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Abstract As mathematical objects, finite trees would seem to be nearly as basic
and ubiquitous as the natural integers, were it not for their apparent ‘chemical
inertness’, by which we mean the paucity of natural operations (of any given
arity) defined on them. The present paper tries to redress this state of affairs
by bringing trees into close relation with Flex(&) — the flexion polyalgebra gen-
erated by a so-called flexion unit €, and by uploading the rich structure of that
polyalgebra onto trees. The rapprochement also benefits Flex(€&), leading in par-
ticular

(i) to a neat filtration by depth and alternality codegree,

(ii) to exact formulae for the dimensions that go with that filtration,

(i1i) to remarkable expansions for all the main elements of Flex(€).

We conclude by introducing the notion of pre-associative algebra, parallel to
that of pre-Lie algebra and potentially capable of rendering roughly the same
services.
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1 Introduction.

1.1 Flexion algebra.

Flexion (poly)-algebra has been around for some 22 years. It deals with bi-
moulds, i.e. functions of double strings of variables (u;’s and v;’s) of any length,
and with a host of bimould operations that typically add the u;’s (clusterwise)
and subtract the v;’s (pairwise). It possesses a central involtion, swap, and
excels at handling double symmetries, i.e. symmetries that simultaneously af-
fect a bimould and its swappee. Flexion algebra originally arose in Analysis, to
describe some intricate resurgence patterns. It was later applied to multizeta
algebra to elucidate the fascinating subject of arithmetical dimorphy. But it is
also a subject with definite contours and great inner unity, well deserving of
being studied for its own sake.

1.2 Tree algebra.

Trees, of course, make out an important and sprawling chapter of graph theory,
but it is only recently that they entered algebra proper, thanks in particular to
seminal papers by F. Chapoton, M. Livernet, D. Manchon (see §11.6). These
authors equipped trees with a natural pre-Lie product, and derived therefrom,
among other results, a precise description of free pre-Lie algebras.

1.3 The encounter.

Even prior to this paper, trees and moulds were no strangers to one another.
Indeed, in [E-V], we had developed the so-called arborification-coarborification
technique, which in many situations of Analysis restores convergence in ex-
pansions of mould-comould® type Y, M* B, by changing them? to expansions
D<M *~ B,=, formally equivalent but no longer divergent.?

The present paper, however, is about a quite distinct mathematical en-
counter, namely the match between
(i) the polyalgebra Flez(€) generated by a flexion unit &

(ii) the free pre-Lie algebra UT on unordered trees, equipped with its standard
pre-Lie product, and its natural extension OT to ordered trees.

As it happens, when equipped with a suitable pre-Lie product and a suit-
able basis, Flez(€) maps naturally onto OT and the alternal part Flez® (&) of
Flex(€) maps naturally onto UT.

Like with most such mathematical rapprochements, both sides stand to ben-
efit, but here it is tree algebra that gains most. In very rough terms:

(i) Flexion algebra gains very convenient, tree indexed bases, which in turn lead

1Here, M* denotes a scalar mould, and Be a operatorial bimould — typically, a string of
differential operators.

2by means of the dual tranforms M~ = D M¥, Bo = X <0, B~ that turns
ordered sequences w into partially ordered ones w=<.

3The reason the magic works is that, in most instances, the change hardly affects the size
of the mould part but drastically shrinks the comould part: |M“’<\ ~ |M%¥|, |Bu<| << |Bw|.



to a resolution of the long-standing problem of ’alternality stratification’: cal-
culating the dimensions of the subspaces of Flex(€) of depth r and alternality
co-degree d.

(ii) Tree algebra experiences a massive influx of structure, with the full array of
operations (inflected or non-inflected) defined on Flex(€) and Flez®(€) auto-
matically carrying over to OT and UT.

1.4 Articulation of the paper.

e §2: We begin with some reminders on pre-Lie calculus. We then show
how to improve the usual pre-Lie formulae (for group composition, group
inversion, group iteration, group-to-algebra logarithm) by relying on just
two types of bracketings — backward inside forward — rather than on the
general bracket combinations commonly used. Besides being more eco-
nomical (they carry far fewer terms), the new formulae have the added
merit of uniqueness and expliciteness.

e §3: We illustrate the technique on the group of identity-tangent diffeomor-
phisms, and investigate in passing two ‘exotic’ pre-Lie products alongside
the ‘exotic’ group laws that go with them.

e 84: To set the stage for the encounter between flexion and tree algebra,
we give a short introduction to the lesser known of the two: flexion algebra
(a subcategory of mould and bimould algebra), with special emphasis on
the prototypal case of the algebra Flex(€) generated by a ‘flexion unit’ €.

e §5: From the very start, flexion algebra has made liberal use of pre-Lie
products, but here we introduce yet another type, the so-called semi-
inflected pre-Lie product dle, which commends itself on at least three
grounds:

(i) it preserves the alternality of bimoulds, which the earlier pre-Lie prod-
ucts (whether uninflected or fully inflected) did not

(ii) it generates the whole algebra Flez(€) from € alone, which none of
the ealier products did

(iii) it shall prove admirably suited for the future link-up with tree algebra.

We then use the pre-Lie product dle and a kindred, 'pre-associative’ op-
eration dme to construct multilinear operators:

clt : (A5, A3,..., A%) — B* = caltas (A},..., A?)

with the unexpected property that the alternality of B® as a bimould
decreases, in an exactly quantifiable way, when the alternality of calt, as a
function of its arguments A?, increases. We actually construct three such
operators, calt, calt, calt. Though all three share ‘counter-alternality’ and
seem equally promising, on closer examination calt proves the best choice

by a long stretch.



e §6: There exists on Flez(€) an appealing basis, naturally indexed by
binary trees and quite simple to construct, but with the downside that
none of the flexion operations possesses a transparent expression in that
basis. To remedy this, we harness the counter-alternators to construct two
new bases. The simpler of the two, indexed by ordered trees, will facilitate
the link-up with tree algebra (§8). The other one, indexed by stacked trees
(which are carefully crafted linear combinations of ordered trees), will help
clarify the structure of Flez(€) through a filtration according to alternality
(§7). The upshot is that we must juggle three distinct bases, but this isn’t
nearly as bad as it sounds, since the matrices connecting these bases admit
remarkable expressions, directly in terms of the underlying trees (§6.8).

e §7: This section, technically the most demanding, solves the delicate prob-
lem of splitting each space Flez,(€) into subspaces @4Flex, 4(€) of alter-
nality co-degree d, i.e. consisting of bimoulds which, when contracted
with differential operators, yield a result of differential degree d. Rather
than directly calculating dim(Flez, 4(€)), for which there exist no closed
formulae, we form the generating series of these dimensions with the help
of some remarkable special polynomials, the so-called ’pilot polynomials’.

e §8: This section returns to the basis indexed by ordered trees to show
how all useful operations on the polygebra Flez(€) admit transparent in-
terpretations in that basis. Thus, the uninflected Lie bracket lu reduces
to attaching two trees to each other, while the inflected Lie bracket ari re-
duces to grafting two trees onto each other. Strictly speaking, this applies
only to the basis that relies on the ’good’ counter-alternator calt. But the
parallel constructions relying on calt or calt also have their uses, especially
for expanding the push-invariant or bialternal elements of Flex(€).

e §9: As it happens, the monogenous polyalgebra Flex(€), which is in every
way the core and marrow of the polyalgebra BIMU, possesses its own core
and marrow, consisting of the bisymmetral bimoulds pal® and pil®, and
it is truly gratifying to observe that these two bimoulds, along with the
numerous alternal or bialternal bimoulds naturally attached to them, tend
to admit surprisingly explicit expansions in the new bases of Flex(€).

e §10: The interpretation of all flexion operations in terms of the ordered
tree basis of Flex(€), apart from leading to a massive enrichment of ‘tree
algebra’, also acts as an invitation to put the whole thing on a clean
axiomatic basis to unleash its full potential. The result is the two notions
of pre-associative* and Janus algebra.

Pre-associative algebras relate to associative algebras as pre-Lie to Lie.
But pre-associative algebras also ‘enfold’ pre-Lie algebras in much the
same way as associative algebras ‘envelop’ Lie algebras. The upshot is an
elegant four-fold ‘unfolding’ of Lie algebras, which helps clarify a host of

4Mark that it has nothing to with what sometimes goes by that name in the literature.



notions such as degree, co-degree, counter-alternator, u-generator etc. We
describe the structure of free pre-associative algebras, their various strat-
ifications and dimensions, and provide some examples of pre-associative
algebras, some free, some not.

Whereas pre-associatice algebra, strictly speaking, merely extends the un-
inflected or semi-inflected operations on Flez (&), the richer (but still in-
choate) notion of Janus or bifrons algebra purports to take on board the
fully inflected operations as well, beginning with the ari bracket. However,
it deliberately leaves out the involution swap and the whole ‘dimorphy’
aspect, because adding these would impose far too many constraints and
practically shrink the construction to something isomorphic to bimould
algebra.

e 8§11: For illustration, and also to palliate what may be an excessive con-
ciseness in parts of the exposition, we provide extensive tables, notably on
the connection matrices; the pilot polynomials; the co-degee dimensions
and their generating functions.

e §12: We wind up with a list of the most salient results, and hint at some
open questions and possible developments.

2 Pre-Lie calculus: optimal formulae.

2.1 Some auxiliary moulds.

Let us settle some notations:

Let G be a Lie group with elements A, B, ... and the group law: A, B — Ao B.
Let L be its Lie algebra with elements Ay, By, ... and the Lie bracket: Ay, By —
[A*7 B*]

Let there be a pre-Lie bracket®: Ay, By —> <A*, B*> or® A, B — <A7 B>

<..<<A1,A2>,A3>, ...,Ar> will get abbreviated as <A17 ...7Ar> or <A1, ...,AT>H
<A1, - <Ar,2, <Ar,17 AT>>..> will get abbreviated as <A1, s Ar> or <A1, - AT>H

n times
(-((A,A),A), ..., A) will get abbreviated as A
n times

<A, e <A7 <A,A>>..> will get abbreviated as A«

We take as our starting point the fact that each Lie group exactly determines
its Lie algebra, but that a Lie algebra determines its Lie group only up to
isomorphism. However, when there exists a pre-Lie operation behind the Lie

5Actually, a right pre-Lie bracket, i.e. one whose commutator <A*, B*> — <B*,A*> co-
incides with the Lie bracket [As, Bx] and whose associator <A, <B,C>> — <<A, B>,C’> is
symmetrical in the last two arguments B, C.

6The pre-Lie bracket will act mainly on elements Ay, By... of the Lie algebra, and occa-
sionally on elements A, B... of the group itself.



bracket, with it goes a privileged realisation of the Lie group, induced by the
mapping:
r times -
algebra — group : Ay — A= Z ] <A*7...7A*> (1)

1<r

That mapping can then be reversed by brute force, that is to say, by treating
the pre-Lie bracket as if it were an arbitrary binary operation subject to no
other constraint than bilinearity. The result is what we may call a raw expan-
sion. Via transfer of the Campbell-Hausdorff formula from algebra to group, it
eases the way for two new raw expansions — one for group composition, an-
other for continuous iteration. These expansions are raw not just on account of
their rough mode of derivation, but also in the sense of involving close to the
maximum number of summands, namely (,( 1)), at each order r — far more,
as it happens, than strictly necessary. To improve on that, we must take into
account the functional identities of the pre-Lie brackets. The result will be opti-
mal expansions, that involve at most 2" ! summands at order r, all of the form
leftward within rightward,” with the added bonus of explicit coefficients (absent
from the raw expansions).
Let us first introduce a few moulds essential for the sequel:

Lemma 2.1 (The auxiliary moulds San®, Zan®, Lit®, It? ) .
The moulds San®, Zan® on N defined by San® = Zan® =1 and

1
San"mr = (=) S ErEE—— 2
( ) 1@1_‘[@- ni+...+n; ( )
1
Zan™ ol = (—1)B" SEE— 3
( ) 1<j]lr nj+...+np ( )

are symmetral and mutually inverse (for mould multiplication).
The mould It;, on N equivalently defined by (4) or (5)

15— (w—j) (

Grnyr oAt - )™ )

It), = w.l®+ Z

1<k<'r

. [t w+d) o e
= wl®— Z( )kT)](Zan —1)k (5)

1<k<r(o)

s mot symmetral, but verifies the difference equations

Ity, ., = It x San® +1° (6)
It; , := It} x Zan® — Zan® (7)

and the reflection equation
Ity, + anti.pariIt]_, = 1° (8)

i.e. of the form <A — LAc .., Ac >H .
14n,  7nr o



Lastly, the mould Lit* on N equivalently defined by (9) or (10) or (11)

e . (=D* o qeyxk
Lit* = 1°+ San® — 1 9)
1<k§r(-) (k+1) ( )
. (71)]c . o\ Xk
= 1°— ———— (Zan®* -1 (10)
1<1§r(-) k(k+1) ( )
= Oplt? o (11)

verifies only ‘traces’ of the reflection equation (see below).

Proof: The moulds Hit! and varHit;, defined by (4) and (5) respectively are
clearly the only solutions of (6) resp. (7) that vanish for w = 0. But since Hit;,
and varHit;,, by construction, commute with San® and Zan®, it follows that
the relations (6) and (7) are equivalent. Hence the identity Hit;, = varHit,,
and the equivalence of (9), (10), (11).

Note that Ity = 0°,It] = 1°,It5 = San®,It* | = —Zan®. Note, too, that
for w in Z (resp. not in it) the mould It;, along with its arborified and anti-
arborified variants, grows exponentially (resp. super-exponentially) as the depth
r(e) increases.

Remark: some properties of Lit°.
(i) Zeros of Lit*. Setting 2" := (x,...,z) (ntimes), we have:

Lit'"

= 0 ifnodd (12)
Lit'™2 = 0 ifnodd (13)
Ltz = g w1 (14)
Lit™ 12 = 0 yns1 (15)
(ii) Link with the Bernoulli numbers:
. ql2n] By,

Litt" " = VYn =1 16
' 2n)! " (16)

. 1[p] o qld] 1 By (p+9)!\ .
R i ox' s | —1)? dd (17
! 2 (p+q+1)! ( +(=1) p! q! ) if p+q odd (17)

Ll 30 a3t 2 (1) Bpigiz  (p+q)!
(p+q+2)! pl¢

Ligt713.000 i 3 (—1)7 Bpign  (p+9)!
(p+q+1)! plg!

if p+q even (18)

if p+q even (19)

(iii) Faint traces of the reflection equation (8) :
On average, Lit® + anti.pari.Lit® is much smaller than Lit* — anti.pari.Lit®.

. ,11P] 9 1la] 1lal o 1lp]
In particular Lit! T2 L Lt 2 = 0 for p+q even. For p+q odd, see (17).



(iv) Stability under arborification. As a special instance, we get the identities:

IR Ly (20)
oe&(r) B rlong.oone Y

1 (=1)" X T times
D1 Litterronem = L DT (21)

rl ni...n
oce&(r) 1 T

2.2 Optimal formulae.

Let us now enuntiate straightaway the optimal formulae, using the notations
and special moulds of the previous section.

Proposition 2.1 .
Algebra-to-group exponential:

1 1 T times -
A = Y S A= ) (A As) (22)
1<r 1<r r
Group-to-algebra logarithm:
Ae = A+ ) Lit"™r (A AL A )T (23)
1<r,1<n,; ! "
= A+ D Litet(Ao L Ag )T (24)
1<r,1<n;
Group law of G:
AoB = A+B+ > San™ " (AB; ,..B; ) (25)
1<r,1<n, ! "
Inversion in G:
AT = A= YT Zan™tm (A AL A )T (26)
1<r,1<n; ! "
— _A- Z Zian LT <A1In1""’Aﬁr> (27)
1<r,1<n;

Continuous iteration in G:

A" = wA+ Y Tt (A Ay LA )T (28)
1<r,1<n; ! "
— wA+ Z Itglv--vn?‘ <A1:n1,...,AZT>_> (29)
1<r,1<n,

Proof of formula (25) for the group law.
We first check it in a case of special interest to us: A = a(x), B = b(z), {A, B} =
a’(x) b(x). Let us denote by F,, the n-linear term on the left-hand side of (25)

10



and let us check inductively that F, = % a(™ . If the relation (clearly true for
n = 1) holds up to n — 1, it also holds for n, due to the identity:

—1)k-1 . _
B, — 2 %En,kBk with By, := (b')k ) (30)

1<k<n

Indeed, in the above sum, the term of index k=1 contributes the required result
Z—T a™, while all other contributions, of type (% b»=* (b')* and stemming
from the terms of index k and k+1, cancel out pairwise.

However, this doesn’t quite clinch the proof, as the bracket {a, b} = a?(z) b(z)
doesn’t define a free pre-Lie algebra. So we now turn to local vector fields on
C? and to the pre-Lie bracket

A=Y ai() O,

B =Y i), 81)

{A, B} := > b;(00, @) 0, with {

which for s =00 (but for no finite s) does indeed define a free pre-Lie algebra.
The proof is on the same lines as in the case s=1, with the induction-enabling
identity (30) still in force, and the terms E,,, By re-interpreted as:

n;=0 7

E, :=Een,ié’$i with  ey,; = Z (H%) Opt...0p a; (32)
Snj=n 3§ 7

By =) brifs, with bei = > (3s, bjy ) (0n),b5).(0ay b)) (33)
J1seesdk

Proof of formula (28) for continous iteration.
Apply the composition law (25) with (A°“, A) in place of (A, B) and use the
functional equation (6)-(7) for the mould I¢;,.

Proof of formula (26) for group inversion.
Treat this as a special case of continuous iteration for w = —1 and use the
mould identity [t*; = —Zan®.

Proof of formula (23) for group-to-algebra logarithm.
Differentiate in w the formula (28) for continuous iteration; then set w = 0 and
use the mould identity (11).

11



2.3 ’Optimal’ vs 'raw’ formulae:

Let us compare the raw and optimal formulae up to order 5.

raw  erpansion | optimal  expansion
(AoB),,, = A+B | (AoB),,, = A+B

+1 (A, B) [ +1 (A, B)
+1 ((A,B),B +1 ((A,B),B
N | I
+% ((A,B),B), B) I +% (A, B),B), B)
I UREA N 1 a8 5
-1 ((A,B),(B,B [ -3 ((A,B),(B,B
J% A,(B,(B, B) I +§ gA,<B7<B,B>§
+T12 Aa<BVB>’B> ”
+3; (((4.B),B).B),B) | +3; (A, B).B),B),B)
—15 ({(A(B.B)),B),B) | —5; ((A4.(B,B)).B).B
—& ((A,B).(B,B)),B) | —+ ((A,B),(B,B)),B
5 )8! | I TR
& Q4 3).B) (BB | T daB) ). (B)8Y
iR Al IR
e ) | SR
+31 (4.(B.B).B)),B) |
+31 (4.B).(B.B).B) |
+0 A,<<B,B>,B§,B> [
—31 A,§B7<B,B>7B> ||
—31 (A (B.B).(B.B)) |
—31 (A(B.(B,B).B)) |

+O(A BY) | +0O(A B?)

Starting from the terms of order 4, the optimal expansion differs from the raw

expansion: it carries only 2"~ non-zero summands of order r+1 whereas the

raw expansion has nearly all possible ((TQ;_)Q,)T', summands affected with non-zero

coefficients. Denoting by

+((4,B),C) = (A,(B,C))

—{(A,C),B) + (A,(C,B)) (34)

li(A,B,C) := {

the generators of the pre-Lie ideal® I and defining A as in (?7?), we find for the
terms of order 4 and 5 the identities

1 .
((AOB)raw - (AOB)eco)4 = E li
1 [420(A, By, Bo)+(A, li(By, By, B<))
24 | +i((A, By ), Bo, Bg)+(li(A, B, Bs), B<)

(Aa B‘Ia B‘E)

((AoB)raw — (AoB)eco)5 =

8i.e. the ideal I such that .

12



which confirm that the two expansions do coincide modulo I.

raw
AZL =

raw

+
[y

+ + + +
P s s O = N[ N

+

[aela~ige

|
|
""oo\»—@
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Starting from the terms of order 4, the optimal expansion starts differing from,
and improving on, the raw expansion: at order r it carries only 2"~! non-zero
summands, whereas the raw expansion has nearly all possible summands affected

expansion | optimal
—A || A;;t =
(4,4) | +1
(4, 4).4) I =3
(A, (A, A)) I -3
<§<A,A ,A;,Ai || +%
Gidapa o
(i (aay | ol
éA, éA, (A, A>§§ [ +3
A, A7A>,A [

(g a01 -
((A. (4, 4)),4), 4) | =5
) T
é A, (A (A A)) [ ~a
aa ey
(o (aap a2
adnid a4
idasi
EA» A). (4, A§7 |

(A, (4, A), A), A

(A, (A, (A, A, A) |

§A7 (4, ). (A, A)) |

A (A, (A, 4), Ay |

+0(4°%) ||

with non-zero coefficients. Denoting by

li(A,B,C) := {

the generators of the pre-Lie ideal® I and defining A asin (??), we find for the
terms of order 4 and 5 the identities

(Apdw — AZL

raw

(Apd — AZL

rTraw

eco)4 =

eco)5 =

9i.e. the ideal I such that .

1 .
E lZ(AT, AT, AE)

1 1
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which confirm that the two expansions do coincide modulo I.
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AW  eTPansion | optimal  expansion

Alha = @t+1)aA || ASE 4+ 1A
+3 (=1 (4,4) II +5 (=1 (A4,4)
+ot(t? — %) (A, A), A) [ FEt(t? — %) (A, A), A)
—1 (=1 (A,(4,4)) I —1 (=1 (A,(4,4)
+a1 (2= 1)? ((4,4),4), A I +a7 (2= 1)? ((A,A4),4), A
—ee - éA, <A,A>§,A§ | —&@=he-H {4 <A,A>§,A
—Lt2-1) ((4,4),(4,A) | -5 @ -2 E+1) (4,4), (A A)
12000 1 ! tie 1
Jrlg 82 - %; gia Efii <jll>, fizig “ +€ (t - Z) <Aa <A, <A7A>>
tor 7 — 1 (A4 A);
+ﬁlot(t21—i)(t2:1—72) §§<A,A ,Ai,Ai,Ai I Tﬁt(tﬁ-% (t;—%) <A,A>,Ai,A
—Tls(ﬂ— %)2 A (A A)), A), A |—@(t2—1)1(752—g 1—1) A (A A)), A
P (A Ay a0 = E (A ), (4,4)
bt (=) (A (A (A AN, A) | +& (2= (t—3) (A4, (4,(4,4))
—L (=52 ((A,4),4), (A A) |-AE-H#2+2t-1) ((4,4),A), (4, A
e b {4 <A,A>§, éA,A i || she@- 1) (A <A,A>§, éA,A
+it(t§ — %) (A, A), (A (A A |+ (2 - %) (2t + %) A A) (A (A A)
—H5 (=) (A (A (4 (4 A)) | L - (A
FHEE 1) (A (A4 A) A)A) |
+tat(t? = 1) (A,4), (A A),A) |
+0 (A, §<<A,A>7A JAY |
_$ (t2 - %) A7 <A7 <Aa A>>7 A>> ”
o) e
1 (=) (A (A (4,4),4) |
+0(A%) [ +0O(A®)

Starting from the terms of order 4, the optimal expansion starts differing from,
and improving on, the raw expansion: at order r it carries only 27! non-zero
summands, whereas the raw expansion has nearly all possible summands affected
with non-zero coefficients. Denoting by

+(A.B),C) = (A.(B,C)

~{(A,C),B) +(4,(C,B)) (36)

li(A, B,C) :={

the generators of the pre-Lie ideal'® T and defining A< as in (77), we find for
the terms of order 4 and 5 the identities

t+1 t+1 1 L
(Ara'z211 - Aeco2)4 = ﬂ (t2_1) ZZ(AT7AY’A5>
(ALhh — AtEh) - L(tz,l) H6li(A, A, Ac) +3 (A, li(Ag, A, Ac))
5 144 4 +2tli(AE,AT,Ag)—i—Zt<li(AT,AT,A§),AY>

which confirm that the two expansions do coincide modulo I.

10i.e. the ideal I generated by the two functional identities of the pre-Lie bracket <., >
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2.4 Alternative expansions.

The expansions we have just constructed are optimal only in the sense of mini-
mizing the number of elementary summands at each order r. But there exist al-
ternative expansions that sometimes look simpler, and more appealing, because
involving fewer basis elements!'! in this or that standard basis of PreLie,.(A),
by which we denote the set spanned by all multiple pre-Lie brackets of arity 7.
We shall give here three instances of such alternative expansions, using three
distinct bases of PreLie,(A). The corresponging basis elements being naturally
indexed by unordered, rooted trees, let us say a few words about these.
Unordered, rooted trees ut, ; admit a decomposition

rm+..+rg=r—1

(37)
Uty k; < Ubry gk

Uty = h(uty, gyy..o,Ubpy k)  with {

i+
with 7 the total node number; with uf,, x, the subtrees attached to the root
node; and with an indexation k € [1, 5(r)] reflecting the tree ordering. They
also admit a full ordering < inductively defined in this way: we set ut, ; < ut,
iff either of the three following relations hold

(1) r<r
(i7) r=1r" but d<d
(@3) [ryd k1, kjoa] = [, d' Ky, K ] but Ky < K for some j

This ordering has the advantage that many functions attached to unordered
trees ut, ) turn out to be independent of r, or elementarily dependent on it.
One such function is the multiplicity u™* = uy of ut,y , i.e. the number of
rooted, ordered trees which reduce to ut,  after obliteration of the order.12

Assuming at least a fleeting acquaintance with the three bases {ut, 1}, {it, 1},
{at, } of PreLie,(A) to be constructed in §8.3 as images of the bases {iite, 1},
{iite,. .}, {iite, )} of Flez®(€), we can now proceed to present our alternative
expansions, first in the basis {at, ;}, then in {4t x} and {at, 1}

Proposition 2.2 (Alternative expansions in {ut, }) .

A = tA+ YT > (Bigalt) = Bia(0)) TR at, x(A)  (38)
2<r 1<k <s(r)

ATV = A+ Y DT (d+1) BaTat, i (A) (39)
2<r 1<k<s(r)

Ae = A+ > ()" (d+1) Ik at, . (A) (40)

2<r 1<k<(r)

1 No contradiction there: it is simply that each of these basis elements resolves itself into a
sum of elementary summands. But this in no way diminishes the importance of the alternative
expansions.

12Don’t mix up the ordering on the set of unordered trees and the internal order of an
ordered tree, i.e. the order on the edges issuing from a given node.
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with the Bernoulli numbers By and polynomials By(t). The rational coefficients
' are defined by the recursion:

d

k= (dil)'r”“”ﬁ‘..r’”d“fkd (41)
1

Lk = —d%BdF“k (42)

with the initial conditions TV = 1,121 = =L Ifd > 1, thenr;j+1 < r for all j,
so that (41) is properly inductive. If d = 1, (41) becomes tautological, but then
(42) springs by to save the induction.

N|—=

Remark 1. When the pre-Lie product derives from an associative product, i.e.
(A1, Ag) = (A1, A2) — (As, Ay) with (.,.) associative

all r-linear terms ut, x(A) in A coincide !* and the expansions (38)-(40) reduce
to

I
—
\
—_
~—
i
—

Z pu T (Bd+1 (t) — Ban (0))

1<k<s(r)

Z Lk Fr—f—l,k = (44)

2r
1<k<se(r)

Remark 2. The link-up between the ’alternative’ expansion (38) and its 'opti-
mal’ counterpart (28) is via the identities:

riteetrs=r—1

Una(A) == >, TrFat,(A) = > O (A s A )T

147, ’
stem (ut, ,)=d d<é<sr—1

The less important coefficients C'j also verify their own induction, but let us
simply mention the relations:

C;hm,rs = (_1)dféc;5,m,ﬁ (45)
r—1 times
— 1 .
=5 d=r—-1
chob _)w ifd=r (46)
0 if d<r—1

Remark 3. The coefficients involved in the expansions (38)-(40) are one more
instance of scalars attached to trees ut, ) that depend essentially on k and
trivially on r. Indeed, we may set:

g 1= 2R for the integer v such that »(r—1) < k < 3(r) (47)
v = 2rTipnk for all integers r such that k < s<(r—1) (48)

Bwith pu™* = uy the multiplicity factor as above (cf beginning of §2.4).
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The above induction for I'™** then simplifies to

2d .
YW = @ ViR with d = dg (49)
7;: = —(d+1)Bg v with d = dy, (50)
with the attendant identities
t!
S e Ban() - Ban(0) = (-1 (5D)
i (t—r)r!
2r—1
> mE = - (52)

1<k<s(r) r
In the four identities above, d = dj > 2 is the number of edges issuing from the
root node of the tree ut, x, for the only integer r such that s»(r—1) < k < s(r).
The rule makes no sense for k = 1, but in that case we set d; = 0 and (50) then
reduces to 7§ = —y; = —1.
Here are the sequences {7} and {7} up to k = »(6) = 20, along with the
multiplicities py and the stem numbers dj, involved in the relations (43)-(44):

k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
wl 13 535 3 35 5 3 45 5 35 5 0 5 3 3 3 3 1
W42 F 0 FF A 0k F 02 F 00 0 g
we | 1 1 2 1 2 2 1 3 1 2 2 4 2 2 2 3 3 3 4
dp | 0 2 2 3 2 2 2 3 4 2 2 2 2 2 2 3 3 3 4
Proposition 2.3 (Alternative expansions in {ut,} and {ut, 5} ) .
The simplest expansions in the bases {ut, ,} and {Ut, } are
A% = 24+ (=1t . (A) (53)
2<r
1<k<s(r)
ATH = At YT atek(A) (54)
2<r
o—1 o
AT = A= Y it (A) (55)
2<r
1<k<s(r)
Ay = A+ ) It (A) (56)
2<r

with coefficients ¢™* that depend only on uty ) as a non-rooted tree. In other
words, ¢"* = ¢"F2 when utr, and ut,p, coincide as graphs, after erasure of
the orientation on their edges.

Thus, in (??) the 5-linear terms consist of three clusters
+as (tts(A) + ats 5(A) + uts 7(A))
o (Uts2(A) + ats3(A) + atsg(A) + uts s(A))
—55  (itsa(A) + ats59(A))

18
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corresponding to the three non-rooted trees with 5 nodes.
Like the coefficients T'"** of (43)-(44), the new coefficients ¢™** are given by
a simple induction, but based this time on non-rooted trees. Thus we find:

|
7,1 T

c’ = o oimre—in (57)
[
r! :
g2 = JosoeEy o edd (53)
0 if r even
) = en#0) — B (= Bernoulli number) if v =3 (59)

Note that the number 5(r) of non-rooted, unordered trees with r nodes is much
less than the number »(r) of rooted, unordered trees, since (r) < »#(r—1). In
fact, their respective generating series relate like

$0 = X0 e g v {50720 @

The series X (t) is the more basic of the two, being directly calculable from the
relation:

X(t) = texp()] %X(t’“)) (61)

1<k

3 Exotic pre-Lie products and exotic functional
composition.

3.1 The pre-Lie products {a, b} and {a, b} .

[

Consider the group G of identity-tangent local diffeomorphisms of C in its three
main incarnations, corresponding to germs of type:

[ttt Y, ottt t small (62)
footmt+ 3, Batt t large (63)
frtmt+3 e ™! R(t) large (64)

The group law of G is ordinary composition (f,g) — f o g. The corresponding
Lie algebra L has for bracket

[fi: 95] = fi 95 — fa 95 (65)
with fy, g+« standing for the infinitesimal generators of f, g.

Proposition 1. The Lie bracket (65) is induced by the classical pre-Lie product
(66) as well as two others ‘exotic’ pre-Lie products, namely:
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(i) the one-parameter family (67)
(i) the isolated pre-Lie product (68)

(Forg)™ = fige—o j(f; 0) = f(f::g* (1 —0) fLdl) (67)

(fir94)"" = f;g*—ff*g* ” (fi g%) :f 4 94) ”f (i g (

_ S(t) fx(s)ds for f of type (62)
§.°fx(s)ds for f of type (63)-(64).

with (§ f+)(t)

(4] ETTO
.

3.2 The exotic compositions oJ* and o

There is a standard way — two ways, actually'* — of expressing a group law in
terms of the underlying pre-Lie product. In the present instance, however, we
can do better than express o™ or o in terms of {.,.}¢* or {.,.}*™°. We
can directly relate the exotic composition to the standard one, via the detour
through the common Lie algebra I :

f=id+f € G

N\
X L s f«
s
fCIO — Zd +Ji'exo c Gezo
and the explicit mappings:
f f**Z,L' <f>l<7 7f*> f*:fJFZ&—» <i77f>

. 5 . (69)
fezo f +Z - <f*7 .7f*>€l0 f* ziezo +ZC<—> <‘ie$o,“.,‘iemo>el0

—

The algebra-to-group formulae (118-left) involve multiple pre-Lie brackets < . >

or <...>€IO with forward parenthesising, so that at depth n we have just one
term, with coefficient 1/n!. The group-to-algebra formulae (118-right) also in-

volve multiple pre-Lie brackets <> or <...>ex0, but with a mixed forward-
backward parenthesising and suitably chosen rational coefficients c.,. The ex-
pansion here is no longer unique, but uniqueness can be restored if we exclude
(except in initial position) triplets of the form <<0, 0>, 0>. We then get the so-
called pared-down formula, which involves the least possible number of terms at
depth n, namely 2"~! n-uplets, each with a pleasantly explicit coefficient c.,,
whereas the brute force inversion of the algebra-to-group formula would yield a

14The better way, or pared-down expansion, involves, at each order, a minimal number of
summands.
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far larger number of n-uplets and uglier coefficients c.,.

Proposition 2: the correspondence G « G***°,
It is non-linear and fully determined by the formulae:

o(t?)  for f of type (62)
& F0 = Swf with (f°— f)(t) = 3 o(t™) for f of type (63) (70)
o(e™t) for f of type (64)
and as usual Sw(f) = (J}—,:)’ -1 (%)2
To express the natural correspondence between G < G
he,.0, along with their main properties:

°re we require functions

Noyo,(t) = t+ ém KELL (k(o1—1) — (02— 1)) (71)

_ (”(113)7?”11 if o1+ 1,00+ 1 (72)

ho,o(t) =t (73)

hio(t) = log(l+1) (74)

hoa(t) = exp(t)—1 (75)

hff3,02 © h02701 = h03,02 (76)
_ 1- (02 B 1) hUz,Ul (t)

Ot Poyon (1) = Sy (77)

(0’1 — 0'2)(0'1 + o9 — 2)

1
(Swhoyo)(t) = 5 (1—(on — 1)1)°

(Sw = Schwarzian) (78)

Proposition 3: the correspondence G « GZ*.
The correspondence is non-linear and fully determined by either of the formulae:

hoo (0o f50 = 1) = (o f=1) , hop(df—1)= (0[5 —=1) (79)

More generally, the correspondence GJ%° < G55° goes by the formula:.

hosor (Ot f5” = 1) = (0 fg)” — 1) (80)
Two exo-compositions stand out:

(i) One is the case o = 1. It goes with the pre-Lie product {f, g}§* = {(f” g) and
the elementary connecting functions hy o(¢) = log(1 +t) , ho1(t) = exp(t) — 1.

(ii) The other is the case o = 2. It corresponds to the pre-Lie product {f, g}5* =
§(f" g — /' ¢'), which has the property that {e="*, e"}5* = 0 for all n. This
considerably simplifies calculations when exo-composing germs of type (64).
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3.3 Left-linear expression of the exo-compositions.

Consider two elements f, g of GZ* and their product f o0& g. Using the corre-

spondence of Proposition 3, we can calculate their images fs;, gst and fqr 0 ggt
in the standard group G:

exo-composition ogre . (G |, G°) — Gere
l l 1
standard composition o (e , G ) — G

This gives us f 05 g purely in terms of f, g and the standard composition o:

(fos®g) =1 = hoo((fsr0ga) —1) (81)
= hoo(ghe — 1+ (fae —id) 0 gst)') (82)
hoo (s =1+ (for — id) 0 gsr-g) (83)
ho,0 (95 — 1+ (hoo(f' = 1)) © gse-g%) (84)
1
o (85)

= Y = gk — 1) % (hoo(f — 1) 0 gst)™.(g%)" (85

o<n

The above expression (85), on the face of it, is not linear in f — id. We know,
however, that it has to be. So we are justified in neglecting the higher-order
terms D), . and in replacing ho, = id + (...) by id in >;,_ . As for the
term »,_,., it simply yields ¢’ — 1. So, using he o 0 ho,» = id and after a few
elementary simplifications, we arrive at the final result:

exro

Proposition 4: 05 in terms of o. Setting

1

Gt 1= id—i—fho,g(g’—l) =J(a—+(1—a)g’)E (36)
we get:

, ) =t+ Y, ant™t!
f s g g+f((fogst Y 57) with  § g(t) ==t + X, But™ " (87)
st gst = Sho,a(g)
, at) = X1 o 1"
aog™ g = f ((a °gst)' 997) with  § g(t) ==t + 3, B t" ™ (88)
st gst = ShO,a(g)

Or purely in terms of gs;:

forrg = g [ (7 ogu—1) % (6)) (59)
acgmg = [ ((@og0)x (6 7) (90)
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Better proof:
(fog)) -1

(fo Og ga)/ -1 = ho‘,O((f o g)/ - 1) = 1_o (91)
(fromgey —1= 2L (U g e (o)
(fo 00 90) =1 = hool(g —1) + (hoo(f —1)) og (¢)° (93)
(foo090) =1 =gh—1+(fr—1)og(g) " (94)

Integrating the last indentity and adjusting the integration constants so as to
make all germs vanish at 0, we arrive at (89).

€ETTOo

Proposition 5: o in terms of o. Setting ¢" = Sw.gs, we get:

exzo . __ " « (a'')2 i f(t) =i+ O(t)

fo g - g + N ((f gst) (gst) ) f {g(t) —t + O(t) (95)
exTo _ " o < (g i Cb(t) = O(t)

oy = (@ ogu) x (@)?) i {g@) vy

3.4 Extending exotic composition to transseries: the three
main steps.

We consider here germs f, g etc.. at +00 on the real axis.

(i) The formulae (118) and (79) extend exo-composition in a straightforward
manner to the set of transserial mappings of the form f := ¢ +— t+> m(t), with
elementary transmonomial m(t), i.e. transmonomials of type logm(t) = O(t).

(ii) For general transserial mappings, the formulae (118) and (79) of Proposi-
tion 2 and 3 still hold, but when exo-composing large monomials (exponentials
or towers of exponentials) one must carefully chose the integration constants
implicit in the symbol §.

(iii) When going beyond the range of transseries by allowing exponential iter-
ates of transfinite order, one encounters the same indeterminacy issues as with
ordinary composition

€exo

Remark: Except for ¢ = 1, there exist no bilinear ezotic multiplications x§

that would ensure the Leibniz rule

<a X 2P0 b, g>§zo = <a,g>e$o XE0b 4+ axZ* <b,g>§xo (97)

g
or, equivalently, the distributivity of post-composition:
(axE7b)oFg = (aof g) x5 (bog™ g) (98)

For o = 1, there does exist an exotic multiplication a x¢*° b := {(a’d), but it
has unpleasant properties.
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3.5 Exotic composition and resurgence.

We now turn to analytic germs at o0 on the Riemann sphere. The above Propo-
sitions make it abundantly clear that exo-composition preserves the local analyt-
icity of such germs. On the other hand, fractional exo-iteration (i.e. fractional
iteration under exo-composition) turns local-analytic, identity-tangent germs
into resurgent ones, just as in the case of standard fractional iteration, and that
too with the same resurgence lattice, the same resurgence constants, and the
same resurgence equations simply re-interpreted in the new context.'®
Proofs. Let

gw:gow e G

N
g, common infinitesimal generator € L
ero /
,yw — god w c ng()

00w = 9% 9w = {9 9} (99)
090w = GxYuw+ 9x I (100)
OwYw = 9xVw— O J(gin;) + 09, (101)
OwYw = (L=0)g5 v+ 9gu) + 09, (102)

Notice the difference: g, = (g,,94) but 0y, = (gu94)  + 0 gy The
parasitical term o g, in the second identity comes from:

T t+2%<g*,...,g*> (103)

1<n

Now, let us check the identity

’71/1; —-1= ho,O(g:u - 1) (104)
or rather the equation derived by applying 0,,:
(‘)wr)/q/u = :7,0(.9;1; - 1) awg;u (105)

After expressing 0,7, as in (102), dug,, as in (100) and replacing h;, o(g,, — 1)
by (g.,)~7, we find that (105) turns into an identity. []

4 The prototypal flexion algebra Flez(€).
To prepare the way for the proper object of this paper — the rapprochement

between tree and flexion algebra — we must first recall some basic notions about
the latter. (The reader already familiar with the subject may skip this section).

15Hint: for each resurgent germ, write down the standard diplay then re-phrase it in the
exotic context.
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We shall first (§4.1 through §4.4) present in rough terms the general setting,
that is to say the polyalgebra BIMU of general bimoulds. We shall then (§4.5
through §4.7) zoom in on the monogenous polyalgebra Flex (&) generated by a
so-called flexion unit €. Not only is Flex(€&) the core part of BIMU; it is also
the part that most naturally lends itself to an interpretation in terms of trees.
Hence its relevance to the present investigation.

4.1 Flexion symbols. The space BIMU of bimoulds.

For now, let BIMU be simply the space of bimoulds, i.e. of moulds M*® indexed
by double sequences w = (3) = (;ﬁ 1;:), with the u;’s and v;’s ranging
through some ring, generally @, R or C. Sequences (simple or double) are
systematically noted in boldface, with their indices (when needed) in upper
position. Their elements w;, u;,v; are noted in ordinary print, with indices in
lower position.

Elementary flexions.

In addition to ordinary, non-commutative mould multiplication mu (or x):

r(wt),r(w?)=0
A =B*xC*=mu(B*,C*") < A*= > BY Y (106)

wl.wzzw

and its inverse ‘nvmu:

(vmuwd)” = > (-1)* > AW A (w' + &) (107)

1<s<r(w) L

the bimoulds A® in BIMU = @<, BIMU, 6 can be subjected to a host of
specific operations, all constructed from four elementary flexions |,],[,| that
are always defined relative to a given factorisation of the total sequence w. The
way the flexions act is apparent from the following examples:

w=a.b a = (ul,uz,us) b= (u4’u5;u6)

V1, V2, U3 V4, Us, Ve
N — ( Ui, U2, U3 ) (u1234, Us, u6)

V1:4, V2:4, V3:4 V4, Vs, Ve

w=b.c — (u17u2,u3) c = (u4>u57u6)
V1, V2, V3 V4, Vs, V6

— _ (uhuz, u3456) C ( Ug, U5, Us )
V1, V2, V4:3, V5:3, V6:3

w=abc a = (u17u27u3) b = (u4;u57u6) c = (u7;u87u9)
V1, V2, U3 V4, Vs, Ve V7, Vg, V9

N — Uy, U2, U3 — ([ ©1234, U5, UET8Y — ur, ug, Ug
aJ - (v1;47 V2.4, v3:4) [b] - ( v4, Vs, Ve ) [C - ("17:67 V8.6, 'UQ:G)
with the usual short-hand: w; .. ; = u;+...+u; and v;; := v; —v;. Here

and throughout the sequel, we use boldface (with upper indexation) to denote
sequences (w,w*, w’ etc), and ordinary characters (with lower indexation) to
denote single sequence elements (w;, w; etc), or sometimes sequences of length

16 BIMU,. of course regroups all bimoulds whose components of length other than r vanish.
These are often dubbed “length-r bimoulds” (or “depth-r bimoulds”) for short.
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r(w) = 1. Of course, the ‘product’ w'.w? denotes the concatenation of the two
factor sequences.

Short and long indexations on bimoulds.

For bimoulds M*® € BIMU,. it is sometimes convenient to switch from the usual
short indezation (with r indices w;’s) to a more homogeneous long indexation
(with a redundant initial wy which gets bracketted for distinctiveness). The
correspondence goes like this:

A

M( :‘,1 _____ z:) ~ M( [1;5"], vik ----- 1):’5 (108)
with the dual conditions on upper and lower indices:

uf = —uy o= —(urt..+u) , uf =u; Viz1
*

* ; £ ooV
vy arbitrary , v =l = v Vizl

3 I k%
and of course X, .. wivi = Do, uF vy
Unary operations.
The following linear transformations on BIMU are of constant use:'”

B® = minu.4®* = BYroUr = — AWt (109)
B*®* =pari.A® = BYUroUr = (—1)7 AV (110)
B® = anti.A® = BUL-Wr = AUneawr (111)

B® = mantar.A® = BYioUr = (—1)" AW (112)
B® =neg.A® = BWreoUr — AW (113)
B* —swap.A® — BN — A0 LA (114)
. . ('”1 ..... UT) (ur, UP, UD .-y ”T‘—l)
B®* =pus.A® = B'vioovr =AU v v2en v (115)
. . (U1 s ury (THLrs U1 U2 e Upd )
B® = push.A = Blvi.ow) = A -vr s v Vo e Ve (]_]_6)

All are involutions, save for pus and push, whose restrictions to each BIMU,
reduce to circular permutations of order r resp. r+1:18

push neg.anti.swap.anti.swap (117)

leng, = push™™leng, = pus".leng, (118)

with leng, standing for the natural projection of BIMU onto BIMU,.

17The reason for dignifying the humble sign change in (109) with the special name minu
is that minu enters the definition of scores of operators acting on various algebras: the rule
for forming the corresponding operators acting on the corresponding groups, is then simply
to change the trivial, linear minu, which commutes with everybody, into the non-trivial, non-
linear invmu, which commutes with practically nobody (see (107)). To keep the minus sign
instead of minu (especially when it occurs twice and so cancels out) would be a sure recipe
for getting the transposition wrong.

18 pus resp. push is a circular permutation in the short resp. long indexation of bimoulds.
Indeed: (push.M)wol:wi,.wr — Mlwrlwo,.wng

26



4.2 Flexion operations. BIMU as polyalgebra.

Inflected derivations and automorphisms of BIMU.

Let BIMU, resp. BIMU®* denote the subset of all bimoulds M® such that
M2 = 0resp. M? = 1. To each pair A* = (A}, A%) € BIMU, x BIMU y resp.
BIMU* x BIMU™* we attach two remarkable operators:

axit(A®) € Der(BIMU) resp. gaxit(A°®) € Aut(BIMU)
whose action on BIMU is given by:'®
1 2
N* = axit(A%).M" & N¥=" peleal + S pelealy (119)
3 1 s s s
N* = gaxit(A®).M* < N® = YUMol gt At ale (120)
and verifies the identities:

axit(A®).mu(M7, M) = mu(axit(A®). M7, Ms)+mu(M7, axit(A®). M) (121)
gaxit(A®).mu(M;, Ms) = mu(gaxit(A®). M7, gaxit(A*).M3) (122)

The BIM U-derivations axit are stable under the Lie bracket for operators. More
precisely, the identity holds:

[axit(B*®), axit(A®%)] = axit(C®) with C* = axi(A°,B®) (123)
relative to a Lie law azi on BIMU , x BIMU , given by:

C: = axit(B®).A} — axit(A®).B] + lu(A3, B) (124)
C = axit(B*).A% — axit(A*).BS — lu(A%, BY) (125)

Here, lu denotes the standard (non-inflected) Lie law on BIMU:
lu(A®, B®) := mu(A°®, B*) —mu(B*®, A®) (126)

Let AXI denote the Lie algebra consisting of all pairs A®* € BIMU, x BIMU ,
under this law azi.

Likewise, the BIMU-automorphisms gaxit are stable under operator compo-
sition. More precisely:

gaxit(B®).gaxit(A®) = gaxit(C*) with C* = gaxi(A®,B*) (127)

relative to a law gazi on BIMU* x BIMU* given by:

C; mu(gaxit(B°*).A}, B7) (128)
Cr := mu(By,gaxit(B*).A%) (129)

19The sum Zl resp. 22 extends to all sequence factorisations w = a.b.c with b + ¢,
c £ Jresp. a + J, b £ . The sum 23 extends to all factorisations w =
al.bl.cl.a?2.b2.c2...a%.b%.c® such that s > 1, b* + &, ct.a™ + J Vi. Note that the
extreme factor sequences a® and ¢® may be ¢J.
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Let GAXI denote the Lie group consisting of all pairs A®* € BIMU™* x BIMU*
under this law gazi. This group GAXI clearly admits AXT as its Lie algebra.

The mixed operations amnit = anmit:

For A* := (A*,0°) and B* := (0°, B*) the operators azit(A*) and azit(B*)
reduce to amit(A®) and anit(B*®) respectively (see (137) and (138) infra) and
the identity (462) becomes:

amnit(A°®, B®) = anmit(A°®, B®) (VA®, B®* € BIMU,) (130)

with
amnit(A®, B®*) := amit(A®).anit(B°*) — anit(amit(A*®).B*) (131)
anmit(A°®, B®) := anit(B°®).amit(A®) — amit(anit(B*).A°*) (132)

When one of the two arguments (A*®, B*) vanishes, the definitions reduce to:

amnit(A°®,0°) = anmit(A°®,0°) := amit(A®) (133)
amnit(0°*, B*) = anmit(0®, B*) = anit(B*) (134)
Moreover, when amnit operates on a one-component bimould M® € BIMU,
(such as the flexion units €°*, see §3.1 and §3.3 infra), its action drastically
simplifies :
N*:=amnit(A®, B*).M* =anmit(A*, B*).M* < N*:= ) A*MIBP (135)
aw;b=w
Unary substructures.

We have two obvious subalgebras//subgroups of AXI//GAXI, answering to the
conditions:

AMIc AXT : A%, =0° |, GAMIc GAXI: Aj=1°
ANIC AXI: A} =0° , GANIc GAXI: A} =1°

but we are more interested in the mized unary substructures, consisting of ele-
ments of the form:

A* = (A3, A%) with A% =h(A}) and h a fized involution (136)

with everything expressible in terms of the left element A} of the pair A®. There
exist, up to isomorphism, exactly seven such mixed unary substructures:

algebra h swap algebra h

ARI minu - IRA minu.push
ALI anti.pari - ILA anti.pari.neq

ALA  anti.pari.neg, < ALA  anti.pari.neg,
ILI anti.pari.neg, < ILI anti.pari.neg,
AWI anti.neg IWA anti

AWA anti.negy, - AWA anti.neg,
IWI anti.neg, > IWI anti.neg,

[\
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group h swap  group h

GARI mumu

— GIRA  push.swap.invmu.swap
GALI anti.pari — GILA anti.pari.neg
GALA anti.pari.neg, <  GALA anti.pari.neg,
GILI  anti.pari.neg, > GILI anti.pari.neg,
GAWI anti.neg -  GIWA anti
GAWA anti.negy, «  GAWA anti.negy,
GIWI anti.neg, GIWI anti.neg,

Each algebra in the first table (e.g. ARI) is of course the Lie algebra of the
like-named group (e.g. GARI). Conversely, each Lie group in the second table
is essentially determined by its eponymous Lie algebra and the condition of left-
linearity.2%

Dimorphic substructures.

Among all seven pairs of substructures, only two respect dimorphy, namely
ARI//GARI and ALI//GALI Moreover, when restricted to dimorphic objects,
they actually coincide:

ARIV2l — AppVal o oyih {al/al} = {alternal/alternal and even}
GARI®¥2® = GALI®®  with {as/as} = {symmetral/symmetral and even}

We shall henceforth work with the pair ARI//GARI, whose definition involves
a simpler involution h (it dispenses with the sequence inversion anti: see above
table).

4.3 Flexion polyalgebra.

Basic anti-actions.

The proper way to proceed is to define the anti-actions (on BIMU, with its
uninflected product mu and bracket lu) first of the lateral pairs AMI//GAMI,
ANI//GANI and then of the mixed pair ARI//GARI

N® = amit(4).M* & N =3 pelegp (137)
N*® = anit(4°*).M* < N = ZzM“JCA“’ (138)

N* = arit(A*).M* & N =Y aeleabl - S aeleqlt  (139)

with sums 21 (resp. 22) ranging over all sequence factorisations w = abc such

20meaning that the group operation (like A®, B® — gari(A®, B®) in our example) is linear

in A® but highly non-linear in B*®.
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that b+ &, ¢ + & (resp. a + J,b + ).

N':gamit(A').M' PN Nw:ZlM[bl...[b

s

A%l Ao’ (140)
N* = ganit(A*).M* & N =3 0P blglet | glet (141)
N* = garit(A*).M* < N = SUMPT oW gatl et glet Al (142)

with A2 := invmu(A*®) and with sums 3.', 3%, 3% ranging respectively over all
sequence factorisations of the form:

w = albl...a®b® (s=1 , onlya® maybe &)
w = blet...b%c* (s=1 , onlyc® maybe &)
w = a'blcl...a®bc® (s=1 , withb® + Fand cta* + &)

i+l
1

More precisely, in 23 two inner neighbour factors ¢? and a
arately but not simultaneously, whereas the outer factors a
course vanish separately or even simultaneously.

may vanish sep-
and ¢® may of

Lie brackets and group laws.
We can now concisely express the Lie algebra brackets ami, ani, art and the
group products gami, gani, gari :

ami(A®, B*) := amit(B*®).A* — amit(A*).B* + lu(A®, B®) (143)
ani(A®, B®) := anit(B*).A* —anit(A*).B* —u(A°®, B®) (144)
ari(A®,B*) := arit(B*).A* — arit(A*®).B* + lu(A°*, B®) (145)
gami(A®, B*) := mu(gamit(B°*).A*), B®) (146)
gani(A®, B®) := mu(B°,ganit(B*).A*%)) (147)
gari(A®, B®*) := mu(garit(B*®).A*%), B*) (148)

Pre-Lie products (‘pre-brackets’).
Parallel with the three Lie brackets, we have three pre-Lie brackets:

preami(A®, B*) := amit(B*®).A* + mu(A4°®, B®) (149)
preani(A°®, B®) := anit(B*).A* —mu(A°®, B®) (sign!) (150)
preari(A°®, B®*) := arit(B®).A® + mu(4°®, B®) (151)

with the usual relations:
ari(A®, B*) = preari(A°®, B®) — preari(B°®, A®) (152)
assopreari(A®, B*,C*) = assopreari(4°®,C*, B®) (153)

with assopreari denoting the associator?' of the pre-bracket preari. The same
holds of course for ami and ani.

21Here, the associator assobin of a binary operation bin is straightforwardly defined as
assobin(a, b, ¢) := bin(bin(a, b), ¢) — bin(a, bin(b, ¢)). Nothing to do with the Drinfeld asso-
ciators of the sequel!
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Exponentiation from ARI to GARIL
Provided we properly define the multiple pre-Lie brackets, i.e. from left to right:

preari (A3,..., A%) = preari((preari (A2, ..., A%,), A%) (154)

we have a simple expression for the exponential mapping from a Lie algebra to
its group. Thus, the exponential expari : ARI — GARI can be expressed as a
series of pre-brackets:

n times

1 — ———
expari(A®) = 1° + ) — preari (4%, A%) (155)

1<n

or, what amounts to the same, as a mixed mu+arit-expansion:

expari(A®) =1°+ Y Ex""mu(45, ..., A) (156)

ny
1<r,1<n;

with AP := (am’t(A‘))n_.lA‘ and with the symmetral mould Ez*:

1 1 1 1
Ex™etr = 157
* (n1—=1)! (ng—1)! (=)' ny._rno. ...0p (157)

The operation from GARIto ARIthat inverses expari shall be denoted as logari.
It, too, can be expressed as a series of multiple pre-ari products, but in a much
less straightforward manner than (155).

For any alternal mould L® we also have the identities:

Z Lwau)v---’“’“(”preauri(A:,(l)7 . ,A;(T)) =
occB(r)

1
=) L Cemari(AY ), A ) (VAS,...,A%) (158)

ocS(r)
which actually characterise prear:.

Adjoint actions.
We shall require the adjoint actions, adgari and adari, of GARI on GARI and
ARI respectively. The definitions are straightforward:

adgari(A*®).B® := gari(A®, B®,invgari.A®) (A°®, B* € GARI) (159)

adari(A®).B*® := logari(adgari(A®).expari(B*®)) (160)

fragari(preari(A®, B*), A®) (A® e GARI, B® € ARI) (161)

except for definition (161), which results from (160) and (148) and uses the
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pre-ari product 22 defined as in (151) supra and the gari-quotient®® defined as
in (??) infra.

Definition (161) has over the equivalent definition (160) the advantage of
bringing out the B*-linearity of adari(A®).B* and of leading to much simpler
calculations.?*

The centers of ARI and GARIL
The sets Center(ARI) resp. Center(GARI) consist of all bimoulds M* that
verify
(i) M9 =0 resp. M2 =1
(i) MU W) = eC Y,
(iii) MG =0 unless 0=vp =« =0,
Moreover, in view of (148), gari-multiplication by a central element C*
amounts to ordinary post-multiplication by that same C*:

gari(C*, A®) = gari(A®,C*) = mu(A°®,C*) (C*® € Center(GARI))  (162)

4.4 Basic symmetries and symmetry conservations.

e alternality and symmetrality.
Like a mould, a bimould A* is said to be alternal (resp. symmetral) if it verifies

> AY=0 (resp. =AYAY) w4+ g, Ve + @ (163)

wesha(w’ ,w")
with w running through the set sha(w’, w”) of all shufflings of w’ and w”.

e {alternal} = {mantar-invariant, pus-neutral}.

Alternality implies mantar-invariance, with mantar = minu.pari.anti defined as
in (112).

It also implies pus-neutrality, which means this:

(D] pus')A*=0 e DAY =0 (ifr(w)=>2) (164)

1<i<r(e)

scirc
w ~w

22Properly speaking, preari applies only to elements M® of ARI, i.e. such that M< = 0.
Here, however, only B® is in ARI, whilst A® is in GARI and therefore A9 = 1. But this is
no obstacle to applying the rule (151).

23Properly speaking, fragari applies only to arguments 51,85 in GARI, i.e. such that

S? = 1. Here, however, only S§ := A® is in GARI, whilst S} := preari(A®, B®) is in ARI
and therefore Slg = 0. But this is no obstacle to applying the rule:

fragari(S}, S3) := mu(garit(S3) 1.5}, invgari.S3) = mu(garit(invgari.S3).S}, invgari.S3)

24Despite the spontaneous occurence of the pre-ari product in (161), it should be noted
that adari(A®) is an automorphisms of ARI but not of PREARI
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¢ {symmetral} = {gantar-invariant, gus-neutral}.
Symmetrality implies likewise gantar-invariance, with

gantar := invmu.anti.pari (165)

as well as gus-neutrality, which means (ZKK?_(.)pusl).logmu.A' =0i.e.

Nopt N A A =0 (ifr(w)>2)  (166)

1<k<r(w) wl. . wF

¢ {bialternal} ﬁi{neg—invariant, push-invariant}.

Bialternality implies not only invariance under neg.push but also separate neg-
invariance and push-invariance for any A* € BIMU, but the implication holds
only if r > 1, since on BIMU; we have neg=push. So neg.push=id, meaning that
there is no constraint at all on elements of BIMU,;. But we must nonetheless im-
pose neg-invariance on BIMU; (or what amounts to the same, push-invariance)
to ensure the stability of bialternals under the ari-bracket: see §2.7.

gLy
e {bisymmetral} = {neg-invariant, gush-invariant}.
Bisymmetrality implies not only invariance under neg.gush, with

gush := neg.gantar.swap.gantar.swap (167)

but also separate neg-invariance and gush-invariance, but only if we assume neg-
invariance for the component of length 1. If we do not make that assumption,
every bisymmetral bimould in GARI splits into two bisymmetral factors: a
regular right factor (invariant under neg) and an irregular left factor (invariant
under pari.neg)

4.5 Flexion units.

As it happens, the most useful monogenous algebras Flez(€) are not those
spawned by ‘random’ generators & but on the contrary by very special ones -
the so-called flexion units.

Exact flexion units. The tripartite relation.
A flexion unit is a bimould &°* € BIMU; that is odd in w; and verifies the
tripartite relation below. More precisely:

e = _gui | gu g = gwil glwz | guil glwz ie
u1) uq u2 ) u12

T et el Z eli)e() 4 eUeli)  (168)

In view of the imparity of &* the tripartite identity may also be written in more
symmetric form:

elilo)@lal) el @lonl) p el @lnls) =0 Yy, Yo, with wo+uy+uy = 0
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Another way of characterising flexion units is via the push-neutrality of their
powers mu™(€*). Indeed, if we set:

n times

—
mu”(€¢*) = mu(e&°®,..., €*) (169)

then € is a flexion unit iff mu'(€*) and mu?(€*) are push-neutral, in which case
it can be shown that all powers mu™(€®) are automatically push-neutral:

{Qf is a flexion unit} < {( Z pushk).mu"(Qf') =0, Yne N*} (170)

0<k<n

If two units E°® and D°® are constant respectively in vy and u; , then the sum
¢* + O° is also a unit.

Lastly, if &* is a unit, then for each «, 3,7, € C the relation

() = geru gl (171)

AR

defines a new unit e[a,ﬁ,’y,ﬁ]'

Conjugate units:
If ¢* is a unit, then the relation oG) .= (i) define another unit O* — the
so-called conjugate of €*. Indeed, setting (ui,ug) := (v},vh—v}), (v1,v2) =
(u} +ub, uh), then using the imparity of €* and re-ordering the terms, we find
that (168) becomes:

/ / /
(1) ) “1,12)

o “ “
o alh _ ol | (i) o

!
v2:1

b with 00D = el

9]
i.e. conserves its form.
Let us now mention the most useful flexion units, some exact and others

only approzimate. Throughout the sequel, we shall set:

1 1 c
P(t) .= - t) = c(t) == 172
Polar units:
They consist purely of poles at the origin:
Pa™ = P(uy) (173)
Pi** = P(n) (174)
w Uy U1 a B
Pai’, = P(—)+P(—=) = —+ — 175
ity = P +P(G) = s (175)

Pa®, Pi®, Paiy, 5 are ezact units.
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Trigonometric units:
They are ‘periodised’ variants of the polar units:

C

W= = — 176
Qac @elw) tan(cuy) (176)
awy _ ¢ 177
Qe @e(v1) tan(cvy) (177)
o _ uy vy c c )
Qa’lc7a75 QC( a ) + QC( 6 ) tan(%) + tan(&) ( 78)
Qa; , Qi; are approzimate units but Qai; , 5 is ezact.
Elliptic units (after C. Brembilla):
Let o(z; g2, 93) be the classical Weierstrass sigma function:
) _ 92 5 93 7 9 .
o(z; g2,93) = 2z— 5i35% " P357” + 0O(z7) with
0(2; 92,93) = —0(—2;92,93) = to(zt™"; gat?, g3t%) (Vt)
Then for all gs, g3, , 8,7,6 € C (af £ 0), the relation
o) o(ur +v1;92, 93
Cyargs = ( ) (179)

o(u1;92, 93) o(v1592, g3)
defines a two-parameter family of exact flexion units, which in turn, under the
standard parameter saturation of (171), give rise to:

(1:%) . YUl vi (Zijg)
g2g3,0,87,8 = O¢€ €595 (180)

(V) (181)

@. — L]
92,93,0,08,7,0 T g2tt,93t8 ,at,Bt,y,6t"1

This six-parameter, five-dimensional complex variety of flexion units contains
all previously listed ezact units (polar or trigonometric) as limit cases. In fact,
it would seem (the matter is still under investigation) that it exhausts all flexion
units meromorphic in both u; and v;.

We must now examine further units, exact or approximate, that fail to be
meromorphic in one of these variables, or both.

Bitrigonometric units:
Qaay* (resp. Qiin") is defined for uy € C and v, € Q/Z (resp. vice versa):

wy 06_2 TN V1 Ce—27rin1v1 Tni+ecu
Qualn) = YL % QC( ! 1) (182)
=, Tatcu <y Sdon(vr) den(vy) den(vy)
Qu(gi) _ Z ce—2miniug _ Z ce—2miniuy (7Tn1 +C?)1) _ Qaa(f‘i)
© ' ™ +cuy den(uy) “\ den(u;) ¢

n1€Z 1<ni<den(uqy)
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with den denoting the denominator (of a rational number). Qaa’ and Qii> are
both approzimate units (see (77),(?7?) below).

Flat units:
Let o be the sign function on R, i.e. o(R*) = £1 and (0) = 0. Then set:

Sa“t =o(u1) , Si*=o0(v1) , Sai”t =o(ur)+o(vy) (183)
Sa® , Si* are approrimate units but Sai® is exact.?®
Mixed units:

Qasgji_r = Qc(u1) £cio(vy) Qis?jii = Qc(v1) £ cio(uy) (184)
Qas; 4 , Qis; . are exact units.
“False” units:

eJ_r 2civy
Qigy = Qig" £ci=cQcvy) ci=+2ci—5—— (185)

ei2civ1 -1

Qi; + and Qi;f verify the exact tripartite relation but not the imparity condi-
tion.26

4.6 The prototypal polyalgebra Flez(€&*).

All polyalgebras generated by a proper flexion unit €* are isomorphic, so that
we are justified in referring to the polyalgebra Flez(&*). Within the polyalgebra
of general bimoulds, Flex(€®) occupies a neuralgic, but somewhat paradoxical
position.

Indeed, it appear to be the most regular part of BIMU, in the sense that it
is on Flez(€*), and on Fler(€*) alone, that the involution syap,?” which simply
exchanges the u;’s and the v;’s, commutes with all flexion operations.

Yet at the same time, Flez(€*) can be said to absorb, fixate, and concen-
trate on itself, all the irregularity inherent in BIMU, especially in the part of
BIMU that is specially relevant to multizeta arithmetic and which consists of
bimoulds M™ polynomial in either w or v. It is also Flez(&*®), or rather its polar
specialisations Flex(Pa®) and Flex(Pi®): cf next subsection) that contain the
bisymmetral bimoulds pal®/pil®, whose importance can hardly be overstated,
since they hold the key to an understanding of double symmetries, hence of
arithmetical dimorphy.

25when viewed as a distribution or as an almost-everywhere defined function on R. But
when viewed as a function on Z, it becomes an approximate unit.

2611 terms of applications, the failure of imparity has more disruptive consequences than the
failure to verify the exact tripartite equation, because it means that € has no proper conjugate
9, which in turn prevents it from serving as building block for dimorphic bimoulds such as
ess® etc.

27To be carefully distinguished from the involution swap, as defined in (114).
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For our present purpose, however, Flex(€*) has a more immediate distinc-
tion: of all substructures of the polyalgebra BIMU, it will turn out to be the
one most readily, and most fully, describable in terms of t¢rees.

4.7 Flex(Pa®) and Flex(Pi®): similarities/dissimilarities.

The most important incarnations of Flez(€*), the ones we should constantly
keep at the back of our minds, correspond to the polar flexion units Pa"! :=
1/u; and Pi*' := 1/v;. But although fully isomorphic as far as the flexion
structure is concerned, Flex(Pa®) and Flex(Pi®) appear profoundly different
when it comes to the shape of their elements: as algebraic functions (of the
u;'s or v;’s), these will often differ markedly, in terms of degree, complexity,
amenability to factorization, etc. We shall see striking illustrations of that
fact in §5, when examining the semi-inflected operations on Flex(€*) and their
extendibility to BIMU, and again in §8, when describing the standard bases of
Flex(€*). So, when reasoning on the polyalgebra Flez(€*), we should always
harken back to its two polar specialisations, but also be prepared to constantly
juggle them.

5 Alternators and counter-alternators.

5.1 Introduction.

Despite its rich array of binary operations, inflected or not, the flexion structure
lacked so far a single operation capable of generating F lex“l(é') from &* alone.
It also lacked a pair of operations capable of generating the whole of Flex(€*)
from &°. To remedy this, we introduce in this section a weakly inflected deriva-
tion de on Flex(€*) and from it we construct:

e a pre-Lie braket dle of lu that generates Flez® (€*) from &°.

e two operations dme and mde, pre-associative relative to mu, which jointly
generates the whole of Flex(€*) from €°. Either of them, in combination
with dle, also generates Flex(€*) from &*

Another benefit is this. While the alternality-preserving Lie brackets ari and
ali already possessed pre-Lie brackets preari and preali, these did not preserve
alternality. With de, however, we can slightly tweak their definitions to obtain
alternality-preserving pre-Lie brakets dar: and dali.

But the main dividends from the having the new operations dle, dme, mde
will come with the introduction of the so-called counter-alternators. These
are multivariate, multilinear applications of Flex(€®) into itself that possess a
counter-intuitive property: the more symmetrical (i.e. the less alternal) they are
as functions of their arguments, the more alternal (i.e. the less symmetrical)
they become as bimoulds, i.e. as functions of the sequence w. This vague-
sounding property actually lends itself to an exact description, and has two
fortunate consequences:
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o It leads to a neat decomposition Flez,(€*) = @1<a<r Flex, q(€*) of Flex, (€*)
into subspaces consisting of bimoulds of co-alternality degree d, and yields
neat formulae for dim(Flex, q4(€*))

e It also permits a natural identification of the elements of Flex(€®) (resp.
Flez®(€*)) with ordered (resp. unordered) trees, and, building on that,
a far-going merger of flexion and tree algebra, with benefits in both direc-
tions.

5.2 Semi-inflected operations on Flez(€*).

Any element of Flex,.(€) can be expressed as a sum
wp s wp Wit Fup Ul e up
m(ui ,,,,, 'Ur) — Z QE( 1+”i+ )mi VY seees 7’7‘) (186)
with components 97 that are themselves of the form

SN 3 ﬁ QS(Z%’:) g Jmik€C (187)
% = M,k © an r—1 r
% kel D1 ug,kvz{,k = Dy Uk (v — v5)

The components 9MM? are uniquely defined, though their expansions (187) are
not.?® If we now set de.9N® := > M, we see at once that
(i) de is a linear bijection of Flex,(€*) onto de.Flex,(€*)
(ii) both spaces mu(Flex(€*), de.Flez(€*)) and mu(de.Flex(€*), Flex(€*)) are
subspaces of de.Flex(E*)
(iii) de is a derivation relative to the associative product mu, hence also to the
Lie product lu.

We can therefore define on Flex(€*) bilinear applications dme, mde, dle of
Flez(€&*) into itself:

dme(A*,B°) := de ' mu(de?A*,B*") (188)
mde(A*,B*) = de ' mu(A*,deB*) (189)
dle(A*,B°) = de ' lu(deA*,B*) (190)

These operations are clearly pre-associative and pre-Lie relative to mu and lu,
since they relate to the latter according to:

mu(2A*,B*%) = dme(™A*,B°) + mde(A*,B*) (191)
(A, B*) = dle(A*,B*) — dle(B*,A*) (192)
while verifying the pre-associativity (resp. pre-Lie) identities:
anti.dme(A®,B°) = mde(anti.2A®, anti.B*)
dme(dme(A*,%5°),€%) = dme(A*,dme(B°*,€*)) + dme(A*, mde(B*, €*))
mde(2*, mde(B°,€*%)) = mde(dme(A*,B°*),€*) + mde(mde(A°*,B°),C*)

28 Nonetheless, they admit a preferred expansion in the ’binary tree’ basis.
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dle(dle(A°, B*),€*) —dle(A*, dle(B*, €*)) = dle(dle(A°, €*), B*) —dle(A°, dle(€*, B*))

Though skin-deep, the above identities, when iterated and combined with the
functional equation (168) of the flexion unit &*, produce far-reaching conse-
quences, as we shall soon find out. But before proceeding, let us for clarity spell
out the analytical expressions of dme, mde, dle:

1,2
ww =w (u1+-«-+u7‘) (u1+7~1+...+UT)

¢ =dme(2*,B%) = ¢ = Y ¢ ue o it (103)
,J
w1w2:w (ul+ cFurg ) ('u,l +...+u7~) 1

¢* = mde(A*,B*) < ¢¥ = 2 ¢ v et gt e (194)

wlw?ew €(u1+ +ur)€(“1+r1+'“+“7‘)m 1% 2
vy viTvi w w
€ =dle(2*,B°) = €= ) it ) oty o (195)
— 6( vy —v )G( v ) %'wl Ql'w2
2,7 - J J i j

Here r, 7, 75 denote the lengths of the sequences w, w?, w2, so that r = r{ + ry.

5.3 Semi-inflected operations on Flez(Pa®) and Flex(Pi®).

The most important flextion units are Pa® and Pi®, followed by the approximate
units Qa® and Qi°®. But whereas the derivation de reduces on Flex(Pa®) to an
elementary multiplication da

da.M™ = (u1 + - +u,) MY (196)

its specialisation di on Flex(Pi®) is less elementary. Indeed, although the deriva-
tive di.M*® = Y, M? and its components M may also be calculated from a
general functional formula?®

di.M¥ = 2

w o L w
Mi = Z kf ’Ul, ‘, ..,'Ur) (0v1+...+(7yr)kM )

Ok (U1, 00) (O, ot 0y, ) MY (197)

??“;—A

J¥i 1

1<j<r V; — Uy
the difference is not merely one of complexity. It also impacts the extension
of da, di and their offspring to larger spaces. Thus, while the relation (196)
immediately leads to operations dma, mda (pre-associative) and dla (pre-Lie)
defined on the whole of BIMU

dma(A®,B*) := da 'mu(daA®, B*) (198)
mda(A°®,B*) := da 'mu(A® daB®) (199)
dla(A*,B*) := da 'lu(daA®, B*) (200)
29where oy, (v1, ..., vr) denotes the k'™ symmetric function of the indices vj, and 9; signals

the removal of vi: Do p o\ (V1,00 ) R 1= [Ti<j<r (I +2v5)
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the relation (197) makes full sense only on the subspace BIMU"" of BIMU
consisting of bimoulds of the form:

..........

MY = N P)MP with Mo Sier) = MG ) ey (201)

1<i<r(w)

It leads there to operations dmi, mdi (pre-associative) and dli (pre-Lie):

1,.2

C* = dmi(A*,B*) «— Cv = P(v;)P(v;—v;) A®" BY (202)
,J

C* =mdi(A*,B*) — C% = P(vi—vj)P(vj)A}"l B;"Z (203)
4,

C* = dli(4%,BY) «—> C* — FPC)Po; o) A2 B 04)
- 7P(’l)i7'L)j)P(’Uj)Bw AY
2,7 g J

A further point deserves emphasizing, regarding the approximate units Qa®, Qi°.
Although dma, mda, dla or dmi, mdi, dli may be made to act on Flez(Qa®) or
Flex(Qi®), their action there is clearly not internal, nor can it me made so by
tampering with the definitions.?? This fact considerably complicates the inves-
tigation of the bimoulds ¢al®/til® (— the trigonometric bisymmetrals, essentially
equivalent to a Drinfeld associator—) in comparison with the simpler bimoulds
pal® /pil® (— the polar bisymmetrals, key to understanding flexion dimorphy-)

5.4 Alternality-preserving pre-Lie brackets.

Let us now revert to the general flexion algebra Flez(€®). The pre-Lie brackets
preari, preali hithertoo associated with the alternality-preserving Lie brackets
ari,ali, themselves fail the preserve alternality.

preari(A®, B®*) := arit(B*)A* + mu(A®, B®) (205)
preali(A®, B®) := alit(B*)A® + mu(4°, B®) (206)

But the modified pre-Lie brackets dari, dali do preserve alternality:
dari(A®, B*) := arit(B*)A* + dle(4°, B®) (207)
dali(A®, B®) := alit(B®)A®* +dle(A®, B®) (208)

They have the further advantage (especially dari) of admitting a simple inter-
pretation in terms of tree operations.

30That impossibility is easily proven. Tt is also worth noting that Flez(Qa®) and Flex(Qi®)
are not isomorphic, unlike Flez(Qa®) and Flez(Qi®).
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5.5 The counter-alternaltors calt, calt, calt.

We first require a trinary operation mdme, thus defined:

mdme (A*,B®*,C*) := de '.mu(A4* de.B*,C*) (209)
= mde(A®,dme(B*,C*)) (210)
dme(mde(4°, B*),C*) (211)

We can now proceed with the definition of the counter-alternators cdlt, calt,
calt. As usual with iterated binary operations, the arrows denote the direction
of the multibrackets: rightward or leftward.

Definition 5.1 (Counter-alternators.)

Ciltpre (AL, s A2) = 3 (—1)" “'mdme(dme(A3, ., A}), H*, mde(A}, , ., A7) (212)

0<i<r

ciltye (A, .y AD) = 3 (<) "'mdme (mde(A3, ., A}), H*, dme(A}, , .., A?))(213)

o<i<r

—1)riy!
caltge (A7, ..., Ar) := 2 (Z_‘(z_i)'mdme(mu(AI,..,A;),H',mu(A;H,..7A:,))(214)
o<i<r :

etc. Of course, when the argument of a multlbracket is the empty sequence, the

result must be taken to be unit mould. Thus dme(@) mde(@) = 1° and:

H. 1.
caltgre (A7) = § Tmdme(d me(4 1) (215)
—mdme(7°, H*, mde(A}))
+mdme(dme(AS, A3), H*, 1°)
caltys (A7, A3) := { —mdme(dme(A )H‘,mde(Aﬁ)) (216)
+mdme(1',H',mde(AI,A§))

Note that since dme(A}) = mde(A}) = A}, for r = 1 the three counter-
alternators calt gre (A3), caltge (A3), calt ge (A}) all reduce to —dle(H®, A}). But
as soon as 7 = 2 they cease to be expressible in terms of the sole pre-Lie product
dle and requires dme and mde.

It is also worth noting that there is complete rigidity in the definition of

—

the counter-alternators. In particular no formula involving dme, mde instead of

dme, mde would yield interesting results.

Remark: The counter-alternators are also capable of an inductive construction
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by depth r. Thus for calt we have:

—dle(H*, dme(A2, .., A®
Caltye (A2, ., A®) = § e(H", dme( b ") (217)
fZKj«dme(caltH-(AI,..,A;),A;H,..,A;))
—1)" dle(H*, mde(A2, .., A®
= ( ) de( amdg( 1+ 7)) A (218)
fZqu(fl)]mde(AI,..,A;),caltH-(A;H,..,A;))

5.6 The symmetrical alternaltors salt, salt, salt.

The symmetrical alternators can be defined directly, by full symmetrization of
the arguments in the counter-alternators:

Definition 5.2 (Alternators.)

saltye (A3, A2) i= > caltye (Al AY(,) (219)
ceS,.

saltpe (A3, A2) i= Y. caltye (A, .. AY() (220)
ceS,.

saltye (A}, ., A3) i= ). caltye (A, . AY(,) (221)
0eS,.

Two of them, salt and salt, also admit an inductive construction:

saltye (A7, .., A7) = {_dle(saltH.(Al’"’Ar‘ll’Ar) .

222
+ Doy Siltpge (A3, AS, ., An_y, dle(A3, AY)) (222)

saltpe (A3, .., A2) := —dle(saltye (A3, .., A3, .., A%), A?) (223)
Remarkably, no such induction exists for salt.

The symmetrical alternator purely in terms of dle:

To state the result, we once again require the specific combinations of leftward
and rightward multiple pre-Lie brackets already encountered in the ’optimal
formulae’ of §2.2, but this time with distinct arguments A?. So we set:

ler, . n (AL, A%) = dle(dle(AY), ..., dle(A%)) (224)
A=A A°=(A3,.., A2)
with length(A") = r;

rn+..+rg=r

We alse require, to express the coefficients of our expansions, two symmetral
moulds sa® and sa°:

sttt = (—1)" 1_[ v (225)

QSIS = (_1)81+---+Sr - - (226)
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Proposition 5.1 (dle-expansions of the alternators.)

Sri=r
DD s ey (A8 ALy, Ay (227)

ceS(r) 1ss<r

slt s (A}, .., A2)

xT

I
1
ok

siltas (A3, .., A2)

T

rteler iy (AGs Ad1ys oAb ) (228)

ceB(r) 1ss<r
Dri=r _
saltag(Af, ., A7) == > D1 (=1)" le(A5, A%y, Alyy) (229)

ceB(r) 1ss<r
5.7 Main properties of the alternators:

Recall that a mould or bimould A® is said to have alternality codegree ¢ if it
meets either of the two equivalent conditions:

> AY = 0 (Vw?, ..., w1  (230)
wesha(w?,...,wét?l)
deg( Z Aveyem Dy D) = § (Y Dy, ..., D,) (231)

ceS,.

Here, w runs through all shuffle products of 6+1 non-empty sequences w?, and
the D; denote independent abstract derivations.

Proposition 5.2 (Properties of the strict counter-alternators cdlt, calt)
Let here calt, salt stand for either calt, salt or calt,salt, and consider a superpo-
sition BW1 "4 of counter-alternators involving the same arguments Ay, .., A,
in different arrangements:

¢, €C

depth(H*®) = dy
depth(A?) = d;
d=do+d1+..+d,

B* = Z Co caltpe (As(1y, s Ap(r)) with (232)

ceS,.

(i) The less alternal B¥1 "4 is as a function of (A}, ..., A?), the more alternal
it is as a function of (w1, ...,wq) - which of course is why calt is called a counter-
alternator.

(i) More precisely, let the bimoulds H® and A} have alternality co-degrees dg
and §; (as functions of their indices w) and let B* have alternality co-degree
0% as a function of its bimould arguments (A3, ..., A?), then that same B®, as a
function of its indices w = (w1, ..., wq), has alternality co-degree

0=00+01 + ... +0, — I (233)

(iii) In particular, if ¢ = 1 Vo, then 8, = r and B® reduces to the symmetrical
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alternator saltge (A3, ..., A?). As a function of its indices w = (wy,...,wq) it
has therefore co-degree 6 = dg + 01 + ... + 0, — r. If moreover, the bimoulds H*®
and A} are all alternal, then o = 6; = 1 so that § = 1, meaning that B* also is
alternal. In that sense, it may be said that salt preserves alternality.

Proposition 5.3 (Properties of the loose counter-alternator calt) .
The same holds for calt, but with (233) giving way to a simple inequality

0<dg+91+ ...+ — s (234)

except of course when the right-hand side is 1, in which case 6 has to be 1 also.
This is exactly what happens when ¢, = 1 and all bimould inputs H®, A} are
alternal. Thus, although calt may be dismissed as a loose counter-alternator!,
salt is very much a strict alternator.3?

5.8 Alternality projectors:

For a better grasp of the phenomenon of ’counter-alternativity’, let us decom-
pose the algebra M of all moulds into subspaces M., consisting of d-alternal bi-
moulds expressible as fully symmetrized sums of mu-products of alternal moulds.
Similarly, let us decompose the algebra E freely generated by abstract degree-1
derivations eq, es... into subspaces E? spanned by degree-d derivations express-
ible as fully symmetrized products of d degree-1 derivations (those in turn being
expressible as multiple Lie-brackets of the generators ey, es....

M _ ®1<d M;d ’ pI' d M progectzon M d (235)
E =@« B¢,  prt: E P g (236)

Due to (231), the projectors pr.;, and pri¢ are mutually transposed operators,
and necessarily of the form:

prg(M*) = M3 with Mg = 3 hyg(0) M™o0r"e0) (237)
ceS,.

pri(es) =€l with  (er.e,)® = D hra(07) €o)ooqy (238)
oeS,.

The simplest way to calculate the coefficients h, q(c) is to consider symmetral

moulds S* and form their t** powers (respective to mould mutiplication:
t _ 1 n times
(syti=1e g 3 1 P (g oy x (st o1 (239)
1<n

31This is essentially a consequence if its definition involving the uninflected product mu
instead of the inflected midme,mde.

32This difference explains why, whereas calt cannot replace calt or calt as counter-
alternator, salt often proves — due to the greater simplicity of its definition — a more convenient
alternator than salt or salt .
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We then take advantage of the symmetrality relations to linearize all terms
Sw' .§®" present on the right-hand side of (239). Next, we collect all terms
in front of the powers t?: their sum is garanteed to be d-alternal. This gives us
the action of the projector pr.; not just on symmetral moulds, but also, due to
the universality and uniqueness of the expansion (239), on all moulds.?

We can now re-interpret and sharpen Proposition 5.1 and 5.2.

Proposition 5.4 (Measuring counter-alternality) .
Let calt denote any of the three counter-alternators. Then, for any mould B®
of the form

B*® = 2 hr,é*(U)CaltH'(A;(l)»~~~7A:r(r)) with

oeS,.

{H " € Mgy (240)

A; € M;(;i
the inclusion holds:
B*eMs®M.s_o@®Mis5_4... with 0:=08y+01+...+0, — Oy (241)

The minus sign in front of J, is precisely the algebraic expression of ’counter-
alternality’. As for the absence of components M.s_1, M.s_3 etc, it simply
follows from the fact that all elements M* of M4 verify antiM*® = (—1)**1M*.34

Here are two elementary but useful lemmas about the stability properties of
d-alternality:

Lemma 5.1 We have the following inclusions:

mu(M.g,, Mig,) = @o<sMdy +dy—5
lu(M.q,,M.q,) < @o<sM.a,+d,—25
dme (Flex.q, (€), Flex.q,(€¢) < @o<sFlexq, 1a,-5(€)
mde (FleX:d1 (&), Flex.q, (QE) c @o<sFlex.q, +dy—o(€)
dle (Flex:d1 (&), Flex.q, (@) c @o<sFlex.q, +d,—1-5(€)

Lemma 5.2 Let HY := h(ujvi +...+u,v,.) for some function h. Letri+ro =71
and denote by H,7 . the sum of all terms resulting from shuffling the r1 first
u;’s with the ro last u;’s while leaving the v;’s in place. Next, take di < r1,
dy < 12 and let the projectors pr., and pr.,, act respectively on the variables
ULy ooy Upy ANA Upy 41,0, Uy of HYY . Then the result, viewed as a function of
the sole v;’s, is in BIMU%*42 [, other words:

H® if d=di +ds

:d ul u? u w
pr,, .prig. .pri;, .sha HY = .
v ! 2 T 0 otherwise

33For details, see ” Combinatorial tidbits” on our homepage.
34Recall that anti denotes the reversal of the sequence e.
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Remark 1: If we were to replace h,. s, (c) by hy.s, (07") in (240), we couldn’t
draw any definite conclusions about the alternality co-degree of B®. This un-
derscores the (non-obvious) fact that the arguments A$ of a counter-alternator
must be treated like the indices w; of a mould rather than like the factors D;
of a product of derivations.

Remark 2: The elementary projectors

prg:  MUsewn o MO = SV R (o) Moot

eSS,

of BIMU, onto BIMU , 4 cease to act internally on Flez,(€*) from r = 4 onward.
For r = 4, we still have elementary projectors of Flex,(€*) onto Flex, 4(€*), of
the form:

pr:*d . MWL Wr M:lrll)1,~-,w4 _ Z hId(U) MWeo (1) Wa(4)

ceS,

but with pr., & pr¥ and pr.; + pr¥. For comparison, here are the coefficients
h4,q(o) and b} ,(o) in vis-a-vis:

o(w) | han hjf,1 | hag hjf,z | hag hjf,s | haa his |
w1, W, W3, Wy 6 6 11 11 6 6
w1, W2, Wy, W3 -2 —6 -1 -1 2 6
W1, W3, Wo, Wy -2 6 -1 -1 2 —6
w1, W3, Wy, W —2 6 -1 -1 2 —6
w1, Wy, W2, W3 —2 —6 -1 -1 2 6
w1, Wyq, W3, W2 2 6 -1 —1 -2 —6
Wa, W1, W3, Wy -2 —6 -1 -1 2 6
Wa, W1, Wy, W3 2 -6 -1 -1 -2 6
Wo, W3, W1, W4 —2 —6 -1 -1 2 6
Wa, W3, Wy, W1 —2 —6 -1 -1 2 6
Wa, Wy, W1, W3 2 —6 -1 —1 -2 6
Wa, Wy, W3, W1 2 —6 -1 -1 -2 6

e e e e e e e e e
= e T T e e e e e e e e e e e

W3, W1, Wq, W2 -2 6 -1 -1 2 —6
w3, W, W1, W4 2 6 -1 -1 —2 —6
w3, Wy, Wy, W1 2 6 -1 -1 -2 —6
w3, Wy, W1, W2 -2 6 -1 —1 2 —6
w3, Wyq, W2, W1 2 6 -1 -1 -2 —6
Wy, W1, Wo, W3 -2 -6 -1 -1 2 6
Wy, W1, W3, W 2 6 -1 -1 —2 —6
Wy, W, W1, W3 2 —6 -1 -1 —2 6
Wy, W, W3, W1 2 —6 -1 —1 -2 6
Wy, W3, W1, W2 2 6 -1 -1 -2 —6
Wy, W3, Wa, W1 -6 —6 11 11 -6 —6

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
w3, w1, W, Wy | —2 6 | -1 -1 | 2 —6
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
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For r = 5 we no longer have projectors of Flex,(€®) onto Flex, 4(€*) expressible
purely via index substitutions. In place of these elementary projectors, we must
resort to the partially symmetrized alternators of the next subsection.?®

5.9 Partially symmetrized alternators:

Definition 5.3 (d-alternators.) For 1 <d < r we set:

calth (A3, ..., A2) D heigr—a(o) caltye (A% ), . AS,y)  (242)

geS,.

caltis (A3, .., A7) == > hpige—a(o) caltye (A, ... AY)  (243)
ceS,.

caltye (A}, AD) = Y heapr—a(0) caltye (A ), AS)  (244)
0eS,.

with the coefficients h, 5(c) associated with the projectors pr.;: see (237).

Proposition 5.4 tells us, inter alia, that when we insert alternal arguments H*®
and A? into our d-alternators, the result is going to be a d-alternal bimould M*.
It is therefore tempting to try to rephrase the definition of the d-alternators in a
way that would make their signature property manifest. This is indeed possible,
due to:

Proposition 5.5 (d-alternality made manifest) .
The d-alternators are capable of an equivalent definition, of type:

cAltye (A}, AD) = D heapr—a(0) kalthE (AL ), . Aly)  (245)
ceS,.

caltiis (A3, ., A2) = ) heie—a(0) kalty e (AY ), . ALy)  (246)
ceB,.

caltye (A}, A2) = ) heagr—a(0) Kalthe (AL, ooy Aly)  (247)
0eS,.

where each (r+1)-linear term kaltH. (A5 As (r)) can be written as a finite
sum of elementary summands involving the opemtwns dle, dme, mde respectively
ro, 71,79 times, with ro = r+1—d and r1+ro = d—1.

Unfortunately, there exist scores of equivalent expressions for kalt;ff(...), and
so far we failed to come up with a clearly privileged choice, except in the two
extreme cases, namely when d = 1 or d = r. Indeed:

Proposition 5.6 (1-alternality and r-alternality made manifest) .
The 1-alternators calt;ﬂ coincide with the alternators salt?ﬁ of Definition 5.2,
and for these the formulae (227)-(229) clearly amount to expansions of type

35usually with the index H® := ¢°.
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(245)-(247). As for the r-alternators, they too admit expansions of such type,
to wit:

KAty (A3, . A) = ) (—1)5*1d;e<dle(H',dge(Al)),d;e(Az), ...,dﬁle(AS))
1<s<r
Kalt} (A7, A = Y (—1)5*1d;e<dle(H',m?le(Al)),mﬁe(Az), ...,mﬁe(AS))
1<s<r

Kaltyys (A7, ., A7) = ) (-1)8*1dme(d1e(H°,mu(A;,..,A;)),mu(A;+1,..,A;))

1<s<r

5.10 Complement: dimensions of the component spaces.

Let us illustrate the dual gradations by degree and codegree, while focusing
on the former, for greater ease of notations. Let E be the associative algebra
freely generated by non-commutative variables e, es... and for any sequence
s = (81, ..., 8n) let E® be the subspace of E spanned by elements of degree s; in
€1, s2 in ey ete. E¥ admits a natural decomposition E = @, <5<|s|E§ spanned by
elements of differential degree’ § 6. Ef is simply the subspace of Lie elements,
with dimension

dim(E) = 2 3 pat)—L9)

3 (s T (s :=|s|, u = mobius function)

For ¢ > 2, E§ is defined as follows.We consider all d-partitions S5 of s:

Ss @ os=s8'4-- 4+ with s°=(st,..,s) and s =0 but |st|>1

ey Sy

We then define E§ as the sum, for all J-partitions of s, of the symmetrized
products of the Lie spaces E§ :

5 = Ps; symnwtrize(EflIEix2 . Efs) (248)
Here, syrmnetrize(IETIIET2 Efa) obviously denotes the space spanned by all
the symmetrized products of Lie elements e, e?, ...,e%, with each e* running

through some basis of Ef The resulting space E§ does not depend on the
choice of those bases. Moreover:

g !
dim(E§) = Y dim(E$")...dim(E5") ;) dim(E}) = dim(E*) = ——
I 5 s1!...sp,!
In the case of distinct generators, i.e. for s = (1,...,1) (r times), we get:

2 dimEy 'zt =z (x+1)...(x+d—-1)

1<d<r

36
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To illustrate the general case, let us consider the sequence s = (1,1,2). We then
get the decomposition E® = @;E] with

dim(E?) =3 , dim(E3) =5 , dim(E3) =3 , dim(E]) =1
and here is a possible choice of basis elements €5 j:

[e1, €3], €3], e2],

[
[

=
basis(ET) : = [[e1, e3], [e2, es]],
61,3 = [e1, [[e2, €3], e3]]
€21 = [[e3, e1], ea].e3 + e3.[[e3, 1], e2],
€22 = [[e3, e2],e1].e3 + e3.[[es, e2], e1],
basis(E3) : { €23 = [[e1,e3],e3].e2 + ea.[[e1, 3], 3],
€24 = [[e2, €3], e3].e1 + e1.[[e2, €3], e3],
€25 = [e1,e3].[e2, e3] + [ea, e3].[e1, €3
€31 = [e1, ea].e3.e3 + e3.[e1, ea].e3 + esz.e3.[e1, ea],
€ry = [e1, e3]-ea.e5 + ea.[e1, e3].e3 + ea.e3.[e1, €3]
basis(E3) : ' +[e1, e3].es.e2 + e3.[e1, e3].ea + e3.e2.[e1, €3],
- [e2, e3].e1.e3 + e1.[e2, e3].€3 + e1.e3.[ea, €3]
' +[ea, e3].e3.e1 + e3.[ea, e3].e1 + e3.e1.[ez, 3]
€1.€2.€3.63 + €1.€3.€2.€3 + €1.€3.€3.63 + €9.€1.€3.€3
basis(E]) : €41 = < +eg.e3.61.€3 + e3.€3.€3.€1 + €3.€1.€2.€3 + €3.€1.€3.€2

+e3.ex.€1.€3 + e3.€2.€3.€1 + €3.€3.€1.€2 + €3.€3.€2.€1

The bottomline is this:
(i) choosing a basis for all E5 entirely reduces to choosing a basis for all E$
ii) but picking a basis for any E{ necessarily involves some arbitrariness.

1

6 'Tree-indexed bases: binary, ordered, stacked.

6.1 Binary and ordered trees.

Let BT, denote the set of binary trees with r nodes and one root, and let OT,
be the set of all ordered trees with r nodes and one or more than one root. It
is well-known that both have the same number of elements:
4(BT,) = #(OT,) ik (249)
L) = = Ky = —————————
! " "ol (r+ 1)
while the subset of OT,. consisting of one-rooted trees has k,_; elements.
For convenient enumeration, we introduce on the elements bt,. 5, of BT, and
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ot of OT, various orderings®” that reflect the trees’ inductive construction:

, ri+ro=r—1
btk = b(bty, gy, btr, k)  with {1 < < o, (250)
oty =r—1
either  H(0ty, kyy-.yObr, k.)  with " fe =7
o 1<8,1<ki<,‘£”_1
Ot = (251)

L+t rs =

.(Ot ot ) ith
0 k )ttt S:ks wz —
7 ) T1,K1 7 2<3,1<k1‘</€r1

The gothic h (for heave) in (250) signals that bt,, x, and bt,, r, get attached
to a root as left- and right-leaning branches, to produce a new binary tree. That
same b in (251) means that the various bt,, x, get attached to a root, as separate
branches ordered from left to right, to produce a new, one-rooted ordered tree.
Lastly, the gothic j (for juztapose) means that the bt,, , simply get juxtaposed,
resulting in an s-rooted, ordered tree.

Although we impose 1 < k; < Ky, in (250) and 1 < k; < Kp,—1 in (?7), the
effect is the same: it allows only one-rooted trees inside b or j.

We can now return to the task of tree indexation. A quick, if artificial-
looking way of going about this is by associating with each tree a function germ
at +00. Here are the most useful choices, with the monomials given in order of
decreasing dominance:

r _

btyg > gbt, . (#) == — (= + ) +e " (T + ) (252)
bty — gbt, ;. () = —(% + %) +e " (ke a” + k) (253)

s .k ks
Oty 1 = got,. p(z) = ee” — (% +...+ %) +e* (;1 + ...+ E> (254)
Oty 1 = got,. p(z) = ee” — (;—1 +...+ %) +e " (ksa® + ... + k1) (255)
s _u K ks

Oty 1 = got,. ,(z) = ee” +2° — (% + o+ %) +e " (;1 + ..+ E) (256)

oty — got, p(x) := ee” +a° — (r—l + .+ E) +e " (ksa® + ... + kyz) (257)
k] €T xS
" 0 if oty is one-rooted, i.e. of the form h(...)
wi € =
1 if oty is many-rooted, i.e. of the formj(...)

We can then endow our trees with the k-indexation (1 < k < k,) that mirrors
the germs’ behaviour at infinity:

on BT, : {k' <k"} < gbt, . () <gbt, m(2) for 1 <<z (258)
on OT,: {k' <k"} < got, 1.(x) < got, y»(z) for 1 <<z (259)

Different applications require different orderings. Whenever necessary, we shall
specify which ordering we are working with.

37For clarity, let us speak of orderings when comparing tres, and of orders when comparing
edges issuing from the same node in a given tree.
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6.2 Binary trees for basis indexation.

To any basis {bt, x, 1 <k <k} of BT, we associate a basis {bte; ,, 1<k <k}
of Flex,(€*) by means of inductions that run parallel to ?7:

bte} ; = € ; btey;, = mdme(bte; ¢° bte) ,.) (260)

r1,k10 r2,k2

with the familiar semi-inflected ternary operation:

mdme (A*, B*,C*) := de”'.mu(A4°,de.B*,C*) (261)
We denote by {btay ;,1<k<r,} and {bti;;,1<k<r,} the corresponding bases
of Flex,(Pa®) and Flex,(Pi*®).

6.3 Ordered trees for basis indexation.

To any basis {ot, i, 1 <k<k,} of OT, we associate three variously accentuated
sets {ote ;1 <k <k} of Flex,(€*) by inductions that run parallel to (251).
Only the first two, {ote; ;,1<k<k,} and {ote},1 <k <k,}, will turn out to
be proper bases of Flex,(€*).

. e caltgs (ote, ;. ..., Ote, if k<K

6t81 1 = 6. 5 Oterk = «— ¢ E .T17k1 R .r57k5) f " (262)
' ’ dme (ote, ;. ,..,0te, ) if K>k
caltge (oted , ..., 0te" if k<Ko

ote] ; =€ | oter =<4 < (6ter, 1, roke) " (263)
' ’ dme (otey ;... 0tep ) if k>R
caltg. (ote? sy 0ted if k<kp_q

Gtel | = € | dtet, =1 < (ote?, 1o k) " (264)
’ ’ dme (otey, ;. ,...,ote} ;) if k> ke

Of course, when dealing with Flex,(Pa*®) or Flex,(Pi*), we revert from gothic
to roman, and change ¢ to a or ¢.

Remark: In view of the systematic exchange dme < mde in the definitions

—

of the first two alternators (see §5.5), one might expect dme and mde on the
lower right-hand sides of (262) and (262) respectively — or the reverse! In fact,
these choices would work fine, and still lead to proper bases, but with them the
formulae for basis change would be slightly more awkward.

6.4 Stacked trees for basis indexation.

Stacked trees aren’t trees proper, but rather linear combinations of ordered trees
subject to definite alternation conditions on their branches. Before defining
them, we require an auxiliary construction. Let E be the associative algebra
freely generated by non-commutative variables ey, es..., as in §5.10, and for any
sequence 8 = (81,...,8,) let E® be the subspace of E spanned by elements of
degree s1 in e1, s2 in e etc. E® admits a natural decomposition E = @, <s5<|s/Ef
spanned by elements of ’differential degree’ 4.

o1



Construct, as in §5.10, a basis of E?, consisting of elements €5 ;

N;o € Z
€55 = ) MNioCu(1)-Co(2)---Cq(s) With ’ 265
o ; 7 Fo(1)Fe(2) (*) {a {1, ., 8 —>{1,...,n} (265)

and consider the dual expansion in M:

ny, €%
o:{l,...,s} > {1,...,n}
(266)

We are now in a position to inductively construct a complete system ST, of
stacked trees and, parallet with it, convenient bases of Flez,(¢*). However, we
must now sharply distinguish the one-rooted stacked trees, to which there will
correspond dme-generators of the Flex(€®), and the many-rooted stacked trees,
to which there will correspond dme-products of generators, which together shall
provided a graded basis of Flez(&*).

One-rooted stacked trees with r nodes and co-degree d are inductively defined
as the superposition: 38

ms,; = an‘g Me(1)-Me(2) - - - Me(s) With {

Str,d,k Zn;k,a h<StTU<1)7dU(1),ka(1)7 “"Stra(s)vda(s)aka(s)) (267)
(on

with =r=1+r 4+ - +r and d=1-dog+dy+...+ds (268)

We have here the same coefficients n}, as in (266), and (st d, &, -+ Str, d, k. )
is still a sequence of multiplicity type, i.e. with a first element repeated s;
times, a second element so times, etc. The corresponding elements of Flex(€*)
are defined by:

ApL® 7 * ~ AL A L®
5te,r.,d,k = Zni,(, Calt@' (5{37.0(1),d0(1)7k0(1), ...,5’(87.0(5)7(10(5)7%(5)) (269)
[eg

< @ _ * < [ T TP
5ter7d,k = Zni,o. Calt@' (Etero(1),da<1)7ka(1)’ ...,5tera(s)7da(s)7ko(s)) (270)
[eg

—(.® _ * Y ctp® cte®
stey g = Zni,o caltg. (5teru(1>,da(l)7kg(1), ""5t°ra<s>,da<s>,kg<s>) (271)

o

The main point is of course the occurence of dy with a minus sign in the sec-
ond sum (268). That minus sign reflects the main property of the counter-
alternators: the more alternating they are as functions of their arguments
(43, ..., A2), the less alternating they are as bimoulds, i.e. as functions of e.
In fact, the indexation by stacked trees is what shall enable us, in the next
section (§8) to decompose Flex,(€°*) as a sum Flex, 4(€*) of subspaces with
elements of co-degree d and to calculate their dimensions dim(Flez, 4(€*)) by
means of interesting generating series.

38since the sty d; k; inside b are tree superpositions (‘stacked trees’), h must be viewed as

a multilinear function of its arguments.
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But before proceeding, we must dispose of the case of many-rooted stacked
trees. Here, the definition is more straightforward: 3°

s=2
Sty d k= j(St7-17d17k1, RN Strmd&m) with r=ry+---+7r; (272)
d=dy+---+ds

and gives rise to the parallel construction on Flez(€*):

-
Al ® A, ® Al ®
5t2r7d7k = dme (5ter17d17k1, . ’ﬁteTs,ds,ks) S 2 2
-
Stey g i = dme (8tey, g, ..o 5ty o ) with yr=ritetrs (273)
«—
Stes g = dme (5ted, 4 4vee o 5teS g ) d=di+..+ds

6.5 Ordered trees and the pre-Lie products.

Anticipating on the systematic investigation of the bases {ote; ;} and {ote; ;}
in §8, let us mention here two statements that justify after the event their
seemingly artificial construction. For simplicity, we limit ourselves to {6te;’,€}
and look at the action of the alternality-preserving pre-Lie brackets dle and dari
as defined in §5.5.

Proposition 6.1 (The pre-Lie product dle as tree attachment) .
For any pair of rooted, ordered trees ot,, j,,0tr, k,, the identity holds:

1<k <kpo

274
Zr,k eN ( )

dle(dtey, 5, 0tey, ) = — Do L.y ote),  with {

1<k<kr_1

The ordered trees oty on the right-hand side are exactly the trees (counted with
their multiplicities) that can be obtained by attaching the tree ot,, i, to the tree
Oty ks 4.6. by attaching ot,, r, successively to all the nodes of oty , .

Proposition 6.2 (The pre-Lie product dari as tree insertion) .
For any pair of rooted, ordered trees ot,, j,,0ty, k,, the identity holds:

1<k <kr1
dr,k eN

dari(ote;, , ,0te) )=+ 2 dy. ), 0te;. , with {

1<k<kr_1

(275)

The ordered trees ot,.y, on the right-hand side are exactly the trees (counted with
their multiplicities) that can be obtained by inserting the tree ot,, p, into the
tree oty i, , i.e. by inserting some rooted branch branch(by) of oty, k, into some
edge (a1, a2) of oty ;-

39

once again, since the st,, 4, r; inside j are tree superpositions (‘stacked trees’), j must be
viewed as a multilinear function of its arguments.
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Explanation: An edge (z1, 22) of a tree ot links two consecutive nodes. A branch
branch(x4) of ot consists of all nodes x anterior to x,. It therefore contains the
root xg of ot. Note that x, neednot be an end-point of the tree. It may even
be the root of the tree, in which case branch(zg) = {xo}.

Remark 1: Since in Proposition 6.2 a; #+ ag, it follows that no tree can be
inserted into a tree that reduces to a root. Therefore:

dari(otey |, 0te;, ;) =0 (276)

On the other hand, since a rooted branch may reduce to the root, it follows
that:
dari(ote, , ,ote] ;) +0 iff i >1 (277)

This is in sharp contrast to Proposition 6.1, where the right-hand side of (274)
never vanishes.

In fact, as a dle pre-Lie algebra, Flez®(€*) is freely generated by the single
element €*;, whereas as a dari pre-Lie algebra, all non-trivial identities’® in
Flex(€&*) are generated by the identities (276).

Remark 2: Propositions 6.1 and 6.2 show that the subspace Flex oot (€*)
spanned by the basis elements ote; ; corresponding to rooted trees ote, ) (k <
Kr—1), is stable under the pre-Lie products dle and dari, and therefore under
the Lie brackets lu and ari. This is no longer the case with the basis {ote; ;. } or
the system {ote} ; }(not a basis).

Remark 3: There is no way of modifying our definitions so as to get the same
signs in front of ), on the right-hand sides of both (274) and (275). Here,
we chose to have the plus sign for dari and the minus sign for dle because, on
balance, it simplifies a larger number of formulae (even though it clashes with
the convention usually adopted when defining the standard pre-Lie product on
non-ordered trees).

Remark 4: Assume we have already constructed a system {ote; , } that verifies
(274) for all r < rg. Then the same identities (274) fully determine — in fact,
overdetermine — the system {ote; , } for 7 = ro. In that sense, there is no latitude
in the choice of system. Actually, solving (274) is how the system {ote; ,} was
found and how, once found, it led to the counter-alternator calt. The other
counter-alternators followed by analogy.

6.6 From calt to Calt: an illusory, yet useful extension.

We are now going to construct counter-alternators Calt indexed by ordered trees
oty x, or simply by (r, k). These capitalised Calt, (A3, ..., A?)

40j e. all identities that do not result from the universal pre-Lie identities

dari(dari(A®, B*), C*)—dari(A®, dari(B*,C*)) = dari(dari(A®,C*), B®)—dari(A®, dari(C*, B*))
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e appear to be more general than the ordinary caltge (A3, ..., A?)

e unexpectedly turn out to reduce to linear combinations of these ordinary
counter-alternators

e nonetheless prove very useful to relate the dme and mde generation
e have the merit of highlighting the advantages of calt over calt and calt.

Definition 6.1 (The tree-indexed counter-alternators Calt, ;(A)) .
For any sequence A := (A3, ..., A?) with A} € Flex(€*) we set:

one-rooted case : 1<k <#k,_1 and oty =H(0ty, k,,-..,0tr, k)
Calty k(A) = caltas(Calty, 1, (A"), ..., Calt, i, (A®) (278)
1<k <y -
with ) firi—1 2Ti=T (279)
Al A% = (A3,..,A) length(A*) =r;
many-rooted case : K,_1 <k <k, and oty =j(Obry kys---, 000 k)
Calt, ,(A) = dme (Calt,, , (AY), ..., Cilt, ;. (A% (280)
1<k < kp,— =
with =S ri=rT (281)
Al A% = (A3,..,A) length(A*) =r;

Pay attention: in all cases, whether one- or many-rooted, Calt, j is recursively
defined in terms of one-rooted predecessors Calt,, ,, with 1 < k; < k,,. On the
other hand, in the one-rooted tree, it is the sequence *A := (A3, ..., A?) that
gets factored into subsequences A?, whereas in the many-rooted case, it is the
full A := (A},..., A?). Lastly, note that, due to the inclusion of A}, we have
>ir; =7 in (279)-(281) instead of r—1 in (251) .

Clearly, the new Calt(...) are closely related to the basis elements {ote, }.
Indeed:

T times
otey , = Calt, (€%, ..., €) (282)

But it would seem that by allowing arbitary bimoulds A} in index position
calt 4¢(...) in (278), we are going to generate new elements not covered by the
{ote, 1} system. This, however, is not the case:

Proposition 6.3 (From Calt to calt) .
For any sequence {A} = otey, 1,1 < ki < K£r,—1} of one-rooted basis element,
the identity holds:

r=7ry+..+7rg

caltas (A3, ..., A3) = Z mp Otey ,  with { (283)

1<p<tir_1 mrp €N

with the sum extending to all one-rooted ordered trees ot,, (counted with their
multiplicities) that can be obtained by attaching, in an order compatible manner,
the one-rooted trees oty, k,,...,0t, i, to the one-rooted tree ot,, i, featuring in
index position.
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"In an order compatible manner” obviously means than two trees ot;, k,, ot k;
should never be attached to two nodes of ot,, , located in reverse order, and
that, if attached to the same node, the order ¢ < j should be respected. Of
course, some trees ot,, may occur several times (m,, > 1) or none at all
(myp = 0). In the special case of just two trees, we fall back, signs aside, to the
formula:

calt 43 (A3) = —dle(A7, A3)

So, if the ’generalised’ counter-alternators Calt,  do not produce anything
really new, why bother with them? The answer is that they are needed to bridge
the gap between the dme- and mde-products of one-rooted basis elements:

Proposition 6.4 (From dme to mde) .
For any number of one-rooted trees oty, r, (1 < ki < kr,—1), the identity holds:

—

r=ri+...+rs
mde (6te;

ke Otel p )= > Caltyg(6te] ... 0tey, ) (284)

1<k<k,

Note the order reversion on both sides of (284). Note further that, although
all arguments are one-rooted (k; < K,,_1), the sum in (284) extends to all
trees ot,, one- or many-rooted: all are required. Note lastly that, due to the
preceding Proposition 6.3, each term on the right-hand side of (284) reduces
to a sum of basis elements ote; ;. The involutive identity (284) therefore does

—

exactly what was requested of it: expressing mde products in terms of dme
ones.

Remark 5: Neither Proposition 6.3 nor Proposition 6.4 would hold if we were
to replace the pair (calt, Calt) by a similarly constructed pair (calt, Calt) or
(calt, Calt). This again goes to show the privileged status of the first counter-
alternator.

6.7 Stacked trees and co-degree stratification.

Gradation of Flex,,,:(€*) by codegree.

In view of what precedes, the subspaces Fle:c%)ot((‘f‘) of Flex oot (€*) spanned
by the basis elements 3te; ; ;. corresponding to one-rooted stacked trees ste;. 4

with d’ < d clearly constitute a filtration by codegree of Flex ,,:(€*). In fact, the
smaller Flex(rzz)t(t’f') spanned by the sole elements ste; ; ; constitute a genuine

polyalgebra gradation of Flex,,,:(€®), in view of numerous inclusions of type:

lu(Flez'9)(€*), Flex'@2)(€*)) < Flex!2F =1 (e (285)
ari( Flex'et) (€%), Flez'2)(€*)) <  Flez\t %™ (e*) (286)
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Free generation of Flez(€*) from Flex oot (€*).

The whole of Flex(€*) can be freely generated from Flex .o (€*) under either of
the pre-associative products dme and mde, in the sense that each many-rooted
ste, 4 admits these two exressions, each of them unique:

-
éte:,dJC = dme (éte:‘lydhkl’ ‘e 7éte’:s,ds,k)3) (287)
-

Stepgp = Z Brid kiseeorada k. mde (Steg, g, g, 5., 8ten g p ) (288)

with 2 <s, Yri =71, ddi =d, ste}, 4 r. € Flex;o0t(€*) and with integer
coefficients By, dy ky:....re.ds k. € Z calculable by (283) and ( 284)
Gradation of Flez(€*) by codegree.

Here again, rather than a mere filtration of Flex(€*) by codegree, we have a
genuine gradation by the subspaces F lem(d)((’f’) spanned all the (one- or many-
rooted) basis elements ste; ; ;.

6.8 Improbable explicitness of the basis changes.

From binary to ordered trees, and back.

Set as usual K, := % and consider on Flez,.(€*) the basis changes
otey, = Z mob}? bte; , (binary to ordered) (289)
1<q<hy
bte;, = Z mbo;? ote; (ordered to binary) (290)
1<q<k,

and the corresponding matrices mob, := [mob??], mbo, := [mbol’?].

Proposition 6.5 (Properties of the matrices mob, and mbo,) .

D,q| (r+k=D)!(r—k) ok
1<p,q<rr lmoby | = >3 h ey A 2

<p
Pa) Dicpgen, mbOY T =1 x 3 x5 x - x (2r —1)
(Ps) a_ 1if g=1
? " 0if ¢g>1

<x, ‘mob£7q| _ 2r7#(leftmost branch of bt q)

p,q _ __ 7!
_mbo," = Ci N

1<p
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Remarkably, it is not the ¢-sums (rows) but the p-sums of the matrix elements
that admit simple expressions.

In (Pf), the p-sum is equal to 1 if all the binary tree bt, 4 consists of a single
left-leaning branch, and in general it is equal to 2 to the number of nodes off
the left-most branch of bt, 4.

In (Ps), the expression of the p-sum involves the factorial of the ordered tree
oty q, defined in the usual way:

)= J] (X1 (ot € OT) (291)

i€Nodes(ot) i<°tj

with <° denoting the partial order on Nodes(o?) induced by the vertical *! tree
structure of ot. Note that the ratio r!/(ot)! is also equal to the number of total
orders on Nodes(ot) that are compatible with the (vertical) partial order on ot.

Proposition 6.6 (Making the matrices ob, and bo, triangular) .

If we adopt on the binary trees the k-indexation induced by (252) and on the
ordered trees the k-indexation induced by (254), then the matrices mob, and
mbo, become upper-triangular, with all diagonal entries equal to 1.

Proposition 6.7 (Direct calculation of the matrix entries in mob,) .
Here is an algorithm for turning binary trees bt, 4 into linear combinations

fold™ (bty. 4) = Y mob?? ot,,

p

292
mob?? € {0,1,—1} (202)

{obr,q]mr; 0ty qOT ;
of ordered trees ot, , that carries all the information about the matriz entries
mob? 9. The procedure applies recursively a linear operator fold to produce, at
each step s, linear combinations

fold*(btyg) = >, etFobty,  with  ebFe{0,1,-1}  (293)

1<k<2%n7..ns

of hybrid trees obt,  — part binary, part ordered — with the ’binary tree’ aspect
decreasing at eack step s, and the ’ordered tree’ aspect becoming dominant to-
wards the end. We also require the notion of anchor. For any node x of a binary
tree, let o', 2" etc denote the successive antecedent nodes. The anchor x™* of T is
the first node (V) not aligned with the earlier antecedents. Each node that lies
outside the leftmost and rightmost branches possesses a well-defined anchor. 42

e Step 0: We mark all the n1 nodes x that lie ouside the leftmost branch
of bty q as movable by writing them in boldface: x — x. If bt, 4 has a
non-void right branch issuing from its root xqg, we attach xo (and with it
the whole of bty ) to a new root xoo so as to get a new tree bt, 11 4, all
movable nodes of which possess an anchor.

4lwithout regard for the order on the branches issuing from a given node.
42 . the first (! such that the twig (), 2(!=1)) has not the same slant as the twig (z/, z).

98



e Step 1: We take each one of the movable nodes x located at end points
of ob, 4 and
(i) either leave it in place after unmarking and overlining it: € — T
(ii) or we detach it from it direct antecedent x' and attach it properly 43
to its anchor, after unmarking and underlining it: * — x.
This results in an expansion of type:

fold(btrq) = Y. €l obty,  with  eMfe{l,—1}  (294)

1<k<2n;

with coefficients defined in this way:

(295)

o Step s: We repeat the procedure of Step 1 for each of the hybrid trees obt,.
featuring in the expansion of type (294) obtained at Step s—1. Each such
obt, |, possesses the same number ns of (still untouched) movable nodes
x situated in extreme position, i.e. at end points or with succesors that
are all of type § (movable points previously unmarked). These new x are
the ones that get unmarked at step s. They are either kept in place and
overlined (x — T) or properly attached to their anchors z* and underlined
(x — z). In this way, the various hybrid obt,; from the preceding step
producs ng new hybrid trees, each preceded by a + sign calculated according
to the rules (295).

e Final step: When we reach the stage when all the movable points have
been unmarked, we are left with an expansion (294) where all the hybrid
trees obt, j have completely shed their ’binary’ nature. In other words,
we have exactly the expansion (292) which we had set out to construct.
However, if we had to introduce an additional root xoy at Step 0, we must
now remove it and replace each one-rooted tree ot = H(0ty, 41, ..., 0br, 4.) bY
the juxtaposition j(Oty, 4, ..., Oty, q,) Of the various branches ot,, 4, which
may, in the course of the successive ’foldings’, have attached themselves
to xgg as their anchor.

Remark 1: ’Properly’ attaching a movable node « to its anchor z* = z(®
means two things:

(i) If the original twig (2/,x) is rigth-leaning (resp. leftleaning), then after
detaching x from its immediate antecedent ' and attaching it to its anchor
2 the new twig (z¥, ) must be squeezed between the twig (), (=) and
the various twigs which may already originate from z(®) to the right (resp. to
the left) of (z(, 2(=1)) as a result of previous relocations.

(ii) The movable node z doesn?t migrate alone to its anchor z* = z() but it
carries with it the whole branch of previously unmarked and left-in-place nodes

43See details infra.
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T1,Z2 ... which may be attached to it. That branch, though originally endowed
with a binary tree structure, should henceforth be viewed as an ordered tree.

Provided we take these precautions, it doesn’t matter in which order we
detach and re-attach the various movable nodes at step s. But, at any given
step, we must re-locate only the movable nodes situated in extreme position.
Re-locating other, non-extremal nodes ’before time’ would lead to completely
wrong results.

Remark 2: The expansion (292) always contain on the right-hand side one
ordered tree ot,, that coincides with the binary tree bt,. , of the left-hand side,
but stripped of its ’binary’ structure, and preceded by a + (resp. -) sign if the
original bt, , carries an even (resp. odd) number of right-leaning unit twigs.

Let us now give a series of examples to cover all the intricacies of the 'folding’
procedure** of Proposition 6.7. Trees (whether binary, ordered, or mixed) are
represented by (clumsy but unambiguous) parenthesisings, of type (...) for one-
rooted and (...)...(...) for many-rooted trees. Each node is assigned a number?®>.
The over- and underlinings are there simply to keep track of the folding history.

Here is an example with just two movable nodes and no need for an auxiliary
T00t Z0oo-

FL2).3)0) — HL(@).3)9) + (2,1,((3),4)

2 i 17(((5)73)74) i ((7)73)71’(4)

frau@.a) - {i 2.1.(3),4) (2. (3.1, 4
)

~

A
ISR NN
o o I
NANCANCANC AN AN
e e o e~ —~
B
e e s T
R L
===

—~

Here, we have again three movable nodes, but they are disposed of in just two

44the procedure is actually simpler to program than to expound!

45Since the procedure starts with a binary tree bt, we resort to the natural enumeration of
its nodes, that is to say, the enumeration for which the image bta® of bt in Flex(Pa) is of the
form bta® =[], P(};<vt; ;)
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steps.
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The next case, with four movable nodes, it the simplest example to illustrate the
caveat of Remark 1 on how to 'properly’ attach movable nodes to their anchors.

Disregarding it would yield wrong results.
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x7, takes us

back to the preceding case and shows how, after removal of x7, we are left with

This last example, after the introduction of an auxiliary root xgg
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eight one-rooted and eight multi-rooted trees.

)
+((1,(2)),3,(((4),5),6)) = {((1, (2)
—((1,(2)),3,((4),5), (6)) + {((1,(2)
—((1),3,(2).(((4),5),6)) + {((1), 3,
+((1),3,(2),((9),5), (6)) = {((1),3,
—((1,(2)),3,(4),((5),6)) + {((1, (2)
+((1,(2)),3,(4), (5), (6)) — {((1, (2)
+((1),3,(2),(4),((5),6)) — {((1),3,
=((1),3,(2),(4), (5), (6)) + {((1), 3,

~

| = o
7 &Y=
— —

—
o & o o [ & [ &

D D D D T T T
NN )

o~~~ o~ o~

Remark 3: There exists a similar algorithm, also based on tree surgery, for

calculating the matrix entries mbo®’9.

From ordered to stacked trees.

The equivalence, for each 7, of the systems {ot,} (for ordered trees) and

{str.ar} (for stacked trees) isn’t far-fetched. Indeed:

e They both have the same dimension &, := (2r)!

rl(r+1)!

e We have shown that the ot,. j, being independent, form a basis of OT,.

e If, in the recursive construction of {st, 4}, we divide each symmetrised
product by the number of summands, we get an equivalent system {st* , 1,
but the matrix that takes us from {st*,,} to {ot,;} is now guaranteed

to have its determinant equal to +1.

6.9 Scalar product on trees.

The correspondence between Flex,(¢*) and BT, (binary trees; see §6.2) or OT,
(ordered trees; see §6.3) makes it possible to define on trees extremely useful

scalar products. Let us give here just one example.
Consider the 'flat’ flexion unit Flat®:

“ 1
Flat(n) = 3 (sign(uy) + sign(v1))

Viewed as an almost everywhere defined function, it does indeed verify a flexion
unit’s functional identities (see §4.5). Let us set, with self-explanatory notations:

1
mbt?? = > et btflat,”, btflat,’, du;...du, dv;...dv, (297)
uq [ <L,|v;|<
1
mot?? = > 6tﬂat}f’m otflat,’, du;...du, dv;...dv,

™
lui|<1,|vi|<1
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These elementary integrals induce scalar products on BT, and OT,.:

(bt p, bty p) := mbt? (bty p, bty g € BT,) (299)
<otw,, otT7p> := moth? (otyp, oty q € OT,) (300)

Here are the matrices mbt, := [mbt??] and mot, := [moth?] up to r = 3:

) 3 -1 A ) 8 —4
mbty = ) 3 , moty = 3 A 3

B 13 _9 _3 _T 8 7]
3 2 18 9
) 13 1 _ 10 _ 7
3 2 9 18
_ 1 3 1 1 13
mbty = g 2 2 3 2 2
_7 _10 1 13 )
18 9 2 3
8 _ 7 _3 -2 13
B 9 18 2 3
[ 65 _119 g 137
9 9 9 18
65 82 65 _11  _8
9 9 18 2 9
A, 1 19 6 38 19
moty = g 9 18 3 2 3
11 34 23
—6 ) 2 3 6
187 8 19 _23 13
TS 9 3 6 3

7 Filtration by co-degree. Dimensions.

7.1 Filtrations, gradations, dimensions: a road map.

We have already encountered the filtration/gradation of the polygebras Flex(€*)
and Flez™°"(€*) by depth r and alternality co-degree d:

Flex(Qf') = @T,dFleth(@') with Flexrvd(ci') ~ FleXT7(d)(@')/FIGXT’(dfl)(Qf')
Flex™°"(¢*) :@,.,dFlexﬁfgt(G’) with Flexﬁf’st(t’f’) ~ Flexif’f%((’f’)/FleXi?Fj_U((’3‘)

Recall that Flex, q4)(€*) and Flem:?((g)((‘f‘) denote the subspaces whose ele-
ments have depth 7 and co-degree at most d (filtration), while Flez, 4(€*) and
Fle:z:::’[;’t(cf') denote the natural incarnation*® of the corresponding quotients
(gradation).

Our aim in this section is to calculate the dimensions of the above subspaces.
These dimensions matter on many counts — as important features of Flex(€*);
as key to the structure of the pre-associative algebras in general (cf §10); and
because of the rich combinatorics involved in their calculation.

Now, it will turn out that:

4Bgiven by the basis {ste® , ,} indexed by stacked trees.
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The proper numbers to consider are the dimensions corresponding to the
gradation rather than the filtration.

The hard part is to find the dimensions on Flez™°"(&*); those on Flex(&*)
easily follow.

The pertinent indexation for the dimensions on Flex(€*) is by the co-
degree d and on Flez™°'(&*) by the shifted co-degree § := d — 1.

While there exist no manageable, closed expressions for the dimensions
themselves, such formulae, fairly complex yet elegant, do exist for their
simple generating series (in ) and even more so for their double generating
series (in r and d),

So we are justified in setting:
g = dim (Flex)5, (€°)) || 5(t) := Xyest™ | Tlt,2) = Xs(t) 2°
fr,g ;= dim (Flexr,d(é')) H gd(t) = and td H E(t, :E) = ng(t) l'd

We shall proceed as follows:

Introduce the main tools — the framing function and pilot polynomials —
needed for the calculations.

State the main results, with some illustrations.

Sketch two proofs, one indirect but natural, the other more direct but
with a whiff of artificiality about it.

Provide summary tables at the end of this section, and more extensive
ones towards the end of the paper.

7.2 Framing function and pilot polynomials.
Proposition 7.1 (Framing function) .
The framing function, defined by the infinite product®”
1 d —d
— 4 Layja M) @D
F(@; y1, 92,48, ) o= | | (1 —a? yd) T (301)
1<d
may be viewed as a power series of T,y1,Y2,Ys. ... It admits a factorisation:
1
Faiyny2ys ) = Ploynynus ) exp (), —va)  (302)
1<n

4Twhere p denotes the Mdbius function.

64



into an elementary exponential and a factor P which itself possesses a rather
elementary logarithm:

1+ Z 2" Po(y1,. -+ y2n) (P, polynomial) (303)

1<n

10g P(x; y1,Y2, Y3, ) = Y, " Ln(y1,-- -, Y2n) (Ly polynomial) (304)

1<n

7)(17; yl,yz,y:s,---)

Each ‘pilot polynomial’ P,, and L, splits into ‘homogeneous’ and highly lacu-
nary®® components L, 4 and P, 4:

n<d<2n
. 1 nts
Ln(y) = ZLn,n-HS(y) with Ln,n+5(y) = n+ 5 Z /.t(51) (y515) °1° (306)
éln 6”%
with Puatiy,y2 9% - yay®) =y Pua(ys, ve, -, ya)
Loatny,v29%, - yay?) =y Lua(y1, y2, - Ya)

Pilot polynomials.

Though much more complex than the L,, and lacking in closed expressions
of type (306), the pilot polynomials P, also matter, by reason of their close
relation with the ’copilot polynomials’ @, (see infra) which count the dimensions
dim (Ent-ms),

Here are the first four pilot polynomials P,, with their n homogeneous parts.
For more extensive tables, see §11.

1
Pi(y1,y2) = +§ (Y2 — y2)
+3 (3 —ys)
P2(y1 ~'7y4) = 3
’ +3 (i —2yly2 + 393 —2ua)
+1 (i —3)
+5 (W5 —u3)
Ps(y1,..,y6) = 6
’ L1 J = 3ytye + 9973 — Gytys
(" | —7y3 + 692y +8y2 — 8ys

(+1 (45 —us)
L1398 — 9ytys — 8ydys
—9y3ys +21ys + 4y — 12y
Py(yr, - ys) == +25 (Uf —295y2 + 33 — 2w4) (4 — y3)
+yf — 4ySys + 18yt — 12ytys — 28yiy3
i {24 02y0ys + 320702 + 253 — 3293ys
36 Y3ys — 329293 + 32yays + 60yF — 48ys

\

48That applies above all to the components Ly g
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Observe that the homogeneous parts P, 4(y1,-..,yq) may be constant in some
of their variables y;.

The pilot polynomials possess many remarkable properties, but since these
aren’t directly relevant to our purpose, we shall mention but a few.

The lowest homogeneous components are P, ,;; are particularly simple,
given that they coincide with L, ,11:

1 r+l

P (Y1, Y1) = ] w(d) (ya) © = Lyrpa (Y1, Yrin) (307)
d|r+1

The highest homogeneous components, on the other hand, verify:

1
Pr,2r(y7 eeey y) = or ’I”' H (y2 -y + Zd) (308)

T o<d<r-1

When yq, ..., ¥, assume distinct integer values picked at random, the fractions
P, a(y1, ..., ya) tend to have large denominators, but the situation changes com-
pletely when all y; coincide: for any integer y, Pr4(y, ...,y) is itself an integer®®
That case gives rise to many special identities such as:

P.q(1,..,1) = 0 VYrd
1 i d=2r
P 4(-1,..,-1) =
ral ) {0 otherwise

P 4(2,.....,2) is of the form 0(2r—d) (eN) if 5

r
— <d
2

7.3 Dimensions. Main statements.

Recall the definitions of the generating series

s(t) i= Y s t”  with .5 = dim (F1ex;?§jl(e')) (309)

1<r
&a(t) == Z Erat” with &g = dim (Flexr,d(@f')) (310)
1<r
and of their own generating series:
D(t,z) == ) +n@t)z+y0)z*+... (311)
=(t, ) L+ &)+ &)z + ... (312)
Proposition 7.2 (The series £,(t) from the series ~;(t)) .
The series £4(t) and Z(t,x) readily follow from the v4(t) and T'(¢, x)
1
= = — 1
(t,) 1—xT(t,x) (313)
with the x in front of T'(¢, ) accounting for the shift 6 = d — 1.

49For P, o, this can be checked directly with the help of formula (??). For the other homo-
geneous components P, 4, this is not a trivial consequence of the way the pilot polynomials
are defined.

66



We find in particular

Gi=v ; L=m+% ; &G=m+2v%n+% ;

Proposition 7.3 (Enumerating the alternals) .

All alternals automatically belong to Flex™°"(&*) and the corresponding dimen-
sions vr,0 = &r1 are inductively calculable from a functional equation verified by
the generating series o (t):

o) =t exp (0(t) + 57007 + 3 20(E) + ) (314)
The proof here is straightforward. Since in the basis {ste; ;,} of Flex(€*),
the alternal elements {ste; d, ) naturally indexed by unordered rooted trees (ele-
ments of UT), we fall back on the induction for generating such trees, and that
induction readily translates into the functional equation (313). In any case,
(314) is a well-known formula for enumerating the unordered rooted trees.

Proposition 7.4 (General formula: theoretical version) .
The general dimensions 7,5 also are inductively calculable from a functional
equation bearing on the double generating series I'(t, x):

T(t,z) = t F(x;T(tx), 0, 2%), T, 2°%),...) (315)

Apart from involving the highly complex framing function F, the functional
equation (315) closely resembles (314). Indeed, for z = 0, (315) reduces to (314).
But for all its indisputable elegance, (315) has a drawback: when expanded in
powers of x, it expresses any given ,(t) as a polynomial in ;1 (t),...,v,.—1(t)
and their first ’dilatees’ v;(¢¥), but as a full-blown entire function of o and its
dilatees.?

To remedy this, we must replace (315) by the more practical, if less shapely,
formula (316) below, which is obtained by factoring away from (315) the equa-
tion (314), which is itself but a special case of (315) for z = 0.

Proposition 7.5 (General formula: practical version) .
The double generating function I'(t, z) verifies the functional equation

_ e (Xie, 5 (D" 27) = To(t",0)) ) x
Hi,z) = Lot 0) {P(m;I‘(t,m),I‘(tz, 2),D(t3,2%),...) (816)
which may also be written as
o e (B 2 e () ) %
Ht.o) = 20(f) {P(:c; D(t, ), D(t2,22),0(t%, ), . .. ) (817)

50TIndeed, since in this context the component 7o behaves as an object of homogeneous
degree 0, there is nothing to prevent all powers v} from occurring on the right-hand side of
(315). Not so the other components «;, which have positive homogeneous degree.
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or better still:

F(Tf,l‘) - x (Zlén %(F(tnvxn) - ’YO(tn)) )X
e = {—f—logp(m; D(t2). D, a?), T 2Y),...) O

When expanded in powers of x, this equation expresses any given v.(t) as a
polynomial in vo(t),v1(t),...,vr—1(t) and their first 'dilatees’.

Before sketching, in §7.6 and §7.7, two proofs of the central Proposition 7.4 (of
which Proposition 7.5 is a mere corollary), let us make a few comments and give
some illustrations.

Relations between the generating series.

Since dim (Flez,(€*)) = k, and dim (Flez["**(€*)) = k,_1 and since the Cata-

lan numbers &, := % admit the generating function
1
K(t) := Z K t" = E(l -1 —4t)%) (solution of kK* —tk+1=0) (319)

o<sr

our generating functions &;(¢) and v5(t) must clearly add up to x(t) and t k()
respectively:

M&W=kt) e E(t1)=k(t) (320)
o<sr
D) =tu(t)  de  T(t1)=tr(t) (321)

The relation (321) immediately follows from (313) due to (319) and x’s func-

tional equation s(t) = (1 —tx(t))~L.

Practical calculations.

When taking the coefficient of 2™ on both sides of (317), or preferably (318),
we find respectively:®?

1<k s
mt) = 3 {%(t) exp (D150 () 55) 1 (322)

0<p<n P, ( Zogr Vr (t)xl'Tv e Zogr ’Vr(tQPT)xQPT)

llog (1—|— Z ?Eg xr)l =

r<n

Z %'yr(tk) + Z le( Z Yzt ., Z %(tzm)x%’")} (323)

kr=n 0<n<p o<sr o<r

51For consistency, we must set Py = 1.
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with, in the second case, the elementary polynomial L, of (304) and (306).

As already pointed out, the ’practical formulae’ have the advantage of pro-
ducing, on either side, polynomials in finitely many terms of the form ~;(t*)
with 0 < ¢ < n—1 and with products 7 kK bounded by simple homogeneousness
conditions. In fact, when expanding (323), we get:

0§ e, ) 0 S
n ni Ng ] ... k
Pt s by, ’k Yy (7)., (852)
o) 2 20(0) (@) win

.....

amounts, for the generatlng functions 7y, to a recursion of the form:

(t) 20 sil A ("F) oy, (8755 ke € Q (324)
Yn(t) = c * Yy N (A
n 1_,}/0(?5) 2 k1,... k n n Zk]nj <n

The first five generating series ~,.(t) are given in §11.5. With the pilot polyno-
mials, tabulated §11.4, one can easily calculate the next 4, (¢) which, however,
become too unwieldy to write down.

In fact, by repeatedly re-injecting earlier versions of (324) (i.e. versions rela-
tive to smaller values of n) into itself, we can rid the right-hand side of (324) of
all terms 7, (t" %) with 1 < n;. Eventually, we get 7, (t) expressed as a ratio-
nal function of the already known series v (t) and its dilatees vo(¢?), ..., Yo (t?").
These successive eliminations, however, tend to complicate rather than simplify
the expression of v, (¢t). This is why we opted, in the tables of §11.15, for the
raw’ form (324).

7.4 Codimensions. Main statements.
165 o= dim (Flexi?2 (€9)) | 25°(0) i= 055t | T¥0(t,2) i= Shpeq 15(t) 22
7o 1= dim (Flex,,—a(€%)) | €P°(t) := 2&Q T | 2t ) = Yot £5°(1) 27
Here is how new generating series relate to the old, and to each other:52
re°(t,z) = a2 'T(ta,a™t) (325)
=t g) = E(tz,al) = (1 - rw(t,x))fl (326)

The functional equation for I'°°(t, ).

Clearly, T°(t,x) = t + x> + Yo, 2" 75°(t), and due to (315) the functional
equation (325) becomes:

1og(FCO L)y — Y log (1 - T*°(t",2") ( Z“ ) (327)

1<n d|n

52The presence of a factor 1 in front of T'(tx,2~1) but not E(tx,2~1) comes from the
shift between the § and d-indexation for I' and E, which has no parallel for I'®® and E°°.
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Written in this way, it is inconvenient, because comparing the coefficient of
2™ on both sides doesn’t give 72°(t) as a finite expression of x and the earlier

n

759 (t). However, by 'Mobius inversion’, the identity >, _, & = —log(1 — t)
yields successively
t o= = log(l—t") uln) (328)
1<n n
1 n
—log(1—ta) = - Y log(1—t") —x (Y u(5)a") 329
1-10) = - 3 oalt =) ©x (T (329)

By subtracting (329) from (327), we can re-write the functional equation as

log( ) +log(l—tx) =

(- T (15 o

1<n d|n

re(t, z)
t

which yields a proper induction, since by equating the coeflicients of ™ on both
sides, we now find 7, (¢) expressed in closed form in terms of the earlier 7, (¢).

The generating series 75°(t).
Proposition 7.6 (Rationalness of v5°(t)) .

Unlike the v4(t), the v5°(t) are rational functions of t.
Thus, v§°(t) = t, ¥{°(t) = 2 and for n > 2:

o1 D) 1A
b1 (70)n+1 N (—1)” 1 ) _ ok ’Y»io(t) (331)

—1 —1 .
roa (119 rm1(1=t%)

Y (t)

The numerator 3,°(t) in (331) is a polynomial with integer coefficients of mized
signs. Its first coefficient vo 41 is the number of rooted, non-ordered trees with
n+1 nodes.

The generating series {5°(t).

Proposition 7.7 (Rationalness and positiveness of {5°(t)) .

The £5°(t)’s are also rational functions of t, but of a more regular type than the
¥§°(t)’s. Thus, &(t) = (1 —6)71, &(t) =2 (1 —t)~2 and for n = 2:

(n—1) ~
+ .4 t[ ] tn+1 co (¢
U i e R Lo ) e3)
(=02 [0 (=02 [[Zi 1)

n/2+2 if n even
1 if n odd

The numerator g,fo(t) in (832) is a polynomial with positive integer coefficients.

with [(ngl)] denoting the integer part of @ and ¢, = {
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We may get Z¢ from ' or directly from the Mobius inverse®® of (333):
—co CO( n ’n) _ 1 1 n 1
log (2°°(1,2)) = N low (g oy )y 2l ga (539)

Here again, to get a finite induction, we must subtract from (326) the following
identity

log (1 1—th$) = Z log (1 +t" x") Z ,u (334)

1<n d|n

and write

+log(1 —t%x)
—Cco t’L 7L n (335)
+ Y 108 (i gy ebienamy) & S £05) 30

log ((1—t) E°(t, x)) ={

The fact, not immediately apparent from the induction (335), that g;jo(t) has
only positive integer coefficients is quite significant. It implies — or should we
say, suggests — that we can produce, from a finite number of elements of Flex(€*)
a basis for the infinite dimensional space @, Flez, ,_q(€*).

Remark: As should be expected (see below §7.5), the polynomials 5,5°(t) and

{Aﬁo(t) often assume remarkable values when ¢ is a unit root. Leaving aside the
relations that trivially follow from

Aty =€°()  mod (14+t+12+ - +1"72)

n n

we have numerous identities of type

~ 2
Eant1 (i)

in(9)

2
’Yzfﬁﬂ(z)

e =9 ,
i (@)

=5

7.5 Analytic properties of I'(t, ) and =(¢, ).
Special Mobius inversion.

Lemma 7.1 (Special Mdbius inversion) .
Setting xs,a(z) = d™* X4 1a u(%) 2% we have the formal equivalence

{A(t2) = [] xea@) B, e} = {B(t2) = ] Xea(2) A (2"}

1<n 1<n

(336)
resting on the elementary identity
_ 1 if d=1
S Xty (@) Yoy (274 = | (337)
dTed 0 otherwise
1 ad2=

53See (?7) below.
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For a clearer overview, let us again write the two pairs of mutually inverse
identities:

(¢, x) x1,n(3) ) 1
- =(t" ") th =(tz)= — 338
t 1111( (", 2") o (t,) 1—2T(t,x) (338)
D(t"™, ™)\ Xx1.n (@) , E(t,z)—1
=(t,z) = =) th T(ta)=—2" —
(o) = [T (=5 with  T(t,2) = =20 (339)
N
ree(t, x) o X1,n (@) , 1
= =@, " th Z°°(t = 340
o - L (Eea) with °(62) = oy (340)
i P ey S )~ 1

Neither correspondence I' <> = or I'®° « =°° being involutive, the above identi-
ties do not in any way relate our four functions for inverse values x and 1/z. It is
not even clear whether they admit (ramified) analytic continuations at infinity
in x, or in ¢, for that matter. Nevertheless, these two pairs of identities raise the
question as to the analytic nature of I',T'°° and =, =. Let us limit ourselves
to a few sketchy indications.

Analyticity of I'(¢t,z). The case = = +1.

(t1) = — (1—(1—475)%) (342)

(1) = »
(t,—l) =

(1]

(1—(1—4t)%) ;

re- =5 (1-(750)F)

(1]

M|~ N

%(4 + 2t+(1—4t2)%) (343)

p; prime = 3 }

Py = {n ;n=pit...ple with s =1 and { (344)

pi=—1 mod4

It follows that, for any fixed =, I'(t,z) and Z(t, z) as series of t, have positive
convergence radii.

The case when 23 =1 or z* = 1.

Consider the integer sets

Ps = {n ;mo=pit...pte with p; prime and p; =—1 mod 3 } (345)

Py = {n i no=pit...pt* with p; prime and p; = —1 mod 4 } (346)

and for n € P3 or Py set €(n) := (—1)™* 7" and o(n) := 25. Then
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t(1-50(t5) 7 (1-T@#

1))2éJJ) »

L o
(e 1) — TG0 (=T, 5)) > (eI 347
(t,7) = Hn€p3 (1+ (e 7 €(n) o(n) (—7) (347)
1 (L+3T(E™,5)) x
nepP: n w e(n) o(n) (—7)
He(en)iil( (tg i1 ) o "
with j = €273,

_1
2 x

t (1—iT(t,4)" (1+T(2,-1)) (1 = T(¢4,1))

neEPy . A T e(n)o(n)i
- 1—4(t™,2))" X
L(t,i) = H;(:7)>4_+1( ) (n ).) Le(n)o(n)i (348)
[ - (1 +4D(t",—10)) X

[T7EP: (1 + D0 1)) ~2e <ot

The relations (347) and (348), together with the conjugate relations, completely
determine I'(¢,7) and T'(¢, ).

The case when z is a general unit root.

Similar systems obtain when z = ¢, for ¢ a prime unit root of order ¢ := [[ ¢}
( ¢; prime), but with this difference that we no longer have simple formulae for
expressing the exponents h(n, €) := >}, u(n/d) e~ 4. Still, the set P, of relevant
integers n, i.e. of all n for which h(n,€) £ 0, remains fairly lacunary, as it
excludes (in particular) all n that are

e divisible by ] qm“rl

e or divisible by some gy with ¢go =1 mod ¢
e or divisible by some go [q;"* with ¢go =1 mod []g; " and m+m! > m,.

If € is a prime root of order ¢, then I'(¢,€) and Z(¢, €) have radius of conver-
gence 474, with (unless € = +1) an analytic boundary at the unit circle, on
all their Riemann sheets.

If € = €2™ is not a unit root, it would seem that I'(¢,¢) and Z(t, ¢) have 1
as radius of convergence, unless perhaps for strongly Liouvillian 6.

No special significance attaches to the case ¢ unit root, = small.

Lastly, the case when ¢ and x are both unit roots (but « £ +1) falls outside
the domain of definition of T'(t, z) and E(¢, ).
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7.6 Sketch of proof: first approach.
Roadmap.
We consider the following generating series vo(t),vs(t), va (t):
Yo(t) =D vr1t" with 71 := dim (Flex’’*(€¢*)) = dim (Flexil(@))

Ys(t) == D vra+st”  with Ypi146 := dim (Flexﬁ?{’itg((’f'))
V5 () = Xk stT with k5= dim (sym.calt(;(Flexii(G'), o Flexil(@'))

where the ’restricted dimension’ 7:" 541 denotes the dimension of the space
spanned by all bimoulds B® of depth r and co-alternality §+1 that can be
formed directly from alternal bimoulds A} by forming partially symmetrised
counter-alternators according to the procedure of §6.4; in other words, by all
B* of the form:

B* =) nf, caltes (A3 ), .., Al (349)

We then proceed as follows:

e We provisionally assume 7o(t) to be known.

o We directly calculate the 'restricted dimensions’ 7: 541 Dy using the "copi-
lot polynomials’.

e We form the corresponding generating series ¥ () by using the conversion
matrices moe,,.

e Lastly, we easily go from the 'restricted’ series v (¢) to the full series vs(%).

The conversion matrices.

The first ingredient in this approach are the conversion matrices meo,, and their
inverses moe,,, whose entries are indexed by p, q ranging through the set of all
partitions of the integer n.

Proposition 7.8 (The matrices meo,, and meo,) .
For any partition n = [nq, ...,ns] of n, we set

L="

y" o= ;" (350)
i=1

i=nj=n
Yy, = Dyl (351)

i=1 j=1

. . L of pi=aq

< pi > = 352
nyz nyz {O otherwise (352)
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For a suitable ordering®® of the set Par,, of all partitions of n, the matriz meo,
with positive integer entries

meo,[p,q] = <4yP, Yq > (p € Par,,q € Parn) (353)

1s inferior triangular, with non-vanishing diagonal elements. The inverse matriz
moe,, = meo,, ' has rational entries of mixted signs. Moreover:

Z moe,[p,q] = 1 n (354)
p,qePar,
' moey[p,q]] = 2" Vn (355)
p,qePar,
Pary = [[1]] , Pary =[[1,1],[2]] , Parsg=][[1,1,1],[2,1],[3]]
Pary = [[1,1,1,1],[2,1,1],[2,2], 3, 1], [4]] .
Pars = [[1,1,1,1,1],[2,1,1,1],[2,2,1], [3, 1, 1], [3, 2], [4, 1], [5]]
Parg = [[1,1,1,1,1,1],[2,1,1,1,1],[2,2,1,1],[3, 1, 1, 1], [2, 2, 2], [3, 2, 1], [4, 1, 1], [3, 3], [4, 2], [5, 1], [6]]

Here are the first six matrices meo,,, duly diagonal:

120 0 0 0 0 0 O
24 0 0 0 0 60 6 0 0 0 0 O
5 0 6 0 0 12 2 0 0 0 30 6 2 00 0 0
[1],[11],310,62200,20602000
1 1 4 2 01 0 10 4 2 1100
1 11 11 5 31 2 01 0
1 111111
[720 0 0 0 0 0 0 0 0 0O O]
360 24 0 0 0 OO O O O O
180 24 4 0 0 0 0 0 O 0 O
120 24 0 6 0 0 0 0 O 0 O
90 18 6 0 6 0 0 0 0 0 O
meog:= |60 16 4 3 01 0 0 0 0 O
30 12 2 6 0 0 2 0 0 0 O
20 8 4 2 0 2 0 2 0 00
15 7 333110100
6 4 23 01 20010
1 1 111111111

54Roughly, from [1,...,1] to [n]. See the examples below (355).
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And here are the first six matrices moe,,:

1
o 0 0 0 0 0 0
M1 7 | L 1
% 0 0 00] (% & 00000
1 1 1 11 1
Lo s 0 0] |a 2 000 : 3 3 0000
! s 2 2
[1]7l111,;10,;;500,g;o;ooo
2 : 1T 1] |+ T 010 I 511 100
[ F 3 T[T 11T 0
111171711
L 5 _
[ 0 0 0 0 0 0 0 0 0 O]
1 1
% 3 00 0000000
1 I 1
&= 3 00000000
i 1 1 1
s 5 105000000
moe,:=| ¢+ 2 1T 1 010 0000
i 1 1 1 1
i 1 1 2003 0000
L L1l 01021000
i1 3 5 1 1 3 1
§ 1 13 3130100
: 11101710010
1 3 7 1 1 T
L1 21T 221 4 I 1)

Proposition 7.9 (Properties of the matrices moeg) .
Despite having rational rather than integer entries, the matrices moe,, are in
some respects more reqular than the matrices meo,,. In particular:

Zmoen[p,q] = 1 if q=[n] and 0 otherwise (356)
dy+ .. tdy)! )
S jmoeafp,q) = DI ey (gsm)
. dqi!...dg!
1 . (d1) (ds)
moen[p,q] = ——F———— if p=[p; ..., p)"] (358)
Zq: dllpfl... d,! pds !

The rows and columns of meo,,, on the other hand, have completely unremark-
able sums.

The second ingredient in this approach are the dual pilot and copilot poly-
nomials. They derive from the conversion matrices. Actually, the copilot poly-
nomials come first.
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The copilot polynomials.

Q1,2(z1) = I [01] [o1,02...]
+5 &1 (81-1) I [1] (1,1]
Q2,3(x1,22) = [ [01] [o1,02..]

£1 0, (1) (31 -2) I [1.1.1]
+1 22 (21-1) I 2] (2,1]
Q2,4(z1,22) = | [01,02] [01,02...]
+% ‘%1 (i'l_l) (j"l_2) (f1_3> H [171] [1717171]
+% ‘%2 (i'l_l) (5%1_2) H [17 1] [ ’ al]
+5 & (82—1) I [1,1] (2,2]
Q3,4(71, 22, 23) = I [01] [01,09...]
g @1 (81 -1) (31-2) (21-3) H [3] [1,1,1,1]
+3 9 (#1-1) (31 -2) H [3] [2,1,1]
+3 &2 (82—1) I [3] [2,2]
+1 @3 (21-1) I [3] (3,1]
Q3,5(T1, 72, 23) = | [61,02] [01,009...]
+% T ('f;l_l) (£1_2) (3?1_3) (3?1_4) H [271] [1,1,1,1,1]
"‘% j2 (331_1) (£1_2) (£1_3> H [2’1] [2’17151]
+2 j2 (‘%2_1) (il_Z) H [2’ 1] [ [ 1]
+1 23 (21-1) (21-2) I (2,1] (3,1,1]
+1 23 (22—1) | [2,1] [3,2]
Q3,6(1, 72, 23) = | [01,62,03] [01,009...]
+15 21 (#1-1) (81-2) (81-3) (21—4), (&:—5) | [1,1,1] [1,1,1,1,1,1]
+1 &9 (21-1) (£1-2) (81—3) (21 —4) I (L1 [2,1,1,1,1]
18 (1-1) (1-2) (£1-3) L] B
+3 &2 (22-1) (#1-2) (#1-3) I 11,1 (2,2,1,1]
+§ dg (B2—1) (2—-2) 1 11] (2,2,2]
+1 23 (22—1) (81—2) | [1,1,1] [3,2,1]
+5 @3 (231 [ 11] (3,3]

The pilot-copilot correspondence.

Proposition 7.10 (The P, < @, and P, 4 < Q, 4 correspondence) .

For any n, let Par,, be set of all partitions n := [nq,...,ns| of n, with the n;
arranged in non-increasing order. To each n we also attach a matriz moe,, and
two vectors vo,(y), ve(Q,):

(i) moe,, is the above defined square matriz, of entries moe,[p,q], with p and
q running through Par,.

(ii) vo,(y) is the vector of entries y®* = [y with p = [p1,p2,...] also running
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through Par,,.

(11i) ve(Q,) is the vector of entries Qr(q*) = Q,(¢¥, ¢, ...) with q = [q1, 2, ...]
again running through Par, and q* denoting the conjugate partition:

0" =[af.¢f,...] with ¢f= )1 g =>0) (359)

1<q;

Then the identity holds:

P(y) esp(Y )

Z <vo,(y), moe,,ve,(Q,)> (360)

r<n

with both sides viewed as power series of yi,ya,.... If we view y; as having
homogeneous degree i and introduce a variable y to order the terms according to
their global homogeneous degree, (360) becomes:

d=2r n
(2 v Pra() exp(}, ) = 3, 5" <von(y), moe,, ve, (Q,)> (361)
d=r+1 r<n

The identity (361) actually holds true for each pair (Py 4, Qr.q) separately:

n

v Pra(y) exp()] % Un)

Z y" <voy,(y), moe,,ve,(Qrq4)> (362)

r<n

= Z y" <vo,(y), moe,,ve,(Qrq)> (363)

d<n
The elementary identities ve, (Q,,4) = 0 for n in the interval [r,d[ ensure the
equivalence of (362) and (363).
The pilot-copilot correspondence at the most basic level.

Proposition 7.11 (The Plriors] o Qlrms] and correspondence) .
If we define the atomic pilot and copilot polynomials as follows

QUroorel(ay, g, ) = [ (@ —i+1) (rn=7ro=..1)  (364)

1<i<r
1<t<s
P['r-l,...,rs](yhyz’_n) = Z (_l)s—t H F(tZ) Yr(71) (365)
Jru...J={1,...,s} 1<i<s

with {F(Z-) = (#() — 1) (366)

r(Ji) = Zkeji Tk

the early correspondence still holds

T1y.3Ts yn n T1y.37s
yIrlplrersl(y) exp(Z;yn) EEy <v0,(y), moe,, ve, QU1 {367)

T1<n

= Z y" <vo,(y), moe,, ve, QU1 "1)%368)

|r|<n
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with |r| :=r1 4+ -+ + ry and with the elementary identities
ve, (QU )y =0 e[y, [
ensuring the equivalence of (367) and (368).

Except in the trivial case P™I(y) = v,,,Q")(x) = z,,, the construction
(367)-(368) implies

plmnaly 2 43 ) = 0 (369)
P[”lﬁ“"”s](y,y,y,---) = yy—1)(y—2)...(y—s+1) (370)

Here are two elementary instances of pilot-copilot pairs:

P[nl’n2] (y) = Yn1Yns —Yni+ns

Q[nlinz](m) = Tp, (xn2 71) (711 = ng)

P["l’nz’ng] (y) = Yn1Yno¥Yns —Yny+n2Yns —Yni+n3Yns —Yno+nsYn, + 2 Yni+na+ns
Qlr1in2;nsl () = T, (Tpy —1) (g —2) (n1 = ng = ng)

Here is yet another example, with all n;’s equal to distinct powers of 2 to preempt
repetitions in the sums of n;’s:

+0!0!010! y1 y2 ya ys

—-0!o! 1! (y1y4y10 +Y1Y29Y12 +Y1Y8Ye +Y2YaYo +Y2YsYs +y4ygy3)
PEA21 () = { 012! (y1y14+y4y11 +Y2913 +ysy7)

+1!1! (y6y9+y3y12 +y5y10)

—3ly1s;
Q[8747271] () = a8 (£4—1) (x22—2) (1—3)

Remark: Let Par,(y) be the linear space spanned by the monomials
y* =[] yr,, with v = [rq1, ..., 5] running through Par,. Then the endomorphism
f of Par,.(y)

1<t<s
f Ypi o Yp, — o=t ] N3 e (371)
Jrv..Ji={1,...,s} 1<i<s

which according to Proposition 8.9 encodes the correspondence Q" — P”, ad-
mits an even simpler inverse

1<t<s

f_1 : yT1 e yTs — Z n yT(Ji) (372)

Jro...Te={1,...,s} 1<i<s

which encodes the correspondence P — Q7
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Higher order contributions: going from ~¥(t) to ~;(t).

Piecing together the results of this section, we can state that the restricted,
double generating function:

*
T*(t,2) = 7E(t) + ¥ )z +AE) a2 +... {0770 373
(1) = 230 + 5 ()2 + (1) B il ™

verifies the equation

T*(t,z) = t F(z,T*(t,0),T*(t*,0),1*(¢,0),...) (374)
= tf(z,’y(t),v(tQ),v(tg’),...) (375)

though with a framing function F defined, not directly by (302) but rather by
(302) plus (303) relative to the pilot polynomials P, ¢4 determined in Proposition
7.11.

Finally, to "unrestrict’ the series I'* (¢, x) to the full series I'(¢, ) and establish
the functional equation

D(t,x) =t F(z,T(t,2),T(,2°), 0%, 2%),...)

we use the following lemma:

In conclusion, for all its detours and meanderings, the approach followed in this
section has the merit of drawing attention to the remarkable conversion matrices
meo,,.moe, and of breaking down the pilot polynomials P, 4 into completely
explicit ’atoms’:

di+..+ds=d

P4t =) « Pldudslg)  yith
alt) = aa, ., (t) a4 € QF

7.7 Sketch of proof: second approach.

As in §5.10 let us decompose the associative algebra E freely generated by
elements eq, e5... into spaces E*1:~%" of degree s; in e;, and let us split these
spaces into sums

81,0203 Sp
B = @u5By 7 (5= ) 1)

of subspacesc E consisting of distinguished elements of ’differential’ degree d.
The immediate aim is to calculate dim(Ej " °"). For d=1 we have classically:

; S1y0es8r) 5! . : S1yeesSr\ _ 1 (s/d)!
dim(E )= s1l..s.l dim (R, )= s 5|Zsliu(d) (s1/d)!...(s5-/d)!
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Next, consider the three cgenerating series:

11 <is3..
S(x) =1+ ), Z ol dim(E ) = (1= Day) (376)
1<r s1,s2..
i1 <ig...
M(z) = > > afi.af dim(ES ) (377)
1<r s1,s2...
1<dii<isz..
Su(®) = 14 )] Z it dim (BT (378)
1<r s1,82..
Clearly
Wk
Sw(x) = exp ( Z - M(xh ah, ... )) with  S1(z) = S(x) (379)
1<k

and in the special case w = 1:

wk
Si(x) = exp(Z ?M(x’f,xg,» = S(x) (380)

1<k

By Mobius inversion, (380) leads to

M(x) = 2 Z log (S(zf,25,...)) = Z log (( 1—21‘ (381)

1<k 1<k

and then to

Su(@) = H<I—fo) E Ty @)t (382)

%

So we can now calculate dim(E3) from (382). However, as noted in §7, the
elements of Flex[°°"(€) of alternality co-degree § = d— 1 that can be obtained as
counter-alternaltors of elements alternal elements correspond do not correspond
to elements of E® of degree d, but of supplementory degree s — d. This leads us
to replace the series S,, by G with:

G(z;x1,29,...) = S,-1(z12,222,...) (383)

[1(1-yaar) ot (384)

But going from G(z;x) as just defined to F(z;y) as defined in (302) exactly
corresponds to applying the transform (367) with the matrices moe,. So, the
restricted generating series I'* (¢, x) verifies the functional equation (374). We
can then go to the full generation series I'(¢, ) and its functional equation (315)
by using the same trick than at the end of §7.6.
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7.8 Dimensions.

Table for dim (Flez,%;").

| 12345 6 7 8
1 11 2 4 9 2 48 115
2 000 1 4 15 49 156
3 00001 6 27 108
4 00000 1 7 40
5 00000 0O 1 8
6 00000 0 0 1
7 00000 O 0 O
8 00000 O 0 O
9 00000 0O 0 O
10 00000 0 0 O
11 00000 0O 0 O
12 00000 O 0 O
13 00000 O 0 O

Table for dim (Fle:cnd).

| 1234 5 6 7 8

1 1124 920 48 115
2 0126 16 45 123 344
3 0013 12 41 138 446
4 0001 420 83 328
5 0000 1 5 30 147
6 0000 O 1 6 42
7 0000 O O 1 7
8 0000 O O 0 1
9 0000 O O 0 0
10 0000 O O 0o o0
11 0000 O O 0o o0
12 0000 O O 0o o0
13 0000 O O 0 0
14 0000 O O 0 0
15 | 0000 O O 0o o0

[eNeNeNeloNo]

Here are the first dimensions dim (Flex;% K

) and dim (F le:z:nd). All calculations
are based on the functional equation (315) in the ‘practical’ form (318). The
columns are indexed by the depth r and the row by the co-degree d. For con-
sistency, we used d rather than the shifted co-degree § = d — 1 even in the first
table. The reader may check that, in both tables, the entries in each column
sum up to a Catalan number; and also that the first lines of either table (corre-
sponding to the alternals) do coincide, as implied by (320)-(321).

12

4766
21358
43668
53702
44164
25586
10687

3249

710
110
11
1

0
0
0

13

12486
38146
56321
50889
31258
13539
4249
954
153
16

1

0

0

13

12486
60516
134911
182423
166881
108917
52194
18566
4911
950
132

12

1

0

0

14 15
32973 87811
112358 330064
184385 596741
186888 670807
129898 521166
64729 293759
23749 123608
6433 39183
1285 9391
183 1672
18 218
1 19
0 1
14 15
32973 87811
172034 490204
414952 1272130
611986 2031248
615935 2230554
447319 1783137
241591 1071839
98584 493086
30517 175067
7140 47938
1239 10053
156 1581
13 182
1 14
0 1

8 Main bases of Flex(¢*) and Flez™ (&) .

8.1 mu-generation versus dmu-generation.

Instead of the counter-alternators, consider the simpler operation malt:
0oy AL — maltas (A7, ..., A2) := dmu(Af, mu(A], ..., A,))  (385)
®; Flex,,(€*) — Flex,ot. 4r (E*)
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and the system {mote; ;} constructed parallel to the system {ote; ;}, but with
the operations malt, mu now playing the part of calt, dmu, as follows:

mote} ; = €° (prime element)
motes ; := malte. (motes ;) (prime element)
motes , = mu(mote] ;, motes ;) (composite element)
motes ; := maltee(motes ;) (prime element)
motes , := maltge (mote] ;, motes ;) (prime element)
motel 3 := mu(mote] ;, motes ;) (composite element)
motes ;, := mu(motes ;, motes ;) (composite element)
motes 5 := mu(mote] ;, mote] ;, mote} ;) (composite element)
etc...

Lemma 8.1 (mu-generated basis) .

The ’prime elements’ or ‘generators’ {mote;’k;k < Kr_1}, together with their
mu-products {mote; ;;k,—1 < k < K.}, constitute a basis of Flex(€*) naturally
indexed by ordered trees.

The shortest proof again lies in the fact that, for a suitable ordering on OT and
BT, the OT-indexed mote; , relate to the BT-indexed bte; ; according to

. _ 7,k . . 7,k
motey, = D . ar,]lj1 bte; ., with ar’/’fl €{0,1}
. _ 7,K2 . . Ty R2
btey ., = Z@@w bT,k1 motey ;. with brj,g1 e{0,1,—1}

with triangular matrices [al] and [b]] whose diagonal elements are all = 1.

The system {mote; ,} is essentially the simplest® basis of Flez(€*) that
comes with a natural OQT-indexation, but it does not lead to simple expres-
sions for the basic mould operations. Worse still, it does not, any more than
{bte; .}, reflect the alternality stratification of Flex(€®). Actually, no system
relying on mu-generation can reflect that stratification. The reason is that,
if the space spanned by the ‘prime elements’ or ‘generators’ is to contain the
whole of Flezal(é'), then the ‘composites elements’ will automatically repro-
duce some of the alternal elements already constructed (since superpositions of
mu-products cover all lu-bracketings) and cannot therefore be truly independent
of the ‘primes’. So, to get alternality-friendly bases, we must now return to the
proper counter-alternators.

8.2 Main bases of Flez(€&*).

Proposition 8.1 (Counter-alternators and bases of Flez(&*)) .
(i) The elements ote,; indexed by ordered, one-rooted trees oty (k < kr_1)
and built from the main counter-alternator calt according to the procedure of

55in the sense of making minimal use of inflected operations.
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§.. condtitute a full system of dmu- and mdu-generators, in the sense that any
element ¢* € Flex(€*) admits a unique expansion of the form

r1+...+rs=r

= D] Salh kD dmu(6te), ... 0te ) (386)
Iss<r  ki<kra
and another of the form
r1+...+rs=7 JUT R
e = D bl e mdu(bte], ... 0t ) (387)

I<s<r ki<fr

with a conversion formula @® < b* given by the identity (7).
The closely related system {ate;7d77,; k < ~q} indexed by aggregated trees aty g j
faithfully reflects the alternality gradation of Flex(€*).

(i4) The same holds for the elements dte; ;. built from the second counter-alternator
calt, but with a less simple concersion rule for the expansions

T1+...+rs="7

e = > Y A TR dmu(otel, ... 6t ) (388)
I<s<r ki<Kr
r1t...+rs=r N - R

= D) bt e mdu(atel, ... 0te) ) (389)

1<ssr ki<Kra

and with further differences pertaining to the behaviour of the generators éte;k
under the brackets lu and ari.

(iii) The elements otey ;. constructed in the same way from the weakly inflected
counter-alternator calt do not constitute a full system of dmu or mdu gener-
ators. Indeed, from v = 7 onwards the generators ote; ;. (k < k,—1) cease to
be independent; and the same holds even earlier, starting from r = 4, for the
would-be basis elements ote; ;. (k < k).

However, the elements ute; | ;. (k < 71,r) constructed from calt and indeved
by unordered trees in UT® do constitute a basis of Flex (€*) (alternal elements)
which in some contexts compares advantageously with the analogous bases de-
rived from calt or calt. See §9... and §9 infra.

Sketch of proof:

(i) The independence of the generator set ote;. ;. (k < rr_1) follows from that of
the full set ote;. , (k < ) and the latter follows from the form (lower triangular,
with non-zero diagonal entries) of the conversion matrices exchanging the OT-
indexed systems {ote; ; ; k < x,} and the BT-indexed systems { [Alte;, ks k< K,
as explained in §...

56or, what amounts to the same, by aggregated trees in AT(1).
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(ii) Here again, the proofs relies on the triangular nature of the conversion
matrices. Due to the lesser importance of that case, we haven’t described these
matrices, but some instances may be found in the tables of §13.3.

(iii) Even for small depths r, the dimensions %,_; of the spaces spanned by
the calt-based generators {ote, ) ; k < kr—1} start lagging behind the required
number k,_1, and the dimensions %, of the full systems {ote, x; k < k,} start
diverging from k, even sooner and faster, as shown by this table:

r 1 2 3 4 5 6 7 8
1) (1,1) (2,2) (5,5) (14,14) (42,42) (131,132) (423,429)
1) (2,2) (5,5) (13,14) (36,42) (104,132) (316,429) (..., 1430)

To illustrate the mechanism behind these discrepancies, here are the first de-
pendence relations between general elements or between generators, at depth
r =4 and r = 7 respectively:
0 = +otey, —otey, + ote] 5 —otej 4 + 20te] g — 20te] o (390)
0 = +3e] +4e5+3e3 (391)
with
QI =+5’£2;762 - 5’(8;763 - af8;764 + ate;,ﬁs
ey =+ote7 g9 —0te7 g —0te7 g9+ 0teg 109 —0te7 104 +0te7 105 +0te7 106 —0te7 197

o (e (.0 (.0 (. ®
ey =—0te7 115+ 0te7 119+ 0tes 190 ——0te7 193

Let us parse (??) first:

otej  , ote]; € Flexy 1(€°)
Ete;_rg — anZA € F16X472(QE.)
ote] s —ote] g = dmu(ote3 ;,0te3 ;) — dmu(otes ;,0te] ;) € Flexy2(€*)

Now, to (??). Here are the three elements of Flex(€*)

aj = ote]; € Flex; 1(€°)
a; = ote; € Flexy(€*)
ay = ote3; — ote3, € Flexz 1 (€°)

that go into the making of e}, e3, e3 :

¢} = calte(as,a}) € Flex7o(€*)
+caltge (af, a3, a3) + caltge (a3, aj, ad

¢s = Cff ¢e(a}, a3, a3) C?« ¢« (a3, a7, a3) € Flexys(€%)
—caltes (a3, a3, a3) — calte. (a3, a3, al) ’

(
Feiltes Eaz, aaf,f) +ealte (@5,0f ok al)

—caltge (af, a3, a3, a}) — caltge (a3, aj, a}, a3)
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8.3 Main bases of Flez®(&*).

8.4 Lie and pre-Lie brackets in the main bases.

Lemma 8.2 (Tree operations: attachment and insertion) .
Let T1, Ty, Ty denote ordered, planar, one-rooted trees, i.e. elements of QT(1).

(i) Attaching Ty to T1 means connecting the root node jy of To to some node i
of T1 via a new vertex v from i to jy, and assigning v a definite position among
the various edges of T1 issuing from i, so as to unambiguously define a new
ordered tree T3. If T1 has r1 nodes, there are exactly 2r1—1 ways of attaching
to it any given Ty.

(i1) Inserting Ty into T1 means producing a tree Ts whose nodes can be assigned
colours 1 or 2 in such a way that:

(1) The 2-coloured nodes of T3 constitute a connected sub-tree T of T3 isomor-
phic to Ts.

(2) There is at least one 2-coloured node immediately preceding one 1-coloured
node.%”

(8) The root node of T4 is distinct from the root node of T3 and has for imme-
diate antecedent some 1-coloured node i of Ts.

(4) By retaining only the 1-coloured nodes of Ts, i.e. by collapsing the whole of
T, to the 1-coloured node i of T3, one gets a tree T isomorphic to T;.

Let ro be the node number of Ty and for each node i of Tq, let p; be the number
of vertices issuing from i. Then there exist exactly Y, h(p;,r2) distinct ways of
inserting To into T, with

hp,q) = m 1o (392)

The only point to check is formula (??). Assume first that T is linear, with
each node (other than the end node) having just one successor. Let ¢ be the node
of T immediately preceding the root node j, of T,. In the insertion process,
each of the p; nodes of T; immediately following ¢ either remains attached to i
or moves upward to attach itself to some of the 75 nodes of T, with the only
proviso that not all p; successor nodes should remain attached to ¢ (for that
would contradict clause (2); it would in effect mean that Ty is getting attached
to T'; rather than inserted into it). Now, the number of distinct ways to achieve
this is exactly

(2ra+1)! (pi—1)!
—1—pi+ — hipor -
Képi E'(2ro+1—Fk)! (k—1)!(p;—Fk)! (pi;T2) (393)

The k** summand counts all possible ways of attaching the p; succesor nodes
of 7 to k distinct nodes of Ts and the corrective term —1 —p; accounts for the

57This clause ensures that one and the same T3 cannot simultaneously be the attachment
of To onto T and the insertion of Ty into T.
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impossibility of keeping all successor nodes attached to i. To complete the proof,
it suffices to check that nothing changes if we gradually modify the structure of
Ty, from linear to arbitrary, while keeping the total number of nodes equal to
To.

Just three more remarks:
(i) The end nodes 7 of T; play no part in the insertion process, since for them
p; = 0 and so h(p;,r2) = 0.
(ii) For 7y = 1, i.e. when T; reduces to a root node, the definition makes it
clear that T; cannot have anything inserted into it.
(iii) Conversely, when ro = 1, inserting T’ into T; reduces to grafting the single
node of T onto any one of T;’s edges.

Proposition 8.2 (Generators ote; , and pre-Lie products) .

(i) The generators ote; ;. (k < kp_1) constructed from the main counter-alternator
calt and indexed by ordered trees ot, j, behave optimally simply under the pre-Lie
products dlu and dari:

r=r1+T2

dlu(dtey, 4, 0tey, ) = — > &% o dtel,  with of, €N (394)
k<kp_1
r=r1+r2

dari(6tey . ,0ter, 1) = + >, BIh o otel,  with Bl eN (395)
k<kr_1

In terms of the indexing trees ot, ) , the operation dlu corresponds to attaching
the second tree ot,, , successively to each node of the first tree oty r,, in all
possible arrangements, and the operation dari corresponds to inserting the sec-
ond tree oty, , into the first tree ot,, k,, again in all possible ways (see details
below). As for the integer coefficients involved in these identities, they verify

Z d:;k,kuw,’w =2r -1 (396)
k

i€nodes(0ty, 1)

- i+273)!
S = % (B 1)
k p; =ramif(7) pi: 27
In (??), the &-sum depends only on the node number r1 of the first tree oty, i, ,
and not at all on the second tree. In (?7), the B—sum depends on the ramifica-
tion numbers p; at each node i of the first tree ot,, k, (i.e. on the number of
branches issuing from i) but only on the node number ro of the second tree.

(i) The generators ote;; (k < K,_1) constructed from the second counter-
alternator calt and indexed by ordered trees ot j, behave under the pre-Lie prod-
ucts dlu and dari under (slightly less) simple rules. The formulae now involve
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coefficient &, B of mized signs:

r=ri+rs
- “ “ k - . ~
dlu(otey, 5 ,otey, ) = — 2 A ey Ote) . with G, € Z (398)
kSKT
r=ri+rs
s ® <(.® 5k PP - He
dari(otey, , ,0tey, ) = + Z B kyira ks Otery  with B2, €Z (399)
k<k,

The integer coefficients involved in these identities verify

.1k
Zah,kl;rz,kz =1 (400)
k

Ar.k
Zﬂh,kl;m,kz =r—1 (401)
k

But the main difference is that in the new expansions k may run up to Kk,
instead of kr—1 in (i), meaning that, beside simple generators, we may also get
dmu products of these. The remark applies not just to dlu and dari but also to
lu and ari.

(i) Turning now to the weak counter-alternator calt, the system ote; ;. (k < k)
indexed by ordered trees is not complete in Flex,.(€*), but the system ute; .

(k < »,) indexed by unordered trees does span Flex™(€*) and gives rise there
to expansions of the form:

r=r1+r2
—(.® —(.® _ rk —(.® . —e
dlu(ittey ;. ,ute), ;) = — Z O ki kg Wtep e with ag , € Q (402)
k<,
r=r1+r2
=y @ —( e ok —(. . ne
dari(utey ;. ,ute), ;) = + Z B krira ke Bler g with B2, €Q (403)
k<,

with rational coefficients that verify

_rk
Zarl,klﬁ“z,kz =1 (404)
k

ark
Zﬂrlﬁkl;m,kz =r—1 (405)
k

Sketch of proof:

(i) The counter-alternator calt was precisely devised to ensure that calculating
dlu(ote;, ;. ,ote; ;. )should reduce to attaching the tree ot,, j, to the tree ot,, , ,
in all possible ways. To infer from that the more complicated insertion rule for
the dari product, one starts from the trivial identity dari(ote, oter. ;. ) =0

. ri,k10 Y ek
when r; = k; =1 (i.e. ote; , = €°*). One then observes

e that any éte; , can be constructed from units &* through a succession
of operations dlu, dmu, mdu;
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e that dari(A®, B*) = arit(B*)A* + dlu(A*, B*) ;
e that the operator arit(B*) 777is a dlu-, dmu-, mdu-automorphism;
e that at each stage of ote, Lk 8 reconstruction the insertion rule applies.

(i) and (iii). Since the conversion matrices from {ote; ;} to {ote; ;}, and back,

have only integer entries, the coefficients &, 3 will be integers, just like &, f,
though not necessarily positive. The coefficients @, 5, on the other hand, are
merely rational. As for the curious identities (?7)-(??) and (?7?)-(??), they
are mentioned here only for the record, but can be checked (painstakingly) by
induction on 7y.

8.5 Main sub-algebras.

heA® := arit(A®).¢* = calte(A®) = célte(A®) = calte(A®) (406)
VA*® € Flex(€)
Proposition 8.3 ( Flex(€) and its subalgebras) .
These are the main ari-subalgebras of Flex(€) or Flex for short :

he®Flex™ .. he?Flex™ c he! Flex™ « Flex®! = @, gnbe"FleXeLl cFlex™°" (407)

Each he"Flex™ (0 < n < ) and each be"Flex™ (1 < n < ) is stable under
ari, while Flex® and Flex™°" are stable under both ari and lu. Moreover:

dari(be™ Flex™ be" Flex™) e be™ Flex™ (408)
ari(be™ Flex™ be™ Flex™) e be™ Flex™ @ be" Flex™ (409)

Here are the identities responsible for the ari-stability of he"Flex® :

ari (he”FleXT1 (&), he"Flexm((’E)) —  he"Flex, irpin (€)
arihe, (Flexrl (€), Flex,, (cz)) o Flexygrym(€)
ari(he™ A®, he" B*) = he"arihe,(A°®, B*) (410)
—arit(he” A*) B* + arit(he" B®) A*

with arihe, (A, B*) (411)

+ ZOéni lu(henl A‘, henz Bo)

nitna=n

And here is the identity responsible for the ari-stability of be"Flex™ :

dari(calt@(AI,...,A;),B')Eanlt@<AI,...,tari(A;,B'),...,A;) (412)
J

with{dam(A ,B*) :=arit(B*).A* + dlu(A*, B )(413)

tari(A®, B*) := arit(B®).A* + lu(A°*, B*)

89



8.6 Push-invariance.
Proposition 8.4 (cilt , calt , calt and push-invariance) .

(i) In the {ote; ;. }-basis, we have expansions of type

Z push”. ote; , = Z Qp,q Ote, (P, q < by Gpg €Z) (414)
q

os<n<r

with integers apq whose sum Y, Gy q is divisible by 2r+1 whenever 27 +1 is
prime.

(ii) In the {6te; ;. }-basis, we have expansions of type

Z push™. éte; , = Z ap,q Otey (p,q < Ky Gpg €Z) (415)
q

os<n<r

with integers 4, whose sum Zq p.q 15 always = 0.

(iii) The system {ote; ;} being no basis of Flex,(€*), the above relations have
no exact counterpart here. However, the system {ute; .} indezed by unordered

trees of UT, is a basis of the alternal subspace Flex®(€*), and gives rise to
remarkable expansions of type:

2 push”. iite; | = Z ap,q Ute; (p,g < 25 apq€Q) (416)
q

os<n<r

that involve only basis elements utey . indered by unordered trees with odd-
branching roots, i.e. with roots having a odd number of edges issuing from
them. Thus, in (?7?), about half the basis elements are automatically ruled out.
Moreover, if we normalise the basis {ute; .} (see (7)), the remaining coefficients
sum up to zero: ¥ Gpq =0 '

9 Expanding the dimorphic bimoulds.

9.1 The main bases and the universal alternals.

We shall construct in Flex(€) two elementary and three semi-elementary series
of alternals, namely {ve}}, {le;} and {he;}, {€e3,}, {ger}, by giving in each case a
direct description side by side with an inductive definition.

The first alternal series {ve)} .

The inductive definition, which immediately implies alternality, reads:
ve] = €&* ;  ve :=arit(ve,_,) & (Vr>=2) (417)

The most outstanding property of the alternals ve? is their self-reproduction a
la Witt under the ari bracket:

ari(vey ,vey ) = (ri—72) vey 4., (418)
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The second alternal series {le;} .

Here the direct definition reads:

T e ulnt) LI C) ) § PO TS

S (i —D)l(r—1a)! e

The third alternal series {he’}.
The series {he,} is best defined in the binary basis {ef}:
t = h(ty,ta)

bep = ) slant(t)e; with < ef = amnit(ef,,cf,)E* (420)
teBT,
slant(t) = slant(7 |7*)

with slant coefficients
(pl ‘p2) N (p1+p2)H (g1 +¢2)! det [ p1 ‘1+P2]
@ (p1+p2+q1+¢2)! I+g1l ¢
that depend only on the number p1, ps (resp. ¢i1,¢z) of left-leaning (resp. right-
leaning) edges in the subtrees tq, t2 attached to the root-node of ¢. One of these
subtrees may be void, in which case the corresponding pair (p1,q1) or (p2,q2)
is taken to be (0,0).

slant

(421)

The fourth alternal series {tc¢, } .
The series {e3,} is defined only at even depths 2r:
t = h(ty,t2)

te5, = Z stack(t) ey with < ef = amnit(e; ,e;,)E* (422)
tGBTzT
stack(t) = stack(™!|™?)

ny no
with stack coefficients
| (n1+ng—myg—ma)!!

P1 P2 —1
stack = (=2)™2" (my+mg—1)!
(ql‘qg) (=2) (m1 2~1) (n1+ng+myq+mo—2)!!

(423)

det [ m m2]

14+n1114+n9

that depend only on the number m, mo (resp. ni,ns) of end-nodes (resp. non
end-nodes) in the subtrees ¢1,t2 attached to the root-node of ¢.

The fifth alternal series {ge’} .

gi;‘“"“’w"::< 3 P(vi)> [T Pwi—vin) (424)

1<i<r 1<i<r
s W ey, W (7’ C)2n ~2n
gictr oW o= (1; Q(vi)) [(1+Z ron 0; ) H (Q(vifvi+1)+t)]t=0 (425)
<i<r 1<i<r
with as usual P(v;) := vi and Q(v;) 1= e
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9.2 The main bases and the bisymmetrals.

pal® = mdu(pal®,dupal®) with  dupal® = -3, _ a.la;
pale, = mdu(palg,,dupali,) with dupaly, = —>,_ ag la,
d.pil* = preari(pil®, dipil®) with — dipil® = -3, . ﬁ riy
d.pily, = preari(pilg,,dipily,)  with dipils, = -, ﬁ ri3,
d.ripal® = preari(ripal®, diripal®) with diripal® = »;, . ﬁha,’
d.ripaly, = preari(ripals,, diripalg,) with diripaly, = >, % ka3,

d.ripil® = preari(ripil®, diripil®)  with diripil® = ZKTﬁri;

21727‘

d.ripaly, = preari(ripilg,, diripily,) with diripily, = >3, f= 113,
[00 00 0O 0000 000 0 0 21 32 2 3 0 o0..
[00O 00 0 0000 000 O O0-21 -3 -2 3 0 O0..
[0O 00 0O 0000 000 O O 422 0 0 0 0 O..
[OO 00 0 0000 00O O 0—2% 0O O O 0 oO0.
4
00 11§ §300-300-3-3 00§ -p -1y y
.00-321-2-3300-300-53-2 o004 -1B5_15_15_5 ]
.00 22 0 0000-300-3-3 o004 -12_15_15_45 ]
4
.00-252 0 0000-200-3-3 oo-L-1_1_15_5 ]
9.3 The main bases and the alternal dilators.
9.4 The main bases and the bialternal dilators.
. , . , pal®,pal® € GARI™/®
° = * eral th " 426
pa gari(par®,eral®) wi { eral®  GARI/2 (426)
e e e pil*, pil* € GARI*/®
* = eril th 427
pi gari(pir®,eril®) wi { .  GAR2/2 (427)
ral® = logari(eral®) with ral® e ARI2V/al (428)
ril* = logari(eril®) with ril* e ARI2Val (429)
{pal®, par®, ral®} & {pil*, pir*®, ril*} (430)
{pal®, par®, ral®} o, {pir*, pil®, lir* = —ril*} (431)
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Here

[

0

1

6

|

5lral in the calt-basis [1-% 0%
Slraly in the calt-basis o -1 11
Slraly in the calt-basis : 3 -4-11
is 7! ralg successively in the calt-, calt-, calt-bases:
-3 % o0-2 000 05 0 0 0 0O 0O 0 0 O
s DB 15102 -8 -10-10 -2 -2 —10 —20 —15 —40 —20|
5 ®B_B_ B8 _1510-3 L-10 10-L 2 10-20-15 40 —20]

0
[o-

Lastly, here is 9! ral§ successively in the calt-basis:

[1_@ 7420 _7 35 (g _49 _1463 _63 49 21 _ 77 ( (g _2L T
1732 12 96 8 48 32 7480 ~ 40 20 20 ~ 40 0 5
21 721 777 _ 119 21 _ 147 21 21
O % 1 % 2 5 s 1w 4 Ysi 000 00
189 _ 273 _ 63 21 21 _ 7
0 0 160 160 —s0 16 0 0 0 -5 0 0-10 00
0 0 0 0 0 O 0 0 0 0 00 O 00 00O
0 0 0 0 0 0 0 0 0o 0 00 O 00O 00O
189 _ 273 _ 63 21 _63 21 21
0 160 ~1660 —so 16 a0 s O 0-5% 00 0 00 00
0 0 0 0 0 O 0 0 0 0 00 O 1—30]
9.5 Survey.
e On the flexion algebra Flex(€®) there exist natural systems of mu-

generators, but none can adequately reflect the alternality filtration. Only
systems of dmu-generators built from the counter-alternators calt or calt
can do that. Systems of dmu-generators built from the weakly inflected
counter-alternator calt do reflect the alternality gradation, but are not
complete.

The system {ﬁte;yk; oty € OT,, k < kr—1} of dmu-generators built from
calt (and indexed by one-rooted ordered trees) is stable not only under the
Lie brackets lu and ari, but also under the pre-Lie products dlu and dari,
and that too in a transparent manner: dlu corresponds to the operation
of tree attachment and dari to that of tree insertion.

The system {6te; . ; ot,, € OT,, k < K,_1} of dmu-generators built from
calt is stable under neither lu nor ari, nor even under dlu and dari. There
still exist rather simple formulae for all four operations, but they are not
‘closed’, in the sense that they also involve dmu-products, i.e. ’'many-
rooted’ elements ote; , with k > k, 1,

The full systems {6te; ;, ; oty € OT,, k < k,} and {ote}  ; ot, € OT,, k <
kr} indexed by one- or many rooted oredered trees (hence k < &, in-
stead of k < k,_1 ) constitute each a basis of Flex,(€*). The conversion

matrices from either basis to the basis {bte; ;; bt, ) € BT, k < x,} are
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lower-triangular (for a suitable ordering on OT, and BT, ) with integer
entries given by rather explicit formulae, and of course non-zero diagonal
elements.

e The closely related systems {ste;’,C ; strk € STy k < Ky} and {8ty 5 sty €
ST..,k < k,} accurately reflect the alternality gradation, and permit the
calculation of the dimensions dim (Flez]%* (€*)) and dim (Flez, 4(€¢*)) via
the generating series I'(¢, ) and Z(¢, ) and the functional equations that
these verify.

e The system {ﬂte;)k ; uty € UT,, k < Kr—1} built from the weakly inflected

counter-alternator calt and indexed by one-rooted, unordered trees,?® con-
stitutes a basis of the alternal sub-algebra Flez® (€*). Even though it does
not extend to a full basis of Flex,.(€*) as the calt- or calt-based systems do,
it is a valuable tool for expanding the elements of Flez®(€*) (alternals)
or Flez®/Push(@*) (push-invariant alternals) or Flez2/2(@*) (bialternals),
due mainly to the fact that, in this system, the ari-bracket respects the
number of edges issuing from the root of the indexing tree, and also to
the fact that push-invariant alternals automatically project onto basis el-
ements utey ;. indexed by trees with odd-branching roots.””

10 Pre-Lie and pre-associative algebras.

This informal and avowedly tentative section attempts to detach the main
results of the present paper from their origin in flexion theory, especially in
Flex(€*) and its two ‘polar’ models, and to put them on a neat axiomatic foun-
dation. The proper framework appears to be that of pre-associative algebrasS?,
taken in their natural context:

pre-associative —  associative

l l

pre-Lie — Lie

Although it is way too early to say if these algebras will justify the hopes
reposited in them (— of rendering roughly the same services as pre-Lie algebras
do —), they have at least one immediate use: shedding an oblique light on the
counter-alternators and providing a quick proof of their main property.

58Unordered trees being a subset of stacked trees, the above (free) system is a sub-system
of the (non-free, as already ponted out) system {Ete;,k ; noty g, € STy, k < K}

59j.e. with roots from which there issue an odd number of edges.
60though not in the sense usually given to ‘pre-associative’.
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10.1 Pre-associativity: definitions and first properties.

A pre-associative algebra is a vector space endowed with a linear involution
x — x4 and two bilinear binary operations y and 7 that verify:

Ro : u*(m,y) = (/J(y*vf*))*

Ri: wps(,y), 2) = pa(@, 1y, 2))

Ry : pw(@,y),z) = @, wly, 2) + p@, px(y, 2))
R : ps (T, ps (Y, 2) = (@, y), 2) + ps (s (2, 9), 2)

Since py and R3 follow from p and Re under the involution, the whole structure
is fixed as soon as we define an operation p compatible with the axioms R1, Rs.

Proposition 10.1 (The offspring of a pre-associative product) .
If we set:

m(z,y) = p(z,y) + p(z,y)

(z,y) = p(z,y) — px(y, )

As(,y) o= px(@,y) — p(y, ) = (A(@s, yx))
(@,y) == m(z,y) —m(y,z) = Mz,y) = Ay, z) = Ae(2,y) — Aa(y, 7) (435

and if u, py verify the pre-associativity axioms, then

(i) m is an associative product, with e as unit element.

(i) U is the Lie bracket associated with m
(iii) X and Xy define a right resp. left pre-Lie product for 1

Indeed, if we set

Ri(z,y,z) = plps(z,y),2) — ps(@, nly, 2)) =0)
Ry(w,y,2) = p(u(z,y),2) —pw@,wy, 2) — w(®, 1y, 2)) (=0)
Ry(w,y,2) = (@, 14 (y, 2)) = pae (1@, 9), 2) — ps (0 (2, 9), 2) (=0)
we find

m(m(az,y), Z) - m(x’m(yv Z)) = R1(x,y, Z) + R2($,y, Z) - Rg(ﬂl‘,y, Z) =0
This confirms the associativity of m. Next we find

+Ri(z,z,y) — Ri(y,x, 2)

{H(A(x,y),@ @My ) pmey = 0

_/\()‘('7;7'2)’3/) + )\(1‘,/\(2’,2})) +R3(z Yy 1‘) - R3(y z 'T)

This confirms the pre-Lie nature of A and, by symmetry, of A, as well.
Remark: It would be tempting to introduce a ‘unit element’ %' e such that:
pwre)=x 5 paley) =y (Va,y + )

ese) = piale,e) = Le

but in formulae involving several consecutive units we would run into unsur-
mountable contradictions.

6lsuch an element would indeed be a unit for the associative product m associated with pu.
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10.2 Counter-alternality defined.

A co-degree on a pre-associative algebra PA is function d : PA — N* giving rise
to a filtration and a gradation:

'PA(d) c 'P.A(d_H) ;. PA; = 'P.A(d)/'P.A(d_l) (437)

such that:
#(PA@) PA@)) S PAw1dn)

M*(P‘A(dl)’P'A(dl)) < PA(d1+d2) (438)
APA@): PA@y)) = PA@ 1)

The the natural tools for investigating a co-degree gradation are the three
counter-alternators,®? which are defined as follows. In view of R; we may set:

fi(z,y, 2) = p(ps (2, y), 2) = px (2, 0y, 2)) (439)
We then transpose the construction of §5.5:

Definition 10.1 (Strict and loose counter-alternators) .

Ciltyy (21, ., 7s) = Y. (1) R (21, ), B0, Fal@is1, -, ws))  (440)
0<i<s

Clta, (21, 2) 1= Y (=1)° 7" B (@1, oy 22), 00, T (Tig1, s ) (441)
0<i<s

—1)5%s! _
calty, (z1, .., zs) = Z (2'(3_1)' u(m(xl,..,xi),xo,m(miﬂ,..,xs)) (442)
0<i<s :

Next, we construct the partially symmetrized alternators exactly as we did on
Flex(€*):

Definition 10.2 (d-alternators.) For 1 < d <r we set:

calt] (1, ..., v, 3 heasr—a(0) cilty, (To(1), s To(ry)  (443)

ceS,.

Al (1, ) = Y Ppagrod(0) Caltay (To(1), s Ta(r)  (444)
0eS,.

célt;’j(xl,...,a:r) = Z hygqr—a(o) calty, (To(1), o) To(ry)  (445)
0eS,.

with the coefficients h, 5(c) associated with the projectors pr., as in §5.8.

62For reasons we have already encountered in the flexion context, the first two (calt, calt)
are declared strict, the last one loose.
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10.3 Counter-alternality modelized and proved.

Let E be the graded, non-associative algebra freely generated by the sym-
bols eg, €1, ea..., with coefficients in the commutative algebra Q{«yg, a1, as...},
whereby the a;’s are assumed to be positive, transcendental, and algebraically
independent. We assign the grade «; to each generator e; and consider on D
the derivation @ (with its antiderivation 0~1) acting as follows:

dej == aie; 3 0 leji=a;le; ; 0oy =0 (446)

K2

Finally, we notice that the operations u, 5 thus defined:

w(Ey, Es)

s (B, By) = a—l(Dl(aDQ)) (VE1, E; € D) (448)

o1 ((aEl)E2) (VE1, Dy € D) (447)

endow [E with a pre-associative structure, which we shall call £ for distinction.
By assigning co-degree 1 to all generators e;, we also endow & with a co-degree
filtration £ = UTE,.

Though free as an associative algebra, &£ is far from free with respect to its
d-induced pre-associative structure.’> Nonetheless, the subspace of elements
separately linear in eq,eq,...,e, is free in the sense that it faithfully reflects
the structure of the corresponding subspace in the free pre-associative algebra
generated by eg, e1, es.. — a fortunate circumstance that leads, first to an inter-
pretation of the counter-alternators, then to a proof of their signature properties,
namely

codeg(calt;’od(xl,...,xr)) < do+dyi+...+dy+d—r—1  if codeg(z;) = d; (449)

with exact equality for the strict counter-alternators calt or calt.
Consider now these particular identities in &£:

A 4 1,000,417
Cltey (€1, .0y €p) = & Z té €1...€; €0 €i41...6r  (450)
o<i<gr
< A 1,004 1,7
caltey (€1, .. €p) = & Z teé er...;egeiyi...e.  (451)
0<i<r

with pre-sum factors:

gy ... . QpQy ...«
=0T : ép = —od T (452)
aptoag+...+a, oaptoag+...+oy

and alternal moulds ¢é°, te*:

té17...,z70,z+17...,r 1,...,zzez+1,...r (453)

Zel,...,isei-ﬁ-l,..m (454)

Il
w0
@

el 80,41y

63Think of the sub-algebras generated from one single e; under repeated action of p and
Hoxe -
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themselves built from two symmetral, mutually inverse moulds se®, ze®:

L 1 T —1)"
"= H —  zebm= n 7( ) (455)
it tar 1ttty

Any mould ¢* of type t* = 5* x #d® x z* with s*, 2* symmetral and mutually
inverse, is obviously alternal, but here té° and té* are of a distinct type, and
their alternality results from the identities:

a/ a// ﬁ/ ﬁ/, _ . _
Z té7 = se e (Z'B:xﬂ///zguse Zle ﬁ)”_ 0 Zf > = (a//’ O, ‘11:/) (456)
~esha(c,8) Do o 5€* 2™ )seP zeP =0 if B=(8,0,8")

3w {Zealsw%zwzﬁZeﬁ,seﬂ”>=o if a=(a0,0")
e’ = [
(a2

" 7 i 457
" — e Zea Sea )Zeﬂ Seﬁ = 0 Zf ﬁ = (18/707ﬂ”) ( )

~esha(a,3)

As usual, sha(a, 3) denotes the set of all shuffle products of the sequences a, 3,
and the right-hand sides in (456) or (457) vanish due to the factors Y se® ze® =
OorY, seP'zeP’ =0 corresponding to the sequence (a or 3) that does not contain
the exceptional term 0.

Let us return to the proof. To this end, we fix d € [1,r]; replace (cdlt, calt)
by (calt™®, calt™) in (450)-(451); and call X", X" the new values assumed by
the right-hand sides of (450)-(451). To prove that X™%, X™4 have ’differential
degree’ d as elements of D or, equivalently, co-degree d as elements of D, we use
the earlier Lemma 5.2 in the special case (dyi,d2) = (1,7) , and the following
Lemma 10.1 in the special case o =1 +7—d, d =1 and T* = té°® or té&*:

Lemma 10.1 (Mould-comould contractions) .

Let (€1, ..., &) run through all permutations of (1,...,r) and consider the mould
T* defined by

HEvoer Z hr 50 AU (€1),..0(er) 60(51)...60(6r) (458)
eSS,

with the coefficients hy.q4(c) of ...and with some mould T* of alternality co-
degree 61 and with values in Q[u,;]/Q[uia;]. Then, as an element of E, H®
has degree §o = &1 — 8o + r. In particular, if 6o = 1+ 1 —d as in (443)-(444)
and 61 = 1 as with té°* and te*, we get 69 = d.

Writing (458) compactly as H® = > hy.s, (o)T(*) €q(s); then invoking the §;-
alternality of the mould T** to express it as T* = >, h;.s, (01) A% () for some
arbitrary mould A°®; and lastly expressing that the projector pr s, acting solely

on the bimould part annihilates H® if o — §; + §g > r, we find that Lemma 10.1
amouts to the identity:

D1 hay (T hs (1o hay (T o) =0 if  Sa—O1+00 > (Vr,7m2)  (459)

T€S,.

This applies in fact even when d3 —d1 + 09 — r is negative but odd, for trivial
reasons of invariance under +anti.
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10.4 Counter-alternality made manifest.

The partially symmetrized counter-alternators calt™® can be written as partially
symmetrized expressions kalt™® whose co-degree d is immediately apparent —
instead of hidden, as in the definitions (440)-(442) and (443)-(445). Indeed:

Proposition 10.2 (d-alternality made manifest) .
The d-alternators are capable of an equivalent definition, of type:

célt;’j(xl,...,xr) = Z hr14r—a(0) kélt;’od(x‘,(l),...,xg(r)) (460)
ceS,.

célt;’f(ml,...,xr) = Z hr’1+rfd(0') kélt;’od(xa(l)w-vxa(r)) (461)
ceS,.

calth? (1, .zy) = > hpasr—a(o) KAl (@), o To(ry)  (462)
ceS,.

where each (r + 1)-linear term kalt;’od(xa(l),...,xg(r)) can be written as a fi-
nite sum of elementary summands involving the operations X\, p, py respectively
ro, 71,79 times, with ro = r+1—d and r1+ro = d—1.

Unfortunately, there exist scores of possible expressions for kaltr’d, and so far
we found universal (for all r) and compellingly natural expressions only in the
extreme cases d = 1 or d = r, corresponding to mazimal and minimal sym-
metrization. Here are these natural expressions:

Proposition 10.3 (Maximally symmetrized counter-alternators)

KA (21, oy ay) 1= Y SRS K(X(xo,wl)j(ﬁ),...,X(aﬁ)) (463)
1<s<r

Kalty) (21, .o 2,) = ) sathosr X(X(xo,ml),X(ﬁ),...,K(xS)) (464)
1<s<r
>isi=s -

Kalty)! (21, p) i= D) (=) X (20, Zo(1)s s Tor(s)) (465)
1<r<s

with the coefficients:

sat s 0" ] B — (466)

1<i<r S1+ ... +58;

1
_1 S1+...+8p 467
( ) Si + ...+ Sy ( )

SS1yeerSp

sa

1<i<r

Proposition 10.4 (Minimally symmetrized counter-alternators)

KAl (1, ) = ) (4)3*1/7(A(zo,‘ﬁ(f)),ﬁ(ﬁ),...,ﬁ(ﬁ)) (468)
Kalt! (21, ) o= D (4)5*1ﬁ(A(zo,;zk(ml)),,zk(mz),...,;Zk(mS)) (469)

kalt, " (z1,.., ) 1= Z (—1)r75+1u<)\(ajg,m(x1,..,ms)),m(xs+1, ..,3:7.)) (470)

1<s<r
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10.5 Structure of free pre-associative algebras.

A pre-associative algebra generated by one element is automatically isomorphic
to Flex(€*). It also admits a tree theoretical model, namely the space C[OT] of
linear combinations of orderer trees ot, , equipped with the operations A, p, 14
‘lifted’ from dle, dme, mde via the correspondence ote;. , — ot .

With pre-associative algebras freely generated by n elements, the situation
is slightly different: while such an algebra still admits a privileged tree theoret-
ical model, it admits several mould theoretical ones. Chief amongst the latter
are the sub-algebras of BIMU generated under the operations dla, dma, mda
64 by n depth-1 bimoulds A} := aj(u1),..., A% := a,(u1), for any choice
of transcendental functions a;(u;), algebraically independent and verifying no
functional equations. As for the tree theoretical model, it is the same as in the
case of one generators, but with n-decorated trees, i.e. trees whose nodes are
assigned various colours, from a set of n.

10.6 Filtration by co-degree. Dimensions.

For free pre-associative algebras with one generator, he co-degree filtration
and gradation, along with the corresponding dimensions, are exactly those of
Flex(€&*): see §7.3. The case of several generators immediately follows, modulo
the introduction of colours.

10.7 Examples of non-free pre-associative algebras.

Any subalgebra of the bimould algebra BIMU*5% generated by the operations
dla, dma, mda (see (198)-(200) in §5.3.) as stand-ins for A, p, s, from any set of
bimoulds A} € BIMU® patently constitutes a pre-associative algebra, generally
non-free, and with a structure that entirely depends on the mutual relations
that the generators A7 may entertain.

The same applies with BIMU"™" (see (201)) in place of BIMU* and dli, dmi, mdi
(see (202)-(204)) as basic operations in place of dla, dma, mda.

But there also exist numerous pre-associative algebras with no apparent
link to BIMU. For instance, given any associative algebra E, free or not, and
any uniquely invertible derivation ¢ on E, the operations pu, py defined as in
(447)-(448) turn E into a pre-associative algebra &, non-free even when, as an
associative algebra, E is free. An important sub-instance is that of a derivation
0 induced as in (446) by a scalar gradation on E with values in RT.

64GSee (198)-(200) in §5.3.
65 BIMU* is BIMU minus the unit mould 1°* and its multiples. Regarding the necessary
absence of units in pre-associative algebras, see the remark at the end of §10.1.

100



10.8 Enveloping and enfolding algebras.

To sum up, we have a pleasant four-fold scheme:

{enfoldz’ng algebra {em)elopz'ng algebra I M > M|p = m

(pre-associative)  — (associative)

(I vl U

pre-Lie algebra Lie algebra | € o L |Xx = 1

ES

And coursing through that four-fold scheme, we have a double movement of re-
striction (right- and downward arrows) and unfolding (left- and upward arrows),
with uniqueness of construction in the case of double-barred arrows, but not in
the case of simple arrows.

10.9 Dynkin-like projectors.
Known projectors:

Associative

l

Pre-Lie — Lie

If a sum Y a; m(x; 1, ..., ;) of n-linear associative summands is known to
be in the Lie algebra, we have the well-known Dynkin projectors

1 - 1 -
Zaim(%‘,l, 7xzn):EZ a; | (xi,1,~~-,$i,n)252 ai 1 (@i1; - Tin)  (471)

to make that Lie nature manifest.
We have similar projectors for sums of n-linear pre-Lie brackets that are
known to be in the Lie algebra, especially when the bracketing is uniformly for-

ward or backward, i.e. of the form }, ai;\) (@i, Tim) OT Y, G4 X (@1 s Tin)
Wanted projectors: But quid of the following projectors?

. L. ? . L.
Pre-associative — Associative
1?7
Pre-Lie

And quid of the projectors of a pre-associative algebra PA on its components
PA(ay of co-degree d? Such projectors ought to exist in explicit presentation®®
and manageable form, and would come quite handy (they would in particular
automatically determine privileged choices for the kalt™ of Proposition 10.2,
but finding them seems to be no trivial matter.6”

66 t'r,d

as opposed to the implicit presentation of the counter-alternators calt™®, which work just
fine as projectors, but not transparently so.
67due to the enormous number of a priori relations that connect multiple superpositions of

the three basic operations A, , fos.
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10.10 Notion of Janus algebra.
On Flex(€*) the identities
ari(A®,B®*) = dari(A*, B*) — dari(B*®, A®) (472)
dari(A®,B*) = arit(B*).A® + dle(A*, B*) (473)
reduce the calculation of ari to that of arit and dle. But the operator arit(B*)

is a derivation not only with respect to the non-inflected products lu and mu,
but also with respect to the semi-inflected ones dle, dme, mde:

axit(B*) v (M3, Mg) = (arit(B*) My, M3) + (M, axit(B*) M3) (474)
Vv € {dle,dme, mde, lu, mu}
Therefore, for any element A® in Flex(€*) and any expression of A* as a sum of r-

linear monomials h; involving the operations dle, dme, mde respectively r¢, 71, 72
times, with rg + 71 + 19 =7 — 1:

r times
A® = hi(E0,. . €) (475)
we can write:
i term
arit(B*) A* = Y. Y hi(€°, .. arit(B*) €* ... ¢ (476)
i g

Moreover, setting A* = €* in (473) and using dari(€*, B*) = 0 (see §8.4), we
find:

arit(B®) ¢* = —dle(¢*,B*) (477)

Combining (476)-(477) with the earlier identities (472)-(473), we find that, on
the one-generator, free pre-associative algebra Flez(€*), the operations dari and
ari can be expressed entirely in terms of dle, dme, mde. In view of §10.5, we
can duplicate that in any free pre-associative algebra, no matter with how many
generators, simply by reasoning on the tree theoretical model C[OT;n colours]
and by transposing the preceding operations in terms of A, y, pt. The bottomline
is this:

Proposition 10.5 (Janus algebra) .
Any free pre-associative algebra, side by side with the ‘outer’ operations

X (pre-Lie) and 1 (Lie)
automatically possesses two ‘inner’ operations
p (pre-Lie) and r (Lie)

with (p,r) relating to (A1) exactly as (dari, ari) to (dle, lu).
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Here, inner and outer allude to the shape that these operations assume
in the tree theoretical model: simple tree insertion for p and r; subtle tree
attachment for A and . Tt is this inner/outer dichotomy, corresponding to the
inflected /uninflected dichotomy familiar from the flexion model, that (arguably)
justifies attaching the name of Janus (the god of thresholds; he of the two faces,
inward- and outward-looking) to these algebras. But we are treading on thin
ice here: for the name to stick, and the notion to prove its worth, it would
take the discovery of interesting examples of non-free Janus algebras. And the
difficulty in the non-free context is clearly that the procedure (475)-(476) no
longer applies: different expansions (476) of a given A® may no longer lead to
an unambiguous action (476) of arit(B®) on A°®.

11 Tables.

11.1 From binary to ordered trees.

Here are the first matrices mob,. corresponding to the basis change of Flex, (€*),
relative to the standard k-indexation:

{btey ) —  {ote] ,} (binary to ordered)

ote;, = Z mob?? bte; |
1<g<kr
Their coefficients mob?? are all of the form 0, 1, or 1 := —1 and verify the

properties listed in §6.8.

1 1 o0 T 1

T noT . o 1 1T 1 o0

moby [1] mobg [0 1] mobg [3 g (1) i %

o 0o o0 o0 1
[ 1 o 1 1 0 0 0O O 1T 1 0O 1 T]
01 1T 1.0 0 0 0O 0O O 1T 1 1T 0

oo 1 1 1T 1T 1 0 0 1 1T 0 0 O

0o o o 1. T oo T 1 1 1 1T 0 0

0 0 001 01T 1 0 1T 0 0 0 0

oo 0o 0o 0o 11T 001 1 1T 1 1
moby—= |0 0 0 0 0 0 1 1T T 1 0 1 0 0
o o o o o o0 o0 1 1 1 1 1 1 1

0 0 000 00 0 1 0 0 1T 0 1

0 0 000 0 0 00O 1 1T 0 1T 1

0 0 000 0O 0O 0 0 0 1 T 1 0

0 0 0 OO0 00 0 0 0 0 1 1 1

0 0 0O 0O0O 00O 0 0 0 0 0 1 1
1O 0 0 0 0 0 0 0 0 0 O O O 1]

mobé"1 mobé’2 mobé"g
- 5 mob,%’1 = mobg’3 = moby
s )3 °
mobs — [0] mobg mobg with
[0] [0] mobg’a and the other mobé’j as follows

103



(=Nl

oS O o

oo OoOlH O

oS O O

OO O I

[=NeNaNl oI

ol o

O =HlH O~

OO~ Ol

o —HlH oo

oo oo

d
o olHOo O oo

o HlHOOO

[=R=NaR Nl K=

SO —HlHIlH —~ O

O OlH O A~

—

o

(=}

o

o

o

o

oo - O

[l eleie)

o Ol —

(el eole)

o~ Ol

ol- o o

o o oo

o o oo

o o oo

r
—

|~

oo oo

— O O O

olHo = o

—

—

(=}

I~

— - O

Ol —

o ol+H o

oo I

ol o -

o - OO

O~ |

o

—

= = O

— |-

O —HlH O oo+ -

= O O O+~

olH oo

o olHOo o

o olHo -

olH -0 O

[« e e}

O~ o~

— - O O

,,10000101,110,1,1

—

(=)

o o

o o

O OO —AO|HA = Ol

O—HOOIHOOIH —I|H

O+ = O = Ol Ol —

O—H OO+ OO+

OlH 4 OlH ©

— O ||

cColHOoOoOIH O H

o o

— Ol—HIH O

oCoOlHO O OO

— OlHI=H O O O

= == — O O OO

O I~
]

— O
L

— O OO0 oo

[eNeleloNoNe]

[eNeleloNoNe]

(=]

—

—

o

—

o

(=)

(=]

—

(e}

—

o oo olHo -
Hoooo—-Hoo
= O o olH O~
o ooo—-HoOo
—“lH O 00O O
O = OlH O — ||
O OlHO|lH — O
==~ Ol O
= © — =
o oo oO—0OO0O
O OO ~OO
O —HOIHOIHH O
== - O - O O

It © = = || = O
L

0,1011,1,
O == = O
oo -HIlH OO
o —Hl- o oo
olHO O OO
= O~
O =HIlH == O
OO —HIH OO
— O == OO
o -HIHO OO
olHOo O oo
o —Hl< o oo
oHo o OO

oHo o OO

1,2

mob,

1,3
5

mob

2,3

mobg

104



11.2 From ordered to binary trees.

Here are the first matrices mbo, corresponding to the basis change of Flex, (€*),

relative to the standard k-indexation:

(ordered to binary)

&)

o
T

ko~ {bte

.
L)

{ote

Pid 5t 0®
mbo; " ote,

1<g<kr

"9 are always non-negative integers and verify the prop-

ea
p

bt

p
T

Their coefficients mob
erties listed in §6.8.

= [1]

mb01

mboy

= mboy

3,3
5

DI s follows

i
5

= mboé’3 = mbo

1,1
mbog
and the other mbo

N

1,3
mbog

2,3
mbog

3,3
mboy

1,2

5
2,2

(0]

mbo
mbo

1’nboé’1
—| [0
0

mb05

1,2
5

mbo
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nm 1 1 1 1 1 1 2 2 1 1 2 2 3
01 1 0 1 1 1 2 2 0 1 1 1 3
000 1 1 2 1 2 2 4 1 2 3 3 6
000 0 1 1 0 1 0 2 1 1 2 2 3
0000 1 0 10 2 0 1 1 1 3
000 00 1 1 1 1 1 2 2 2 3
he22_ |00 0 0 0 0 1 0 1 1 2 2 23
5 000 0000 1 1 00 1 1 3
000 00 00O 1 00 1 1 3
000000000 1 1 1 1 1
00 0 000000 0 1 1 0 1
00 0 0 0 00O O0O0 0 1 1 2
00 0 0 0 000 O0O0 0 0 1 1
0 0 0000000 0 0 0 0 1]
m 1 1 1 1 2 2 2 3 2 2 3 3 4
001 1 0 1 1 2 1 3 0 2 2 1 4
000 1 1 2 1 2 2 4 1 2 4 4 8
00 0 1 1 0 1 1 1 1 1 2 3 4
00 00 1 0 1 0 1 0 1 1 1 4
1 1 2 2 3 2 3 3 4 2 3 4 4 6
heZi_ |01 1 13 1.3 1 3 1 3 3 3 6
5= o o0 o001 1 1 3 1 1 3 3 6
000 000 1 1 2 0 1 2 2 6
1 2 2 2 3 2 3 2 3 2 3 3 3 4
000 1 1 3 1 3 1 3 0 1 2 1 4
000 0 00 1 2 2 4 1 2 4 4 8
000 0 0 00 1 1 1 2 2 3 4
o 0 0 00000 1 0 0 1 1 4
The block decompositions
mob>! mob>? mob!? mbo-?  bol?  mbol?
2,2 2,3 2,2 2,3
m0b5 = [O] mObr mObr s Hlb05 = [O] HlbOT mbor 478)
[0] [0]  moby? (0] [0]  mbo,?
mobX! = mob>? = mob,_
with the identities T s g 31 hold for all values
mbo,”” = mbo,”” = mbo,” = mbo,_;

of r, but only for » = 5 do we get square blocks mob,lj?7 mob?:3, mboi’2, mbo%’?’.

11.3 The calt- and calt-based conversion matrices.

11.4 Pilot polynomials.

The pilot polynomials P, 4, Qr 4, Ly q enter, as their main ingredient, the formu-
lae for dim (Flex, 4(€*)) — the number of independent elements in Flez,. 4(¢*)
with depth r and co-alternality degree d. We tabulate here only the first P, 4
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unlike the other two series, don’t admit explicit expansions.

P = 1
1 2
Pio = 5(1/1 — o)
1 3
Pys = g(?h —y3)
1
Py = g(y‘f —2yfys + 395 — 2y1)
1
P34 = Z(yf —y2) (Ui + 12)
1
P35 = 6(3/:1)’ —y3) (v — v2)
1
Pss = 5 {(y? —3yty2a +9y7 Y3 —6yTys —Tys +6y2ys +8y3 — 8ys)
1 5
Pys = g(?h —ys)
1
Py = 5(1311? —9ytys — 8yys — 9uiys + 21y + 4y3 — 12y6)
1
Py7 = ﬂ(y? —ys3) (i —293y2 +3y3 — 2u4)
Prg— L +yf —4yiys + 18ylys — 12ytys — 284743 + 24 yTyaya + 32973
T 384 | +25y5 — 32y3ys — 36 y3ys — 32y0yF + 322 x ye + 60yF — 48 ys
1
P56 = 6(21? — Y5 — Y5 + Ye)
1
P57 = @(y% — ) (1195 + 543ys — 5yiys — 5yays — 6ys)
Pos= = (% — ) +1Ty? — 9yiys — 16 yfys + 9yiys — 18yiva
S 288 L +51y5 — 18yys + 8y3 — 24 ys
1
Psg = m(yi” —y3) (Y — 3ytye + 9yiys — 6yiys — Tys + 6y2ys + 8y5 — 8yp)
+y10 = 5yty2 +3095y5 — 20ySys — 70y y3 + 60 yiy2ys
L0 yiy3 + 125y3ys — 80yt = ye — 180 y3y3ys — 160 yiyoy3
P50 = 3840 —81y3 + 160 y3y2ys + 300 y3y3 + 140 y3ys + 240 y3y3

—240y3ys — 240 y3ys — 300 y2y3 — 160 Y3y + 240 yoys
+160 y4ys + 3842 — 384410
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1
Psr = §(?JI —yr)

P _ L J+8TyE —40yfys — 3247ys — 30yiy3 — 40yPy3 — 32yiys — 40y7y3
0% 7480 | +115 4 + 4092y + 40 yay? — 40 yays + 32ysys — 6012

+236y) — 297 y{ys> — 195ySys + 108 y2y3 — 162 yfys + 135 ytyays
1| +315y3y3 — 8Llytys + 60yiy2 + 135 y?ydys — 18043 ye

Foo = 3510 2 3 2 3
+162 y7y2ys — 315 y5y3 — 243 y5ys + 340 y5 + 180 y3ys
+162 YaYs — 360 Y9
+7y10 — 17y ys — 8ylys + 36 ySy3 — 26 ySys + 16 yTyays
Py = L ] T8YIY2ya + 28y1ys — 24uiyiys — Slufys — 36vius + 16iusys

576 | +18yfysys — 8yTyay3 + 5745 + 24 y3yaye — 42 y5ys — 124313
=12 Z/%yﬁ - 8?93%3/4 + 24 Y46

. +y5 — 49yy2 + 18yiy3 — 12ytys — 28yiy3
Po11 = —— (¥} —y3) { +24y3y0ua + 325393 + 2544 — 3253ys — 36 434
1152
—32 y2y§ + 32 y2yg + 60 yf — 48 ys

+y1? — 6y1%y2 + 45 yFy5 — 30yfys — 140y7y3 + 120 Y7 y2ys

+160y7y3 + 375y1ys — 160 y7ys — 540 y1y3ya — 480 y1y2y3

—486 y7y5 + 480 ylyays + 900 yiys + 840 yTydya + 1440 yTy3y3

1 | +331y8 — 720 ytys — 1440 yTy3ys — 1800 y7y2y3 — 960 y7y3ya

746080 | ~750y3ys — 1120 Y33 + 1440 yyays + 960 yyays + 2304 3y
+1120 y3ys + 2700 y3y3 + 960 y2y3ya + 640 Y5 — 2304 y7y10
—2160 y3ys — 960 y2yays — 2304 y2y3 — 1280 y3ys — 1560 3

| +2304 y10y2 + 1440 yays + 4480 yZ — 3840315

11.5 pu-generators and enumerating series.

Recall that vs(t) :=>t" dim (Fle:z::?ff_é(é')) and &4(t) =, ¢" dim (Flez, 4(€*)).
Here are the first generating series vs up to & = 5, calculated from formula
(324). The same series assume distinct and more complex, though equivalent,
expressions Y5 when calculated from formula (322). We mention the J5’s up to
¢ = 3, after which they become too clumsy, while the 75’s remain manageable.
The two systems are seen to coincide only after each ~v5(t) and each J;5(t) gets
expressed in terms of the sole series vy (¢) and its dilatees 7 (t*).

nt) =) = 72250 (Gt - ()
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1
Wt = 70 {%0233); O
+% (71 (83 + %0 (t)?71(£)?)
+371(6)2 + 37 (2
1—v(t) | +2 tf—l f%@)+%ﬁn
Zf70() 170(tY) + 370 (t%)* = 170(t)*70(t?)
+37%(t)* — $70(t%) 0
(+3(0()" ~10(2)) + H0lt*)?
v3(t) = 1 7(),(Yt)(t) +Yo(t)271 (t O B
0 ig (71(;5)2 —71(t%)) + Y0 (t)72(t)
(+i,71§t3; + ’1’0 )2y (£)72(t) — %70(75) 3y1(t)3
I () + 2 () + Syt
+’Yz(t)(%’Yo(§)2 - %’Yo(t;) fh (tt e
- (t2) ; , 2 Yo(2)
N 1 . 2(??0(15)2 - 17()(t2) - %)
) 71(1) (47(:_(751)7 ?t)}i%(ﬁ) +7(t) + 3)
Na(t) = 0 87 _77(t4)_l i i
Ys(t) = () +71(t) x {+§’Yo(f2)2 +4%’070(t)3 4;’07223;0(25 |
o , —370()70(t?) + 70 (t)?
+i (70(15)3 —7(t%)) (70(t)* +70(t?))
_|_61,-’:,/O((:))6 - YO(t;)G))(Wo (1t)2 —0(t?))
748 0 —57%(1°) — T670(t)47 )+ & 20 (%)?
%’Yo(t)z’m ) — %’Yo(tz)‘3 + é’)’z(ﬂ)’)’o(ii)ﬂyit;{;o%g)l
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+15 (Y0 (t°)2— 70(t10))+% (0 (t%) =0 (t%)2 =70 (%)% +0 (1))
+70(t) 71 (1)
—5 7071 (£2) + 70 (t)>72(t) + 5 70(t)*n (t)?
"s(8) () +5 () =) + 270 ()71 (H)72(t) + 0 (t)*y3(t)
L—=70(t) | +5 (12(t)* —22(t?)) + 71( )73(t) + v0(t)a(t)
+32 71 () +70() 271 (E)7a(t) + 70 (t) 272(t)ys(t)
+ 4 =) Py (t)?s(t) — (t) Sy1(t)y2(t)?
+0(t) " ()%72(t) — 5 %) 7 (t)°

There is no need to tabulate the series &; since they relate quite elementarily to

the series ~s:
-1
L Y atealt) = (1= 3 ™ (1) (479)
1<d 0<9o

With the complementary dimensions and their generating series
v ZtT dim (Flez]%” 4(€%)) , &° ZtT dim (Flez, ,—q(€*))

the position is reversed: it is the £5°(¢)’s that are now more basic and regular
that the y5°(¢)’s. We have 7§°(t) = 1.7 (t) = 1 ZtQ and for 2 < d:

£ € ()
(1 —1)2 [Tz (1 — %)

L) = (Eff polynomial with positive coeﬁ?cients.)
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&) = 2

Eo(t) = 4+ 4t ++42

Eo(t) = 9+ 18t + 214> + 1347 4 4¢*

€O(t) = 20+ 63t + 117¢% + 150 % + 144¢* + 99¢° + 4840 + 1247 + °
co +48 + 200t + 49212 + 8743 + 1250t + 14705 + 14545 + 12007
&) = {+823 15+ 446 1% + 179410 + 43411 4 5112

+115 + 612¢ + 1856 1% + 40923 + 7338 ¢4 + 11188¢° + 149526

() = { +1768517 + 1872018 + 17734 1° + 1503810 + 11305 11 4 747212

+4220 13 + 1959t + 691 ¢1° + 1646 + 20417 + ¢18

1286 + 1829t + 65792 + 17158 1% + 36312t* + 65747 > + 105393 ¢
+152363 7 + 2012458 + 244664 t° + 275326 t'0 + 287521 ¢!

Eeo(t) = { +279084 12 + 25151113 + 210011 £14 + 16170415 + 114080 £16
+72919 17 + 41576 18 + 20578 t19 + 8504 ¢20 + 2749¢%! + 631 %2
+861t23 4 624

+719 + 5400, t + 2243512 + 672523 + 162840 t* + 337008 t°
+617895t% + 10260637 + 15673805 4 2224883 7 + 2957005 ¢10
+3698414 t'1 + 437041512 + 489178813 4+ 5195758 t1* + 5240862 t1°
+5021676 t16 + 4567601 t17 + 3939032 ¢'® + 3213160 ¢ + 2471544 %0
+1784369 12! + 1201926 t22 + 748696 22 + 426166 t24 + 217766 t2°
+97470 26 + 36824 127 + 11143128 + 2485129 + 36330 + 2931 4 ¢32

Eo(t) =

11.6 Generators.

We tabulate here the dimensions dim(Flez]%"(€*)). They coincide with the
number of independent dme-generators of Flez(&*) of depth r and alternality co-
degree d; or again with the number of independent mde-generators of Flex(€*)
of depth r and alternality co-degree d.
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r\d 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 2 0 0 0 0 0 0
4 4 1 0 0 0 0 0
5 9 4 1 0 0 0 0
6 20 15 6 1 0 0 0
7 48 49 27 7 1 0 0
8 115 156 108 40 9 1 0
9 286 479 405 191 58 10 1

10 719 1452 1446 839 317 76 12

11 1842 4343 5013 3440 1568 476 100

12 4766 12908 16953 13475 7197 2654 693

13 12486 38146 56321 50889 31258 13539 4249

14 32973 112358 184385 186888 129898 64729 23749

15 87811 330064 596741 670807 521166 293759 123608

16 235381 967945 1912776 2363337 2031072 1278615 607456

17 634847 2834876 6082890 8197048 7726269 5375539 2848373

18 1721159 8295446 19214918 28057873 28793800 21951639 12842065

19 4688676 24258864 60352718 94957627 105438275 87443367 56007142

20 12826228 70912286 188635971 318236848 380265993 340952408 237391625

21 35221832 207230122 587096310 1057437216 1353335199 1304863162 981631597

22 97055181 605501661 1820465044 3487307579 4760371271 4912774608 3972200135

23 268282855 1769064947 5626509318 11424302201 16571839003 18230407812 15769569776

24 743724984 5168521107 17339703203 37203829560 57158419908 66782132346 61551392031

25 2067174645 15100910989 53300154409 120512266819 195516025077 241824272661 236627078432
r\d 8 9 10 11 12 13 14

10 1 0 0 0 0 0 0

11 13 1 0 0 0 0 0

12 124 15 1 0 0 0 0

13 954 153 16 1 0 0 0

14 6433 1285 183 18 1 0 0

15 39183 9391 1672 218 19 1 0

16 220826 61791 13228 2143 253 21 1

17 1168622 374432 93614 18164 2679 294 22

18 5873298 2121851 607327 137419 24321 3314 335

19 28265358 11374830 3669736 949677 196038 31960 4025

20 131101055 58186393 20902760 6093480 1438399 273220 41221

21 589040325 285949923 113250510 36744581 9767987 2120267 372725

22 2574293016 1357342490 587795091 210179270 62167992 15190258 3051014

23 10980031682 6250542434 2939087278 1148763383 374370222 101746710 22998920

24 45834498690 28024212159 14223161327 6034760155 2149215465 643394656 161727336

25 187689037253 122697191276 66868523384 30616496083 11833911912 3870592511 1071442242
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11.7 Dimensions.

We tabulate here the dimensions dim(Flech_’d(QE')), that is to say, the number
of independent elements of Flez(€*) with depth r and alternality co-degree d.

r\d 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 2 2 1 0 0 0 0
4 4 6 3 1 0 0 0
5 9 16 12 4 1 0 0
6 20 45 41 20 5 1 0
7 48 123 138 83 30 6 1
8 115 344 446 328 147 42 7
9 286 957 1428 1222 667 237 56

10 719 2687 4497 4422 2815 1216 358
11 1842 7557 14068 15554 11364 5737 2049
12 4766 21358 43668 53702 44164 25586 10687
13 12486 60516 134911 182423 166881 108917 52194
14 32973 172034 414952 611986 615935 447319 241591
15 87811 490204 1272130 2031248 2230554 1783137 1071839
16 235381 1400182 3888611 6682780 7948687 6935568 4590562
17 634847 4007312 11858590 21819467 27942665 26418916 19091289

18 1721159 11490316 36088314 70777645 97080238 98857214 77431998
19 4688676 33000306 109629926 228277456 333854328 364239242 307360178
20 12826228 94919331 332512570 732566279 1137838606 1324025804 1197360112
21 35221832 273384776 1007132571 2340399407 3847252697 4755820093 4588243551
22 97055181 788366353 3046685364 7447310395 12916320185 16902453286 17327285879
23 268282855 2275974509 9206344974 23612856446 43088443273 59504811265 64589660866
24 743724984 6577376047 27791460920 74625349650 142917362794 207703204583 237970147740
25 2067174645 19025986499 83818587788 235147762795 471566018441 719406620114 867566561776

r\d 8 9 10 11 12 13 14
8 1 0 0 0 0 0 0
9 8 1 0 0 0 0 0

10 72 9 1 0 0 0 0
11 514 90 10 1 0 0 0
12 3249 710 110 11 1 0 0
13 18566 4911 950 132 12 1 0
14 98584 30517 7140 1239 156 13 1
15 493086 175067 47938 10053 1581 182 14
16 2350797 941072 295521 72526 13776 1981 210
17 10767971 4798866 1699270 478164 106285 18448 2443
18 47692835 23414204 9230508 2928874 746342 151574 24217
19 205246164 110053967 47799379 16885954 4851914 1129447 211113

20 861583377 500956305 237668718 92506872 29592819 7767218 1663843
21 3538999442 2217703307 1141051386 485173466 171010505 49970416 12068604
22 14260869394 9580881784 5313567180 2450468536 943597282 303804250 81682686
23 56496657745 40507559140 24088665924 11975644498 5001919605 1759411155 521214461
24 220440855233 168004013976 106637213867 56850890652 25599480499 9767448516 3161242858
25 848430232360 684889453403 462148297540 263008126630 127010918277 52248113104 18343321538

12 Conclusion.

12.1 Survey of the main results.

e We replace the usual pre-Lie formulae (for group composition, inversion,
iteration; also for the group-to-algebra logarithm), which indiscriminately
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use all bracket combinations, by optimally economical formulae, which
make do with only two types of bracketing: backward within forward.
Beside using less summands, these formulae, unlike the old ones, affect
their summands with quite explicit coefficients.

e We consider exotic pre-Lie products and connect them to exotic composi-
tion laws, which are rather trite in the identity-tangent case, but become
interesting in the general transserial setting.

e We construct a pre-Lie product dle (pre-Lie to lu) which, unlike those
previously in service, preserves alternality and generates the whole of
F lexal(QE') from €&°* alone. This naturally leads to another pre-Lie prod-
uct dari (pre-Lie to ari), which also preserves alternality. To go from
there to the whole of Flex(€*), yet another operation is needed: either
the pre-associative product dme or its twin mde.

e By suitably combining dme, mde and dle, we construct three rather com-
plex, multivariate functions calt, calt, calt of Flex(€) into itself. They
are the counter-alternators, so-called because they combine and transform
the alternality properties of their arguments in a counter-intuitive man-
ner. For all their outward similarities, one of them, the counter-alternator
calt, turns out to possess the nicest properties.

e We use calt to construct on Flez(€*) a basis {ote; ;}, indexed by ordered
trees, where the pre-Lie operations dle and dari assumes the simplest
possible form: with dle, the second tree gets ‘attached’ to the first; with
dari it gets ‘inserted’ into it. We then construct, again relying on calt,
yet another basis {ste; ;,}, indexed by stacked trees (appropriate tree
superpositions), which faithfully reflects the stratification of Flex(€) by
alternality co-degree d.

e The dimensions of the sub-spaces Flez, ;(€*) = Flez®(€*) (alternal ele-
ments of depth r) are rather easy to determine. Not so the dimensions
of the general sub-spaces Flex, 4(€*) (elements of depth r and alternality
co-degree d). With the help of the basis {ste; ;,} and of special "pilot’
polynomials, we calculate the dimensions dim(Flex, 4(€*)) as well as their
more tractable generating series.

e We introduce a notion of pre-associative®® algebra (— they ‘enfold’ pre-
Lie algebras much like associative algebras ‘envelope’ Lie algebras —) with
three aims in mind:

(i) to detach the preceding construction from its origin in Flex(€) and the
two rather dissimilar ‘polar’ models Flez(Pa) and Flex(Pi).

(ii) to put notions like counter-alternator and alternality co-degree on a
neat natural axiomatic basis

(iii) to pave the way for possible extensions (for a start, we describe the
structure of free pre-associative algebras with any number of generators).

68Quite distinct from what sometimes goes by this name.
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e Using the correspondence ote — ot of Flex(€*) onto OT, we upload the
whole of flexion algebra onto tree algebra. In the process, the inflected ari
bracket receives as striking an interpretation as the uninflected lu bracket:
inserting trees into one another or attaching them to one another. On the
axiomatic side, this leads to the notion of Janus algebra,

12.2 Some open questions.

e Q: Just as we have (two) natural Dynkin projectors from an associative
algebra onto the Lie algebra it ‘envelopes’, it would be nice to have simple
projectors dealing with the whole ’fourfold unfolding’, that is to say:

(i) from pre-associative onto pre-Lie
(ii) from pre-associative onto associative
(iii) (directly) from pre-associative onto Lie

e Qa: Are there natural incarnations (in flexion algebra or elsewhere) of the
pre-associative algebras freely generated by more than one element?

e Q3: Is there a simple way of expressing the core involution swap and the
related notions of bialternality, bisymmetrality etc®® in any of the tree
indexed bases?

e Q4: Are there simple Hermitian forms on Flez,(Pa®) or Flex,(Pi®) that
make the bases {bte; ; } or {6te; ;. } or {ste; ;,} orthonormal? Say, discrete
Hermitian forms of type: < A*, B® >= 3 h(w,w’) A¥ B*' with the
sequences w and w'’ consisting of finite sums of differences of unit roots
of order r+1. Same question with Flez,(F*), where F'* denotes the flat
flexion unit: F* = 1 (sgn(u1) + (sgn(v1)).

e Qs5: Does there exist (say, for €* = Pa® or Pi*®) a simple, direct charac-
terisation of the important and remarkably stable”® subspace F ez root (E*)
spanned by all elements of the form ﬁte;’k with 1 < k < k1, i.e. spanned
by bimoulds attached to one-rooted trees?

12.3 Forthcoming: “the flexion structure and its plethora
of dualities”.

In this follow-up paper, we shall return to the flexion algebra BIMU of general
bimoulds, and use Flex(€*) to shed light on the many symmetries, involutions,
and dualities that exist on BIMU and make it such a pliant tool for the study
of arithmetic dimorphy, most glaringly manifest in the ring of multizetas. The
centre-piece of the paper will be the bisymmetral bimoulds tal®/til*. They are
the trigonometric counterpart of the polar bimoulds pal®/pil®, and an ideal key
to the understanding of rational Drinfeld associators, of which they provide two
completely distinct encodings.

69also the bialternality grid: see [E3].
70Notably, under the Lie products lu, ari and their pre-Lie companions dle, dari.
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12.4 1Index of terms.

ari: §4.2, §4.3

arit: §4.2, §4.3

alternal: §4.1, §4.2
bialternal: §4.2, §4.3
bisymmetral: §4.2, §4.3
counter-alternators: §5.5-§5.7, §11.2-§11.4
dari: §5.3

dla, dli: §5.2, §5.3

dle: §5.2

dma, dmi: §5.2, §5.3

dme: §5.2

exotic composition: §3.2-§3.5
framing function: §7.2

pilot polynomials: §6.4, §11.4
lu: §4.2

mu: §4.3

mde: §5.2

mda, mdi: §5.2, §5.3

stacked tree: §6.4

symmetral: §4.1, §4.2

12.5 Index of notations.

BIMU: §4.1, §4.2
BIMU"™: §5.3

calt, calt, calt: §5.5, §10.2
calt™, calt™?, calt™?: §5.5, §5.8
Cilt: §6.6
Flex(€*),Flex®(€*): §4.6, §5.2
Flex™°t(€*): §8.2, §8.5
Flex(Pa®),Flex®(Pa®): §5.3
Flex(Pi®),Flex®(Pi®): §5.3
Pa®, Pi*: §4.5

Pﬁdi §72

Lnd: §72

Qra §76

Qa®, Qi*: §4.5

Flx,y): §7.2

Pz, y): §7.2

(¢, x): §7.3

=E(t,x): §7.3

re(t,z): §7.4

=00(t,z): §7.4

kalt™? kalt™ kalt™?: §5.8
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1y s, A: §10.1
OT: §6.2
BT: §6.3
UT: §6.4
ST: §6.4
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