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Abstract. Until very recently, received wisdom seemed to rule out the
feasibility of a truly canonical and completely explicit synthesis for local ob-
jects, that is to say the possibility of constructing privileged representatives in
each analytic conjugacy class of such objects. But in the mid 90s it emerged
that there does exist a canonical synthesis after all. We call it paralogarith-
mic, because its building blocks are a new class of transcendental functions,
the so-called paralogarithms, quite distinct from the classical but (in this
context) unsuitable hyperlogarithms. We also call it spherical, because the
most salient feature of the objects thus produced is a tendency to extend
to the whole Riemann sphere (in the critical variable) and to go in pairs: a
direct object and its antipodal reflection. Both objects – direct and antipo-
dal – always exist; they are indisputably canonical upto the choice of one
unremovable parameter (the “twist” c ); and they connect under analytic
continuation “whenever the invariants permit”.

1 Introduction: Object Analysis and Object

Synthesis.

Although the proper ambit of this paper is canonical object synthesis and the
special functions – technically known as well-behaved resurgence monomials –
on which synthesis relies, we have chosen to add a cursory treatment of three
closely related topics : well-behaved convolution averages, well-behaved alien
derivations, and ramified-exponential growth. Also, to make the whole thing
tolerably self-contained, preliminary sections have been inserted, which recall
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the basic notions about moulds and resurgence. This apparatus is light, easy
to master, and altogether a good investment. It makes possible a far-going
algebraisation of the analysis difficulties. It also permits explicit construc-
tions, and leads to proofs that are often quite concise.

The results about canonical synthesis go back to March 1996 (they were
presented in a general survey I gave at the Orsay conference in honour of A.
Douady in June 1996) but nothing in the way of a systematic written expo-
sition has appeared so far 1. This, I feel, is one more reason for attempting
a fairly comprehensive treatment this time around.

1.1 The notion of Local Analytic Object.

By local analytic object we shall mean, primarily :
(1) germs of singular analytic vector fields at 0 on Cν , often referred to as
just fields for short
(2) germs of analytic diffeomorphisms of Cν into itself, with 0 as fixed point,
or diffeos for short
and, secondarily, all those equations or systems (differential, difference,
functional, etc) which may, in a standard manner, be rephrased in terms of
fields or diffeos.

Fields will be noted

X =
∑

1≤i≤ν

Xi(x) ∂xi ; Xi(x) ∈ C{x1, . . . , xν} (1)

but instead of diffeos proper:

f : xi 7→ fi(x) i = 1, . . . , ν ; fi(x) ∈ C{x1, . . . , xν} (2)

it will often be more convenient to handle the corresponding substitution
operators F (same symbols, but capitalised):

(Fϕ)(x) := ϕ(f(x)) ; ∀ϕ(x) ∈ C{x1, . . . , xν} (3)

The discussion hinges on the nature of the object’s spectrum, ie the eigenval-
ues of its linear part: λ = (λ1, . . . , λν) for a field; l = (l1, . . . , lν) for a diffeo.
If the spectrum is “generic”, then the object is analytically conjugate to its
linear part – and that ends the matter, at least from the local point of view.

1though some sketchy indications found their way into [EM], 1996.
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Difficulties arise only in the case of
– resonance : relations of type 0 = λi −

∑
λj or 0 = li −

∏
(lj)

mj with
non-negative integers mj.
– quasiresonance : when Bryuno’s well-known diophantine condition, which
minorises the above expressions in terms of ‖m‖, is not fulfilled.
– nihilence : this condition, which presupposes resonance but bears on coef-
ficients of all orders, occurs mostly in connection with symplectic or volume-
preserving objects.

The more “complicated” an object, the larger its set of invariants tends
to be. Alongside the formal and analytic invariants (ie relative to formal or
analytic coordinate changes) we have the notion of holomorphic invariants
– ie those invariants that depend holomorphically on the object Ob (ie in
practical terms, on its Taylor coefficients), at least when Ob remains within
a fixed formal conjugacy class. 2

Resonance generates formal invariants (other that the spectrum itself),
of which there may be an infinite number3 if the resonance degree is ≥ 2.

Each of the above-mentioned complications – resonance, quasiresonance,
nihilence – whether in isolation or in combination, gives rise to analytic in-
variants (strictly analytic, ie non formal). Moreover, when resonance alone is
at work, there tend to exist 4 complete systems of analytic-cum-holomorphic
invariants {Aω}.

We shall henceforth deal with purely resonant objects. Resonance is more
important, and less exceptional, than “Lebesgue measure” considerations
would suggest, since it covers the cases :
(1) of identity-tangent diffeomorphisms
(2) of vector fields with (one or several) vanishing eigenvalues
and also since
(3) most singular differential equations or systems, when translated into time-
autonomous systems (by the addition of one unknown) or, equivalently, into
vector fields, tend to exhibit resonance.

“Object analysis” starts from some object Ob and is concerned with find-
ing its invariants. For resonant objects, which alone matter to us here, there
is a method of sweeping generality – the Bridge equation (see infra) – for conc-
tructing complete systems {Aω} of analytic-cum-holomorphic invariants, in

2thus, when applied to invariants, the words analytic and holomorphic assume quite
distinct meanings: analytic invariants are not necessarily holomorphic.

3more precisely, an infinite number of independent formal invariants
4with slight qualifications, see eg [E5]
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the form of specific differential operators Aω, with indices ω running through
a countable set Ω generated by the object’s spectrum. Moreover, relatively
to any “suitable” basis {∆∆good

ω } in the algebra of alien derivations, the Bridge
equation yields systems {Agood

ω } that can be characterised by means of sim-
ple, transparent growth conditions on the invariants Agood

ω as ω increases.

“Object synthesis” is the converse problem: starting from a prescribed
system {Aω} with the proper growth pattern, find an object Ob whose in-
variants coincide with that system. There are actually four degrees there :
– existence : showing that such an object Ob does exist.5

– constructiveness : producing an effective procedure for constructing it.
– expliciteness : expanding the object Ob, in a manner both explicit and
universal, by means of elementary special functions, the so-called resurgence
monomials, that are not constructed ad hoc, but are given once and for all.
– canonicity : examining whether perchance there exists a “canonical” choice
for Ob and also (since we don’t want to forego expliciteness) a corresponding
system of “canonical” resurgence monomials.

We shall recall (§5) the basic facts about existential, constructive, explicit
synthesis, and sketch several methods, some going back to the late 70s, for
achieving these. But our real concern here is with the more ambitious goal
of explicit-canonical synthesis. We shall recall earlier attempts in this di-
rection, based on the notion of hyperlogarithmic monomials, and show why
these attempts, while interesting in their way and insightful, were doomed
to partial failure. We shall then (§8) introduce a whole new class of resur-
gence monomials, based on “prodiffusions”, and which on account of their
nice growth properties, do permit explicit synthesis in all cases. Lastly, we
shall (§§8,9,10) show that there exists a particular subclass, the so-called
paralogarithmic or spherical monomials, which unquestionably stand out as
“canonical” and which can be harnessed to synthesise objects Ob that will
automatically inherit their ‘canonicity’.

1.2 Object Analysis: the Bridge Equation.

Let Ob be some (purely) resonant object – field or diffeo – expressed in a
particular analytic chart x = {x1, . . . , xν} that diagonalises the object’s linear
part. The object’s complete linearisation is usually impossible, even formally,
and what takes its place is either formal normalisation, which removes all but

5or, what amounts to the same, finding conditions for a system {Aω} to be “admissible”,
ie to be someone’s invariants.
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a few resonant monomials, or the more radical step of formal trivialisation,
which forfeits entireness 6 but reduces the object to the simplest conceivable
form, namely ∂z for a field and z 7→ z + 1 for a diffeo.

Let y = {y1, . . . , yν} be a formal normal chart, and consider the formal-
entire coordinate changes yi = θi(x) and xi = θ−1

i (y) with the substitution
operators Θ and Θ−1 that go with them : Θ±ϕ := ϕ ◦ θ±

Consider also the “trivial chart” {z, u} = {z, u1, . . . , uν−1}. Expressing
the given coordinates x = {xi} in terms of the trivial coordinates {z, ui},
we get the so-called formal integral x(z, u) = {x1(z, u), . . . , xν(z, u)}, which
verifies:

∂z x(z, u) ≡ X(x(z, u)) for a field (4)

f(x(z, u)) ≡ x(z + 1, u) for a diffeo (5)

The Bridge Equation (B.E.) is an amazingly general and flexible tool
for extracting the object’s invariants from the divergence-resurgence of the
trivialising or (direct/inverse) normalising transformations. Here are its three
main forms :

∆∆ω x(z, u) = Aω x(z, u) (B.E. for formal integral) (6)

[∆∆ω,Θ] = −Θ Aω (B.E. for direct normaliser) (7)

[∆∆ω,Θ
−1] = + Aω Θ−1 (B.E. for inverse normaliser) (8)

The indices ω on both sides of the Bridge Equation range through a
countable set Ω essentially spanned by the object’s multipliers, ie the λj in
the case of a field, and the log(lj) (to which one must add the universal mul-
tiplier λ0 := 2πi ) in the case of a diffeo.

The ∆∆ω on the left-hand side denotes the alien derivation relative to the
variable z and the index ω but with a built-in exponential factor ∆∆ω :=
e−ω z∆ω that makes it commute with ∂z and ensures the stability rule under
analytic changes of equivalent variables z 7→ z? with z ∼ z? :

ϕ(z) ≡ ϕ∗(z∗) =⇒ ∆∆(z)
ω ϕ(z) ≡ ∆∆(z∗)

ω ϕ∗(z∗) (9)

The alien-differentiation variable z, also known as critical variable7, is always
∼ ∞. In (6) it is simply the z inside the formal integral. In (7) (resp (8))
it is the inverse of some resonant monomial, ie z := 1/xm (resp z := 1/ym).
Due to the afore-mentioned invariance property of alien differentiation, the

6it no longer relies on entire power series
7or critical time.
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critical variable is actually defined up to equivalence ∼ and so the proper,
intrinsic notion is that of critical class.

The Aω on the right-hand side are ordinary (first-order) differential op-
erators – in the variables (z, ui) or (xi) or (yi) respectively. They are con-
structively determined, even overdetermined, by the requirement of equality
in the Bridge Equation – whichever of its variants we choose to work with,
and whichever critical variable we pick (within the critical class) for alien
differentiation. Each single Aω is an invariant of the object Ob, and the
total collection {Aω, ω ∈ Ω} constitutes a set, both complete and free, of
analytic-cum-holomorphic invariants.

All these claims, as sketchy as they are sweeping, clearly cry for explana-
tions, and qualifications too, which cannot be supplied here but are available
in the literature ([E2],[E3],[E7]). We recalled these statements simply to serve
as a general backdrop for the twin problems of object analysis and synthesis
– but we shall illustrate the method on just six typical instances.

1.3 Object Synthesis: semi-formal candidates

Pick a purely resonant and, for simplicity, monocritical8 object Ob with
invariants {Aω} and consider the expansions:

Θ
always

:= 1 +
∑
1≤r

∑
ωi∈Ω

(−1)r Ueω1,...,ωr Aωr . . .Aω1 (10)

Θ−1 conditionally
:= 1 +

∑
1≤r

∑
ωi∈Ω

Ueωr,...,ω1 Aωr . . .Aω1 (11)

Formally, ie ignoring all questions of convergence, they verify the Bridge
equation: if we alien-differentiate them term by term, we can see that the
operator Θ verifies (7) and its inverse Θ−1 inverse verifies (8)9. But (7)
and (8) do characterise Θ and Θ−1 as direct and inverse normalisers. Thus,
working our way back from the normal form Obnorm, we get a new object
Ob := Θ Obnor Θ−1 which not only has the prescribed invariants Aω but is
also ‘formally analytic’, in the sense that all its alien derivatives in z – by
assumption the only critical time – identically vanish.

8ie such that the associated objects – normalising transformations, fractional iterates,
etc – have only one critical time z , or rather critical time class {z}.

9That much is always true. The cautionary word conditionally in the middle of (11)
signals that this second expansion, unlike the first, holds only when the invariants Aω
commute with ∂z , which is always the case with vector fields. But even when there is no
commutation, Θ−1 admits an analoguous expansion – and knowing Θ is sufficient anyway.
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1.4 Object Synthesis: from semi-formal to effective.

But what is missing in this formal, or should we say semi-formal, construc-
tion, is the convergence of Θ±1 in the relevant space, ie the space of resurgent
functions with exponential growth in the Borel plane. Such convergence,
which would automatically ensure the convergence of the synthesised object
in its own space, namely that of multiplicative function-germs , has itself
three sides to it:
(i) convergence on each compact subset of the ramified Borel-plane, ie on
the Riemann function generated by singularities from Ω which puncture that
plane.
(ii) proper growth at infinity, ie exponential growth away from, or parallel to,
the singularity-carrying axes, and “suitable” growth (technically :“ramified-
exponential” growth, see §9 ), over such axes.
(iii) for the synthesis construction to succeed, all this should apply, if not to
the expansions (10), (11) themselves, at least to some re-arranged variant of
these expansions.

Demand (i) calls for the introduction not only of well-behaved resurgence
monomials, but also of a suitable twist parameter c.

Demand (ii) is then automatically fulfilled: it follows from the growth
conditions which the invariants Aω verify as soon as they are expressed rel-
ative to a well-behaved basis of ALIEN.

That leaves (iii): it will turn out that the absolute convergence of (10)
or (11) is too strong a demand, except in very simple – linear or affine – sit-
uations. In truly general cases, we must not only work with a well-behaved
system of resurgence monomials (preferably the canonical system, since we
are fortunate in having one) and adjust the twist parameter c, but we must
also perform two further adaptations :
– we must work relative to a well-behaved basis of ALIEN (which means ex-
pressing, simultaneously, our alien derivations, holomorphic invariants, and
resurgence monomials coherently in this basis)
– then we must arborify our expansions (10),(11), ie switch from an index-
ation by totally ordered sequences to one that relies on a partial order, of
arborescent type.
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2 Reminders about moulds, resurgent func-

tions, alien derivations.

2.1 Moulds/comoulds.

Moulds are functions of a variable number of variables : they depend on
sequences ω := (ω1, . . . , ωr) of arbitrary length r = r(ω). The sum ‖ω‖ of a
sequence is simply

∑r
1 ωi. Sequences are systematically written in boldface,

with upper indexation when such is called for, and with the product denoting
concatenation: e.g. ω = ω1.ω2. The elements ωi which make up these
sequences are written in normal print, with lower indexation. The sequences
themselves are affixed to the moulds as upper indices A• = {Aω}, since
moulds are meant to be contracted

A•, B• 7→ < A•, B• > :=
∑

Aω Bω

with dual objects (often differential operators or elements of an associative
algebra), the so-called comoulds B• = {Bω}, which carry their own indices
in lower position.

2.1.1 Basic mould operations.

Moulds may be added, multiplied, composed.
Mould addition is what you expect : components of equal length get added.
Mould multiplication (mu or ×) is associative, but non-commutative :

C• = A• ×B• ⇐⇒ Cω =
∑

ω = ω1. ω2

Aω
1

Bω
2

(12)

(This includes the trivial decompositions ω = ω.∅ and ω = ∅.ω).

Mould composition (◦) too is associative and non-commutative :

C• = (A• ◦B•) ⇐⇒ Cω =
∑

ω = ω1 . . . ωs

A‖ω
1‖,...,‖ωs‖Bω

1

. . . Bω
s

(13)

with a sum extending to all possible decompositions of ω into s ≤ r(ω) non-
empty factor sequences ωi

The operations (+,×, ◦) on moulds interact in exactly the same way as their
namesakes for power series. Thus (A• ×B•) ◦ C• ≡ (A• ◦ C•)× (B• ◦ C•).
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2.1.2 Basic mould symmetries.

Nearly all useful moulds fall into a few basic symmetry types.
A mould A• is said to be symmetral (resp. alternal) iff :∑

ω∈sha(ω1,ω2)

Aω = Aω
1

Aω
2

(resp. 0) ∀ω1 6= ∅ ,∀ω2 6= ∅ (14)

A mould A• is said to be symmetrel (resp. alternel) iff :∑
ω∈she(ω1,ω2)

Aω = Aω
1

Aω
2

(resp. 0) ∀ω1 6= ∅ , ∀ω2 6= ∅ (15)

Here sha(ω1,ω2) (resp. she(ω1,ω2 )) denotes the set of all sequences ω
obtained from ω1 and ω2 under ordinary (resp. contracting) shuffling. In a
contracting shuffle, two adjacent indices ωi and ωj stemming from ω1 and
ω2 respectively may coalesce to ωij := ωi+ωj.

Thus, for a sequence ω1 := (ω1) of length 1 and a sequence ω2 := (ω2, ω3)
of length 2, the symmetrality (resp alternality) condition reads :

Aω1,ω2,ω3 + Aω2,ω1,ω3 + Aω2,ω3,ω1 ≡ Aω1 Aω2,ω3

(resp ≡ 0)

and the symmetrelity (resp alternelity) condition reads :

Aω1,ω2,ω3 + Aω2,ω1,ω3 + Aω2,ω3,ω1 + Aω1+ω2,ω3 + Aω2,ω1+ω3 ≡ Aω1 Aω2,ω3

(resp ≡ 0)

2.1.3 Mould-comould contractions.

LetBω be the homogeneous components of some local-analytic, ν-dimensional
vector field X (resp of the postcomposition operator F associated to some
local-analytic ν-dimensional diffeomorphism f) and let

Bω = Bω1,...,ωr := Bωr . . . Bω1 (reversion!) (16)

The comould B• so defined is said to be co-symmetral (resp co-symmetrel)
if its action on a product ϕ1ϕ2 obeys the Leibniz rule :

Bω (ϕ1 ϕ2) =
∑

(Bω1 ϕ1) (Bω2 ϕ2) (17)

with a sum extending to all pairs (ω1,ω2) such that ω ∈ sha(ω1,ω2) (resp
ω ∈ she(ω1,ω2)).
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The four main symmetry types admit a simple characterisation in terms
of mould-comould contractions :

A• : B• 7→ C• with Cω0 :=
∑
‖ω‖=ω0

Aω Bω (18)

Indeed :
A• : B• → C•

alternal : field → field
symmetral : field → diffeo
alternel : diffeo → field
symmetrel : diffeo → diffeo

Most stability properties follow from this interpretation. Thus :

symmetral• × symmetral• = symmetral•

symmetrel• × symmetrel• = symmetrel•

alternal• ◦ alternal• = alternal•

symmetrel• ◦ symmetrel• = symmetrel•

2.1.4 Arborification and co-arborification.

Straightforward mould expansions
∑
ω A

ω Bω , which typically pair a sym-
metral or alternal mould A• with a cosymmetral comould B• ( or a symmetrel
or alternel mould A• with a cosymmetrel comould B•) often fail to converge
absolutely 10 , ie we often have

∑
ω ‖Aω Bω‖ = +∞, although the underly-

ing power series may well be convergent. Fortunately, there is an extremely
general method for restoring convergence. In essence, it replaces expansions
indexed by totally ordered sequences ω by others whose indices are arbores-
cent sequences ω≺ or ω≺≺ , like this :∑

ω

Aω Bω 7→
∑
ω≺

Aω
≺
Bω≺ (ordinary arborification) (19)∑

ω

Aω Bω 7→
∑
ω≺≺

Aω
≺≺
Bω≺≺ (contracting arborification) (20)

10for any reasonable choice of operator norm ‖.‖, or rather, since we are dealing with
germs all along, for any system of such norms. For definiteness, think of the system of
uniform norms ‖ϕ‖D1

:= supx∈D1
|ϕ(x)| on functions germs, and of the corresponding

system of norms ‖B‖D1,D2
:= sup‖ϕ‖D1

≤1 |Bϕ|D2
on operators, relatively to small enough

neighbourhoods D2 ⊂ D1 of the origin.
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The dual arborification/coarborification transforms verify :

arborification =⇒
ordinary : Aω

≺
:=

∑
ω≺<ω Aω (complete definition)

contracting : Aω
≺≺

:=
∑
ω≺≺ <<ω Aω (complete definition)

coarborification =⇒
ordinary : Bω :=

∑
ω≺<ω Bω≺ (mere constraint)

contracting : Bω :=
∑
ω≺≺ <<ω Bω≺≺ (mere constraint)

and are devised in such a way as to :

(1) leave the expansions formally unchanged : they amount to a simple re-
distribution of terms.

(2) drastically reduce the size of the comould part : comoulds typically get
divided by a factor of order r! := r(ω)!

(3) prevent a concomitant increase of the mould part : moulds typically re-
tain the same order of magnitude, despite being changed into a sum of almost
r! similar terms !

But whereas the reduction (2) is automatic and universal, the non-increase
(3) relies on specific identities, of an algebraic or combinatorial nature, which
can never be taken for granted, and yet tend to take place, with providential
regularity, whenever we require them !

The ordinary (resp contracting) arborification rule boils down to summing
all the terms Aω with totally ordered sequences ω whose order is compatible
with the arborescent order of ω≺ ( resp with that of ω≺≺ , but allowing
contractions of consecutive elements ωi). The following example should make
this amply clear. Assume :

ω4

↗
ω≺ ( or ω≺≺ ) := ω1 → ω2 → ω3

Then the arborification rules means :

Aω
≺

:= Aω1, ω2, ω3, ω4 + Aω1, ω2, ω4, ω3 + Aω1, ω4, ω2, ω3

Aω
≺≺

:= Aω1, ω2, ω3, ω4 + Aω1, ω2, ω4, ω3 + Aω1, ω4, ω2, ω3

+Aω1, ω2, ω3+ω4 + Aω1, ω2+ω4,ω3

:= Aω
≺

+ Aω1, ω2, ω3+ω4 + Aω1, ω2+ω4,ω3

14



Unlike the arborification identities, the coaborification constraints leave
a lot of latitude. However, for any given choice of variables, there exists a
‘canonical’ choice, the so-called ‘homogeneous’ coarborification, which shall
be described, and made use of, in §11.2.

Lastly, we may note that no difference of meaning attaches to the nota-
tions ω≺ and ω≺≺ : both stand for sequences with an arborescent order on
them. The distinction is simply for clarity, the former notation being used
in the context of symmetral-alternal moulds and ordinary arborification, and
the latter in the the context of symmetrel-alternel moulds and contracting
arborification.

2.1.5 Armoulds and ormoulds. Operations and symmetries.

Depending on the nature of the order on the indexing sequence, we have
three types of objects :

total order ω : moulds A•

arborescent order ω≺ : armoulds A•
≺

arbitrary partial order ω] : ormoulds A•
]

An arborescent order is one under which each ωi has either one antecedent
ωi− or none at all, in which case ωi is declared a root. Under the arbori-
fication transform (§2.1.4), moulds induce armoulds. Similarly, moulds (as
well as armoulds) induce ormoulds. It turns out that all basic mould opera-
tions (unary or binary) and symmetries uniquely and unambiguously extend
to both armoulds and ormoulds : that extension is natural not only in the
sense of commuting with the induction stronger order → weaker order , but
also of preserving all the main properties of the operations or symmetries
in question (such as, say, the associativity of × or ◦, or the simple rule for
calculating the multiplicative inverse of a symmetral/el mould, namely mul-
tiplication by (−1)r and order reversal without/with possible contraction of
order-adjacent indices ωi) even when applied to ‘primitive’ armoulds or or-
moulds, ie to ar/ormoulds that are not induced by any mould. Although
most ar/ormoulds encountered in practice are of the induced sort, and there-
fore carry no more information than the underlying moulds, the change of
perspective nonetheless often proves very convenient.

We shall now proceed to list a number of rather elementary yet very use-
ful moulds and armoulds which are going to occur and recur throughout this
paper, and to mention their main properties. These properties are of a com-
binatorial or algebraic nature but, as usual in our ‘formalisation approach’,
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they ‘absorb’ and resolve most of the ‘analysis’ or ‘divergence’ difficulties
which stand in the way – here, in the way of Object Synthesis.

Let us first settle some nomenclature :
– constant-type moulds depend only on the length r of the sequence ω. 11

– sum-type ( resp difference-type) moulds depend on partial sums (resp dif-
ferences) of their indices ωi
– flat (resp polar) moulds are expressible as simple superpositions of the sign
function (resp the polar function t 7→ 1/t).

2.1.6 Constant-type moulds.

mould value symmetry type associated series

1• 1 if r = 0 (0 otherwise) symmetral 1

I• 1 if r = 1 (0 otherwise) alternal x

log• (−1)r−1

r
alternel log(1 + x)

exp•a
ar

r!
symmetral e a x

tu•a
(−1)r

r!
Γ(r−a)
Γ(−a)

symmetrel (1 + x)a

2.1.7 Difference-type flat moulds.

sad∅ := 1

sad t1,...,tr := 1 if t1 < t2 < · · · < tr

sad t1,...,tr := 0 otherwise

lad∅ := 0

lad t1,...,tr := (−1)q
p! q!

(p+ q + 1)!
= (−1)q

p! q!

r!

with p :=
∑
ti<ti+1

1 and q :=
∑
ti>ti+1

1

11they correspond one-to-one to power series M• 7→M∅ +
∑

1≥r M

r times︷ ︸︸ ︷
1, . . . , 1 xr and this

correspondence commutes with all three operations +,×, ◦.
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2.1.8 Difference-type polar moulds.

tas∅a,b := 1

tas t1a,b :=
a− b

(a− t1)(t1 − b)

tas t1,...,tra,b :=
a− b

(a− t1)(t1 − t2) . . . (tr−1 − tr)(tr − b)

tas∅? := 0

tas t1? :=
1

(−t1)(t1)

tas t1,...,tr? :=
1

(−t1)(t1 − t2) . . . (tr−1 − tr)(tr)

tas∅?? := 0

tas t1?? := 1

tas t1,...,tr?? :=
1

(t1 − t2) . . . (tr−1 − tr)

tas•a,b × tas•b,c = tas•a,c
tas•a,b × tas•b,a = 1•

2.1.9 Sum-type flat moulds.

Some abbreviations first :

x := (x1, . . . , xr) (21)

x̌i := x1 + · · ·+ xi (22)

x̂i := xi + · · ·+ xr (23)

‖x‖ := x1 + · · ·+ xr = x̂1 = x̌r (24)

σ+(x) := 1 if x > 0 (resp := 0 if x < 0) (25)

σ−(x) := 1 if x < 0 (resp := 0 if x > 0) (26)

δ(x) := 1 if x = 0 (resp := 0 if x 6= 0) (27)
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sofox± := (−1)r σ±(x̌1) . . . σ±(x̌r)

antisofoxa := (−1)r σ±(x̂1) . . . σ±(x̂r)

sefox± := (−1)r−1σ±(x̌1) . . . σ±(x̌r−1) σ∓(x̌r)

antisefox± := (−1)r−1σ∓(x̂1) σ±(x̂r−1) . . . σ±(x̂r)

lefox± := (−1)rσ±(x̌1) . . . σ±(x̌r−1) δ(x̌r)

antilefox± := (−1)rδ(x̂1) σ±(x̂r−1) . . . σ±(x̂r)

2.1.10 Sum-type polar moulds.

saωa :=
∏i=r

i=1
ωi
ω̌i

musaωa := (−1)r
∏i=r

i=1
ωi
ω̂i

romoωa :=
∏i=r

i=1(a ωi
ω̌i
− 1) antiromoωa :=

∏i=r
i=1(a ωi

ω̂i
− 1)

remoωa := a ωr
ω̌r

∏i=r−1
i=1 (a ωi

ω̌i
− 1) antiremoωa := a ω1

ω̂1

∏i=r
i=2(a ωi

ω̂i
− 1)

somo•a,b := remo•a × antiromo•1−b (28)

:= romo•a × antiremo•1−b (29)

= romo•a/b × remo•b (30)

somo•
[a
c
b
d

]
:= somo•c−b

d−b ,
a−b
d−b

(31)

somo•
[ b
a

0
1

]
:= somo•a,b (32)

2.1.11 Some mould properties for future use.

Symmetry types.12

All the above moulds fall into one or the other of the main symmetry types.

Alternal : lad•, tas•?, tas•??

Symmetral : exp•a, sad•, tas•a,b, sa•, musa•

Alternel : log•, lefo•±, redo•±, redom•

Symmetrel : tu•a, sofo•±, sefo•±, romo•a, remo•a, somo•a,b

12flat moulds should be regarded as distribution-valued : for them the symmetries hold
almost everywhere, not necessarily everywhere.
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Pairs of the form mould•, antimould• have the same symmetry type.

Useful identities and closure properties :

sofo•
+
× sefo•− = 1• (33)

antisofo•
+
× antisefo•− = 1• (34)

remo•a × antiromo•1−a = 1• (35)

romo•a × antiremo•1−a = 1• (36)

multplicative inverse : somo•
[a
c
b
d

]
↔ somo•

[ c
a
b
d

]
( a , c exchanged )

composition inverse : somo•
[a
c
b
d

]
↔ somo•

[ b
d
a
c

]
( columns exchanged )

sequence reversal : somo•
[a
c
b
d

]

anti↔ somo•
[ c
a
d
b

]
( rows exchanged )

multplication : somo•a1,a2
× somo•a2,a3

= somo•a1,a3

composition : somo•a1,b1
◦ somo•a2,b2

= somo•(a2−b2)a1+b2 , (a2−b2)b1+b2

multplication : somo•
[a0
a2

b1
b2

]
× somo•

[a1
a0

b1
b2

]
= somo•

[a1
a2

b1
b2

]

composition : somo•
[a1
a2

b1
b2

]
◦ somo•

[ b1
b2

c1
c2

]
= somo•[a1

a2

c1
c2

]

Smooth or size-preserving arborification.

All the above moulds possess the property of smooth arborification (meaning
that their arborified variants admit essentially the same type of bounds) the
only exception being the moulds log• and tu•a for a /∈ Z and in particular for
a = 1/2. This is in relation with the fact that the standard alien derivations
(which admit log• as their left-lateral mould) and the standard or median
convolution average (which admits tu•1/2 as its right- and left-lateral mould)
are not well-behaved.

Of course, for alternal or symmetral (resp alternel or symmetrel) moulds,
one should take the ordinary (resp contracting) form of arborification.

Form-preserving arborification.
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All the sum-type moulds listed above, ie all those moulds whose definition in-
volves forward sums x̂i or ω̂i (resp backward sums x̌i or ω̌i) have the stronger
and very useful property of form-preserving arborification. This means that
they retain their outward analytical expression, except that the sums x̂i or
ω̂i (resp x̌i or ω̌i) are now relative to the arborescent (resp antiarborescent)
order. The same holds for the difference-type moulds tas•a,∞ and tas•∞,b.

Thus, it is an easy matter to check that for any arborescent sequence ω≺

(resp antiarborescent sequence ω�) we still have :

saω
�

a :=
i=r∏
i=1

ωi
ω̌i

musaω
≺

a := (−1)r
i=r∏
i=1

ωi
ω̂i

exactly as in §2.1.10, except that ω̂i (resp ω̌i) now denotes the sum of all
indices ωj that follow (resp precede) ωi inside ω≺ (resp ω�). Of course, as
in the case of totally ordered sequences, ωi itself should be included in that
sum.

2.1.12 From alternel/symmetrel to alternal/symmetral.

Let us also mention two mould transforms which turn alternel (resp sym-
metrel) moulds A• into alternal (resp symmetral) moulds B•. The first
transform is quite elementary and applies to all cases. The second trans-
form is more subtle, but also more relevant to the present investigation. It
applies only to moulds A• with indices ni in N and turns them into ‘flat’ or
‘piecewise-constant’ moulds B• with indices ti in R. Both transforms respect
multiplication in the sense that transf(A•1×A•2) ≡ transf(A•1)×transf(A•2).
Here is how they are defined :

First mould transform:

direct : A• 7→ B• := A• ◦ exp•1 (37)

inverse : B• 7→ A• := B• ◦ log• (38)

Second mould transform:
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A• ↔ B• with B t1,...,tr := SA ε1,...,εr−1,+ and

ε1 := sign(t1 − t2) , . . . , εr−1 := sign(tr−1 − tr)
SA+ := −A 1

SA+,+ := +A 1,1

SA−,+ := +A 1,1 + A 2

SA+,+,+ := −A 1,1,1

SA+,−,+ := −A 1,1,1 − A 1,2

SA−,+,+ := −A 1,1,1 − A 2,1

SA−,−,+ := −A 1,1,1 − A 1,2 − A 2,1 − A 3

etc . . .

Or generally :

direct : SA ε1,...,εs := (−1)r
∑?

An1,...,ns

inverse : A r1,...,rs := (−1)s
∑??

ε1 . . . εr SA
ε1,...,εr

In the last but one identity, all sign subsequences εi consist of (ri− 1) initial
− signs and one final + sign (ri may be 1) and

∑? extends to all integer
sequences ni of sum ri , whereas in the last (reverse) identity the sum

∑??

extends to all εj ∈ {+,−} except when j ∈ {r1, r1 + r2, . . . , r1 + · · ·+ rs} , in
which case εj has to be +.

2.2 Resurgent functions.

Roughly, the algebra of real resurgent fonctions 13 consists of all (analytic or
cohesive) function germs at +0 that possess an endless (analytic or cohesive,
14 but usually ramified) forward continuation over the whole of R+.

Similarly, the general algebra of complex resurgent fonctions consists of
all analytic function germs at 0• that possess an endless (analytic but usually

13This algebra underlies for ex. the construction of the trigebra of analysable germs.
14in the present applications, all our resurgent functions are going to be analytic over

R+, with at most a discrete set of singularities there, but the most general notion of
resurgent function (ie the broadest setting in which that hall-mark of resurgence, alien
derivations, may still be defined) involves the more comprehensive notion of cohesive
functions. Cohesiveness is a regular and stable form of quasi-analyticity. Like analyticity, it
implies infinite smoothness and unique continuation, but the notion of cohesive singularity
slightly differs from that of analytic singularity. Cohesiveness seldom occurs in problems
involving only pure power series, but becomes rather generic when we move on to truly
general transseries and analysable functions, as in the so-called Dulac problem. Detailed
expositions are available in [E6],[E7],[E10] but here we can forget about cohesiveness.

21



ramified) continuation over the whole of C• . Here, C• denotes the Riemann
surface of the logarithm function with its ‘ramified’ origin 0• and a ‘privileged
direction’ arg ζ = 0. Points on or over C• will be denoted by ζ. Endless
continuability for a (ramified) analytic germ ϕ̂ at 0• means lateral analytic
continuability along any broken line Γ on C• starting from 0• under right and
left circumvention of a discrete point set Sing ϕ̂,Γ ⊂ Γ.

Resurgent functions are subject to the convolution product, and there act
upon them an incredibly rich array of alien derivations, which measure their
singular behaviour away from 0•. The label resurgent owes its origin to the
fact that, at least in natural situations, alien derivatives tend to ‘resemble’,
or be simply related to, the original function which thus ‘resurfaces’ at its
singular points.

Local aspect: minors/majors :

More precisely, locally at 0• , resurgent functions may be thought of as mi-

crofunctions: they are pairs
�
ϕ (ζ) = { ϕ̌(ζ) , ϕ̂(ζ) } consisting of a major ϕ̌

defined upto a regular germ, and of a minor ϕ̂, which is the “variation” of
the major. Depending on the situation, one may find it easier to work with
real-majors and natural-majors

ϕ̂(ζ) = − 1

2πi

(
ϕ̌real(e

πiζ)− ϕ̌real(e
−πiζ)

)
(ζ close to 0•) (39)

ϕ̂(ζ) = ϕ̌nat(ζ)− ϕ̌nat(e
−2πiζ) (ζ close to 0•) (40)

ϕ̌real(ζ) ≡ 2πi ϕ̌nat(e
−πiζ) (ζ close to 0•) (41)

Real-majors are particularly recommended when dealing with acceleration
theory and, of course, with real resurgent functions : they make it possible to

associate real majors ϕ̌ to any real
�
ϕ. Unless otherwise specified, all formulae

below use real-majors.

The minor is exactly defined, but does not encapsulate the whole information

about
�
ϕ, except in the important case of “integrable resurgent functions”.

For these the convolution product is defined by

(ϕ̂1 ? ϕ̂2)(ζ) :=

∫ ζ

0

ϕ̂1(ζ1) ϕ̂2(ζ − ζ1) dζ1 (42)

for ζ close to +0 and by analytic or cohesive continuation in the large. The
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convolution for general germs
�
ϕ is defined by :

�
ϕ3 =

�
ϕ1 ?

�
ϕ2 ⇐⇒ (43)

ϕ̌3,u(ζ) =
1

2πi

∫
Iζ,u

ϕ̌1(ζ1) ϕ̌2(ζ − ζ1) dζ1 (0 < ζ < u << 1) (44)

with integration on the interval

I(ζ, u) := [
1

2
ζ + e−

πi
2 u,

1

2
ζ + e+πi

2 u] (45)

The above definition makes sense since, upto addition of a regular germ, the
major ϕ̌3,u doesn’t depend on the choice of u. Moreover, for integrable func-

tions
�
ϕ, the two definitions (42) and (44) coincide.

Global aspect: alien derivations :

What really matters, however, is not the local or microfunction aspect, but

the global properties of resurgent functions
�
ϕ, which come from their having

endlessly continuable, but usually highly ramified minors ϕ̂. This a source
of many fascinating developments, chief amongst which is the existence of
a system {∆ω , ω ∈ R+} of so-called alien derivations15, which measure the
singularities of the minor ϕ̂ over the points ω and which, together, freely
generate an infinite dimensional Lie algebra with a non-countable basis –
despite their acting on functions of one single variable !

The three models: formal, geometric, convolutive :

Actually, resurgent functions exist simultaneously in three different models :
– the formal model, with decreasing power series ϕ̃(z) (or suitable generali-
sations, like the so-called transseries) as elements, and with formal multipli-
cation as product
– the convolutive model, defined a moment ago, with endlessly continuable

microfunctions
�
ϕ (ζ) = {ϕ̂(ζ), ϕ̌(ζ)} as elements, and with local-global con-

volution as product
– the geometric model, with sectorial analytic germs ϕ(z) as elements and
with point-wise multiplication as product.

Roughly speaking, the way things work out in practice is like this : when
formally solving singular equations or systems, we tend to get divergent solu-
tions ϕ̃(z) of resurgent type, which do not converge directly to ϕ(z), but have

to be summed in a round-about way, via the convolutive model
�
ϕ (ζ). The

15because they are indeed derivations, relative to the convolution product.
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detour, however, is rewarding, since it yields a treasure-trove of information
about the equation, in particular its analytic invariants.

geometric model ϕ (z) Laplace
↑ ↘
...

�
ϕ (ζ) convolutive model

↑ ↗
formal model ϕ̃ (z) Borel

Standard Borel transform : ϕ(z)→
�
ϕ (ζ) =

(
ϕ̂(ζ), ϕ̌(ζ)

)
ϕ̂(ζ) =

1

2πi

∫ c+i∞

c−i∞
exp(zζ)ϕ(z) dz (1� c ; arg ζ = 0) (46)

ϕ̌(ζ) =

∫ +∞

+u

exp(−zζ)ϕ(z) dz (1� u ; | arg ζ| ≤ π) (47)

Standard Laplace transform :
�
ϕ (ζ) =

(
ϕ̂(ζ), ϕ̌(ζ)

)
→ ϕ(z)

ϕ(z) =

∫ +∞

+0

exp(−zζ) ϕ̂(ζ) dζ (for
�
ϕ integrable at 0•) (48)

ϕ(z) =
1

2πi

∫ eπi∞

e−πi∞
exp(zζ) ϕ̌(ζ) dζ (for any

�
ϕ ; arg z = 0) (49)

Elementary (standard) Borel/Laplace transforms :

ϕ(z) = z−σ (for σ ∈ C− N?)

ϕ̂(ζ) = ζσ−1/Γ(σ)

ϕ̌(ζ) = ζσ−1Γ(1− σ) (50)

ϕ(z) = z−n (for n ∈ N?)

ϕ̂(ζ) = ζn−1/Γ(n)

ϕ̌(ζ) = (−1)n ζn−1 log ζ /Γ(n) (51)

2.3 Alien derivations or automorphisms. Their weights.

Alongside the natural derivation ∂ := ∂z in the multiplicative (ie formal or
geometric) models and its counterpart ∂̂ : ϕ̂(ζ) 7→ − ζ ϕ̂(ζ) in the convolutive
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model, resurgent functions are acted upon by so-called alien derivations ∆ω.
These are primarily defined in the convolutive model:

∆ω :
�
ϕ:= (ϕ̂, ϕ̌) 7→

�
ϕω= (ϕ̂ω, ϕ̌ω) (52)

where they measure the singularities of minors over16 a given singular point
ω in R+ or C• 17 but in such a way as to verify the Leibniz rule :

∆ω (
�
ϕ1 ?

�
ϕ2) ≡ ∆ω (

�
ϕ1) ?

�
ϕ2 +

�
ϕ1 ? ∆ω (

�
ϕ2) (53)

As a microfunction,
�
ϕω is defined by :

ϕ̂ω (ζ) := +
∑
εi=±

d
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ω + ζ) (54)

ϕ̌ω (ζ) := −
∑
εi=±

d
( ε1
ω1

,...,
,...,

εr−1,
ωr−1,

∗
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr−1
ωr−1

)
(ω − ζ) (55)

d
( ε1
ω1

,...,
,...,

εr−1,
ωr−1,

∗
ωr

)
:= +2πid

( ε1
ω1

,...,
,...,

εr−1,
ωr−1,

+
ωr

)
= −2πid

( ε1
ω1

,...,
,...,

εr−1,
ωr−1,

−
ωr

)

for arg ζ = argωi = argω and ζ small18. Here, of course, ϕ̂
( ε1
ω1

,...,
,...,

εr
ωr

)
(ω + ζ)

denotes the determination of ϕ̂(ζ) on the open interval ]ωr, ωr+1[ that answers
to the right (resp left) circumvention of ω̂i

19 to the right (resp left) if εi = +

(resp −). Due to (56),
�
ϕω= 0 if ϕ̂ has no singularities over ω. Moreover,

since the right-hand side of (54) or (55) should not change when additional,
ficticious singular points ω̂i are added, the weights d• are subject to obvious
self-consistency relations (164) : see §6.1.

The simplest choice for “singularity measuring” operators would be the
right-lateral operators ∆+

ω , with weights :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:= εr 1 if (ε1, . . . , εr−1) = (+, . . . ,+)

:= 0 otherwise

and the left-lateral operators ∆−ω , with weights :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:= − εr 1 if (ε1, . . . , εr−1) = (−, . . . ,−)

:= 0 otherwise

16 ie at various points lying over ω on various Riemann leaves.
17depending on whether we are dealing with real or general resurgent functions.
18analytic continuation extends these definitions for large ζ.
19ω̂i being of the i-th singular point ω̂i :=

∑i
1 ωk of ϕ̂ lying on the interval ]0• , ω[.
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But the “atomicity” of these operators (ie the fact that they involve one
path only) isn’t much of an asset, because they are not first-order derivations.
Instead of verifying the Leibniz rule (53), they verify messier relations, which
for simplicity we write down in the multiplicative models :

∆±ω (ϕ1 ϕ2) ≡ (∆±ωϕ1) ϕ2 + ϕ1 (∆±ωϕ2) +
∑

ω1+ω2=ω
argωi=argω

(∆±ω1
ϕ1) (∆±ω2

ϕ2) (56)

with a sum extending to all ω1, ω2 co-axial with ω. 20

The so-called standard alien derivations ∆ω do verify (53), but they in-
volve all the 2r determinations which forward analytic continuation may cre-
ate over [ωr, ωr+1]. Still, their weights are very simple, as they do not depend
on the gaps ωi, but only on the number p, q of +,− signs in the sequence
{ε1, . . . , εr−1} :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

εr
2πi

p! q!

(p+ q + 1)!

p := #{1 ≤ i < r ; εi = +}
q := #{1 ≤ i < r ; εi = −}

(57)

Together, these standard 21 derivations ∆ω freely generate the algebra ALIEN
of alien derivations but, as we shall see later on, their simplicity appeal is
deceptive, and in many applications, preference should be given to another
system, the so-called organic alien derivations.

There being no risk of confusion, the same symbols ∆ω serve to denote
the alien derivations in all three models – convolutive (where they are defined
and where only they can be directly calculated), formal, and geometric.

In the two later models (collectively referred to as multiplicative models)
it is also useful to consider the exponential-carrying variants ∆∆ω := e−ωz∆ω

which have the advantage of commuting with the natural derivation ∂ := ∂z
and of enjoying the invariance property (9), but at the price of introducing
an exponential factor external to the algebra of resurgent functions.

2.4 Resurgence monomials.

They are basically systems of resurgent fuctions that
(1) are as elementary as possible and, ideally, canonical

20For any given pair of test functions ϕ1, ϕ2 the above sum makes sense, since it can
never involve more than a finite number of non-zero terms.

21 usually, the standard alien derivations are defined without the factor 1
2πi , so as to give

them real weights. But in this investigation, more important than having real weights is
the property for an operator of turning a real resurgent function into another real resurgent
function. In view of the self-consistency relation (165), this makes the introduction of the
factor 1

2πi necessary.
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(2) are easy to multiply or convolute22

(3) behave simply under natural differentiation
(3′) behave simply under alien differentiation
(4) are numerous enough to generate the resurgent solutions of singular
equations – be these of differential, difference, functional, etc, type
(4′) are numerous enough to permit the reconstitution of any resurgent func-
tion with a prescribed resurgence pattern, ie verifying a prescribed system of
resurgence equations.

Such systems of monomials do exist, but there is a tension between the
demands (3),(4) and (3′),(4′).

If we give precedence to (3),(4), we get the so-called ∂-friendly resurgence
monomials V•(z), which are particularly useful in all problems of “Object
Analysis” (object 7→ invariants)

If we give precedence to (3′),(4′), we get the so-called ∆-friendly resur-
gence monomials U•(z), which are particularly useful in all problems of “Ob-
ject Synthesis” (invariants 7→ object)

The alien derivatives ∆ωV•(z) of the ∂-friendly monomials involve simpler
∂-friendly monomials, but also transcendental constants V •, the so-called ∂-
friendly monics, which measure as it were the ∆-unfriendliness of the V•(z).

Similarly, the natural derivatives ∂z U•(z) of the ∆-friendly monomials
involve simpler ∆-friendly monomials, but also transcendental constants U•,
the so-called ∆-friendly monics, which so to speak measure the ∂-unfriendliness
of the U•(z).

The ∂-friendly monics make it possible to express the analytic invariants
Aω of a local object Ob in terms of its Taylor coefficients.

The ∆-friendly monics, or at any rate particularly well-chosen systems
of such monics, make the reverse passage possible : expressing the Taylor
coefficients of a (canonical) object Obcan in terms of a prescribed system of
invariants Aω.

The monics also serve as a bridge between the two types of monomials :
see (65) below.

Lastly, just as there exist two useful variants of alien derivations, the
exponential-free ∆ω and the exponential-carrying ∆∆ω, we have to consider,
alongside the exponential-free resurgence monomials, the exponential-carrying

22depending on the model we happen to be working in. Here, for notational convenience,
we shall assume it to be the formal model
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variants, but with the opposite sign conventions (for ‘orthogonality’) :

∆∆ω := e−ω z ∆ω (58)

Veω(z) := e+‖ω‖ z Vω(z) (59)

Ueω(z) := e+‖ω‖ z Uω(z) (60)

To make the above statements sound a little less abstract, let us construct
four very elementary systems of resurgence monomials and monics. They
are often referred to as hyperlogarithmic, for such indeed is their dependence
on the indices ωi and (in the convolutive model) on the variable ζ. The
construction involves four steps :

Ve•(z) −→ V • −→ U• −→ Ue•(z) (61)

and the definitions, relative to the formal model, go as follows :

∂zṼe
ω1,...,ωr

(z) := − Ṽeω1,...,ωr−1
(z) eωr z z−1 (62)

∆ω0 Ṽe
ω1,...,ωr

(z) =:
∑

ω1+···+ωi=ω0

V ω1,...,ωi Ṽeωi+1,...,ωr
(z) (63)

U• := inverse of V • under mould-composition ◦ (64)

Ũe•(z) := Ṽe•(z) ◦ U• (65)

Clearly23 :

Ṽeω1,...,ωr
(z) ∈ e(ω1+···+ωr) z C[[z−1]] (66)

Ũeω1,...,ωr
(z) ∈ e(ω1+···+ωr) z C[[z−1]] (67)

The above systems of ∂-friendly monomials and monics suffice for object
analysis in the monocritical examples 1, 2, 3, 4 of the next section. In fact,
larger systems, with the one-index factor eωr z z−1 in (62) replaced by the
two-index factor eωr z z−1−σr , suffice for most monocritical examples. Lastly,
by considering factors of type ePr(z) z−1 (resp ePr(z) z−1−σr), with a general
polynomial Pr(z) inside the exponential, one can construct systems large
enough to deal with object analysis in our polycritical examples 5 and 6
(resp in most conceivable polycritical examples). In none of these instances,
however, are the corresponding ∆-frienly systems adequate to the job of
object synthesis : as we shall see, two extra ingredients – a twist parameter
along with an antipodal symmetry – are called for to make things click.

23 in theory the indices ωi are in C• but here they can be assumed to be in C since the
minors of our resurgent functions (in all six examples) are not ramified at 0• ∈ C• .
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3 Object Analysis: six basic examples.

In the following six examples, we consider analytic local objects Ob (diffeos,
vector fields, differential equations or systems) which we assume to be for-
mally conjugate to a normal form Obnor. In each instance, we choose the
simplest formal class that is apt to illustrate the particular point of analysis
we wish to make.

3.1 Example 1: shift-like diffeomorphism.

fnor : z −→ z + 2πi (68)

f : z −→ z + 2πi+
∑
2≤n

an z
−n (69)

Remark : we might of course have chosen the unit shift as our normal form,
but choosing the 2πi-shift has the advantage of placing the singularities over
Z in the Borel-plane, and of rendering the parallel with Example 2 (infra)
more obvious.

We may work with the formal normalising map f ? or its inverse ?f :

f ? ◦ f ≡ fnor ◦ f ? ie f ?(f(z)) ≡ 2πi+ f ?(z) (70)

f ◦ ?f ≡ ?f ◦ fnor ie f(?f(z)) ≡ ?f(z + 2πi) (71)

Both are generically divergent but always resurgent. They verify the resur-
gence equations :

∆∆n f
?(z) ≡ −An exp(−n f ?(z)) (∀n ∈ Z?) (72)

∆∆n
?f(z) ≡ +An e

−nz∂z
?f(z) =: An

?f(z) (∀n ∈ Z?) (73)

which in turn yield the complete and ‘free’ 24 system of analytic invariants :

A = {An := An e
−nz∂z ; n ∈ Z? , An ∈ C} (74)

For details see [E2],[E3].

24see the remark at the end of §3.
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3.2 Example 2: Euler-like differential equation.

Example 2: singular, non-linear differential equation.25

dz y
nor = ynor (75)

dz y = y +
∑

1+n≥0

bn(z) y1+n ∈ y + C{y, z−1} (76)

We may work with the formal integral :

y(z, u) ∈ C[[z−1, u ez]] (u = integration parameter) (77)

which is generically divergent (in z) but always resurgent (again, in z) and
verifies the Bridge equation :

∆∆n y(z, u) ≡ An u
n+1 ∂u y(z, u) =: An y(z, u) (n = −1, 1, 2, 3, . . . ) (78)

yielding the complete and ‘free’ system of analytic invariants :

A = {An := An u
n+1 ∂u ; n ∈ {−1} ∪ N? , An ∈ C} (79)

For details, see [E3].

3.3 Example 3: monocritical linear differential system.

dz y
nor
i = λi y

nor
i (1 ≤ i ≤ ν ; λi 6= λj if i 6= j) (80)

dz yi = λi yi +
∑

1≤j≤ν

bi,j(z) yj bi,j(z) ∈ C{z−1} (81)

Here the formal integral reduces to

y(z, u) =
∑

1≤i≤ν

bi(z) eλi z ui with bi(z) ∈ C[[z−1]] (82)

The Bridge equation reads :

∆∆λi−λj y(z, u) ≡ Aλi−λj ui ∂uj y(z, u) =: Aλi−λj y(z, u) (i 6= j) (83)

and once again yields a complete and free, but this time finite, system of
analytic invariants :

{Aλi−λj := Aλi−λj ui ∂uj ; 1 ≤ i 6= j ≤ ν} (84)

For details, see [E3].

25under addition of a variable x := z−1 it translates into a two-dimensional vector
field, local (at 0 ∈ C2), singular, and resonant (with one vanishing and one non-vanishing
multiplier)
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3.4 Example 4: monocritical non-linear differential sys-
tem.

dz y
nor
i = λi y

nor
i (1 ≤ i ≤ ν ; λ not res. nor quasi.res.) (85)

dz yi = λi yi +
∑

1+ni≥0
nj≥0 if j 6=i

bi,n(z) yi y
n ∈ λi yi + C{z−1, y1, . . . , yν}(86)

The formal integral involves ν integration parameters ui, each with its
accompanying exponential factor :

y(z, u) ∈ C[[z−1, u1 e
λ1 z, . . . , uν e

λν z]] (with Q-independent λi’s) (87)

The Bridge equation reads :

∆∆ω y(z, u) ≡ Aω y(z, u) (∀ω = Ω) (88)

with indices ω running through a set :

Ω = {ω ; ω =
∑

1≤i≤ν

mi λi , mi ≥ −1 ,
∑
mi=−1

1 = 0 or 1} (89)

and with differential operators of the form :

Aω := um1
1 . . . umνν

∑
1≤i≤ν

Aiω ui ∂ui if ω =
∑

mi λi (Aiω ∈ C) (90)

which, together, constitute a complete and free system {Aω ; ω = Ω} of
analytic invariants. For details, see [E3].

3.5 Example 5: polycritical linear differential system.

p−1
i t1+pi dt y

nor
i + λi y

nor
i = 0 (1 ≤ i ≤ ν) (91)

p−1
i t1+pi dt yi + λi yi =

∑
1≤j≤ν

bi(t) yj (bi(t) ∈ C{t}) (92)

The Bridge equation reads :

∆∆$ y(z, u) ≡ A$ y(z, u) (∀ω = Ω) (93)

Here the alien derivations carry indices$ = (ω
q
), with a lower q ∈ {p1, . . . , ps}

signalling the critical variable zq := t−q respective to which the alien deriva-
tion operates, and with an upper ω of the form λi − λj or λi or λj for
pi = pj = q. The corresponding operators A$ read:
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A$ := A$ ui ∂uj if $=(λi−λj
q

)

A$ := ui (
∑

pk<q
Ak$ ∂uk) if $=(λi

q
)

A$ := (
∑

pk<q
Ak$ uk )∂uj if $=(−λj

q
)

As usual, the Bridge Equation yields a complete and free but (due to
linearity) finite system of analytic invariants :

{Aλi−λj ; pi = pj} ∪ {Akλi ; pi > pk} ∪ {A k
−λj ; pj > pk} (94)

For details, see [E3],[E4],[E7].

3.6 Example 6: polycritical non-linear differential sys-
tem.

p−1
i t1+pi dt y

nor
i + λi y

nor
i = 0 (1 ≤ i ≤ ν) (95)

p−1
i t1+pi dt yi + λi yi = bi(t, y1, . . . , yr) ∈ C{t, y} (96)

The Bridge equation reads :

∆∆$ y(z, u) ≡ A$ y(z, u) (∀ω = Ω) (97)

Here the alien derivations carry indices $ = (ω
q
), with ω running through a

set :

Ωq = {ω ; ω =
∑
pi=q

mi λi , mi ≥ −1 ,
∑
mi=−1

1 = 0 or 1} (98)

and with differential operators of the form :

A$ := un($) {
∑
pj≥q

Aj$(u)uj ∂uj +
∑
pj<q

Aj$(u) ∂uj} with (99)

un($) :=
∏
pi=q

umii if ω =
∑

mi λi (100)

Aj$(u) ∈ C[[uj; pj < q]]) (101)

which, together, constitute a complete and ‘free’ system {Aω ; ω = Ω} of
analytic invariants. For details, see [E3],[E4],[E7],[Braa] .

Remark : Of course, in our four non-linear examples, the countably infinite
systems of invariants {Aω} are “free” only in the sense of being subject to
no finite constraints, ie constraints involving finite subsets of them. But they
are clearly subject to ‘infinite’ constraints which, relative to a nice (“well-
behaved”, see infra) basis of ALIEN, reduce to the existence of exponential
bounds in ω.
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4 The reverse problem: Object Synthesis.

In this section, we examine what happens when we try to perform canonical
Object Synthesis with the elementary, hyperlogarithmic resurgence monomi-
als (constructed at the end of §2.4) as our sole tool : in some very simple
cases the method works; in most others it fails. Yet these failures are instruc-
tive, for they help identify the two main difficulties and already suggest the
correct remedy, namely the introduction of a well-placed ‘twist parameter’.

4.1 Standard or hyperlogarithmic resurgence monomi-
als and monics.

Let us at the oustet collect a few formulas about the hyperlogarithmic system
of monomials and monics :

∂−friendly ∆−friendly type

monomials V•(z) ←→ U•(z) symmetral
↓ ↖↗ ↑

monics V • ←→ U• alternal

U• ◦ V • = V • ◦ U• = I• = identity mould (∗)
U• = V• ◦ U• (∗∗)
V• = U• ◦ V • (∗ ∗ ∗)

We are mainly interested in the ∆-friendly monomials. So let us first
mention the rules for multiplying and differentiating them :

Uω′(z) Uω′′(z) =
∑

ω∈sha(ω′,ω′′)

Uω(z) (102)

(∂z + ||ω‖) U ω1,...,ωr(z) = −
∑

1≤i≤r

U ω1,...,ωi(z) U ωi+1,...,ωr z−1 (103)

∆ω0 U ω1,...,ωr(z) = U ω2,...,ωr(z) if ω0 = ω1 (104)

= 0 if ω0 6= ω1 (105)

Then, for the sake of symmetry, let us mention the rules for multiplying
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and differentiating the ∂-friendly monomials :

Vω′(z) Vω′′(z) =
∑

ω∈sha(ω′,ω′′)

Vω(z) (102 bis)

(∂z + ||ω‖) V ω1,...,ωr(z) = − V ω1,...,ωr−1 z−1 (103 bis)

∆ω0 V ω1,...,ωr(z) =
∑

ω1+...ωi=ω0

V ω1,...,ωi V ωi+1,...,ωr(z) (104 bis)

= 0 if ω1 + . . . ωi 6= ω0 ∀i (105 bis)

The ∂-friendly monomials are actually simpler objects than their ∆-
friendly counterpart. For one thing, when viewed in the formal model, ie
as power series of z−1, the V•(z) have Taylor coefficients that are rational
fonctions (with rational coefficients) of the indices ωi, whereas the U•(z)
always involve transcendental ingredients. More importantly perhaps, the
V•(z) provide the best starting point for constructing the entire hyperloga-
rithmic system, according to the following scheme :

V•(z)
1

=⇒ V •
2

=⇒ U•
3

=⇒ U•(z)

First, we calculate (step 0) the monomials V• inductively, under successive
integrations, by rephrasing (103 bis) in the convolutive model :

(−ζ + ||ω‖) V̂ ω1,...,ωr(ζ) = − (V̂ ω1,...,ωr−1 ∗ 1)(ζ) (103 ter)

= −
∫ ζ

0

V̂ ω1,...,ωr−1(ζ0) dζ0

Then (step 1) we get the monics V •, again inductively, by interpreting the
alien derivation rule (104 bis), again in the convolutive model. This yields
the V • as finite integrals.

Then (step 2) we get the monics U• by taking the composition inverse of
the mould V • : see relation (*) above and also (13).

Lastly (step 3) we get the momomials U• by postcomposing the mould
V• by U• : see relation (**).

Such is the natural sequence, but there also exist direct formulas for the
∆-friendly monomials, like this one, which is capable of a treble interpretation
– in the formal, geometric, and convolutive models 26 :

U ω1,...,ωr(z) := SPA

∫ ∞
0

exp(−ω1y1 · · · − ωryr)
(yr − yr−1) . . . (y2 − y1)(y1 − z)

dy1 . . . dyr (106)

and has its counterpart for the ∆-friendly monics.

26for the interpretation in the various models and the meaning of SPA – special path
averaging – see also §10.3 infra.
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4.2 Semi-formal synthesis in Example 1.

Recall that in this example each invariant reduces to a single scalar :

An := An e
−nz ∂z (107)

So we may start from some admissible system {. . . A−2, A−1, A1, A2 . . . } and
set:

F ? := 1 +
∑
r

∑
ni

(−1)r Uen1,n2,...,nr(z) Anr . . .An2An1 (108)

Simple algebra27 shows that F ? is a formal28 automorphism of C[[z−1]]:

F ? (ϕ1 ∗ ϕ2) ≡ (F ? ϕ1) ∗ (F ? ϕ2) ∀ ϕ1, ϕ2 (109)

and therefore a substitution operator of the form F ? ϕ ≡ ϕ ◦ f ? with29 :

f ?(z) := z −
∑
r

∑
ni

Un1,...,nr(z) Γn1,...,nr An1 . . . Anr (110)

Γn1 := 1 (111)

Γn1,...,nr := n1(n1 + n2) . . . (n1 + . . . nr−1) (r ≥ 1) (112)

Then f ? formally verifies the system of resurgence equations :

∆∆nf
?(z) = −An exp(−nf ?(z)) (∀n) (113)

∆nf
?(z) = −An exp(−n (f ?(z)− z)) (∀n) (114)

Therefore, if we set

f(z) := f ?(2πi+ ?f(z)) (115)

and apply the rule for alien-differentiating a composition product :

∆∆ω(g ◦ h) ≡ (∆∆ωg ) ◦ h+ (∂z g) ◦ h .∆∆ωh (if h(z) ∼ z) (116)

we find that all alien derivatives of f are identically zero. So f is “formally”
an identity-tangent analytic diffeo with the prescribed invariants.

27using the multiplication rule (102) for the U•.
28but, to get lighter notations, we drop the tildas
29mark the replacement of Ue• by U• and the non-dependence of Γn1,...,nr on nr .
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4.3 Semi-formal synthesis in Example 2.

Here again, the invariants An := An u
n+1 ∂u reduce to a single scalar An , but

they no longer depend on z and their index n can no longer assume negative
values other than the exceptional −1. So let us start from some admissible
system {A−1, A1, A2, A3, . . . } and set:

Θ := 1 +
∑
r

∑
ni

(−1)r Uen1,n2,...,nr(z) Anr . . .An2An1 (117)

Θ−1 := 1 +
∑
r

∑
ni

Uenr,...,n2,n1(z) Anr . . .An2An1 (118)

Due once again to (102), the operatorrs Θ±1 are formal algebra automor-
phisms or, more precisely, substitution operators :

Θ±1(ϕ1 ϕ2) ≡ Θ±1(ϕ1) Θ±1(ϕ2) (119)

This standard procedure, when applied with respect to the hyperlogarithmic
resurgence monomials mentioned at the end of §2.4, leads from an admissible
system of prescribed invariants:

{A−1, A1, A2, A3, . . . } (120)

to an singular differential equation of the form:

dzy = y − z−1{B−1 +B1y
2 +B2y

3 +B3y
4 + . . . } (121)

with a perfect symmetry of form between the invariants {An} of our “object”
and its Taylor coefficients {Bn}. Indeed, if we introduce operators Bn :=
Bn u

n+1∂u parallel to the operators An := An u
n+1∂u and then plug into

(117),(118) the formula (103) that express the natural derivatives of the ∆-
friendly monomials U•(z), setting aside for the time being all questions of
convergence, we find the following, engagingly symmetric formulae for the
correspondance {An} ↔ {Bn} :

Bn0 =
∑
r≥1

∑
ni

Un1,...,nr Anr . . . An2 An1 (122)

(due to alternality) =
∑
r≥1

1

r

∑
ni

Un1,...,nr [Anr . . . [An2 ,An1 ]] (123)

An0 =
∑
r≥1

∑
ni

V n1,...,nr Bnr . . . Bn2 Bn1 (124)

(due to alternality) =
∑
r≥1

1

r

∑
ni

V n1,...,nr [Bnr . . . [Bn2 ,Bn1 ]] (125)
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4.4 Semi-formal synthesis in the remaining examples.

For Example 3 and 4, the procedure is exactly the same as above, in §4.2,
for Example 2 :

Aω := un+1
∑

Ajω uj∂uj (126)

Θ := 1 +
∑
r

∑
ωi

(−1)rUeω1,ω2,...,ωr(z) Aωr . . .Aω2Aω1 (127)

Θ−1 := 1 +
∑
r

∑
ωi

Ueωr,...,ω2,ω1(z) Aωr . . .Aω2Aω1 (128)

except for the required modifications in the size of the index reservoir Ω (see
(83),(89)) and the shape of the invariants Aω (see (84),(90)).

For the polycritical examples 5 (linear) and 6 (non-linear), the changes
are more thorough-going :
– due to the need to apply acceleration transforms30 for jumping from one
critical time to the next,
– due to the need to choose a specific integration axis θi in each critical Borel
plane, which results in a general multipolarisation that affects not only the
geometric model, but also the resurgence monomials and the very invariants
Aω, except of course those attached to the ‘first’ or ‘slowest’ critical time,
– due to the presence in the invariants Aω of parameters uj attached to the
‘earlier’ or ‘slower’ critical times, with the result that each Aω may now carry
(in the non-linear Example 6) infinitely many scalar coefficients.

But in all these cases, hyperlogarithmic object synthesis displays one
striking feature, already apparent in the formulas (122),(123) and (124),(125),
namely a rigorous (at least at the formal level) duality between the invariants
and the Taylor coefficients of the canonical object Obcan produced by syn-
thesis. The natural indexation, in particular, is exactly the same – whereas
for generic objects Ob in a given conjugacy class the Taylor coefficients tend
to be “infinitely more numerous”31 than the invariants. This extremely nice
feature of semi-formal, hyperlogarithmic synthesis will get lost, alas, when
we go over to effective, paralogarithmic synthesis but it won’t disappear al-
together : the Taylor coefficients of the new Obcan will be exactly twice as
numerous (no more !) than its invariants.

30see [E4],[E7].
31not in terms of cardinality, of course, which is always countable, but in terms of natural

indexability by sets of type Nm × Zn .
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4.5 Inadequacy of the standard resurgence monomials
for the purpose of synthesis.

In Example 1 and 2 alike, the analytic invariants An and the operators Bn that
encode the Taylor-coefficients32 of Obcan essentially reduce to scalars An , Bn.
Looking at the (formally inverse) relations (122-125) which exchange them,
we are led to distinguish exactly five cases :

4.5.1 Unary case:

All {An , Bn} vanish, save for one value of the index, n = n0, which, due
to scale-invariance33 , we may take to be 1. Then the relations (122-125)
immediately give :

{A1} ⇐⇒ {B1} with A1 = B1 (129)

4.5.2 Binary case:

All {An , Bn} vanish, save for two opposite values of the index, n = ±n0,
which, due to scale-invariance, we may take to be±1. After some calculations
(see [E2]), the relations (122-125) yield :

{A−1, A1} ←− {B−1, B1} (130)

with
1

2

√
A−1A1 = sin (

1

2

√
B−1B1) (131)

and A1/A−1 = B1/B−1 (132)

So, going from semi-formal to effective synthesis, we register the existence
of countably many hyperlogarithmic Obcan, with no clear privileged choice
except for small values of the product A−1A1.

4.5.3 Unilateral case:

All {An , Bn} vanish, save for indices n that are positive multiples of some
n0 , which we may take to be 1.
Actually, to get true unilaterality34 we must assume not only that . . . A−3 =
A−2 = A−1 = 0 but also that A1 and at least one other An with positive
index n are 6= 0.

32directly so in Example 2; indirectly so, via equation (115), in Example 1.
33U l ω1,...,l ωr ≡ Uω1,...,ωr ; V l ω1,...,l ωr ≡ V ω1,...,ωr

34ie to exclude the unary and binary cases.
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This is the most promising case because (unlike the unary case) it is non-
trivial and (unlike with the binary case) there is at the semi-formal level a
clear one-to-one correspondance:

{A1, A2, A3, . . . } ←→ {B1, B2, B3, . . . } (133)

since for any given n0 the right-hand side of the relations(122-125) reduces
to a finite number of summands. Unfortunately, going from semi-formal to
effective synthesis, it can be shown that for nearly all 35 admissible unilateral
systems {An} of invariants, the corresponding sequence {Bn} of Taylor coef-
ficients has Gevrey-1 growth 36 in n , which disqualifies the hyperlogarithmic
Obcan as an effective synthesis.

4.5.4 Sesquilateral case:

All {An , Bn} vanish, save for n a positive multiple of some n0 and also for
n = −n0 . Here again, we may take n0 to be 1. In fact, it is enough to
assume that An 6= 0 for n = ±1 and for at least one other positive n . In
terms of effective hyperlogarithmic synthesis, the picture is much the same
as in the binary case : there exists one priviledged solution Obcan if A−1A1

is small enough. Otherwise, there are several (countably many) solutions on
an equal footing.

4.5.5 Bilateral case:

All {An , Bn} vanish, save for n a positive or negative multiple of n0, which
we may take to be 1. In fact, it is enough to assume that An 6= 0 for at
least two distinct positive values of n and two distinct negative values. For
definiteness let us assume that A±1 6= 0, A±2 6= 0.

Then there exists one priviledged Obcan if A−1A1 is small enough
and if the two sequences {An , n > 0} and {An , n < 0} , or rather the
Fourier series π± built from the related sequences {A′n , n > 0} and {A′n , n <
0} (see (140),(141) infra) in some right and left half-planes, verify a suitable
“overlapping condition”, like the one mentioned in §5.1 in the context of
non-canonical synthesis. Failing that condition, the picture becomes quite
murky, with either a countably infinity of solutions, or none at all.

35the exact criterion is mentioned in §4.6 below
36ie 0 < lim sup 1

n |Bn|
1/n <∞
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4.6 First intimations of “antipodality”:

Let us take a closer look at the unilateral case. Assume for simplicty that
A1 6= 0, A2 = 0 37 , which under (122-125) also implies that B1 6= 0, B2 = 0.
Assume further that the invariants An are expressed relative to the system
of standard alien derivations : assume, in other words, that the An are the
constants occuring in (72-73) with ∆∆n defined as in (54),(57).

To describe the precise obstructions to effective hyperlogarithmic synthesis
in complete, closed form, we require a fair number of auxiliary objects. First,
we successively define six power series A∗ , A

∗ , A and B∗ , B
∗ , B :

A∗(y) :=
∑

n≥1An y
n+1 B∗(y) :=

∑
n≥1Bn y

n+1

A?(y) :=
∫

dy
A(y)

B?(y) :=
∫

dy
B(y)

A∗ ◦ A ≡ 2πi+ A∗ B∗ ◦ B ≡ 2πi+B∗

Further, we form the partial differential operator :

D := ∂z + {y − z−1B∗(y)} ∂y (134)

We have to solve equation DK = 0 formally in decreasing powers of z.
We also have to solve equation DQ = 0 formally in increasing powers of z.
In both cases, we get increasing (but not always positive) powers of y and it
is convenient to expand the solutions as follows :

K(z, y) := e−z y + e−z
∑
n≥1

Kn(z) yn+1 with Kn(z) ∈ C[[z−1]]

Q(z, y) := log z +B?(y) +
∑
m≥1

Qm(y) zm with B∗(y), Qn(y) ∈ y−1 C[[y]]

Then we require three projectors P 0, P+, P− acting on series
∑+∞
−∞ cn z

−n :
P 0 retains only the z-constants
P+ retains only the positive powers of z
P− retains only the negative powers of z

Since we have expressed our {An} relative to the standard alien deriva-
tions, their quality of being an admissible system of invariants is not directly
recognisable on A∗(y) or A∗(y), but rather on A(y). More precisely, {An}

37No restrictions are imposed on A3, A4 . . . . The condition A2 = 0 is simply for conve-
nience (to remove the logarithms in A∗ and B∗). Dropping it would make no difference
to the analysis.
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constitutes an admissible system of invariants iff A(y) is local-analytic 38. As
for A∗(y) and A∗(y)), being respectively the infinitesimal generator and nor-
maliser of the local-analytic diffeo A, they are merely resurgent, with critical
time s := −(2πi/A1) y−1 and with the resurgence equations :

∆∆nA
? = −Cn e−nA

?

(n ∈ Z? , ∆n := ∆∆{s}n ) (135)

The constants Cn have a rather strange status : they are ‘invariants of
invariants’ since the Taylor coefficients of the diffeo A are themselves rational
functions of the invariants An. Yet they hold the key to our problem. Indeed,
we are now in a position to state the main results of this section : as power
series of y or Laurent series of s := const.y−1, the series B∗ , B∗ , K , Q are
generically divergent, but always resurgent, with critical time s, and they
verify the system of resurgence equations :

∆∆nB
?/∂sB

? = −Cn P 0 (e−nQ/∂sQ) (n ∈ N?) (136)

∆∆nK/∂sK = +Cn P
− (e−nQ/∂sQ) (n ∈ N?) (137)

∆∆nQ/∂sQ = −Cn (P 0 + P+) (e−nQ/∂sQ) (n ∈ N?) (138)

with Cn ∈ C , P− + P 0 + P+ = id (139)

That system is complete and closed, in the sense that it enables us to calculate
all the iterated alien derivatives ∆∆nr . . .∆∆n1 B

∗ and ∆∆nr . . .∆∆n1 B∗ , whereas
no smaller system could do that. But if we take a closer look at the above
system, especially at (136), we notice that only the alien derivations ∆∆n

with positive n are capable of acting non-trivially on B∗ and B∗. Those with
negative n yield 0, because for them the right-hand side of (136) vanishes.
The upshot is that unilateral hyperlogarithmic synthesis is possible if and
only if the diffeo A is semi-iterable in the sense of having half its analytic
invariants Cn, namely those with negative n, identically zero. 39

For details and complements, see [E3]. The above results demand some
very careful analysis. Strangely enough, they are harder to prove that the
forthcoming, more complete, and far more satisfactory, results about par-
alogarithmic synthesis.

The above resurgence is of a highly unusual type. In [E3] it is dubbed
“synthesis resurgence” and contrasted with two other, far more common,

38see [E3].
39at least in the Examples 1 and 2 under discussion here. Incidentally, the above con-

struction relates more directly to Example 2, but can be easily transposed to Example
1.
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types : “equational resurgence”40 and “co-equational resurgence”41. Yet, re-
markably enough, all three types give rise to the same sort of acting alien
algebras ALIENact := ALIEN/ALIENnil , which is to say that in all three
cases, the ideal ALIENnil of ALIEN which annihilates the relevant resur-
gence algebra 42 is generated by derivations of the form

cn1+n2 ∆∆n1+n2 − (n1 − n2) cn1 cn1 [∆∆n1 ,∆∆n2 ]

for a well-defined system of (usually transcendental) structure constants {cn}.

4.7 The need for one free parameter at least.

Perhaps the main lesson from this excursion into the unilateral case is this :
in order to describe the divergence-resurgence pattern of the series B∗ , B

∗ as
elements of C[[s−1]] we are compelled to adduce elements of C[[s]]. In other
words, what goes on at one pole s =∞ (and z =∞) of the Riemann sphere
is inextricably linked to what goes on at the other pole s = 0 (and z = 0). 43

This “antipodal pairing” is going to be an outstanding feature of “canonical”
or “sperical” synthesis.

But another lesson emerges, this time from the binary and sesquilateral
cases : no one-to-one correspondance {Aω} ↔ Obcan that holds for all sys-
tems {Aω} – and not just ‘small’ ones – can be achieved without introducing
at least one free parameter capable of restoring ‘smallness’ where it is missing.
Fortunately, as we shall see, one parameter is enough.

5 Methods for non-canonical Object Synthe-

sis.

Having seen the limitations of canonical hyperlogarithmic synthesis and be-
fore turning to the completely satisfactory answer of canonical paralogarith-
mic synthesis, let us recall a few basic results about non-canonical synthesis,
if only to obtain a characterisation of the admissible systems of invariants.

40because there the resurgence-bearing variable is the (or one of the) variables(s) of the
equation under investigation.

41because it is roughly dual to the preceding. It is also known as parametric resur-
gence because there the resurgence-bearing variable is, typically, a singular perturbation
parameter.

42ie the algebra generated by the resurgent functions under consideration and all their
alien derivatives, of all orders.

43despite the absence, generally speaking, of an analytic continuation, from one pole to
the next, of the functions involved.
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5.1 Main and earliest method.

We go back to Example 1. For any shift-like diffeo f , let f ∗+ (resp f ∗−) denote
the Borel-Laplace sum of the normaliser f ∗ that is defined and regular in a
U-shaped domain containing an upper (lower) half-plane =z > const (resp
=z < const) and two vertical half-planes |<z| > const. For our present
purpose, it is convenient to express the invariants {An} in the guise of two
2πi-periodic functions π+ and π− defined each in some vertical half-plane,
respectively right and left :

π+(z) = z −
∑
n∈N+

A′n e
−nz ; <z � +1 (140)

π−(z) = z −
∑
n∈N−

A′n e
−nz ; <z � −1 (141)

and linking the normalisers f ∗± on their common half-planar domains of def-
initions :

π+ ◦ f ∗−(z) = f ∗+(z) for <z � +1 (142)

π− ◦ f ∗+(z) = f ∗−(z) for <z � −1 (143)

The Fourier coefficients A′n of π± are not exactly the constants A′n occuring
in the resurgence equations (72),(73), but rather those that we would get
if we were to write down (72),(73) with the lateral operator ∆∆±ω instead of
∆∆ω

44.

Each conjugacy class of shift-like diffeos f is characterised by an analytic
pair (π+, π−) and conversely to each analytic pair (π+, π−) there answers an
analytic conjugacy class of shift-like diffeos f .

The direct part of the statement is very easy, from (142),(143). As for
the converse statement, the original proof ([E2],pp 450-456) splits into an
infinitesimal and a global step.

The infinitesimal step starts from an arbitrary shift-like diffeo f with
analytic invariants (π+, π−) as in (140),(141). Then, given any infinitesimal
analytic perturbation (π+ + δπ+, π− + δπ−), one proceeds to construct a
corresponding infinitesimal perturbation f+δf via the normalisers f ∗±+δf ∗±.
The construction goes like this :

44Up to a 2πi factor, these A′n are “polar residues” (in the Borel plane) at the points n
as approached from below or from above.
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2πi
δf ?+(z)

∂f ?+(z)
= −

∫ +∞

t+

(
δ +π
∂ +π

)
◦ f ?+(y)

∂f ?+(y)

dy

y − z

+

∫ −∞
t−

(
δ π−

∂ π−

)
◦ f ?+(y)

∂f ?+(y)

dy

y − z
(144)

2πi
δf ?−(z)

∂f ?−(z)
= −

∫ +∞

t−

(
δ−π
∂ −π

)
◦ f ?−(y)

∂f ?−(y)

dy

y − z

+

∫ −∞
t+

(
δ π+

∂ π+

)
◦ f ?−(y)

∂f ?−(y)

dy

y − z
(145)

with ±π standing for the reciprocal functions of π± and with ±<(t±) � 1.
The construction clearly implies :

δ f ?+
∂ f ?+

−
δ f ?−
∂ f ?−

= +

(
δ π+

∂ π+

)
◦ f ?−

∂ f ?−
for <(z)� +1

δ f ?+
∂ f ?+

−
δ f ?−
∂ f ?−

= −

(
δ π−

∂ π−

)
◦ f ?+

∂ f ?+
for <(z)� −1

which means that f + δf and f ∗± + δf ∗±. verify the perturbed form of the
normaliser’s characteristic equation (142),(143).

The global step consists in joining some elementary but non-trivial pair
{π−0 , π+

0 } for which f0 is known45 to a given pair {π−1 , π+
1 } for which f1 is

sought , by an λ-analytic path {π−λ , π
+
λ , fλ , f

∗
λ,± , t

±
λ }λ∈[0,1]. This is done by

turning (144),(145) into a differential system in λ, with the integration end
points t±λ suitably chosen, ie far enough to the right or left for the composi-
tions π±λ ◦ f ∗λ,∓ and ±πλ ◦ f ∗λ,± to make sense. For details, see [E2] 46.

5.2 Malgrange’s method.

Using polar coordinates x = ei θ r on C with (θ, r) ∈ (T,R+) and con-
sidering the blow-up S := (T, 0), Malgrange defines sheaves Γp on S by

45if {π−1 , π
+
1 } corresponds to the unilateral (resp sesqui- or bilateral) case, then the

obvious choice for {π−0 , π
+
0 } is to take an instance of unary (resp binary) hyperlogarithmic

synthesis, as in §4.5.1 (resp §4.5.2).
46in [E] we took fnor(z) = z + 1 instead of fnor(z) = z + 2πi here, which explains the

slight differences in the two presentations.
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letting Γp,θ0 contain all functions that are holomorphic in some small sec-
torial neigbourhood of 0 of bisectrix θ0 with an asymptotic expansion of the
form x +

∑
n≥p+1 an x

n. Then he sets Γ∞ := ∩Γp and shows that solving
(142),(143) reduces to a special case of the following statement : the image
of the natural mapping H1(S,Γ∞)→ H1(S,Γp) reduces to the trivial element
OH1(S,Γp). Malgrange then derives that statement, without calculations, from
the classical Newlander-Nirenberg theorem.

5.3 The quasiconformal method.

Another early proof of the (non-canonical) synthesis theorem for identity-
tangent, one-dimensional diffeos was given by S. M. Voronin. Though inde-
pendent of Malgrangre’s proof, it resembles it in that it solves the problem
first in a smooth setting (C∞ with M., C1 with V.), then in a complex-analytic
one. But the main tool here is the beautiful Ahlfors-Bers theory (see [A]) of
quasiconformal mappings.47 Starting from any given pair {π+, π−}, Voronin
constructs {f ∗+, f ∗−, f}, with all the required relations, on an abstract Rie-
mann surface S. Then he shows that S is quasiconformally, and therefore
conformally, equivalent to a punctured neighbourhood of 0 in C. These qua-
siconformal methods were later extensively used in holomophic dynamics by
authors like Douady, Hubbard, Lavaurs, etc.

5.4 Comparison.

Anteriority aside, the method outlined in §5.1 would seem to be more ex-
plicit, elementary, and direct. Above all, it has the merit of extending with
very little modification not only to most other problems of analytic synthe-
sis (like Malgrange and Voronin’s methods), but also to non-analytic ones
(unlike Malgrange’s or Voronin’s methods, which are too dependent on “ge-
ometry”, ie on the multiplicative plane, to tackle situation when geometry
disappears).

Consider for example shift-like diffeos, but formal ones, of Gevrey rather
than analytic type. In E2 it was shown that for all Gevrey classes Gt be-
tween G0 (analytic) and G1, there exist non-trivial Gevrey moduli (ie Gevrey
conjugacy classes), with invariants An := e−n z An ∂z which, relative to any
well-behaved basis of ALIEN, are characterised by growth bounds

|An| < C0 exp (C1 n
1

1−t ) (0 < Ci <∞)

47ie mappings f : Ω ⊂ C → C with locally integrable, first-order derivatives such that
|∂z̄ f | ≤ k |∂z f | almost everywhere for some k < 1.
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Here, the geometric model no longer exists and geometric methods become
useless, whereas in the convolutive model, things hardly change. Indeed, the
integrals (144),(145) can easily be rephrased in terms of their Borel trans-
forms, and we find ourselves dealing with normalisers f̂ ∗(ζ) and δf̂ ∗(ζ) which
have exactly the same singularities and verify the same resurgence equations
as in the analytic case, but differ only by their growth pattern at ∞ (away
from the singularities) :

|f̂ ∗(ζ)| < C0 exp (C1 |ζ|
1

1−t ) (0 < Ci <∞)

6 Four closely related challenges.

We shall discuss in this section four closely related challenges, pertaining to
four different notions central to resummation theory – uniformising averages,
alien derivations, resurgenge monomials, ramified growth – and arising from
the need to simultaneously satisfy a series of conditions :
C1: compatibility with the multiplicative structure
C2: respecting realness
C3: respecting lateral (exponential) growth
C4: scale invariance
which are much the same in all four cases, yet call for slight reformulations.
For uniformising averages these conditions shall become A1, . . . ,A4.
For alien derivations : D1, . . . ,D4.
For resurgence monomials : M1, . . . ,M4.
For ramified growth : R1, . . . ,R4.

Each demand is easy enough to meet in isolation, but combining them
is more difficult, for reasons we shall try to make clear in a moment. For-
tunately, there are ways of reconciling these demands, and we then speak of
well-behaved averages, derivations, monomials, etc.

But let us first devote a section to the central difficulty in all these prob-
lem : overcoming faster-than-lateral growth.

6.1 The main obstacle: faster-than-lateral growth.

As pointed out, summation or accelero-summation yields at every step i a
function ϕ̂i(ζi) which has precisely the right rate of growth, ie the one that
makes the next acceleration (or Laplace) possible. But this applies only to
singularity-free axes or, on singularity-carrying axes, to the two lateral de-
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terminations.48 Most other determinations of ϕ̂i(ζi), especially the ones that
correspond to oft-crossing paths, tend to display slightly faster-than-lateral
growth.

For instance, if the lateral growth of ϕ̂(ζ) is exponential (this is the growth
required for Laplace integration), the other determinations generally admit
no better uniform bounds than |ϕ̂(ζ)| ≤ γ0 e

γ1|ζ|| log ζ| (so that they cannot be
subjected to Laplace). Therefore, unless we resort to carefully honed aver-
ages m, the averaged function m ϕ̂(ζ) itself is going to display this slightly
super-exponential growth.

This nuisance of faster-than-lateral growth is extremely common, generic
almost. In the Dulac problem for instance, it affects nearly all transit maps
Gi attached to summits of semi-hyperbolic type in a given polycycle.

In order to show just how prevalent and inescapable the phenomenon of
faster-than-lateral growth is, let us adduce the simplest conceivable illustra-
tion, linked to as harmless an operation as inversion :

Ã(z) :=
∑
n≥1

n! z−n (146)

Â(ζ) :=
∑
n≥0

ζn = 1/(1− ζ) (147)

B̃(z) :=
∑
n≥1

An(z) = A(z)/(1− A(z)) (148)

B̂(ζ) :=
∑
n≥1

Â?n(ζ) (149)

The divergent series Ã(z) verifies the Euler equation (1 + ∂z)Ã(z) = z−1 and
its Borel transform Â(ζ), with its single pole at ζ = 1, is the simplest instance
of a non-trivial resurgent function. Yet a simple Möbius transform turns Ã(z)
into a series B̃(z), also solution of a first-order differential equation, but with
a Borel transform B̂(ζ) that has singularities at every point ζ = n ∈ N, with
simple poles as leading terms and logarithmic singularities as corrections :

B̂(ζ) = +R
ε1,...,εn−1,?
B .(ζ − n)−1 (simple pole)

+Reg
ε1,...,εn−1,?
1 (ζ − n). log(ζ − n) (logarithmic singularity)

+Reg
ε1,...,εn−1,?
0 (ζ − n) (regular part)

48and that too even if we take care of choosing in the critical time class {zi} a suitably
slow time zi , which precaution has the effect of smoothing the singularities of ϕ̂i(ζi).
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A+?
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A+−?

A++?

This even provides us with a discretised model of the phenomenon of faster-
than-lateral growth. Indeed, the residues R

ε1,...,εn−1,?
B of address {εi} are cal-

culable by a simple induction (see [E8]) which readily shows that they verify
no better bounds than

|Rε1,...,εn−1,?
B | ≤ c0 c

n
1 n! (150)

Therefore, although B̂ has exponential growth (at most) on each singularity-
free axis arg ζ = θ 6= 0, on paths that criss-cross 49 the axis arg ζ = 0
(especially for constantly alternating εi’s) it admits no better bounds than
|B̂(ζ)| ≤ γ0 e

γ1|ζ|| log ζ|.

In [E8], §A4, pp195-197, details may be found about the asymptotics of
the “load” ld(ε1, . . . , εr−1, ∗), which up to a multiplicative constant is the
same as that of the residue R

ε1,...,εn−1,?
B . At a distance r from the origin, the

larger values occur on “oft-crossing paths”, ie for sequences (ε1, . . . , εn−1, ?)
with frequent sign changes, and the largest value occur on ever-crossing paths,
ie for strictly alternating sequences (±,∓,±,∓ . . . , ∗). The corresponding
loads are roughly equal to (π/8)r r! and that is also the order of magnitude
for values |B̂(ζ)| on the branches with the same ε-address .

6.2 Challenge 1 : Searching for well-behaved averages.

In the process of mono- or polycritical resummation, it is not the – usually
highly ramified – Borel transform ϕ̂(ζ) as such that gets subjected to the
Laplace or acceleration transform, but some suitable uniformisation m ϕ̂(ζ)
of ϕ̂(ζ), evaluated on the relevant integration axis {arg z = θ0}, which for
simplicity we shall take to be R+ (ie θ0 = 0).50

ω1 ω2 ω3s s s uniform function m ϕ̂(ζ)

↑ ↑ ↑
49while avoiding small disks |ζ − n| < ρ < 1/2 of fixed radius around each singular

points. But we may remove this restriction by reasoning on the function
∫∫

B̂(ζ) which
remains continous at each n.

50this applies in particular to the theory of transseries and analysable functions, where
integration always takes place on R+.
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multiform function ϕ̂(ζ)

A uniformising average m : ϕ̂ 7→ m ϕ̂ is defined by a system of weights

m
( ε1
ω1

,...,
,...,

εr
ωr

)
subject to the self-consistency relations :∑

εi ∈{+,−}

m
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)
= m

( ε1
ω1

,...,
,...,

εi+1
ωi+ωi+1

,...,
,...,

εr
ωr

) ∀i < r (151)

∑
εr ∈{+,−}

m
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)
= m

( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr−1
ωr−1

)
(152)

and its action is as follows :

m ϕ̂(ζ) :=
∑
εi=±

m
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ζ) (153)

with ϕ̂
( ε1
ω1

,...,
,...,

εr
ωr

)
denoting the determination of ϕ̂ on the branch of address

(ε1, . . . , εr) over the interval ζ ∈ ]ω1 + . . . ωr , ω1 + . . . ωr+1[ between two
consecutive singularities 51

To be really useful in the present context of Borel-Laplace resummation,
or in the more general one of accelero-summation, a uniformising average
must fulfill four main conditions :

A1 : It must respect convolution52 , ie m (ϕ̂1 ? ϕ̂2) = (m ϕ̂1) ? (m ϕ̂2)

A2 : It must respect realness, ie m ϕ̂(ζ), as a global function, must be real
whenever ϕ̂(ζ), as a germ at +0, is real.

A3 : It must respect lateral growth, that is to say m ϕ̂(ζ) must not grow
significantly faster than the two lateral determinations (right or left) of ϕ̂(ζ)
along the positive real axis.

A4 : It should be scale invariant, ie commute with real dilatations ζ 7→ lζ

Such averages will be declared “well-behaved”.

51Of course, when the singularities of the minor ϕ̂ are not of integrable type, we have
to supplement the present formula with an anologous one for the major ϕ̌.

52observe that we are dealing here with two slightly different interpretations of the
convolution product : in m (ϕ̂1 ? ϕ̂2) we convolute two function germs near the origin,
then use analytic (or cohesive) forward continuation to get a global ramified function, and
lastly we uniformise it by means of m , whereas in (m ϕ̂1) ? (m ϕ̂2) we directly convolute
two global, uniform functions.
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A1 is essential to get an algebra morphism53.
A2 is natural and, in many instances54, indispensible.
A3 ensures the convergence of the acceleration (or Laplace) integrals.
A4 is less essential, but very natural.

A2’s translation in terms of weights is straightforward : the weights should
change into their complex conjugates when all signs εi are changed. If real,
the weights should remain unchanged. The same with A4 : keeping all signs
unchanged while multiplying all gaps ωi by the same positive factor l should
leave the weights unchanged. As for A1 and A3 we shall see in a moment
what they imply in terms of weights.

But first we must introduce convenient, non-redundant ways of defining
averages. To any uniformising average m we attach the moulds 55 :

remω1,...,ωr := (−1)r m
( +
ω1

,...,
,...,

+
ωr

)
( “right-lateral mould” ) (154)

lemω1,...,ωr := (−1)r m
( −
ω1

,...,
,...,

−
ωr

)
( “left-lateral mould” ) (155)

nam t1,...,tr
ω∗,t∗ := ε1 . . . εr m( ε1

ω∗
,...,
,...,

εr
ω∗

) ( “neutral mould” ) (156)

with εi := sign(ti − ti−1) (∀i < r) and εr := sign(tr − t∗)

Due to the self-consistency relations, both the right- and left-lateral moulds

encapsulate all the information about the entire weight system {m( ε1
ω1

,...,
,...,

εr
ωr

)},
and each one can be deduced from the other in a simple manner. As for the
“neutral mould”, its upper indices ti are real numbers, and so too are its
lower index t∗, while the ‘common gap’ ω∗ must of course be positive.

The initial consonants r/l/n in the names of our moulds stand of course
for right/left/neutral ; the inner vowels e/a stand respectively for symme-
trel/al (for that’s what our moulds will have to be) ; and the final m stands
for mean value.

We are now in a position to state the criteria for well-behavedness.

The four following conditions are equivalent:
A1 : the uniformising average m respects convolution

53Operating exclusively with algebra morphisms is a must in all non-linear problems.
Indeed, if ϕ̃ be the formal solution of a non-linear differential equation E, then its sum ϕ
under Borel-Laplace (or, in polycritical instances, under accelero-summation) is going to
verify the original equation E if and only if every single step in the resummation process
is an algebra morphism.

54eg physics, real geometry, analysability theory, the Dulac problem, etc.
55see §2.1
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A11 : the right-lateral mould rem• is symmetrel 56

A12 : the left-lateral mould lem• is symmetrel
A13 : the neutral mould nam •

ω∗,t∗ is symmetral for all ω∗, t∗

The two following conditions are equivalent:
A2 : the uniformising average m respects realness
A21 : the moulds rem• and lem• are complex conjugate

The seven following conditions are equivalent:
A3 : the uniformising average m respects lateral growth
A31 : we have universal bounds | remω≺≺ | ≤ C1 (D1)r

A32 : we have universal bounds | remω�� | ≤ C2 (D2)r

A33 : we have universal bounds | lemω≺≺ | ≤ C3 (D3)r

A34 : we have universal bounds | lemω�� | ≤ C4 (D4)r

A35 : we have universal bounds |namt≺
ω∗,t∗| ≤ C5 (D5)ω∗ r

A36 : we have universal bounds |namt�
ω∗,t∗| ≤ C6 (D6)ω∗ r

for some finite constants Ci, Di.

Here, r always denotes the cardinal of the sequences involved. We recall that
M•≺ (resp M•�) denotes the forward (resp backward) arborification of the
mould M•. In symmetric fashion, M•≺≺ (resp M•�� ) denotes the forward
(resp backward) contracting arborification of the mould M•. The defining
relations read :

Mω≺≺ :=
∑

ω1>>ω≺≺

Mω1

; Mω�� :=
∑

ω2>>ω��

Mω2

(157)

The above symbol ω≺≺ (resp ω�� ) denotes any sequence {ωi} with an ar-
borescent (resp anti-arborescent) order on it, ie an order such that each ele-
ment ωi has at most one predecessor ωi− (resp one successor ωi+ ), whereas
the sums on the right-hand side extend to all totally ordered sequences ω1

(resp ω2) that can be obtained from ω≺≺ (resp ω�� ) with the possible con-
traction ωi, . . . , ωj 7→ ωi + · · ·+ωj of several consecutive elements. For some
details see §2.1 and for more details go to [E5],[EV2],[EV3].

The four following conditions are equivalent:
A4 : the uniformising average m is scale-invariant.
A41 : the mould rem• is a homogeneous function of ω.
A42 : the mould lem• is a homogeneous function of ω.
A43 : the mould nam•ω∗,t∗ is independent of its first lower index ω∗

Tempting answer: the standard (or uniform, or median) average.

56see §2.1
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Let mur and mul 57 be the right- and left-lateral averages, with weights :

mur
( ε1
ω1

,...,
,...,

εr
ωr

)
:= 1 if ε1 = · · · = εr = + (res 0 otherwise) (158)

mul
( ε1
ω1

,...,
,...,

εr
ωr

)
:= 1 if ε1 = · · · = εr = − (res 0 otherwise) (159)

Both mur and mul verify A1, A3 and even A4 58, but clearly not A42

(preservation of realness). The half-sum 1/2 (mur + mul) does verify A2,
but ceases to verify A1 : it is not a convolution average and so of no use at
all, except in linear problems. However, since mur and mul connect under
post-composition by alien automorphisms :

mul := mur . rul with rul := 1 +
∑
ω>0

∆∆−ω (160)

mur := mul . lur with lur := 1 +
∑
ω>0

∆∆+
ω (161)

it is very tempting to restore the right-left symmetry without destroying
multiplicativity, by setting :

mun := mul . (lur)
1
2 ≡ mur . (rul)

1
2 (162)

A simple calculation shows that the new average mun has weights that do
not depend on the gaps ωi, but only on the total number (p, q) of (+,−)
signs in the sequence ε : 59

mun
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

Γ(p+ 1
2
)Γ(q + 1

2
)

Γ(r + 1)Γ(1
2
)Γ(1

2
)

=
(2p)! (2q)!

4p+q p! q! (p+ q)!
(163)

This mun is known as median or standard or uniform average. Its very
construction ensures at once that it verifies A1, A2 and A4. But it can be
shown 60 that it fails in regard to A3 . So, for certain applications at least
(see §7.6), we will have to look for better averages.

6.3 Challenge 2 : Searching for well-behaved alien deriva-
tions.

The singularities of minors ϕ̂(ζ) in the Borel plane deserve close attention
because :

57m for mean value , u for uniform , r/l/n for right/left/neutral.
58since mur and mul load only the lateral paths
59These properties, in fact, completely caracterise mun among all convolution and re-

alness preserving averages.
60see §7.6
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– they are (mainly) responsible for the divergence of ϕ̃(z) in the formal model
– they command the asymptotic behaviour of ϕ(z) in the geometric model,
along the borders of its regularity sectors
– they carry, in the shape of residue-like coefficients in front of their leading
terms, the analytic invariants of ϕ 61.

Hence the need for operators capable of measuring these singularities pre-
cisely and conveniently. Such operators do exist : they are the so-called alien

derivations ∆ω. These are determined by systems of weights d
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)

subject to the self-consistency relations :∑
εi ∈{+,−}

d
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)
= d

( ε1
ω1

,...,
,...,

εi+1
ωi+ωi+1

,...,
,...,

εr
ωr

) ∀i < r (164)

∑
εr ∈{+,−}

d
( ε1
ω1

,...,
,...,

εi
ωi

,...,
,...,

εr
ωr

)
= 0 (165)

and their action in the convolutive model is given by :

∆ω ϕ̂(ζ) :=
∑
εi=±

d
( ε1
ω1

,...,
,...,

εr
ωr

)
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ζ + ω) (166)

for ζ close to +0 and by analytic continuation in the large. There being
no scope for confusion, we also use the same symbols to denote the alien
derivations acting in the multiplicative models (formal or geometric), ie the
pull-backs by Borel-Laplace of the operators ∆ω as defined by (166).

To each system of alien derivations we may associate the moulds :

redω1,...,ωr := (−1)r d
( +
ω1

,...,
,...,

+
ωr

)
(“right-lateral mould”)(167)

ledω1,...,ωr := (−1)r d
( −
ω1

,...,
,...,

−
ωr

)
(“left-lateral mould”) (168)

nad t1,...,tr
ω∗,t∗ := ε1 . . . εr d( ε1

ω∗
,...,
,...,

εr
ω∗

) ( “neutral mould” ) (169)

with εi := sign(ti − ti−1) (∀i < r) and εr := sign(tr − t∗)

Due to the self-consistency relations, both the right- and left-lateral moulds

encapsulate all the information about the entire weight system {d( ε1
ω1

,...,
,...,

εr
ωr

)},
and each one can be deduced from the other in a simple manner. As for the
‘neutral’ mould, due to the second self-consistency relation (165), it is actu-
ally independent of the second lower index t∗ which consequently we shall
drop.

61or more precisely, of the equation or system of which ϕ happens to be the solution.
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The initial consonants r/l/n in the names of our moulds stand of course for
right/left/neutral ; the inner vowels e/a stand respectively for alternel/al (for
that’s what our moulds will have to be) ; and the final d stands for deriva-
tion.

The four following conditions are equivalent:
D1 : the alien operators ∆ω in (166) are (first-order) alien derivations
D11 : the right-lateral mould red• is alternel
D12 : the left-lateral mould led• is alternel
D13 : the neutral mould nad•ω∗ is alternal for all ω∗

The two following conditions are equivalent:
D2 : the alien derivations ∆ω respect realness
D21 : the moulds red• and led• are complex conjugate

The seven following conditions are equivalent:
D3 : the system ∆ω in (166) of (first-order) alien derivations is well-behaved

D31 : we have universal bounds | redω
≺≺ | ≤ C1 (D1)r

D32 : we have universal bounds | redω
�� | ≤ C2 (D2)r

D33 : we have universal bounds | ledω
≺≺ | ≤ C3 (D3)r

D34 : we have universal bounds | ledω
�� | ≤ C4 (D4)r

D35 : we have universal bounds |nadt≺

ω∗ | ≤ C5 (D5)ω∗ r

D36 : we have universal bounds |nadt�

ω∗ | ≤ C6 (D6)ω∗ r

with the ordinary/contracting arborification rules of §2.1 and positive con-
stants Ci, Di.

The four following conditions are equivalent:
D4 : the system {∆ω} of alien derivations is scale-invariant.
D41 : the mould red• is a homogeneous function of ω.
D42 : the mould led• is a homogeneous function of ω.
D43 : the mould nad•ω∗,t∗ is independent of its first lower index ω∗

Tempting answer: the standard alien derivations.

In view of the Leibniz relations (56) verified by the right- and left-lateral
differential operators ∆∆∓ω , their sums rul, lur are mutually inverse alien au-
tomorphisms :

rul . lur = 1 , rul := 1 +
∑
ω>0

∆∆−ω , lur := 1 +
∑
ω>0

∆∆+
ω (170)

rul(ϕ̂1 ? ϕ̂2) ≡ rul(ϕ̂1) ∗ rul(ϕ̂2) (171)

lur(ϕ̂1 ? ϕ̂2) ≡ lur(ϕ̂1) ∗ lur(ϕ̂2) (172)

whose common logarithm resolves into a sum of true (ie first-order) alien
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derivations ∆∆ω = dunω :

+log(lur) ≡ −log(rul) =: 2πi dun ≡ 2πi
∑
ω>0

dunω (173)

They are the so-called standard or uniform alien derivations. A simple calcu-
lation shows that their weights are indeed the ones given in (57). As already
pointed out, they are independent of the gaps ωi and assign symmetric roles
to the ± signs62. From the way they are constructed, the standard alien
derivations clearly verify D1 , D2 , D4, but not D3.

Let us explain why. Return to Example 1 of §3.1. Write the resurgence
equation (72) successively for

∆∆n := munn , ∆∆+
n := lurn , ∆∆−n := ruln

and denote by An , A
+
n , A

−
n the corresponding coefficients that appear on the

right-hand side. Whereas, as we saw in §4, the ‘lateral’ coefficients A±n give
rise to convergent Fourier mappings :

z 7→ z +
∑
0<n

A±n e
−n z (<z = 1) ; z 7→ z +

∑
n<0

A±n e
−n z (<z 5 −1)

the ‘median’ coefficients A±n give rise to formal series :

2πi
∑
0<n

An e
−n z (<z = 1) ; 2πi

∑
n<0

An e
−n z (<z 5 −1)

which are the infinitesimal generators of the former, and therefore generically
divergent, with Gevrey-1 bounds |An| ≤ C0 e

C1 n nn instead of the exponential
bounds |An| ≤ C0 e

C1 n which well-behaved alien derivations ought to ensure.

6.4 Challenge 3 : Searching for well-behaved resur-
gence monomials.

In §2.4 we already pointed to the existence of two basic sorts of resurgence
monomials, the ∂- and ∆-friendly sorts, and we produced some elementary
examples. Here, we are specifically interested in the the notion of ∆-friendly
and ‘well-behaved’ resurgence monomials. So let us recall, and sharpen, the
main demands we are making on these systems {Uω(z) = Uω1,...,ωr(z)} of
‘atom-like’ resurgent functions. We want our monomials :

(1) to be as elementary as possible, and free of unnecessary parameters

62These two properties even characterise the standard derivations
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(2) to behave simply under multiplication or convolution63

(3′) to behave simply under alien differentiation, and not too badly under
natural differentiation
(4′) to be “complete” in the sense of enabling us to expand (or approximate)
any given resurgent function ϕ :

ϕ(z) “ = ”
∑
ω

cω(z) Uω(z) :=
∑
r≥0

∑
ωi

cω1,...,ωr(z) Uω1,...,ωr(z) (174)

with coefficients cω(z) that are either ordinary constants or “resurgence
constants”, that is to say functions with only vanishing alien derivatives :
∆ω0 cω(z) ≡ 0 , ∀ω0.

Condition (2) means that :

Uω′ Uω′′ ≡
∑

ω ∈ sha(ω′,ω′′)

Uω (175)

with a sum extending to all sequences ω obtained by shuffling the two factor
sequences ω′, ω′′. In other words, the mould U• should be symmetral.64

Condition (3’) is relative to a given basis {∆ω} of the algebra ALIEN of
alien derivations. In concrete terms this condition stipulates that :

∆ω0 U ω1,...,ωr ≡ U ω2,...,ωr if ω0 = ω1

≡ 0 if ω0 6= ω1 (176)

Clearly, there exist infinitely many multiplicative systems of resurgence
monomials. Indeed, if U•(z) is one such system, so will be the system
U•C (z) := U•(z)×C•(z) derived therefrom by postmultiplication65 by any sym-
metral, resurgence-constant mould C•(z). Multiplicative systems of resur-
gence monomials are extremely useful for solving resurgence equations, or
systems of such equations, and to express their solutions in the form of ex-
pansions of type (174), often with constant coefficients cω. Thus, if we revert
to Example 1 and try to solve the system of resurgence equations (113) that
characterise the normalising transformation f ?, we find :

f ?(z) := z −
∑
r

∑
ni

An1 . . . An1 Γn1,...,nr U n1,...,nr(z) (177)

with Γn1,...,nr := (n1) (n1 + n2) . . . (n1 + n2 + · · ·+ nr−1) (178)

63depending on the model.
64see §6.1
65in the sense of moulds.
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But the real issue of course is convergence. We might try to solve it on an
ad hoc basis, ie by choosing our resurgence monomials differently for each
problem. But we are more ambitious : we ask for resurgence monomials that
work in all cases. 66 That may seem a tall order, but it is feasible ! The
answer lies in the notion of well-behaved systems of resurgence monomials.
And not only do such systems exist, but there is a canonical choice !

To any given system of resurgence monomials we may associate a right-
lateral mould reU•(z) and a left-lateral mould leU•(z) characterised by the
orthogonality conditions :

{ reU ω1,...,ωr} orthogonal to {∆+
ω1,...,ωr

:= ∆+
ωr . . .∆

+
ω1
} (179)

{ leU ω1,...,ωr} orthogonal to {∆−ω1,...,ωr
:= ∆−ωr . . .∆

−
ω1
} (180)

The three following conditions are equivalent:
M1 : the system of resurgence monomials is multiplicative
M11 : the right-lateral mould reU• is symmetrel 67

M12 : the left-lateral mould leU• is symmetrel

Observe that the criterion here is symmetrel and not symmetral as in §3.6.1
This is because the lateral alien operators ∆±ω are not first-order alien deriva-
tions (see §3.5.1) and verify instead the Leibniz rules (56).

The two following conditions are equivalent:
M2 : the system of multiplicative resurgence monomials is real
M21 : the moulds reUω and leUω are complex conjugate

The five following conditions are equivalent:
M3 : the system of multiplicative resurgence monomials is well-behaved
M31 : we have universal bounds ‖ reUω≺≺ ‖ ≤ C1 (D1)r(ω

≺≺ )

M32 : we have universal bounds ‖ reUω�� ‖ ≤ C2 (D2)r(ω
�� )

M33 : we have universal bounds ‖ leUω≺≺ ‖ ≤ C3 (D3)r(ω
≺≺ )

M34 : we have universal bounds ‖ leUω�� ‖ ≤ C4 (D4)r(ω
�� )

for some suitable norm ‖.‖ and with contracting arborification.

The three following conditions are equivalent:
M4 : the system of multiplicative resurgence monomials is scale invariant
M41 : U ω1,...,ωr(z) ≡ U l ω1,...,l ωr(l−1z) (∀l; in the multiplicative models)
M42 : Û ω1,...,ωr(z) ≡ l . Û l ω1,...,l ωr(l ζ) (∀l; in the convolutive model)

66ie for all systems of resurgence equations that do admit solutions.
67see §6.1.

57



Tempting answer: the standard resurgence monomials.

The standard or hyperlogarithmic monomials introduced in §2.4 (see also §4.1)
cannot be beaten for simplicity. They also verify M1,M2,M4. But, as we
saw in §4 when attempting to harness them for canonical synthesis, they
don’t verify M3. So they are not the real answer.

6.5 Challenge 4 : Searching for the proper notion of
ramified exponential growth.

Conditions R2 and R4 (respecting realness and scale invariance) are auto-
matically fulfilled for all sensible growth conditions.

Conditions R1 means stability under the convolution product: if
�
ϕ1 and

�
ϕ2 possess minors that verify our growth condition, so too should

�
ϕ1 ?

�
ϕ2.

This condition has two sides to it. In the absence of singularities, or in the
presence of a finite number of them, or again of soft (eg integrable) singular-
ities, the stability of the growth regimen at infinity is wholly unproblematic :
it is automatically verified under very mild ‘convexity assumptions’ on the
growth modulus. Difficulties arise only in the presence of fiercely explosive
singularities (of a type which fortunately doesn’t occur in most applications,
such as analysability theory, [E6],[E7]) and then only on paths that keep
dangerously close to an infinite number of such singularities. This – largely
academic – problem is examined in §9.3. It is essentially a question of con-
trolling singularity explosiveness, or of keeping clear of singularities. But the
“growth at infinity” aspect is wholly unproblematic : with the above reser-
vations, naive exponential growth is stable under convolution.

So the crux is R3. It should be rephrased here as “stability under natural
operations” such as inversion ( ie convolutive inversion in the Borel plane) or
the solving of differential equations (ie their translations in the convolutive
model) etc. But actually, for most growth conditions, including the one we
shall settle for in §9, the seemingly weaker requirement of “stability under
(convolutive) inversion” suffices to ensure the other ones. The main difficulty
here has nothing to do with the explosiveness or density of the singularities
in the Borel plane. It originates, rather, in the phenomenon of “faster-than-
lateral” growth which was already pointed out in §6.1 and which comes into
play practically each time we have a Borel axis arg ζ = θ that carries an
infinity of singular points.

Tempting answer: straightforward exponential bounds.
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The naive answer would be to define ramified-exponential growth as ordinary
exponential growth along any broken line Γ starting at the origin, stearing
clear of singularities ω in a uniform way (ie coming no closer to them than,
say, ρ or ρ |ω| ), and with segments remaining within given angular bounds
θ1 ≤ θ ≤ θ2, with uniform bounds in θ1, θ2, ρ

68:

|ϕ̂(ζ)| ≤ Cθ1,θ2,ρ exp (Dθ1,θ2,ρ |ζ|) (181)

or in the case of ramified-accelerable growth, to impose some analogous, but
weaker bounds, like for instance :

|ϕ̂(ζ)| ≤ Cθ1,θ2,ρ exp (Dθ1,θ2,ρ |ζ|
1

1−α ) (0 < α < 1) (182)

for elementary accelerations z 7→ z
1
α

But all these definitions are unsuitable because, while meeting conditions
R1,R2,R4, they completely fail with respect to R3 : see the introductory
para §6.1.

6.6 Proofs.

The alien operators op in this section are all of the “exponential-bearing”
sort, like ∆∆ω, ∆∆±ω , etc. Their interpretation in the multiplicative models offers
no difficulty, except that they act internally, not on the algebra RESUR of
resurgent functions, but on RESUR tensored by exponential symbols :

RESUR⊗ EXP := ⊕ω RESURω := ⊕ω e−ω z RESUR (183)

In the convolutive model these operators are called “stationary” because,
unlike with the ordinary alien operators, their action there involves no trans-
lation : op ϕ̂(ζ) is always a finite sum of type

∑
γi ϕ̂(ζi) with points ζi that

are all located over ζ. The exact interpretation in this model demands some
care and a number of auxiliary constructions (see [E8]) which we won’t recall
here, because we require only a few elementary facts about them.

The first fact is the existence, for each op , of a unique decomposition
into a sum69 of ‘homogeneous’ components opω characterised by :

op =
∑
0≤ω

opω with op0 ∈ C . id and (184)

{ω0 > 0 , ϕ̂ regular over ω0} ⇒ {opω0
ϕ ≡ 0} (185)

68uniform bounds in θ1, θ2 are indispensible even in the case of ordinary, non-ramified
exponential growth.

69the sum may be infinite, but when applied to any given test function, it produces only
finitely many non-zero terms.
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The second fact is the possibility of characterising each op by a system

of weights op
( ε1
ω1

,...,
,...,

εr
ωr

)
subject to the self-consistency relations (164),(165)70.

The third fact is the existence of “complete” operators op∗ whose compo-
nents op∗ω generate ALIEN , so that any other op can be expressed uniquely
in terms of op∗ with the help of a “transit mould”

〈
op , op∗

〉•
like this :

op =
∑

opω =
∑〈

op,op∗
〉ω1,...,ωr op∗ωr . . .op∗ω1

(186)

The fourth fact is the existence of uniquely defined operators op =
(

m1

m2

)
connecting by post-composition any pair m1,m2 of uniformising averages :

m2 = m1

(m1

m2

)
(187)

The fifth fact is the existence of the special, elementary operators :

lur :=
(mul

mur

)
= 1 +

∑
0<ω

∆∆+
ω (188)

rul :=
(mur

mul

)
= 1 +

∑
0<ω

∆∆−ω (189)

which are automorphisms (see (56)) and complete.

The sixth fact is the simple interpretaion of the transit moulds < ., . >•

relative to lur or rul in terms of operator weights 71:〈
op , rul

〉ω1,...,ωr = (−1)r op
( +
ω1

,...,
,...,

+
ωr

)
(190)〈

op , lur
〉ω1,...,ωr = (−1)r op

( −
ω1

,...,
,...,

−
ωr

)
(191)

If we now recall the constrution of the right/left lateral moulds, we find
for an alien derivation d these expressions :

red• =
〈
d , rul

〉•
(192)

led• =
〈
d , lur

〉•
(193)

70and not (151),(152). On the other hand, due to “stationarity”, the action of op in the
convolutive model is not like (166) but more like (153), ie without ω shift.

71Heed the signs ! In (188),(189) lur , rul are associated with the signs +,− respectively,
but in (190),(191) it is the reverse.
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and for a uniformising average m we find these :

rem• =
〈(mul

m

)
, rul

〉•
=
〈(mul

m

)
,
(mur

mul

)〉•
(194)

lem• =
〈(mur

m

)
, lur

〉•
=
〈(mur

m

)
,
(mul

mur

)〉•
(195)

Criteria for C1 :

Using the interpretation of the four basic symmetry types for moulds (see
§2.1.3 and below ; of course, we may replace field by derivation and diffeo by
automorphism) and remembering that the alien operators lur, rul are auto-
morphisms, we see that an alien operator d is a derivation if and only if the
transit moulds (192),(193) are alternel; and that a uniformising average m
respects convolution if and only if the transit moulds (194),(195) are sym-
metrel. This establishes the equivalent criteria given in §6 for A1 and D1.
As for M1 and E1, the equivalent criteria are immediate.

Criteria for C2 and C4 :

All proofs are totally elementary here – the criteria are mere rephrasings.

Criteria for C3 :

Respecting “lateral growth” 72 means that m ϕ̂(ζ) should not grow signifi-
cantly faster than the right and left determinations mur ϕ̂(ζ) or mul ϕ̂(ζ)
(ie exponentially in a monocritical problem). But in view of what precedes,
the three averages are interrelated as follows :

m ϕ̂ (ζ) =
∑

(remω1,...,ωr) (mul ∆∆−ωr . . .∆∆
−
ω1

ϕ̂ (ζ)) (196)

m ϕ̂ (ζ) =
∑

(lemω1,...,ωr) (mur ∆∆+
ωr . . .∆∆

+
ω1

ϕ̂ (ζ)) (197)

or, in compact mould-comould form :

m ϕ̂ (ζ) =
∑

(rem•) (mul ∆∆−• ϕ̂ (ζ)) (198)

m ϕ̂ (ζ) =
∑

(lem•) (mur ∆∆+
• ϕ̂ (ζ)) (199)

The trouble is that in practically all non-linear problems, the comould part
mur//mul ∆∆±• ϕ̂ (ζ) has faster-than-lateral growth and there is no way we
can choose m to make rem•//lem• small enough to offset this effect73. So

72in the Borel plane, along axis arg ζ = θ0. Think of θ0 as 0.
73more precisely if – as we must here – we impose A1 and A2 on m : see §7.6.
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instead of asking for the normal convergence of (198),(199) we should ask for
that of the (formally equivalent) arborified expansions :

m ϕ̂ (ζ) =
∑

(rem•
≺≺

) (mul ∆∆−•≺≺ ϕ̂ (ζ)) (200)

m ϕ̂ (ζ) =
∑

(lem•
≺≺

) (mur ∆∆+
•≺≺ ϕ̂ (ζ)) (201)

Of course it has to be contracting arborification since rem•//lem• shall be
chosen symmetrel (due to A1) and since ∆∆−• //∆∆

+
• is co-symmetrel anyway.

The ultimate justification behind this choice is that it works. And it works
because, in practically all natural situations, the resurgence is governed by
some form or other of the Bridge Equation, which says that alien differenti-
ation ∆∆• or ∆∆±• amounts to ordinary differentiation A• or A±• relative to the
resurgence variable z and a finite number of parameters ui

74.
Now, it is a general fact that coarborification succeeds in drastically de-

creasing the norm of ordinary differential operators. And it is another fact
that we can almost always manage to construct moulds – no matter what
natural constraints they are subject to, like here symmetrelity plus A2 etc –
in such a way as to prevent a norm increase under arborification.

This, roughly, is the motivation behind the decision to interpret the
(vague) condition A3 in the form of the (precise and mutually equivalent)
conditions A31, . . . ,A36

75.
The same applies for alien derivations and resurgence monomials. In the

coming sections, we shall show how to construct uniformising averages, alien
derivations and resurgence monomials in conformity with these conditions.
Then we shall tackle a particular application – Canonical Object Synthesis
– and show in detail how arborification-coarborification works.

74ie those parameters that enter the complete, parameter-saturated solution of the prob-
lem. The operators A• themselves depend on the problem, and so does the precise form
of the Bridge Equation. In that deeper sense, and despite the ‘Bridge phenomenon’, alien
calculus is totally irreducible to ordinary differential calculus, no matter what some adepts
of Galois theory may claim.

75one point should be emphasised though : the conditions in the pairs A31 and A32,
or A33 and A34, or A35 and A36, would not be equivalent if they were to bear on
general armoulds. But here, majorising the arborification or the antiarborification amounts
to the same because the armoulds in question are induced by moulds. These moulds,
moreover, are either symmetrel (like the lateral moulds) or symmetral (like the neutral
mould), which further simplifies things, by essentially reducing the passage arborification
→ coarborification to multiplicative inversion.
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7 Well-behaved uniformising averages.

7.1 Reminder about the standard or median average.

The standard or median average mun = mu 1
2
, 1
2

can be embedded into a

one-parameter family of so-called ‘uniform’ averages muα,β (with α+β = 1)
that join the right-lateral average mur = mu1,0 and the left-lateral average
mul = mu0,1 :

muα,β := mur . (rul)β ≡ mul . (lur)α (α + β = 1)

mu
( ε1
ω1

,...,
,...,

εr
ωr

)

α,β := Γ(p+α) Γ(q+β)
Γ(r+1) Γ(α) Γ(β)

(p+ q = r)

mun
( ε1
ω1

,...,
,...,

εr
ωr

)
:= mu

( ε1
ω1

,...,
,...,

εr
ωr

)

1
2
, 1
2

= (2p)! (2q)!
4p+q p! q! (p+q)!

(p+ q = r)

We call these averages ‘uniform’ because their weights depend on the number
(p, q) of (+,−) signs, but not on the gaps ωi. Quite clearly, they always verify
A1, A4, but they verify A2 only if α = β̄ (⇒ <α = < β = 1/2), and A3 only
if α, β ∈ Z (see §7.5 , §8.7). These last two conditions being incompatible,
there exists no well-behaved average in the uniform family.

7.2 Diffusion-induced averages.

Let {gω(•) , ω > 0} be some multiplicative semigroup and consider its Fourier
transform, the convolution semigroup {fω(•) , ω > 0} :

gω(y) := e−ω γ(y) (y ∈ R) (202)

fω(x) :=
1

2π

∫
R
gω(y) eixy dy (x ∈ R) (203)

gω1(y) gω2(y) ≡ gω1+ω2(y) (204)

(fω1 ∗ fω2)(x) :=

∫ +∞

−∞
fω1(x1) fω2(x− x1) dx1 ≡ fω1+ω2(x) (205)

Let γ(y) be analytic on R, vanish at y = 0 and have a fast increasing real
part as y → ±∞ so that gω(.), fω(.) ∈ L1(R) with gω(0) = 1 and ‖fω‖L1 = 1.
Let us view each function fω(.) as defining the ‘probability distribution’76

at the time t = ω, on the vertical axis ω + iR, of a particle starting from

76strictly speaking, this applies only if fω(y) ≥ 0 but we can drop this restriction,
because the numbers we shall proceed to define with the help of {fω(.)} neednot be real –
they must simply verify certain algebraic relations (the ones implied by A1,A2,A4) and
possess the right sort of bounds. That’s why we put ‘probability’ within inverted commas.
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the origin of C at t = 0, moving along R+ at uniform horizontal speed, and
diffusing randomly in the vertical direction.

We may then define m
( ε1
ω1

,...,
,...,

εr
ωr

)
as the probability of our particle’s suc-

cessively crossing ω1 + iRε1 , ω1 + ω2 + iRε2 , . . . , ω1 + ω2 + . . . ωr + iRεr .
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ε1=+ ε2=− ε3=+ ε4=− ε5=− ε6=+

Since these numbers m
( ε1
ω1

,...,
,...,

εr
ωr

)
verify the self-consistency relations (151)

and (152), they may be regarded as weights defining a uniformising average
m. That average clearly respects realness (condition A2) iff γ is an even
function. Less obviously, it also respects convolution and lateral growth
(conditions A1 and A3): see §7.5 infra.

7.3 Scale-invariance.

If we now select some τ > 0 and set γ(y) = τγ(y) := |y|τ , the variables x, y
coalesce with the parameter ω :

τgω(y) ≡ τg1(ω
1
τ y) := exp(−ω |y|τ ) (y ∈ R)(206)

τfω(x) ≡ ω−
1
τ
τf1(ω−

1
τ x) :=

1

2π

∫
R

τgω(y) eixy dy (x ∈ R)(207)

This automatically ensures the last missing condition A4 : invariance under
a simultaneous, uniform dilation of all gaps ωi.

As a consequence, for any τ ∈]0,+∞[ the corresponding uniformising av-
erage τm is well-behaved.

Although this one-parameter family {τm} does contain all well-behaved,
diffusion-induced aveages, there exist many well-behaved, averages which are
not of this form, like for instance those of type :

m := τ0m
( τ∗1m
τ1m

)n1

. . .
( τ∗km
τkm

)nk
(τi, τi

∗ ∈ R+ , ni ∈ Z ; k ∈ N) (208)
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where
(
•
•

)
denotes the unique alien operator that connects any given pair of

uniformising averages :

τim := τ∗im
( τ∗im
τim

)
(τi, τ

∗
i ∈ R+) (209)

But the most interesting average corresponds to the limit-case lim
τ↓0

τm.

7.4 The standard and organic averages as limit-cases.

For τ → +∞ , τm tends to the so-called “standard” average mun which as
we saw is not well-behaved.
For τ → +0 , τm tends to the so-called “organic” average mon which as we
shall see is well-behaved.

Though slightly more complex than the standard average, mon is by a
long shot the simplest of all well-behaved averages. Its weights are given by
the elementary recursion :

mo
( ε1
ω1

,...,
,...,

εr
ωr

)
= mo

( ε1
ω1

,...,
,...,

εr−1
ωr−1

)
Pr (210)

with

Pr := 1− 1

2

ωr
ω1 + . . . ωr

if εr−1 = εr (211)

:=
1

2

ωr
ω1 + . . . ωr

if εr−1 6= εr (212)

Like mun, the organic mon can be imbedded into a one-parameter family
of similar averages moα,β (α + β = 1) whose weights obey the following
recursion :

mo
( ε1
ω1

,...,
,...,

εr
ωr

)

α,β := mo
( ε1
ω1

,...,
,...,

εr−1
ωr−1

)

α,β
ω1+...ωr−1+αωr

ω1+···+ωr if (εr−1, εr) = (+,+)

:= mo
( ε1
ω1

,...,
,...,

εr−1
ωr−1

)

α,β
β ωr

ω1+···+ωr if (εr−1, εr) = (+,−)

:= mo
( ε1
ω1

,...,
,...,

εr−1
ωr−1

)

α,β
αωr

ω1+···+ωr if (εr−1, εr) = (−,+)

:= mo
( ε1
ω1

,...,
,...,

εr−1
ωr−1

)

α,β
ω1+...ωr−1+β ωr

ω1+···+ωr if (εr−1, εr) = (−,−)

mon
( ε1
ω1

,...,
,...,

εr
ωr

)
:= mo

( ε1
ω1

,...,
,...,

εr
ωr

)

1/2,1/2 = 2−r
∏i=r

i=2 (|εi−1 + εi| − εi−1 εi ωi
ω1 +···+ωi

)
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with |εi−1 + εi| standing for 2 (resp. 0) if εi−1 = εi (resp. εi−1 6= εi).

Clearly mo1,0 = mu1,0 = mur and mo0,1 = mu0,1 = mul. Moreover :

All averages moα,β verify A1,A3,A4. In order for them to verify A2
and be well-behaved, we must have α = β̄ and so <α = < β = 1/2.

Let us add that F. Menous has devoted an entire PhD thesis ([Me]) to
the subject of well-behaved uniformising averages. It contains in particular
a meticulous investigation of the so-called Catalan average, which is not
discussed here.

7.5 Proofs and comments.

Let us begin with the diffusion-induced averages. Applying the definition
of §7.2 we get for the weights and the lateral moulds two types of integral
expressions :

m
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

∫
Rr
fω1(x1) . . . fωr(xr)σε1(x̌1) . . . σεr(x̌r) dx1 . . . dxr (213)

:=
ε1 . . . εr
(2πi)r

∫
Rrε1,...,εr

gω1(y1) . . . gωr(yr) dy1 . . . dyr
(y1 − y2) (y2 − y3) . . . (yr−1 − yr) yr

(214)

remω1,...,ωr :=

∫
Rr
fω1(x1) . . . fωr(xr) sofox1,...,xr

+
dx1 . . . dxr (215)

:=
(−1)r

(2πi)r

∫
Rr+,...,+

gω1(y1) . . . gωr(yr) tas y1,...,yr
∞,0 dy1 . . . dyr (216)

lemω1,...,ωr :=

∫
Rr
fω1(x1) . . . fωr(xr) sofox1,...,xr

− dx1 . . . dxr (217)

:=
1

(2πi)r

∫
Rr−,...,−

gω1(y1) . . . gωr(yr) tas y1,...,yr
∞,0 dy1 . . . dyr (218)

The sign functions σ± are defined as in §2.1. The x-integrals are a direct
rendition of the definition in §7.2, and always valid. The y-integrals are
derived by Fourier transposition. They are easiest to interpret if gω is analytic
on R, for then yi can be allowed to describe, in the course of integration, a
minute half-circle around yi+1, in the positive or negative direction depending
on whether εi = + or −. When gω is merely C∞ on R, this circumvention
rule should of course be re-interpreted in terms of distributions.
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Now let us turn to the uniform and organic averages. We leave the fact of
their being limit-cases of τm as a exercise, and choose instead to regard them
as defined by their weights (210), which clearly satisfy the self-compatibility
conditions. This leads for the lateral moulds to the following expressions :

remu ωα,β := (−1)r Γ(r+α)
(r+1)! Γ(α)

vol↔ lemu ωα,β := (−1)r Γ(r+β)
(r+1)! Γ(β)

remun ω := (−1)r 4−r (2 r)!
r! r!

vol↔ lemun ω := (−1)r 4−r (2 r)!
r! r!

remo ωα,β :=
∏i=r

i=1( β ωi
ω1+···+ωi − 1)

vol↔ lemo ωα,β :=
∏i=r

i=1( α ωi
ω1+···+ωi − 1)

remon ω :=
∏i=r

i=1(
1
2
ωi

ω1+···+ωi − 1)
vol↔ lemon ω :=

∏i=r
i=1(

1
2
ωi

ω1+···+ωi − 1)

We can now proceed to check the good-behaviour criteria.

Condition A1 is easiest to check in the form A11 or A12. But the symme-
trelity of rem• or lem• follows from the x-integral expressions (215),(217)
and the symmetrelity of the moulds sofo•± . One may also reason on the y-
integrals (216),(218), noting that, due to the circumvention rules (of yi+1 by
yi), the symmetrality of the mould tas•∞,0 translates into the symmetrelity
of the integrals. This disposes of the diffusion-induced averages. For the
limit cases mun and mon and their ‘tilted’ variants muα,β and moα,β , the
symmetrelity of the lateral moulds can be checked directly.

Conditions A2 and A4 are immediate to check directly on the weights.

This leaves A3. Being a non-algebraic growth condition, it is the most diffi-
cult one. However, by resorting to the criteria A32 or A34, it can be settled
algebraically by observing that the mould sofo•± retain their form under con-

tracting anti-arborification : they simply become armoulds sofo•
��

± that are
still defined by the formula in §2.1.9, except that the sums x̌i must now be
extended to all xj anterior to xi under the anti-arborescent order77. Checking
this in a simple exercise : reason inductively on the number of branches and
make repeated use of the identities :

σ±(a)σ±(a+ b) + σ±(b)σ±(a+ b) = σ±(a)σ±(b) + σ±(a+ b) (219)

Remark : We have been using the right- and left-lateral moulds simply for
the sake of symmetry, but they are essentially the same. Indeed, as soon as
as condition A1 is fulfilled, they are related under the simple involution :

rem• ↔ lem• : lem• ≡ (rem• ◦ J•)× J•

77 xi itself should be included in the sum.
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with Jω1,...,ωr := (−1)r. The elementary mould J• is itself symmetrel and
involutive in the sense that J• ◦ J• = 1• + I•.

7.6 When exactly must we take recourse to well-behaved
averages ?

Oft-crossing paths.

Let ϕ̂ possess infinitely many singularities over the zero axis arg ζ = 0 or
R+ for short, for instance at all integral points n. As our example in §6.1
suggests, and as a careful examination of the non-linear examples in §3 would
confirm, the growth of ϕ̂(ζ) is bad on oft-crossing paths, and worst on the
ever-crossing path Γ+−+−... that intersects every interval between two con-
secutive singularites. There ϕ̂(ζ) grows roughly like eC1 |ζ| Γ(ζ). But it so
happens that on these very paths some (not all) well-behaved averages, in
particular the organic average mon, possess weights that decrease precisely
like eC1 |ζ|/Γ(ζ). Thus, on these ever-crossing paths, functions and weights
are perfectly matched, their product having exponential growth at most. The
same function-weight matching also holds, trivially, for the never-crossing ie
lateral paths. This raises the question : don’t there exist ‘super well-behaved’
or ‘magic’ averages, such that not only |m ϕ̂(ζ)| grows exponentially, but
also the sum

∑
Γ
|m

Γ
ϕ̂Γ(ζ)| over all the branches Γ ?

Role of sign compensations.

This, however, is impossible, as was shown in [E8] : There exist no magic
averages , capable of acting by “brute force” alone. Strangely, the trouble
comes from paths that cross R+ neither too often nor too rarely78.

Anyway, the upshot is that some quite systematic branch-to-branch com-
pensation must come into play. This compensation, however, which explains
the success of well-behaved averages m, doesn’t come from the average’s
weights (all of which may be real positive, as with mon) but from the func-
tions ϕ̂(ζ) which, constrained as they are by the Bridge Equation, display a
precise pattern of sign alternation on their different branches.

Frequency of faster-than-lateral growth but infrequency of non-
medianisable growth.

One should carefully distinguish between the quite frequent phenomenon of
faster than lateral growth on the Borel axis of direction θ, which tends to
occur (in non-linear problems) as soon as there is one 79 active alien deriva-
tion ∆∆ω1 on that axis (ie argω1 = θ), and the far rarer need to take recourse

78see [E8] Prop A.5.5.
79or several, but finitely many.

68



to a well-behaved average in order to Laplace-sum (or accelerate) over that
same axis, which need arises only if there are infinitely many active alien
derivations ∆∆ωi on the axis (ie argωi = θ). In the first case we speak of
medianisable80 faster-than-lateral growth; and in the second case, of non-
medianisable faster-than-lateral growth.

Four instances of medianisable growth.

med1 : Convolution inverses.
This is the function B̂ in §6.1. The axis direction is θ = 0 and the only active
derivation is ∆∆ω1 = ∆∆1

med2 : Euler-like equations in the “negative direction”.
This is Ex 2 of §3.2 with θ = π mod 2π and ∆∆ω1 = ∆∆−1.

med3 : Singular Riccati equations in “both directions”.
This is again Example 2 of §3.2, but with only three non-zero coefficients
b−1(z), b0(z), b1(z). Then we have medianisable faster-than-lateral growth in
two directions : for θ = π mod 2π with ∆∆ω1 = ∆∆−1 and for θ = 0 mod 2π
with ∆∆ω1 = ∆∆1.

med4 : Resonant systems in the “negative directions”.
This is Ex 3 of §3.3 with θ = arg(−λj) mod 2π and ∆∆ω1 = ∆∆−λj .

In all four cases, despite the presence of infinitely many singular points
(in arithmetical progression) on the Borel axis of direction θ, the alien au-
tomorphism lurθ which links the lateral averages acts, due to the Bridge
equation, like the convergent differential operator on the far right of (220),
and so its square root acts like the equally convergent differential operator
on the far right of (221).(murθ

mulθ

)
= lurθ = exp (2πi

∑
argω=θ

∆∆ω) ∼ exp (2πiAω1) (220)

(mulθ
murθ

) 1
2

= lur
1
2
θ = exp (πi

∑
argω=θ

∆∆ω) ∼ exp (πiAω1) (221)

We may therefore81 in all these cases, apply the median or standard average
munθ : its weights will automatically combine with the superexponentially
large values of ϕ̂(ζ) encountered on the various branches in such a way as to
produce (at most) an exponentially large munθ ϕ̂(ζ)

Four instances of non-medianisable growth.

80because in that case the median average mun does respect lateral growth.
81in view of the interpretation (160),(161) of the median average mun .
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The same would still hold for a finite number of active derivations on our
Borel axis, but not for an infinite number. The reason is this : take ordinary
first-order differential operators Aω and their formal sum A =

∑
argω=θ Aω. 82

Then, if the sum A has an infinite number of terms, the convergence of the
formal automorphism exp(2πiA) in no way implies that of its infinitesimal
generators A or even that of its square root exp(πiA). This explains why,
in all such cases, we will generically be facing non-medianisable faster-than-
exponential growth.

We may of course use the lateral averages murθ or murθ if we don’t ob-
ject to imaginary parts, but if the Borel axis is R± and if the context makes
imaginary parts inacceptable (as in physics, or real geometry, or the theory
of analysable functions), there there is no alternative to the well-behaved
averages. Here are four such examples.

non-med1 : unitary iteration of unitary diffeomorphisms.
This is Ex 1 of §3.1, but for “unitary” diffeos, whose inverse coincides with
their complex conjugate : f ◦ f̄ = id. If we want to define sectorial-regular
fractional iterates of f in right or left half-planes, then we must Laplace in-
tegrate on R+ or R− with respect to a well-behaved average83.

non-med2 : Euler-like equations on the “positive directions”.
This is once more Ex 2 of §2 but in the direction θ = 0. If we consider the
particular formal solution ỹ(z, 0) there is no probblem, since ŷ(ζ, 0) has no
singularities on R+. But if we ask for a real resummation of the full solution
ỹ(z, u) 84 then we have to contend with an infinity of active alien derivations
and must use a well-behaved average.85

non-med3 : hyperbolic transit maps.
Let $ be a real, local-analytic differential form formally conjugate to $nor :=
dx2

x2
+ (1 + ρ x1)dx1

x2
1

. Its integral curves are hyperbolae that draw closer and

closer to the coordinate axes (in the first and third quadrants). The local
“transit map” g : x1 7→ x2 which link the distance to the axes (on suitable
transversals) of the incoming and outcoming hyperbolae branches, corre-
sponds to a formal transseries that commingles powers and exponentials and
generically displays non-medianisable faster-than-lateral growth. These lo-
cal transit maps play a part in the resummation-theoretic proof of the Dulac
conjecture (about the finiteness of limit cycles for polynomial planar vector
fields). For a detailed discussion, see [E8],[EM]. Here, however, it should be

82for example, take the An as in (74) or (79)
83see [EM], §4
84in domains where |z−1| and |u ez| are both small.
85a detailed discussion may be found in [E6], §3.10.
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noted that the well-behaved average is needed to go from the geometric germ
g (which is given by $ ) to its formalisation g̃ . In other words, the usual
process (from formal to geometric) is reversed.

non-med4 : Resonant systems on the “positive directions”.
This is again Ex 3 of §3.3 but this time on a “positive axis” θ = arg λj.
The picture is much the same as in non-med2 : we have non-medianisable
faster-than-lateral growth for ŷ(ζ, u) though not for ŷ(ζ, 0) or indeed for any
‘partial’ solution that leaves out the parameter uj.

8 Well-behaved alien derivations.

8.1 Reminder about the standard alien derivations.

In §2.3 we introduced, and then dismissed, the lateral alien operators ∆±ω
which do indeed measure singularities over ω and also satisfy D3, D4, but
infringe D1 (they are not first-order derivations) and D2.

Then from the ∆±ω we constructed (§6.3, (172)) the more satisfactory
standard, or uniform, alien derivations ∆ω. These verify D1, D2, D4, but
not D3 : they are not well-behaved. But they have very simple weights :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

εr
2πi

p! q!

(p+ q + 1)!
=

εr
2πi

p! q!

r!

p := #{1 ≤ i < r ; εi = +}
q := #{1 ≤ i < r ; εi = −}

and they relate to the standard averages as follows86 :

∂αmuα,β ≡ 2πi muα,β dun with α + β = 1 , dun :=
∑
ω>0

∆∆ω (222)

Weight-wise, and after due order reversal, this translates into :

∂αmu•α,β ≡ 2πi dun• × mu•α,β ie : (223)

∂αmu
( ε1
ω1

,...,
,...,

εr
ωr

)

α,β ≡ 2πi
∑

1≤i≤r

dun
( ε1
ω1

,...,
,...,

εi
ωi

)
mu

( εi+1
ωi+1

,...,
,...,

εr
ωr

)

α,β (224)

8.2 Diffusion-induced alien derivations.

We revert to the ‘diffusion process’ of §7.2, but now we define the number

2πi εr d
( ε1
ω1

,...,
,...,

εr
ωr

)
as the conditional probability that a particle starting from 0

86here, α+ β ≡ 1 and so the derivation ∂α = −∂β acts on both α and β.
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and crossing the real axis at the point ω1+. . . ωr should successively cross the
vertical half-axes ω1 + iRε1 , ω1 +ω2 + iRε2 , . . . , ω1 +ω2 + . . . ωr−1 + iRεr−1 .
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ε1=+ ε2=− ε3=+ ε4=− ε5=− ε6=+

Since these numbers d
( ε1
ω1

,...,
,...,

εr
ωr

)
verify the self-consistency relations (164),(165),

they may be looked upon as the weights of a well-defined alien operators d.
That operator clearly respects realness (condition D2) iff γ is an even func-
tion. Less obviously, it is also a first-order alien derivation (condition D1)
and it even respects lateral growth (condition D3): see §7.5 infra.

8.3 Scale-invariance.

If we now switch to {τfω , τgω} for 0 < τ < +∞ as we did in §7.3, then
the corresponding systems {τdω}, while retaining D1,D2,D3, acquire scale-
invariance (condition D3) : in other words, they are well-behaved systems of
alien derivations.
From these, many other well-behaved systems can be constructed : not only
can we resort to the same trick (208) as with the uniformising averages87

but, unlike with the averages, we can also take advantage of the stability of
well-behaved alien derivations under addition and the Lie bracket.88

8.4 Standard and organic alien derivations as limit-
cases.

For τ → +∞ , the system τd = {τdω} tends to the system dun = {dunω} of
so-called “standard” alien derivations, which as we saw is not well-behaved.

For τ → +0 , the system τd = {τdω} tends to the system don = {donω} of
so-called “organic” alien derivations, which as we shall see is well-behaved.

87with d,τ0d in place of m,τ0m , but without changing the left-side factors
(
τ∗im
τim

)ni
.

88thus, setting d ′ω := a τ1dω + b τ2dω and d ′′ω :=
∑
ω1+ω2=ω c(ω1/ω2) [τ1dω1 ,

τ2dω2 ] ,
with a bounded c, we get two new well-behaved systems {d ′ω} and {d ′′ω}.
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Like the organic average mon, the organic system of alien derivations
don has weights that are simple89 rational functions of the gaps ωi and it
can be embedded into a one-parameter family donα,β (with α + β = 1) of
systems which are charcterised by :

∂α moα,β = −∂β moα,β = 2πi moα,β doα,β (225)

and which are well-behaved iff α = β̄. The “tilted” systems do1,0, do0,1 are
particularly simple, since they load (each) only r out of 2r paths. Unfortu-
nately, they are not well-behaved (they offend against D2) but their half-sum
dom is well-behaved, like don, only much simpler. In fact, there exists no
simpler choice of well-behaved derivations than dom. As for the weights of
the organic family, simple calculations lead to the following formulas :

don
( ε1
ω1

...

...
εr
ωr

)
:= do

( ε1
ω1

...

...
εr
ωr

)

1/2,1/2 with do•α,β characterised by

∂α mo•α,β = 2πi do•α,β ×mo•α,β and α + β ≡ 1 , ∂α ≡ −∂β

dom• := 1
2

(do•1,0 + do•0,1)

dom
( ε1
ω1

...

...
εr
ωr

)
:= 1

2
εr
2πi

ωp+1

ω1+···+ωr if (ε1, . . . , εr) = ((+)p, (−)q, εr)

:= 1
2
εr
2πi

ωq+1

ω1+···+ωr if (ε1, . . . , εr) = ((−)q, (+)p, εr)

:= 0 otherwise

8.5 Proofs and comments.

We begin with the diffusion-induced derivations. Applying the definition
of §8.2 we get for the weights and the lateral moulds two types of integral
expressions :

d
( ε1
ω1

,...,
,...,

εr
ωr

)
:=

εr
2πi

∫
Rr
fω1(x1)...fωr(xr)σε1(x̌1)...σεr−1(x̌r−1)δ(x̌r) dx1 . . . dxr

:=
ε1 . . . εr
(2πi)r+1

∫
Rrε1,...,εr

gω1(y1) . . . gωr(yr) dy1 . . . dyr
(y1 − y2)(y2 − y3) . . . (yr−1 − yr)

(226)

89but less simple than with mon, for they admit no closed expression as a product of r
elementary factors.
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redω1,...,ωr :=
1

2πi

∫
Rr
fω1(x1) . . . fωr(xr) lefox1,...,xr

+
dx1 . . . dxr (227)

:=
(−1)r

(2πi)r+1

∫
Rr+,...,+

gω1(y1) . . . gωr(yr) tas y1,...,yr
∗∗ dy1 . . . dyr(228)

ledω1,...,ωr :=
−1

2πi

∫
Rr
fω1(x1) . . . fωr(xr) lefox1,...,xr

− dx1 . . . dxr (229)

:=
−1

(2πi)r+1

∫
Rr−,...,−

gω1(y1) . . . gωr(yr) tas y1,...,yr
∗∗ dy1 . . . dyr(230)

Now let us turn to the alien derivations of uniform or organic type and
form their lateral moulds. We find :

2πi redun ω := (−1)r 1
r

vol↔ 2πi ledun ω := (−1)r−1 1
r

2πi redon • := dremon•×vremon•
vol↔ 2πi ledon • := dlemon•×vlemon•

2πi redom ω := (−1)r 1
2

ω1+ωr
ω1+···+ωr

vol↔ 2πi ledom ω := (−1)r−1 1
2

ω1+ωr
ω1+···+ωr

dremo•α,β := ∂α remo•α,β

dlemo• := ∂α remo•α,β = − ∂β lemo•α,β

vremo•α,β := (remo•α,β)−1 (mould inversion)

vlemo•α,β := (lemo•α,β)−1 (mould inversion)

dremoω1,...,ωr
α,β := + (

∑i=r
i=1

ωi
ω1+···+ωi−1+αωi

) remoω1,...,ωr
α,β

dlemoω1,...,ωr
α,β := − (

∑i=r
i=1

ωi
ω1+···+ωi−1+β ωi

) lemoω1,...,ωr
α,β

vremoω1,...,ωr
α,β := + α ω1

ω1+···+ωr

∏i=r
i=2(α ωi

ω1+···+ωi − 1)

vlemoω1,...,ωr
α,β := + β ω1

ω1+···+ωr

∏i=r
i=2(β ωi

ω1+···+ωi − 1)

We can now proceed to check the good-behaviour criteria.

Condition D1 is easiest to check in the form D11 or D12. But the alter-
nelity of red• or led• follows from the x-integral expressions (227),(229) and
the alternelity of the moulds lefo•± . One may also reason on the y-integrals
(228),(229) by heeding the circumvention rules already mentioned in §7.5 and
by observing that they have the effect of turning the alternal mould tas•∗∗
into alternel integrals ! In the limit cases dun and don, as well as with dom,
it is best to check the alternelity directly on the above formulas.

Conditions D2 and D4 are immediate to check directly on the weights.
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This leaves the “difficult” growth condition D3. Again, though non-algebraic ,
this condition, once rephrased as criterion D32 or D34, can be settled alge-
braically, by observing that the mould lefo•± retain their form under contract-

ing anti-arborification : they simply become armoulds lefo•
��

± that are still
defined as in §2.1.9, except that the sums x̌i must now be extended to all xj
anterior to xi under the anti-arborescent order90. In particular, lefoω

��

± = 0
as soon as the anti-arborescent sequence ω�� has more than one anti-root or
maximal element : this is the so-called property of separativity for alternel
armoulds. Checking these identities is a simple, but useful exercise.91

Remark : We have been using the right- and left-lateral moulds simply for
the sake of symmetry, by they are essentially the same. Indeed, as soon as
as condition D1 is fulfilled, they are related under the simple involution :

red• ↔ led• : led• ≡ red• ◦ J•

with Jω1,...,ωr := (−1)r , ∀ωi.

8.6 Tables of averages and derivations.

The following tables contrast the behaviour of averages and derivations from
the organic (well-behaved) and uniform (non w.-b.) families. The latter
satisfy all conditions Ci except C3 (“proper growth”). This is reflected in
the fact that for strongly alternating sign sequences ε, the weights of the
organic (resp uniform) operators tend to be small (resp not so small). The
difference would be even more striking if it were possible to print the tables
for larger lengths (We had to stop at r = 6).

To simplify, we set all gaps ωi equal to 1. So we mention only the ± signs
εi. For derivations, we drop the 1

2πi
factor. We also take advantage of the

left-right symmetries to retain only the sign sequences ending with εr = + :

mε̄1,...,ε̄r ≡ + mε1,...,εr ; dε̄1,...,ε̄r ≡ − dε1,...,εr (231)

90 xi itself should be included in the sum.
91alternatively, one may reason on the y-integrals and observe first that the mould tas•∗∗

retains its form under ordinary (ie non-contracting) anti-arborification and second that,
under the circumvention rules, this translates into contracting anti-arborification for the
integrals. But, on balance, reasoning on the x-integrals is simpler.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
object average average derivation derivation derivation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
species uniform organic uniform organic organic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
nature “bad” “good” “bad” “good” “good”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
name mun mun dun don dom
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+) 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+) 3/8 3/8 1/2 1/2 1/2
(−,+) ∗ 1/8 1/8 1/2 1/2 1/2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+) 5/16 5/16 1/3 1/3 1/3
(−,+,+) 1/16 5/48 1/6 1/6 1/6
(+,−,+) ∗ 1/16 1/48 1/6 1/6 1/6
(−,−,+) 1/16 1/16 1/3 1/3 1/3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+,+) 35/128 35/128 1/4 1/4 1/4
(−,+,+,+) 5/128 35/384 1/12 5/48 1/8
(+,−,+,+) 5/128 7/384 1/12 1/24 0
(−,−,+,+) 3/128 7/128 1/12 5/48 1/8
(+,+,−,+) 5/128 1/128 1/12 5/48 1/8
(−,+,−,+) ∗ 3/128 1/384 1/12 1/24 0
(+,−,−,+) 3/128 5/384 1/12 5/48 1/8
(−,−,−,+) 5/128 5/128 1/4 1/4 1/4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+,+,+) 63/256 63/256 1/5 1/5 1/5
(−,+,+,+,+) 7/256 21/256 1/20 37/480 1/10
(+,−,+,+,+) 7/256 21/1280 1/20 11/480 0
(−,−,+,+,+) 3/256 63/1280 1/30 1/16 1/10
(+,+,−,+,+) 7/256 9/1280 1/20 11/480 0
(−,+,−,+,+) 3/256 3/1280 1/30 1/120 0
(+,−,−,+,+) 3/256 3/256 1/30 7/240 0
(−,−,−,+,+) 3/256 9/256 1/20 37/480 1/10
(+,+,+,−,+) 7/256 1/256 1/20 37/480 1/10
(−,+,+,−,+) 3/256 1/768 1/30 7/240 0
(+,−,+,−,+) ∗ 3/256 1/3840 1/30 1/120 0
(−,−,+,−,+) 3/256 1/1280 1/20 11/480 0
(+,+,−,−,+) 3/256 7/1280 1/30 1/16 1/10
(−,+,−,−,+) 3/256 7/3840 1/20 11/480 0
(+,−,−,−,+) 3/256 7/768 1/20 37/480 1/10
(−,−,−,−,+) 7/256 7/256 1/5 1/5 1/5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
name mun mun dun don dom
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(+,+,+,+,+,+) 231/1024 231/1024 1/6 1/6 1/6
(−,+,+,+,+,+) 21/1024 77/1024 1/30 71/1152 1/12
(+,−,+,+,+,+) 21/1024 77/5120 1/30 23/1440 0
(−,−,+,+,+,+) 7/1024 231/5120 1/60 29/640 1/12
(+,+,−,+,+,+) 21/1024 33/5120 1/30 11/960 0
(−,+,−,+,+,+) 7/1024 11/5120 1/60 23/5760 0
(+,−,−,+,+,+) 7/1024 11/1024 1/60 47/2880 0
(−,−,−,+,+,+) 5/1024 33/1024 1/60 29/640 1/12
(+,+,+,−,+,+) 21/1024 11/3072 1/30 23/1440 0
(−,+,+,−,+,+) 7/1024 11/9216 1/60 11/1920 0
(+,−,+,−,+,+) 7/1024 11/46080 1/60 1/720 0
(−,−,+,−,+,+) 5/1024 11/15360 1/60 23/5760 0
(+,+,−,−,+,+) 7/1024 77/15360 1/60 47/2880 0
(−,+,−,−,+,+) 5/1024 77/46080 1/60 11/1920 0
(+,−,−,−,+,+) 5/1024 77/9216 1/60 13/576 0
(−,−,−,−,+,+) 7/1024 77/3072 1/30 71/1152 1/12
(+,+,+,+,−,+) 21/1024 7/3072 1/30 71/1152 1/12
(−,+,+,+,−,+) 7/1024 7/9216 1/60 13/576 0
(+,−,+,+,−,+) 7/1024 7/46080 1/60 11/1920 0
(−,−,+,+,−,+) 5/1024 7/15360 1/60 47/2880 0
(+,+,−,+,−,+) 7/1024 1/15360 1/60 23/5760 0
(−,+,−,+,−,+) ∗ 5/1024 1/46080 1/60 1/720 0
(+,−,−,+,−,+) 5/1024 1/9216 1/60 11/1920 0
(−,−,−,+,−,+) 7/1024 1/3072 1/30 23/1440 0
(+,+,+,−,−,+) 7/1024 3/1024 1/60 29/640 1/12
(−,+,+,−,−,+) 5/1024 1/1024 1/60 47/2880 0
(+,−,+,−,−,+) 5/1024 1/5120 1/60 23/5760 0
(−,−,+,−,−,+) 7/1024 3/5120 1/30 11/960 0
(+,+,−,−,−,+) 5/1024 21/5120 1/60 29/640 1/12
(−,+,−,−,−,+) 7/1024 7/5120 1/30 23/1440 0
(+,−,−,−,−,+) 7/1024 7/1024 1/30 71/1152 1/12
(−,−,−,−,−,+) 21/1024 21/1024 1/6 1/6 1/6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sums 1/2 1/2 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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8.7 Pinpointing the difference between “good” and “bad”.

We first set some notations :

cnb(r1, r2) :=

k=r2∑
k=0

(−1)k
r2!

k! (r2 − k)!
(r2 − k)r1 (232)

In particular :

cnb(r, 1) = 1 (233)

cnb(r, r) = r! (234)

cnb(r, r?) ≥ 2 if 1 < r? < r (235)

cnb(r, r?) = 0 if r < r? (236)

Then we set :

f(r0, r1) =

r2=r1∑
r2=1

f(r0 + r2) cnb(r1, r2) (237)

Next, let ω≺≺r0,r1 (resp. ω��r0,r1) be the arborescent (resp. antiarborescent)
sequence obtained by suffixing (resp prefixing) the totally non-ordered se-
quence (ω′1, . . . , ω

′
r1

) to the totally ordered sequence (ω1, . . . , ωr0).

Assume now that F • is some constant-type mould like tu•a (§6.1.4 supra),
ie a mould whose values depend solely on the sequence length r, so that
F ω1,...,ωr ≡ f(r). In view of what precedes, it is clear that after a contracting
arborification or antiarborification we get :

Fω≺≺r0,r1 ≡ Fω��r0,r1 ≡ f(r0, r1) with f(r0, r1) as in (284) (238)

If we take F • := tu•a with a ∈ Z, then tu•a is well-behaved and indeed we
can see (trivially for a < 0, less so for a > 0) that:

lim sup
r1 → +∞

( log|f(r0, r1)|
r0 + r1

)
< +∞ (∀ r0 fixed and ≥ 1) (239)

But if a /∈ Z, then tu•a is not well-behaved and we can show that:

lim sup
r1 = +∞

( log|f(r0, r1)|
r0 + r1

)
= +∞ (∀ r0 fixed and ≥ 1) (240)

and in fact :

lim sup
r1 → +∞

( log|f(r0, r1)|
(r0 + r1) log(r0 + r1)

)
> 0 (∀ r0 fixed and ≥ 1) (241)
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9 Proper notion of ramified-exponential growth.

Four cases of increasing difficulty have to be considered, corresponding to
four types of resurgence algebras :
(1) the trivial, singularity-free case.
(2) the case with bounded singularities.
(3) the case with ‘manageable’ singularities.
(4) the case with absolutely arbitrary singularities.

In the trivial, singularity-free case, ie for minors that have no singularity
other than 0• , the only sensible definition of exponential growth is :

|ϕ̂(ζ)| ≤ Cθ , ϕ exp (Dθ , ϕ |ζ|) (for ζ large) (242)

with θ-continuous constants Cθ , ϕ , Dθ , ϕ. The latter continuity condition is
essential to ensure uniform exponential growth inside sectors of finite aper-
ture. Clearly, some uniformity condition of this sort will have to be there in
the other cases also but, as we saw in §6.5, the simple imposition of bounds,
exponential or otherwise, on single paths, won’t do 92: some subtle, path-to-
path compensation conditions must also come into play. The simplest way
to express these constraints is dually to the well-behaved averages: see §9.1.

9.1 Bounded singularities.

This is the case when singularities at the origin are of integrable type and
when, close to any singular point ω, the minors remain bounded on any sector
of finite aperture and with apex ω.

Let us fix some well-behaved average m – preferably the organic average -
– and let us denote mθ its action on the half-axis arg ζ = θ of the Borel
plane. If we then define ramified-exponential growth as the existence of finite

92Indeed, the diemma is this : either we impose uniform exponential bounds (242) on all
paths, and then such simple functions as B̂ in §6.1 won’t verify these bounds, or we relax
the growth condition on oft-crossing paths in such as way as to accommodate functions
like B̂, and in that case it is easy to see that there are going to be functions ϕ̂ that meet
those relaxed conditions and yet cannot be Laplace-summed over R+ whichever realness
preserving averages m ϕ̂ we choose to consider. So we are in a fix here, unless we reconcile
ourselves to the idea of restricting the growth, not of single determinations ϕ̂(ζ) , but of
suitable averagings of several determinations ϕ̂(ζi), for points ζi with identical projections
on C• .
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bounds93 (243) (resp (243)+(244)) :

|mθ ϕ̂(ζ)| ≤ Cθ , ϕ exp (Dθ , ϕ |ζ|) (243)

|mθ ∆ωr . . .∆ω1 ϕ̂(ζ)| ≤ Cθ ,ω , ϕ exp (Dθ ,ω , ϕ |ζ|) (244)

then the growth notion so defined meets all four conditions R1,R2,R3,R4.

9.2 Manageable singularities.

A singularity at a point ω ∈ C• of argument argω = θ is said to be “manage-
able” if, by choosing a suitably slow time zθ within the critical time class {z},
the singularity in question can be smoothened (ie rendered bounded, even
C∞, or even smoother, but always short of cohesive94) on a whole closed,
notched disk centered at ω but whose right and left radii [ω, ω + r eiθ]+ and
[ω, ω + r eiθ]− have to be regarded as distinct.

Manageable singularities (which can be extremely violent) cover all singu-
larities liable to occur in practice, and in particular all those one encounters
in the construction of analysable functions. For resurgent functions with such
singularities, ramified-exponential growth is still defined by the existence of
bounds (243) or (244), but relative to slow times zθ that may depend on θ
and with the usual continuity conditions on θ.

9.3 Arbitrary singularities. An open question.

That leaves only the question of arbitrary, ie possibly unmanageable singu-
larities. Not only do these never occur in natural situations, but it is not
at all clear whether they permit a satisfactory, convolution-stable notion of
ramified-exponential growth. This, at any rate, would presuppose, among
other things, that the implication (248) infra holds for all finite sums (247)

obtained by convoluting resurgent functions
�
Ai whose minors are regular

(say, sectorially bounded at∞) away from 0• but which may possess horren-

dous singularities at 0• , and functions
�
Bi, whose singular points ωi are 6= 0•

and possibly quite dense, but with singularities there that are fairly tame
(say, integrable, or sectorially bounded, or simple poles), and with uniform

93with constants Cθ , ϕ , Dθ , ϕ or Cθ ,ω , ϕ , Dθ ,ω , ϕ continuous in θ and ω.
94see [E7] , Lectures 3 and 4.
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exponential growth at ∞ .
�
Ai = {Ǎi, Âi} with Âi regular-bounded away from 0• (245)
�
Bi = {B̌i, B̂i} with B̂i of integrable-exponential type. (246)
�
C :=

�
A1 ∗

�
B1 + · · ·

�
An ∗

�
Bn (247)

{
�
C= 0} ?

=⇒ {C = 0} (248)

That, however, appears to be an open question, even for such quite simple
pairs as :

Ǎi(ζ) :=
∑

0≤n,m<c.n ai,n,m ζ−n (log ζ)m

B̂i(ζ) :=
∑

0≤n bi, ωi (1− ζ
ωi

) log(1− ζ
ωi

)

or even :
Ǎi(ζ) :=

∑
0≤n ai,n ζ

−n

B̂i(ζ) :=
∑

0≤n bi, ωi (ζ − ωi)−1

10 Well-behaved resurgence monomials.

10.1 Reminder about the standard resurgence mono-
mials.

Assume for a start that all ωi are > 0 and consider once again the ∆-friendly
hyperlogarithmic monomials ±Ue•(z), but equipped with their exponential
factor e‖ω‖.z and expressed in the bases orthogonal to the right/left lateral
alien operators ∆∆±ω . In other words :

∆∆±ω0

±Ueω1,...,ωr(z) = ±Ueω2,...,ωr(z) if ω0 = ω1

= 0 if ω0 6= ω1

Let us re-write the integral (106) for these monomials, but in a suggestive,
easily generalisable form. Setting goω(y) := e−ω y we get :

+Ueω1,..., ωr(z) :=
1

(2πi)r

+
∫ ∞

0

goω1(y1) . . . goωr(yr)

goω1(z) . . . goωr(z)

dy1 . . . dyr
(yr − yr−1) . . . (y1 − z)

−Ueω1,..., ωr(z) :=
1

(2πi)r

−∫ ∞
0

goω1(y1) . . . goωr(yr)

goω1(z) . . . goωr(z)

dy1 . . . dyr
(yr − yr−1) . . . (y1 − z)

with lateral integration right (resp left ) of arg ζ = 0 in the first (resp second)
integral95.

95it is the change from ∆∆-orthogonality to ∆∆±-orthogonality that is responsible for the
appearance of the factor (2πi)−r in front of the integrals.
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10.2 Well-behaved resurgence monomials induced by
prodiffusions.

Instead of pairs {fω, gω} connected by the Fourier transform, we are now
dealing we pairs {foω, goω} connected by the Borel-Laplace transform :

foω(x) =

∫ ∞
0

e−x y goω(y) dy (249)

goω(x) =
1

2πi

∫ +i∞

−i∞
e+x y foω(x) dx (250)

We still have to consider multiplicative semigroups {goω(•) , ω > 0} and
convolution semigroups {foω(•) , ω > 0} but the latter are now relative to
the vertical, open-ended convolution /. :

goω(y) ≡ (go1(y))ω ∀ω (go1(y) > 0) (251)

foω1/.foω2 ≡ foω1+ω2 ∀ωi with (252)

(foω1/.foω2)(x) :=
1

2πi

∫ +i∞

−i∞
foω1(x1) foω2(x− x1) dx1 (253)

The function go1(y) should be analytic on C• or, better still, uniform-
analytic on C∗, and it should fulfill too additional conditions at least :

(i) log(go1(y)) ∼ −y as y → +∞
(ii) go1(y)) should be real for arg y = 0

(iii) go1(y) should decrease fast enough as y ↓ +0 for
∫ +i∞
−i∞ |fo1(x)||dx| <∞

(iv) if goω(y) = goω,c(y) has to depend on a parameters c, then there should
be invariance under some simple change (y, c, ω) 7→ (l y, l−1 ω, lk c) 96.

Condition (i) is there to ensure that the integrals of §10.1 retain the right
asymptotic behaviour at ∞ in the geometric model and sum up to proper
resurgence monomials orthogonal to the ∆∆±ω

Condition (ii) is there to ensure the ‘realness’ property M2 .

Condition (iii), which of course wasn’t verified for the earlier choice of go1(y) :=
e−y in §10.1, is there to ensure the crucial property M3 of ‘proper growth’
in the ω variables.

Condition (iv) is there to ensure the homogeneity property M4 .

96∀l > 0.
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10.3 Canonical well-behaved resurgence monomials.

The four conditions (i)-(iv) leave a huge freedom of choice, but let us go
straight for the simplest and most economical choice, which corresponds to
a kernel function :

gω0(y) := exp(−ωy − c2ω̄y−1) (ω ∈ C? ; c ≥ 0) (254)

that involves only one free parameter c > 0 and meets all four conditions
above, including (iv) with k = 1.

This leads to the formulas :

Uaω1,...,ωr
c (z) := SPA

∫ ∞
0

e−
Pr

1(ωi yi+c
2ω̄i y

−1
i ) dy1 . . . dyr

(yr − yr−1) . . . (y2 − y1)(y1 − z)
(255)

Ueω1,...,ωr
c (z) := Uaω1,...,ωr

c (z) e (
Pr

1 ωi) z+(
Pr

1 ω̄i) c
2 z−1

(256)

U ω1,...,ωr
c (z) := Uaω1,...,ωr

c (z) e (
Pr

1 ω̄i) c
2 z−1

(257)

with integration along the rays arg(ωi yi) = arg(ω̄i/yi) = 0.

The Uaωc are auxiliary expressions. The resurgence monomials proper are
the Uωc (orthogonal to the ordinary alien derivations ∆ω) and the exponential-
carrying Ueωc (orthogonal to the exponential-carrying alien derivations ∆∆ω).

Interpretation of “SPA ”.
SPA in front of the integral means suitable path average. If we integrate first
in y1, then y2, etc, the question arises97 as to how (ie on which side) yi should
bypass the next (yet unused) variable yi+1. If to the right, we set εi := +.
If to the left, we set εi := −. To each choice {ε1, ε2, . . . } there corresponds
a different integration path, and SPA means that one should take a precise
average of all such paths, depending on which system ∆ω of alien derivations
one wishes the Uω to be orthogonal to. But for the right- or left-lateral
moulds (characterised by orthogonality to ∆±ω ) the SPA average reduces to
one single path, with all εi identical (either + or −). In that case, however,
one should add the factor (2πi)−r in front of the integrals, as in §10.1.

Interpretation of 1/(y1 − z)
The integral (134) defines Uωc in all three models (formal, geometric, convo-
lutive) at one stroke, depending on how we construe 1/(y1 − z) :
– as a power series in z−1,

97at least when two consecutive integration axes coincide, ie when argωi = argωi+1.
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– or as a function germ at ∞,
– or again as its own Borel tranform.

Formal model : 1
y1−z → −

∑∞
0 z−n−1 yn1

=⇒ Ũωc (z) as a formal power series

Geometric model : 1
y1−z → z-germ at ∞

=⇒ Uωc (z) as a sectorial z-germ at ∞

Convolutive model : 1
y1−z → − exp(y1 ζ)

=⇒ Ûωc (ζ) as a full ζ-germ at 0

Main result:
For positive values c > 0 of the twist, U•c constitutes a well-behaved, multi-
plicative system of resurgence monomials.

The limit-case c = 0.
In the limit-case c = 0 the integrals (134) remain well-defined and we still
have a multiplicative system U•0 of resurgence monomials, but it is no longer
well-behaved. In fact, it coincides with the much more ancient system U• of
hyperlogarithmic monomials, so-called because their dependence on the ωi’s
is indeed of hyperlogarithmic type. In contradistinction, the U•c and the host
of special functions attached to them (see §6.7) are called paralogarithmic.

Why “twisted”, why “spherical”, why “canonical” ?
The presence of a free parameter c slightly detracts from the “canonicity” of
our system, but this cannot be helped : no system of well-behaved resurgence
monomials can suffice for all problems unless there is at least one free param-
eter that can be adjusted from case to case. The miracle is rather that one
parameter should be enough ! So much for the twist. As for “spherical”, it
refers to the striking symmetry of behaviour which our monomials U•c exhibit
at the antipodes 0 and ∞ of the Riemann sphere when c > 0, and which,
remarkably enough, disappears when we “untwist” them, ie when c = 0.

10.4 Proofs and comments.

Let ±Uaω1,...,ωr
c (z, η) denote the ∆∆± orthogonal variant of our canonical mono-

mials, in the geometric-sectorial model that corresponds to Borel-Laplace
integration right (resp left) of the axis arg ζ = 0 if η = + (resp -). The
orthogonality relations to ALIEN can easily be checked on the y-integral
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representations

εUeω1,..., ωr
c (z, η) :=

(ε1)r

(2πi)r

ε,η
∫ ∞

0

goω1(y1) . . . goωr(yr)

goω1(z) . . . goωr(z)

dy1 . . . dyr
(yr − yr−1) . . . (y1 − z)

with ‘lateral circumvention’ or, if you prefer, with integration on close but
distinct axes θi ∼ 0 :

ε (θ − θ1) > 0 ; η (θi − θi+1) > 0 (arg z = θ ; arg yi = θi ; ε, η ∈ {+,−})

The finite’ conditions M1, M2, M4 offer no difficulties. M1 is easily
checked on the y-integrals. M2 is immediate. So is M4 : its expression in
the multiplicative models (geometric or formal) is simply the invariance of
the monomials under dilatations (y, c, ωi) 7→ (l y, l c, l−1 ωi) ,∀l > 0. In a
sense, this is less than the “exact” homogeneousness (namely : invariance
under the changes (y, ωi) 7→ (l y, l−1 ωi) as with the standard or hyperloga-
rithmic monomials of §2.4) that we might wish for, but this cannot be helped
as soon as a parameter c comes into play. Moreover, this slight ‘defect’ is
more than offset by the emergence of a new symmetry – under the antipodal
involution , see §11.4, §12.4 – which has no ‘standard’ equivalent.

But the difficult bit is of course the growth condition M3. Let us first use
the elementary moulds of §2.1 to rewrite the y-integral and its companion
x-integral in a form reminiscent98 of the formulas for the lateral moulds of
the uniformising averages :

±Uaω1,...,ωr
c (z, η) =

(±1)r

(2πi)r

∫ ∞
0

goω1(y1) . . . goω1(y1) tas y1,...,yr
z,∞ dy1 . . . dyr

= ∓ η (−1)r

(2πi)r

∫ +∞

−i∞
ση(x̂1)σ∓(x̂2) . . . σ∓(x̂2)

× foω1(x1) . . . foωr(xr) e
‖x‖ zdx1 . . . dxr

Here, it is more convenient to use the criteria M3.1 or M3.3, which involve
contracting arborification. As with the uniformising averages, we have the
choice between two strategies.

Either we choose to work with the x-integrals. This means subjecting the
moulds antisofo• or antisefo• (depending on η) to contracting arborification

98except that the y-sequence must now be inversed, and the x̌i-sums (22) replaced by
x̂i-sums (23).
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and observing that this operation leaves their outward expression unchanged :
they are still given by the formulas of §2.1.9, but with sums x̂i :=

∑
i≤j xj

now relative to the arborescent order.

Or we can work instead with the y-integrals. This means subjecting the
mould tas•z,∞ :

tas y1,...,yr
z,∞ :=

∏
1≤i≤r

1

yi−− yi
with (258)

yi− := yi−1 if i > 1 , yi− := z if i = 1 (259)

to ordinary arborification (which, due to the circumvention rules, translates
into contracting arborification for the integrals) and observe that this oper-
ation doesn’t alter the factorisation of §2.1.8, but merely changes the inter-
pretation of yi− : if yi is not a root (minimal element), then yi− must be
interpreted as the (unique) antecedent of yi within the arborescent sequence
y≺, and if yi is a root , yi− should be set equal to z.

Both methods not only yield the required bounds M31,M33, but there
even appears an important factor e−C∗ c , C∗ > 0 in front of the constants.
Checking the fact of “form-preserving arborification” lemma (see §2.1.11) is
easier with the polar mould tas•z,∞ than with the flat moulds antisofo• or
antisefo•, but with the first method (x-integration) the bounds M31,M33

are immediate to establish, since the ‘flat’ part of the integrand is either 0 or
±1 and each foωi(xi) is bounded on iR , whereas with the second method (y-
integration) one should carefully select (near 0) the multipath of integration
in order to control the smallness of the denominators yi−− yi.

10.5 Extension to the multicritical case.

General monocritical paralogaritms.

In the 6 examples discussed in §3, we have on purpose chosen the simplest
normal forms Obnor, thereby ensuring that all objects Ob ∼ Obnor could be
represented by entire power series (and exponentials). But this doesn’t hold
for all conjugacy classes. Take for instance Example 2 in §3.2 and replace
the normal form (75) by dx y

nor = ynor + σ z−1 ynor with σ /∈ Z. The for-
mal integral (77) is no longer in C[[z−1 , u ez]] but in C[[z−1 , u ez zσ]], which
means that we are stuck with non-entire powers of z. This has three main
consequences :

(i) as far as alien calculus is concerned, the indices ω of our alien derivations
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must now be regarded as elements of C• rather than C∗.

(ii) as far as object analysis is concerned, the total “quantity” of (indepen-
dent) analytic invariants doesn’t increase, because for each pair ω, ω′ ∈ C•
with the same projections ω̇, ω̇′ ∈ C∗, the corresponding invariants Aω and
Aω′ are simply related (one is deducible from the other).

(iii) as far as object synthesis is concerned, we must now work with the
ramified variants of our ∆-friendly twisted monomials, obtained by system-
atically replacing in all three integrals (255),(256),(257) the elements $(y) :=
ω y+ c2 ω̄ y−1 by their ramified counterparts $(y) := ω y+ c2 ω̄ y−1 +σ log y.
That apart, nothing much changes, the new monomials being every bit as
well-behaved as the unramified prototypes.

General polycritical paralogaritms.

In polycritical situations (exemplified by Ex 4 and Ex 6 in §3) object synthe-
sis calls for polycritical twisted ∆-friendly monomials. We construct them by
replacing the binomial elements $(y) := ω y + c2 ω̄ y−1 by the bipolynomial
elements :

$(y) :=
∑
p

(ωp y
p + c2

p ω̄p y
−p)

or, in ramified situations, by :

$(y) :=
∑
p

(ωp y
p + c2

p ω̄p y
−p) + σ log y

Of course, for each higher critical time class zp := {zp}, the monomials’ ex-
pression in the corresponding geometric model (resp Borel plane) involves a
polarisation θq for each lower (resp strictly lower) critical time classe zq :=
{zq} with q ≤ p (resp q < p).

As for the several twist parameters cp attached to the various classes zp,
we may of course collapse them into one by setting cp := c or cp := p c or
cp := p−1 c etc, but there seems to be no compelling reason for preferring one
choice to the other.

∂-friendly paralogarithms.

The thorough symmetry which obtains, in the standard, twistless context,
between the ∆-friendly and ∂-friendly monomials U• and V• and their mon-
ics U• and V •, and which comes through graphically in the diagram of §4.1
and the formulas of §12.2.2 – that symmetry does survive for the twisted
monomials, but in less perfect a manner. Some of the relevant formulas are
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mentioned in §12.3.6. It should be noted, however, that the ∂-friendly mono-
mials serve no purpose in object analysis (the standard, twistless monomials
fully suffice there). Their raison d’ être is rather :
(i) to lead to a better understanding of the twisted ∆-friendly monomials
(ii) to lead to simple formulas for the corresponding monics U• and V •.

The corresponding developments would fill too much space here, but one
curious feature perhaps deserves mention : whereas the classical gamma func-
tion Γ(σ) :=

∫∞
0

e−t tσ−1 dt totally dominates the subject of ramified hyper-
logarithms , for the ramified paralogarithms it should be replaced by a twisted
look-alike Γc(σ) :=

∫∞
0

e−t−c
2 t−1

tσ−1 dt whose properties, however (entire-
ness, asymptotics etc) couldn’t be more different as soon as c > 0.

11 Applications to canonical Object Synthe-

sis.

11.1 Outline of the construction.

Basically, with the twisted monomials at our disposal, Object Synthesis be-
comes a purely mechanical affair. This is precisely what we had set out to
achieve : to reduce the whole process to a succession of formal manipulations.
We saw in §4 why the early attempts, based on the standard monomials
U•(z), couldn’t fully succeed. But with their twisted counterparts U•c (z) ,
everything works fine.

Let us outline the six main steps :

Step 1: select a formal class of local analytic objects, characterised by a
formal normal form Obnor, and start from any given admissible system of
analytic invariants A = {Aω ; ω ∈ Ω}

Step 2: choose a well-behaved system of alien derivations, preferably the
organic system ∆org = {∆org

ω ; ω ∈ C?} , and express the analytic invariants
in the corresponding basis Aorg = {Aorg

ω ; ω ∈ Ω}

Step 3: solve “mechanically”99 the system of resurgence equations that

99ie without worrying about convergence. Mark the choice of words: mechanically, ie
by means of expansions into series (127) of abstract resurgence monomials, rather than
formally, which would suggest solving the problem in the ring of formal power series. To
highlight the difference, we might also, as in §4, speak of semi-formal expansions.
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characterise the direct or inverse normaliser Θ±1. For instance, in the case
of simply resonant fields we find these expansions100 :

Θ
always

:= 1 +
∑
1≤r

∑
ωi∈Ω

(−1)r Ueω1,...,ωr
org (z) Aorg

ωr . . .A
org
ω1

(260)

Θ−1 conditionally
:= 1 +

∑
1≤r

∑
ωi∈Ω

Ueωr,...,ω1
org (z) Aorg

ωr . . .A
org
ω1

(261)

Step 4: replace in that “mechanical” solution the abstract monomials Uωorg(z)
by the twisted or spherical monomials Uωc , org(z) for a large enough twist c.

Step 5: re-order the above expansions for Θ±1 so as to make them ab-
solutely convergent in the space of resurgent functions, under the standard
arborification-coarborification scheme : ie subject simultaneously the mould
Ue•org to the arborification rules in §2.1.4, and the co-mould Aorg

• to the dual
rule for “homogeneous” co-arborification spelt out in §11.2 below.

Step 6: Construct the sought-after analytic object Ob from its normaliser
by using Ob = Θ Obnor Θ−1

The reader may easily work this out in the case of our four monocritical
examples of §3 and §4 (Ex 1 through 4). The polycritical examples (Ex 5
and 6) also respond to the same treatment, except that acceleration the-
ory101 is needed. Here, to avoid drowning in secondary details, we shall focus
only on the central point, namely the convergence, after arborification, of the
mechanical expansions into series of twisted monomials.

11.2 Proof of the convergence for a positive or large
enough twist c.

Generic divergence prior to arborification.

Let us work with the direct normalisers. Prior to arborification, their ex-
pansions, whether we write them in a well-behaved basis, say the organic

100The second expansion, for the reverse normaliser, is valid only if all the invariants Aω
have no ∂z-component and so commute with the resurgence monomials Ueω(z). When
this is not the case, the expansion (261) should be slightly modified, but one can also be
content to work with (260), which is always valid, and then derive Θ−1 by straightforward
inversion of Θ.

101see for instance [E4][E6][E7].
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basis 102 :

Θ =
∑
ω

Ueωc (z) Aω =
∑
r

∑
ωi

Ueω1,...,ωr
c (z) Aωr . . .Aω1 (262)

or in one of the (right/left) lateral bases :

Θ =
∑
ω

±Ueωc (z) A±ω =
∑
r

∑
ωi

±Ueω1,...,ωr
c (z) A±ωr . . .A

±
ω1

(263)

are hopelessly divergent103 since we cannot expect better bounds than :

‖Ueωc ‖ ≤ cr1 e
−C0 c r ; ‖Aω‖ ≤ cr2 r! (0 < ci <∞)(264)

‖±Ueωc ‖ ≤ cr3 e
−C0 c r ; ‖A±ω‖ ≤ cr4 r! (0 < ci <∞)(265)

r being the length of the totally ordered sequence ω. So we have to arborify
these expansions:∑
ω

Ueωc (z) Aω →
∑
ω≺

Ueω≺c (z) Aω≺ (ordinary arborification)∑
ω

±Ueωc (z) A±ω →
∑
ω≺≺

±Ueω≺≺c (z) A±ω≺≺ (contracting arborification)

Under the dual definitions for arborification and coarborification (see §2.1.4),
the operation leaves our expansions for Θ formally unchanged : it merely
rearranges their terms. But instead of the unsatisfactory bounds (264), (265)
we shall now get new ones :

‖Ueω≺c ‖ ≤ Cr
1 e
−C0 c r ; ‖Aω≺‖ ≤ Cr

2 (0 < Ci <∞)(266)

‖±Ueω≺≺c ‖ ≤ Cr
3 e
−C0 c r ; ‖A±ω≺≺ ‖ ≤ Cr

4 (0 < Ci <∞)(267)

that shall ensure absolute convergence.

The removability of the factor r! in the comould part doesn’t come as a
great surprise, since the coarborification constraints 104 split each Aω into a
sum of roughly r! terms. But we might fear, dually, the appearance of a factor
r! in the mould part, since the arborification rules 105 regroup roughly r! terms
on the right-hand side. This is indeed what arborification does to a ‘random’
mould : it creates a factor of magnitude r!. However, most applications

102for brevity we drop the indes “org” in the sequel.
103generically – except in linear problems like Example 3.
104see §2.1.4.
105see §2.1.4.
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involve moulds which are far from ‘random’ : not only do they fall into one
of the four basic symmetry types, but they usually verify additional identities,
which ensure that they retain their ‘size’ (and sometimes even their ‘form’)
under arborification.

Arborification here doesn’t increase mould norms.

This applies to most of the moulds catalogued in §2.1, with only a handful
of exceptions that are mentioned there106. This applies in particular, as we
showed in §10.4, to the twisted resurgence monomials, as soon as their twist
c is > 0.

Homogeneous coarborification.

Let {Bω, ω ∈ Ω} be any system of ordinary differential operators in the
variables x1, . . . , xν and define the comould B• as usual by setting :

Bω1,..., ωr := Bωr . . .Bω1 (268)

Then there exists a privileged arborescent comould B•≺ , the so-called homo-
geneous co-arborification of B• which is entirely characterised by the following
three properties :
P1 B•≺ is co-separative107, ie :

Bω≺ (ϕ1 ϕ2) ≡
∑

ω1≺⊕ω2≺=ω≺

Bω1≺ (ϕ1) Bω2≺ (ϕ2) (269)

P2 If deg(ω≺) = d ie if the tree ω≺ has exactly d roots, then the operator
is homogeneous in the ∂i := ∂xi with total degree d
P3 If ω = ω1ω

∗ (in other words, if ω is of degree one, with a root element
ω1 followed by some arborescent sequence ω∗≺) the corresponding operator
factors as :

Bω≺ xj ≡ Bω∗≺ Bω1 log xj (j = 1, 2, . . . , ν) (270)

Moreover, if B• is co-symmetral 108 (resp co-symmetrel 109), then B• and B≺•
are indeed correlated according to Bω :=

∑
ω≺<ω Bω≺ (resp Bω :=

106see also §8.7.
107 ω1≺ ⊕ ω2≺ denotes the tree obtained by juxtaposition of ω1≺ and ω2≺, with no

other order relations than those inherited from the sub-trees ωi. The sum (279) extends
also to the trivial juxtapositions, with one summand ωi≺ equal to ω≺ and the other one
empty.

108see (17).
109see(17).

91



∑
ω≺≺ <<ω Bω≺≺ ). In other wordss, whereas symmetral and symmetrel moulds

obey different arborification rules (simple versus contracting), the homoge-
neous co-arborification rules are exactly the same for a co-symmetral comould
(like A• above) and a co-symmetrel one (like A±• above).

Let us check, by induction on the length r of ω≺, the fact that P1, P2,
P3 together do determine Bω≺ .

Either d(ω≺) = 1, which means that ω≺ is of the form (271), in which
case Bω≺ is as below :

ω≺ = (ω1,ω
∗≺) (271)

Bω≺ =
∑

1≤i≤ν

(Bω∗≺ .Bω1
≺ . log xj)(xj ∂j)

Or deg(ω≺) = d ≥ 2, which means that ω≺ is of the form (272), with
s clusters of d1, . . . , ds identical, irreducible summands ωi1

≺
, . . . ,ωis

≺
, in

which case Bω≺ is as below :

ω≺ = ω1≺ ⊕ · · · ⊕ ωd≺ (ωi
≺ 6= ∅ , deg(ωi

≺
) = 1)

= (ωi1
≺

)⊕d1 ⊕ · · · ⊕ (ωis
≺

)⊕ds (d1 + · · ·+ ds = d) (272)

Bω≺ =
1

d1! . . . ds!

∑
1≤s≤d
1≤js≤ν

(Bω1≺ . log xj1) . . . (Bωd≺ . log xjd) (xj1 ∂j1) . . . (xjd ∂jd)

Coarborification diminishes comould norms.

The phenomenon takes place for any reasonable norm on local differential
operators, for instance :

‖B‖ = ‖B‖D1,D2
:= sup

ϕ 6=0

‖Bϕ‖D1

‖ϕ‖D2

with 0 ∈ D1 , D̄1 ⊂ D2 ⊂ Cν (273)

with D1,D2 two small open neighbourhoods of 0 and ‖ϕ‖Di the uniform norm
on Di. To illustrate norm reduction, ie the improvement from (274) to (275) :

‖Bω‖ ≤ r(ω≺)! CN(ω≺) ‖Bω1‖ . . . ‖Bωr‖ (274)

‖Bω≺‖ ≤ CN(ω≺) ‖Bω1‖ . . . ‖Bωr‖ (275)
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let us fix a non-resonant spectrum λ ∈ Cν and consider first-order differential
operators of the form :

Bωi := xni Bωi with Bωi :=
∑

1≤j≤ν

Bj
ωi
xj ∂xj , ωi :=< ni, λ > (276)

Next, let us carry out homogeneous coarborification for three extreme types
of arborescent sequences :

ω := (ω1, . . . , ωr) ; total order ; all ωi distinct
ω′≺ := (ω1, . . . , ωr) ; total order ; all ωi distinct
ω′′≺ := (ωr ⊕ · · · ⊕ ω1) ; no order ; all ωi distinct
ω′′′≺ := (ωr ⊕ · · · ⊕ ω1) ; no order ; all ωi identical

We find :

Bω := Bωr . . .Bω1 (277)

Bω′≺ := xnr(Bωr x
nr−1) (Bωr−1 x

nr−2) . . . (Bω3 x
n2) (Bω2 x

n1)Bω1 (278)

Bω′′≺ := xn1+···+nr Bω1 . . .Bωr (279)

Bω′′′≺ :=
1

r!
xn1+···+nr Bω1 . . .Bωr (280)

and in all three cases we observe the disappearance of the factor r! , though
for rather distinct reasons :

– in (278) we have a first-order differential operator Bω1 preceded by innocu-
ous scalar factors Bωi x

ni−1

– in (279) we a differential operator Bω1 . . .Bωr (all terms commute) of order
r and of factorially large norm, but with a more than factorially small front
factor x‖n‖ since ‖n‖ ≥ const . r1+ 1

ν

– in (280) we have again a differential operator Bω1 . . .Bωr (all terms are
equal) of order r and of factorially large norm, but with a multiplicity factor
1
r!

in front.

In fact, norm reduction holds for all arborescent sequences : see for in-
stance [E5],§4.

Convergence after twisting and arborification.

At this stage, to establish the normal convergence of the arborified expan-
sions for the direct normalisers Θ for a large enough value of the twist c, it
is enough :
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– to pair the mould-comould estimates in (266) or (267)
– to establish the existence of bounds q(N) ≤ Q0Q

N
1 where q(N) denotes the

total number of arborescent sequences ω≺ = (ωi)
≺ corresponding to multi-

integer sequences n≺ = (ni)
≺ with ni ∈ Nν of sum ‖n≺‖ =

∑
|ni| = N 110.

The one-sided/two-sided dichotomy.

Actually, the choice of a large enough twist c is necessary only in what we
might call problems of two-sided resurgence (which, in the context of our 6
examples, would cover the binary, sesquilateral, and bilateral cases) ie in all
problems where the index set Ω is such that in the expansions (262) infinitely
many ω = (ωi) may contribute to the same total frequency ω0 = ‖ω‖ =

∑
ωi.

But in problems of one-sided resurgence (in the context of our 6 examples,
this would cover the unary and unilateral cases) we have convergence for any
c > 0.111

The linear/non-linear dichotomy.

On the other hand, the recourse to arborification is indispensible only for
non-linear problems. For linear or affine problems (such as Example 3 and
5), the unarborified expansions are already (normally) convergent. Lastly, in
the very exceptional – and elementary – instance of problems that are both
linear/affine and one-sided (this would correspond to the unary subcase in
Ex 1 and Ex 2) there is need for neither twist nor arborification.

The total picture can be neatly summed up in the following table :

linear problems non-linear problem

one-sided resurgence c ≥ 0 ; without arbor. c > 0 ; with arbor.
two-sided resurgence c� 1 ; without arbor. c� 1 ; with arbor.

11.3 What is so special about the twistless case ?

Basically, we already know the answer : only for c > 0 are the “prodistri-
bution” functions foω(x) absolutely integrable at x = ±i∞, and this fact in
turn is responsible for property M3. But we must now look concretely at
the difference which a positive c makes to object synthesis. Let us reason on
Example 2 (§3.2) and focus on the unilateral case (see §4.5.3,§4.6) because,
unlike the bilateral case , it allows us to take c as small as we wish.

110one can take Q1 := 4.2ν , see [E5],pp94-95.
111but usually not for c = 0. See §4.6.
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Starting from some admissible unilateral system {An := un+1∂u , n ∈ N+}
of analytic invariants, using the mould tas•a,b of §2.1.8, and taking recourse
to the usual SPA trick (special path averaging), let us form the general sub-
stitution operators :

Hb,a := (2πi)−r SPA

∫ ∞
0

tasy1,...,yr
a,b e−

P
1≤i≤r(niyi+c

2ni y
−1
i ) ×

dy1 . . . dyr vn1+···+nr Anr . . .Anr (281)

which verify112 :

Hb,a ϕ = ϕ ◦ ha,b with ha,b := Hb,a.u (282)

Ha3,a2 . Ha2,a1 = Ha3,a1 but ha1,a2 ◦ ha2,a3 = ha1,a3 (283)

and which, for suitable specialisations of the parameters a, b, v, yield the
direct and inverse normalisers :

Θ ≡ H∞,z , θ ≡ hz,∞ for v := e z+c
2 z−1

Θ−1 ≡ Hz,∞ , θ−1 ≡ h∞,z for v := e z+c
2 z−1

For instance, if we set all invariants equal to 0 and retain only the first one,
ie A1 = A1 u

2 ∂u 6= 0, we get:

ha,b = u
1+A1 (Ua1

c(a)−Ua1
c(b)) v u

( for A1 = A1 u
n+1 ∂u )

θ(u) = u

1+A1 Ua1
c(z) e

z+c2 z−1 u
= u

1+A1 Ue1c(z)u

θ−1(u) = u

1−A1 Ua1
c(z) e

z+c2 z−1 u
= u

1−A1 Ue1c(z)u

Let us now add infinitesimal, admissible perturbations δAn (n ≥ 2), thus
changing our invariant system {A1, 0, 0, . . . } to {A1, δA2, δA3, . . . }. Since :

tas y1,...,yr
a,b ≡ tas y1,...,yi−1

a,yi

a− b
(a− yi) (yi − b)

tas
yi+1,...,yr
y,b (∀i, 1 ≤ i ≤ r)

the operator Hb,a will undergo the perturbation :

δHb,a :=
1

2πi

∑
2≤n

∫ ∞
0

Hb,y
(a− b) e−n (y+c2y−1) vn

(a− y) (y − b)
δAn Hy,a dy

δha,b :=
1

2πi

∑
2≤n

∫ ∞
0

(a− b) e−n (y+c2y−1) vn

(a− y) (y − b)
(hy,b(u))n+1

∂uhy,b(u)
∂uha,b(u) dy

112note the index exchange Hb,a → ha,b which reflects the composition rules
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Finally, setting a = z, b = +∞, v = ez+c
2 z−1

we get :

δha,b :=
1

2πi

∑
2≤n

∫ ∞
0

e−n (y+c2 y−1) e+n (z+c2 z−1)un

(z − y)(1 + A1 Ua1
c(y) e z+c2 z−1 u)n+1

× dy

(1 + A1 Ua1
c(z) e z+c2 z−1 u)

(284)

Reverting to §3.2 and (77), we see that the crucial variable are z (∼ ∞)
and w := u ez (∼ 0). More precisely, for canonical synthesis to survive the
infinitesimal pertubation we have just performed, the above integral (284)
must converge uniformly for z large enough (more precisely : for z in some
U-shaped neighbourhood of +∞) and for w small enough (more precisely :
in a full neighbourhood of 0).

For a vanishing twist (c = 0), Ua1
c(y) reduces to a hyperlogarithmic resur-

gence monomial and it goes to ∞ as const. log(1/y) when y ↓ +0. So, for
z fixed, the denominator 1 +A1 Ua1

c(y) e z+c
2 z−1

u|c=0 ≡ 1 +A1 Ua1
0(y)w van-

ishes, when the integration variable y decreases to +0, for at least one value
w := w(z, y) which also goes to 0. So the integral (284) cannot be w-analytic
at w = 0.

For c > 0 , on the other hand, the paralogarithmic resurgence mono-
mial Ua1

c(y) remains bounded on the whole integration axis R+ and each
n-summand in (284) is indeed w-anlytic at w = 0. 113

11.4 The antipodal pairing.

For c > 0 the twisted monomials are essentially invariant under the involu-
tion:

pod : z 7→ z−1 and (ωi, c
2ω̄i) 7→ (ω̄i, c

2ωi) (285)

More precisely, setting :

pari(Mω) := (−1)r(ω) Mω (286)

and with SSU•c defined as in §12.3.3, we have :

podU•c (z)× U•c (c2 z−1) = SSU•c (287)

and therefore :

U•c (c2 z−1) = pari (podU•c (z)× SSU•c ) = pari (podU•c (z))× pari (SSU•c ) (288)

113As for the n-convergence of the series in (284), it offers nondifficulty as long as we take
a admissible pertubation δAn. But n-convergence is not the real issue here, and indeed
we may get rid of it by assuming that only a finite number of δAn are 6= 0.
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Θc,c2 z−1 = Ivu . Kc .Θc,z . Ivu (289)

Kc :=
∑

pari(SSU•c ) A• =
∑

(−1)r(•) SSU•c A• (290)

Ivu .ϕ(u) := −ϕ(−u) ; Ivu .u
n+1∂u .Ivu = (−1)n un+1 ∂u (291)

So, once again we encounter this strange pairing of the “antipodes”. In
fact, any time we perform canonical synthesis, we get two objects “for the
price of one” : we simultaneously synthesize one (main) object at z = ∞ ,
and another at z = 0. These two may, or may not, link up under analytic
continuation.

11.5 Iso-invariant deformations.

There exists a closed system of formulae (see §6.7 and [E15]) to describe
the exact dependence (partial derivatives, asymptotics, etc) of our canonical
resurgence monomials as functions of their variable z, twist c and indices
ωi, ω̄i. As a result, one may write down the – often unexpectedly simple
– partial differential equations which govern the sundry deformations (iso-
invariant, iso-monodromic, iso-resurgent, iso-Galoisian, etc) of our synthe-
sised objects.

Thus, from the c-differentiation rule for the monomials :

1

2
c ∂c Ue•(z) = z−1 Ue•(z)× (e z� + c2 z−1 � UR•) (292)

we get (with the notations of §12.1.3) the c-differentiation rule for the nor-
maliser Θc :

[
1

2
c ∂c , Θc ] = UK .Θc (293)

with UK :=
∑

(−1)r(•) (e z� + c2 z−1 � UR•) A•

11.6 Remarks and complements.

Remark 1: Antipodal involution.
As already pointed out, our twisted monomials have much the same be-
haviour at both poles of the Riemann sphere. The exact correspondence has
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just been described in §6.7 using the so-called antipodal involution (285) :

In terms of the objects being produced, this means that canonical object
synthesis automatically generates two objects : the ‘true’ object, local at ∞
and with exactly the prescribed invariants, and a ‘mirror reflection’, local at 0
and with closely related invariants. Depending on the nature of the problem
(linear/non-linear, etc) and of the invariants (verification or non-verification
of an “overlapping condition”) , these two objects may or may not link up
under analytic continuation on the Riemann sphere.

Remark 2: Analogy with q-equations.
Authors like Sauloy recently ([S]) observed that q-difference equations are in
some sense easier to tackle than difference or differential equations, due to
dilations z 7→ q z having two fixed points 0 and ∞, whereas shifts z 7→ a+ z
have only one, namely ∞. It is certainly no coincidence that the simplest
resurgence monomials that permit object synthesis are precisely the twisted
ones (c 6= 0), for whom the antipodal symmetry is restored, whereas the
twistless monomials (c = 0), though apparently more simple, turn out to be
inadequate for this particular purpose.

Remark 3: Necessity of a one-parameter freedom.
The necessity of having at least one degree of freedom in object synthesis
has been known since the 1980s at least. This holds even for such elemen-
tary objects as linear systems (Example 3). Indeed, in most cases, the twist c
must exceed a certain lower bound cmin that depends on the invariants {Aω}.
However, as already pointed out, there exists an important exception : the
so-called unilateral classes, when for instance all non-vanishing Aω have their
indices on the same half-line. There any choice c > 0 will do ! This applies
in particular to Example 2 when A−1 = 0

Remark 4: WB derivations and WB monomials : unequal status.
Working with well-behaved alien derivations is merely convenient, whereas
the recourse to well-behaved resurgence monomials is truly indispensible.
There is a subtle difference here, which should be well understood. Indeed,
the choice of this or that system of WB alien derivations does not affect
the result : it simply gives us a comfortable basis of ALIEN to work with.
Besides, there is always the lazy option of working with the lateral alien
operators ∆∆±ω , the only drawback being that the corresponding invariants
A±ω cease to be first-order differential operators. In complete contrast, the
synthesised object very much depends on the choice of the system of WB
monomials. And in the absence of well-behaved monomials, canonical syn-
thesis would founder altogether.
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Let us now collect, in a final section, a number of useful formulas about
the twisted monomials and the associated monics.

12 Hyper-, peri-, para-logarithmic monomi-

als and monics: total closure.

12.1 Main objects and notations.

12.1.1 Hyperlogarithms, perilogarithms, paralogarithms.

Perilogarithms have indices $i = (ωi, ω
?
i ) ∈ (C?,C?).

Hyperlogarithms have indices ωi ∈ C?.
Perilogarithms have indices $i = (ωi, ω

?
i ) ∈ (C?,C?) with ωiω

?
i ∈ R+.

Perilogarithms have indices $i = (ωi, c
2ω̄i) ∈ (C?,C?).

Usually c is fixed, so that only ωi is mentioned.

12.1.2 ∂- or ∆-friendly monomials and monics.

Monics depend only on the indices ωi or $i.
Monomials depend on a variable z as well.
∂-friendly monomials behave simply under ordinary z-differentiation, but less
so under alien z-differentiation: their alien derivatives necessarily involve a
number of so-called ∂-friendly monics.
∆-friendly monomials carry behave simply under alien z-differentiation, but
less so under ordinary z-differentiation: their ordinary derivatives necessarily
involve a number of so-called ∆-friendly monics.
∂-friendly (resp ∆-friendly) monomials always carry a calligraphic V• (resp
U•) as part of their names while the corresponding monics carry an upper-
case V • (resp. U•), sometimes supplemented by a suitable string of pre- or
suffixes.

12.1.3 Total closure.

The monomials, as functions of z, are acted upon by one ordinary derivation
∂ := ∂z but by infinitely many independent alien derivations ∆ωi or their
variants ∆∆ω := e−ωz∆ω. The latter have the advantage of commuting with
the ordinary derivation ∂, but at the cost of introducing an exponential factor
and thus ceasing to act internally on the ring of formal power series of z−1.
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To highlight the ∂ ↔ ∆ duality, it is sometimes convenient to (formally)
regroup all alien derivation into one single symbol:

∆ :=
∑

∆ω ; ∆∆ :=
∑

∆∆ω

�A$ := ‖ω‖A$ := (
∑

ωi)A
$

�?A$ := ‖ω?‖A$ := (
∑

ω?i )A
$

�ωi := [∂ωi ,�]

�?ωi := [∂ω?i ,�
?]

12.2 Hyperlogarithmic monomials and monics.

12.2.1 Basic hyperlogarithms.

∆-friendly monomials U•(z) , Ue•(z) symmetral
∆-friendly monics U• alternal
∆-friendly monics US• , SU• symmetral

∂-friendly monomials V•(z) , Ve•(z) symmetral
∂-friendly monics V • alternal
∂-friendly monics VS• , SV • symmetral

12.2.2 Basic relations.

Ue•(z) = exp(z�) . U•(z)
Ve•(z) = exp(z�) . V•(z)

U•(z) = V•(z) ◦ U•
V•(z) = U•(z) ◦ V •

I• = U• ◦ V • = V • ◦ U•
1• = US• × SU• = VS• × SV •

U• = US• × I• × SU• if all ωi ∈ R+

V • = VS• × I• × SV • if all ωi ∈ R+

12.2.3 More relations.

∂ωi U•(z) = −U•(z)× (
�i
�
U•)− z�i U•(z) (294)

z ∂z U•(z) = −z�U•(z)− U•(z)× U• (295)
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∂ωi Ue•(z) = −Ue•(z)× (exp(z�).
�i
�
. U•) (296)

z ∂z Ue•(z) = −Ue•(z)× (exp(z�).U•) (297)

∂ωi U
• = + (

�i
�
U•)× U• − U• × (

�i
�
U•) (298)

∂ωi US
• = + (

�i
�
U•)× US• (299)

∂ωi SU
• = −U• × (

�i
�
SU•) (300)

∂ω :=
∑
ωi∂ωi

∂ω U
• = 0 (301)

∂ω US
• = +U• × US• (302)

∂ω SU
• = −SU• × U• (303)

12.2.4 Ordinary and alien differentiation. The ∂ ↔ ∆ duality .

(z ∂z + z�) U•(z) = −U•(z)× U• (304)

(z ∂z + z�) V•(z) = −V•(z)× I• (305)

∆ U•(z) = I• × U•(z) (306)

∆ V•(z) = V • × V•(z) (307)

with � standing as usual for multiplication by ‖ • ‖ =
∑
ωi and

Iω1 := 1 ; Iω1,...,ωr := 0 if r 6= 1 (308)

12.3 Perilogarithmic monomials and monics.

12.3.1 Basic perilogarithms.

Perilogarithms have indices $ := ($1, . . . , $r) with $i = (ωi, ω
?
i ) ∈ (C?,C?)

and a real-positive product : ωi ω
?
i ∈ R+.

Antipodal involution

# : #M$1,...,$r := M$?r ,...,$
?
1 with $? = (ω?i , ωi) if $ = (ωi, ω

?
i )
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∆-frienly perilogarithms :

primary secondary type

monomials Ua• U•,Ue• symmetral
monics U• UR•, UL• alternal
monics USS•, SSU• US•, SU• symmetral

D-frienly perilogarithms :

primary secondary type

monomials Va• V•,Ve• symmetral
monics V • VR•, VL• alternal
monics VSS•, SSV • VS•, SV • symmetral

12.3.2 Basic relations.

Ue•(z) = exp( z�+ z−1�?). Ua•(z) (309)

U•(z) = exp( z−1�?). Ua•(z) (310)

1• = USS• × SSU• = US• × SU• (311)

UR• = USS• × (�? SSU•) (312)

UL• = USS• × (�SSU•) (313)

USS• = US• × #US• (314)

SSU• = #SU• × SU• (315)

SU• = Ua•(1) (316)

12.3.3 Integral formulae for the ∆-friendly monomials and mon-
ics.

Their main ingredients are the CCI (“Common Core Integrand”) :

CCI :=
exp(−

∑
ωiti −

∑
ω?i t

−1
i )

(tr − tr−1) . . . (t3 − t2)(t2 − t1)
(317)

and the SPA rule (“Standard Path Averaging” 114) for multiple integration.

114see §7
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Monomials

Ua$(z) = SPA
∫∞

0
CCI (t1 − z)−1 dt1 . . . dtr

Ue$(z) = e‖ω‖ z+‖ω
?‖ z−1 Ua$(z)

U$(z) = e‖ω
?‖ z−1 Ua$(z)

Monics

U$ = SPA
∫∞

0
CCI (

∑
ωi) dt1 . . . dtr

= SPA
∫∞

0
CCI (

∑
ω?i /t

2
i ) dt1 . . . dtr

UL$ = SPA
∫∞

0
CCI (

∑
ωi/ti) dt1 . . . dtr

UR$ = SPA
∫∞

0
CCI (

∑
ω?i /ti) dt1 . . . dtr

SU$ = SPA
∫∞

0
CCI (t1 − 1)−1 dt1 . . . dtr

US$ = SPA
∫∞

0
CCI (1− tr)−1 dt1 . . . dtr

SSU$ = SPA
∫∞

0
CCI (1/t1) dt1 . . . dyr

USS$ = SPA
∫∞

0
CCI (−1/tr) dt1 . . . dtr

12.3.4 More relations for the ∆-friendly perilogarithms.

Monomials:

∂ωi Ua•(z) = −Ua•(z)× �i
�
U• − z�iUa•(z) (318)

∂ω?i Ua
•(z) = +z−1 Ua•(z)× USS• ×�?iSSU• − z−1�?i Ua•(z) (319)

z ∂z Ua•(z) = (−z�+ z−1�?)Ua•(z)− Ua•(z)× (U• + z−1 UR•) (320)

Monics:

∂ωiU
• = +(

�i
�
U•)× U• − U• × (

�i
�
U•)−�i UR• (321)

∂ω?i U
• = +� ((�?i USS

•)× SSU•) (322)

∂ωiUSS
• = +(

�i
�
U•)× USS• (323)

∂ω?i USS
• = +USS• × (

�?i
�?

#U•) (324)

∂ωi SSU
• = −SSU• × (

�i
�
U•) (325)

∂ω?i SSU
• = −(

�?i
�?

#U•)× SSU• (326)
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∂ωi US
• = +(

�i
�
U•)× US• −�i US• (327)

∂ω?i US
• = +US• × (�?i

#US•)× SU• (328)

∂ωi
#US• = +SU• × (�i US

•)× #US• (329)

∂ω?i
#US• = + #US• × (

�?i
�?

#U•)−�?i #US• (330)

∂ωi SU
• = −SU• × (

�i
�
U•)−�i SU• (331)

∂ω?i SU
• = + #US• × (�?i

#SU•)× SU• (332)

∂ωi
#SU• = + #SU• × (�i SU

•)× US• (333)

∂ω?i
#SU• = −(

�?i
�?

#U•)× #SU• −�?i #SU• (334)

12.3.5 Yet more relations for the ∆-friendly perilogarithms.

The partial differentiation rules relative to

∂ω :=
∑

ωi∂ωi and ∂ω? :=
∑

ω?i ∂ω?i

though deducible from the above, are also worth mentioning. They become
particularly useful in the paralogarithmic case, since

∂ω ≡ ∂ω? ≡ 1/2 c ∂c ≡ c2 ∂c2

∂ω Ua•(z) = −Ua•(z)× U• − z�Ua•(z) (335)

∂ω? Ua•(z) = + z−1 Ua•(z)× UR• − z−1 �Ua•(z) (336)

∂ω U
• = ∂ω? U• = � ((�? USS•)× SSU• = −�UR•

∂ω USS
• = ∂ω? USS• = +U• × USS• = USS• ×#U•

∂ω SSU
• = ∂ω? SSU• = −SSU• × U• = −#U•SSU•

∂ω US
• = +U• × US• −�US• (337)

∂ω? US• = +US• × (�? #US•)×#SU• (338)

∂ω SU
• = −SU• × U• −�SU• (339)

∂ω? SU• = +#US• × (�? #SU•)× SU• (340)
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12.3.6 A glimpse of the ∂-friendly perilogarithms.

(z ∂z + z�− z−1�?) Va•(z) = −Va•(z)× Ja•(z) (341)

with an elementary, one-component mould Ja•:

Ja$1(z) = Ja
($1
τ1

)
(z) := 1 if τ1 = 0

:= cz−1 if τ1 = 1

Ja$1,...,$r(z) = Ja
($1
τ1

,...,
,...,

$r
τr

)
(z) := 0 if r 6= 1

and with discrete indices τi ∈ {0, 1} .

12.3.7 From ∂- to ∆-friendly .

Ua•(z) = Va• ◦ U• (342)

which is short-hand for

Ua$(z) =
∑

{ $1...$s=$
s≥1 , τi∈{0,1}

}

Va( ‖$
1‖

τ1

,...,
,...,
‖$s‖
τs

)
(z) U

( $1

τ1
)
. . . U ( $s

τs
) (343)

with

U$ = U
( $
τ0

)
:= U$ if τ0 = 0

:= UR$ if τ0 = 1

12.3.8 Resurgence equations.

∆U• = I• × U• ( with indices $i) (344)

∆V• = V • × V• ( with indices $i :=
($i

τi

)
) (345)

The endearingly simple relation I• = V • ◦ U• connecting the ∆- and ∂-
friendly hyperlogarithmic monics carries over to the perilogarithmic monics,
but with doubled storeyed indices $i = ($i

τi
) in the moulds and a double-

storeyed mould composition ◦ interpreted as above.

12.4 Paralogarithmic monomials and monics.

We now replace the antipodal involution :

(#M)$1,...,$r := M c2$̄r,...,c2$̄1 (346)
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by the more convenient variant :

(]M)$1,...,$r := M $̄r,...,$̄1 (347)

and we get these relations for monics :

]SSU•c = SSU•c (348)
]USS•c = USS•c (349)

]U•c = SSU•c × U•c × USS•c (350)
]UR•c = SSU•c × UL•c × USS•c (351)
]UL•c = SSU•c × UR•c × USS•c (352)

and this key antipodality relation for monomials :

(]Ua)•c(z)× (Ua)•c(c
2/z) ≡ SSU•c (353)

The integral formulae of §12.3.3 remain unchanged, except that the extreme
factors (y1 − 1)−1 and (1 − yr)

−1 become (y1 − c)−1 and (c − yr)
−1. One

should always integrate along the axes arg(ωi yi) = arg(ω̄i/yi) = 0 and heed
the “SPA” rules of mutual bypassing whenever several consecutive Arg(ωi)
coincide. The partial differentiation rules for the perilogarithms particularise
to the paralogarithms.

PS. I wish to thank David Sauzin for checking the formulae of §12.
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