by ca^* or ci^*:

\[ca_r^{m_1, \ldots, m_r} := \text{sgn}(m_1) \ldots \text{sgn}(m_r) \gamma_r^{[m_1, \ldots, m_r]} \quad (m_i \in \mathbb{Z}^*) \]

\[ci_r^{n_1, \ldots, n_r} := \text{sgn}(n_1) \ldots \text{sgn}(n_r) \gamma_r^{[n_1, \ldots, n_r]} \quad (n_i \in \mathbb{Z}^*) \]

and ignoring in $\mathfrak{E}^*_{r,k}$ the irrelevant sequence of indices (either n or m).

The main fact about the expansions (546) or (547) is their uniqueness:

\[\{R^*_r = 0\} \Leftrightarrow \{\gamma_r^{m_1, \ldots, m_r} = 0\} \quad , \quad \{R^*_i = 0\} \Leftrightarrow \{\gamma_r^{n_1, \ldots, n_r} = 0\} \quad (550) \]

There even exists an effective algorithm for deducing the γ_r^* from the $\mathfrak{E}^*_{r,k}$.

These facts, which we have barely sketched here, are central to the perinomal decomposition of multizetas into irreducibles.

7.5 Comparing various flexion settings.

Two operations producing depth-2 bialternality: ari and oddari.

By suitably modifying the signs in front of the six summands of $\text{ari}(A^*, B^*)$ for length-1 bimoulds A^*, B^*, we can define a pseudo-bracket\footnote{pseudo because oddari cannot be extended to a genuine Lie bracket for factors A^*, B^* of arbitrary lengths.} oddari that
turns each pair \((A^\bullet, B^\bullet)\) of odd\(^{117}\), length-1 bimoulds into a length-2 bialternal – exactly as ari does with pairs of even bimoulds.

\[
\text{ari : } ARI_{1}^{\text{even}} \times ARI_{1}^{\text{even}} \rightarrow ARI_{2}^{\text{al/al}} \\
\text{oddari : } ARI_{1}^{\text{odd}} \times ARI_{1}^{\text{odd}} \rightarrow ARI_{2}^{\text{al/al}}
\]

Here are the definitions, with \(C^\bullet := \text{ari}(A^\bullet, B^\bullet)\) and \(D^\bullet := \text{oddari}(A^\bullet, B^\bullet)\):

\[
C^{(u_1, u_2)}_{v_1, v_2} = \begin{cases}
+ A^{(u_1)}_{v_1, v_2} B^{(u_2)}_{v_1, v_2} + A^{(u_1, 2)}_{v_1, v_2} B^{(u_2)}_{v_1, v_2} - A^{(u_1, 2)}_{v_1, v_2} B^{(u_2)}_{v_1, v_2} \\
- B^{(u_1)}_{v_1, v_2} A^{(u_2)}_{v_1, v_2} - B^{(u_1, 2)}_{v_1, v_2} A^{(u_2)}_{v_1, v_2} + B^{(u_1, 2)}_{v_1, v_2} A^{(u_2)}_{v_1, v_2}
\end{cases}
\]

(551)

\[
D^{(u_1, u_2)}_{v_1, v_2} = \begin{cases}
+ A^{(u_1)}_{v_1, v_2} B^{(u_2)}_{v_1, v_2} - A^{(u_1, 2)}_{v_1, v_2} B^{(u_2)}_{v_1, v_2} + A^{(u_1, 2)}_{v_1, v_2} B^{(u_2)}_{v_1, v_2} \\
- B^{(u_1)}_{v_1, v_2} A^{(u_2)}_{v_1, v_2} + B^{(u_1, 2)}_{v_1, v_2} A^{(u_2)}_{v_1, v_2} - B^{(u_1, 2)}_{v_1, v_2} A^{(u_2)}_{v_1, v_2}
\end{cases}
\]

(552)

Due to the rigidity statements of the preceding sections, there must exist, in each setting, precise formulae for converting oddari-brackets into sums of ari-brackets, and vice versa. Even when there is no rigidity and therefore no uniqueness, as with polynomial-valued bialternals, there exist privileged formulae. In any case, the conversion formulae have the merit of bringing the specificity of each setting into sharp relief. So let us review them one by one.

The ari-oddari conversion for polynomial-valued bialternals.

Consider the elementary bialternals

\[
\text{esa}_{d_1}^{(u_1)} := u_{d_1}^4 \quad \text{(for } d_1 \text{ even } \geq 2) \\
\text{osa}_{d_1}^{(u_1)} := u_{d_1}^6 \quad \text{(for } d_1 \text{ odd } \geq 1) \\
\text{eesa}_{d_1, d_2} := \text{ari}(\text{esa}_{d_1}, \text{esa}_{d_2}) \quad (d_1, d_2 \text{ even}) \\
\text{oosea}_{d_1, d_2} := \text{oddari}(\text{osa}_{d_1}, \text{osa}_{d_2}) \quad (d_1, d_2 \text{ odd})
\]

(553)\(^{117}\) (554)\(^{117}\) (555)\(^{117}\) (556)\(^{117}\)

and let \(\chi_{2k}\) (resp. \(\tau_{2k}, \theta_{2k}\)) be the integers (resp. rationals) defined by:

\[
\frac{t^6}{(1-t^2)(1-t^6)} = \sum \chi_{2k} t^{2k}
\]

(557)

\[
-\frac{t}{\tanh(t/2)} = \sum_{0 \leq k} \tau_{2k} t^{2k}, \quad -\frac{\tanh(t/2)}{t} = \sum_{0 \leq k} \theta_{2k} t^{2k}
\]

(558)

\(^{117}\)i.e. with \(A^{w_1}, B^{w_1}\) odd functions of \(w_1\).
Proposition 7.1 (First *ari-oddari* conversion law.)

\[
\frac{1}{d_1!} \text{oesa}_{d_1,d_2} := \delta_1^+ \delta_2 = d_1 + d_2 \sum_{1 \leq d_1 \leq d_1} \tau_{1+\delta_1-d_1} \frac{1}{d_1!} \text{eesa}_{d_1,d_2} \tag{559}
\]

\[
\frac{1}{d_1!} \text{eesa}_{d_1,d_2} := \sum_{d_1 \leq 1+\delta_1} \theta_{d_1-1-\delta_1} \frac{1}{d_1!} \text{oesa}_{\delta_1,d_2} \tag{560}
\]

Remarkably, the above identities are valid for all pairs \((\delta_1, \delta_2)\) (resp. \((d_1, d_2)\)), not just those that verify \(\frac{1+\delta_1}{2} \leq \chi_{\delta_1+\delta_2}\) (resp. \(\frac{d_1}{2} \leq \chi_{d_1+d_2}\)). Simply, under these restrictions, the expansions on the right-hand sides of (559) and (560) become unique.\(^{118}\)

The *ari-oddari* conversion for discrete bialternals.

Let \(\delta\) be the discrete dirac \((\delta(0) := 1, \delta(n) := 0 \text{ if } n \neq 0)\) and consider the elementary bialternals

\[
edda_{n_1} := \delta(u_1 - n_1) + \delta(u_1 + n_1) \quad (\text{or} \quad \sinh(n_1 u_1)) \tag{561}
\]

\[
oda_{n_1} := \delta(u_1 - n_1) - \delta(u_1 + n_1) \quad (\text{or} \quad \cosh(n_1 u_1)) \tag{562}
\]

\[
\text{eeda}_{n_1,n_2} := \text{ari}(\text{eda}_{n_1}, \text{eda}_{n_2}) \quad \text{ooda}_{n_1,n_2} := \text{oddari}(\text{oda}_{n_1}, \text{oda}_{n_2}) \tag{563}
\]

together with the operator \(f:\)

\[
(fM)_{n_1,n_2} := \begin{cases}
0 & \text{if } n_1 = n_2 \\
M_{n_1,n_2-n_1} & \text{if } n_2 > n_1 \\
M_{n_1-n_2,n_2} & \text{if } n_1 > n_2
\end{cases} \tag{564}
\]

In view of the statements in §7.3, the conversion law is rigidly determined:

Proposition 7.2 (Second *ari-oddari* conversion law.)

\[
\text{ooda}_{n_1,n_2} = \text{eeda}_{n_1,n_2} + 2 \sum_{1 \leq k} (f^k \text{eea}_{n_1,n_2}) \tag{565}
\]

\[
\text{eeda}_{n_1,n_2} = \text{ooda}_{n_1,n_2} + 2 \sum_{1 \leq k} (-1)^k (f^k \text{ooda})_{n_1,n_2} \tag{566}
\]

The two sums \(\sum_{1 \leq k}\) are clearly finite.

\(^{118}\)When we don’t have \(\frac{1+\delta_1}{2} \leq \chi_{\delta_1+\delta_2}\) (resp. \(\frac{d_1}{2} \leq \chi_{d_1+d_2}\)), the conversion formula is not rigidly determined, but the simplest expansions are still given by (559) (resp. (560)).
The *ari-oddari* conversion for perinomal bialternals.

Consider now the polar-perinomal bialternals

\[e_{\text{p}}^{(n_1)} := P(u_1 - n_1) - P(u_1 + n_1) \]
\[o_{\text{p}}^{(n_1)} := P(u_1 - n_1) + P(u_1 + n_1) \]
(567)

\[e_{\text{p}}^{\bullet}_{n_1,n_2} := \text{ari}(e_{\text{p}}^{\bullet}_{n_1}, e_{\text{p}}^{\bullet}_{n_2}) \quad , \quad o_{\text{p}}^{\bullet}_{n_1,n_2} := \text{oddari}(o_{\text{p}}^{\bullet}_{n_1}, o_{\text{p}}^{\bullet}_{n_2}) \]
(569)

Here again, the conversion formulae are rigidly determined, but in place of the ‘contracting’ \(f \), they involve a ‘dilating’ operator \(g \):

\[(gM)_{n_1,n_2} := M_{n_1,n_2+n_1} + M_{n_1+n_2,n_2} \]
(570)

Proposition 7.3 (Third *ari-oddari* conversion law).

\[o_{\text{p}}^{\bullet}_{n_1,n_2} = -e_{\text{p}}^{\bullet}_{n_1,n_2} - 2 \sum_{1 \leq k} (g^k e_{\text{p}}^{\bullet})_{n_1,n_2} \]
(571)

\[e_{\text{p}}^{\bullet}_{n_1,n_2} = -o_{\text{p}}^{\bullet}_{n_1,n_2} - 2 \sum_{1 \leq k} (-1)^k (g^k o_{\text{p}}^{\bullet})_{n_1,n_2} \]
(572)

The two sums \(\sum_{1 \leq k} \) are always infinite.

Remark 1: The conversion formulae for the swappees

\[(e_{\text{p}}^{\bullet}, o_{\text{p}}^{\bullet}) \xrightarrow{\text{swap}} (e_{\pi}^{\bullet}, o_{\pi}^{\bullet}) \]

retain their form, but with a sign change in the structure constants.

Remark 2: The change from \(\delta \) to \(\exp \) also involves a sign change in the structure constants, because it amounts to a Fourier transform, which itself amounts to a swap transform. This explains why in (561)-(562) \(e_{\text{d}}^{\bullet}_{n_1} \) may be replaced by \(\sinh(n_1 u_1) \) and \(o_{\text{d}}^{\bullet}_{n_1} \) may be replaced by \(\cosh(n_1 u_1) \), despite opposite parities.

7.6 ‘Arithmetical’ vs ‘perinomal’ generators.

According to the desingularisation scheme of \(\S 5.4-\S 5.5 \), any given system of generators \(\{\text{luma}_{\bullet s}\} \) of \(ARI_{\text{per}}^{\text{al/d}} \) leads to a systems \(\{\rho^{s_1,\ldots,s_r}\} \) of multizeta irreducibles. In the case of monocolours, the best way to overcome the nuisance of ‘retro-action’ is to resort to the well-defined system of *perinomal* generators \(\{\text{luma}_{\bullet s}\} \), whose characteristic property is that they sum to a bimould
\[\text{luma}^* = \sum \text{luma}_{i,s}^* \], each component of which is meromorphic in \(u \), with polynomial multi-poles over the multi-integers. We can then take full advantage of the strong rigidity properties of these functions, of which we have just caught a glimpse in §7.4.

But two parallel systems of generators, \(\{\text{luma}_{i,s}^*\} \) and \(\{\text{loma}_{i,s}^*\} \), also commend themselves to our attention on account of their arithmetical simplicity: they possess only small prime factors on their denominators. Of the two, \(\{\text{loma}_{i,s}^*\} \) is (slightly) arithmetically less simple, but it carries a far lesser number of distinct coefficients, as a result of sharing the basic symmetry properties\(^{119}\) of \(\{\text{luma}_{i,s}^*\} \).

We shall now describe in great detail all three systems up to length 4 inclusively\(^{120}\) – not just for their own sake, but also to derive the three parallel systems of exceptional bialternals of lentgth 4 (the so-called corma).\(^{121}\)

The alternative aritmetical/perinomal.

The loma* denerators up to length 4.

Following the general scheme of §3.5 and setting

\[\text{slang}_{r_1,...,r_n} := \text{adari}(\text{pal}^*)\text{slank}_{r_1,...,r_n} \tag{573} \]

we can express the first four components of the generic element \(\text{loma}^* \) of \(ARI^+/-^+ \) with the help of just two singulands \(S_{1}^* \) and \(S_{1,2}^* \). We find:

\[\text{loma}^{u_1} := (\text{slang}_1,S_{01})^{u_1} = S_{01}^{u_1} \tag{574} \]
\[\text{loma}^{u_1,u_2} := (\text{slang}_1,S_{01})^{u_1,u_2} \tag{575} \]
\[= \frac{1}{2} \left(S_{01}^{u_1} P(u_2) - S_{01}^{u_2} P(u_1) \right) \]
\[\text{loma}^{u_1,u_2,u_3} := (\text{slang}_1,S_{01})^{u_1,u_2,u_3} + (\text{slang}_{1,2},S_{01,2})^{u_1,u_2,u_3} \tag{576} \]

\(^{119}\)Cf (581) infra.

\(^{120}\)We already gave a cursory treatment of these questions in [E6], but it seems to have been thoroughly misunderstood in some quarters. In any case, the detailed arithmetical description of the singulands \(S_{01,2}^* \) and \(S_{01,2}^* \) and their coefficients given towards the end of this section is new.

\(^{121}\)We recall that these corma bialternals (which stand in one-to-one correspondence with the length-2 dependence relations verified by the ekma bialternals) are conjectured to exhaust all exceptional length-4 bialternals (and in fact to account for all ‘missing’ bialternal generators of \(ARI^+/-^+ \)).
Or explicitly:

\[\text{løma}^{u_1,u_2,u_3} := \]
\[+S_{01}^{u_1} \left(\frac{1}{3} P(u_2) P(u_{123}) - \frac{1}{12} P(u_2) P(u_{123}) - \frac{1}{12} P(u_2) P(u_{123}) \right) \]
\[+S_{01}^{u_2} \left(\frac{1}{6} P(u_{12}) P(u_3) - \frac{1}{6} P(u_{12}) P(u_3) + \frac{1}{12} P(u_{12}) P(u_3) \right) \]
\[+S_{01}^{u_3} \left(\frac{1}{3} P(u_2) P(u_{12}) - \frac{1}{4} P(u_2) P(u_{12}) + \frac{1}{6} P(u_2) P(u_{12}) \right) \]
\[+S_{01}^{u_{12}} \left(\frac{1}{6} P(u_1) P(u_{3}) - \frac{1}{4} P(u_1) P(u_{3}) + \frac{1}{6} P(u_1) P(u_{3}) \right) \]
\[+S_{01}^{u_{13}} \left(\frac{1}{6} P(u_1) P(u_{2}) - \frac{1}{4} P(u_1) P(u_{2}) + \frac{1}{6} P(u_1) P(u_{2}) \right) \]
\[-\frac{1}{2} S_{01}^{u_{12}} \left(P(u_3) + P(u_{23}) \right) + \frac{1}{2} S_{01}^{u_{23}} \left(P(u_{23}) + P(u_{123}) \right) \]
\[+\frac{1}{2} S_{01}^{u_{23}} \left(P(u_{12}) + P(u_{123}) \right) - \frac{1}{2} S_{01}^{u_{23}} \left(P(u_1) + P(u_{12}) \right) \]
\[+\frac{1}{2} S_{01}^{u_{12}} \left(P(u_3) + P(u_{123}) \right) + \frac{1}{2} S_{01}^{u_{12}} \left(P(u_2) - P(u_3) \right) \]
\[-\frac{1}{2} S_{01}^{u_{12}} \left(P(u_1) - P(u_2) \right) + \frac{1}{2} S_{01}^{u_{12}} \left(P(u_1) + P(u_{123}) \right) \]
\[-\frac{1}{2} S_{01}^{u_{123}} \left(P(u_2) + P(u_{123}) \right) + \frac{1}{2} S_{01}^{u_{123}} \left(P(u_3) - P(u_{12}) \right) \]
\[-\frac{1}{2} S_{01}^{u_{123}} \left(P(u_2) + P(u_{123}) \right) + \frac{1}{2} S_{01}^{u_{123}} \left(P(u_1) - P(u_{23}) \right) \]
\[+\frac{1}{2} S_{01}^{u_{123}} \left(P(u_1) - P(u_2) \right) + \frac{1}{2} S_{01}^{u_{123}} \left(P(u_3) - P(u_2) \right) \]
\[+\frac{1}{2} S_{01}^{u_{12}} \left(P(u_1) - P(u_2) \right) + \frac{1}{2} S_{01}^{u_{12}} \left(P(u_3) - P(u_2) \right) \]
\[+\frac{1}{2} S_{01}^{u_{23}} \left(P(u_2) + P(u_{23}) - P(u_{123}) \right) \]
\[+\frac{1}{2} S_{01}^{u_{23}} \left(P(u_2) + P(u_{12}) - P(u_{23}) \right) \]
\[+\frac{1}{2} S_{01}^{u_{23}} \left(P(u_1) + P(u_{12}) + P(u_3) + P(u_{23}) \right) \]
\[-\frac{1}{2} S_{01}^{u_{23}} \left(P(u_1) + P(u_3) - P(u_{12}) - P(u_{23}) \right) \]

The length-4 expression automatically follows:\footnote{122}{with operators slank\textsubscript{r\textsubscript{1}},...,\textsubscript{r\textsubscript{n}} as in \textsection 5.5.}

\[\text{løma}^{u_1,u_2,u_3,u_4} := (\text{slang}_{1,S\theta_1})^{u_1,u_2,u_3,u_4} + (\text{slang}_{1,2,S\theta_1,2})^{u_1,u_2,u_3,u_4} \quad (577) \]

However, we shall refrain here from expanding \text{løma}^{u_1,u_2,u_3,u_4} into \(S\theta^\ast\)-summands as the sum would run into hundreds of terms.
For any input $S\varphi_{1}^{u_1}$ even in u_1, the second component φ_{u_1,u_2} as defined by the above formula is automatically polynomial in u_1, u_2. It is also an easy matter to check that the third component φ_{u_1,u_2,u_3} is polynomial in u_1, u_2, u_3 if and only if the singuland $S\varphi_{1,2}^*$ verifies the desingularisation criterion:

$$0 = \left(+ S\varphi_{1,2}^{u_1,u_2} + S\varphi_{1,2}^{u_2,u_1} - S\varphi_{1,2}^{u_1,u_2,u_3} - S\varphi_{1,2}^{u_2,u_1,u_3} \right) \left(1 + \frac{1}{12} \left(P(u_2) S\varphi_{u_1} - P(u_12) S\varphi_{u_2} - P(u_2) S\varphi_{u_1} + P(u_12) S\varphi_{u_2} \right) \right)$$ \hspace{1cm} (578)

Note that despite the presence of poles $P(\cdot)$, the second line in (578) is automatically polynomial in u_1, u_2. Of course, when fulfilled, the desingularisation criterion (578) ensures the polynomialness not just of $\varphi_{1,2}^{u_1,u_2}$ but of $\varphi_{1,2}^{u_1,u_2,u_3}$ as well. To make the components of length 5 and 6 polynomial, five higher-order singulands123 must be added, each subject to their own desingularisation criteria. And so on, for each pair $(2r', 2r' + 1)$.

The first arithmetical generators $\lambda_{\text{lam}^ullet_{l,s}}/\lambda_{\text{lam}^ullet_{l,s}}$.

These particular generators correspond to ‘lacunary’ singulands $S\varphi_{1,2}^*$.

Proposition 7.4 (Best arithmetical singuland $S\varphi_{1,2}^*$).

For any odd weight $s \geq 5$ there exists a unique singuland of the form124

$$S\varphi_{1,2}^{u_1,u_2} = \sum_{1 \leq \delta \leq \left\lfloor \frac{s}{2} \right\rfloor - \left[\frac{2}{3} \right]} \text{sa}_{2\delta,s-2-2\delta} u_1^{2\delta} u_2^{2-2\delta}$$ \hspace{1cm} (579)

that verifies the desingularisation criterion (578). The largest prime factor p_{a_s} on the denominators of the coefficients $s_{a_{p,q}}$ is always $p_{a_s} \leq \frac{s^2}{3}$.

Proof: It relies on the formulae:

$$s_{a_{4k-2m,2k+2m-1}} = la_{1,m} \left(\frac{2^{2m}(4k+1)!}{(2k+2m+1)(2k+2m+1)(2k+2m+1)!} \right) \frac{(6k+1)(2k+1)}{(4k-2m)(4k-2m-1)} p_{a_{1,m}}(k)$$

$$s_{a_{4k-2m+2,2k+2m-1}} = la_{3,m} \left(\frac{2^{2m}(4k+3)!}{(2k+2m+1)(2k+2m+1)(2k+2m)!}(4k-2m+2)(4k-2m+3) \right) p_{a_{3,m}}(k)$$

$$s_{a_{4k-2m+2,2k+2m+1}} = la_{5,m} \left(\frac{2^{2m}(4k+3)!}{(2k+2m+1)(2k+2m+1)(2k+2m)!}(4k-2m+2)(4k-2m+3) \right) p_{a_{5,m}}(k)$$

(i) with simple rational coefficients $la_{1,m}$

(ii) with polynomials $p_{a_{1,m}}(x)$ in $\mathbb{Z}[x]$125

(iii) of degrees $\deg(p_{a_{1,m}}) = 4m - 1$, $\deg(p_{a_{3,m}}) = 4m$, $\deg(p_{a_{5,m}}) = 4m$

(iv) and determined inductively on m by difference equations.

123To wit: $S\varphi_{1,4}^*, S\varphi_{1,3}^*, S\varphi_{1,1.3}^*, S\varphi_{1,2.2}^*, S\varphi_{1,1.1.2}^*$.

124The case $s = 3$ does not arise, since $\varphi_{1,2}^{u_1,u_2,u_3} = 0$.

125Except for the term $p_{a_{1,0}}(k) = \frac{1}{2k+1}$. 161
The second arithmetical generators \(loma^{\cdot}_{s}/lomi^{\cdot}_{s} \)

These generators correspond to singulands \(Sa_{1,2}^{\cdot} \) even more ‘lacunary’ than the earlier \(Sa_{1,2}^{\cdot} \) but they are marginally less simple, arithmetically speaking. Their main feature, though, is that of sharing the fundamental symmetry of the perinomal singulands \(Su_{1,2}^{\cdot} \) (see infra), namely:

\[
Su_{1,2,1}^{u_{1},u_{2}} u_{2} \equiv So_{1,2,1}^{u_{1},u_{2}} u_{1} \quad \text{and} \quad Su_{1,2}^{u_{1},u_{2}} u_{2} \equiv Su_{1,2}^{u_{2},u_{1}} u_{1} \quad (580)
\]

Proposition 7.5 (Second best arithmetical singuland \(Sa_{1,2}^{\cdot} \)).

For any odd weight \(s \geq 5 \) there exists a unique singuland of the form

\[
Su_{1,2,[s]}^{u_{1},u_{2}} = u_{1}^{2} u_{2} \sum_{1 \leq \delta \leq \left[\frac{s-5}{m} \right]} \frac{2^{\delta} u_{1}^{2} u_{2}^{s-5-2\delta} + u_{2}^{2} \delta^{s-5-2\delta}}{s_{0,2,\delta,s-2-2\delta}} \quad (581)
\]

that verifies the desingularisation criterion (578). The largest prime factor \(p_{0,s} \) on the denominators of the coefficients \(s_{0,2,\delta,s} \) is always \(p_{0,s} \leq \frac{2s-5}{3} \).

Proof: Similar to the earlier proof for \(Sa_{1,2}^{\cdot} \), but based on these new formulae:

\[
\begin{align*}
&SO_{2k-2m-2,4k+2m+1} = lo_{1,m} \frac{2^{m}(6k+1)!(2k+m)!(k-1)!}{(4k+2m+1)!(4k-1)!(k-m)!(2m+2)!} \frac{(2k+1)}{(2k-2m-1)} p_{1,m}(k) \\
&SO_{4k-2m,2k+2m+1} = lo_{3,m} \frac{2^{m}(6k+3)!(2k+m)!(k-1)!}{(4k+2m+1)!(4k-1)!(k-m+1)!(2m+2)!} \frac{1}{(2k-2m+1)} p_{3,m}(k) \\
&SO_{2k-2m,2k+2m+3} = lo_{5,m} \frac{2^{m}(6k+3)!(2k+m+1)!(k-1)!}{(4k+2m+3)!(4k+2)!(k-m+1)!(2m+2)!} \frac{1}{(2k-2m+3)} p_{5,m}(k)
\end{align*}
\]

with \(\deg(p_{1,m}) = 2m - 1 \), \(\deg(p_{3,m}) = 2m + 1 \), \(\deg(p_{5,m}) = 2m + 1 \) and the exceptional term \(p_{1,0}(k) = \frac{1}{2k+1} \).

Remark about the arithmetical singulands.

If we were to look for solutions \(Sa_{1,2,[s]}^{\cdot} \) of the desingularisation criterion (578) similar to \(Sa_{1,2,[s]}^{\cdot} \) in (579), with \(\delta \) running through a support set \(Da_{1,2,[s]}^{\cdot} \) of the same cardinality, for instance with \(Da_{1,2,[s]}^{\cdot} = [1 + n, \left[\frac{s-1}{2} \right] - \left[\frac{s+1}{6} \right] + n] \) for \(n \) small, we would in nearly all cases get a unique solution, but without the bonus of small prime numbers in the denominators.

Likewise, if we were to look for solutions \(So_{1,2,[s]}^{\cdot} \) of the desingularisation criterion (578) similar to \(So_{1,2,[s]}^{\cdot} \) in (581), with the same symmetry constraint \(So_{1,2,[s]}^{u_{1},u_{2}} u_{2} \equiv So_{1,2,[s]}^{u_{2},u_{1}} u_{1} \) and with \(\delta \) running through a support set \(Do_{1,2,[s]}^{\cdot} \) of the same cardinality, for instance with \(Do_{1,2,[s]}^{\cdot} = [1 + n, \left[\frac{s+3}{6} \right] + n] \) for \(n \) small, we would also in nearly all cases get a unique solution, but again without the bonus of small prime numbers in the denominators.
The perinomal generators \(\text{luma}_s/\text{lumi}_s \).

We now move on to a very different class of generators, the \(\text{luma}_s \), whose characteristic feature (as also that of the underlying singulands) is that of adding up to meromorphic functions with perinomal poles.

Proposition 7.6 (Perinomal singuland \(S_{u_{1,2}} \)).

Both the global meromorphic singuland \(S_{u_{1,2}} \)

\[
S_{u_{1,2}} := \sum_{n_i \in \mathbb{Z}^*} n_1 P(u_1 + n_1) P(u_2 + n_2) = \sum_s S_{u_{1,2}|s} \tag{582}
\]

and its homogenous components \(S_{u_{1,2}|s} \)

\[
S_{u_{1,2}|s} = \frac{1}{12} \sum_{1 \leq \delta_1, \delta_2 \leq \frac{|s|}{2}} S_{u_{1,2|s}|\delta_1, \delta_2+1} u_1^{\delta_1} u_2^{\delta_2+1} \tag{583}
\]

with

\[
\begin{align*}
S_{u_{1,2|s}|\delta_1, \delta_2+1} := \frac{\beta_{2\delta_1} \beta_{2\delta_2}}{\beta_{2\delta_1+2\delta_2}} = \frac{\beta_{2\delta_1} \beta_{2\delta_2}}{\beta_{s-3}} \\
\beta_{2\delta} := \frac{\text{Bernoulli}(2\delta)}{(2\delta)!} \iff \sum_{0 \leq \delta} \beta_{2\delta} t^{2\delta} = \frac{1}{e^t - 1}
\end{align*} \tag{584}
\]

verify the desingularisation equation (578). They are in fact its unique perinomal solution. They cannot be beaten for explicitness, but the denominators \(\beta_{s-3} \) of their coefficients \(su_{p,q} \) may involve large prime factors. This sets them sharply apart from the ‘arithmetical’ singulates.

The associated exceptional bialternals.

For any system \(\{\text{loma}_s; s = 3, 5, \ldots\} \), a combination of type

\[
h_{\delta} := \sum_{s_1, s_2 | s} c_{s_1, s_2} \text{ari}(\text{loma}_{s_1}, \text{loma}_{s_2}) \tag{585}
\]

has a length-4 component \(h_{\delta} \) that is bialternal if and only if its length-2 component \(h_{\delta} \) (and therefore \(h_{\delta} \) too) vanish. That condition in turn is equivalent to:

\[
0 = \sum_{s_1, s_2 = s} c_{s_1, s_2} \text{ari}(\text{ekma}_{s_1}, \text{ekma}_{s_2}) \tag{586}
\]

with

\[
\begin{align*}
\text{ekma}_{s}^{s_1} &:= u_1^{s_1} \\
\text{ekma}_{s}^{s_1, \ldots, s_r} &:= 0 \quad \text{if} \quad r > 1
\end{align*} \tag{587}
\]

163
Proposition 7.7 (Distinguished pre-corma relations). Let

$$\sigma_2(s) := \left[\frac{s + 4}{12} \right] + \left[\frac{s - 2}{12} \right], \quad \sigma^*_s(s) := \left[\frac{s + 4}{12} \right] - \left[\frac{s - 2}{12} \right] + \left[\frac{s - 4}{12} \right]$$

For any even weight $s \geq 8$ there exist $\sigma_2(s)$ independent bialternals of weight s, and for any even weight $s \geq 16$ and $\neq 14$, there exist exactly $\sigma^*_s(s)$ dependence relations\footnote{Sticklers for exactness would say: $\sigma^*_s(s)$ independent dependence relations.} between the bialternals of weight s. Amongst these, we have an arithmetically privileged system. Indeed, for $1 \leq k \leq \sigma^*_s(s)$, we find

$$0 = \left\{ \begin{array}{l} + \ari(\ekma^s_{1+2\sigma_2(s)+k}, \ekma^s_{s-1-2\sigma_2(s)+k}) \\ + \sum_{1 \leq \delta \leq \sigma_2(s)} c^k_{1+2\delta,s-1-2\delta} \ari(\ekma^s_{1+2\delta}, \ekma^s_{s-1-2\delta}) \end{array} \right\}$$

with rational coefficients $c^k_{1+2\delta,s-1-2\delta}$ that are arithmetically regular in the sense that the largest prime factor p on their denominators is always $\leq s - 5$.

Proof: It relies on formulae closely parallel to those mentioned supra for the singulands $\mathcal{S}_{1,2}^a$, $\mathcal{S}_{1,2}^\circ$ and their coefficients.

The bottom-line is that to any system $\{\lambda\ma^s_{|s|}; s = 3, 5\}$ there corresponds a system $\{\corma^s_{|s|,k}; 1 \leq k \leq \sigma^*_s(s)\}$ of exceptional bialternals:

$$\corma^{|s|,w_1,\ldots,w_4}_{s,k} := \h^{|s|,w_1,\ldots,w_4}_{s,k}, \quad \corma^{|s|,w_1,\ldots,w_r}_{s,k} := 0 \quad \text{if} \quad r \neq 4$$

with $\h^{|s|,k}_{s,k} := \left\{ \begin{array}{l} + \ari(\lambda\ma^s_{1+2\sigma_2(s)+k}, \lambda\ma^s_{s-1-2\sigma_2(s)+k}) \\ + \sum_{1 \leq \delta \leq \sigma_2(s)} c^k_{1+2\delta,s-1-2\delta} \ari(\lambda\ma^s_{1+2\delta}, \lambda\ma^s_{s-1-2\delta}) \end{array} \right\}$

(modulo depth 5). In particular, to the three systems $\{\lambda\ma^s_{|s|}; \varnothing = a/o/u\}$ there correspond the three systems $\{\corma^s_{|s|,k}; \varnothing = a/o/u\}$. The first two (with a or \varnothing) are arithmetically simple (no prime factors larger than $s - 5$ on the denominators) and the last one is particularly explicit.

Thus, while the elementary length-4 bialternals (i.e. those generated by the $\ekma^s_{|s|}$) do not appear to possess really privileged bases, the conceptually more complex exceptional bialternals, strangely, do. Moreover, as we shall see in §6.4, at any given weight s, they are, though independent, yet connected by a mysterious dependence relation modulo β^s_\varnothing, where β^s_\varnothing denotes the essential part of the Bernoulli numerators, i.e. these numerators pruned of all their small prime factors (those less than s).
8 Complements and tables.

8.1 Basic reminders about resurgence, moulds and bimoulds.

This brief subsection serves no other purpose than recalling some elementary definitions and fixing the corresponding notations.

8.1.1. Alien derivations and displays.

Alien derivations are noted Δ_ω (resp. $\hat{\Delta}_\omega$) in the multiplicative (resp. convolutive) models. In the multiplicative model, we also have the $\hat{\partial}_z$-commuting variant Δ^Δ_ω and the corresponding $\hat{\partial}_z$-constant pseudovariables Z_ω:

$$
\Delta_\omega := e^{-\omega z} \Delta_\omega ; \quad \left\{ \begin{array}{l}
[\hat{\partial}_z, \Delta_\omega] = 0 \\
\hat{\partial}_z Z_\omega = 0
\end{array} \right. \quad (592)
$$

From these are formed the ‘displays’ $dpl(\bar{\varphi})$, which automatically extend relations R involving resurgent functions φ_i and the operations $(+, \times, \circ)$:

$$
dpl(\bar{\varphi}) := \bar{\varphi} + \sum_{1 \leq i \leq t} \sum_{\omega_i} \sum_{\omega_1} \ldots \Delta_{\omega_t} \ldots \Delta_{\omega_1} \varphi_i \bar{\varphi} \quad (593)
$$

$$
\{ R(\bar{\varphi}_1, \bar{\varphi}_2, \ldots) \equiv 0 \} \implies \{ R(dpl(\bar{\varphi}_1), dpl(\bar{\varphi}_2), \ldots) \equiv 0 \} \quad (594)
$$

8.1.2. Basic symmetry types for moulds and bimoulds.

$$
\begin{align*}
A^\bullet \text{ alternal} & \iff 0 \equiv \sum_{\omega \in \text{sha}(\omega', \omega'')} A^\omega \forall \omega', \omega'' \\
S^\bullet \text{ symmetrical} & \iff S^\omega S^{\omega''} \equiv \sum_{\omega \in \text{she}(\omega', \omega'')} S^\omega \forall \omega', \omega'' \\
A^\bullet \text{ alternil} & \iff 0 \equiv \sum_{\omega \in \text{shi}(\omega', \omega'')} A^\omega \forall \omega', \omega'' \\
S^\bullet \text{ symmetril} & \iff S^{\omega'} S^{\omega''} \equiv \sum_{\omega \in \text{shi}(\omega', \omega'')} S^\omega \forall \omega', \omega''
\end{align*}
$$

(i) $\text{sha}(\omega', \omega'')$ is the set of all shufflings of the sequences ω', ω''.

(ii) $\text{she}(\omega', \omega'')$ allows order-compatible contractions $\omega_i + \omega_j$

(iii) $\text{shi}(\omega', \omega'')$ allows order-compatible contractions $\omega_i + \omega_j$ and to each such contraction (multilinearly) associates a pair:

$$
\left(A^{(\omega', \omega'')} - A^{(\omega', \omega'')} \right) P(v_i - v_j) \quad \text{with} \quad P(t) := \frac{1}{t}
$$
8.1.3. Basic mould operations.

\[
\begin{align*}
C^* &= \mu(A^*, B^*) = A^* \times B^* \iff C^u = \sum \limits_{u = u''} A^u B^u \\
C^* &= k_0(A^*, B^*) = A^* \circ B^* \iff C^u = \sum \limits_{1 \leq s} A^{|u^1|, \ldots, |u^s|} B^{u^1 \ldots u^s} \\
lu(A^*, B^*) &:= \mu(A^*, B^*) - \mu(B^*, A^*)
\end{align*}
\]

The units for mould multiplication resp. composition are \(1^*\) resp. \(Id^*\):

\[
\begin{cases}
1^0 \equiv 1 & ; \ 1^{u_1 \ldots u_r} \equiv 0 \text{ if } r \neq 0 \\
Id^{u_1} \equiv 1 & ; \ Id^{u_1 \ldots u_r} \equiv 0 \text{ if } r \neq 1
\end{cases}
\]

8.1.4. Basic bimould operations.

Systematic abbreviations: \(u_{i,j,k,\ldots} := u_i + u_j + u_k + \ldots\), \(v_{i,j} := v_i - v_j\)

Main unary operations:

\[
\begin{align*}
\{ B^* = \text{pari } A^* \} & \implies \{ B^{(u_1, \ldots, u_r)} = (-1)^r A^{(u_1, \ldots, u_r)} \} \quad \text{(595)} \\
\{ B^* = \text{neg } A^* \} & \implies \{ B^{(u_1, \ldots, u_r)} = A^{(-u_1, \ldots, -u_r)} \} \quad \text{(596)} \\
\{ B^* = \text{anti } A^* \} & \implies \{ B^{(u_1, \ldots, u_r)} = A^{(u_r \ldots u_1)} \} \quad \text{(597)} \\
\{ B^* = \text{swap } A^* \} & \implies \{ B^{(u_1, \ldots, u_r)} = A^{(u_1, \ldots, r, \ldots, u_r, \ldots, u_1)} \} \quad \text{(598)} \\
\{ B^* = \text{push } A^* \} & \implies \{ B^{(u_1, \ldots, u_r)} = A^{(-u_1, \ldots, \bar{u_1}, \ldots, \bar{u_r}, \ldots, u_r, \ldots, u_1)} \} \quad \text{(599)}
\end{align*}
\]

All are involutions, except \textit{push}, which is idempotent of order \(r + 1\):

\[
\text{push} = \text{neg.anti.swap.anti.swap} , \quad \text{push}^{r+1} = \text{id at depth } r
\]

The four basic flexions \([, [,);\] and \(,]\).

They are always defined relative to a factorisation of \(w\). Thus, if \(w = w'.w''\) with \(w' = (u_{1,1}, u_{1,2})\) and \(w'' = (u_{3,3}, u_{4,4}, u_5)\), we set:

\[
\begin{align*}
w' &= \left(\begin{array}{c} u_1 \v1, u_2 \v2, \v3, \v4 \end{array} \right) \\
w'' &= \left(\begin{array}{c} u_{1,2,3} \v3, u_4 \v4, u_5 \v5 \end{array} \right)
\end{align*}
\]

\[
\begin{align*}
w' &= \left(\begin{array}{c} u_1 \v1, u_2 \v2, \v3, \v4, \v5 \end{array} \right) \\
w'' &= \left(\begin{array}{c} u_3 \v3, u_4 \v4, u_5 \v5 \end{array} \right)
\end{align*}
\]
The ari/gari structure. The Lie bracket ari, the pre-Lie law $preari$, and the mu-derivation $arit(A^*)$ are defined by:

$$N^* = arit(B^*)M^* \Leftrightarrow N^w = \sum w = abc M^a c B^b - \sum w = abc M^a c B^b$$

$ari(A^*, B^*) := arit(B^*)A^* - arit(A^*)B^* + lu(A^*, B^*)$

$preari(A^*, B^*) := arit(B^*)A^* + mu(A^*, B^*)$

The associative law $gari$ and mu-automorphisms $garit(A^*)$ are defined by:

$$N^* = garit(B^*)M^* \Leftrightarrow N^w = \prod w = \lfloor a^ib^ic^i \rfloor \sum M^{[b^1]}...[b^s] \cdot B^{a^1}...B^{a^s} \cdot B^{c^1}...B^{c^s}$$

$gari(A^*, B^*) := mu(garit(B^*)A^*, B^*)$ (with $B^* := invmu B^*$)

8.2 The operations lu/mu and $ari/gari$: so different, yet so close.

Despite the sharp differences – in shape, complexity, sophistication, properties – between the homely, uninflected operations lu/mu and their inflected counterparts $ari/gari$, there is no lack of pathways and correspondences between the two domains. Let us mention but four such pathways.

8.2.1. Origin of the flexion structure in mould algebra.

Moulds of the form $M^*_A = A^* \times Id^* \times A^*_u$ with $A^* \times A^*_u \equiv 1^*$ are stable under (mould) composition, and the equivalence holds:

$$\{M^*_C = M^*_A \circ M^*_B\} \iff \{C^* = garit(A^*, B^*)\} \begin{cases} A^*, B^*, C^* \\ u-constant \end{cases}$$ (600)

Interpretation: the left identity in (600) involves u-indexed moulds A^u, B^u, C^u; the right identity re-uses those same moulds, but viewed as *bimoulds* $A^{(u)}$, $B^{(u)}$, $C^{(u)}$ constant in u.

Strictly speaking, (600) derives $gari$ only for u-dependent bimoulds, but once a flexion operation is defined on the u_i's, it uniquely extends to the v_i's, and vice versa. Besides, the $gari$ operation for v-dependent bimoulds can also be derived in a similar way, based on the lower mould composition introduced in (299).

$$\{M^*_C = M^*_A \circ M^*_B\} \iff \{C^* = garit(A^*, B^*)\} \begin{cases} A^*, B^*, C^* \\ u-constant \end{cases}$$ (601)
By the way, the quickest way to check the associativity of *gari* is actually by using the mould-to-bimould correspondence of formulae (600)-(601).

The *ari*-bracket, needless to say, is capable of a similar derivation, from purely uninflected mould operations.

8.2.2. *scram*/*visram* as bridges between non-inflected and inflected.

As already noted in §1, *scram* and *visram* turn *lu/mu* into *ari/gari* when acting on *alternals/symmetrals*. In the case of *visram*, one must also assume the neg-invariance\(^\text{127}\) of the arguments \(A', B', R', S'\).

\[
\begin{align*}
\text{scram} \cdot \text{lu}(A^*, B^*) &\equiv \text{ari} (\text{scram}.A^*, \text{scram}.B^*) \quad (602) \\
\text{scram} \cdot \text{mu}(R^*, S^*) &\equiv \text{gari} (\text{scram}.R^*, \text{scram}.S^*) \quad (603) \\
\text{visram} \cdot \text{lu}(A^*, B^*) &\equiv \text{ari} (\text{visram}.A^*, \text{visram}.B^*) \quad (604) \\
\text{visram} \cdot \text{mu}(R^*, S^*) &\equiv \text{gari} (\text{visram}.R^*, \text{visram}.S^*) \quad (605)
\end{align*}
\]

8.2.3. Internal flexion substructures where *ari* ~ *lu* and *gari* ~ *mu*.

A bimould \(A^*\) is said to be *internal* if, for all \(r\), it verifies two dual properties:

\[
\begin{align*}
\{u_1 + \ldots + u_r \neq 0\} &\implies \{A^{u_1, \ldots, u_r} \equiv 0\} \tag{606} \\
\{v_i - v'_i = \text{const} \quad \forall i\} &\implies \{A^{u_1, \ldots, u_r} \equiv A^{u'_1, \ldots, u'_r}\} \tag{607}
\end{align*}
\]

Internals constitute an ideal \(\text{ARI}_{\text{intern}}\) of \(\text{ARI}\) resp. a normal subgroup \(\text{GARI}_{\text{intern}}\) of \(\text{GARI}\). The elements of the corresponding quotients are referred to as *externals*:

\[
\begin{align*}
\text{ARI}_{\text{extern}} &\ := \ \text{ARI}/\text{ARI}_{\text{intern}} \quad (608) \\
\text{GARI}_{\text{extern}} &\ := \ \text{GARI}/\text{GARI}_{\text{intern}} \quad (609)
\end{align*}
\]

The crux, however, at least from this section’s viewpoint, is this: when restricted to internals, the *ari* bracket reduces (up to order) to the *lu* bracket, and the *gari* product reduces (again up to order) to the *mu* product:

\[
\begin{align*}
\text{ari}(A^*, B^*) &\equiv \text{lu}(B^*, A^*) \quad , \quad \forall A^*, B^* \in \text{ARI}_{\text{intern}} \tag{610} \\
\text{gari}(A^*, B^*) &\equiv \text{mu}(B^*, A^*) \quad , \quad \forall A^*, B^* \in \text{GARI}_{\text{intern}} \tag{611}
\end{align*}
\]

The identity (611) is particularly striking, as it connects the *gari*-product, which is linear in its first argument but highly non-linear in the second, to the bilinear *mu*-product.

\(^{127}\text{i.e. invariance under the change } w \rightarrow -w.\)
8.2.4. Another flexion substructure where \(ari \sim lu \) and \(gari \sim mu \)

Let \(l_0 \mid_1 \) be the weight-1 generator of \(ARI^{al/u}_{bic} \):

\[
\begin{align*}
\ell_{0}^{(n_1; \ldots; n_r)} & := 0 \quad \text{if} \quad r \neq 1 \\
\ell_{0}^{(n_1)} & := \begin{cases}
0 & \text{if } \epsilon_1 := 0 \\
1 & \text{if } \epsilon_1 := \frac{1}{2}
\end{cases}
\end{align*}
\]

(612)

The so-called ‘colour-switch’ ideal \(ARI^{al/u}_{bic} \) := \(ari(l_0 \mid_1, ARI^{al/u}_{bic}) \) generated by \(l_0 \mid_1 \) is characterised by any of the three following properties:

(i) \(sa. A^* \) is invariant under the switch \(\epsilon_i \leftrightarrow \frac{1}{2} - \epsilon_i \) \(
\forall A^* \in ARI^{al/u}_{bic}\)

(ii) \(sa_0^* . A^* \equiv 0 \) \(
\forall A^* \in ARI^{al/u}_{bic}\)

(iii) \(sa_0^*. ari(A^*, B^*) = lu(sa_0^* A^*, sa_0^* B^*) \) \(
\forall A^*, B^* \in ARI^{al/u}_{bic}\)

The last identity is yet another instance of \(ari \) reducing to \(lu \).

8.3 The non-vanishing determinants behind the independence of the bicolour generators.

Here are the first determinants \(det_{2,d}(x) \), \(det_{3,d}(x) \), \(det_{4,d}(x) \) related to the expansions (375) and the independence theorem for bicolour generators. To simplify, we give their expression in terms of \(t := x^2 \) and after factorisation. The properties mentioned at the end of §5.8, Remark 3 (regarding the systematic occurrence of Bernoulli numbers when \(x = 2 \) i.e. \(t = 4 \)) are easy to
check on these polynomials.

\[\text{det}_2^{x,6} = (1-t) (1+5 t+3 t^2) \]
\[\text{det}_2^{x,8} = (1-t) (1+14 t+14 t^2+12 t^3) \]
\[\text{det}_2^{x,10} = (1-t)^2 (1+28 t+68 t^2-186 t^3-242 t^4-335 t^5-388 t^6-132 t^7-78 t^8) \]
\[\text{det}_2^{x,12} = (1-t) (1-t^2) (1+44 t+113 t^3-1540 t^4-1473 t^5-2224 t^6-2266 t^7-2404 t^8-682 t^9-816 t^10) \]
\[\text{det}_2^{x,14} = (1-t)^3 (1+67 t+406 t^2-4949 t^3-26348 t^4-63628 t^5-172470 t^6-195653 t^7-126185 t^8 \]
\[-46598 t^9-10837 t^{10}+148108 t^{11}+293092 t^{12}+338388 t^{13}+272508 t^{14}+198298 t^{15} \]
\[+177792 t^{16}+58188 t^{17}+21996 t^{18} \]
\[\text{det}_2^{x,16} = (1-t)^2 (1-t) (1+9 t+675 t^2-14627 t^3-101013 t^4-280923 t^5-1435701 t^6-2666839 t^7 \]
\[-258472 t^8-2527926 t^9-2320040 t^{10}-3326922 t^{11}+1668990 t^{12}-411564 t^{13}+1053724 t^{14} \]
\[+971728 t^{15}+979812 t^{16}+721968 t^{17}+1802856 t^{18}+337212 t^{19}+234072 t^{20} \]
\[\text{det}_2^{x,18} = (1-t)^3 (1-t^3) (1+121 t+1359 t^2-32180 t^3-399947 t^4-1835023 t^5-11185716 t^6-52269321 t^7 \]
\[-13780488 t^8-244724288 t^9-120412367 t^{10}-385583935 t^{11}-1034912118 t^{12}-651619915 t^{13} \]
\[-441792167 t^{14}+569706666 t^{15}-571598493 t^{16}-140742595 t^{17}-172000763 t^{18}+435966682 t^{19} \]
\[+991769202 t^{20}+785612744 t^{21}+620751262 t^{22}+813401872 t^{23}+877320078 t^{24}+580476302 t^{25} \]
\[+487631392 t^{26}+113554642 t^{27}+232438932 t^{28}+59619348 t^{29}+24120828 t^{30} \]
\[\text{det}_3^{x,6} = (1-t) (1+9 t+23 t^2+7 t^3) \]
\[\text{det}_3^{x,10} = (1-t)^2 (1+5 t+t^2-15 t^3-11 t^4) (1+27 t+196 t^2+194 t^3+142 t^4) \]
\[\text{det}_3^{x,12} = (1-t)^3 (1+72 t+1836 t^2+19479 t^3+75638 t^4+58044 t^5+421323 t^6+2091202 t^7-2919364 t^8 \]
\[-12020401 t^9-23718680 t^{10}-29632044 t^{11}-27041474 t^{12}-18620272 t^{13}-6653096 t^{14}-2356984 t^{15} \]
\[\text{det}_3^{x,16} = (1-t) (1+13 t+59 t^2+99 t^3+3 t^4) \]
\[\text{det}_3^{x,18} = (1-t)^2 (1+5 t+31 t^2) (1+4 t-2 t^2-13 t^3) (1+40 t+547 t^2+2742 t^3+2664 t^4+1650 t^5) \]
\[\text{det}_3^{x,14} = (1-t)^5 (1+5 t-t^2-25 t^3-13 t^4+35 t^5+27 t^6) (1+133 t+7564 t^2+240967 t^3+472566 t^4+59397187 t^5 \]
\[+48114666 t^6+246997064 t^7+7500159554 t^8+7969894970 t^9-44183297627 t^{10}-24885402276 t^{11} \]
\[-79611962965 t^{12}+4021650070796 t^{13}-11629580824379 t^{14}+1023971816277 t^{15}+4978457222508 t^{16} \]
\[+139955874257862 t^{17}+228311239164350 t^{18}+271152533003464 t^{19}+246093900037000 t^{20} \]
\[+165979804510692 t^{21}+8469343354988 t^{22}+26943862007448 t^{23}+665824781512 t^{24} \]

8.4 Unexpected arithmetical interdependence of the length-4 bialternals.

Let \(B_{2n} \) be the \(n^{th} \) Bernoulli number, and let \(\beta_{2n}^* \) be the essential part of its numerator, that is to say, \(\text{num}(B_{2n}) \) deprived of its small prime factors \(p \) (of all \(p \leq 2n - 5 \) to be precise).

170
The exceptional bialternals, or curma^\bullet bialternals, have length 4, and three distinguished systems $\{\text{curma}^\bullet_{s,k}\},\ \{\text{corma}^\bullet_{s,k}\},\ \{\text{curma}^\bullet_{s,k}\}$ have been constructed here at the end of §7.7. The first such bialternal occurs at weight $s = 12$ and in that particular instance all three constructions coincide:

$$\text{curma}^\bullet_{12,1} = \text{corma}^\bullet_{12,1} = \text{curma}^\bullet_{12,1}$$

This is but natural, since they could only differ by natural bialternals, which do not yet exist at weight $s = 12$. But the surprise is that all the (rational) coefficients of this unique $\text{corma}^\bullet_{12,1}$ have numerators divisible by $\beta^*_1 = 691$, although nothing in the way they are constructed would lead one to expect such improbable divisibility.\(^\text{128}\) This makes one wonder whether the phenomenon, in some form or other, extends to higher weights. Well, the empirical data suggest, overwhelmingly, that it does: for all weights s up to 60, we found that, given any basis $\{e^\bullet_{s_1,s_2,s_3,s_4}\}$ of natural, length-4, weight-s bialternals,\(^\text{129}\) there exist unique relations\(^\text{130}\) of the form:

$$\sum_{k \in \sigma^4_1(s)} ba_{s,k} \text{corma}^\bullet_{s,k} + \sum_{\sum s_i = s} ca_{s_1,s_2,s_3,s_4} e^\bullet_{s_1,s_2,s_3,s_4} = 0 \mod \beta^*_s \ (613)$$

$$\sum_{k \in \sigma^4_1(s)} bo_{s,k} \text{corma}^\bullet_{s,k} + \sum_{\sum s_i = s} co_{s_1,s_2,s_3,s_4} e^\bullet_{s_1,s_2,s_3,s_4} = 0 \mod \beta^*_s \ (614)$$

$$\sum_{k \in \sigma^4_1(s)} bu_{s,k} \text{curma}^\bullet_{s,k} + \sum_{\sum s_i = s} cu_{s_1,s_2,s_3,s_4} e^\bullet_{s_1,s_2,s_3,s_4} = 0 \mod \beta^*_s \ (615)$$

Remark 1: The identities (613) and (614) make full sense, since by construction all the denominators in $\text{corma}^\bullet_{s,k}$ or $\text{corma}^\bullet_{s,k}$ are invertible mod β^*_s. But the third identity (615) also makes sense when the denominators β^*_s, $s_0 \leq s - 2$ of the $\text{lurma}^\bullet_{s_0}$ entering the construction of $\text{curma}^\bullet_{s,k}$, are co-prime with β_s. That appears to be almost always the case: the large prime factors of a given Bernoulli number do not seem to recur in the next consecutive numbers.

Remark 2: Clearly, the existence (resp. uniqueness) of the relation (613) is equivalent to the existence (resp. uniqueness) of (614) – and also to that of (615), modulo the caveat of Remark 1. But we prefer to consider all three systems to help identify hidden patterns, also for guidance in the search for a

\(^{128}\)This applies even to $\text{curma}^\bullet_{12,1}$: the $\text{lurma}^\bullet_{13}$, $\text{lurma}^\bullet_{15}$, $\text{lurma}^\bullet_{17}$ and $\text{lurma}^\bullet_{19}$ that enter its construction do involve Bernoulli numbers, but smaller ones.

\(^{129}\)with $e^\bullet_{s_1,s_2,s_3,s_4} := ari(\text{ekma}^\bullet_{s_1},\text{ekma}^\bullet_{s_2},\text{ekma}^\bullet_{s_3},\text{ekma}^\bullet_{s_4})$ and bracketting from right to left. We must of course pick the basis elements $e^\bullet_{s_1,s_2,s_3,s_4}$ that themselves verify no trivial dependence relations $\mod \beta^*_s$, but that poses no difficulty.

\(^{130}\)unique, of course, up to multiplication by any invertible factor modulo β_s.

series of ‘remarkable’ and exact (as opposed to reduced mod β_s^e) bialternals standind ‘behind’ these relations. But so far no such pattern and no such back-stage bialternals have emerged.

Remark 3: All the numerical data show that (with the trivial exception of $s = 12$), the identities (613),(614),(615) always involve a non-zero second sum consisting of natural bialternals. Again based on empirical evidence, this still holds true if, taking advantage of the latitude allowed in the construction of the exceptional bialternals,\(^\text{131}\) we replace the first sums (consisting of $\sigma_4^k(s) = O(s)$ terms) by larger sums (consisting of $\sigma_4^k(s) = O(s^2)$ terms) and correspondingly shrink the second sums (which still retains $O(s^3)$ terms).

Some examples.

The first dependence relations with $\sigma_4^k(s) = 1$ is for $s = 16$, $\beta_{16}^e = 3617$:

\[
\begin{align*}
\text{corma}_{16,1} &+ 1805 e_{3,3,3,7} + 1115 e_{3,3,3,7} = 0 \mod 3617 \\
\text{carma}_{16,1} &+ 2675 e_{3,3,3,7} + 518 e_{3,3,3,7} = 0 \mod 3617 \\
\text{curma}_{16,1} &+ 1111 e_{3,3,3,7} + 3436 e_{3,3,3,7} = 0 \mod 3617
\end{align*}
\]

For $s = 18$, we get the following relations \(\mod \beta_{18}^e = 43867:\)

\[
\begin{align*}
\text{corma}_{18,1} &+ 38314 e_{3,3,3,9} + 413 e_{5,3,3,7} + 41405 e_{5,3,3,7} + 11781 e_{5,5,3,5} = 0 \\
\text{carma}_{18,1} &+ 27081 e_{3,3,3,9} + 16590 e_{5,3,3,7} + 2381 e_{5,3,3,7} + 5152 e_{5,5,3,5} = 0 \\
\text{curma}_{18,1} &+ 38314 e_{3,3,3,9} + 413 e_{5,3,3,7} + 16938 e_{5,3,3,7} + 37406 e_{5,5,3,5} = 0
\end{align*}
\]

For $s = 20$, we get these relations, \(\mod \beta_{20}^e = 174611 = 283 \times 617:\)

\[
\begin{align*}
\text{corma}_{20,1} &+ 21797 e_{3,3,3,11} + 6686 e_{3,3,5,3,9} + 80152 e_{3,5,3,3,9} + 154426 e_{3,7,3,7,3} + 55432 e_{3,3,3,9} + 170246 e_{5,5,3,7} = 0 \mod 283 \times 617 \\
\text{carma}_{20,1} &+ 93615 e_{3,3,3,11} + 106745 e_{3,3,5,3,9} + 150715 e_{3,5,3,3,9} + 123787 e_{3,7,3,7,3} + 12924 e_{3,3,3,9} + 16025 e_{5,5,3,7} = 0 \mod 283 \times 617 \\
\text{curma}_{20,1} &+ 50086 e_{3,3,3,11} + 69114 e_{3,3,5,3,9} + 65057 e_{3,5,3,3,9} + 61841 e_{3,7,3,7,3} + 153912 e_{3,3,3,9} + 22526 e_{5,5,3,7} = 0 \mod 283 \times 617
\end{align*}
\]

\(^{131}\)Indeed, for any given odd weight s, there exist exactly $[\frac{s+1}{6}]$ degrees of liberty in the construction of the singuland-based loma_s^e, since the general solution of the desingularisation equation (605) for $S_{s,2}^*$ depends on exactly that number of parameters. As a consequence, the latitude in the determination of the corresponding $\text{corma}_{s,k}^e$ bialternals is $\sigma_4^{*e}(s) \leq \sum_{s \in [s_{k-3}, s_{k-1}]} [\frac{s+1}{6}] = O(s^2)$ and definitely of order $O(s^2)$. Note that the relevant sum here is $\sum_{s \in [s_{k-3}, s_{k-1}]} [\frac{s+1}{6}]$, not $\sum_{s \in [s_{k-3}, s_{k-1}]} [\frac{s+1}{6}]$, since in the construction (605) of $\text{corma}_{s,k}^e$ the length-3 components of $\text{loma}_{s_{k}}^e$ get bracketed with the length-1 components of $\text{loma}_{s_{2}}^e$.

\text{172}
The first relations with $\sigma_4^*(s) = 2$ appear with $s = 28$. Neglecting the second sum (i.e. the natural bialternals), we find:

\[
\begin{align*}
&3148968694 \text{corma}_{28,1} + 522158523 \text{corma}_{28,2} + \ldots \equiv 0 \mod 9349 \times 362903 \\
&325201091 \text{corma}_{28,1} + 2689482059 \text{corma}_{28,2} + \ldots \equiv 0 \mod 9349 \times 362903 \\
&933645869 \text{corma}_{28,1} + 1708525547 \text{corma}_{28,2} + \ldots \equiv 0 \mod 9349 \times 362903
\end{align*}
\]

The reason behind these extraordinary relations (which have no equivalent modulo any number m of the form $\beta^s p^n$ but other than β^s) is totally unclear to us. Nor could we find any privileged and uniformly defined series $\{\text{bial}_s^s\}$ of bialternals which, after reduction modulo β^s, would produce these relations.

8.5 Spectral analysis of the push operator acting on the eupolars.

Eigenspaces of push and their dimensions $DP_{r,d}$.

Let $\text{Flex} = \text{Flex}(\mathcal{E})$ be the monogenous flexion structure generated by a flexion unit \mathcal{E} (all such $\text{Flex}(\mathcal{E})$ are isomorphic) and let Flex_r be its component of length r (i.e. the component containing the bimoulds of length r). The push-operator, when restricted to Flex_r, has order $r+1$. For any $d|r+1$, let $\text{Flex}_{r,d}$ be the subspace of Flex_r spanned by all push eigenvectors with eigenvalues that are exactly unit roots of order d. Lastly, let $DP_{r,d} = \dim(\text{Flex}_{r,d})$.

Main conjecture.

The dimensions of the eigenspaces of push are given by:

\[
DP_{r,d} = 2 \frac{(2r)!}{r!(r+1)!} - \frac{1}{2r+2} \sum_{d||(r+1)} \frac{(2d)!}{d!d!} \Phi\left(\frac{r+1}{d}, \frac{r+1}{d} \right)
\]

Here, the one-argument $\Phi(\cdot)$ is Euler’s classical totient function:

\[
\Phi(d) := \prod_{n_i \geq 1} (p_i^{n_i} - p_i^{n_i - 1}) \quad \text{if} \quad d = \prod_{n_i \geq 1} p_i^{n_i}
\]

and the two-argument $\Phi(\cdot, \cdot)$ admits these two equivalent definitions:

\[
\Phi(d, \delta) := \Phi(d) \|_{p_i^{\nu_i} = p_i^{2 \nu_i} = \ldots = 0} \quad \text{if} \quad \delta = \prod_{\nu_i \geq 0} p_i^{\nu_i}
\]

\[
\Phi(d, \delta) := \prod_{n_i \geq 1, \nu_i \geq 0} \left([\nu_i - n_i] + p_i^{n_i} - [\nu_i - n_i + 1] + p_i^{n_i - 1} \right)
\]
with the sign function \([m]^+ := 1\) if \(m \geq 0\) and \([m]^+ := 0\) if \(m < 0\). If the prime factor \(p_i\) occurs in the decomposition of \(d\) but not in that of \(\delta\), we should set \(\nu_i := 0\) in formula (619).

Clearly:

\[
\Phi(d, 1) = \mu(d) = \text{Möbius function}
\]

\[
\Phi(d, d) = \Phi(d) = \text{Euler\'s totient function}
\]

The following easy-to-check identities shall also prove useful:

\[
\Phi(d, \delta) = \sum_{\delta | d, \delta | \delta} \mu\left(\frac{d}{\delta}\right) \delta
\]

\(\forall n \sum_{\delta | n} \Phi(d, \delta) \Phi(n/\delta) = n \quad \text{if} \quad d = 1
\]

\(= 0 \quad \text{if} \quad d \neq 1 \text{ and } d | n\) (621)

Properties of the dimensions \(DP_{r,d}\).

Property 1: The formulae (616) holds true for all pairs \((r,d)\) up to \(r = 10\).

Property 2: It yields previously conjectured formulae in the special cases \(d = 1\) (since \(\Phi(d, 1) = \mu(d)\)) and \(d = r+1\) (since \(\Phi(r+1, r+1) = \Phi(r+1)\)) while preserving the general expression of \(DP_{r,d}\) as a pondered sum of median binomial coefficients \(\frac{(2r)!}{d!d!}\).

Property 3: It also yields the proper dimension \(\frac{(2r)!}{r!r!}\) for the component \(\text{Flex}_r(\mathcal{E})\) of the monogenous flexion algebra. Indeed, due to the above identity (616), the sum \(\sum_{\delta | (r+1)} PD_{r,\delta} \Phi(\delta)\) reduces to the difference \(\frac{(2r)!}{r!r!} - \frac{1}{2} \frac{(2r+2)!}{(r+1)!(r+1)!}\), which is equal to the expected dimension \(\frac{(2r)!}{r!r!}\).

Property 4: Lastly, and even more convincingly, it yields an integer for each eigenspace of \(\text{push}\), despite expressing \(DP_{r,\delta}\) as a sum of fractional terms \(\frac{1}{2r+2} \frac{(2r)!}{d!d!} \Phi\left(\frac{r+1}{d}, \frac{r+1}{\delta}\right)\).

Remark 1: (616) easily implies \(\delta_1 | \delta_2 \Rightarrow DP_{r,\delta_1} < DP_{r,\delta_2}\)

Remark 2: There is an alternative, simpler expression for \(DP_{r,d}\). Let \(\chi_{\text{push}}(r,t)\) be the characteristic polynomial of the \(\text{push}\) operator restricted to \(\text{Flex}_r(\mathcal{E})\). Then (616) amounts to saying that

\[
\chi_{\text{push}}(r,t) = \prod_{\delta' | r+1} (1 - t^{\delta'})^{DP_{r,\delta'}}
\]

(622)
The remarkable thing, though, is that, for any given value of \(\delta \), the coefficients \(\text{DP}_{r,\delta} \), unlike the earlier \(\text{DP}_{r,\delta}^* \), assume only two distinct values. In fact, \(r \) is necessarily of the form \(n\delta - 1 \) and we have

\[
\text{DP}_{\delta - 1,\delta}^* = +\alpha_\delta > 0 \quad (624)
\]

\[
\text{DP}_{n\delta - 1,\delta}^* = -\beta_\delta < 0 \quad \forall n > 1 \quad (625)
\]

with

\[
\alpha_n = 2 \frac{(2n-2)!}{n!(n-1)!} - \frac{1}{2} \sum_{d|n} \mu(n/d) \frac{(2d)!}{d!d!} \quad (626)
\]

\[
\beta_n = \frac{1}{2} \sum_{d|n} \mu(n/d) \frac{(2d)!}{d!d!} \quad (627)
\]

Thus

\[
[\alpha_1, \alpha_2, \ldots] = [1, 1, 1, 2, 3, 9, 19, 58, 160, 499, 1527, 4940 \ldots]
\]

\[
[\beta_1, \beta_2, \ldots] = [1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225, 32065, 112632 \ldots]
\]

The factorisation (622) therefore becomes

\[
\chi_{\text{push}}(r, t) = (1 - t^{r+1})^{\alpha_{r+1}} \prod_{\delta|r+1} (1 - t^\delta)^{-\beta_\delta} \quad (628)
\]

which implies for the dimensions \(\text{DP}_{r,\delta} \) the alternative expression:

\[
\text{DP}_{r,\delta} = \alpha_{r+1} - \sum_{\delta'|r+1} \beta_{\delta'} \quad \text{(in particular } \text{DP}_{r,r+1} = \alpha_{r+1}) \quad (629)
\]

To show that (629) with \(\alpha_n \) and \(\beta_n \) as in (626)-(627) is truly equivalent to the earlier expression (616), it is enough to plug the identity (629) into (616).

8.6 The lifted variants of the ari bracket.

To each flexion unit \(\mathfrak{c} \) there corresponds a flexion algebra \(\text{Flex} \) and a lift operator \(\mathfrak{c} \) acting on it:

\[
\mathfrak{c} A^\bullet := \text{arit}(A^\bullet) \mathfrak{c}^\bullet \quad \mathfrak{c} : \begin{cases}
\text{Flex} \rightarrow \text{Flex} \\
\text{ARI} \rightarrow \text{ARI}
\end{cases} \quad (630)
\]

The lift \(\mathfrak{c} \) and its powers clearly preserve alternality. More significantly:
Proposition 8.1 Although \(l^n \cdot \text{Flex} \) and \(l^n \cdot \ARI \) are but small subspaces of \(\text{Flex} \) and \(\ARI \), these subspaces are stable under the \(\ari \)-bracket.

\[
\ari : \begin{cases}
(l^n \cdot \text{Flex}_{r_1}, l^n \cdot \text{Flex}_{r_2}) & \rightarrow l^n \cdot \text{Flex}_{r_1 + r_2 + n} \\
(l^n \cdot \ARI_{r_1}, l^n \cdot \ARI_{r_2}) & \rightarrow l^n \cdot \ARI_{r_1 + r_2 + n}
\end{cases}
\]

(631)

This induces a series of lifted Lie brackets \(\ari_n \):

\[
\ari_n : \begin{cases}
(\text{Flex}_{r_1}, \text{Flex}_{r_2}) & \rightarrow \text{Flex}_{r_1 + r_2 + n} \\
(\ARI_{r_1}, \ARI_{r_2}) & \rightarrow \ARI_{r_1 + r_2 + n}
\end{cases}
\]

(632)

characterised by

\[
\ari(l^n A^*, l^n B^*) \equiv l^n \ari_n(A^*, B^*)
\]

(633)

and acting according to the formula

\[
\ari_n(A^*, B^*) := \begin{cases}
-\ari(l^n A^*) B^* + \ari(l^n B^*) A^* + \sum_{n_1, n_2 \geq 0} \ln(l^n A^* A^* B^*)
\end{cases}
\]

(634)

For \(n = 0 \), \(\ari_0 = \ari \) and we recover the usual definition of the \(\ari \) bracket:

\[
\ari(A^*, B^*) = -\ari(A^*) B^* + \ari(B^*) A^* + \ln(A^*, B^*)
\]

(635)

For the polar flexion units \(\mathcal{E}^* = P_{a}^* \) resp. \(P_{l}^* \) with \(P_{a}^{w_1} = P(u_1) = 1/u_1 \) and \(P_{l}^{w_1} = P(v_1) = 1/v_1 \), the pair \((l, \ari_n) \) is denoted \((l a, \ari_{la}) \) resp. \((l i, \ari_{li}) \). Only this second pair of operations is of practical importance, because it alone preserves entireness, and that too only when the bimoulds depend on the sole lower indices \(v_j \). Thus \(\ari_n : \ARI^*_{\text{ent}} \rightarrow \ARI^*_{\text{ent}} \).

8.7 Tables: the satellites \(sa, sa^*, sa^{**} \) up to weight 9.

For the first 11 linear generators of \(\ARI^{l/d}_{\text{biso}} \) up to weight 7:

\[
M_{s_1, s_2, \ldots, s_k} := \ari(M_{s_1}^*, M_{s_2}^*, \ldots, M_{s_k}^*)
\]

we tabulate here all three satellites \(sa, sa^*, sa^{**} \) with the following convenient abbreviations:

\[
\text{sa.}M^* : C^* \begin{cases}
\text{sa}^0_0 M^* = : \mathcal{A}^* , & \text{sa}^1_0 M^* = : \mathcal{B}^* , & \text{sa}^2_0 M^* = : \mathcal{C}^* \\
\text{sa}^0_1 M^* = : \mathcal{A}^* , & \text{sa}^1_1 M^* = : \mathcal{B}^* , & \text{sa}^2_1 M^* = : \mathcal{C}^*
\end{cases}
\]

176
(i) For the lower satellite \(saM^* \), we give the list of values \(\{ C^{e_1, \ldots, e_s}, \epsilon_i \in \{0, \frac{1}{2}\}\} \) in lexicographic order.

(ii) We tabulate the all-white upper satellites \(sa^*_0 M^* \equiv sa^*_0 M^* \) only for \(M_{[5]}^*, M_{[5]}^*, M_{[5]}^* \), since in all other cases they are \(\equiv 0 \).

(iii) For a given weight \(s \), the all-black upper satellites \(sa^*_1 M^* \) and \(sa^{**}_1 M^* \) differ more and more as the degree \(d \) increases.

(iv) Dually, for a given weight \(s \), the co-satellites \(sa^{**}_1 M^* \) and \(sa^{**}_1 M^* \) differ more and more as the length \(\omega = s - d \) increases.

(v) The lowest-degree non-vanishing satellites \(sa^{**}_1 M^* \) and \(sa^{**}_1 M^* \) coincide up to sign, and so do the lowest-length non-vanishing co-satellites \(sa^{**}_1 M^* \) and \(sa^{**}_1 M^* \). In fact:

\[
\begin{align*}
& sa^{**}_1 M^* \equiv (-1)^d sa^{**}_1 M^* \quad \text{for lowest degree } d \\
& sa^{**}_1 M^* \equiv (-1)^r sa^{**}_1 M^* \quad \text{for lowest length } r
\end{align*}
\]

(vi) The lowest-degree non-vanishing satellites \(sa^{**}_1 M^* \) and \(sa^{**}_1 M^* \) are marked in red when they coincide; in blue when they have opposite signs.

(vii) The lowest-length non-vanishing co-satellites \(sa^{**}_1 M^* \) and \(sa^{**}_1 M^* \) are marked in red when they coincide; in blue when they carry opposite signs.

(viii) For ease of comparison, we resisted factorising the degree-1 components; nor did we factor out the prime integer 7 common to all components of all satellites of \(M_{[3,1]}^*, M_{[3,1]}^*, M_{[3,1]}^*, M_{[3,1]}^*, M_{[3,1]}^* \).

\[
\begin{align*}
C_{[1]} = \{0, 1\}, \quad A^{u_1}_{[1]} &= 0, \quad B^{u_1}_{[1]} = 1, \quad B^{u_1}_{[1]} = -1, \quad \mathcal{R}^{u_1}_{[1]} = 1, \quad \mathcal{R}^{u_1}_{[1]} = -1
\end{align*}
\]

\[
\begin{align*}
C_{[3]} = \{0, -\frac{7}{8}, \frac{1}{8}, -\frac{7}{8}, -1, 4, \frac{1}{8}, 0\}
\end{align*}
\]

\[
\begin{align*}
A^{u_1}_{[3]} &= A^{u_1}_{[3]} = u_1^2 \\
B^{u_1}_{[3]} &= -\frac{3}{4} u_1^2 \\
B^{u_1}_{[3]} &= +\frac{7}{8} u_1 \\
\mathcal{R}^{u_1}_{[3]} &= +\frac{1}{8} u_1^2 \\
\mathcal{R}^{u_1}_{[3]} &= +\frac{1}{8} u_1
\end{align*}
\]
\[C_{[3,1]} = \{0, \frac{7}{8}, -\frac{21}{8}, 0, \frac{21}{8}, 0, 0, -\frac{7}{8}, \frac{21}{8}, 0, -\frac{21}{8}, \frac{7}{8}, 0\} \]

\[
\begin{align*}
E_{[3,1]} &= 0 \\
E_{[3,1]} &= \frac{7}{8} u_1^3 \\
E_{[3,1]} &= \frac{7}{8} u_1^3 \\
E_{[3,1]} &= -\frac{7}{8} u_1^3 \\
E_{[3,1]} &= -\frac{7}{4} u_1^2 + \frac{7}{4} u_2^2 \\
E_{[3,1]} &= 0 \\
E_{[3,1]} &= -\frac{7}{4} u_1^2 + \frac{7}{4} u_2^2 \\
E_{[3,1]} &= 0 \\
E_{[3,1]} &= +\frac{7}{8} u_1 - \frac{7}{8} u_2 + \frac{7}{8} u_3 \\
E_{[3,1]} &= -\frac{7}{8} u_1 + \frac{7}{4} u_2 - \frac{7}{8} u_3 \\
E_{[3,1]} &= 0 \\
E_{[3,1]} &= +\frac{7}{8} u_1 - \frac{7}{4} u_2 + \frac{7}{8} u_3
\end{align*}
\]
\[C[5] = \{0, 0, 0, 1, 6 \frac{1}{2}, 0, 29, 34, -32, 0, 29, 37, 39, 1, -64, 4, -2, \frac{3}{2}, 64, -\frac{61}{3}, -4, 1, 0\} \]

\[A_{5}^{u_{1}} = A_{5}^{u_{1}} = +u_{1}^{4} \]

\[B_{5}^{u_{1}} = -\frac{15}{16} u_{1}^{4} \]

\[\begin{aligned}
A_{5}^{u_{1}, u_{2}} &= A_{5}^{u_{1}, u_{2}} = -2 u_{1}^{3} - \frac{1}{3} u_{1}^{2} u_{2} + \frac{1}{2} u_{1} u_{2}^{2} + 2 u_{2}^{3} \\
B_{5}^{u_{1}, u_{2}} &= +\frac{29}{64} u_{1}^{3} + \frac{21}{64} u_{1}^{2} u_{2} - \frac{21}{64} u_{1} u_{2}^{2} - \frac{29}{64} u_{2}^{3} \\
\end{aligned} \]

\[\begin{aligned}
B_{5}^{u_{1}, u_{2}} &= -\frac{1}{32} u_{1}^{3} - \frac{29}{64} u_{1}^{2} u_{2} + \frac{29}{64} u_{1} u_{2}^{2} + \frac{1}{32} u_{2}^{3} \\
B_{5}^{u_{1}, u_{3}} &= -\frac{21}{64} u_{1}^{3} - \frac{125}{64} u_{1}^{2} u_{3} + \frac{125}{64} u_{1} u_{3}^{2} + \frac{35}{32} u_{3}^{3} \\
\end{aligned} \]

\[\begin{aligned}
B_{5}^{u_{1}, u_{2}, u_{3}} &= -\frac{63}{32} u_{1}^{3} - \frac{3}{64} u_{1}^{2} u_{2} + \frac{3}{64} u_{1} u_{2}^{2} + \frac{63}{32} u_{2}^{3} \\
A_{5}^{u_{1}, u_{2}, u_{3}} &= A_{5}^{u_{1}, u_{2}, u_{3}} = +2 u_{1}^{3} - \frac{3}{2} u_{1} u_{2} - 4 u_{2}^{3} + 3 u_{1} u_{3} - \frac{3}{2} u_{2} u_{3} + 2 u_{3}^{3} \\
B_{5}^{u_{1}, u_{2}, u_{3}} &= +\frac{33}{32} u_{1}^{3} + \frac{59}{64} u_{1} u_{2} - \frac{33}{16} u_{2}^{3} - \frac{59}{64} u_{1} u_{3} + \frac{59}{64} u_{2} u_{3} + \frac{33}{32} u_{3}^{3} \\
\end{aligned} \]

\[\begin{aligned}
B_{5}^{u_{1}, u_{2}, u_{3}} &= +\frac{63}{32} u_{1}^{3} - \frac{125}{64} u_{1} u_{2} - \frac{63}{16} u_{2}^{3} + \frac{125}{32} u_{1} u_{3} - \frac{125}{64} u_{2} u_{3} + \frac{63}{32} u_{3}^{3} \\
B_{5}^{u_{1}, u_{2}, u_{3}} &= -\frac{29}{64} u_{1}^{3} - \frac{17}{32} u_{1} u_{2} + \frac{29}{64} u_{2}^{3} + \frac{17}{32} u_{1} u_{3} - \frac{29}{64} u_{2} u_{3} - \frac{29}{64} u_{3}^{3} \\
B_{5}^{u_{1}, u_{2}, u_{3}} &= +\frac{1}{32} u_{1}^{3} + \frac{29}{64} u_{1} u_{2} - \frac{1}{16} u_{2}^{3} - \frac{29}{64} u_{1} u_{3} + \frac{29}{64} u_{2} u_{3} + \frac{1}{32} u_{3}^{3} \\
A_{5}^{u_{1}, \ldots, u_{4}} &= A_{5}^{u_{1}, \ldots, u_{4}} = -u_{1} + 3 u_{2} - 2 u_{3} u_{4} \\
B_{5}^{u_{1}, \ldots, u_{4}} &= -u_{1} + 3 u_{2} - 3 u_{3} u_{4} \\
\end{aligned} \]

\[\begin{aligned}
B_{5}^{u_{1}, \ldots, u_{4}} &= -u_{1} + 3 u_{2} - 3 u_{3} u_{4} \\
B_{5}^{u_{1}, \ldots, u_{4}} &= +\frac{15}{16} u_{1} - \frac{45}{16} u_{2} + \frac{15}{16} u_{3} - \frac{15}{16} u_{4} \\
\end{aligned} \]

\[B_{5}^{u_{1}, \ldots, u_{4}} = 0 \]
\[C_{\{3,1\}} = \{ +0, -\frac{7}{8}, \frac{7}{8}, -\frac{21}{4}, -\frac{21}{8}, 0, \frac{7}{8}, \frac{7}{2}, \frac{21}{8}, 0, -\frac{21}{8}, 0, \frac{21}{8}, -\frac{7}{4}, -\frac{7}{8}, -\frac{7}{8}, -\frac{21}{8}, 0, -\frac{21}{8}, \frac{21}{8}, 0, -\frac{21}{8}, -\frac{21}{4}, \frac{7}{8}, \frac{7}{2}, -\frac{7}{8}, 0 \} \]

\[
B_{\{3,1\}}^{11} = 0 \\
B_{\{3,1\}}^{11} = +\frac{7}{8}u_1 \\
B_{\{3,1\}}^{11} = -\frac{7}{8}u_1 \\
B_{\{3,1\}}^{11} = 0 \\
B_{\{3,1\}}^{11} = -\frac{7}{8}u_1 + \frac{7}{8}u_2 \\
B_{\{3,1\}}^{11} = +\frac{7}{8}u_1^2 - \frac{7}{4}u_2 - \frac{7}{4}u_3 \\
B_{\{3,1\}}^{11} = +\frac{7}{8}u_1^3 - \frac{7}{8}u_2^3 \\
B_{\{3,1\}}^{11} = -\frac{7}{8}u_1^2 + \frac{7}{4}u_2^2 - \frac{7}{4}u_3^2 \\
B_{\{3,1\}}^{11} = +\frac{7}{8}u_1^3 + \frac{7}{4}u_2 - \frac{7}{4}u_3 - \frac{7}{8}u_4 \\
B_{\{3,1\}}^{11} = \frac{7}{8}u_1^3 - \frac{7}{8}u_2^3 + \frac{7}{8}u_3^2 + \frac{7}{8}u_4 \\
B_{\{3,1\}}^{11} = -\frac{7}{8}u_1 - \frac{21}{8}u_2 + \frac{21}{8}u_3 - \frac{7}{8}u_4 \\
B_{\{3,1\}}^{11} = \frac{7}{8}u_1 - \frac{21}{8}u_2 + \frac{21}{8}u_3 - \frac{7}{8}u_4 \\
B_{\{3,1\}}^{11} = 0 \\
B_{\{3,1\}}^{11} = +\frac{7}{8}u_1 - \frac{21}{8}u_2 + \frac{21}{8}u_3 - \frac{7}{8}u_4 \\
B_{\{3,1\}}^{11} = +\frac{7}{8}u_1 - \frac{21}{8}u_2 + \frac{21}{8}u_3 - \frac{7}{8}u_4 \\
B_{\{3,1\}}^{11} = 0 \\
B_{\{3,1\}}^{11} = \frac{7}{8}u_1 + \frac{21}{8}u_2 - \frac{21}{8}u_3 + \frac{7}{8}u_4 \\

\]
\[C_{[5,1]} = \{0, 0, 0, \quad \frac{31}{32}, 0, \quad -\frac{279}{64}, \quad \frac{31}{64}, \quad 0, \quad 0, \quad \frac{465}{64}, \quad -\frac{93}{64}, \quad 0, \quad 0, \quad \frac{93}{64}, \quad 0, \quad -\frac{31}{16}, \quad \frac{31}{32}, 0, \quad -\frac{155}{32}, 0, \quad -\frac{95}{16}, \quad \frac{64}{3}\} \]

\[B_{[5,1]}^{u_1} = 0 \]

\[B_{[5,1]}^{u_1, u_2} = -\frac{31}{32} u_1^2 + \frac{31}{32} u_2^2 \]

\[B_{[5,1]}^{u_1, u_2} = +\frac{31}{32} u_1 - \frac{31}{32} u_2 + \frac{61}{64} u_1 u_2^3 - \frac{31}{32} u_2 \]

\[B_{[5,1]}^{u_1, u_2} = -\frac{31}{32} u_1^2 + \frac{31}{32} u_3 u_2 - \frac{61}{64} u_1 u_2^3 + \frac{31}{32} u_2 \]

\[B_{[5,1]}^{u_1, u_2, u_3} = +\frac{93}{32} u_1^3 + \frac{31}{16} u_1 u_2^2 - \frac{31}{16} u_1 u_2^2 + \frac{31}{16} u_1 u_2^3 - \frac{31}{16} u_2 u_3 + \frac{31}{16} u_2 u_3^2 + \frac{93}{32} u_3 \]

\[B_{[5,1]}^{u_1, u_2, u_3} = -\frac{93}{32} u_1 u_2^2 + \frac{93}{32} u_1 u_3 + \frac{93}{32} u_2 u_3 - \frac{93}{32} u_2 u_3 \]

\[B_{[5,1]}^{u_1, u_2, u_3} = +\frac{93}{32} u_1^3 + \frac{31}{16} u_1 u_2^2 - \frac{217}{32} u_1 u_2^2 - \frac{93}{32} u_2 + \frac{155}{32} u_1 u_3 - \frac{217}{32} u_2 u_3 + \frac{155}{32} u_1 u_3^2 + \frac{31}{16} u_2 u_3 + \frac{93}{32} u_3 \]

\[B_{[5,1]}^{u_1, u_2, u_3} = +\frac{93}{32} u_1 u_2^2 - \frac{93}{32} u_1 u_3 + \frac{93}{32} u_2 u_3 - \frac{93}{32} u_1 u_3 \]

\[B_{[5,1]}^{u_1, u_2, u_3, u_4} = -\frac{31}{32} u_1^2 + \frac{155}{64} u_1 u_2 + \frac{93}{32} u_2^2 - \frac{155}{32} u_1 u_3 - \frac{93}{32} u_2^2 + \frac{155}{32} u_1 u_3 - \frac{155}{32} u_2 u_4 + \frac{31}{32} u_4 \]

\[B_{[5,1]}^{u_1, u_2, u_3, u_4} = -\frac{31}{32} u_1^2 + \frac{155}{64} u_1 u_2 + \frac{93}{32} u_2^2 - \frac{155}{32} u_1 u_3 - \frac{93}{32} u_2^2 + \frac{155}{32} u_1 u_3 - \frac{155}{32} u_2 u_4 + \frac{31}{32} u_4 \]

\[B_{[5,1]}^{u_1, u_2, u_3, u_4} = -\frac{31}{16} u_1^2 + \frac{31}{8} u_1 u_2 + \frac{93}{16} u_2^2 - \frac{31}{4} u_1 u_3 - \frac{93}{16} u_2^2 + \frac{31}{4} u_1 u_3 - \frac{31}{8} u_2 u_4 + \frac{31}{16} u_2 u_4 \]

\[B_{[5,1]}^{u_1, u_2, u_3, u_4} = +\frac{31}{32} u_1^2 - \frac{155}{64} u_1 u_2 - \frac{31}{32} u_2^2 + \frac{155}{32} u_1 u_3 + \frac{93}{32} u_2^2 - \frac{155}{32} u_2 u_4 + \frac{155}{64} u_3 u_4 - \frac{31}{32} u_4 \]

\[B_{[5,1]}^{u_1, u_2, u_3, u_4} = B_{[5,1]}^{u_1, u_2, u_3, u_4} = B_{[5,1]}^{u_1, u_2, u_3, u_4} = 0 \]

181
\[C_{[3,1,1,1]} = \begin{pmatrix} 0 & \frac{7}{8} & -\frac{35}{8} & -\frac{7}{4} & \frac{35}{4} & \frac{49}{8} & \frac{7}{8} & 0 & -\frac{35}{4} & -\frac{63}{8} & -\frac{21}{8} & 0 & 0 & \frac{21}{8} & \frac{7}{4} & \frac{35}{4} & \frac{21}{4} & 0 & \frac{21}{8} \\ -\frac{21}{4} & 0 & -\frac{21}{8} & -\frac{21}{4} & \frac{63}{8} & -\frac{21}{8} & 0 & -\frac{21}{4} & \frac{7}{8} & -\frac{7}{8} & -\frac{21}{8} & 0 & 0 & \frac{21}{8} & -\frac{7}{8} & -\frac{49}{8} \\ \end{pmatrix}\]

\[B_{[3,1,1,1]}^{u_1} = 0\]

\[B_{[3,1,1,1]}^{u_1} + \frac{7}{8} u_1\]

\[B_{[3,1,1,1]}^{u_1} - \frac{7}{8} u_1\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = 0\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = -\frac{7}{8} u_1^2 - \frac{7}{4} u_2^2 + \frac{7}{8} u_1 u_2 + \frac{7}{4} u_3^2 - \frac{7}{8} u_1 u_3 - \frac{7}{8} u_2 u_3\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = -\frac{7}{4} u_1^2 + \frac{7}{4} u_2^2 + \frac{7}{8} u_1 u_2 - \frac{7}{8} u_1 u_3 + \frac{7}{8} u_2 u_3\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = -\frac{7}{8} u_1^2 + \frac{7}{8} u_1 u_2 - \frac{7}{8} u_1 u_3 + \frac{7}{8} u_2 u_3\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = 0\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = -\frac{7}{4} u_1^2 + \frac{7}{4} u_2^2 - \frac{7}{8} u_1 u_2 + \frac{7}{8} u_1 u_3 + \frac{7}{8} u_2 u_3\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = 0\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = \frac{7}{8} u_1 - \frac{7}{8} u_2 + \frac{21}{8} u_3 - \frac{7}{8} u_4 + \frac{7}{8} u_5\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = 0\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = \frac{7}{8} u_1 - \frac{7}{8} u_2 + \frac{21}{8} u_3 - \frac{7}{8} u_4 + \frac{7}{8} u_5\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = 0\]

\[B_{[3,1,1,1]}^{u_1, u_2, u_3} = \frac{7}{8} u_1 - \frac{7}{8} u_2 + \frac{21}{8} u_3 - \frac{7}{8} u_4 + \frac{7}{8} u_5\]
\[C[7] = \{0, 30663, -91989, -29123, 459945, 184363, 9687, -5, -153315, 187217, 1427, 221, 17947, \ldots \}\]

\[A_{[7]}^{u_1} = 1, B_{[7]}^{u_1} = u_1^6 \]

\[A_{[7]}^{u_2} = 1, B_{[7]}^{u_2} = u_1^6 \]

\[A_{[7]}^{u_1, u_2} = A_{[7]}^{u_1} - 3u_1^5 - 4u_1^4u_2 - 3u_1^3u_2^2 + 3u_1^2u_2^3 + 4u_1u_2^4 + 3u_2^5 \]

\[B_{[7]}^{u_1, u_2} = 1 + 251 \cdot 128u_1u_2 + 251 \cdot 128u_2^2 - 512u_1u_2 + 64 \cdot 128u_1^2u_2 + 512u_2^3 + 63 \cdot 128u_1^3u_2 - 251 \cdot 128u_1u_2^2 + 512u_2^4 - 29123 \cdot 128u_2^5 \]

\[A_{[7]}^{u_1, u_2} = -3913u_1^5 - 317275u_1^4u_2 - 266127u_1^3u_2^2 + 266127u_1^2u_2^3 + 317275u_1u_2^4 + 3913u_2^5 \]

\[A_{[7]}^{u_1, u_2} = -3913u_1^5 - 317275u_1^4u_2 - 266127u_1^3u_2^2 + 266127u_1^2u_2^3 + 317275u_1u_2^4 + 3913u_2^5 \]

\[A_{[7]}^{u_1, u_2} = -3913u_1^5 - 317275u_1^4u_2 - 266127u_1^3u_2^2 + 266127u_1^2u_2^3 + 317275u_1u_2^4 + 3913u_2^5 \]

\[A_{[7]}^{u_1, u_2} = -3913u_1^5 - 317275u_1^4u_2 - 266127u_1^3u_2^2 + 266127u_1^2u_2^3 + 317275u_1u_2^4 + 3913u_2^5 \]
$A_{[7]}^{u_1,u_2,u_3} = A_{[7]}^{u_1,u_2,u_3} = \begin{cases} +5u_1^4 + \frac{99}{16}u_1^3u_2 - \frac{61}{16}u_1^2u_2^2 - 13u_1u_2^3 - 10u_2^4 + \frac{109}{16}u_1^3u_3 \\ + \frac{65}{16}u_1^3u_2u_3 - \frac{65}{8}u_1u_2^3u_3 - 13u_2^3u_3 + \frac{61}{8}u_1^2u_3^2 \\ + \frac{65}{16}u_1u_2^3u_3 - \frac{61}{16}u_2^3u_3^2 + \frac{109}{16}u_2^2u_3^3 + \frac{99}{16}u_2u_3^4 + 5u_3^4 \end{cases}$

$B_{[7]}^{u_1,u_2,u_3} = \begin{cases} + \frac{31309}{128}u_1^4 + \frac{78111}{256}u_1^3u_2 + \frac{34069}{128}u_1^2u_2^2 - \frac{38213}{128}u_1u_2^3 - \frac{31309}{64}u_2^4 \\ - \frac{1085}{256}u_1^3u_3 - \frac{219}{256}u_1^2u_2u_3 + \frac{1119}{128}u_1u_2^2u_3 - \frac{39213}{128}u_2^3u_3 - \frac{34969}{64}u_1^2u_3^2 \\ - \frac{1119}{256}u_1u_2^2u_3 + \frac{34069}{128}u_2^3u_3^2 - \frac{1685}{256}u_1u_3^3 + \frac{78111}{256}u_2u_3^3 + \frac{31309}{128}u_3^4 \end{cases}$

$C_{[7]}^{u_1,u_2,u_3} = \begin{cases} + \frac{35339}{256}u_1^3u_2u_3 - \frac{3539}{256}u_1u_2^3u_3 - \frac{109553}{256}u_2^3u_3^2 + \frac{70559}{128}u_1^2u_3^2 \\ + \frac{3539}{256}u_1u_2^2u_3^2 - \frac{99}{16}u_2^3u_3^3 + \frac{31309}{128}u_2^2u_3^4 + 5u_3^4 \end{cases}$

$D_{[7]}^{u_1,u_2,u_3} = \begin{cases} + \frac{94557}{256}u_1^4 + \frac{192291}{256}u_1^3u_2 - \frac{56943}{128}u_1u_2^3 - \frac{33229}{128}u_1u_3^2 - \frac{94557}{128}u_2^4 \\ + \frac{69099}{128}u_1^3u_3 + \frac{285377}{512}u_1^2u_2u_3 + \frac{285377}{256}u_1u_2^3u_3 - \frac{33229}{256}u_2^3u_3^2 + \frac{56943}{64}u_1^2u_3^3 \\ + \frac{285377}{512}u_1u_2^2u_3^2 - \frac{56943}{128}u_2^3u_3^3 + \frac{109553}{256}u_1u_3^3 + \frac{192291}{256}u_2u_3^3 + \frac{94557}{256}u_3^4 \\ + \frac{68607}{128}u_2^2u_3^2 + \frac{102897}{512}u_1u_2u_3^2 - \frac{102897}{512}u_1u_3^3 - \frac{34299}{256}u_2u_3^4 \end{cases}$

$E_{[7]}^{u_1,u_2,u_3} = \begin{cases} + \frac{34299}{128}u_1u_2^3u_3 - \frac{102897}{256}u_2^2u_3^3 - \frac{68607}{256}u_1u_2^2u_3^2 - \frac{34299}{256}u_1u_2u_3^2 \\ + \frac{102897}{512}u_1u_2u_3^2 - \frac{102897}{912}u_1u_3^3 \end{cases}$

184
$$A_{u_1,\ldots,u_4} = A_{u_1,\ldots,u_4}^{[7]} =$$

$$= \begin{cases}
-5 u_1^3 - \frac{19}{16} u_1^2 u_2 + 12 u_1 u_2^2 + 15 u_3^2 - \frac{141}{16} u_3^2 u_4 \\
-\frac{17}{16} u_1 u_2 u_3 + \frac{17}{16} u_2^2 u_3 - \frac{205}{16} u_1 u_3^2 - \frac{179}{16} u_2 u_3^2 \\
-15 u_3^2 - 2 u_2^2 u_4 + \frac{51}{16} u_1 u_2 u_4 + \frac{205}{16} u_2^2 u_4 - \frac{51}{16} u_1 u_3 u_4 \\
+ \frac{17}{16} u_2 u_3 u_4 - 12 u_3^2 u_4 + 2 u_1 u_2^2 + \frac{141}{16} u_2 u_3^2 + 16 u_1 u_3 u_4^2 + 5 u_3^3
\end{cases}$$

$$B_{u_1,\ldots,u_4}^{[7]} =$$

$$= \begin{cases}
-\frac{94557}{256} u_1^3 - \frac{48867}{128} u_1^2 u_2 + \frac{35139}{64} u_1 u_2^2 + \frac{283671}{256} u_2^3 + \frac{25863}{256} u_3 u_4 \\
+ \frac{853}{512} u_1 u_2 u_3 + \frac{169785}{256} u_2^2 u_3 - \frac{111327}{256} u_1 u_3^2 - \frac{169785}{256} u_2 u_3^2 - \frac{283671}{256} u_3^3 \\
- \frac{959}{256} u_1^2 u_4 - \frac{2559}{512} u_1 u_2 u_4 + \frac{113327}{256} u_2^2 u_4 + \frac{2559}{512} u_1 u_3 u_4 - \frac{853}{512} u_2 u_3 u_4 \\
+ \frac{3139}{64} u_3 u_4^2 + \frac{68005}{256} u_1 u_3^2 + \frac{25683}{128} u_3 u_4^2 + \frac{48867}{128} u_3 u_4^2 + \frac{94557}{256} u_4^3 \\
- \frac{512}{102897} u_1 u_2 u_3^2 - \frac{512}{64} u_1^2 u_4 + \frac{43929}{512} u_1 u_2 u_4 + \frac{102897}{512} u_1 u_2 u_4 + \frac{137187}{512} u_2 u_3 u_4 - \frac{102897}{512} u_1 u_3 u_4 \\
- \frac{512}{34299} u_2 u_3 u_4 - \frac{101285}{256} u_2 u_3 u_4 + \frac{17145}{512} u_2 u_3 u_4 + \frac{68007}{512} u_3 u_4^2 + \frac{94557}{256} u_4^3 \\
+ \frac{93927}{128} u_1 u_2 u_3^2 - \frac{13471}{256} u_1 u_2 u_3^2 - \frac{1007}{512} u_2 u_3^2 - \frac{93927}{128} u_3 u_4^2 \\
+ \frac{5655}{256} u_1 u_3^2 + \frac{143973}{256} u_1 u_3^2 + \frac{13471}{256} u_2 u_3^2 + \frac{143973}{256} u_1 u_3 u_4 + \frac{4791}{256} u_2 u_3 u_4 \\
- \frac{29583}{32} u_3 u_4^2 - \frac{5655}{256} u_1 u_3^2 + \frac{113403}{128} u_3 u_4^2 + \frac{15493}{256} u_3 u_4^2 + \frac{3139}{128} u_4^3
\end{cases}$$

$$C_{u_1,\ldots,u_4}^{[7]} =$$

$$= \begin{cases}
-\frac{3139}{128} u_1^3 - \frac{15493}{256} u_1 u_2^2 + \frac{29583}{32} u_1^2 u_2 + \frac{93927}{128} u_1 u_2^2 + \frac{113403}{128} u_3 u_4^2 \\
- \frac{4791}{256} u_1 u_2 u_3 - \frac{13471}{256} u_1 u_3 u_4 - \frac{93927}{128} u_3 u_4^2 \\
+ \frac{5655}{256} u_1 u_3^2 + \frac{143973}{256} u_1 u_3^2 + \frac{13471}{256} u_2 u_3^2 + \frac{143973}{256} u_1 u_3 u_4 + \frac{4791}{256} u_2 u_3 u_4 \\
- \frac{29583}{32} u_3 u_4^2 - \frac{5655}{256} u_1 u_3^2 + \frac{113403}{128} u_3 u_4^2 + \frac{15493}{256} u_3 u_4^2 + \frac{3139}{128} u_4^3
\end{cases}$$

$$D_{u_1,\ldots,u_4}^{[7]} =$$

$$= \begin{cases}
-5 u_1^3 - \frac{19}{16} u_1^2 u_2 + \frac{9675}{512} u_1 u_2^2 + 15 u_3^2 + \frac{6495}{128} u_3^2 u_4 \\
+ \frac{33755}{512} u_1 u_2 u_3 - \frac{62875}{512} u_2 u_3^2 + \frac{139027}{512} u_1 u_3^2 - \frac{62875}{512} u_2 u_3^2 - 15 u_3^3 \\
+ \frac{9655}{256} u_1 u_2 u_4 - \frac{101265}{512} u_1 u_2 u_4 - \frac{101265}{512} u_1 u_3 u_4 + \frac{512}{102897} u_1 u_3 u_4 \\
- \frac{33755}{512} u_2 u_3 u_4 + \frac{9675}{512} u_2 u_3 u_4 + \frac{16633}{256} u_1 u_4^2 + \frac{6495}{512} u_2 u_4^2 + \frac{19}{16} u_3 u_4^2 + 5 u_4^3
\end{cases}$$
\[\mathbf{A}^{[7]}_{u_1, \ldots, u_5} = \mathbf{A}^{[7]}_{u_1, \ldots, u_5} = \begin{pmatrix} +3u_1^2 & -5u_1u_2 & -12u_2^2 & +12u_1u_3 & +3u_2u_3 \\ +18u_1^2 & -6u_1u_4 & -12u_2u_4 & +3u_3u_4 & -12u_4^2 \\ +4u_1u_5 & -6u_2u_5 & +12u_3u_5 & -5u_4u_5 & +3u_5^2 \end{pmatrix} + \frac{11739}{8}u_3^2 \]

\[\mathbf{B}^{[7]}_{u_1, \ldots, u_5} = \mathbf{B}^{[7]}_{u_1, \ldots, u_5} = \begin{pmatrix} \frac{3913}{128}u_1 & -24305 & \frac{24305}{512} & -\frac{3913}{4}u_2 & +\frac{7547}{256}u_3u_4 & +\frac{24305}{512}u_2u_3 \\ -\frac{25551}{128} & +\frac{3913}{16} & +\frac{58373}{512} & +\frac{58373}{512} & +\frac{58373}{512}u_4 \end{pmatrix} + \frac{51717}{64}u_1u_5

\[\mathbf{B}^{[7]}_{u_1, \ldots, u_5} = \mathbf{B}^{[7]}_{u_1, \ldots, u_5} = \begin{pmatrix} +1917 & u_1^3 & +\frac{8679}{512}u_1u_4 & -\frac{65785}{256}u_3u_4 & -\frac{65785}{256}u_3u_4 & -\frac{65785}{256}u_3u_4 \\ -251 & u_1u_5 & +\frac{115}{128}u_3u_5 & +\frac{61}{64}u_4u_5 & -\frac{251}{128}u_3u_5 & -\frac{251}{128}u_3u_5 \end{pmatrix} + \frac{51717}{64}u_1u_5

\[\mathbf{B}^{[7]}_{u_1, \ldots, u_5} = \mathbf{B}^{[7]}_{u_1, \ldots, u_5} = \begin{pmatrix} +37 & u_1u_4 & +\frac{251}{64}u_2u_4 & +\frac{251}{64}u_2u_4 & +\frac{251}{64}u_2u_4 & +\frac{251}{64}u_2u_4 \end{pmatrix} + \frac{11739}{8}u_3^2

\]
$$B_{[5,1,1]}^{u_1} = B_{[5,1,1]}^{u_1} = B_{[5,1,1]}^{u_1} = B_{[5,1,1]}^{u_1} = 0$$
$$B_{[5,1,1]}^{u_1, u_2} = 0$$
$$B_{[5,1,1]}^{u_1, u_2} = 0 + \frac{31}{32} 1^{5} + \frac{31}{64} u_1 u_2 - \frac{31}{64} u_1^2 u_2 + \frac{31}{64} u_1 u_2^2 - \frac{31}{64} u_1 u_2 - \frac{31}{32} u_2$$
$$B_{[5,1,1]}^{u_1, u_2, u_3} = \frac{31}{32} u_1^3 + \frac{31}{64} u_1^2 u_2 - \frac{31}{64} u_1^3 u_2^2 + \frac{31}{64} u_1^2 u_2^3 - \frac{31}{64} u_1 u_2 + \frac{31}{32} u_2$$
$$B_{[5,1,1]}^{u_1, u_2, u_3} = -\frac{31}{16} u_1^4 + \frac{31}{32} u_1 u_2 - \frac{31}{32} u_2^3$$
$$B_{[5,1,1]}^{u_1, u_2, u_3} = \left\{ \begin{array}{l}
-\frac{31}{32} u_1 + \frac{31}{64} u_1^2 u_2 + \frac{93}{16} u_1 u_2^2 - \frac{31}{64} u_1^3 u_2 + \frac{93}{16} u_1 u_2^3 + \frac{93}{16} u_1 u_2^4 + \frac{93}{16} u_1 u_2^5 \\
\frac{31}{32} u_1^2 u_2 u_3 - \frac{93}{8} u_1 u_2 u_3^2 + \frac{31}{64} u_2 u_3^3 - \frac{93}{32} u_3^3 \\
-\frac{93}{32} u_1 - \frac{155}{32} u_1^2 u_2 + \frac{93}{32} u_1 u_2^2 + \frac{93}{32} u_1 u_2^3 + \frac{93}{32} u_1 u_2^4 - \frac{93}{32} u_3^3 \\
-\frac{217}{32} u_1^2 u_2 u_3 + \frac{93}{16} u_1 u_2 u_3^2 + \frac{31}{16} u_2 u_3^3 - \frac{155}{16} u_1 u_2 u_3^2 + \frac{31}{16} u_1 u_2 u_3^3 - \frac{217}{32} u_1 u_2 u_3^3 \\
+ \frac{93}{32} u_1^2 u_2^3 - \frac{31}{8} u_1 u_2 u_3^2 - \frac{155}{32} u_2 u_3^3 - \frac{93}{32} u_3^3 \\
-\frac{93}{32} u_1 - \frac{155}{32} u_1^2 u_2 + \frac{93}{32} u_1 u_2^2 + \frac{93}{32} u_1 u_2^3 + \frac{93}{32} u_1 u_2^4 - \frac{93}{32} u_3^3 \\
\end{array} \right. $$

$$B_{[5,1,1]}^{u_1, u_2, u_3} = \left\{ \begin{array}{l}
+ \frac{93}{32} u_1^3 + \frac{93}{64} u_1^2 u_2 - \frac{31}{64} u_1 u_2^2 - \frac{93}{64} u_1^3 u_2^2 + \frac{93}{64} u_1 u_2^3 + \frac{93}{64} u_1 u_2^4 + \frac{93}{64} u_1 u_2^5 \\
+ \frac{31}{32} u_1^2 u_2 u_3 - \frac{93}{8} u_1 u_2 u_3^2 + \frac{31}{64} u_1^2 u_3^3 - \frac{93}{32} u_3^3 \\
+ \frac{31}{32} u_1 - \frac{155}{32} u_1^2 u_2 + \frac{93}{32} u_1 u_2^2 + \frac{93}{32} u_1 u_2^3 + \frac{93}{32} u_1 u_2^4 - \frac{93}{32} u_3^3 \\
+ \frac{217}{32} u_1^2 u_2 u_3 + \frac{93}{16} u_1 u_2 u_3^2 + \frac{31}{16} u_2 u_3^3 - \frac{155}{16} u_1 u_2 u_3^2 + \frac{31}{16} u_1 u_2 u_3^3 - \frac{217}{32} u_1 u_2 u_3^3 \\
- \frac{93}{32} u_1^2 u_2^3 + \frac{31}{8} u_1 u_2 u_3^2 - \frac{155}{32} u_2 u_3^3 - \frac{93}{32} u_3^3 \\
-\frac{93}{32} u_1 - \frac{155}{32} u_1^2 u_2 + \frac{93}{32} u_1 u_2^2 + \frac{93}{32} u_1 u_2^3 + \frac{93}{32} u_1 u_2^4 - \frac{93}{32} u_3^3 \\
\end{array} \right. $$

$$B_{[5,1,1]}^{u_1, u_2, u_3} = \left\{ \begin{array}{l}
+ \frac{31}{16} u_1 u_2^2 u_3 - \frac{93}{64} u_1 u_2 u_3^2 + \frac{31}{64} u_1^2 u_3^3 - \frac{93}{32} u_3^3 \\
+ \frac{31}{32} u_1^2 u_2^3 + \frac{93}{64} u_1^2 u_2 u_3 - \frac{93}{64} u_1^3 u_2 u_3^2 + \frac{93}{64} u_1^2 u_3^3 - \frac{93}{32} u_3^3 \\
- \frac{31}{16} u_1 u_2 u_3 - \frac{93}{64} u_1 u_2 u_3^2 + \frac{31}{64} u_1^2 u_3^3 - \frac{93}{32} u_3^3 \\
+ \frac{31}{32} u_1^2 u_2^3 - \frac{31}{8} u_1 u_2 u_3^2 - \frac{155}{32} u_2 u_3^3 - \frac{93}{32} u_3^3 \\
\end{array} \right. $$

$$B_{[5,1,1]}^{u_1, u_2, u_3} = 187$$
\[B_{[1,1,1,1]}^{u_1} = 0 \]
\[B_{[1,1,1,1]}^{u_1} = + \frac{7}{8} u_1^6 \]
\[B_{[1,1,1,1]}^{u_2} = - \frac{7}{8} u_2^6 \]
\[B_{[1,1,1,1]}^{u_1} = 0 \]
\[B_{[1,1,1,1]}^{u_1, u_2} = - \frac{21}{8} u_1^5 - \frac{21}{8} u_1^4 u_2 - \frac{7}{8} u_1^3 u_2^2 - \frac{7}{8} u_1^2 u_2^3 + \frac{21}{8} u_1 u_2^4 + \frac{21}{8} u_2^5 \]
\[B_{[1,1,1,1]}^{u_1, u_2} = + \frac{7}{8} u_1^5 + \frac{21}{8} u_1^4 u_2 + \frac{7}{8} u_1^3 u_2^2 - \frac{7}{8} u_1^2 u_2^3 - \frac{21}{8} u_1 u_2^4 - \frac{21}{8} u_2^5 \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = 0 \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{7}{4} u_1^4 + \frac{7}{8} u_1^3 u_2 + \frac{21}{8} u_1^2 u_2^2 + \frac{7}{4} u_1 u_2^3 - \frac{7}{2} u_2^4 - \frac{21}{8} u_1^3 u_3 - \frac{21}{8} u_1 u_2 u_3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{21}{4} u_1 u_2 u_3 + \frac{7}{4} u_2^3 u_3 - \frac{21}{8} u_1^2 u_3^2 - \frac{21}{8} u_1 u_2 u_3 + \frac{21}{8} u_2^2 u_3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = 0 \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(- \frac{7}{4} u_1^4 - \frac{7}{8} u_1^3 u_2 - \frac{21}{8} u_1^2 u_2^2 - \frac{7}{4} u_1 u_2^3 + \frac{7}{2} u_2^4 + \frac{21}{8} u_1^3 u_3 + \frac{21}{8} u_1 u_2 u_3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{21}{4} u_1 u_2 u_3 - \frac{21}{8} u_1^2 u_3^2 - \frac{7}{4} u_2^3 u_3 + \frac{21}{8} u_1^2 u_3^2 + \frac{21}{8} u_1 u_2 u_3 - \frac{21}{8} u_2^2 u_3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = 0 \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{7}{4} u_1^4 - \frac{7}{8} u_1^3 u_2 - \frac{21}{8} u_1^2 u_2^2 - \frac{7}{4} u_1 u_2^3 + \frac{7}{2} u_2^4 - \frac{21}{8} u_1^3 u_3 - \frac{21}{8} u_1 u_2 u_3 - \frac{63}{8} u_2^2 u_3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{105}{8} u_1 u_2^2 + \frac{63}{8} u_2^3 u_3 + \frac{21}{4} u_3^2 + \frac{7}{4} u_1 u_4 - \frac{63}{8} u_1 u_2 u_4 - \frac{105}{8} u_2^2 u_4 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{63}{8} u_1 u_4 - \frac{21}{8} u_2 u_3 u_4 + \frac{21}{8} u_3^2 u_4 - \frac{7}{4} u_1 u_4 - \frac{77}{8} u_2 u_4 + \frac{7}{8} u_3 u_4 - \frac{7}{2} u_4^3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = 0 \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(- \frac{7}{4} u_1^4 + \frac{7}{8} u_1^3 u_2 + \frac{21}{8} u_1^2 u_2^2 + \frac{7}{4} u_1 u_2^3 - \frac{7}{2} u_2^4 + \frac{21}{8} u_1^3 u_3 + \frac{21}{8} u_1 u_2 u_3 + \frac{63}{8} u_2^2 u_3 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(- \frac{105}{8} u_1 u_2^2 + \frac{63}{8} u_2^3 u_3 + \frac{21}{4} u_3^2 + \frac{7}{4} u_1 u_4 - \frac{63}{8} u_1 u_2 u_4 + \frac{105}{8} u_2^2 u_4 \right) \]
\[B_{[1,1,1,1]}^{u_1, u_2, u_3} = \left(+ \frac{63}{8} u_1 u_4 + \frac{21}{8} u_2 u_3 u_4 - \frac{21}{8} u_3^2 u_4 + \frac{7}{4} u_1 u_4 + \frac{77}{8} u_2 u_4 - \frac{7}{8} u_3 u_4 + \frac{7}{2} u_4^3 \right) \]
8.8 Tables: ordinary and augmented scrambles.

For a double sequence $\mathbf{w} = (u_1, \ldots, u_r)$, we set $\mathbf{m}(\mathbf{w}) := (#_{\geq 1}, \ldots, #_{\leq r})$. The following table gives, for low signatures $\mathbf{m}(\mathbf{w})$, the number $\mu = \mu^+ + \mu^-$ of terms on the right-hand side of (161), with μ^\pm denoting the number of summands preceded by the sign \pm.

<table>
<thead>
<tr>
<th>\mathbf{m}</th>
<th>$\mu = \mu^+ + \mu^-$</th>
<th>\mathbf{m}</th>
<th>$\mu = \mu^+ + \mu^-$</th>
<th>\mathbf{m}</th>
<th>$\mu = \mu^+ + \mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>3 = 2+1</td>
<td>(1, 1, 1)</td>
<td>15 = 8+7</td>
<td>(1, 1, 1)</td>
<td>105 = 53+52</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>5 = 3+2</td>
<td>(1, 1, 2)</td>
<td>35 = 18+17</td>
<td>(1, 1, 2)</td>
<td>315 = 158+157</td>
</tr>
<tr>
<td>(2, 1)</td>
<td>6 = 4+2</td>
<td>(1, 2, 1)</td>
<td>42 = 22+20</td>
<td>(1, 2, 1)</td>
<td>378 = 190+188</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>7 = 4+3</td>
<td>(2, 1, 1)</td>
<td>45 = 24+21</td>
<td>(2, 1, 2)</td>
<td>405 = 204+201</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>15 = 9+6</td>
<td>(1, 1, 3)</td>
<td>63 = 32+31</td>
<td>(2, 1, 1)</td>
<td>420 = 212+208</td>
</tr>
<tr>
<td>(1, 4)</td>
<td>9 = 5+4</td>
<td>(1, 3, 1)</td>
<td>81 = 42+39</td>
<td>(1, 1, 3)</td>
<td>637 = 347+346</td>
</tr>
<tr>
<td>(1, 4)</td>
<td>9 = 5+4</td>
<td>(3, 1, 1)</td>
<td>90 = 48+42</td>
<td>(1, 1, 3)</td>
<td>891 = 447+444</td>
</tr>
<tr>
<td>(2, 3)</td>
<td>28 = 16+12</td>
<td>(1, 2, 2)</td>
<td>135 = 69+66</td>
<td>(1, 3, 1)</td>
<td>990 = 498+492</td>
</tr>
<tr>
<td>(3, 2)</td>
<td>30 = 18+12</td>
<td>(2, 1, 2)</td>
<td>140 = 72+68</td>
<td>(3, 1, 1)</td>
<td>1050 = 530+520</td>
</tr>
<tr>
<td>(4, 1)</td>
<td>12 = 8+4</td>
<td>(2, 2, 1)</td>
<td>168 = 88+80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.8.1. The ordinary scramble.

The following tables give the ordinary scramble $SM^* := scram.M^*$ up to depth $r = 4$.

\[
SM^{(u_1)}_{v_1} = +M^{(u_1)}_{v_1}
\]
\[
SM^{(u_1, u_2)}_{v_1, v_2} = +M^{(u_1, u_2)}_{v_1, v_2} + M^{(u_12, v_1)}_{v_2, v_12} - M^{(u_12, u_2)}_{v_1, v_21}
\]
\[
SM^{(u_1, u_2, u_3)}_{v_1, v_2, v_3} = +M^{(u_1, u_2, v_3)}_{v_1, v_2, v_3} + M^{(u_12, v_3, v_2)}_{v_1, v_3, v_23} - M^{(u_12, u_3)}_{v_1, v_23, v_3}
\]
\[
+M^{(u_12, u_2, v_3)}_{v_2, v_12, v_3} - M^{(u_12, u_3)}_{v_2, v_3, v_21}
\]
\[
+M^{(u_123, v_3, v_23)}_{v_3, v_23, v_32} - M^{(u_123, v_3, u_2)}_{v_3, v_3, v_32} + M^{(u_123, v_3, v_2)}_{v_3, v_3, v_32} + M^{(u_123, u_2, v_1)}_{v_3, v_3, v_32} + M^{(u_123, u_2, v_1)}_{v_3, v_3, v_32}
\]

192
\[SM_{1234} = M_{1234} + M_{123} - M_{12} - M_{1} \]

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{1234})</td>
<td>(-1)</td>
</tr>
<tr>
<td>(M_{123})</td>
<td>(1)</td>
</tr>
<tr>
<td>(M_{12})</td>
<td>(-1)</td>
</tr>
<tr>
<td>(M_{1})</td>
<td>(-1)</td>
</tr>
</tbody>
</table>

The terms \(M_{1234} \), \(M_{123} \), \(M_{12} \), and \(M_{1} \) are defined as follows:

- \(M_{1234} \) represents a specific interaction term.
- \(M_{123} \) represents another interaction term.
- \(M_{12} \) represents yet another interaction term.
- \(M_{1} \) represents another interaction term.

Each term has a coefficient that indicates its contribution to the total interaction term \(SM_{1234} \).
The following tables give, for general signatures \(\mathbf{m}(\mathbf{w}) := (m_1, m_2, \ldots) \), the \(v \)-augmented scramble \(SM^* := \text{escram}.M^* \).

\[\mathbf{m} := (1, 2) \quad \overline{v}_1 = (v_1) \quad \overline{v}_2 = (v_2, v_2') \]

\[
SM^*(s_1, s_2) = +M(s_1, s_2, v_2, v_2') - M(s_1, s_2, v_2', v_2') + M(s_1, s_2, v_2', v_2')
\]

\[\mathbf{m} := (2, 1) \quad \overline{v}_1 = (v_1, v_1') \quad \overline{v}_2 = (v_2)
\]

\[
SM^*(s_1, s_2) = +M(s_1, s_2, v_2, v_1') + M(s_1, s_2, v_1', v_2) + M(s_1, s_2, v_1', v_2')
\]

\[\mathbf{m} := (1, 3) \quad \overline{v}_1 = (v_1) \quad \overline{v}_2 = (v_2, v_2', v_2'')
\]

\[
SM^*(s_1, s_2) = +M(s_1, s_2, v_2, v_2') + M(s_1, s_2, v_2, v_2'') + M(s_1, s_2, v_2, v_2''')
\]

\[\mathbf{m} := (2, 2) \quad \overline{v}_1 = (v_1, v_1') \quad \overline{v}_2 = (v_2, v_2')
\]

\[
SM^*(s_1, s_2) = +M(s_1, s_2, v_2, v_1') + M(s_1, s_2, v_2, v_1'') + M(s_1, s_2, v_2, v_1''')
\].
$$m := (3, 1), \quad \varrho_1 = (v_1, v_1', v_1''), \quad \varrho_2 = (v_2)$$

$$SM^{(u_1, u_2)} = +M^{(u_1, v_1')}, +M^{(u_1, v_1'}, +M^{(u_1, v_1')}, -M^{(u_2, v_1')}, -M^{(u_2, v_1')}, -M^{(u_2, v_1')}$$

$$m := (1, 1, 2), \quad \varrho_1 = (v_1), \quad \varrho_2 = (v_2), \quad \varrho_3 = (v_3, v_3')$$

$$SM^{(u_1, u_2, u_3)} = +M^{(u_1, v_1', v_1')}, +M^{(u_1, v_1'), +M^{(u_1, v_1'), +M^{(u_1, v_1'), -M^{(u_2, v_1')}, -M^{(u_2, v_1')}, -M^{(u_2, v_1')}$$

195
\[
\begin{align*}
\mathbf{m} := (1, 2, 1) \quad \text{and} \quad &\mathbf{v}_1 = (v_1) \\
&\mathbf{v}_2 = (v_2, v'_2) \\
&\mathbf{v}_3 = (v_3)
\end{align*}
\]

\[
SM^{(u_1, u_2, u_3)} = +M^{(u_1, u_2, u_3)} + M^{(u_1, w_2, w_3)} + M^{(u_1, w_3, w_2)} + M^{(v_1, v_2, v_3)} + M^{(v_1, v_3, v_2)} + M^{(v_2, v_1, v_3)} + M^{(v_2, v_3, v_1)} + M^{(v_3, v_1, v_2)} + M^{(v_3, v_2, v_1)}
\]
\[\mathbf{m} := (2, 1, 1) , \quad \mathbf{u}_1 = (v_1, v'_1) , \quad \mathbf{u}_2 = (v_2) , \quad \mathbf{u}_3 = (v_3) \]

\[
SM^{(u_1, u_2, u_3)} = +M^{(u_1, u_2, u_3)} + M^{(u_1, v_1, v_1')} + M^{(u_1, v_2, v_1')} + M^{(u_1, v_3, v_1')} - M^{(u_1, v_1, v_2)} - M^{(u_1, v_1, v_3)} \]

8.8.3. The \(u \)-augmented scramble.

The following tables give, for general signatures \(\mathbf{m}(\mathbf{w}) := (m_1, m_2, \ldots) \), the
\(u \)-augmented scramble \(SM^* := uscram. M^* \).

\[\mathbf{m} := (1, 2) , \quad \mathbf{u}_1 = (u_1) , \quad \mathbf{u}_2 = (u_2, u'_2) \]

\[
SM^{(u_1, u_2, u'_2)} = +M^{(u_1, u_2, u'_2)} + M^{(u_2, u_1, u'_2)} + M^{(u_2, u_2, u'_1, u'_2)} - M^{(u_2, v_1, v_2)} - M^{(u_2, v_1, v'_2)} - M^{(u_2, v_2, v_1')} \]

197
\[m := (2, 1) \quad \Rightarrow \quad u_1 = (u_1, u_2^2) \quad \Rightarrow \quad u_2 = (u_2) \]

\[SM(\gamma_1, \gamma_2) = +M(v_1, v_1^*, v_2^*, v_2) \quad + \quad M(v_1^*, v_1, v_2, v_2^*) \quad + \quad M(v_1, v_1^*, v_2, v_2^*) \]

\[-M(v_1^*, v_1, v_2, v_2^*) \quad - \quad M(v_1, v_1^*, v_2, v_2^*) \]

\[m := (1, 3) \quad \Rightarrow \quad u_1 = (u_1) \quad \Rightarrow \quad u_2 = (u_2, u_2^1, u_2^2) \]

\[SM(\gamma_1, \gamma_2) = +M(v_1, v_1^*, v_2^*, v_2) \quad + \quad M(v_1^*, v_1, v_2, v_2^*) \quad + \quad M(v_1, v_1^*, v_2, v_2^*) \]

\[+M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[-M(v_2, v_2^*, v_1, v_2^*) \quad - \quad M(v_2, v_2^*, v_1, v_2^*) \quad - \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[m := (2, 2) \quad \Rightarrow \quad u_1 = (u_1, u_1^2) \quad \Rightarrow \quad u_2 = (u_2, u_2^2) \]

\[SM(\gamma_1, \gamma_2) = +M(v_1, v_1^*, v_2^*, v_2) \quad + \quad M(v_1^*, v_1, v_2, v_2^*) \quad + \quad M(v_1, v_1^*, v_2, v_2^*) \]

\[+M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[+M(v_1, v_1^*, v_2^*, v_2^*) \quad + \quad M(v_1, v_1^*, v_2^*, v_2^*) \quad + \quad M(v_1, v_1^*, v_2^*, v_2^*) \]

\[+M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[-M(v_2, v_2^*, v_1, v_2^*) \quad - \quad M(v_2, v_2^*, v_1, v_2^*) \quad - \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[m := (3, 1) \quad \Rightarrow \quad u_1 = (u_1, u_1^2, u_1^2) \quad \Rightarrow \quad u_2 = (u_2) \]

\[SM(\gamma_1, \gamma_2) = +M(v_1, v_1^*, v_2^*, v_2) \quad + \quad M(v_1^*, v_1, v_2, v_2^*) \quad + \quad M(v_1, v_1^*, v_2, v_2^*) \]

\[+M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \quad + \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[-M(v_2, v_2^*, v_1, v_2^*) \quad - \quad M(v_2, v_2^*, v_1, v_2^*) \quad - \quad M(v_2, v_2^*, v_1, v_2^*) \]

\[m := (1, 1, 2) \quad \Rightarrow \quad u_1 = (u_1) \quad \Rightarrow \quad u_2 = (u_2) \quad \Rightarrow \quad u_3 = (u_3, u_3^2) \]
$$SM_{(v_1, v_2, v_3)} = +M_{(u_1, v_1, v_2, v_3)} + M_{(u_2, v_1, v_2, v_3)} + M_{(u_3, v_1, v_2, v_3)} + M_{(u_4, v_1, v_2, v_3)} + M_{(u_5, v_1, v_2, v_3)} + M_{(u_6, v_1, v_2, v_3)} + M_{(u_7, v_1, v_2, v_3)} + M_{(u_8, v_1, v_2, v_3)} + M_{(u_9, v_1, v_2, v_3)} + M_{(u_{10}, v_1, v_2, v_3)} + M_{(u_{11}, v_1, v_2, v_3)} + M_{(u_{12}, v_1, v_2, v_3)} + M_{(u_{13}, v_1, v_2, v_3)} + M_{(u_{14}, v_1, v_2, v_3)} + M_{(u_{15}, v_1, v_2, v_3)} + M_{(u_{16}, v_1, v_2, v_3)} + M_{(u_{17}, v_1, v_2, v_3)} + M_{(u_{18}, v_1, v_2, v_3)} + M_{(u_{19}, v_1, v_2, v_3)}$$

$$m := (1, 2, 1), \quad u_1 = (u_1), \quad u_2 = (u_2, u_2), \quad u_3 = (u_3)$$
$$SM\left(\frac{u_1}{v_1}, \frac{u_2}{v_2}, \frac{u_3}{v_3}\right) = +M\left(\frac{u_2}{v_2}, \frac{u_1}{v_1}, \frac{u_2}{v_2}, \frac{u_3}{v_3}\right) + M\left(\frac{u_1}{v_1}, \frac{u_2}{v_2}, \frac{u_3}{v_3}\right) + M\left(\frac{u_1}{v_1}, \frac{u_2}{v_2}, \frac{u_2}{v_2}, \frac{u_3}{v_3}\right)$$

$$m := (1, 2, 1) \quad u_1 = (u_1) \quad u_2 = (u_2) \quad u_3 = (u_3, u_3')$$
8.9 Tables: weighted multiplication.

Here is the \textit{wenwu} product of simple logarithms, with the notations of Proposition 3.6.

\[
WS^{(u_1)}_{(b_1)} = +S^{(u_1)}_{(b_1)}
\]

\[
WS^{(u_1, u_2)}_{(b_1, b_2)} = +S^{(u_1, b_1)}_{(b_1, b_2)} \pm S^{(u_1, u_2, u_1)}_{(b_1, b_2, b_3) - S^{(u_1, u_2, u_2)}_{(b_1, b_2, b_3) + S^{(u_1, u_2, u_1)}_{(b_1, b_2, b_3)}}
\]

\[
WS^{(u_1, u_2, u_3)}_{(b_1, b_2, b_3)} = +S^{(u_1, u_2, u_1)}_{(b_1, b_2, b_3)} - S^{(u_1, u_2, u_2)}_{(b_1, b_2, b_3)} \pm S^{(u_1, u_2, u_3)}_{(b_1, b_2, b_3) - S^{(u_1, u_2, u_1)}_{(b_1, b_2, b_3) + S^{(u_1, u_2, u_2)}_{(b_1, b_2, b_3) - S^{(u_1, u_2, u_3)}_{(b_1, b_2, b_3)}}}
\]

\[
WS^{(u_1, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4)} = +S^{(u_1, u_2, u_1, u_1)}_{(b_1, b_2, b_3, b_4)} - S^{(u_1, u_2, u_2, u_1)}_{(b_1, b_2, b_3, b_4)} \pm S^{(u_1, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4) - S^{(u_1, u_2, u_1, u_1)}_{(b_1, b_2, b_3, b_4) + S^{(u_1, u_2, u_2, u_1)}_{(b_1, b_2, b_3, b_4) - S^{(u_1, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4)}}}
\]

\[
WS^{(u_1, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4)} = +S^{(u_1, u_2, u_1, u_2)}_{(b_1, b_2, b_3, b_4)} - S^{(u_1, u_2, u_2, u_3)}_{(b_1, b_2, b_3, b_4)} \pm S^{(u_1, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4) - S^{(u_1, u_2, u_1, u_2)}_{(b_1, b_2, b_3, b_4) + S^{(u_1, u_2, u_2, u_3)}_{(b_1, b_2, b_3, b_4) - S^{(u_1, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4)}}}
\]

\[
WS^{(u_1, u_2, u_3, u_4, u_1)}_{(b_1, b_2, b_3, b_4, b_5)} = +S^{(u_1, u_2, u_1, u_2, u_1)}_{(b_1, b_2, b_3, b_4, b_5)} - S^{(u_1, u_2, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4, b_5)} \pm S^{(u_1, u_2, u_3, u_4, u_1)}_{(b_1, b_2, b_3, b_4, b_5) - S^{(u_1, u_2, u_1, u_2, u_1)}_{(b_1, b_2, b_3, b_4, b_5) + S^{(u_1, u_2, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4, b_5) - S^{(u_1, u_2, u_3, u_4, u_1)}_{(b_1, b_2, b_3, b_4, b_5)}}}
\]

\[
WS^{(u_1, u_2, u_3, u_4, u_5)}_{(b_1, b_2, b_3, b_4, b_5)} = +S^{(u_1, u_2, u_1, u_2, u_3)}_{(b_1, b_2, b_3, b_4, b_5)} - S^{(u_1, u_2, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4, b_5)} \pm S^{(u_1, u_2, u_3, u_4, u_5)}_{(b_1, b_2, b_3, b_4, b_5) - S^{(u_1, u_2, u_1, u_2, u_3)}_{(b_1, b_2, b_3, b_4, b_5) + S^{(u_1, u_2, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4, b_5) - S^{(u_1, u_2, u_3, u_4, u_5)}_{(b_1, b_2, b_3, b_4, b_5)}}}
\]

\[
WS^{(u_1, u_2, u_3, u_4, u_5, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6)} = +S^{(u_1, u_2, u_1, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6)} - S^{(u_1, u_2, u_2, u_3, u_4, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6)} \pm S^{(u_1, u_2, u_3, u_4, u_5, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6) - S^{(u_1, u_2, u_1, u_2, u_3, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6) + S^{(u_1, u_2, u_2, u_3, u_4, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6) - S^{(u_1, u_2, u_3, u_4, u_5, u_1)}_{(b_1, b_2, b_3, b_4, b_5, b_6)}}}
\]

\[
WS^{(u_1, u_2, u_3, u_4, u_5, u_6)}_{(b_1, b_2, b_3, b_4, b_5, b_6)} = +S^{(u_1, u_2, u_1, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4, b_5, b_6)} - S^{(u_1, u_2, u_2, u_3, u_4, u_5)}_{(b_1, b_2, b_3, b_4, b_5, b_6)} \pm S^{(u_1, u_2, u_3, u_4, u_5, u_6)}_{(b_1, b_2, b_3, b_4, b_5, b_6) - S^{(u_1, u_2, u_1, u_2, u_3, u_4)}_{(b_1, b_2, b_3, b_4, b_5, b_6) + S^{(u_1, u_2, u_2, u_3, u_4, u_5)}_{(b_1, b_2, b_3, b_4, b_5, b_6) - S^{(u_1, u_2, u_3, u_4, u_5, u_6)}_{(b_1, b_2, b_3, b_4, b_5, b_6)}}}
\]
Here is the *yem* product of simple logarithms, with the notations of Proposition 3.7.

\[
YS^{(b_1)}_{v_1} = +S^{(b_1)}_{v_1}
\]

\[
YS^{(b_1, b_2)}_{v_1, v_2} = +S^{(b_1, b_2)}_{v_1, v_2} + S^{(b_2, -b_2)}_{v_2, v_1} - S^{(b_2, -b_1)}_{v_2, v_2} - S^{(b_1, b_1, -b_1)}_{v_1, v_1, v_1} + S^{(b_1, -b_1, -b_1)}_{v_1, v_1, v_2, v_2}
\]

\[
YS^{(b_1, b_2, b_3)}_{v_1, v_2, v_3} = +S^{(b_1, b_2, b_3)}_{v_1, v_2, v_3} - S^{(b_2, b_2, -b_2)}_{v_2, v_1, v_3} + S^{(b_1, b_3, b_3)}_{v_1, v_3, v_3} + S^{(b_2, b_2, -b_2)}_{v_2, v_2, v_2} - S^{(b_1, b_3, b_3)}_{v_1, v_3, v_3} - S^{(b_1, b_3, b_3)}_{v_1, v_3, v_3} - S^{(b_1, b_3, -b_3)}_{v_1, v_3, v_3} + S^{(b_1, b_3, b_3)}_{v_1, v_3, v_3}
\]

References.

