Flexion algebra meets tree algebra: a tale of asymmetric cross-fertilisation.

Jean Ecalle.

January 17, 2023

Abstract

As mathematical objects, finite trees would seem to be nearly as basic and ubiquitous as the natural integers, were it not for their apparent 'chemical inertness', by which we mean the paucity of natural operations (of any given arity) defined on them. The present paper tries to redress this state of affairs by bringing trees into close relation with $\operatorname{Flex}(\mathfrak{E})$ - the flexion polyalgebra generated by a so-called flexion unit \mathfrak{E}, and by uploading the rich structure of that polyalgebra onto trees. The rapprochement also benefits $\operatorname{Flex}(\mathfrak{E})$, leading in particular (i) to a neat filtration by depth and alternality codegree, (ii) to exact formulae for the dimensions that go with that filtration, (iii) to remarkable expansions for all the main elements of $\operatorname{Flex}(\mathfrak{E})$.

We conclude by introducing the notion of pre-associative algebra, parallel to that of pre-Lie algebra and potentially capable of rendering roughly the same services.

Contents

1 Introduction. 4
1.1 Flexion algebra. 4
1.2 Tree algebra. 4
1.3 The encounter. 4
1.4 Articulation of the paper. 5
2 Pre-Lie calculus: optimal formulae. 7
2.1 Some auxiliary moulds. 7
2.2 Optimal formulae. 10
2.3 'Optimal' vs 'raw' formulae: 12
2.4 Alternative expansions. 16
3 Exotic pre-Lie products and exotic functional composition. 19
3.1 The pre-Lie products $\{a, b\}_{\sigma}^{e x o}$ and $\{a, b\}^{e x x o}$ 19
3.2 The exotic compositions $\circ_{\sigma}^{\text {exo }}$ and $\circ^{\text {exxo }}$ 20
3.3 Left-linear expression of the exo-compositions. 22
3.4 Extending exotic composition to transseries: the three main steps. 23
3.5 Exotic composition and resurgence 24
4 The prototypal flexion algebra Flex(E). 24
4.1 Flexion symbols. The space $B I M U$ of bimoulds. 25
4.2 Flexion operations. BIMU as polyalgebra. 27
4.3 Flexion polyalgebra. 29
4.4 Basic symmetries and symmetry conservations. 32
4.5 Flexion units 33
4.6 The prototypal polyalgebra Flex $\left(\mathfrak{E}^{\bullet}\right)$. 36
4.7 Flex $\left(P a^{\bullet}\right)$ and Flex $\left(P i^{\bullet}\right)$: similarities/dissimilarities. 37
5 Alternators and counter-alternators. 37
5.1 Introduction. 37
5.2 Semi-inflected operations on Flex $\left(\mathfrak{E}^{\bullet}\right)$ 38
5.3 Semi-inflected operations on Flex $\left(P a^{\bullet}\right)$ and $F l e x\left(P i^{\bullet}\right)$. 39
5.4 Alternality-preserving pre-Lie brackets 40
5.5 The counter-alternaltors câlt, călt, cālt. 41
5.6 The symmetrical alternaltors sâlt, sălt, sālt. 42
5.7 Main properties of the alternators: 43
5.8 Alternality projectors: 44
5.9 Partially symmetrized alternators: 47
5.10 Complement: dimensions of the component spaces 48
6 Tree-indexed bases: binary, ordered, stacked. 49
6.1 Binary and ordered trees 49
6.2 Binary trees for basis indexation. 51
6.3 Ordered trees for basis indexation. 51
6.4 Stacked trees for basis indexation. 51
6.5 Ordered trees and the pre-Lie products. 53
6.6 From câlt to Câlt : an illusory, yet useful extension. 54
6.7 Stacked trees and co-degree stratification. 56
6.8 Improbable explicitness of the basis changes. 57
6.9 Scalar product on trees 62
7 Filtration by co-degree. Dimensions. 63
7.1 Filtrations, gradations, dimensions: a road map. 63
7.2 Framing function and pilot polynomials. 64
7.3 Dimensions. Main statements. 66
7.4 Codimensions. Main statements. 69
7.5 Analytic properties of $\Gamma(t, x)$ and $\Xi(t, x)$ 71
7.6 Sketch of proof: first approach. 74
7.7 Sketch of proof: second approach 80
7.8 Dimensions. 82
8 Main bases of Flex (\mathfrak{E}^{\bullet}) and Flex $^{a l}\left(\mathfrak{E}^{\bullet}\right)$. 82
8.1 mu -generation versus $d m u$-generation. 82
8.2 Main bases of Flex $\left(\mathfrak{E}^{\bullet}\right)$. 83
8.3 Main bases of Flex ${ }^{a l}\left(\mathfrak{E}^{\bullet}\right)$. 86
8.4 Lie and pre-Lie brackets in the main bases. 86
8.5 Main sub-algebras. 89
8.6 Push-invariance. 90
9 Expanding the dimorphic bimoulds. 90
9.1 The main bases and the universal alternals. 90
9.2 The main bases and the bisymmetrals. 92
9.3 The main bases and the alternal dilators 92
9.4 The main bases and the bialternal dilators. 92
9.5 Survey. 93
10 Pre-Lie and pre-associative algebras. 94
10.1 Pre-associativity: definitions and first properties. 95
10.2 Counter-alternality defined. 96
10.3 Counter-alternality modelized and proved 97
10.4 Counter-alternality made manifest. 99
10.5 Structure of free pre-associative algebras. 100
10.6 Filtration by co-degree. Dimensions 100
10.7 Examples of non-free pre-associative algebras. 100
10.8 Enveloping and enfolding algebras. 101
10.9 Dynkin-like projectors. 101
10.10Notion of Janus algebra. 102
11 Tables. 103
11.1 From binary to ordered trees 103
11.2 From ordered to binary trees 105
11.3 The cǎlt- and cālt-based conversion matrices 106
11.4 Pilot polynomials. 106
11.5μ-generators and enumerating series 108
11.6 Generators. 111
11.7 Dimensions. 113
12 Conclusion. 113
12.1 Survey of the main results. 113
12.2 Some open questions. 115
12.3 Forthcoming: "the flexion structure and its plethora of dualities" 115
12.4 Index of terms 116
12.5 Index of notations. 116
12.6 References 117

1 Introduction.

1.1 Flexion algebra.

Flexion (poly)-algebra has been around for some 22 years. It deals with $b i$ moulds, i.e. functions of double strings of variables (u_{i} 's and v_{i} 's) of any length, and with a host of bimould operations that typically add the u_{i} 's (clusterwise) and subtract the v_{i} 's (pairwise). It possesses a central involtion, swap, and excels at handling double symmetries, i.e. symmetries that simultaneously affect a bimould and its swappee. Flexion algebra originally arose in Analysis, to describe some intricate resurgence patterns. It was later applied to multizeta algebra to elucidate the fascinating subject of arithmetical dimorphy. But it is also a subject with definite contours and great inner unity, well deserving of being studied for its own sake.

1.2 Tree algebra.

Trees, of course, make out an important and sprawling chapter of graph theory, but it is only recently that they entered algebra proper, thanks in particular to seminal papers by F. Chapoton, M. Livernet, D. Manchon (see §11.6). These authors equipped trees with a natural pre-Lie product, and derived therefrom, among other results, a precise description of free pre-Lie algebras.

1.3 The encounter.

Even prior to this paper, trees and moulds were no strangers to one another. Indeed, in $[\mathrm{E}-\mathrm{V}]$, we had developed the so-called arborification-coarborification technique, which in many situations of Analysis restores convergence in expansions of mould-comould ${ }^{1}$ type $\sum_{\bullet} M^{\bullet} B \bullet$ by changing them ${ }^{2}$ to expansions $\sum_{\bullet}<M^{\bullet}{ }^{<} B_{\bullet}<$, formally equivalent but no longer divergent. ${ }^{3}$

The present paper, however, is about a quite distinct mathematical encounter, namely the match between
(i) the polyalgebra Flex(E) generated by a flexion unit \mathfrak{E}
(ii) the free pre-Lie algebra $\mathbb{U T}$ on unordered trees, equipped with its standard pre-Lie product, and its natural extension $\mathbb{O T}$ to ordered trees.

As it happens, when equipped with a suitable pre-Lie product and a suitable basis, Flex (\mathfrak{E}) maps naturally onto $\mathbb{O T}$ and the alternal part Flex ${ }^{a l}(\mathfrak{E})$ of Flex (\mathbb{E}) maps naturally onto $\mathbb{U T}$.

Like with most such mathematical rapprochements, both sides stand to benefit, but here it is tree algebra that gains most. In very rough terms:
(i) Flexion algebra gains very convenient, tree indexed bases, which in turn lead

[^0]to a resolution of the long-standing problem of 'alternality stratification': calculating the dimensions of the subspaces of Flex (\mathfrak{E}) of depth r and alternality co-degree d.
(ii) Tree algebra experiences a massive influx of structure, with the full array of operations (inflected or non-inflected) defined on Flex(E) and Flex ${ }^{\text {al }}(\mathfrak{E})$ automatically carrying over to $\mathbb{O T}$ and $\mathbb{U T}$.

1.4 Articulation of the paper.

- §2: We begin with some reminders on pre-Lie calculus. We then show how to improve the usual pre-Lie formulae (for group composition, group inversion, group iteration, group-to-algebra logarithm) by relying on just two types of bracketings - backward inside forward - rather than on the general bracket combinations commonly used. Besides being more economical (they carry far fewer terms), the new formulae have the added merit of uniqueness and expliciteness.
- §3: We illustrate the technique on the group of identity-tangent diffeomorphisms, and investigate in passing two 'exotic' pre-Lie products alongside the 'exotic' group laws that go with them.
- §4: To set the stage for the encounter between flexion and tree algebra, we give a short introduction to the lesser known of the two: flexion algebra (a subcategory of mould and bimould algebra), with special emphasis on the prototypal case of the algebra $\operatorname{Flex}(\mathfrak{E})$ generated by a 'flexion unit' \mathfrak{E}.
- §5: From the very start, flexion algebra has made liberal use of pre-Lie products, but here we introduce yet another type, the so-called semiinflected pre-Lie product $d l e$, which commends itself on at least three grounds:
(i) it preserves the alternality of bimoulds, which the earlier pre-Lie products (whether uninflected or fully inflected) did not
(ii) it generates the whole algebra Flex(E) from \mathfrak{E} alone, which none of the ealier products did
(iii) it shall prove admirably suited for the future link-up with tree algebra.

We then use the pre-Lie product dle and a kindred, 'pre-associative' operation $d m e$ to construct multilinear operators:

$$
\text { câlt : }\left(A_{0}^{\bullet}, A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) \mapsto B^{\bullet}=\operatorname{câlt}_{A_{0}^{\bullet}}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)
$$

with the unexpected property that the alternality of B^{\bullet} as a bimould decreases, in an exactly quantifiable way, when the alternality of $c \hat{a} l t$, as a function of its arguments A_{i}^{\bullet}, increases. We actually construct three such operators, câlt, călt, cālt. Though all three share 'counter-alternality' and seem equally promising, on closer examination câlt proves the best choice by a long stretch.

- §6: There exists on Flex(E) an appealing basis, naturally indexed by binary trees and quite simple to construct, but with the downside that none of the flexion operations possesses a transparent expression in that basis. To remedy this, we harness the counter-alternators to construct two new bases. The simpler of the two, indexed by ordered trees, will facilitate the link-up with tree algebra (§8). The other one, indexed by stacked trees (which are carefully crafted linear combinations of ordered trees), will help clarify the structure of $\operatorname{Flex}(\mathfrak{E})$ through a filtration according to alternality (§7). The upshot is that we must juggle three distinct bases, but this isn't nearly as bad as it sounds, since the matrices connecting these bases admit remarkable expressions, directly in terms of the underlying trees ($\S 6.8$).
- §7: This section, technically the most demanding, solves the delicate problem of splitting each space Flex (\mathfrak{E}) into subspaces $\oplus_{d} F l e x_{r, d}(\mathfrak{E})$ of alternality co-degree d, i.e. consisting of bimoulds which, when contracted with differential operators, yield a result of differential degree d. Rather than directly calculating $\operatorname{dim}\left(\operatorname{Flex}_{r, d}(\mathfrak{E})\right)$, for which there exist no closed formulae, we form the generating series of these dimensions with the help of some remarkable special polynomials, the so-called 'pilot polynomials'.
- §8: This section returns to the basis indexed by ordered trees to show how all useful operations on the polygebra Flex (E) admit transparent interpretations in that basis. Thus, the uninflected Lie bracket $l u$ reduces to attaching two trees to each other, while the inflected Lie bracket ari reduces to grafting two trees onto each other. Strictly speaking, this applies only to the basis that relies on the 'good' counter-alternator câlt. But the parallel constructions relying on călt or cālt also have their uses, especially for expanding the push-invariant or bialternal elements of Flex (\mathfrak{E}).
- §9: As it happens, the monogenous polyalgebra Flex (\mathfrak{E}), which is in every way the core and marrow of the polyalgebra BIMU, possesses its own core and marrow, consisting of the bisymmetral bimoulds pal ${ }^{\boldsymbol{\bullet}}$ and $p i l^{\bullet}$, and it is truly gratifying to observe that these two bimoulds, along with the numerous alternal or bialternal bimoulds naturally attached to them, tend to admit surprisingly explicit expansions in the new bases of Flex (\mathfrak{E}).
- §10: The interpretation of all flexion operations in terms of the ordered tree basis of Flex (\mathfrak{E}), apart from leading to a massive enrichment of 'tree algebra', also acts as an invitation to put the whole thing on a clean axiomatic basis to unleash its full potential. The result is the two notions of pre-associative ${ }^{4}$ and Janus algebra.

Pre-associative algebras relate to associative algebras as pre-Lie to Lie. But pre-associative algebras also 'enfold' pre-Lie algebras in much the same way as associative algebras 'envelop' Lie algebras. The upshot is an elegant four-fold 'unfolding' of Lie algebras, which helps clarify a host of

[^1]notions such as degree, co-degree, counter-alternator, μ-generator etc. We describe the structure of free pre-associative algebras, their various stratifications and dimensions, and provide some examples of pre-associative algebras, some free, some not.
Whereas pre-associatice algebra, strictly speaking, merely extends the uninflected or semi-inflected operations on $F l e x(\mathfrak{E})$, the richer (but still inchoate) notion of Janus or bifrons algebra purports to take on board the fully inflected operations as well, beginning with the ari bracket. However, it deliberately leaves out the involution swap and the whole 'dimorphy' aspect, because adding these would impose far too many constraints and practically shrink the construction to something isomorphic to bimould algebra.

- §11: For illustration, and also to palliate what may be an excessive conciseness in parts of the exposition, we provide extensive tables, notably on the connection matrices; the pilot polynomials; the co-degee dimensions and their generating functions.
- §12: We wind up with a list of the most salient results, and hint at some open questions and possible developments.

2 Pre-Lie calculus: optimal formulae.

2.1 Some auxiliary moulds.

Let us settle some notations:
Let \mathbb{G} be a Lie group with elements A, B, \ldots and the group law: $A, B \mapsto A \circ B$. Let \mathbb{L} be its Lie algebra with elements A_{*}, B_{*}, \ldots and the Lie bracket: $A_{*}, B_{*} \mapsto$ $\left[A_{*}, B_{*}\right]$
Let there be a pre-Lie bracket ${ }^{5}: A_{*}, B_{*} \mapsto\left\langle A_{*}, B_{*}\right\rangle$ or $^{6} A, B \mapsto\langle A, B\rangle$
$\left\langle. .\left\langle\left\langle A_{1}, A_{2}\right\rangle, A_{3}\right\rangle, \ldots, A_{r}\right\rangle$ will get abbreviated as $\left\langle A_{1}, \ldots, A_{r}\right\rangle$ or $\left\langle A_{1}, \ldots, A_{r}\right\rangle \rightarrow$
$\left\langle A_{1}, . .,\left\langle A_{r-2},\left\langle A_{r-1}, A_{r}\right\rangle\right\rangle ..\right\rangle$ will get abbreviated as $\left\langle A_{1}, \ldots, A_{r}\right\rangle$ or $\left\langle A_{1}, \ldots, A_{r}\right\rangle^{\leftarrow}$
ntimes
$\langle. .\langle\langle A, A\rangle, A\rangle, \ldots, A\rangle$ will get abbreviated as $A_{\vec{n}}$
$\langle A, \ldots,\langle A,\langle A, A\rangle\rangle .$.$\rangle will get abbreviated as A_{\overleftarrow{n}}$
We take as our starting point the fact that each Lie group exactly determines its Lie algebra, but that a Lie algebra determines its Lie group only up to isomorphism. However, when there exists a pre-Lie operation behind the Lie

[^2]bracket, with it goes a privileged realisation of the Lie group, induced by the mapping:
\[

$$
\begin{equation*}
\text { algebra } \rightarrow \text { group }: \quad A_{*} \mapsto A=\sum_{1 \leqslant r} \frac{1}{r!}\left\langle A_{*}^{r \text { times }}, \ldots, A_{*}\right\rangle \rightarrow \tag{1}
\end{equation*}
$$

\]

That mapping can then be reversed by brute force, that is to say, by treating the pre-Lie bracket as if it were an arbitrary binary operation subject to no other constraint than bilinearity. The result is what we may call a raw expansion. Via transfer of the Campbell-Hausdorff formula from algebra to group, it eases the way for two new raw expansions - one for group composition, another for continuous iteration. These expansions are raw not just on account of their rough mode of derivation, but also in the sense of involving close to the maximum number of summands, namely $\frac{(2 r-2)!}{r!(r-1)!}$ at each order r - far more, as it happens, than strictly necessary. To improve on that, we must take into account the functional identities of the pre-Lie brackets. The result will be optimal expansions, that involve at most 2^{r-1} summands at order r, all of the form leftward within rightward, ${ }^{7}$ with the added bonus of explicit coefficients (absent from the raw expansions).

Let us first introduce a few moulds essential for the sequel:
Lemma 2.1 (The auxiliary moulds San $^{\bullet}$, Zan $^{\bullet}, L i t^{\bullet}, I t_{w}^{\bullet}$) .
The moulds $S a n^{\bullet}, Z a n^{\bullet}$ on N defined by $S^{\bullet}{ }^{\varnothing}=Z a n^{\varnothing}=1$ and

$$
\begin{align*}
\operatorname{San}^{n_{1}, \ldots, n_{r}} & :=(-1)^{r+\sum n_{j}} \prod_{1 \leqslant j \leqslant r} \frac{1}{n_{1}+\ldots+n_{j}} \tag{2}\\
\operatorname{Zan}^{n_{1}, \ldots, n_{r}} & :=(-1)^{\sum n_{j}} \prod_{1 \leqslant j \leqslant r} \frac{1}{n_{j}+\ldots+n_{r}} \tag{3}
\end{align*}
$$

are symmetral and mutually inverse (for mould multiplication). The mould $I t_{w}^{\bullet}$ on N equivalently defined by (4) or (5)

$$
\begin{align*}
\mathrm{It}_{w}^{\bullet} & :=w \cdot \mathbf{1}^{\bullet}+\sum_{1 \leqslant k \leqslant r(\bullet)} \frac{\prod_{j=0}^{k}(w-j)}{(k+1)!}\left(\operatorname{San}^{\bullet}-\mathbf{1}^{\bullet}\right)^{\times k} \tag{4}\\
& =w \cdot \mathbf{1}^{\bullet}-\sum_{1 \leqslant k \leqslant r(\bullet)}(-1)^{k} \frac{\prod_{j=-1}^{k-1}(w+j)}{(k+1)!}\left(\mathrm{Zan}^{\bullet}-\mathbf{1}^{\bullet}\right)^{\times k} \tag{5}
\end{align*}
$$

is not symmetral, but verifies the difference equations

$$
\begin{align*}
& \mathrm{It}_{w+1}^{\bullet}:=\mathrm{It}_{w}^{\bullet} \times \mathrm{San}^{\bullet}+\mathbf{1}^{\bullet} \tag{6}\\
& \mathrm{It}_{w-1}^{\bullet}:=\mathrm{It}_{w}^{\bullet} \times \mathrm{Zan}^{\bullet}-\mathrm{Zan}^{\bullet} \tag{7}
\end{align*}
$$

and the reflection equation

$$
\begin{equation*}
\mathrm{It}_{w}^{\bullet}+\text { anti.pari. } \mathrm{It}_{1-w}^{\bullet} \equiv \mathbf{1}^{\bullet} \tag{8}
\end{equation*}
$$

[^3]Lastly, the mould Lit ${ }^{\bullet}$ on N equivalently defined by (9) or (10) or (11)

$$
\begin{align*}
\text { Lit } & :=\mathbf{1}^{\bullet}+\sum_{1 \leqslant k \leqslant r(\bullet)} \frac{(-1)^{k}}{(k+1)}\left(\mathrm{San}^{\bullet}-\mathbf{1}^{\bullet}\right)^{\times k} \tag{9}\\
& :=\mathbf{1}^{\bullet}-\sum_{1 \leqslant k \leqslant r(\bullet)} \frac{(-1)^{k}}{k(k+1)}\left(\mathrm{Zan}^{\bullet}-\mathbf{1}^{\bullet}\right)^{\times k} \tag{10}\\
& :=\partial_{w} \mathrm{It}_{w}^{\bullet} \|_{w=0} \tag{11}
\end{align*}
$$

verifies only 'traces' of the reflection equation (see below).
Proof: The moulds Hit ${ }_{w}^{\bullet}$ and varHit ${ }_{w}^{\bullet}$ defined by (4) and (5) respectively are clearly the only solutions of (6) resp. (7) that vanish for $w=0$. But since $H i t^{\bullet}{ }_{w}$ and $\operatorname{varHit}{ }_{w}^{\bullet}$, by construction, commute with San^{\bullet} and Zan^{\bullet}, it follows that the relations (6) and (7) are equivalent. Hence the identity $H i t_{w}^{\bullet}=\operatorname{varHit}_{w}^{\bullet}$, and the equivalence of (9), (10), (11).

Note that $I t_{0}^{\bullet}=0^{\bullet}, I t_{1}^{\bullet}=1^{\bullet}, I t_{2}^{\bullet}=S a n^{\bullet}, I t_{-1}^{\bullet}=-Z a n^{\bullet}$. Note, too, that for w in \mathbb{Z} (resp. not in it) the mould $I t_{w}^{\bullet}$, along with its arborified and antiarborified variants, grows exponentially (resp. super-exponentially) as the depth $r(\bullet)$ increases.

Remark: some properties of $L i t^{\bullet}$.

(i) Zeros of Lit ${ }^{\bullet}$. Setting $x^{[n]}:=(x, \ldots, x)$ (n times), we have:

$$
\begin{align*}
\operatorname{Lit}^{1^{[n]}} & \equiv 0 \quad \text { if } n \text { odd } \tag{12}\\
\operatorname{Lit}^{\left[{ }^{[n]}, 2\right.} & \equiv 0 \quad \text { if } n \text { odd } \tag{13}\\
\operatorname{Lit}^{11^{[n]}, 2,1^{[n]}} & \equiv 0 \quad \forall n \geqslant 1 \tag{14}\\
\operatorname{Lit}^{1^{\left[2^{n}-1\right]}, 2^{n}, 1} & \equiv 0 \quad \forall n \geqslant 1 \tag{15}
\end{align*}
$$

(ii) Link with the Bernoulli numbers:

$$
\begin{align*}
\operatorname{Lit}^{1^{[2 n]}} & =\frac{B_{2 n}}{(2 n)!} \quad \forall n \geqslant 1 \tag{16}\\
\operatorname{Lit}^{1^{[p]}, 2,1} 1^{[q]} & =-\frac{1}{2} \frac{B_{p+q+1}}{(p+q+1)!}\left(1+(-1)^{p} \frac{(p+q)!}{p!q!}\right) \text { if } p+q \text { odd }(\tag{17}\\
\operatorname{Lit}^{1^{[p]}, 3,1^{[q]}}+\operatorname{Lit}^{1^{[q]}, 3,1^{[p]}} & =2(-1)^{p} \frac{B_{p+q+2}}{(p+q+2)!} \frac{(p+q)!}{p!q!} \quad \text { if } p+q \text { even } \tag{18}\\
\operatorname{Lit}^{1^{[p]}, 3,1}{ }^{[q]}-\operatorname{Lit}^{1^{[q]}, 3,1}{ }^{[p]} & =(-1)^{p} \frac{B_{p+q+1}}{(p+q+1)!} \frac{(p+q)!}{p!q!} \quad \text { if } p+q \text { even } \tag{19}
\end{align*}
$$

(iii) Faint traces of the reflection equation (8) :

On average, Lit ${ }^{\bullet}+$ anti.pari.Lit ${ }^{\bullet}$ is much smaller than $L i t^{\bullet}-$ anti.pari.Lit ${ }^{\bullet}$. In particular $L i t^{1^{[p]}, 2,1^{[q]}}+L i t^{\left[^{[q]}, 2,1^{[p]}\right.} \equiv 0$ for $p+q$ even. For $p+q$ odd, see (17).
(iv) Stability under arborification. As a special instance, we get the identities:

$$
\begin{align*}
\sum_{\sigma \in \mathfrak{G}(r)} \mathrm{It}_{w}^{n_{\sigma(r)}, \ldots, n_{\sigma(1)}} & =\frac{1}{r!} \frac{(-1)^{r+\sum n_{j}}}{n_{1} \ldots n_{r}} \mathrm{It}_{w}^{\frac{r}{r \text { times }}} 1 \tag{20}\\
\sum_{\sigma \in \mathfrak{G}(r)} \operatorname{Lit}^{t_{\sigma(r)}, \ldots, n_{\sigma(1)}} & =\frac{1}{r!} \frac{(-1)^{r+\sum n_{j}}}{n_{1} \ldots n_{r}} \mathrm{Lit}^{\frac{r}{r \text { times }}, \ldots, 1} \tag{21}
\end{align*}
$$

2.2 Optimal formulae.

Let us now enuntiate straightaway the optimal formulae, using the notations and special moulds of the previous section.

Proposition 2.1.
Algebra-to-group exponential:

$$
\begin{equation*}
A=\sum_{1 \leqslant r} \frac{1}{r!} A_{* \vec{r}}=\sum_{1 \leqslant r} \frac{1}{r!}\left\langle A_{*}^{r \text { times }}, \ldots, A_{*}\right\rangle \rightarrow \tag{22}
\end{equation*}
$$

Group-to-algebra logarithm:

$$
\begin{align*}
A_{*} & =A+\sum_{1 \leqslant r, 1 \leqslant n_{i}} \operatorname{Lit}^{n_{1}, \ldots, n_{r}}\left\langle A, A_{\overleftarrow{n}_{1}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{23}\\
& =A+\sum_{1 \leqslant r, 1 \leqslant n_{i}} \operatorname{Lit}^{n_{1}, \ldots, n_{r}}\left\langle A_{1 \overleftarrow{+n_{1}}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{24}
\end{align*}
$$

Group law of \mathbb{G} :

$$
\begin{equation*}
A \circ B=A+B+\sum_{1 \leqslant r, 1 \leqslant n_{i}} \operatorname{San}^{n_{1}, \ldots, n_{r}}\left\langle A, B_{\overleftarrow{n}_{1}}, \ldots, B_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{25}
\end{equation*}
$$

Inversion in \mathbb{G} :

$$
\begin{align*}
A^{-1} & =-A-\sum_{1 \leqslant r, 1 \leqslant n_{i}} \operatorname{Zan}^{n_{1}, \ldots, n_{r}}\left\langle A, A_{\overleftarrow{n}_{1}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{26}\\
& =-A-\sum_{1 \leqslant r, 1 \leqslant n_{i}} \operatorname{Zan}^{n_{1}, \ldots, n_{r}}\left\langle A_{1 \overleftarrow{+n_{1}}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{27}
\end{align*}
$$

Continuous iteration in \mathbb{G} :

$$
\begin{align*}
A^{w} & =w \cdot A+\sum_{1 \leqslant r, 1 \leqslant n_{i}} \mathrm{It}_{w}^{n_{1}, \ldots, n_{r}}\left\langle A, A_{\overleftarrow{n}_{1}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{28}\\
& =w \cdot A+\sum_{1 \leqslant r, 1 \leqslant n_{i}} \mathrm{It}_{w}^{n_{1}, \ldots, n_{r}}\left\langle A_{1 \overleftarrow{+n_{1}}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow \tag{29}
\end{align*}
$$

Proof of formula (25) for the group law.
We first check it in a case of special interest to us: $A=a(x), B=b(x),\{A, B\}=$ $a^{\prime}(x) b(x)$. Let us denote by E_{n} the n-linear term on the left-hand side of (25)
and let us check inductively that $E_{n}=\frac{1}{n!} a^{(n)}$. If the relation (clearly true for $n=1$) holds up to $n-1$, it also holds for n, due to the identity:

$$
\begin{equation*}
E_{n}=\sum_{1 \leqslant k \leqslant n} \frac{(-1)^{k-1}}{n} E_{n-k} B_{k} \quad \text { with } \quad B_{k}:=\left(b^{\prime}\right)^{k-1} b \tag{30}
\end{equation*}
$$

Indeed, in the above sum, the term of index $k=1$ contributes the required result $\frac{b^{n}}{n!} a^{(n)}$, while all other contributions, of type $a^{(n-k)} b^{n-k}\left(b^{\prime}\right)^{k}$ and stemming from the terms of index k and $k+1$, cancel out pairwise.

However, this doesn't quite clinch the proof, as the bracket $\{a, b\}=a ?(x) b(x)$ doesn't define a free pre-Lie algebra. So we now turn to local vector fields on \mathbb{C}^{s} and to the pre-Lie bracket

$$
\{A, B\}:=\sum b_{j}\left(\partial_{x_{j}} a_{i}\right) \partial_{x_{i}} \quad \text { with } \quad\left\{\begin{array}{l}
A=\sum_{r=1}^{s} a_{i}(x) \partial_{x_{i}} \tag{31}\\
B=\sum_{r=1}^{s} b_{i}(x) \partial_{x_{i}}
\end{array}\right.
$$

which for $s=\infty$ (but for no finite s) does indeed define a free pre-Lie algebra. The proof is on the same lines as in the case $s=1$, with the induction-enabling identity (30) still in force, and the terms E_{n}, B_{k} re-interpreted as:

$$
\begin{align*}
E_{n}:=\sum e_{n, i} \partial_{x_{i}} \quad \text { with } \quad e_{n, i}:=\sum_{\sum n_{j}=n}^{n_{j} \geqslant 0}\left(\prod \frac{b_{j}^{n_{j}}}{n_{j}!}\right) \partial_{x_{1}}^{n_{1}} \ldots \partial_{x_{s}}^{n_{s}} a_{i} \tag{32}\\
B_{k}:=\sum b_{k, i} \partial_{x_{i}} \quad \text { with } \quad b_{k, i}:=\sum_{j_{1}, \ldots, j_{k}}\left(\partial_{x_{j_{k}}} b_{j_{k-1}}\right) \ldots\left(\partial_{x_{j_{2}}} b_{j_{1}}\right) .\left(\partial_{x_{j_{1}}} b_{i}\right) \tag{33}
\end{align*}
$$

Proof of formula (28) for continous iteration.
Apply the composition law (25) with $\left(A^{\circ w}, A\right)$ in place of (A, B) and use the functional equation (6)-(7) for the mould $I t_{w}^{\bullet}$.

Proof of formula (26) for group inversion.
Treat this as a special case of continuous iteration for $w=-1$ and use the mould identity $I t_{-1}^{\bullet}=-Z a n^{\bullet}$.

Proof of formula (23) for group-to-algebra logarithm.
Differentiate in w the formula (28) for continuous iteration; then set $w=0$ and use the mould identity (11).

2.3 'Optimal' vs 'raw' formulae:

Let us compare the raw and optimal formulae up to order 5 .

raw	expansion	optimal	expansion	
$(A \circ B)_{\text {raw }}=$	$A+B$	$(A \circ B)_{o p t}=$	$A+B$	
+1	$\langle A, B\rangle$	+1	$\langle A, B\rangle$	
$+\frac{1}{2}$	$\langle\langle A, B\rangle, B\rangle$	$+\frac{1}{2}$	$\langle\langle A, B\rangle, B\rangle$	
$-\frac{1}{2}$	$\langle A,\langle B, B\rangle\rangle$	$-\frac{1}{2}$	$\langle A,\langle B, B\rangle\rangle$	
$+\frac{1}{6}$	$\langle\langle\langle A, B\rangle, B\rangle, B\rangle$	$+\frac{1}{6}$	$\langle\langle\langle A, B\rangle, B\rangle, B\rangle$	
$-\frac{1}{4}$	$\langle\langle A,\langle B, B\rangle\rangle, B\rangle$	- $\frac{1}{6}$	$\langle\langle A,\langle B, B\rangle\rangle, B\rangle$	
$\frac{1}{4}$	$\langle\langle A, B\rangle,\langle B, B\rangle\rangle$	$-\frac{1}{3}$	$\langle\langle A, B\rangle,\langle B, B\rangle\rangle$	
$+\frac{1}{4}$	$\langle A,\langle B,\langle B, B\rangle\rangle\rangle$	+ $+\frac{1}{3}$	$\langle A,\langle B,\langle B, B\rangle\rangle\rangle$	
$+\frac{1}{12}$	$\langle A,\langle\langle B, B\rangle, B\rangle\rangle$			
$+\frac{1}{24}$	$\langle\langle\langle\langle A, B\rangle, B\rangle, B\rangle, B\rangle \\|$	$+\frac{1}{24}$	$\langle\langle\langle\langle A, B\rangle, B\rangle, B\rangle, B\rangle$	
- $\frac{1}{12}$	$\langle\langle\langle A,\langle B, B\rangle\rangle, B\rangle, B\rangle$	- $\frac{1}{24}$	$\rangle\langle\langle A,\langle B, B\rangle\rangle, B\rangle, B\rangle$	
$-\frac{1}{12}$	$\langle\langle\langle A, B\rangle,\langle B, B\rangle\rangle, B\rangle \\|$	$-\frac{1}{12}$	$\langle\langle\langle A, B\rangle,\langle B, B\rangle\rangle, B\rangle$	
$+\frac{1}{8}$	$\langle\langle A,\langle B,\langle B, B\rangle\rangle\rangle, B\rangle \\|$	$+\frac{1}{12}$	$\langle\langle A,\langle B,\langle B, B\rangle\rangle\rangle, B\rangle$	
$-\frac{1}{12}$	$\langle\langle\langle A, B\rangle, B\rangle,\langle B, B\rangle\rangle \\|$	- 8	$\langle\langle\langle A, B\rangle, B\rangle,\langle B, B\rangle\rangle$	
$+\frac{1}{8}$	$\langle\langle A,\langle B, B\rangle\rangle,\langle B, B\rangle\rangle \\|$	$+\frac{1}{8}$	$\langle\langle A,\langle B, B\rangle\rangle,\langle B, B\rangle\rangle$	
$+\frac{1}{8}$	$\langle\langle A, B\rangle,\langle B,\langle B, B\rangle\rangle\rangle \\|$	+ $+\frac{1}{4}$	$\langle\langle A, B\rangle,\langle B,\langle B, B\rangle\rangle\rangle$	
$-\frac{1}{8}$	$\langle A,\langle B,\langle B,\langle B, B\rangle\rangle\rangle\rangle \\|$	$-\frac{1}{4}$	$\langle A,\langle B,\langle B,\langle B, B\rangle\rangle\rangle\rangle$	
$+\frac{1}{24}$	$\langle\langle A,\langle\langle B, B\rangle, B\rangle\rangle, B\rangle \\|$			
$+\frac{1}{24}$	$\langle\langle A, B\rangle,\langle\langle B, B\rangle, B\rangle\rangle \\|$			
+0	$\langle A,\langle\langle\langle B, B\rangle, B\rangle, B\rangle\rangle \\|$			
$-\frac{1}{24}$	$\langle A,\langle\langle B,\langle B, B\rangle\rangle, B\rangle\rangle \\|$			
- $\frac{1}{24}$	$\langle A,\langle\langle B, B\rangle,\langle B, B\rangle\rangle\rangle \\|$			
$-\frac{1}{24}$	$\langle A,\langle B,\langle\langle B, B\rangle, B\rangle\rangle\rangle \\|$			
	$+\mathcal{O}\left(A B^{5}\right)$		$+\mathcal{O}\left(A B^{5}\right)$	

Starting from the terms of order 4, the optimal expansion differs from the raw expansion: it carries only 2^{r-1} non-zero summands of order $r+1$ whereas the raw expansion has nearly all possible $\frac{(2 r-2)!}{(r-1)!r!}$ summands affected with non-zero coefficients. Denoting by

$$
l i(A, B, C):=\left\{\begin{array}{l}
+\langle\langle A, B\rangle, C\rangle-\langle A,\langle B, C\rangle\rangle \tag{34}\\
-\langle\langle A, C\rangle, B\rangle+\langle A,\langle C, B\rangle\rangle
\end{array}\right.
$$

the generators of the pre-Lie ideal ${ }^{8} \mathbb{I}$ and defining $A_{\overleftarrow{n}}$ as in (??), we find for the terms of order 4 and 5 the identities

$$
\begin{aligned}
& \left((A \circ B)_{\text {raw }}-(A \circ B)_{\text {eco }}\right)_{4}=\frac{1}{12} l i\left(A, B_{\overleftarrow{1}}, B_{\overleftarrow{2}}\right) \\
& \left((A \circ B)_{\text {raw }}-(A \circ B)_{\text {eco }}\right)_{5}=\frac{1}{24}\left\{\begin{array}{l}
+2 l i\left(A, B_{\overleftarrow{5}}, B_{\overleftarrow{1}}\right)+\left\langle A, l i\left(B_{\overleftarrow{1}}, B_{\overleftarrow{2}}, B_{\overleftarrow{1}}\right)\right\rangle \\
+l i\left(\left\langle A, B_{\overleftarrow{1}}\right\rangle, B_{\overleftarrow{1}}, B_{\overleftarrow{2}}\right)+\left\langle l i\left(A, B_{\overleftarrow{1}}, B_{\overleftarrow{2}}\right), B_{\overleftarrow{1}}\right\rangle
\end{array}\right.
\end{aligned}
$$

[^4]which confirm that the two expansions do coincide modulo \mathbb{I}.

raw	expansion	optimal	expansion
$A_{\text {raw }}^{-1}=$	- A	$A_{\text {opt }}^{-1}=$	- A
+1	$\langle A, A\rangle$	+1	$\langle A, A\rangle$
$-\frac{1}{2}$	$\langle\langle A, A\rangle, A\rangle$	$-\frac{1}{2}$	$\langle\langle A, A\rangle, A\rangle$
$-\frac{1}{2}$	$\langle A,\langle A, A\rangle\rangle$	$-\frac{1}{2}$	$\langle A,\langle A, A\rangle\rangle$
$+\frac{1}{6}$	$\langle\langle\langle A, A\rangle, A\rangle, A\rangle$	$+\frac{1}{6}$	$\langle\langle\langle A, A\rangle, A\rangle, A\rangle$
$+\frac{1}{4}$	$\langle\langle A,\langle A, A\rangle\rangle, A\rangle$	$\frac{1}{3}$	$\langle\langle A,\langle A, A\rangle\rangle, A\rangle$
$+\frac{1}{4}$	$\langle\langle A, A\rangle,\langle A, A\rangle\rangle$	$+\frac{1}{6}$	$\langle\langle A, A\rangle,\langle A, A\rangle\rangle$
$+\frac{1}{4}$	$\langle A,\langle A,\langle A, A\rangle\rangle\rangle$	$+\frac{1}{3}$	$\langle A,\langle A,\langle A, A\rangle\rangle\rangle$
$+\frac{1}{12}$	$\langle A,\langle\langle A, A\rangle, A\rangle\rangle$		
$-\frac{1}{24}$	$\langle\langle\langle\langle A, A\rangle, A\rangle, A\rangle, A\rangle$	$-\frac{1}{24}$	$\langle\langle\langle\langle A, A\rangle, A\rangle, A\rangle, A\rangle$
$-\frac{1}{12}$	$\langle\langle\langle A,\langle A, A\rangle\rangle, A\rangle, A\rangle$	$-\frac{1}{8}$	$\langle\langle\langle A,\langle A, A\rangle\rangle, A\rangle, A\rangle$
$-\frac{1}{12}$	$\langle\langle\langle A, A\rangle,\langle A, A\rangle\rangle, A\rangle$	$-\frac{1}{12}$	$\langle\langle\langle A, A\rangle,\langle A, A\rangle\rangle, A\rangle$
$-\frac{1}{8}$	$\langle\langle A,\langle A,\langle A, A\rangle\rangle\rangle, A\rangle$	- $\frac{1}{4}$	$\langle\langle A,\langle A,\langle A, A\rangle\rangle\rangle, A\rangle$
$-\frac{1}{12}$	$\langle\langle\langle A, A\rangle, A\rangle,\langle A, A\rangle\rangle$	$\frac{1}{24}$	$\langle\langle\langle A, A\rangle, A\rangle,\langle A, A\rangle\rangle$
- $\frac{1}{8}$	$\langle\langle A,\langle A, A\rangle\rangle,\langle A, A\rangle\rangle$		$\langle\langle A,\langle A, A\rangle\rangle,\langle A, A\rangle\rangle$
- $\frac{1}{8}$	$\langle\langle A, A\rangle,\langle A,\langle A, A\rangle\rangle\rangle$	- $\frac{1}{12}$	$\langle\langle A, A\rangle,\langle A,\langle A, A\rangle\rangle\rangle$
- ${ }^{1}$	$\langle A,\langle A,\langle A,\langle A, A\rangle\rangle\rangle\rangle$	- $\frac{1}{4}$	$\langle A,\langle A,\langle A,\langle A, A\rangle\rangle\rangle\rangle$
$-\frac{1}{24}$	$\langle\langle A,\langle\langle A, A\rangle, A\rangle\rangle, A\rangle$		
$-\frac{1}{24}$	$\langle\langle A, A\rangle,\langle\langle A, A\rangle, A\rangle\rangle$		
+0	$\langle A,\langle\langle\langle A, A\rangle, A\rangle, A\rangle\rangle$		
$-\frac{1}{24}$	$\langle A,\langle\langle A,\langle A, A\rangle\rangle, A\rangle\rangle$		
$-\frac{14}{24}$	$\langle A,\langle\langle A, A\rangle,\langle A, A\rangle\rangle\rangle$		
$-\frac{1}{24}$	$\langle A,\langle A,\langle\langle A, A\rangle, A\rangle\rangle\rangle$		
	$+\mathcal{O}\left(A^{6}\right)$		$+\mathcal{O}\left(A^{6}\right)$

Starting from the terms of order 4, the optimal expansion starts differing from, and improving on, the raw expansion: at order r it carries only 2^{r-1} non-zero summands, whereas the raw expansion has nearly all possible summands affected with non-zero coefficients. Denoting by

$$
l i(A, B, C):=\left\{\begin{array}{l}
+\langle\langle A, B\rangle, C\rangle-\langle A,\langle B, C\rangle\rangle \tag{35}\\
-\langle\langle A, C\rangle, B\rangle+\langle A,\langle C, B\rangle\rangle
\end{array}\right.
$$

the generators of the pre-Lie ideal ${ }^{9} \mathbb{I}$ and defining $A_{\overleftarrow{n}}$ as in (??), we find for the terms of order 4 and 5 the identities

$$
\begin{aligned}
& \left(A_{\text {raw }}^{-1}-A_{\text {eco }}^{-1}\right)_{4}=\frac{1}{12} l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right) \\
& \left(A_{\text {raw }}^{-1}-A_{\text {eco }}^{-1}\right)_{5}=\frac{1}{24}\left(t^{2}-\frac{1}{4}\right)\left\{\begin{array}{l}
+2 l i\left(A_{\overleftarrow{ }}, A_{\overleftarrow{5}}, A_{\overleftarrow{1}}\right)+\left\langle A_{\leftarrow}, l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{5}}, A_{\leftarrow}\right)\right\rangle \\
-\operatorname{li}\left(A_{\overleftarrow{2}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right)-\left\langle l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right), A_{\overleftarrow{1}}\right\rangle
\end{array}\right.
\end{aligned}
$$

[^5]which confirm that the two expansions do coincide modulo \mathbb{I}.

raw	expansion	optimal	expansion
$A_{*, \text { raw }}=$	A	A_{*}, opt $=$	A
$-\frac{1}{2}$	$\langle A, A\rangle$	$-\frac{1}{2}$	$\langle A, A\rangle$
$+\frac{1}{12}$	$\langle\langle A, A\rangle, A\rangle$	$+\frac{1}{12}$	$\langle\langle A, A\rangle, A\rangle$
$+\frac{1}{4}$	$\langle A,\langle A, A\rangle\rangle$	$+\frac{1}{4}$	$\langle A,\langle A, A\rangle\rangle$
+0	$\langle\langle\langle A, A\rangle, A\rangle, A\rangle$	+0	$\langle\langle\langle A, A\rangle, A\rangle, A\rangle$
$-\frac{1}{24}$	$\langle\langle A,\langle A, A\rangle\rangle, A\rangle$	$-\frac{1}{12}$	$\langle\langle A,\langle A, A\rangle\rangle, A\rangle$
$-\frac{1}{24}$	$\langle\langle A, A\rangle,\langle A, A\rangle\rangle$	+0	$\langle\langle A, A\rangle,\langle A, A\rangle\rangle$
- $\frac{1}{8}$	$\langle A,\langle A,\langle A, A\rangle\rangle\rangle$	$-\frac{1}{6}$	$\langle A,\langle A,\langle A, A\rangle\rangle\rangle$
$-\frac{1}{24}$	$\langle A,\langle\langle A, A\rangle, A\rangle\rangle$		
$\frac{1}{720}$	$\langle\langle\langle\langle A, A\rangle, A\rangle, A\rangle, A\rangle$	$-\frac{1}{720}$	$\langle\langle\langle\langle A, A\rangle, A\rangle, A\rangle, A\rangle$
+0	$\langle\langle\langle A,\langle A, A\rangle\rangle, A\rangle, A\rangle$	+ $\frac{1}{144}$	$\langle\langle\langle A,\langle A, A\rangle\rangle, A\rangle, A\rangle$
+0	$\langle\langle\langle A, A\rangle,\langle A, A\rangle\rangle, A\rangle$	144 +0	$\langle\langle\langle A, A\rangle,\langle A, A\rangle\rangle, A\rangle$
$+\frac{1}{48}$	$\langle\langle A,\langle A,\langle A, A\rangle\rangle\rangle, A\rangle$	$+\frac{5}{72}$	$\langle\langle A,\langle A,\langle A, A\rangle\rangle\rangle, A\rangle$
-0	$\langle\langle\langle A, A\rangle, A\rangle,\langle A, A\rangle\rangle$		$\langle\langle\langle A, A\rangle, A\rangle,\langle A, A\rangle\rangle$
$+\frac{1}{48}$	$\langle\langle A,\langle A, A\rangle\rangle,\langle A, A\rangle\rangle$	1 $+\frac{1}{48}$	$\langle\langle A,\langle A, A\rangle\rangle,\langle A, A\rangle\rangle$
+ $+\frac{1}{48}$	$\langle\langle A, A\rangle,\langle A,\langle A, A\rangle\rangle\rangle$	- $\frac{1}{72}$	$\langle\langle A, A\rangle,\langle A,\langle A, A\rangle\rangle\rangle$
+ $+\frac{1}{16}$	$\langle A,\langle A,\langle A,\langle A, A\rangle\rangle\rangle\rangle$	$+\frac{1}{8}$	$\langle A,\langle A,\langle A,\langle A, A\rangle\rangle\rangle\rangle$
$+\frac{1}{144}$	$\langle\langle A,\langle\langle A, A\rangle, A\rangle\rangle, A\rangle$		
$+\frac{1}{144}$	$\langle\langle A, A\rangle,\langle\langle A, A\rangle, A\rangle\rangle$		
+0	$\langle A,\langle\langle\langle A, A\rangle, A\rangle, A\rangle\rangle$		
$+\frac{1}{48}$	$\langle A,\langle\langle A,\langle A, A\rangle\rangle, A\rangle\rangle$		
+ $+\frac{1}{48}$	$\langle A,\langle\langle A, A\rangle,\langle A, A\rangle\rangle\rangle$		
+ $+\frac{1}{48}$	$\langle A,\langle A,\langle\langle A, A\rangle, A\rangle\rangle\rangle$		
	$+\mathcal{O}\left(A^{6}\right)$		$+\mathcal{O}\left(A^{6}\right)$

Here, we find for the terms of order 4 and 5 the identities

$$
\begin{aligned}
& \left(A_{*, \text { raw }}-A_{*, \text { eco }}\right)_{4}=-\frac{1}{24} l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right) \\
& \left(A_{*}, \boldsymbol{r a w}-A_{*}, \boldsymbol{e c o}\right)_{5}=-\frac{1}{144}\left\{\begin{array}{l}
+6 l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{3}}, A_{\overleftarrow{1}}\right)+3\left\langle A_{\overleftarrow{1}}, l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{2}}, A_{\overleftarrow{1}}\right)\right\rangle \\
-l i\left(A_{\overleftarrow{2}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right)-\left\langle l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right), A_{\overleftarrow{1}}\right\rangle
\end{array}\right.
\end{aligned}
$$

which confirm that the two expansions do coincide modulo \mathbb{I}.

$$
\begin{aligned}
& \text { raw expansion } \| \text { optimal expansion } \\
& A_{\boldsymbol{r a}}^{t+\frac{1}{\boldsymbol{w}}}=\left(t+\frac{1}{2}\right) A \\
& +\frac{1}{2}\left(t^{2}-\frac{1}{4}\right) \quad\langle A, A\rangle \\
& \begin{aligned}
+\frac{1}{6} t\left(t^{2}-\frac{1}{4}\right) & \langle\langle A, A\rangle, A\rangle \\
-\frac{1}{4}\left(t^{2}-\frac{1}{4}\right) & \langle A,\langle A, A\rangle\rangle
\end{aligned} \\
& +\frac{1}{24}\left(t^{2}-\frac{1}{4}\right)^{2} \quad\langle\langle\langle A, A\rangle, A\rangle, A\rangle \\
& -\frac{1}{12} t\left(t^{2}-\frac{1}{4}\right) \quad\langle\langle A,\langle A, A\rangle\rangle, A\rangle \\
& -\frac{1}{12} t\left(t^{2}-\frac{1}{4}\right) \quad\langle\langle A, A\rangle,\langle A, A\rangle\rangle \\
& +\frac{1}{8}\left(t^{2}-\frac{1}{4}\right) \quad\langle A,\langle A,\langle A, A\rangle\rangle\rangle \\
& +\frac{1}{120} t\left(t^{2}-\frac{1}{4}\right)\left(t^{2}-\frac{7}{12}\right)\langle\langle\langle\langle A, A\rangle, A\rangle, A\rangle, A\rangle \\
& \begin{array}{l}
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right)^{2} \quad\langle\langle\langle A,\langle A, A\rangle\rangle, A\rangle, A\rangle \\
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right)^{2} \quad\langle\langle\langle A, A\rangle,\langle A, A\rangle\rangle, A\rangle
\end{array} \\
& \begin{array}{l}
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right)^{2} \quad\{\langle\langle A, A\rangle,\langle A, A\rangle\rangle, A\rangle \\
+\frac{1}{24} t\left(t^{2}-\frac{1}{4}\right)
\end{array} \quad\langle\langle A,\langle A,\langle A, A\rangle\rangle\rangle, A\rangle \\
& \begin{array}{l}
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right)^{2} \quad\langle\langle\langle A, A\rangle, A\rangle,\langle A, A\rangle\rangle \\
+\frac{1}{24} t\left(t^{2}-\frac{1}{4}\right) \quad\langle\langle A,\langle A, A\rangle\rangle,\langle A, A\rangle\rangle
\end{array} \\
& \begin{aligned}
+\frac{1}{24} t\left(t^{2}-\frac{1}{4}\right) & \langle\langle A, A\rangle,\langle A,\langle A, A\rangle\rangle\rangle\rangle \\
-\frac{1}{16}\left(t^{2}-\frac{1}{1}\right) & A,\langle A,\langle A,\langle A, A\rangle\rangle\rangle\rangle
\end{aligned} \\
& \begin{aligned}
-\frac{1}{16}\left(t^{2}-\frac{1}{4}\right) & \langle A,\langle A,\langle A,\langle A, A\rangle\rangle\rangle\rangle \\
+\frac{1}{72} t\left(t^{2}-\frac{1}{4}\right) & \langle\langle A,\langle\langle A, A\rangle, A\rangle\rangle, A\rangle
\end{aligned} \\
& +\frac{1}{72} t\left(t^{2}-\frac{1}{4}\right) \quad\langle\langle A, A\rangle,\langle\langle A, A\rangle, A\rangle\rangle \\
& \langle A,\langle\langle\langle A, A\rangle, A\rangle, A\rangle\rangle \\
& \begin{array}{ll}
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right) & \langle A,\langle\langle A,\langle A, A\rangle\rangle, A\rangle\rangle \\
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right) & \langle A,\langle\langle A, A\rangle,\langle A, A\rangle\rangle\rangle \\
-\frac{1}{48}\left(t^{2}-\frac{1}{4}\right) & \langle A,\langle A,\langle\langle A, A\rangle, A\rangle\rangle\rangle
\end{array} \\
& +\mathcal{O}\left(A^{6}\right) \|+\mathcal{O}\left(A^{6}\right)
\end{aligned}
$$

Starting from the terms of order 4, the optimal expansion starts differing from, and improving on, the raw expansion: at order r it carries only 2^{r-1} non-zero summands, whereas the raw expansion has nearly all possible summands affected with non-zero coefficients. Denoting by

$$
l i(A, B, C):=\left\{\begin{array}{l}
+\langle\langle A, B\rangle, C\rangle-\langle A,\langle B, C\rangle\rangle \tag{36}\\
-\langle\langle A, C\rangle, B\rangle+\langle A,\langle C, B\rangle\rangle
\end{array}\right.
$$

the generators of the pre-Lie ideal ${ }^{10} \mathbb{I}$ and defining $A_{\overleftarrow{n}}$ as in (??), we find for the terms of order 4 and 5 the identities

$$
\begin{aligned}
& \left(A_{\boldsymbol{r a w}}^{t+\frac{1}{2}}-A_{\text {eco }}^{t+\frac{1}{2}}\right)_{4}=\frac{1}{24}\left(t^{2}-\frac{1}{4}\right) l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right) \\
& \left(A_{\text {raw }}^{t+\frac{1}{2}}-A_{\text {eco }}^{t+\frac{1}{2}}\right)_{5}=\frac{1}{144}\left(t^{2}-\frac{1}{4}\right)\left\{\begin{array}{l}
+6 \operatorname{li}\left(A_{\leftarrow}, A_{\overleftarrow{5}}, A_{\leftarrow}\right)+3\left\langle A_{\overleftarrow{1}}, l i\left(A_{\leftarrow}, A_{\overleftarrow{2}}, A_{\overleftarrow{1}}\right)\right\rangle \\
+2 t l i\left(A_{\overleftarrow{2}}, A_{\leftarrow}, A_{\overleftarrow{2}}\right)+2 t\left\langle l i\left(A_{\overleftarrow{1}}, A_{\overleftarrow{1}}, A_{\overleftarrow{2}}\right), A_{\overleftarrow{1}}\right\rangle
\end{array}\right.
\end{aligned}
$$

which confirm that the two expansions do coincide modulo \mathbb{I}.

[^6]
2.4 Alternative expansions.

The expansions we have just constructed are optimal only in the sense of minimizing the number of elementary summands at each order r. But there exist alternative expansions that sometimes look simpler, and more appealing, because involving fewer basis elements ${ }^{11}$ in this or that standard basis of $\operatorname{PreLie} r(A)$, by which we denote the set spanned by all multiple pre-Lie brackets of arity r. We shall give here three instances of such alternative expansions, using three distinct bases of $\operatorname{PreLie}_{r}(A)$. The corresponging basis elements being naturally indexed by unordered, rooted trees, let us say a few words about these.

Unordered, rooted trees $u t_{r, k}$ admit a decomposition

$$
\mathrm{ut}_{r, k}=h\left(\mathrm{ut}_{r_{1}, k_{1}}, \ldots, \mathrm{ut}_{r_{d}, k_{d}}\right) \quad \text { with } \quad\left\{\begin{array}{l}
r_{1}+\ldots+r_{d}=r-1 \tag{37}\\
\mathrm{ut}_{r_{j}, k_{j}} \leqslant \mathrm{ut}_{r_{j+1}, k_{j+1}}
\end{array}\right.
$$

with r the total node number; with $u t_{r_{j}, k_{j}}$ the subtrees attached to the root node; and with an indexation $k \in[1, \varkappa(r)]$ reflecting the tree ordering. They also admit a full ordering $<$ inductively defined in this way: we set $u t_{r, k}<u t_{r^{\prime}, k^{\prime}}$ iff either of the three following relations hold

$$
\begin{gather*}
r<r^{\prime} \tag{i}\\
r=r^{\prime} \text { but } d<d^{\prime} \tag{ii}\\
{\left[r, d, k_{1}, \ldots, k_{j-1}\right]=\left[r^{\prime}, d^{\prime}, k_{1}^{\prime}, \ldots, k_{j-1}^{\prime}\right] \text { but } k_{j}<k_{j}^{\prime} \text { for some } j} \tag{iii}
\end{gather*}
$$

This ordering has the advantage that many functions attached to unordered trees $u t_{r, k}$ turn out to be independent of r, or elementarily dependent on it. One such function is the multiplicity $\mu^{r, k} \equiv \mu_{k}$ of $u t_{r, k}$, i.e. the number of rooted, ordered trees which reduce to $u t_{r, k}$ after obliteration of the order. ${ }^{12}$

Assuming at least a fleeting acquaintance with the three bases $\left\{\bar{u} t_{r, k}\right\},\left\{\hat{u} t_{r, k}\right\}$, $\left\{\check{u} t_{r, k}\right\}$ of $\operatorname{PreLie}_{r}(A)$ to be constructed in $\S 8.3$ as images of the bases $\left\{\bar{u} \mathfrak{t e}_{r, k}\right\}$,
 expansions, first in the basis $\left\{\bar{u} t_{r, k}\right\}$, then in $\left\{\hat{u} t_{r, k}\right\}$ and $\left\{\check{u} t_{r, k}\right\}$.
Proposition 2.2 (Alternative expansions in $\left\{\bar{u} t_{r, k}\right\}$).

$$
\begin{align*}
A^{\circ t} & =t A+\sum_{2 \leqslant r} \sum_{1 \leqslant k \leqslant \varkappa(r)}\left(B_{1+d}(t)-B_{1+d}(0)\right) \Gamma^{r, k} \bar{u} t_{r, k}(A) \tag{38}\\
A^{-1} & =-A+\sum_{2 \leqslant r} \sum_{1 \leqslant k \leqslant \varkappa(r)}(d+1) B_{d} \Gamma^{r, k} \bar{u} t_{r, k}(A) \tag{39}\\
A_{*} & =A+\sum_{2 \leqslant r} \sum_{1 \leqslant k \leqslant \varkappa(r)}(-1)^{d+1}(d+1) \Gamma^{r, k} \bar{u} t_{r, k}(A) \tag{40}
\end{align*}
$$

[^7]with the Bernoulli numbers B_{d} and polynomials $B_{d}(t)$. The rational coefficients $\Gamma^{r, k}$ are defined by the recursion:
\[

$$
\begin{align*}
\Gamma^{r, k} & \equiv \frac{2^{d}}{(d+1)!} \Gamma^{r_{1}+1, k_{1}} \ldots \Gamma^{r_{d}+1, k_{d}} \tag{41}\\
\Gamma^{r+1, k} & \equiv-\frac{d+1}{2} B_{d} \Gamma^{r, k} \tag{42}
\end{align*}
$$
\]

with the initial conditions $\Gamma^{1,1}=1, \Gamma^{2,1}=-\frac{1}{2}$. If $\mathrm{d}>1$, then $\mathrm{r}_{j}+1<r$ for all j , so that (41) is properly inductive. If $\mathrm{d}=1$, (41) becomes tautological, but then (42) springs by to save the induction.

Remark 1. When the pre-Lie product derives from an associative product, i.e.

$$
\left\langle A_{1}, A_{2}\right\rangle \equiv\left(A_{1}, A_{2}\right)-\left(A_{2}, A_{1}\right) \text { with }(., .) \text { associative }
$$

all r-linear terms $\bar{u} t_{r, k}(A)$ in A coincide ${ }^{13}$ and the expansions (38)-(40) reduce to

$$
\begin{align*}
\sum_{1 \leqslant k \leqslant \varkappa(r)} \mu_{k} \Gamma^{r, k}\left(B_{d+1}(t)-B_{d+1}(0)\right) & \equiv(-1)^{r-1} \frac{t!}{(t-r)!r!} \tag{43}\\
\sum_{1 \leqslant k \leqslant \varkappa(r)} \mu_{k} \Gamma^{r+1, k} & \equiv-\frac{1}{2 r} \tag{44}
\end{align*}
$$

Remark 2. The link-up between the 'alternative' expansion (38) and its 'optimal' counterpart (28) is via the identities:

$$
U_{r, d}(A):=\sum_{\operatorname{stem}\left(u t_{r, k}\right)=d} \Gamma^{r, k} \bar{u} t_{r, k}(A) \equiv \sum_{d \leqslant \delta \leqslant r-1}^{r_{1}+\cdots+r_{\delta}=r-1} C_{d}^{r_{1}, \ldots, r_{\delta}}\left\langle A_{1 \leftarrow r_{1}}, \ldots, A_{r_{\delta}}\right\rangle^{\rightarrow}
$$

The less important coefficients C_{d}^{\bullet} also verify their own induction, but let us simply mention the relations:

$$
\begin{align*}
C_{d}^{r_{1}, \ldots, r_{\delta}} & \equiv(-1)^{d-\delta} C_{d}^{r_{\delta}, \ldots, r_{1}} \tag{45}\\
C_{d}^{r-1, \ldots, 1} \overbrace{\text { times }}^{1, \ldots, 1} & = \begin{cases}\frac{1}{r!} & \text { if } d=r-1 \\
0 & \text { if } d<r-1\end{cases} \tag{46}
\end{align*}
$$

Remark 3. The coefficients involved in the expansions (38)-(40) are one more instance of scalars attached to trees $u t_{r, k}$ that depend essentially on k and trivially on r. Indeed, we may set:

$$
\begin{array}{ll}
\gamma_{k}:=2^{r-1} \Gamma^{r, k} & \text { for the integer } \mathrm{r} \text { such that } \varkappa(r-1)<k \leqslant \varkappa(r) \\
\gamma_{k}^{*}:=2^{r-1} \Gamma^{r, k} & \text { for all integers } \mathrm{r} \text { such that } k \leqslant \varkappa(r-1) \tag{48}
\end{array}
$$

[^8]The above induction for $\Gamma^{r, k}$ then simplifies to

$$
\begin{align*}
\gamma_{k} & \equiv \frac{2^{d}}{(d+1)!} \gamma_{k_{1}}^{*} \ldots \gamma_{k_{d}}^{*} \quad \text { with } \quad d=d_{k} \tag{49}\\
\gamma_{k}^{*} & \equiv-(d+1) B_{d} \gamma_{k} \quad \text { with } \quad d=d_{k} \tag{50}
\end{align*}
$$

with the attendant identities

$$
\begin{align*}
\sum_{1 \leqslant k \leqslant \varkappa(r)} \mu_{k} \gamma_{k}\left(B_{d+1}(t)-B_{d+1}(0)\right) & \equiv(-1)^{r-1} \frac{t!}{(t-r)!r!} \tag{51}\\
\sum_{1 \leqslant k \leqslant \varkappa(r)} \mu_{k} \gamma_{k}^{*} & \equiv-\frac{2^{r-1}}{r} \tag{52}
\end{align*}
$$

In the four identities above, $d=d_{k} \geqslant 2$ is the number of edges issuing from the root node of the tree $u t_{r, k}$, for the only integer r such that $\varkappa(r-1)<k \leqslant \varkappa(r)$. The rule makes no sense for $k=1$, but in that case we set $d_{1}=0$ and (50) then reduces to $\gamma_{1}^{*}=-\gamma_{1}=-1$.

Here are the sequences $\left\{\gamma_{k}\right\}$ and $\left\{\gamma_{k}^{*}\right\}$ up to $k=\varkappa(6)=20$, along with the multiplicities μ_{k} and the stem numbers d_{k} involved in the relations (43)-(44):

k	$\\|$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
γ_{k}	$\\|$	1	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{2}{3}$	$\frac{2}{9}$	$\frac{2}{3}$	$\frac{-1}{3}$	$\frac{2}{15}$	$\frac{2}{3}$	$\frac{2}{9}$	$\frac{2}{9}$	0	$\frac{2}{3}$	$\frac{2}{9}$	$\frac{-1}{3}$	$\frac{-1}{9}$	$\frac{-1}{3}$	$\frac{2}{15}$	$\frac{-2}{45}$
γ_{k}^{*}	$\\|$	-1	$\frac{-1}{3}$	$\frac{-1}{3}$	0	$\frac{-1}{3}$	$\frac{-1}{9}$	$\frac{-1}{3}$	0	$\frac{1}{45}$	$\frac{-1}{3}$	$\frac{-1}{9}$	$\frac{-1}{9}$	0	$\frac{-1}{3}$	$\frac{-1}{9}$	0	0	0	$\frac{1}{45}$	0
μ_{k}	$\\|$	1	1	2	1	2	2	1	3	1	2	2	4	2	2	2	3	3	3	4	1
d_{k}	$\\|$	0	2	2	3	2	2	2	3	4	2	2	2	2	2	2	3	3	3	4	5

Proposition 2.3 (Alternative expansions in $\left\{\hat{u} t_{r, k}\right\}$ and $\left\{\check{u} t_{r, k}\right\}$).
The simplest expansions in the bases $\left\{\hat{u} t_{r, k}\right\}$ and $\left\{\tilde{u} t_{r, k}\right\}$ are

$$
\begin{align*}
A^{\circ 2} & =2 A+\sum_{2 \leqslant r}(-1)^{r+1} \hat{u} t_{r, \varkappa(r)}(A) \tag{53}\\
A^{\circ-1} & =-A+\sum_{2 \leqslant r}^{1 \leqslant k \leqslant \varkappa(r)} \check{u} t_{r, k}(A) \tag{54}\\
A^{\circ-1} & =-A-\sum_{2 \leqslant r} \check{u} t_{r, \varkappa(r)}(A) \tag{55}\\
A_{*} & =A+\sum_{2 \leqslant r}^{1 \leqslant k \leqslant \varkappa(r)} c^{r, k} \check{u} t_{r, k}(A) \tag{56}
\end{align*}
$$

with coefficients $c^{r, k}$ that depend only on $u t_{r, k}$ as a non-rooted tree. In other words, $c^{r, k_{1}}=c^{r, k_{2}}$ when $u t_{r, k_{1}}$ and $u t_{r, k_{2}}$ coincide as graphs, after erasure of the orientation on their edges.

Thus, in (??) the 5 -linear terms consist of three clusters

$$
\begin{cases}+\frac{1}{30} & \left(\check{u} t_{5,1}(A)+\check{u} t_{5,5}(A)+\check{u} t_{5,7}(A)\right) \\ +\frac{1}{60} & \left(\check{u} t_{5,2}(A)+\check{u} t_{5,3}(A)+\check{u} t_{5,6}(A)+\check{u} t_{5,8}(A)\right) \\ -\frac{1}{30} & \left(\check{u} t_{5,4}(A)+\check{u} t_{5,9}(A)\right)\end{cases}
$$

corresponding to the three non-rooted trees with 5 nodes.
Like the coefficients $\Gamma^{r, k}$ of (43)-(44), the new coefficients $c^{r, k}$ are given by a simple induction, but based this time on non-rooted trees. Thus we find:

$$
\begin{align*}
c^{r, 1} & =\frac{r!}{\left[\frac{r-1}{2}\right]!\left[\frac{r-1}{2}\right]!} \tag{57}\\
c^{r, 2} & = \begin{cases}\frac{r!}{\left(\frac{r-1}{2}\right)!\left(\frac{r-3}{2}\right)!} & \text { if } r \text { odd } \\
0 & \text { if } r \text { even }\end{cases} \tag{58}\\
c^{r, \varkappa(r)} & =c^{r, \varkappa(r-1)}=B_{r-1}(=\text { Bernoulli number }) \text { if } r \geqslant 3 \tag{59}
\end{align*}
$$

Note that the number $\bar{\varkappa}(r)$ of non-rooted, unordered trees with r nodes is much less than the number $\varkappa(r)$ of rooted, unordered trees, since $\bar{\varkappa}(r) \leqslant \varkappa(r-1)$. In fact, their respective generating series relate like

$$
\bar{X}(t)=X(t)-\frac{1}{2} X^{2}(t)+\frac{1}{2} X\left(t^{2}\right) \quad \text { with } \quad\left\{\begin{array}{l}
X(t):=\sum_{1 \leqslant r} \varkappa(r) t^{r} \tag{60}\\
\bar{X}(t):=\sum_{1 \leqslant r} \bar{\varkappa}(r) t^{r}
\end{array}\right.
$$

The series $X(t)$ is the more basic of the two, being directly calculable from the relation:

$$
\begin{equation*}
X(t) \equiv t \exp \left(\sum_{1 \leqslant k} \frac{1}{k} X\left(t^{k}\right)\right) \tag{61}
\end{equation*}
$$

3 Exotic pre-Lie products and exotic functional composition.

3.1 The pre-Lie products $\{a, b\}_{\sigma}^{\text {exo }}$ and $\{a, b\}^{\text {exxo }}$.

Consider the group \mathbb{G} of identity-tangent local diffeomorphisms of \mathbb{C} in its three main incarnations, corresponding to germs of type:

$$
\begin{array}{lll}
f: & t \mapsto t+\sum_{1 \leqslant n} \alpha_{n} t^{1+n} & t \text { small } \\
f: & t \mapsto t+\sum_{1 \leqslant n} \beta_{n} t^{1-n} & t \text { large } \\
f: & t \mapsto t+\sum_{1 \leqslant n} \gamma_{n} e^{-n t} & \Re(t) \text { large } \tag{64}
\end{array}
$$

The group law of \mathbb{G} is ordinary composition $(f, g) \mapsto f \circ g$. The corresponding Lie algebra \mathbb{L} has for bracket

$$
\begin{equation*}
\left[f_{*}, g_{*}\right]=f_{*}^{\prime} g_{*}-f_{*} g_{*}^{\prime} \tag{65}
\end{equation*}
$$

with f_{*}, g_{*} standing for the infinitesimal generators of f, g.
Proposition 1. The Lie bracket (65) is induced by the classical pre-Lie product (66) as well as two others 'exotic' pre-Lie products, namely:
(i) the one-parameter family (67)
(ii) the isolated pre-Lie product (68)

$$
\begin{array}{ll}
\left\langle f_{*}, g_{*}\right\rangle & :=f_{*}^{\prime} g_{*} \\
\left\langle f_{*}, g_{*}\right\rangle_{\sigma}^{e x o} & :=f_{*}^{\prime} g_{*}-\sigma \int\left(f_{*}^{\prime} g_{*}^{\prime}\right)=\int\left(f_{*}^{\prime \prime} g_{*}+(1-\sigma) f_{*}^{\prime} g_{*}^{\prime}\right) \\
\left\langle f_{*}, g_{*}\right\rangle^{e x x o} & :=f_{*}^{\prime} g_{*}-\int\left(f_{*}^{\prime} g_{*}^{\prime}\right)-\iiint\left(f_{*}^{\prime \prime} g_{*}^{\prime \prime}\right)=\int\left(f_{*}^{\prime \prime} g_{*}\right)-\iiint\left(f_{*}^{\prime \prime} g_{*}^{\prime \prime}\right) \tag{68}\\
\text { with }\left(\int f_{*}\right)(t) & := \begin{cases}\int_{0}^{t} f_{*}(s) d s \text { for } f \text { of type }(62) \\
\int_{t}^{\infty} f_{*}(s) d s & \text { for } f \text { of type }(63)-(64)\end{cases}
\end{array}
$$

3.2 The exotic compositions $\circ_{\sigma}^{e x o}$ and $\circ^{e x x o}$.

There is a standard way - two ways, actually ${ }^{14}$ - of expressing a group law in terms of the underlying pre-Lie product. In the present instance, however, we can do better than express $\circ_{\sigma}^{e x o}$ or $\circ^{e x x o}$ in terms of $\{., .\}_{\sigma}^{e x o}$ or $\{., .\}^{e x x o}$. We can directly relate the exotic composition to the standard one, via the detour through the common Lie algebra \mathbb{L} :

and the explicit mappings:

$$
\left\{\begin{array} { c }
{ \underline { f } = f _ { * } + \sum \frac { 1 } { n ! } \langle f _ { * } , \ldots , f _ { * } \rangle } \tag{69}\\
{ \underline { f } ^ { e x o } = f _ { * } + \sum \frac { 1 } { n ! } \langle f _ { * } , \ldots , f _ { * } \rangle ^ { \text { exo } } }
\end{array} \quad \left\{\begin{array}{c}
f_{*}=\underline{f}+\sum c_{\leftrightarrow}\langle\underline{f}, \ldots, \underline{f}\rangle \\
f_{*}=\underline{f}^{e x o}+\sum c_{\leftrightarrow}\left\langle\underline{f}^{e x o}, \ldots, \underline{f}^{e x o}\right\rangle^{e x o}
\end{array}\right.\right.
$$

The algebra-to-group formulae (118-left) involve multiple pre-Lie brackets $\langle\ldots\rangle$ or $\langle\ldots\rangle^{\text {exo }}$ with forward parenthesising, so that at depth n we have just one term, with coefficient $1 / n!$. The group-to-algebra formulae (118-right) also involve multiple pre-Lie brackets $\langle\leftrightarrow\rangle$ or $\langle\ldots\rangle^{\text {exo }}$, but with a mixed forwardbackward parenthesising and suitably chosen rational coefficients c_{\leftrightarrow}. The expansion here is no longer unique, but uniqueness can be restored if we exclude (except in initial position) triplets of the form $\langle\langle\bullet, \bullet\rangle, \bullet\rangle$. We then get the socalled pared-down formula, which involves the least possible number of terms at depth n, namely $2^{n-1} n$-uplets, each with a pleasantly explicit coefficient c_{\leftrightarrow}, whereas the brute force inversion of the algebra-to-group formula would yield a

[^9]far larger number of n-uplets and uglier coefficients c_{\leftrightarrow}.
Proposition 2: the correspondence $\mathbb{G} \leftrightarrow \mathbb{G}^{e x x o}$.
It is non-linear and fully determined by the formulae:
\[

\partial_{t}^{3} f^{e x x o}=S w f \quad with\left(f^{exxo}-f\right)(t)= $$
\begin{cases}o\left(t^{2}\right) & \text { for } f \text { of type }(62) \tag{70}\\ o\left(t^{-1}\right) & \text { for } f \text { of type }(63) \\ o\left(e^{-t}\right) & \text { for } f \text { of type }(64)\end{cases}
$$
\]

and as usual $S w(f)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$.
To express the natural correspondence between $\mathbb{G} \leftrightarrow \mathbb{G}_{\sigma}^{e x o}$, we require functions $h_{\sigma_{2}, \sigma_{1}}$ along with their main properties:

$$
\begin{align*}
h_{\sigma_{2}, \sigma_{1}}(t) & :=t+\sum_{1 \leqslant n} \frac{t^{n+1}}{(n+1)!} \prod_{1 \leqslant k \leqslant n}\left(k\left(\sigma_{1}-1\right)-\left(\sigma_{2}-1\right)\right) \tag{71}\\
& =\frac{\left(1+\left(1-\sigma_{1}\right) t\right)^{\frac{1-\sigma_{2}}{1-\sigma_{1}}}-1}{1-\sigma_{2}} \quad \text { if } \sigma_{1} \neq 1, \sigma_{2} \neq 1 \tag{72}\\
h_{\sigma, \sigma}(t) & =t \tag{73}\\
h_{1,0}(t) & =\log (1+t) \tag{74}\\
h_{0,1}(t) & =\exp (t)-1 \tag{75}\\
h_{\sigma_{3}, \sigma_{2}} \circ h_{\sigma_{2}, \sigma_{1}} & =h_{\sigma_{3}, \sigma_{2}} \tag{76}\\
\partial_{t} h_{\sigma_{2}, \sigma_{1}}(t) & =\frac{1-\left(\sigma_{2}-1\right) h_{\sigma_{2}, \sigma_{1}}(t)}{1-\left(\sigma_{1}-1\right) t} \tag{77}\\
\left(S w h_{\sigma_{2}, \sigma_{1}}\right)(t) & =\frac{1}{2} \frac{\left(\sigma_{1}-\sigma_{2}\right)\left(\sigma_{1}+\sigma_{2}-2\right)}{\left(1-\left(\sigma_{1}-1\right) t\right)^{2}} \quad(S w=\text { Schwarzian }) \tag{78}
\end{align*}
$$

Proposition 3: the correspondence $\mathbb{G} \leftrightarrow \mathbb{G}_{\sigma}^{\text {exo }}$.
The correspondence is non-linear and fully determined by either of the formulae:

$$
\begin{equation*}
h_{0, \sigma}\left(\partial_{t} f_{\sigma}^{e x o}-1\right)=\left(\partial_{t} f-1\right) \quad, \quad h_{\sigma, 0}\left(\partial_{t} f-1\right)=\left(\partial_{t} f_{\sigma}^{e x o}-1\right) \tag{79}
\end{equation*}
$$

More generally, the correspondence $\mathbb{G}_{\sigma_{1}}^{\text {exo }} \leftrightarrow \mathbb{G}_{\sigma_{2}}^{\text {exo }}$ goes by the formula:.

$$
\begin{equation*}
h_{\sigma_{2}, \sigma_{1}}\left(\partial_{t} f_{\sigma_{1}}^{e x o}-1\right)=\left(\partial_{t} f_{\sigma_{2}}^{e x o}-1\right) \tag{80}
\end{equation*}
$$

Two exo-compositions stand out:
(i) One is the case $\sigma=1$. It goes with the pre-Lie product $\{\underline{f}, \underline{g}\}_{1}^{e x o}=\int\left(f^{\prime \prime} \underline{g}\right)$ and the elementary connecting functions $h_{1,0}(t)=\log (1+t), \bar{h}_{0,1}(t)=\exp (t)-1$.
(ii) The other is the case $\sigma=2$. It corresponds to the pre-Lie product $\{\underline{f}, \underline{g}\}_{2}^{e x o}=$ $\int\left(f^{\prime \prime} \underline{g}-\underline{f}^{\prime} \underline{g}^{\prime}\right)$, which has the property that $\left\{e^{-n t}, e^{-n t}\right\}_{2}^{e x o} \equiv 0$ for all n. This considerably simplifies calculations when exo-composing germs of type (64).

3.3 Left-linear expression of the exo-compositions.

Consider two elements f, g of $\mathbb{G}_{\sigma}^{e x o}$ and their product $f \circ{ }_{\sigma}^{e x o} g$. Using the correspondence of Proposition 3, we can calculate their images $f_{s t}, g_{s t}$ and $f_{s t} \circ g_{s t}$ in the standard group \mathbb{G} :

This gives us $f \circ{ }_{\sigma}^{e x o} g$ purely in terms of f, g and the standard composition \circ :

$$
\begin{align*}
\left(f \circ_{\sigma}^{e x o} g\right)^{\prime}-1 & =h_{\sigma, 0}\left(\left(f_{s t} \circ g_{s t}\right)^{\prime}-1\right) \tag{81}\\
& \left.=h_{\sigma, 0}\left(g_{s t}^{\prime}-1+\left(f_{s t}-i d\right) \circ g_{s t}\right)^{\prime}\right) \tag{82}\\
& =h_{\sigma, 0}\left(g_{s t}^{\prime}-1+\left(f_{s t}-i d\right)^{\prime} \circ g_{s t} \cdot g_{s t}^{\prime}\right) \tag{83}\\
& =h_{\sigma, 0}\left(g_{s t}^{\prime}-1+\left(h_{0, \sigma}\left(f^{\prime}-1\right)\right) \circ g_{s t} \cdot g_{s t}^{\prime}\right) \tag{84}\\
& =\sum_{0 \leqslant n} \frac{1}{n!} h_{\sigma, 0}^{(n)}\left(g_{s t}^{\prime}-1\right) \times\left(h_{0, \sigma}\left(f^{\prime}-1\right) \circ g_{s t}\right)^{n} \cdot\left(g_{s t}^{\prime}\right)^{n} \tag{85}
\end{align*}
$$

The above expression (85), on the face of it, is not linear in $f-i d$. We know, however, that it has to be. So we are justified in neglecting the higher-order terms $\sum_{2 \leqslant n}$ and in replacing $h_{0, \sigma}=i d+(\ldots)$ by $i d$ in $\sum_{1=n}$. As for the term $\sum_{0=n}$, it simply yields $g^{\prime}-1$. So, using $h_{\sigma, 0} \circ h_{0, \sigma}=i d$ and after a few elementary simplifications, we arrive at the final result:

Proposition 4: $\circ_{\sigma}^{e x o}$ in terms of \circ. Setting

$$
\begin{equation*}
g_{s t}:=i d+\int h_{0, \sigma}\left(g^{\prime}-1\right)=\int\left(\sigma+(1-\sigma) g^{\prime}\right)^{\frac{1}{1-\sigma}} \tag{86}
\end{equation*}
$$

we get:

$$
\begin{align*}
& f \circ_{\sigma}^{e x o} g=g+\int\left(\left(f \circ g_{s t}-g_{s t}\right)^{\prime} \frac{g^{\prime \prime}}{g_{s t}^{\prime \prime}}\right) \quad \text { with }\left\{\begin{array}{l}
f(t):=t+\sum_{1 \leqslant n} \alpha_{n} t^{n+1} \\
g(t):=t+\sum_{1 \leqslant n} \beta_{n} t^{n+1} \\
g_{s t}=\int h_{0, \sigma}\left(g^{\prime}\right)
\end{array}\right. \tag{87}\\
& a \circ_{\sigma}^{\text {exo }} g=\int\left(\left(a \circ g_{s t}\right)^{\prime} \frac{g^{\prime \prime}}{g_{s t}^{\prime \prime}}\right) \quad \text { with }\left\{\begin{array}{l}
a(t):=\sum_{1 \leqslant n} \alpha_{n} t^{n+1} \\
g(t):=t+\sum_{1 \leqslant n} \beta_{n} t^{n+1} \\
g_{s t}=\int h_{0, \sigma}\left(g^{\prime}\right)
\end{array}\right. \tag{88}
\end{align*}
$$

Or purely in terms of $g_{s t}$:

$$
\begin{align*}
& f \circ_{\sigma}^{e x o} g=g+\int\left(\left(f^{\prime} \circ g_{s t}-1\right) \times\left(g_{s t}^{\prime}\right)^{1-\sigma}\right) \tag{89}\\
& a \circ_{\sigma}^{e x o} g=\int\left(\left(a^{\prime} \circ g_{s t}\right) \times\left(g_{s t}^{\prime}\right)^{1-\sigma}\right) \tag{90}
\end{align*}
$$

Better proof:

$$
\begin{align*}
& \left(f_{\sigma} \circ_{\sigma} g_{\sigma}\right)^{\prime}-1=h_{\sigma, 0}\left((f \circ g)^{\prime}-1\right)=\frac{\left.(f \circ g)^{\prime}\right)^{1-\sigma}-1}{1-\sigma} \tag{91}\\
& \left(f_{\sigma} \circ_{\sigma} g_{\sigma}\right)^{\prime}-1=\frac{\left(g^{\prime}\right)^{1-\sigma}-1}{1-\sigma}+\left(\frac{\left(f^{\prime}\right)^{1-\sigma}-1}{1-\sigma}\right) \circ g\left(g^{\prime}\right)^{1-\sigma} \tag{92}\\
& \left(f_{\sigma} \circ_{\sigma} g_{\sigma}\right)^{\prime}-1=h_{\sigma, 0}\left(g^{\prime}-1\right)+\left(h_{\sigma, 0}\left(f^{\prime}-1\right)\right) \circ g\left(g^{\prime}\right)^{1-\sigma} \tag{93}\\
& \left(f_{\sigma} \circ_{\sigma} g_{\sigma}\right)^{\prime}-1=g_{\sigma}^{\prime}-1+\left(f_{\sigma}^{\prime}-1\right) \circ g\left(g^{\prime}\right)^{1-\sigma} \tag{94}
\end{align*}
$$

Integrating the last indentity and adjusting the integration constants so as to make all germs vanish at 0 , we arrive at (89).

Proposition 5: $\circ^{e x x o}$ in terms of \circ. Setting $g^{\prime \prime \prime}=S w . g_{s t}$, we get:

$$
\begin{array}{ll}
f \circ^{e x x o} g=g+\iint\left(\left(f^{\prime \prime \prime} \circ g_{s t}\right) \times\left(g_{s t}^{\prime}\right)^{2}\right) & \text { if } \begin{cases}f(t)=t+o(t) \\
g(t)=t+o(t)\end{cases} \\
a \circ^{\text {exxo } g=\iint\left(\left(a^{\prime \prime \prime} \circ g_{s t}\right) \times\left(g_{s t}^{\prime}\right)^{2}\right)} & \text { if }\left\{\begin{array}{l}
a(t)=o(t) \\
g(t)=t+o(t)
\end{array}\right. \tag{96}
\end{array}
$$

3.4 Extending exotic composition to transseries: the three main steps.

We consider here germs f, g etc.. at $+\infty$ on the real axis.
(i) The formulae (118) and (79) extend exo-composition in a straightforward manner to the set of transserial mappings of the form $f:=t \mapsto t+\sum m(t)$, with elementary transmonomial $m(t)$, i.e. transmonomials of type $\log m(t)=\mathcal{O}(t)$.
(ii) For general transserial mappings, the formulae (118) and (79) of Proposition 2 and 3 still hold, but when exo-composing large monomials (exponentials or towers of exponentials) one must carefully chose the integration constants implicit in the symbol \int.
(iii) When going beyond the range of transseries by allowing exponential iterates of transfinite order, one encounters the same indeterminacy issues as with ordinary composition

Remark: Except for $\sigma=1$, there exist no bilinear exotic multiplications $\times{ }_{\sigma}^{\text {exo }}$ that would ensure the Leibniz rule

$$
\begin{equation*}
\left\langle a \times_{\sigma}^{e x o} b, g\right\rangle_{\sigma}^{e x o} \equiv\langle a, g\rangle_{\sigma}^{e x o} \times{ }_{\sigma}^{e x o} b+a \times_{\sigma}^{e x o}\langle b, g\rangle_{\sigma}^{e x o} \tag{97}
\end{equation*}
$$

or, equivalently, the distributivity of post-composition:

$$
\begin{equation*}
\left(a \times{ }_{\sigma}^{e x o} b\right) \circ_{\sigma}^{e x o} g \equiv\left(a \circ_{\sigma}^{e x o} g\right) \times{ }_{\sigma}^{e x o}\left(b \circ_{\sigma}^{e x o} g\right) \tag{98}
\end{equation*}
$$

For $\sigma=1$, there does exist an exotic multiplication $a \times{ }_{1}^{e x o} b:=\int\left(a^{\prime} b^{\prime}\right)$, but it has unpleasant properties.

3.5 Exotic composition and resurgence.

We now turn to analytic germs at ∞ on the Riemann sphere. The above Propositions make it abundantly clear that exo-composition preserves the local analyticity of such germs. On the other hand, fractional exo-iteration (i.e. fractional iteration under exo-composition) turns local-analytic, identity-tangent germs into resurgent ones, just as in the case of standard fractional iteration, and that too with the same resurgence lattice, the same resurgence constants, and the same resurgence equations simply re-interpreted in the new context. ${ }^{15}$

Proofs. Let

$$
\begin{align*}
& g_{w}=g^{\circ w} \in \mathbb{G} \\
& \gamma_{w}=g^{\circ_{\sigma}^{e x o}} w \in \mathbb{G}_{\sigma}^{e x o}
\end{aligned} \quad \begin{aligned}
\partial g_{*} & =g_{*} g_{w}^{\prime}=\left\{g_{w}, g_{*}\right\} \\
\partial g_{w}^{\prime} & =g_{*}^{\prime} g_{w}^{\prime}+g_{*} g_{w}^{\prime \prime} \\
\partial_{w} \gamma_{w} & =g_{*} \gamma_{w}^{\prime}-\sigma \int\left(g_{*}^{\prime} \gamma_{w}^{\prime}\right)+\sigma g_{*} \tag{99}\\
\partial_{w} \gamma_{w}^{\prime} & \left.=(1-\sigma) g_{*}^{\prime} \gamma_{w}^{\prime}+g_{*} \gamma_{w}^{\prime \prime}\right)+\sigma g_{*}^{\prime} \tag{100}
\end{align*}
$$

Notice the difference: $\partial g_{w}=\left\langle g_{w}, g_{*}\right\rangle$ but $\partial \gamma_{w}=\left\langle g_{w}, g_{*}\right\rangle_{\sigma}^{e x o}+\sigma g_{*}$. The parasitical term σg_{*} in the second identity comes from:

$$
\begin{equation*}
\gamma_{w}=t+\sum_{1 \leqslant n} \frac{w^{n}}{n!}\left\langle g_{*}, \ldots, g_{*}\right\rangle \tag{103}
\end{equation*}
$$

Now, let us check the identity

$$
\begin{equation*}
\gamma_{w}^{\prime}-1=h_{\sigma, 0}\left(g_{w}^{\prime}-1\right) \tag{104}
\end{equation*}
$$

or rather the equation derived by applying ∂_{w} :

$$
\begin{equation*}
\partial_{w} \gamma_{w}^{\prime}=h_{\sigma, 0}^{\prime}\left(g_{w}^{\prime}-1\right) \partial_{w} g_{w}^{\prime} \tag{105}
\end{equation*}
$$

After expressing $\partial_{w} \gamma_{w}^{\prime}$ as in (102), $\partial_{w} g_{w}^{\prime}$ as in (100) and replacing $h_{\sigma, 0}^{\prime}\left(g_{w}^{\prime}-1\right)$ by $\left(g_{w}^{\prime}\right)^{-\sigma}$, we find that (105) turns into an identity.

4 The prototypal flexion algebra Flex (E).

To prepare the way for the proper object of this paper - the rapprochement between tree and flexion algebra - we must first recall some basic notions about the latter. (The reader already familiar with the subject may skip this section).

[^10]We shall first ($\S 4.1$ through $\S 4.4$) present in rough terms the general setting, that is to say the polyalgebra $B I M U$ of general bimoulds. We shall then ($\S 4.5$ through $\S 4.7$) zoom in on the monogenous polyalgebra Flex (\mathfrak{E}) generated by a so-called flexion unit \mathfrak{E}. Not only is Flex (\mathfrak{E}) the core part of BIMU; it is also the part that most naturally lends itself to an interpretation in terms of trees. Hence its relevance to the present investigation.

4.1 Flexion symbols. The space $B I M U$ of bimoulds.

For now, let $B I M U$ be simply the space of bimoulds, i.e. of moulds M^{\bullet} indexed by double sequences $\boldsymbol{w}=\binom{\boldsymbol{u}}{\boldsymbol{v}}=\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}$, with the u_{i} 's and v_{i} 's ranging through some ring, generally \mathbb{Q}, \mathbb{R} or \mathbb{C}. Sequences (simple or double) are systematically noted in boldface, with their indices (when needed) in upper position. Their elements w_{i}, u_{i}, v_{i} are noted in ordinary print, with indices in lower position.

Elementary flexions.

In addition to ordinary, non-commutative mould multiplication $m u($ or \times):

$$
\begin{equation*}
A^{\bullet}=B^{\bullet} \times C^{\bullet}=\operatorname{mu}\left(B^{\bullet}, C^{\bullet}\right) \quad \Longleftrightarrow \quad A^{\boldsymbol{w}}=\sum_{\boldsymbol{w}^{1} \cdot \boldsymbol{w}^{2}=\boldsymbol{w}}^{r\left(\boldsymbol{w}^{1}\right), r\left(\boldsymbol{w}^{2}\right) \geqslant 0} B^{\boldsymbol{w}^{1}} C^{\boldsymbol{w}^{2}} \tag{106}
\end{equation*}
$$

and its inverse invmu:

$$
\begin{equation*}
(\text { invmu. } A)^{\boldsymbol{w}}=\sum_{1 \leqslant s \leqslant r(\boldsymbol{w})}(-1)^{s} \sum_{\boldsymbol{w}^{1} \ldots \boldsymbol{w}^{s}=\boldsymbol{w}} A^{\boldsymbol{w}^{1}} \ldots A^{\boldsymbol{w}^{s}} \quad\left(\boldsymbol{w}^{i} \neq \varnothing\right) \tag{107}
\end{equation*}
$$

the bimoulds A^{\bullet} in $B I M U=\oplus_{0 \leqslant r} B I M U_{r}{ }^{16}$ can be subjected to a host of specific operations, all constructed from four elementary flexions $\lfloor\rceil,,\lceil$,$\rfloor that$ are always defined relative to a given factorisation of the total sequence \boldsymbol{w}. The way the flexions act is apparent from the following examples:

$$
\begin{array}{llll}
\boldsymbol{w}=\boldsymbol{a} . \boldsymbol{b} & \boldsymbol{a}=\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}} & \boldsymbol{b}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}} \\
\Longrightarrow & \boldsymbol{a}\rfloor=\binom{u_{1}, u_{2}, u_{3}}{v_{1: 4}, v_{2: 4}, v_{3: 4}} & \left\lceil\boldsymbol{b}=\binom{u_{1234}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}}\right. & \\
\boldsymbol{w}=\boldsymbol{b} \cdot \boldsymbol{c} & \boldsymbol{b}=\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}} & \boldsymbol{c}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}} \\
\Longrightarrow & \boldsymbol{b}\rceil=\binom{u_{1}, u_{2}, u_{3456}}{v_{1}, v_{2}, v_{3}} & \left\lfloor\boldsymbol{c}=\left(\begin{array}{c}
u_{4}, u_{5}, u_{6} \\
v_{4}, 3 \\
v_{5}, 3, v_{6: 3}
\end{array}\right)\right. & \\
\boldsymbol{w}=\boldsymbol{a} . \boldsymbol{b} \cdot \boldsymbol{c} & \boldsymbol{a}=\binom{u_{1}, u_{2}, u_{3}}{v_{1}, v_{2}, v_{3}} & \boldsymbol{b}=\binom{u_{4}, u_{5}, u_{6}}{v_{4}, v_{5}, v_{6}} & \boldsymbol{c}=\binom{u_{7}, u_{8}, u_{9}}{v_{7}, v_{8}, v_{9}} \\
\Longrightarrow & \boldsymbol{a}\rfloor=\binom{u_{1}, u_{2}, u_{3}}{v_{1: 4}, v_{2: 4}, v_{3: 4}} & \lceil\boldsymbol{b}\rceil=\binom{u_{1234}, u_{5}, u_{6789}}{v_{4}, v_{5}, v_{6}} & \left\lfloor\boldsymbol{c}=\binom{u_{7}, u_{8}, u_{9}}{v_{7: 6}, v_{8: 6}, v_{9: 6}}\right.
\end{array}
$$

with the usual short-hand: $u_{i, \ldots, j}:=u_{i}+\ldots+u_{j}$ and $v_{i: j}:=v_{i}-v_{j}$. Here and throughout the sequel, we use boldface (with upper indexation) to denote sequences $\left(\boldsymbol{w}, \boldsymbol{w}^{i}, \boldsymbol{w}^{\boldsymbol{j}}\right.$ etc), and ordinary characters (with lower indexation) to denote single sequence elements (w_{i}, w_{j} etc), or sometimes sequences of length

[^11]$r(\boldsymbol{w})=1$. Of course, the 'product' $\boldsymbol{w}^{\mathbf{1}} \cdot \boldsymbol{w}^{\mathbf{2}}$ denotes the concatenation of the two factor sequences.

Short and long indexations on bimoulds.

For bimoulds $M^{\bullet} \in B I M U_{r}$ it is sometimes convenient to switch from the usual short indexation (with r indices w_{i} 's) to a more homogeneous long indexation (with a redundant initial w_{0} which gets bracketted for distinctiveness). The correspondence goes like this:

$$
M^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}} \cong M^{\left.\left(\begin{array}{c}
{\left[u_{0}^{*}\right], u_{1}^{*}, \ldots, u_{0}^{*}} \tag{108}\\
{\left[v_{0}^{*}\right]}
\end{array}\right], v_{1}^{*}, \ldots, v_{r}^{*}\right)}
$$

with the dual conditions on upper and lower indices:

$$
\begin{array}{llll}
u_{0}^{*}=-u_{1 \ldots r}:=-\left(u_{1}+\ldots+u_{r}\right) & , \quad u_{i}^{*} & =u_{i} & \forall i \geqslant 1 \\
v_{0}^{*} \text { arbitrary } & , & v_{i}^{*}-v_{0}^{*}=v_{i} & \forall i \geqslant 1
\end{array}
$$

and of course $\sum_{1 \leqslant i \leqslant r} u_{i} v_{i} \equiv \sum_{0 \leqslant i \leqslant r} u_{i}^{*} v_{i}^{*}$.
Unary operations.
The following linear transformations on BIMU are of constant use: ${ }^{17}$

$$
\begin{align*}
& B^{\bullet}=\operatorname{minu} . A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=-A^{w_{1}, \ldots, w_{r}} \tag{109}\\
& B^{\bullet}=\text { pari. } A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=(-1)^{r} A^{w_{1}, \ldots, w_{r}} \tag{110}\\
& B^{\bullet}=\operatorname{anti} . A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=A^{w_{r}, \ldots, w_{1}} \tag{111}\\
& B^{\bullet}=\operatorname{mantar} . A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=(-1)^{r-1} A^{w_{r}, \ldots, w_{1}} \tag{112}\\
& B^{\bullet}=\text { neg. } A^{\bullet} \quad \Rightarrow \quad B^{w_{1}, \ldots, w_{r}}=A^{-w_{1}, \ldots,-w_{r}} \tag{113}
\end{align*}
$$

$$
\begin{align*}
& B^{\bullet}=\text { pus. } A^{\bullet} \quad \Rightarrow \quad B^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=A^{\binom{u_{r}, u_{1}, u_{2}, \ldots, u_{r-1}}{v_{r}, v_{1}, v_{2}, \ldots ., v_{r-1}}} \tag{115}\\
& B^{\bullet}=\text { push. } A^{\bullet} \quad \Rightarrow \quad B^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=A^{\left(\begin{array}{c}
\left(\begin{array}{c}
u_{1} \ldots . . r
\end{array}, u_{1}, u_{2}, \ldots, u_{r-1}\right. \\
-v_{r}
\end{array}, v_{1: r}, v_{2: r}, \ldots, v_{r-1: r}\right.} \text {, }
\end{align*}
$$

All are involutions, save for pus and push, whose restrictions to each $B I M U_{r}$ reduce to circular permutations of order r resp. $r+1:^{18}$

$$
\begin{align*}
\text { push } & =\text { neg.anti.swap.anti.swap } \tag{117}\\
\operatorname{leng}_{r} & =\text { push }^{r+1} \cdot \text { leng }_{r}=\text { pus }^{r} \cdot \text { leng }_{r} \tag{118}
\end{align*}
$$

with leng $_{r}$ standing for the natural projection of BIMU onto $B I M U_{r}$.

[^12]
4.2 Flexion operations. BIMU as polyalgebra.

Inflected derivations and automorphisms of BIMU.
Let $B I M U_{*}$ resp. $B I M U^{*}$ denote the subset of all bimoulds M^{\bullet} such that $M^{\varnothing}=0$ resp. $M^{\varnothing}=1$. To each pair $\mathcal{A}=\left(\mathcal{A}_{L}^{\bullet}, \mathcal{A}_{R}^{\bullet}\right) \in B I M U_{*} \times B I M U_{*}$ resp. $B I M U^{*} \times B I M U^{*}$ we attach two remarkable operators:

$$
\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \in \operatorname{Der}(\operatorname{BIMU}) \quad \text { resp. } \quad \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \in \operatorname{Aut}(\mathrm{BIMU})
$$

whose action on BIMU is given by: ${ }^{19}$

$$
\begin{align*}
& N^{\bullet}=\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{a[c} \mathcal{A}_{L}^{b]}+\sum^{2} M^{a] c} \mathcal{A}_{R}^{[b} \tag{119}\\
& N^{\bullet}=\operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{3} M^{\left[b^{1}\right]} \ldots\left[b^{s}\right\rceil \mathcal{A}_{L}^{\left.a^{1}\right\rfloor} \ldots \mathcal{A}_{L}^{\left.a^{s}\right\rfloor} \mathcal{A}_{R}^{\left\lfloor c^{1}\right.} \ldots \mathcal{A}_{R}^{\left\lfloor c^{s}\right.} \tag{120}
\end{align*}
$$

and verifies the identities:

$$
\begin{align*}
\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot \operatorname{mu}\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right) & \equiv \operatorname{mu}\left(\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{1}^{\bullet}, M_{2}^{\bullet}\right)+\operatorname{mu}\left(M_{1}^{\bullet}, \operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{2}^{\bullet}\right)(\\
\operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot \operatorname{mu}\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right) & \equiv \operatorname{mu}\left(g \operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{1}^{\bullet}, \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right) \cdot M_{2}^{\bullet}\right) \tag{122}
\end{align*}
$$

The BIMU-derivations axit are stable under the Lie bracket for operators. More precisely, the identity holds:

$$
\begin{equation*}
\left[\operatorname{axit}\left(\mathcal{B}^{\bullet}\right), \operatorname{axit}\left(\mathcal{A}^{\bullet}\right)\right]=\operatorname{axit}\left(C^{\bullet}\right) \quad \text { with } \quad \mathcal{C}^{\bullet}=\operatorname{axi}\left(\mathcal{A}^{\bullet}, \mathcal{B}^{\bullet}\right) \tag{123}
\end{equation*}
$$

relative to a Lie law $a x i$ on $B I M U_{*} \times B I M U_{*}$ given by:

$$
\begin{align*}
\mathcal{C}_{L}^{\bullet} & :=\operatorname{axit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{L}^{\bullet}-\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot \mathcal{B}_{L}^{\bullet}+\operatorname{lu}\left(\mathcal{A}_{L}^{\bullet}, \mathcal{B}_{L}^{\bullet}\right) \tag{124}\\
\mathcal{C}_{R}^{\bullet} & :=\operatorname{axit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{R}^{\bullet}-\operatorname{axit}\left(\mathcal{A}^{\bullet}\right) \cdot \mathcal{B}_{R}^{\bullet}-\operatorname{lu}\left(\mathcal{A}_{R}^{\bullet}, \mathcal{B}_{R}^{\bullet}\right) \tag{125}
\end{align*}
$$

Here, lu denotes the standard (non-inflected) Lie law on BIMU:

$$
\begin{equation*}
\operatorname{lu}\left(A^{\bullet}, B_{\bullet}^{\bullet}\right):=\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right)-\operatorname{mu}\left(B^{\bullet}, A^{\bullet}\right) \tag{126}
\end{equation*}
$$

Let $A X I$ denote the Lie algebra consisting of all pairs $\mathcal{A}^{\bullet} \in B I M U_{*} \times B I M U_{*}$ under this law axi.

Likewise, the BIMU-automorphisms gaxit are stable under operator composition. More precisely:

$$
\begin{equation*}
\operatorname{gaxit}\left(\mathcal{B}^{\bullet}\right) \cdot \operatorname{gaxit}\left(\mathcal{A}^{\bullet}\right)=\operatorname{gaxit}\left(\mathcal{C}^{\bullet}\right) \text { with } \quad \mathcal{C}^{\bullet}=\operatorname{gaxi}\left(\mathcal{A}^{\bullet}, \mathcal{B}^{\bullet}\right) \tag{127}
\end{equation*}
$$

relative to a law gaxi on $B I M U^{*} \times B I M U^{*}$ given by:

$$
\begin{align*}
\mathcal{C}_{L}^{\bullet} & :=\operatorname{mu}\left(\operatorname{gaxit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{L}^{\bullet}, \mathcal{B}_{L}^{\bullet}\right) \tag{128}\\
\mathcal{C}_{R}^{\bullet} & :=\operatorname{mu}\left(\mathcal{B}_{R}^{\bullet}, \operatorname{gaxit}\left(\mathcal{B}^{\bullet}\right) \cdot \mathcal{A}_{R}^{+}\right) \tag{129}
\end{align*}
$$

[^13]Let $G A X I$ denote the Lie group consisting of all pairs $\mathcal{A}^{\bullet} \in B I M U^{*} \times B I M U^{*}$ under this law gaxi. This group GAXI clearly admits $A X I$ as its Lie algebra.
The mixed operations amnit $=$ anmit:
For $\mathcal{A}^{\bullet}:=\left(A^{\bullet}, 0^{\bullet}\right)$ and $\mathcal{B}^{\bullet}:=\left(0^{\bullet}, B^{\bullet}\right)$ the operators $\operatorname{axit}\left(\mathcal{A}^{\bullet}\right)$ and $\operatorname{axit}\left(\mathcal{B}^{\bullet}\right)$ reduce to $\operatorname{amit}\left(A^{\bullet}\right)$ and $\operatorname{anit}\left(B^{\bullet}\right)$ respectively (see (137) and (138) infra) and the identity (462) becomes:

$$
\begin{equation*}
\operatorname{amnit}\left(A^{\bullet}, B^{\bullet}\right) \equiv \operatorname{anmit}\left(A^{\bullet}, B^{\bullet}\right) \quad\left(\forall A^{\bullet}, B^{\bullet} \in \mathrm{BIMU}_{*}\right) \tag{130}
\end{equation*}
$$

with

$$
\begin{align*}
\operatorname{amnit}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{amit}\left(A^{\bullet}\right) \cdot \operatorname{anit}\left(B^{\bullet}\right)-\operatorname{anit}\left(\operatorname{amit}\left(A^{\bullet}\right) \cdot B^{\bullet}\right) \tag{131}\\
\operatorname{anmit}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{anit}\left(B^{\bullet}\right) \cdot \operatorname{amit}\left(A^{\bullet}\right)-\operatorname{amit}\left(\operatorname{anit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right) \tag{132}
\end{align*}
$$

When one of the two arguments $\left(A^{\bullet}, B^{\bullet}\right)$ vanishes, the definitions reduce to:

$$
\begin{array}{r}
\operatorname{amnit}\left(A^{\bullet}, 0^{\bullet}\right)=\operatorname{anmit}\left(A^{\bullet}, 0^{\bullet}\right):=\operatorname{amit}\left(A^{\bullet}\right) \\
\operatorname{amnit}\left(0^{\bullet}, B^{\bullet}\right)=\operatorname{anmit}\left(0^{\bullet}, B^{\bullet}\right)=\operatorname{anit}\left(B^{\bullet}\right) \tag{134}
\end{array}
$$

Moreover, when amnit operates on a one-component bimould $M^{\bullet} \in B I M U_{1}$ (such as the flexion units \mathfrak{E}^{\bullet}, see $\S 3.1$ and $\S 3.3$ infra), its action drastically simplifies:
$N^{\bullet}:=\operatorname{amnit}\left(A^{\bullet}, B^{\bullet}\right) \cdot M^{\bullet} \equiv \operatorname{anmit}\left(A^{\bullet}, B^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}:=\sum_{\boldsymbol{a} w_{i} \boldsymbol{b}=\boldsymbol{w}} A^{\boldsymbol{a}\rfloor} M^{\left\lceil w_{i}\right]} B^{[\boldsymbol{b}}$

Unary substructures.

We have two obvious subalgebras//subgroups of $A X I / / G A X I$, answering to the conditions:

$$
\begin{array}{llll}
\mathrm{AMI} \subset \mathrm{AXI}: & \mathcal{A}_{R}^{\bullet}=0^{\bullet} & , & \mathrm{GAMI} \subset \mathrm{GAXI}: \\
\mathrm{ANI} \subset \mathrm{AXI}: & \mathcal{A}_{R}^{\bullet}=1^{\bullet}=0^{\bullet} & , & \mathrm{GANI} \subset \mathrm{GAXI}:
\end{array} \mathcal{A}_{L}^{\bullet}=1^{\bullet} .
$$

but we are more interested in the mixed unary substructures, consisting of elements of the form:

$$
\begin{equation*}
\mathcal{A}^{\bullet}=\left(\mathcal{A}_{L}^{\bullet}, \mathcal{A}_{R}^{\bullet}\right) \quad \text { with } \quad \mathcal{A}_{R}^{\bullet} \equiv \mathrm{h}\left(\mathcal{A}_{L}^{\bullet}\right) \quad \text { and } \mathrm{h} \text { a fixed involution } \tag{136}
\end{equation*}
$$

with everything expressible in terms of the left element $\mathcal{A}_{L}^{\bullet}$ of the pair \mathcal{A}^{\bullet}. There exist, up to isomorphism, exactly seven such mixed unary substructures:

algebra	h	swap	algebra	h
ARI	minu	\leftrightarrow	IRA	minu.push
ALI	anti.pari	\leftrightarrow	ILA	anti.pari.neg
ALA	anti.pari.neg ${ }_{u}$	\leftrightarrow	ALA	anti.pari.negu
ILI	anti.pari.negv	\leftrightarrow	ILI	anti.pari.negv
AWI	anti.neg	\leftrightarrow	IWA	anti
AWA	anti.negu	\leftrightarrow	AWA	anti.negu
IWI	anti.negv	\leftrightarrow	IWI	anti.negv

group	h	swap	group	h
GARI	invmu	\leftrightarrow	GIRA	push.swap.invmu.swap
GALI	anti.pari	\leftrightarrow	GILA	anti.pari.neg
GALA	anti.pari.neg ${ }_{u}$	\leftrightarrow	GALA	anti.pari.neg ${ }_{u}$
GILI	anti.pari.negv	\leftrightarrow	GILI	anti.pari.negv
GAWI	anti.neg	\leftrightarrow	GIWA	anti
GAWA	anti.negu	\leftrightarrow	GAWA	anti.negu
GIWI	anti.negv	\leftrightarrow	GIWI	anti.negv

Each algebra in the first table (e.g. $A R I$) is of course the Lie algebra of the like-named group (e.g. GARI). Conversely, each Lie group in the second table is essentially determined by its eponymous Lie algebra and the condition of leftlinearity. ${ }^{20}$

Dimorphic substructures.

Among all seven pairs of substructures, only two respect dimorphy, namely $A R I / / G A R I$ and $A L I / / G A L I$. Moreover, when restricted to dimorphic objects, they actually coincide:

$$
\begin{aligned}
\mathrm{ARI}^{\underline{\mathrm{al}} / \underline{\mathrm{al}}} & =\mathrm{ALI}^{\underline{\mathrm{al}} / \mathrm{al}} \quad \text { with } & \underline{\mathrm{al}} / \underline{\mathrm{al}}\} & =\{\text { alternal/alternal and even }\} \\
\mathrm{GARI}^{\underline{\mathrm{as}} / \underline{\mathrm{as}}} & =\mathrm{GALI}^{\underline{\mathrm{as}} / \underline{\mathrm{as}}} & \text { with } & \underline{\text { as }} / \underline{\mathrm{as}}\}
\end{aligned}=\{\text { symmetral/symmetral and even }\}
$$

We shall henceforth work with the pair $A R I / / G A R I$, whose definition involves a simpler involution h (it dispenses with the sequence inversion anti: see above table).

4.3 Flexion polyalgebra.

Basic anti-actions.
The proper way to proceed is to define the anti-actions (on BIMU, with its uninflected product $m u$ and bracket $l u$) first of the lateral pairs $A M I / / G A M I$, $A N I / / G A N I$ and then of the mixed pair $A R I / / G A R I$:

$$
\begin{align*}
& N^{\bullet}=\operatorname{amit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{a[c} A^{b]} \tag{137}\\
& N^{\bullet}=\operatorname{anit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{2} M^{a] c} A^{[b} \tag{138}\\
& N^{\bullet}=\operatorname{arit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow \tag{139}\\
& N^{\boldsymbol{w}}=\sum^{1} M^{a[c} A^{b]}-\sum^{2} M^{a] c} A^{[b}
\end{align*}
$$

with sums \sum^{1} (resp. \sum^{2}) ranging over all sequence factorisations $\boldsymbol{w}=\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}$ such

[^14]that $\boldsymbol{b} \neq \varnothing, \boldsymbol{c} \neq \varnothing$ (resp. $\boldsymbol{a} \neq \varnothing, \boldsymbol{b} \neq \varnothing)$.
\[

$$
\begin{align*}
& N^{\bullet}=\operatorname{gamit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{1} M^{\left\lceil b^{1}\right.} \ldots\left\lceil b^{s} A^{\left.a^{1}\right\rfloor} \ldots A^{\left.a^{s}\right\rfloor}\right. \tag{140}\\
& N^{\bullet}=\operatorname{ganit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{2} M^{\left.\left.b^{1}\right\rceil \ldots b^{s}\right\rceil} A^{\left\lfloor c^{1}\right.} \ldots A^{\left\lfloor c^{s}\right.} \tag{141}\\
& N^{\bullet}=\operatorname{garit}\left(A^{\bullet}\right) \cdot M^{\bullet} \Leftrightarrow N^{\boldsymbol{w}}=\sum^{3} M^{\left\lceil b^{1}\right\rceil \ldots\left\lceil b^{\boldsymbol{s}}\right\rceil} A^{\left.a^{1}\right\rfloor} \ldots A^{\left.a^{s}\right\rfloor} A_{*}^{\left\lfloor c^{1}\right.} \ldots A_{*}^{\left\lfloor c^{s}\right.} \tag{142}
\end{align*}
$$
\]

with $A_{*}^{\bullet}:=\operatorname{invmu}\left(A^{\bullet}\right)$ and with sums $\sum^{1}, \Sigma^{2}, \Sigma^{3}$ ranging respectively over all sequence factorisations of the form:

$$
\begin{array}{llll}
\boldsymbol{w} & =\boldsymbol{a}^{\mathbf{1}} \boldsymbol{b}^{\mathbf{1}} \ldots \boldsymbol{a}^{\boldsymbol{s}} \boldsymbol{b}^{\boldsymbol{s}} & \left(s \geqslant 1 \quad, \quad \text { only } \boldsymbol{a}^{\mathbf{1}} \text { may be } \varnothing\right) \\
\boldsymbol{w} & =\boldsymbol{b}^{\mathbf{1}} \boldsymbol{c}^{\mathbf{1}} \ldots \boldsymbol{b}^{\boldsymbol{s}} \boldsymbol{c}^{\boldsymbol{s}} & \left(s \geqslant 1 \quad, \quad \text { only } \boldsymbol{c}^{\boldsymbol{s}} \text { may be } \varnothing\right) \\
\boldsymbol{w} & =\boldsymbol{a}^{\mathbf{1}} \boldsymbol{b}^{1} \boldsymbol{c}^{\mathbf{1}} \ldots \boldsymbol{a}^{\boldsymbol{s}} \boldsymbol{b}^{\boldsymbol{s}} \boldsymbol{c}^{\boldsymbol{s}} & \left(s \geqslant 1 \quad, \quad \text { with } \boldsymbol{b}^{\boldsymbol{i}} \neq \varnothing \text { and } \boldsymbol{c}^{\boldsymbol{i}} \boldsymbol{a}^{i+1} \neq \varnothing\right)
\end{array}
$$

More precisely, in \sum^{3} two inner neighbour factors $\boldsymbol{c}^{\boldsymbol{i}}$ and $\boldsymbol{a}^{\boldsymbol{i + 1}}$ may vanish separately but not simultaneously, whereas the outer factors $\boldsymbol{a}^{\mathbf{1}}$ and $\boldsymbol{c}^{\boldsymbol{s}}$ may of course vanish separately or even simultaneously.

Lie brackets and group laws.

We can now concisely express the Lie algebra brackets ami, ani, ari and the group products gami, gani, gari :

$$
\begin{array}{r}
\operatorname{ami}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{amit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{amit}\left(A^{\bullet}\right) \cdot B^{\bullet}+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) \\
\operatorname{ani}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{anit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{anit}\left(A^{\bullet}\right) \cdot B^{\bullet}-\mathrm{u}\left(A^{\bullet}, B^{\bullet}\right) \\
\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{arit}\left(A^{\bullet}\right) \cdot B^{\bullet}+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right) \\
\left.\operatorname{gami}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{mu}\left(\operatorname{gamit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right), B_{\bullet}^{\bullet}\right) \\
\left.\operatorname{gani}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{mu}\left(B^{\bullet}, \operatorname{ganit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right)\right) \\
\left.\operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right):=\operatorname{mu}\left(\operatorname{garit}\left(B^{\bullet}\right) \cdot A^{\bullet}\right), B^{\bullet}\right) \tag{148}
\end{array}
$$

Pre-Lie products ('pre-brackets').

Parallel with the three Lie brackets, we have three pre-Lie brackets:

$$
\begin{align*}
\operatorname{preami}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{amit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \tag{149}\\
\operatorname{preani}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{anit}\left(B^{\bullet}\right) \cdot A^{\bullet}-\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \quad(\operatorname{sign}!) \tag{150}\\
\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \tag{151}
\end{align*}
$$

with the usual relations:

$$
\begin{align*}
\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right) & \equiv \operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right)-\operatorname{preari}\left(B^{\bullet}, A^{\bullet}\right) \tag{152}\\
\operatorname{assopreari}\left(A^{\bullet}, B^{\bullet}, C^{\bullet}\right) & \equiv \operatorname{assopreari}\left(A^{\bullet}, C^{\bullet}, B^{\bullet}\right) \tag{153}
\end{align*}
$$

with assopreari denoting the associator ${ }^{21}$ of the pre-bracket preari. The same holds of course for $a m i$ and ani.

[^15]
Exponentiation from $A R I$ to $G A R I$.

Provided we properly define the multiple pre-Lie brackets, i.e. from left to right:

$$
\begin{equation*}
\overrightarrow{\operatorname{preari}}\left(A_{1}^{\bullet}, \ldots, A_{s}^{\bullet}\right)=\operatorname{preari}\left(\left(\operatorname{preari}\left(A_{1}^{\bullet}, \ldots, A_{s-1}^{\bullet}\right), A_{s}^{\bullet}\right)\right. \tag{154}
\end{equation*}
$$

we have a simple expression for the exponential mapping from a Lie algebra to its group. Thus, the exponential expari $: A R I \rightarrow G A R I$ can be expressed as a series of pre-brackets:

$$
\begin{equation*}
\operatorname{expari}\left(A^{\bullet}\right)=1^{\bullet}+\sum_{1 \leqslant n} \frac{1}{n!} \overrightarrow{\operatorname{preari}}(\overbrace{A^{\bullet}, \ldots, A^{\bullet}}^{n \text { times }}) \tag{155}
\end{equation*}
$$

or, what amounts to the same, as a mixed $m u+$ arit-expansion:

$$
\begin{equation*}
\operatorname{expari}\left(A^{\bullet}\right)=1^{\bullet}+\sum_{1 \leqslant r, 1 \leqslant n_{i}} \operatorname{Ex}^{n_{1}, \ldots, n_{r}} \operatorname{mu}\left(A_{n_{1}}^{\bullet}, \ldots, A_{n_{r}}^{\bullet}\right) \tag{156}
\end{equation*}
$$

with $A_{n}^{\bullet}:=\left(\operatorname{arit}\left(A^{\bullet}\right)\right)^{n-1} \cdot A^{\bullet}$ and with the symmetral mould $E x^{\bullet}$:

$$
\begin{equation*}
\operatorname{Ex}^{n_{1}, \ldots, n_{r}}:=\frac{1}{\left(n_{1}-1\right)!} \frac{1}{\left(n_{2}-1\right)!} \cdots \frac{1}{\left(n_{r}-1\right)!} \frac{1}{n_{1 \ldots r} n_{2 \ldots r} \ldots n_{r}} \tag{157}
\end{equation*}
$$

The operation from GARI to $A R I$ that inverses expari shall be denoted as logari. It, too, can be expressed as a series of multiple pre-ari products, but in a much less straightforward manner than (155).

For any alternal mould L^{\bullet} we also have the identities:

$$
\begin{align*}
& \sum_{\sigma \subset \mathfrak{S}(r)} L^{\omega_{\sigma(1)}, \ldots, \omega_{\sigma(r)}} \operatorname{preari}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \\
& \frac{1}{r} \sum_{\sigma \subset \mathfrak{S}(r)} L^{\omega_{\sigma(1)}, \ldots, \omega_{\sigma(r)}} \operatorname{ari}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{158}
\end{align*} \quad\left(\forall A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)
$$

which actually characterise preari.

Adjoint actions.

We shall require the adjoint actions, adgari and adari, of GARI on $G A R I$ and $A R I$ respectively. The definitions are straightforward:

$$
\begin{align*}
\operatorname{adgari}\left(A^{\bullet}\right) & \cdot B^{\bullet}:=\operatorname{gari}\left(A^{\bullet}, B^{\bullet}, \operatorname{invgari} \cdot A^{\bullet}\right) \quad\left(A^{\bullet}, B^{\bullet} \in \mathrm{GARI}\right) \tag{159}\\
\operatorname{adari}\left(A^{\bullet}\right) \cdot B^{\bullet} & :=\operatorname{logari}\left(\operatorname{adgari}\left(A^{\bullet}\right) \cdot \operatorname{expari}\left(B^{\bullet}\right)\right) \tag{160}\\
& :=\operatorname{fragari}\left(\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right), A^{\bullet}\right) \quad\left(A^{\bullet} \in \mathrm{GARI}, B^{\bullet} \in \mathrm{ARI}\right) \tag{161}
\end{align*}
$$

except for definition (161), which results from (160) and (148) and uses the
pre-ari product ${ }^{22}$ defined as in (151) supra and the gari-quotient ${ }^{23}$ defined as in (??) infra.

Definition (161) has over the equivalent definition (160) the advantage of bringing out the B^{\bullet}-linearity of $\operatorname{adari}\left(A^{\bullet}\right) . B^{\bullet}$ and of leading to much simpler calculations. ${ }^{24}$
The centers of $A R I$ and $G A R I$.
The sets Center(ARI) resp. Center(GARI) consist of all bimoulds M^{\bullet} that verify
(i) $M^{\varnothing}=0$ resp. $M^{\varnothing}=1$
(ii) $\left.M^{\left(\begin{array}{c}u_{1}, \ldots, u_{r} \\ 0\end{array}, \ldots, 0\right.} \begin{array}{l}u_{r}\end{array}\right)=m_{r} \in \mathbb{C} \quad \forall u_{i}$
(iii) $\left.M^{\left(\begin{array}{l}u_{1}, \ldots, u_{r} \\ v_{1}\end{array}, \ldots, v_{r}\right.}\right)=0 \quad$ unless $\quad 0=v_{1}=\cdots=v_{r}$

Moreover, in view of (148), gari-multiplication by a central element C^{\bullet} amounts to ordinary post-multiplication by that same C^{\bullet} :

$$
\begin{equation*}
\operatorname{gari}\left(C^{\bullet}, A^{\bullet}\right) \equiv \operatorname{gari}\left(A^{\bullet}, C^{\bullet}\right) \equiv \operatorname{mu}\left(A^{\bullet}, C^{\bullet}\right) \quad\left(C^{\bullet} \in \operatorname{Center}(\mathrm{GARI})\right) \tag{162}
\end{equation*}
$$

4.4 Basic symmetries and symmetry conservations.

- alternality and symmetrality.

Like a mould, a bimould A^{\bullet} is said to be alternal (resp. symmetral) if it verifies

$$
\begin{equation*}
\sum_{\boldsymbol{w} \in \operatorname{sha}\left(\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}\right)} A^{\boldsymbol{w}} \equiv 0 \quad\left(\text { resp } . \equiv A^{\boldsymbol{w}^{\prime}} A^{\boldsymbol{w}^{\prime \prime}}\right) \quad \forall \boldsymbol{w}^{\prime} \neq \varnothing, \forall \boldsymbol{w}^{\prime \prime} \neq \varnothing \tag{163}
\end{equation*}
$$

with \boldsymbol{w} running through the set $\operatorname{sha}\left(\boldsymbol{w}^{\prime}, \boldsymbol{w}^{\prime \prime}\right)$ of all shufflings of \boldsymbol{w}^{\prime} and $\boldsymbol{w}^{\prime \prime}$.

- \{alternal $\} \Longrightarrow\{$ mantar-invariant, pus-neutral $\}$.

Alternality implies mantar-invariance, with mantar $=$ minu.pari.anti defined as in (112).
It also implies pus-neutrality, which means this:

$$
\begin{equation*}
\left(\sum_{1 \leqslant l \leqslant r(\bullet)} \text { pus }^{l}\right) \cdot A^{\bullet} \equiv 0 \quad \text { i.e. } \quad \sum_{\substack{\boldsymbol{w}^{\text {ciric }} \boldsymbol{\sim}}} A^{\boldsymbol{w}^{\prime}} \equiv 0 \quad(\text { if } r(\boldsymbol{w}) \geqslant 2) \tag{164}
\end{equation*}
$$

[^16]
- $\{$ symmetral $\} \Longrightarrow$ \{gantar-invariant, gus-neutral $\}$.

Symmetrality implies likewise gantar-invariance, with

$$
\begin{equation*}
\text { gantar }:=\text { invmu.anti.pari } \tag{165}
\end{equation*}
$$

as well as gus-neutrality, which means $\left(\sum_{1 \leqslant l \leqslant r(\bullet)}\right.$ pus $\left.{ }^{l}\right) \cdot \operatorname{logmu} . A^{\bullet} \equiv 0$ i.e.

$$
\begin{equation*}
\sum_{1 \leqslant k \leqslant r(\boldsymbol{w})}(-1)^{k-1} \sum_{\boldsymbol{w}^{1} \ldots \boldsymbol{w}^{\boldsymbol{k} \text { circc }} \boldsymbol{\sim} \boldsymbol{w}} A^{\boldsymbol{w}^{1}} \ldots A^{\boldsymbol{w}^{\boldsymbol{k}}} \equiv 0 \quad(\text { if } r(\boldsymbol{w}) \geqslant 2) \tag{166}
\end{equation*}
$$

- \{bialternal $\} \stackrel{\text { ess }^{\text {ly }}}{\Longrightarrow}$ \{neg-invariant, push-invariant $\}$.

Bialternality implies not only invariance under neg.push but also separate neginvariance and push-invariance for any $A^{\bullet} \in B I M U_{r}$ but the implication holds only if $r>1$, since on $B I M U_{1}$ we have neg=push. So neg.push=id, meaning that there is no constraint at all on elements of $B I M U_{1}$. But we must nonetheless impose neg-invariance on $B I M U_{1}$ (or what amounts to the same, push-invariance) to ensure the stability of bialternals under the ari-bracket: see $\S 2.7$.

- \{bisymmetral $\} \stackrel{\text { ess }}{\Longrightarrow}$ 1y $\{$ neg-invariant, gush-invariant $\}$.

Bisymmetrality implies not only invariance under neg.gush, with

$$
\begin{equation*}
\text { gush }:=\text { neg.gantar.swap.gantar.swap } \tag{167}
\end{equation*}
$$

but also separate $n e g$-invariance and $g u s h$-invariance, but only if we assume neginvariance for the component of length 1 . If we do not make that assumption, every bisymmetral bimould in GARI splits into two bisymmetral factors: a regular right factor (invariant under neg) and an irregular left factor (invariant under pari.neg)

4.5 Flexion units.

As it happens, the most useful monogenous algebras Flex (\mathfrak{E}) are not those spawned by 'random' generators \mathfrak{E} but on the contrary by very special ones the so-called flexion units.

Exact flexion units. The tripartite relation.

A flexion unit is a bimould $\mathfrak{E}^{\bullet} \in B I M U_{1}$ that is odd in w_{1} and verifies the tripartite relation below. More precisely:

$$
\begin{align*}
\mathfrak{E}^{-w_{1}} \equiv-\mathfrak{E}^{w_{1}}, \quad \mathfrak{E}^{w_{1}} \mathfrak{E}^{w_{2}} & \equiv \mathfrak{E}^{\left.w_{1}\right\rfloor} \mathfrak{E}^{\left[w_{2}\right.}+\mathfrak{E}^{\left.w_{1}\right\rceil} \mathfrak{E}^{w_{2}}
\end{align*} \quad i . e .
$$

In view of the imparity of \mathfrak{E}^{\bullet} the tripartite identity may also be written in more symmetric form:

$$
\mathfrak{E}^{\left({ }_{v_{1: 0}}^{u_{1}}\right)} \mathfrak{E}^{\left(u_{2: 0}\right)}+\mathfrak{E}^{\left(v_{v_{2: 1}}^{u_{2}}\right)} \mathfrak{E}^{\left(u_{001}^{\left(u_{0}\right)}\right)}+\mathfrak{E}^{\left(u_{0: 2} u_{0}\right)} \mathfrak{E}^{\left(u_{1: 2}^{\left(u_{1}\right)}\right)} \equiv 0 \quad \forall u_{i}, \forall v_{i} \text { with } u_{0}+u_{1}+u_{2}=0
$$

Another way of characterising flexion units is via the push-neutrality of their powers $m u^{n}\left(\mathfrak{E}^{\bullet}\right)$. Indeed, if we set:

$$
\begin{equation*}
\operatorname{mu}^{n}\left(\mathfrak{E}^{\bullet}\right)=\operatorname{mu}(\overbrace{\mathfrak{E}^{\bullet}, \ldots, \mathfrak{E}^{\bullet}}^{n \text { times }}) \tag{169}
\end{equation*}
$$

then \mathfrak{E} is a flexion unit iff $m u^{1}\left(\mathfrak{E}^{\bullet}\right)$ and $m u^{2}\left(\mathfrak{E}^{\bullet}\right)$ are push-neutral, in which case it can be shown that all powers $m u^{n}\left(\mathfrak{E}^{\bullet}\right)$ are automatically push-neutral:

$$
\begin{equation*}
\{\mathfrak{E} \text { is a flexion unit }\} \Leftrightarrow\left\{\left(\sum_{0 \leqslant k \leqslant n} \operatorname{push}^{k}\right) \cdot \mathrm{mu}^{n}\left(\mathfrak{E}^{\bullet}\right)=0 \quad, \quad \forall n \in \mathbb{N}^{*}\right\} \tag{170}
\end{equation*}
$$

If two units \mathfrak{E}^{\bullet} and \mathfrak{O}^{\bullet} are constant respectively in v_{1} and u_{1}, then the sum $\mathfrak{E}^{\bullet}+\mathfrak{O}^{\bullet}$ is also a unit.

Lastly, if \mathfrak{E}^{\bullet} is a unit, then for each $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ the relation

$$
\begin{equation*}
\mathfrak{E}_{[\alpha, \beta, \gamma, \delta]}^{\binom{u_{1}}{v_{1}}}:=\delta e^{\gamma u_{1} v_{1}} \mathfrak{E}^{\binom{u_{1} / \alpha}{v_{1} / \beta}} \tag{171}
\end{equation*}
$$

defines a new unit $\mathfrak{E}_{[\alpha, \beta, \gamma, \delta]}^{\bullet}$.

Conjugate units:

If \mathfrak{E}^{\bullet} is a unit, then the relation $\mathfrak{O}^{\binom{u_{1}}{v_{1}}}:=\mathfrak{E}^{\binom{\left(v_{1}\right)}{u_{1}}}$ define another unit \mathfrak{O}^{\bullet} - the so-called conjugate of $\mathfrak{E} \bullet$. Indeed, setting $\left(u_{1}, u_{2}\right):=\left(v_{1}^{\prime}, v_{2}^{\prime}-v_{1}^{\prime}\right),\left(v_{1}, v_{2}\right):=$ ($u_{1}^{\prime}+u_{2}^{\prime}, u_{2}^{\prime}$), then using the imparity of \mathfrak{E}^{\bullet} and re-ordering the terms, we find that (168) becomes:

$$
\mathfrak{O}^{\binom{u_{1}^{\prime}}{v_{1}^{\prime}}} \mathfrak{O}^{\binom{u_{2}^{\prime}}{v_{2}^{\prime}}} \equiv \mathfrak{O}^{\binom{u_{1}^{\prime}}{v_{1: 2}^{\prime}}} \mathfrak{O}^{\binom{u_{1}^{\prime}, 2}{v_{2}^{\prime}}}+\mathfrak{O}^{\binom{u_{12}^{\prime},}{v_{1}^{\prime}}} \mathfrak{O}^{\binom{u_{2}^{\prime}}{v_{2: 1}^{\prime}}} \quad \text { with } \quad \mathfrak{O}^{\binom{u_{1}}{v_{1}}}:=\mathfrak{E}^{\binom{v_{1}}{u_{1}}}
$$

i.e. conserves its form.

Let us now mention the most useful flexion units, some exact and others only approximate. Throughout the sequel, we shall set:

$$
\begin{equation*}
P(t):=\frac{1}{t} \quad, \quad Q(t):=\frac{1}{\tan (t)} \quad, \quad Q_{c}(t):=\frac{c}{\tan (c t)} \tag{172}
\end{equation*}
$$

Polar units:

They consist purely of poles at the origin:

$$
\begin{align*}
\mathrm{Pa}^{w_{1}} & =P\left(u_{1}\right) \tag{173}\\
\mathrm{Pi}^{w_{1}} & =P\left(v_{1}\right) \tag{174}\\
\mathrm{Pai}_{\alpha, \beta}^{w_{1}} & =P\left(\frac{u_{1}}{\alpha}\right)+P\left(\frac{v_{1}}{\beta}\right)=\frac{\alpha}{u_{1}}+\frac{\beta}{v_{1}} \tag{175}
\end{align*}
$$

$P a^{\bullet}, P i^{\bullet}, P a i_{\alpha, \beta}^{\bullet}$ are exact units.

Trigonometric units:

They are 'periodised' variants of the polar units:

$$
\begin{align*}
\mathrm{Qa}_{c}^{w_{1}} & =Q_{c}\left(u_{1}\right)=\frac{c}{\tan \left(c u_{1}\right)} \tag{176}\\
\mathrm{Qi}_{c}^{w_{1}} & =Q_{c}\left(v_{1}\right)=\frac{c}{\tan \left(c v_{1}\right)} \tag{177}\\
\mathrm{Qai}_{c, \alpha, \beta}^{w_{1}} & =Q_{c}\left(\frac{u_{1}}{\alpha}\right)+Q_{c}\left(\frac{v_{1}}{\beta}\right)=\frac{c}{\tan \left(\frac{c u_{1}}{\alpha}\right)}+\frac{c}{\tan \left(\frac{c v_{1}}{\beta}\right)} \tag{178}
\end{align*}
$$

$Q a_{c}^{\bullet}, Q i_{c}^{\bullet}$ are approximate units but $Q a i_{c, \alpha, \beta}^{\bullet}$ is exact.

Elliptic units (after C. Brembilla):

Let $\sigma\left(z ; g_{2}, g_{3}\right)$ be the classical Weierstrass sigma function:

$$
\begin{align*}
\sigma\left(z ; g_{2}, g_{3}\right) & =z-\frac{g_{2}}{2^{4} .3 .5} z^{5}-\frac{g_{3}}{2^{3} .3 .5 .7} z^{7}+\mathcal{O}\left(z^{9}\right) \\
\sigma\left(z ; g_{2}, g_{3}\right) & \equiv-\sigma\left(-z ; g_{2}, g_{3}\right) \equiv t \sigma\left(z t^{-1} ; g_{2} t^{4}, g_{3} t^{6}\right)
\end{align*}
$$

Then for all $g_{2}, g_{3}, \alpha, \beta, \gamma, \delta \in \mathbb{C}(\alpha \beta \neq 0)$, the relation

$$
\begin{equation*}
\mathfrak{E}_{g_{2}, g_{3}}^{\binom{u_{1}}{u_{1}}}:=\frac{\sigma\left(u_{1}+v_{1} ; g_{2}, g_{3}\right)}{\sigma\left(u_{1} ; g_{2}, g_{3}\right) \sigma\left(v_{1} ; g_{2}, g_{3}\right)} \tag{179}
\end{equation*}
$$

defines a two-parameter family of exact flexion units, which in turn, under the standard parameter saturation of (171), give rise to:

$$
\begin{align*}
& \mathfrak{E}_{g_{2}, g_{3}, \alpha, \beta, \gamma, \delta}^{\binom{u_{1}}{v_{1}}}:=\delta e^{\gamma u_{1} v_{1}} \mathfrak{E}_{g_{2}, g_{3}}^{\binom{u_{1} / \alpha}{v_{1}, \beta}} \tag{180}\\
& \mathfrak{E}_{g_{2}, g_{3}, \alpha, \beta, \gamma, \delta}^{\bullet} \equiv \mathfrak{E}_{g_{2} t^{4}, g_{3} t^{6}, \alpha t, \beta t, \gamma, \delta t^{-1}}^{\bullet}
\end{align*}
$$

This six-parameter, five-dimensional complex variety of flexion units contains all previously listed exact units (polar or trigonometric) as limit cases. In fact, it would seem (the matter is still under investigation) that it exhausts all flexion units meromorphic in both u_{1} and v_{1}.

We must now examine further units, exact or approximate, that fail to be meromorphic in one of these variables, or both.

Bitrigonometric units:

$Q a a_{c}^{w_{1}}\left(\right.$ resp. $\left.Q i i_{c}^{w_{1}}\right)$ is defined for $u_{1} \in \mathbb{C}$ and $v_{1} \in \mathbb{Q} / \mathbb{Z}$ (resp. vice versa):

$$
\begin{align*}
& \operatorname{Qaa}_{c}^{\left(u_{1} v_{1}\right)}:=\sum_{n_{1} \in \mathbb{Z}} \frac{c e^{-2 \pi i n_{1} v_{1}}}{\pi n_{1}+c u_{1}}=\sum_{1 \leqslant n_{1} \leqslant \operatorname{den}\left(v_{1}\right)} \frac{c e^{-2 \pi i n_{1} v_{1}}}{\operatorname{den}\left(v_{1}\right)} Q_{c}\left(\frac{\pi n_{1}+c u_{1}}{\operatorname{den}\left(v_{1}\right)}\right) \tag{182}\\
& \operatorname{Qii}_{c}^{\binom{u_{1}}{v_{1}}}:=\sum_{n_{1} \in \mathbb{Z}} \frac{c e^{-2 \pi i n_{1} u_{1}}}{\pi n_{1}+c v_{1}}=\sum_{1 \leqslant n_{1} \leqslant \operatorname{den}\left(u_{1}\right)} \frac{c e^{-2 \pi i n_{1} u_{1}}}{\operatorname{den}\left(u_{1}\right)} Q_{c}\left(\frac{\pi n_{1}+c v_{1}}{\operatorname{den}\left(u_{1}\right)}\right)=\operatorname{Qaa}_{c}^{\binom{v_{1}}{u_{1}}}
\end{align*}
$$

with den denoting the denominator (of a rational number). $Q a a_{c}^{\bullet}$ and $Q i i_{c}^{\bullet}$ are both approximate units (see (??),(??) below).

Flat units:

Let σ be the sign function on \mathbb{R}, i.e. $\sigma\left(\mathbb{R}^{ \pm}\right)= \pm 1$ and $\sigma(0)=0$. Then set:

$$
\begin{equation*}
\mathrm{Sa}^{w_{1}}=\sigma\left(u_{1}\right) \quad, \quad \mathrm{Si}^{w_{1}}=\sigma\left(v_{1}\right) \quad, \quad \mathrm{Sai}^{w_{1}}=\sigma\left(u_{1}\right)+\sigma\left(v_{1}\right) \tag{183}
\end{equation*}
$$

$S a^{\bullet}, S i^{\bullet}$ are approximate units but $S a i^{\bullet}$ is exact. ${ }^{25}$

Mixed units:

$$
\begin{equation*}
\operatorname{Qas}_{c, \pm}^{w_{1}}=\mathrm{Q}_{c}\left(u_{1}\right) \pm \operatorname{ci} \sigma\left(v_{1}\right) \quad, \quad \operatorname{Qis}_{c, \pm}^{w_{1}}=\mathrm{Q}_{c}\left(v_{1}\right) \pm c i \sigma\left(u_{1}\right) \tag{184}
\end{equation*}
$$

$Q a s_{c, \pm}^{\bullet}, Q i s_{c, \pm}^{\bullet}$ are exact units.
"False" units:

$$
\begin{equation*}
\mathrm{Qi}_{c, \pm}^{w_{1}}=Q i_{c}^{w_{1}} \pm c i=c Q\left(c v_{1}\right) \pm c i= \pm 2 c i \frac{e^{ \pm 2 c i v_{1}}}{e^{ \pm 2 c i v_{1}}-1} \tag{185}
\end{equation*}
$$

$Q i_{c,+}^{\bullet}$ and $Q i_{c,-}^{\bullet}$ verify the exact tripartite relation but not the imparity condition. ${ }^{26}$

4.6 The prototypal polyalgebra Flex (\mathfrak{E}^{\bullet}).

All polyalgebras generated by a proper flexion unit \mathbb{E}^{\bullet} are isomorphic, so that we are justified in referring to the polyalgebra $F l e x\left(\mathfrak{E}^{\bullet}\right)$. Within the polyalgebra of general bimoulds, Flex $\left(\mathfrak{E}^{\bullet}\right)$ occupies a neuralgic, but somewhat paradoxical position.

Indeed, it appear to be the most regular part of BIMU, in the sense that it is on $\operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right)$, and on $\operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right)$ alone, that the involution syap, ${ }^{27}$ which simply exchanges the u_{i} 's and the v_{i} 's, commutes with all flexion operations.

Yet at the same time, Flex $\left(\mathfrak{E}^{\bullet}\right)$ can be said to absorb, fixate, and concentrate on itself, all the irregularity inherent in BIMU, especially in the part of $B I M U$ that is specially relevant to multizeta arithmetic and which consists of bimoulds $M^{\boldsymbol{w}}$ polynomial in either \boldsymbol{u} or \boldsymbol{v}. It is also Flex $\left(\mathfrak{E}^{\bullet}\right)$, or rather its polar specialisations Flex $\left(P a^{\bullet}\right)$ and Flex $\left(P i^{\bullet}\right)$: cf next subsection) that contain the bisymmetral bimoulds pal ${ }^{\bullet} /$ pil $^{\bullet}$, whose importance can hardly be overstated, since they hold the key to an understanding of double symmetries, hence of arithmetical dimorphy.

[^17]For our present purpose, however, Flex $\left(\mathfrak{E}^{\bullet}\right)$ has a more immediate distinction: of all substructures of the polyalgebra BIMU, it will turn out to be the one most readily, and most fully, describable in terms of trees.

4.7 Flex $\left(P a^{\bullet}\right)$ and Flex $\left(P i^{\bullet}\right)$: similarities/dissimilarities.

The most important incarnations of Flex $\left(\mathfrak{E}^{\bullet}\right)$, the ones we should constantly keep at the back of our minds, correspond to the polar flexion units $P a^{w_{1}}:=$ $1 / u_{1}$ and $P i^{w_{1}}:=1 / v_{1}$. But although fully isomorphic as far as the flexion structure is concerned, $F l e x\left(P a^{\bullet}\right)$ and $F l e x\left(P i^{\bullet}\right)$ appear profoundly different when it comes to the shape of their elements: as algebraic functions (of the u_{i} 's or v_{i} 's), these will often differ markedly, in terms of degree, complexity, amenability to factorization, etc. We shall see striking illustrations of that fact in $\S 5$, when examining the semi-inflected operations on Flex $(\mathfrak{E} \bullet)$ and their extendibility to $B I M U$, and again in $\S 8$, when describing the standard bases of Flex $\left(\mathfrak{E} \bullet_{\bullet}^{\bullet}\right)$. So, when reasoning on the polyalgebra Flex $\left(\mathfrak{E}^{\bullet}\right)$, we should always harken back to its two polar specialisations, but also be prepared to constantly juggle them.

5 Alternators and counter-alternators.

5.1 Introduction.

Despite its rich array of binary operations, inflected or not, the flexion structure lacked so far a single operation capable of generating Flex ${ }^{a l}\left(\mathfrak{E}^{\bullet}\right)$ from $\mathfrak{E}^{\bullet \bullet}$ alone. It also lacked a pair of operations capable of generating the whole of Flex (\mathfrak{E}^{\bullet}) from $\mathfrak{E} \bullet^{\bullet}$. To remedy this, we introduce in this section a weakly inflected derivation de on Flex $\left(\mathfrak{E}^{\bullet}\right)$ and from it we construct:

- a pre-Lie braket dle of $l u$ that generates $F_{l e x}{ }^{a l}\left(\mathfrak{E}^{\bullet \bullet}\right)$ from \mathfrak{E}^{\bullet}.
- two operations $d m e$ and $m d e$, pre-associative relative to $m u$, which jointly generates the whole of Flex $\left(\mathfrak{E}^{\bullet}\right)$ from \mathfrak{E}^{\bullet}. Either of them, in combination with dle, also generates Flex $\left(\mathfrak{E}^{\bullet}\right)$ from \mathfrak{E}^{\bullet}

Another benefit is this. While the alternality-preserving Lie brackets ari and ali already possessed pre-Lie brackets preari and preali, these did not preserve alternality. With $d e$, however, we can slightly tweak their definitions to obtain alternality-preserving pre-Lie brakets dari and dali.

But the main dividends from the having the new operations dle, dme, mde will come with the introduction of the so-called counter-alternators. These are multivariate, multilinear applications of Flex $\left(\mathfrak{E}^{\bullet}\right)$ into itself that possess a counter-intuitive property: the more symmetrical (i.e. the less alternal) they are as functions of their arguments, the more alternal (i.e. the less symmetrical) they become as bimoulds, i.e. as functions of the sequence \boldsymbol{w}. This vaguesounding property actually lends itself to an exact description, and has two fortunate consequences:

- It leads to a neat decomposition Flex $\left(\mathfrak{E}^{\bullet}\right)=\oplus_{1 \leqslant d \leqslant r}$ Flex $_{r, d}\left(\mathfrak{E}^{\bullet}\right)$ of Flex $_{r}\left(\mathfrak{E}^{\bullet}\right)$ into subspaces consisting of bimoulds of co-alternality degree d, and yields neat formulae for $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$
- It also permits a natural identification of the elements of Flex($\mathfrak{E} \bullet_{\bullet}$) (resp. Flex $\left.{ }^{a l}\left(\mathfrak{E}^{\bullet}\right)\right)$ with ordered (resp. unordered) trees, and, building on that, a far-going merger of flexion and tree algebra, with benefits in both directions.

5.2 Semi-inflected operations on Flex (\mathfrak{E}^{\bullet}).

Any element of $F l e x_{r}(\mathfrak{E})$ can be expressed as a sum

$$
\begin{equation*}
\mathfrak{M}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=\sum_{1 \leqslant i \leqslant r} \mathfrak{E}^{\left(u_{1}+\ldots+u_{r}\right)} \mathfrak{M}_{i}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}} \tag{186}
\end{equation*}
$$

with components $\mathfrak{M}_{i}^{\bullet}$ that are themselves of the form

$$
\mathfrak{M}_{i}^{\binom{u_{1}, \ldots, u_{r}}{v_{1}, \ldots, v_{r}}}=\sum_{k} m_{i, k} \prod_{k=1}^{r-1} \mathfrak{E}^{\left(\begin{array}{c}
u_{i, k}^{\prime}, v_{i, k} \tag{187}\\
v_{i, k}
\end{array}\right.} \text { and }\left\{\begin{array}{l}
m_{i, k} \in \mathbb{C} \\
\sum_{k=1}^{r-1} u_{i, k}^{\prime} v_{i, k}^{\prime}=\sum_{k=1}^{r} u_{k}\left(v_{k}-v_{i}\right)
\end{array}\right.
$$

The components $\mathfrak{M}_{i}^{\bullet}$ are uniquely defined, though their expansions (187) are not. ${ }^{28}$ If we now set $d e . \mathfrak{M}^{\bullet}:=\sum \mathfrak{M}_{i}^{\bullet}$, we see at once that
(i) $d e$ is a linear bijection of Flex $_{r}\left(\mathfrak{E}^{\bullet}\right)$ onto de.Flex $x_{r}\left(\mathfrak{E}^{\bullet}\right)$
(ii) both spaces $m u\left(F l e x\left(\mathfrak{E}^{\bullet}\right)\right.$, de.Flex $\left.\left(\mathfrak{E}^{\bullet}\right)\right)$ and $m u\left(\operatorname{de.Flex}\left(\mathfrak{E}^{\bullet}\right)\right.$, Flex $\left.\left(\mathfrak{E}^{\bullet}\right)\right)$ are subspaces of de.Flex (\mathfrak{E}^{\bullet})
(iii) $d e$ is a derivation relative to the associative product $m u$, hence also to the Lie product $l u$.

We can therefore define on Flex $\left(\mathfrak{E}^{\bullet}\right)$ bilinear applications $d m e$, mde, dle of Flex (E゙・) into itself:

$$
\begin{align*}
\operatorname{dme}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) & :=\operatorname{de}^{-1} \operatorname{mu}\left(\operatorname{de} \mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) \tag{188}\\
\operatorname{mde}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) & :=\operatorname{de}^{-1} \operatorname{mu}\left(\mathfrak{A}^{\bullet}, \operatorname{de} \mathfrak{B}^{\bullet}\right) \tag{189}\\
\operatorname{dle}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) & :=\operatorname{de}^{-1} \operatorname{lu}\left(\operatorname{de} \mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) \tag{190}
\end{align*}
$$

These operations are clearly pre-associative and pre-Lie relative to $m u$ and $l u$, since they relate to the latter according to:

$$
\begin{align*}
\operatorname{mu}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) & \equiv \operatorname{dme}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right)+\operatorname{mde}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) \tag{191}\\
\operatorname{lu}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) & \equiv \operatorname{dle}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right)-\operatorname{dle}\left(\mathfrak{B}^{\bullet}, \mathfrak{A}^{\bullet}\right) \tag{192}
\end{align*}
$$

while verifying the pre-associativity (resp. pre-Lie) identities:

$$
\begin{aligned}
\operatorname{anti} . \operatorname{dme}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) & \equiv \operatorname{mde}\left(\operatorname{anti} . \mathfrak{A}^{\bullet}, \operatorname{anti} . \mathfrak{B}^{\bullet}\right) \\
\operatorname{dme}\left(\operatorname{dme}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right), \mathfrak{C}^{\bullet}\right) & \equiv \operatorname{dme}\left(\mathfrak{A}^{\bullet}, \operatorname{dme}\left(\mathfrak{B}^{\bullet}, \mathfrak{C}^{\bullet}\right)\right)+\operatorname{dme}\left(\mathfrak{A}^{\bullet}, \operatorname{mde}\left(\mathfrak{B}^{\bullet}, \mathfrak{C}^{\bullet}\right)\right) \\
\operatorname{mde}\left(\mathfrak{A}^{\bullet}, \operatorname{mde}\left(\mathfrak{B}^{\bullet}, \mathfrak{C}^{\bullet}\right)\right) & \equiv \operatorname{mde}\left(\operatorname{dme}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right), \mathfrak{C}^{\bullet}\right)+\operatorname{mde}\left(\operatorname{mde}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right), \mathfrak{C}^{\bullet}\right)
\end{aligned}
$$

[^18]$$
\operatorname{dle}\left(\operatorname{dle}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right), \mathfrak{C}^{\bullet}\right)-\operatorname{dle}\left(\mathfrak{A}^{\bullet}, \operatorname{dle}\left(\mathfrak{B}^{\bullet}, \mathfrak{C}^{\bullet}\right)\right) \equiv \operatorname{dle}\left(\operatorname{dle}\left(\mathfrak{A}^{\bullet}, \mathfrak{C}^{\bullet}\right), \mathfrak{B}^{\bullet}\right)-\operatorname{dle}\left(\mathfrak{A}^{\bullet}, \operatorname{dle}\left(\mathfrak{C}^{\bullet}, \mathfrak{B}^{\bullet}\right)\right)
$$

Though skin-deep, the above identities, when iterated and combined with the functional equation (168) of the flexion unit \mathfrak{E}^{\bullet}, produce far-reaching consequences, as we shall soon find out. But before proceeding, let us for clarity spell out the analytical expressions of $d m e, m d e$, dle:

$$
\begin{align*}
& \mathfrak{C}^{\bullet}=\operatorname{dme}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) \Leftrightarrow \mathfrak{C}^{\boldsymbol{w}}=\sum_{i, j}^{\boldsymbol{w}^{\mathbf{1}} \boldsymbol{w}^{\mathbf{2}}=\boldsymbol{w}} \mathfrak{E}^{\left({ }_{1}+\ldots+u_{r}\right)} \mathfrak{E}^{\binom{u_{1}+r_{1}+\ldots+u_{r}}{v_{j}-v_{i}}} \mathfrak{A}_{i}^{\boldsymbol{w}^{\mathbf{1}}} \mathfrak{B}_{j}^{\boldsymbol{w}^{\mathbf{2}}} \tag{193}\\
& \mathfrak{C}^{\bullet}=\operatorname{mde}\left(\mathfrak{A}^{\bullet}, \mathfrak{B}^{\bullet}\right) \Leftrightarrow \mathfrak{C}^{\boldsymbol{w}}=\sum_{i, j}^{\boldsymbol{w}^{\mathbf{1}} \boldsymbol{w}^{\mathbf{2}}=\boldsymbol{w}} \mathfrak{E}^{\left(u_{1}+\ldots+u_{r_{1}}\right.}{\underset{v}{i}}^{u_{j}} \mathfrak{E}^{\left(u_{1}+\ldots+u_{r}\right)} \mathfrak{A}_{i}^{\boldsymbol{w}^{1}} \mathfrak{B}_{j}^{\boldsymbol{w}^{2}} \tag{194}
\end{align*}
$$

Here r, r_{1}, r_{2} denote the lengths of the sequences $\boldsymbol{w}, \boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{\mathbf{2}}$, so that $r=r_{1}+r_{2}$.

5.3 Semi-inflected operations on Flex $\left(P a^{\bullet}\right)$ and Flex $\left(P i^{\bullet}\right)$.

The most important flextion units are $P a^{\bullet}$ and $P i^{\bullet}$, followed by the approximate units $Q a^{\bullet}$ and $Q i^{\bullet}$. But whereas the derivation de reduces on $F l e x\left(P a^{\bullet}\right)$ to an elementary multiplication $d a$

$$
\begin{equation*}
\text { da. } M^{\boldsymbol{w}} \equiv\left(u_{1}+\cdots+u_{r}\right) M^{\boldsymbol{w}} \tag{196}
\end{equation*}
$$

its specialisation $d i$ on $F l e x\left(P i^{\bullet}\right)$ is less elementary. Indeed, although the derivative di. $M^{\bullet}=\sum M_{i}^{\bullet}$ and its components M_{i}^{\bullet} may also be calculated from a general functional formula ${ }^{29}$

$$
\begin{align*}
\text { di. } M^{\boldsymbol{w}} & \equiv \sum_{k=0}^{r-1} \frac{1}{k!} \sigma_{k+1}\left(v_{1}, \ldots, v_{r}\right)\left(\partial_{v_{1}}+\ldots+\partial_{v_{r}}\right)^{k} M^{\boldsymbol{w}} \tag{197}\\
M_{i}{ }^{\boldsymbol{w}} & =v_{i}^{r}\left(\sum_{k=0}^{r-1} \frac{1}{k!} \sigma_{k}\left(v_{1}, \ldots, \widehat{v}_{i}, \ldots, v_{r}\right)\left(\partial_{v_{1}}+\ldots+\partial_{v_{r}}\right)^{k} M^{\boldsymbol{w}}\right) \prod_{1 \leqslant j \leqslant r}^{j \neq i} \frac{1}{v_{i}-v_{j}}
\end{align*}
$$

the difference is not merely one of complexity. It also impacts the extension of $d a, d i$ and their offspring to larger spaces. Thus, while the relation (196) immediately leads to operations $d m a, m d a$ (pre-associative) and dla (pre-Lie) defined on the whole of BIMU

$$
\begin{align*}
\operatorname{dma}\left(A^{\bullet}, B^{\bullet}\right) & :=\mathrm{da}^{-1} \operatorname{mu}\left(\operatorname{da} A^{\bullet}, B^{\bullet}\right) \tag{198}\\
\operatorname{mda}\left(A^{\bullet}, B^{\bullet}\right) & :=\mathrm{da}^{-1} \operatorname{mu}\left(A^{\bullet}, \operatorname{da} B^{\bullet}\right) \tag{199}\\
\operatorname{dla}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{da}^{-1} \operatorname{lu}\left(\operatorname{da} A^{\bullet}, B^{\bullet}\right) \tag{200}
\end{align*}
$$

[^19]the relation (197) makes full sense only on the subspace $B I M U^{v-v}$ of $B I M U$ consisting of bimoulds of the form:
\[

\left.M^{\boldsymbol{w}}=\sum_{1 \leqslant i \leqslant r(\boldsymbol{w})} P\left(v_{i}\right) M_{i}^{\boldsymbol{w}} \quad with \quad M^{\left($$
\begin{array}{l}
u_{1}, \ldots, u_{r} \tag{201}\\
v_{1}-v_{0}
\end{array}
$$, ···, v_{r}-v_{0}\right.}\right) \equiv M^{\binom{u_{1}, ···, u_{r}}{v_{1}, ···, v_{r}}} \forall v_{0}
\]

It leads there to operations $d m i$, $m d i$ (pre-associative) and $d l i$ (pre-Lie):

$$
\begin{align*}
& C^{\bullet}=\operatorname{dmi}\left(A^{\bullet}, B^{\bullet}\right) \Longleftrightarrow C^{\boldsymbol{w}}=\sum_{i, j}^{\boldsymbol{w}^{1} \boldsymbol{w}^{2}=\boldsymbol{w}} P\left(v_{i}\right) P\left(v_{j}-v_{i}\right) A_{i}^{\boldsymbol{w}^{\mathbf{1}}} B_{j}^{\boldsymbol{w}^{\mathbf{2}}} \tag{202}\\
& C^{\bullet}=\operatorname{mdi}\left(A^{\bullet}, B^{\bullet}\right) \Longleftrightarrow C^{\boldsymbol{w}}=\sum_{i, j}^{\boldsymbol{w}^{1} \boldsymbol{w}^{2}=\boldsymbol{w}} P\left(v_{i}-v_{j}\right) P\left(v_{j}\right) A_{i}^{\boldsymbol{w}^{1}} B_{j}^{\boldsymbol{w}^{\mathbf{2}}} \tag{203}\\
& C^{\bullet}=\operatorname{dli}\left(A^{\bullet}, B^{\bullet}\right) \Longleftrightarrow C^{\boldsymbol{w}}=\sum_{i, j}^{\boldsymbol{w}^{1} \boldsymbol{w}^{2}=\boldsymbol{w}}\left\{\begin{array}{l}
+P\left(v_{i}\right) P\left(v_{j}-v_{i}\right) A_{i}^{\boldsymbol{w}^{1}} B_{j}^{\boldsymbol{w}^{2}} \\
-P\left(v_{i}-v_{j}\right) P\left(v_{j}\right) B_{i}^{\boldsymbol{w}^{\mathbf{1}}} A_{j}^{\boldsymbol{w}^{2}}
\end{array}\right. \tag{204}
\end{align*}
$$

A further point deserves emphasizing, regarding the approximate units $Q a^{\bullet}, Q i^{\bullet}$. Although dma, mda, dla or dmi, mdi, dli may be made to act on Flex $\left(Q a^{\bullet}\right)$ or Flex $\left(Q i^{\bullet}\right)$, their action there is clearly not internal, nor can it me made so by tampering with the definitions. ${ }^{30}$ This fact considerably complicates the investigation of the bimoulds tal $\boldsymbol{}^{\boldsymbol{\bullet}} / \mathrm{til}^{\boldsymbol{\bullet}}$ (- the trigonometric bisymmetrals, essentially equivalent to a Drinfeld associator-) in comparison with the simpler bimoulds pal ${ }^{\bullet} /{ }^{\prime} i l^{\bullet}(-$ the polar bisymmetrals, key to understanding flexion dimorphy-)

5.4 Alternality-preserving pre-Lie brackets.

Let us now revert to the general flexion algebra Flex $\left(\mathfrak{E}^{\bullet}\right)$. The pre-Lie brackets preari, preali hithertoo associated with the alternality-preserving Lie brackets ari,ali, themselves fail the preserve alternality.

$$
\begin{align*}
\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) A^{\bullet}+\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \tag{205}\\
\operatorname{preali}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{alit}\left(B^{\bullet}\right) A^{\bullet}+\operatorname{mu}\left(A^{\bullet}, B^{\bullet}\right) \tag{206}
\end{align*}
$$

But the modified pre-Lie brackets dari, dali do preserve alternality:

$$
\begin{align*}
\operatorname{dari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) A^{\bullet}+\operatorname{dle}\left(A^{\bullet}, B^{\bullet}\right) \tag{207}\\
\operatorname{dali}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{alit}\left(B^{\bullet}\right) A^{\bullet}+\operatorname{dle}\left(A^{\bullet}, B^{\bullet}\right) \tag{208}
\end{align*}
$$

They have the further advantage (especially dari) of admitting a simple interpretation in terms of tree operations.

[^20]
5.5 The counter-alternaltors câlt, călt, cālt.

We first require a trinary operation $m d m e$, thus defined:

$$
\begin{align*}
m d m e\left(A^{\bullet}, B^{\bullet}, C^{\bullet}\right) & :=\operatorname{de}^{-1} \cdot \operatorname{mu}\left(A^{\bullet}, \operatorname{de} . B^{\bullet}, C^{\bullet}\right) \tag{209}\\
& \equiv \operatorname{mde}\left(A^{\bullet}, \operatorname{dme}\left(B^{\bullet}, C^{\bullet}\right)\right) \tag{210}\\
& \equiv \operatorname{dme}\left(\operatorname{mde}\left(A^{\bullet}, B^{\bullet}\right), C^{\bullet}\right) \tag{211}
\end{align*}
$$

We can now proceed with the definition of the counter-alternators câlt, călt, $c \bar{a} l t$. As usual with iterated binary operations, the arrows denote the direction of the multibrackets: rightward or leftward.

Definition 5.1 (Counter-alternators.)

$$
\begin{aligned}
& \operatorname{câlt}_{H}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right):=\sum_{0 \leqslant i \leqslant r}(-1)^{r-i} \operatorname{mdme}\left(\operatorname{dme}\left(A_{1}^{\bullet}, . ., A_{i}^{\bullet}\right), H^{\bullet}, \overrightarrow{\operatorname{mde}}\left(A_{i+1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right)(212) \\
& \operatorname{cǎlt}_{H}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right):=\sum_{0 \leqslant i \leqslant r}(-1)^{r-i} \operatorname{mdme}\left(\overrightarrow{\operatorname{mde}}\left(A_{1}^{\bullet}, . ., A_{i}^{\bullet}\right), H^{\bullet}, \operatorname{dme}\left(A_{i+1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right)(213) \\
& \operatorname{cālt}_{H}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right):=\sum_{0 \leqslant i \leqslant r} \frac{(-1)^{r-i} r!}{i!(r-i)!} \operatorname{mdme}\left(\operatorname{mu}\left(A_{1}^{\bullet}, . ., A_{i}^{\bullet}\right), H^{\bullet}, \operatorname{mu}\left(A_{i+1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right)(214)
\end{aligned}
$$

etc. Of course, when the argument of a multibracket is the empty sequence, the result must be taken to be unit mould. Thus $\underset{\operatorname{dme}}{\leftarrow}(\varnothing)=\overrightarrow{\operatorname{mde}}(\varnothing)=1^{\bullet}$ and:

$$
\begin{gather*}
\operatorname{câlt}_{H}\left(A_{1}^{\bullet}\right):=\left\{\begin{array}{l}
+\operatorname{mdme}\left(\operatorname{dme}\left(A_{1}^{\bullet}\right), H^{\bullet}, 1^{\bullet}\right) \\
-\operatorname{mdme}\left(1^{\bullet}, H^{\bullet}, \operatorname{mde}\left(A_{1}^{\bullet}\right)\right)
\end{array}\right. \tag{215}\\
\text { câlt }_{H} \bullet\left(A_{1}^{\bullet}, A_{2}^{\bullet}\right):=\left\{\begin{array}{l}
+\operatorname{mdme}\left(\operatorname{dme}\left(A_{1}^{\bullet}, A_{2}^{\bullet}\right), H^{\bullet}, 1^{\bullet}\right) \\
-\operatorname{mdme}\left(\operatorname{dme}\left(A_{1}^{\bullet}\right), H^{\bullet}, \operatorname{mde}\left(A_{2}^{\bullet}\right)\right) \\
+\operatorname{mdme}\left(1^{\bullet}, H^{\bullet}, \overrightarrow{\operatorname{mde}}\left(A_{1}^{\bullet}, A_{2}^{\bullet}\right)\right)
\end{array}\right. \tag{216}
\end{gather*}
$$

Note that since $\underset{\operatorname{dme}}{\leftarrow}\left(A_{1}^{\bullet}\right)=\overrightarrow{\operatorname{mde}}\left(A_{1}^{\bullet}\right)=A_{1}^{\bullet}$, for $r=1$ the three counteralternators $c \hat{a} l t_{H} \bullet\left(A_{1}^{\bullet}\right), c a ̆ l t_{H} \bullet\left(A_{1}^{\bullet}\right), c \bar{a} l t_{H} \bullet\left(A_{1}^{\bullet}\right)$ all reduce to $-d l e\left(H^{\bullet}, A_{1}^{\bullet}\right)$. But as soon as $r \geqslant 2$ they cease to be expressible in terms of the sole pre-Lie product dle and requires $d m e$ and $m d e$.

It is also worth noting that there is complete rigidity in the definition of the counter-alternators. In particular no formula involving dme, mde instead of dme, mde would yield interesting results.

Remark: The counter-alternators are also capable of an inductive construction
by depth r. Thus for $c \hat{a} l t$ we have:

$$
\begin{align*}
\text { câlt }_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right) & :=\left\{\begin{array}{l}
-\operatorname{dle}\left(H^{\bullet}, \underset{\operatorname{dine}}{\leftarrow}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right) \\
\left.-\sum_{1 \leqslant j<r} \operatorname{dme}\left(\operatorname{câlt}_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{j}^{\bullet}\right), A_{j+1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right)
\end{array}\right. \tag{217}\\
& \equiv\left\{\begin{array}{l}
(-1)^{r} \operatorname{dle}\left(H^{\bullet}, \overrightarrow{\operatorname{mde}}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right) \\
\left.-\sum_{1 \leqslant j<r}(-1)^{j} \overrightarrow{\operatorname{mde}}\left(A_{1}^{\bullet}, . ., A_{j}^{\bullet}\right), \operatorname{câlt}_{H} \cdot\left(A_{j+1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right)
\end{array}\right. \tag{218}
\end{align*}
$$

5.6 The symmetrical alternaltors sîlt, sǎlt, sālt.

The symmetrical alternators can be defined directly, by full symmetrization of the arguments in the counter-alternators:
Definition 5.2 (Alternators.)

$$
\begin{align*}
& \operatorname{sâlt}_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{\sigma \in \mathfrak{S}_{r}} \operatorname{câlt}_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, . ., A_{\sigma(r)}^{\bullet}\right) \tag{219}\\
& \operatorname{sǎlt}_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{\sigma \in \mathfrak{S}_{r}} \operatorname{cǎlt}_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, . ., A_{\sigma(r)}^{\bullet}\right) \tag{220}\\
& \operatorname{sālt}_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{\sigma \in \mathfrak{S}_{r}} \operatorname{cālt}_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, . ., A_{\sigma(r)}^{\bullet}\right) \tag{221}
\end{align*}
$$

Two of them, sâlt and sālt, also admit an inductive construction:

$$
\begin{align*}
& \operatorname{sâlt}_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\left\{\begin{array}{l}
-\operatorname{dle}\left(\operatorname{sâlt}_{H} \bullet\left(A_{1}^{\bullet}, . ., A_{r-1}^{\bullet}\right), A_{r}^{\bullet}\right) \\
+\sum_{1 \leqslant j<r} \operatorname{salt}_{H} \cdot\left(A_{1}^{\bullet}, . ., \hat{A}_{j}^{\bullet}, . ., A_{r-1}^{\bullet}, \operatorname{dle}\left(A_{j}^{\bullet}, A_{r}^{\bullet}\right)\right)
\end{array}\right. \tag{222}\\
& \operatorname{sā}^{\operatorname{alt}_{H}}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=-\operatorname{dle}\left(\operatorname{sālt}_{H} \bullet\left(A_{1}^{\bullet}, . ., \widehat{A}_{j}^{\bullet}, . ., A_{r}^{\bullet}\right), A_{j}^{\bullet}\right) \tag{223}
\end{align*}
$$

Remarkably, no such induction exists for sălt.
The symmetrical alternator purely in terms of dle:
To state the result, we once again require the specific combinations of leftward and rightward multiple pre-Lie brackets already encountered in the 'optimal formulae' of $\S 2.2$, but this time with distinct arguments A_{i}^{\bullet}. So we set:

$$
\begin{align*}
\mathrm{le}_{r_{1}, \ldots, r_{s}}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right):= & \overrightarrow{\operatorname{dle}}\left(\overleftarrow{\operatorname{dle}}\left(\boldsymbol{A}^{1}\right), \ldots, \overleftarrow{\operatorname{dle}}\left(\boldsymbol{A}^{s}\right)\right) \tag{224}\\
\text { with }: & \left\{\begin{array}{l}
\boldsymbol{A}=\boldsymbol{A}^{1} \ldots \boldsymbol{A}^{s}=\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) \\
\operatorname{length}\left(\boldsymbol{A}^{i}\right)=r_{i} \\
r_{1}+\ldots+r_{s}=r
\end{array}\right.
\end{align*}
$$

We alse require, to express the coefficients of our expansions, two symmetral moulds $s \hat{a}^{\bullet}$ and $s \check{a}^{\bullet}$:

$$
\begin{align*}
& \mathrm{sa}^{s_{1}, \ldots, s_{r}}=(-1)^{r} \prod_{1 \leqslant i \leqslant r} \frac{1}{s_{1}+\ldots+s_{i}} \tag{225}\\
& \mathrm{sa}^{s_{1}, \ldots, s_{r}}=(-1)^{s_{1}+\ldots+s_{r}} \prod_{1 \leqslant i \leqslant r} \frac{1}{s_{i}+\ldots+s_{r}} \tag{226}
\end{align*}
$$

Proposition 5.1 (dle-expansions of the alternators.)

$$
\begin{align*}
& \operatorname{sâlt}_{A_{0}^{\bullet}}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{\sigma \in \mathfrak{S}(r)} \sum_{1 \leqslant s \leqslant r}^{\sum r_{i}=r} \operatorname{san}^{r_{1}, \ldots, r_{s}} \operatorname{le}_{1+r_{1}, \ldots, r_{s}}\left(A_{0}^{\bullet}, A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{227}\\
& \text { sǎlt }_{A_{0}^{\bullet}}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{\sigma \in \mathfrak{S}(r)} \sum_{1 \leqslant s \leqslant r}^{\sum r_{i}=r} \operatorname{sǎ}^{r_{1}, \ldots, r_{s}} \operatorname{le}_{1+r_{1}, \ldots, r_{s}}\left(A_{0}^{\bullet}, A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{228}\\
& \operatorname{sālt}_{A_{0}}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{\sigma \in \mathfrak{S}(r)} \sum_{1 \leqslant s \leqslant r}^{\sum r_{i}=r}(-1)^{r} \overrightarrow{\operatorname{le}}\left(A_{0}^{\bullet}, A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{229}
\end{align*}
$$

5.7 Main properties of the alternators:

Recall that a mould or bimould A^{\bullet} is said to have alternality codegree δ if it meets either of the two equivalent conditions:

$$
\begin{array}{rll}
\sum_{\boldsymbol{w} \in \operatorname{sha}\left(\boldsymbol{w}^{1}, \ldots, \boldsymbol{w}^{\delta+1}\right)} A^{\boldsymbol{w}} & \equiv 0 & \left(\forall \boldsymbol{w}^{\mathbf{1}}, \ldots, \boldsymbol{w}^{\delta+\mathbf{1}}\right) \\
\operatorname{deg}\left(\sum_{\sigma \in \mathfrak{G}_{r}} A^{w_{\sigma(1)}, \ldots, w_{\sigma(r)}} D_{1} \ldots D_{r}\right) & \equiv \delta & \left(\forall D_{1}, \ldots, D_{r}\right) \tag{231}
\end{array}
$$

Here, \boldsymbol{w} runs through all shuffle products of $\delta+1$ non-empty sequences $\boldsymbol{w}^{\boldsymbol{j}}$, and the D_{j} denote independent abstract derivations.

Proposition 5.2 (Properties of the strict counter-alternators câlt, călt) Let here calt, salt stand for either câlt, sâlt or cǎlt, sǎlt, and consider a superposition $B^{w_{1}, \ldots, w_{d}}$ of counter-alternators involving the same arguments $A_{1}^{\bullet}, . ., A_{r}$ in different arrangements:

$$
B^{\bullet}:=\sum_{\sigma \in \mathfrak{S}_{r}} c_{\sigma} \operatorname{calt}_{H} \bullet\left(A_{\sigma(1)}, \ldots, A_{\sigma(r)}\right) \text { with }\left\{\begin{array}{l}
c_{\sigma} \in \mathbb{C} \tag{232}\\
\operatorname{depth}\left(H^{\bullet}\right)=d_{0} \\
\operatorname{depth}\left(A_{i}^{\bullet}\right)=d_{i} \\
d=d_{0}+d_{1}+\ldots+d_{r}
\end{array}\right.
$$

(i) The less alternal $B^{w_{1}, \ldots, w_{d}}$ is as a function of $\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$, the more alternal it is as a function of $\left(w_{1}, \ldots, w_{d}\right)$ - which of course is why calt is called a counteralternator.
(ii) More precisely, let the bimoulds H^{\bullet} and A_{i}^{\bullet} have alternality co-degrees δ_{0} and δ_{i} (as functions of their indices \boldsymbol{w}) and let B^{\bullet} have alternality co-degree δ_{*} as a function of its bimould arguments $\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$, then that same B^{\bullet}, as a function of its indices $\boldsymbol{w}=\left(w_{1}, \ldots, w_{d}\right)$, has alternality co-degree

$$
\begin{equation*}
\delta=\delta_{0}+\delta_{1}+\ldots+\delta_{r}-\delta_{*} \tag{233}
\end{equation*}
$$

(iii) In particular, if $c_{\sigma} \equiv 1 \forall \sigma$, then $\delta_{*}=r$ and B^{\bullet} reduces to the symmetrical
alternator $\operatorname{salt}_{H} \bullet\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$. As a function of its indices $\boldsymbol{w}=\left(w_{1}, \ldots, w_{d}\right)$ it has therefore co-degree $\delta=\delta_{0}+\delta_{1}+\ldots+\delta_{r}-r$. If moreover, the bimoulds H^{\bullet} and A_{i}^{\bullet} are all alternal, then $\delta_{0}=\delta_{i}=1$ so that $\delta=1$, meaning that B^{\bullet} also is alternal. In that sense, it may be said that salt preserves alternality.

Proposition 5.3 (Properties of the loose counter-alternator $c \bar{a} l t$). The same holds for cālt, but with (233) giving way to a simple inequality

$$
\begin{equation*}
\delta \leqslant \delta_{0}+\delta_{1}+\ldots+\delta_{r}-\delta_{*} \tag{234}
\end{equation*}
$$

except of course when the right-hand side is 1 , in which case δ has to be 1 also. This is exactly what happens when $c_{\sigma} \equiv 1$ and all bimould inputs $H^{\bullet}, A_{i}^{\bullet}$ are alternal. Thus, although cālt may be dismissed as a loose counter-alternator ${ }^{31}$, sālt is very much a strict alternator. ${ }^{32}$

5.8 Alternality projectors:

For a better grasp of the phenomenon of 'counter-alternativity', let us decompose the algebra \mathbb{M} of all moulds into subspaces $\mathbb{M}_{: d}$ consisting of d-alternal bimoulds expressible as fully symmetrized sums of $m u$-products of alternal moulds. Similarly, let us decompose the algebra \mathbb{E} freely generated by abstract degree-1 derivations $e_{1}, e_{2} \ldots$ into subspaces $\mathbb{E}^{; d}$ spanned by degree- d derivations expressible as fully symmetrized products of d degree- 1 derivations (those in turn being expressible as multiple Lie-brackets of the generators $e_{1}, e_{2} \ldots$.

$$
\begin{array}{rll}
\mathbb{M}=\oplus_{1 \leqslant d} \mathbb{M}_{: d} & , & \operatorname{pr}_{: d}: \mathbb{M} \xrightarrow{\text { projection }} \mathbb{M}_{: d} \\
\mathbb{E}=\oplus_{1 \leqslant d} \mathbb{E}^{: d} & , & \mathrm{pr}^{: d}: \mathbb{E} \xrightarrow{\text { projection }} \mathbb{E}^{: d} \tag{236}
\end{array}
$$

Due to (231), the projectors $p r_{: d}$ and $p r^{\text {:d }}$ are mutually transposed operators, and necessarily of the form:

$$
\left.\begin{array}{rlrl}
\operatorname{pr}_{: d}\left(M^{\bullet}\right) & =M_{: d}^{\bullet} & \text { with } & M_{: d}^{w_{1}, \ldots, w_{r}}
\end{array}=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, d}(\sigma) M^{w_{\sigma(1)}, \ldots, w_{\sigma(1)}}, \operatorname{pr}^{: d}\left(e_{\bullet}\right)=e_{\bullet}^{: d} \quad \text { with } \quad\left(e_{1} \ldots e_{r}\right)^{: d}=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, d}\left(\sigma^{-1}\right) e_{\sigma(1)} \ldots e_{\sigma(r)}\right)
$$

The simplest way to calculate the coefficients $h_{r, d}(\sigma)$ is to consider symmetral moulds S^{\bullet} and form their $t^{\text {th }}$ powers (respective to mould mutiplication:

$$
\begin{equation*}
\left(S^{\bullet}\right)^{\times t}:=1^{\bullet}+\sum_{1 \leqslant n} \frac{t(t-1) \ldots(t-n+1)}{n!}\left(S^{\bullet}-1^{\bullet}\right){\left.\stackrel{n}{n \text { times }} \times \cdots \times\left(S^{\bullet}-1^{\bullet}\right)\right) .}_{\times} \tag{239}
\end{equation*}
$$

[^21]We then take advantage of the symmetrality relations to linearize all terms $S^{\boldsymbol{w}^{1}} \ldots S^{\boldsymbol{w}^{n}}$ present on the right-hand side of (239). Next, we collect all terms in front of the powers t^{d} : their sum is garanteed to be d-alternal. This gives us the action of the projector $p r_{: d}$ not just on symmetral moulds, but also, due to the universality and uniqueness of the expansion (239), on all moulds. ${ }^{33}$

We can now re-interpret and sharpen Proposition 5.1 and 5.2.

Proposition 5.4 (Measuring counter-alternality) .

Let calt denote any of the three counter-alternators. Then, for any mould B^{\bullet} of the form

$$
B^{\bullet}:=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, \delta_{*}}(\sigma) \operatorname{calt}_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \quad \text { with } \quad\left\{\begin{array}{l}
H^{\bullet} \in \mathbb{M}_{: \delta_{0}} \tag{240}\\
A_{i}^{\bullet} \in \mathbb{M}_{: \delta_{i}}
\end{array}\right.
$$

the inclusion holds:

$$
\begin{equation*}
B^{\bullet} \in \mathbb{M}_{: \delta} \oplus \mathbb{M}_{: \delta-2} \oplus \mathbb{M}_{: \delta-4} \ldots \quad \text { with } \quad \delta:=\delta_{0}+\delta_{1}+\ldots+\delta_{r}-\delta_{*} \tag{241}
\end{equation*}
$$

The minus sign in front of δ_{*} is precisely the algebraic expression of 'counteralternality'. As for the absence of components $\mathbb{M}_{: \delta-1}, \mathbb{M}_{: \delta-3}$ etc, it simply follows from the fact that all elements M^{\bullet} of $\mathbb{M}_{: d}$ verify anti $M^{\bullet} \equiv(-1)^{d+1} M^{\bullet}{ }^{34}$

Here are two elementary but useful lemmas about the stability properties of d-alternality:

Lemma 5.1 We have the following inclusions:

$$
\begin{aligned}
\operatorname{mu}\left(\mathbb{M}_{: d_{1}}, \mathbb{M}_{: d_{2}}\right) & \subset \oplus_{0 \leqslant \delta} \mathbb{M}_{: d_{1}+d_{2}-\delta} \\
\operatorname{lu}\left(\mathbb{M}_{: d_{1}}, \mathbb{M}_{: d_{2}}\right) & \subset \oplus_{0 \leqslant \delta} \mathbb{M}_{: d_{1}+d_{2}-2 \delta} \\
\operatorname{dme}\left(\text { Flex }: d_{1}(\mathfrak{E}), \text { Flex }_{: d_{2}}(\mathfrak{E})\right. & \subset \oplus_{0 \leqslant \delta} \text { Flex }_{: d_{1}+d_{2}-\delta}(\mathfrak{E}) \\
\operatorname{mde}\left(\text { Flex }: d_{1}(\mathfrak{E}), \text { Flex }_{: d_{2}}(\mathfrak{E})\right. & \subset \oplus_{0 \leqslant \delta} \text { Flex }_{: d_{1}+d_{2}-\delta}(\mathfrak{E}) \\
\operatorname{dle}\left(\text { Flex }_{: d_{1}}(\mathfrak{E}), \text { Flex } d_{2}(\mathfrak{E})\right. & \subset \oplus_{0 \leqslant \delta} \text { Flex }_{: d_{1}+d_{2}-1-\delta}(\mathfrak{E})
\end{aligned}
$$

Lemma 5.2 Let $H^{\boldsymbol{w}}:=h\left(u_{1} v_{1}+\ldots+u_{r} v_{r}\right)$ for some function h. Let $r_{1}+r_{2}=r$ and denote by $H_{r_{1}, r_{2}}^{\boldsymbol{w}}$ the sum of all terms resulting from shuffling the r_{1} first u_{i} 's with the r_{2} last u_{i} 's while leaving the v_{i} 's in place. Next, take $d_{1} \leqslant r_{1}$, $d_{2} \leqslant r_{2}$ and let the projectors $\mathrm{pr}_{: d_{1}}$ and $\mathrm{pr}_{: d_{2}}$ act respectively on the variables $u_{1}, \ldots, u_{r_{1}}$ and $u_{r_{1}+1}, \ldots, u_{r}$ of $H_{r_{1}, r_{2}}^{\boldsymbol{w}}$. Then the result, viewed as a function of the sole v_{i} 's, is in $\mathrm{BIMU}{ }^{: d_{1}+d_{2}}$. In other words:

$$
\operatorname{pr}_{\boldsymbol{v}}^{: d} \cdot \operatorname{pr}_{: d_{1}}^{\boldsymbol{u}^{1}} \cdot \operatorname{pr}_{: d_{2}}^{\boldsymbol{u}^{2}} \cdot \operatorname{sha}_{r_{1}, r_{2}}^{\boldsymbol{u}} \cdot H^{\boldsymbol{w}}= \begin{cases}H^{\boldsymbol{w}} & \text { if } d=d_{1}+d_{2} \\ 0 & \text { otherwise }\end{cases}
$$

[^22]Remark 1: If we were to replace $h_{r, \delta_{*}}(\sigma)$ by $h_{r, \delta_{*}}\left(\sigma^{-1}\right)$ in (240), we couldn't draw any definite conclusions about the alternality co-degree of B^{\bullet}. This underscores the (non-obvious) fact that the arguments A_{j}^{\bullet} of a counter-alternator must be treated like the indices w_{j} of a mould rather than like the factors D_{j} of a product of derivations.

Remark 2: The elementary projectors

$$
\operatorname{pr}_{: d}: \quad M^{w_{1}, \ldots, w_{r}} \mapsto M_{: d}^{w_{1}, \ldots, w_{r}}=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, d}(\sigma) M^{w_{\sigma(1)}, \ldots, w_{\sigma(1)}}
$$

of $B I M U_{r}$ onto BIMU $_{r, d}$ cease to act internally on Flex $_{r}\left(\mathbb{E}^{\bullet}\right)$ from $r=4$ onward. For $r=4$, we still have elementary projectors of Flex $_{r}\left(\mathfrak{E}^{\bullet}\right)$ onto Flex $x_{, d}\left(\mathfrak{E}^{\bullet \bullet}\right)$, of the form:

$$
\mathrm{pr}_{: d}^{*}: \quad M^{w_{1}, \ldots, w_{r}} \mapsto M_{: d}^{w_{1}, \ldots, w_{4}}=\sum_{\sigma \in \mathfrak{S}_{4}} h_{4, d}^{*}(\sigma) M^{w_{\sigma(1)}, \ldots, w_{\sigma(4)}}
$$

but with $p r_{: 1} \neq p r_{: 1}^{*}$ and $p r_{: 3} \neq p r_{: 3}^{*}$. For comparison, here are the coefficients $h_{4, d}(\sigma)$ and $h_{4, d}^{*}(\sigma)$ in vis-a-vis:

$\sigma(\boldsymbol{w})$	$h_{4,1}$	$h_{4,1}^{*}$	$h_{4,2}$	$h_{4,2}^{*}$	$h_{4,3}$	$h_{4,3}^{*}$	$h_{4,4}$	$h_{4,4}^{*}$
$w_{1}, w_{2}, w_{3}, w_{4}$	6	6	11	11	6	6	1	1
$w_{1}, w_{2}, w_{4}, w_{3}$	-2	-6	-1	-1	2	6	1	1
$w_{1}, w_{3}, w_{2}, w_{4}$	-2	6	-1	-1	2	-6	1	1
$w_{1}, w_{3}, w_{4}, w_{2}$	-2	6	-1	-1	2	-6	1	1
$w_{1}, w_{4}, w_{2}, w_{3}$	-2	-6	-1	-1	2	6	1	1
$w_{1}, w_{4}, w_{3}, w_{2}$	2	6	-1	-1	-2	-6	1	1
$w_{2}, w_{1}, w_{3}, w_{4}$	-2	-6	-1	-1	2	6	1	1
$w_{2}, w_{1}, w_{4}, w_{3}$	2	-6	-1	-1	-2	6	1	1
$w_{2}, w_{3}, w_{1}, w_{4}$	-2	-6	-1	-1	2	6	1	1
$w_{2}, w_{3}, w_{4}, w_{1}$	-2	-6	-1	-1	2	6	1	1
$w_{2}, w_{4}, w_{1}, w_{3}$	2	-6	-1	-1	-2	6	1	1
$w_{2}, w_{4}, w_{3}, w_{1}$	2	-6	-1	-1	-2	6	1	1
$w_{3}, w_{1}, w_{2}, w_{4}$	-2	6	-1	-1	2	-6	1	1
$w_{3}, w_{1}, w_{4}, w_{2}$	-2	6	-1	-1	2	-6	1	1
$w_{3}, w_{2}, w_{1}, w_{4}$	2	6	-1	-1	-2	-6	1	1
$w_{3}, w_{2}, w_{4}, w_{1}$	2	6	-1	-1	-2	-6	1	1
$w_{3}, w_{4}, w_{1}, w_{2}$	-2	6	-1	-1	2	-6	1	1
$w_{3}, w_{4}, w_{2}, w_{1}$	2	6	-1	-1	-2	-6	1	1
$w_{4}, w_{1}, w_{2}, w_{3}$	-2	-6	-1	-1	2	6	1	1
$w_{4}, w_{1}, w_{3}, w_{2}$	2	6	-1	-1	-2	-6	1	1
$w_{4}, w_{2}, w_{1}, w_{3}$	2	-6	-1	-1	-2	6	1	1
$w_{4}, w_{2}, w_{3}, w_{1}$	2	-6	-1	-1	-2	6	1	1
$w_{4}, w_{3}, w_{1}, w_{2}$	2	6	-1	-1	-2	-6	1	1
$w_{4}, w_{3}, w_{2}, w_{1}$	-6	-6	11	11	-6	-6	1	1

For $r \geqslant 5$ we no longer have projectors of Flex $_{r}\left(\mathfrak{E}^{\bullet}\right)$ onto Flex $x_{r, d}\left(\mathfrak{E}^{\bullet}\right)$ expressible purely via index substitutions. In place of these elementary projectors, we must resort to the partially symmetrized alternators of the next subsection. ${ }^{35}$

5.9 Partially symmetrized alternators:

Definition 5.3 (d-alternators.) For $1 \leqslant d \leqslant r$ we set:

$$
\begin{align*}
\text { câlt }_{H}^{r, d}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) & :=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \text { câlt }_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{242}\\
\operatorname{cǎlt}_{H}^{r, d}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) & :=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \text { cǎlt }_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{243}\\
\text { cālt }_{H}^{r, d}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) & :=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{cālt}_{H} \bullet\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{244}
\end{align*}
$$

with the coefficients $\mathrm{h}_{r, \delta}(\sigma)$ associated with the projectors $p r_{: d}$: see (237).
Proposition 5.4 tells us, inter alia, that when we insert alternal arguments H^{\bullet} and A_{i}^{\bullet} into our d-alternators, the result is going to be a d-alternal bimould M^{\bullet}. It is therefore tempting to try to rephrase the definition of the d-alternators in a way that would make their signature property manifest. This is indeed possible, due to:

Proposition 5.5 (d-alternality made manifest) .
The d-alternators are capable of an equivalent definition, of type:

$$
\begin{align*}
& \text { câlt }_{H}^{r, d}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) \equiv \sum_{\sigma \in \mathfrak{G}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{kâlt}_{H}^{r, d}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{245}\\
& \text { cǎlt }_{H}^{r, d}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) \equiv \sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{kǎlt}_{H}^{r, d}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{246}\\
& \operatorname{cā}^{r, r, d}{ }_{H}^{\bullet}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right) \equiv \sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{kā}^{r, d} H_{H}^{r, d}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right) \tag{247}
\end{align*}
$$

where each $(r+1)$-linear term $\operatorname{kalt}_{H}^{r, d}\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(r)}^{\bullet}\right)$ can be written as a finite sum of elementary summands involving the operations dle, dme, mde respectively r_{0}, r_{1}, r_{2} times, with $r_{0}=r+1-d$ and $r_{1}+r_{2}=d-1$.
Unfortunately, there exist scores of equivalent expressions for $k a l t_{H}^{r, d} \bullet(\ldots)$, and so far we failed to come up with a clearly privileged choice, except in the two extreme cases, namely when $d=1$ or $d=r$. Indeed:

Proposition 5.6 (1-alternality and r-alternality made manifest).
The 1-alternators calt ${ }_{H}^{r, d}$ • coincide with the alternators salt ${ }_{H}^{r, d}$ of Definition 5.2, and for these the formulae (227)-(229) clearly amount to expansions of type

[^23](245)-(247). As for the r-alternators, they too admit expansions of such type, to wit:
\[

$$
\begin{aligned}
& \text { kâlt } t_{H^{r}}^{r, r} \cdot\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{1 \leqslant s \leqslant r}(-1)^{s-1} \operatorname{dme}\left(\operatorname{dle}\left(H^{\boldsymbol{\bullet}}, \operatorname{dme}\left(\boldsymbol{A}^{\mathbf{1}}\right)\right), \operatorname{dme}\left(\boldsymbol{A}^{\mathbf{2}}\right), \ldots, \mathrm{dme}\left(\boldsymbol{A}^{s}\right)\right) \\
& \operatorname{kălt}_{H^{r}}^{r, r}\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{1 \leqslant s \leqslant r}(-1)^{s-1} \overrightarrow{\operatorname{men}}\left(\operatorname{dle}\left(H^{\bullet}, \overrightarrow{\operatorname{mde}}\left(\boldsymbol{A}^{\mathbf{1}}\right)\right), \overrightarrow{\operatorname{mde}}\left(\boldsymbol{A}^{\mathbf{2}}\right), \ldots, \overrightarrow{\operatorname{mde}}\left(\boldsymbol{A}^{s}\right)\right) \\
& \operatorname{kanlt}_{H}^{r, r} \cdot\left(A_{1}^{\bullet}, . ., A_{r}^{\bullet}\right):=\sum_{1 \leqslant s \leqslant r}(-1)^{s-1} \operatorname{dme}\left(\operatorname{dle}\left(H^{\bullet}, \operatorname{mu}\left(A_{1}^{\bullet}, . ., A_{s}^{\bullet}\right)\right), \operatorname{mu}\left(A_{s+1}^{\bullet}, . ., A_{r}^{\bullet}\right)\right)
\end{aligned}
$$
\]

5.10 Complement: dimensions of the component spaces.

Let us illustrate the dual gradations by degree and codegree, while focusing on the former, for greater ease of notations. Let \mathbb{E} be the associative algebra freely generated by non-commutative variables $e_{1}, e_{2} \ldots$ and for any sequence $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ let $\mathbb{E}^{\boldsymbol{s}}$ be the subspace of \mathbb{E} spanned by elements of degree s_{1} in e_{1}, s_{2} in e_{2} etc. \mathbb{E}^{s} admits a natural decomposition $\mathbb{E}=\oplus_{1 \leqslant \delta \leqslant|s|} \mathbb{E}_{\delta}^{s}$ spanned by elements of 'differential degree' δ^{36}. \mathbb{E}_{1}^{s} is simply the subspace of Lie elements, with dimension

$$
\operatorname{dim}\left(\mathbb{E}_{1}^{s}\right)=\frac{1}{s} \sum_{d \mid s_{i}} \mu(d) \frac{(s / d)!}{\left(s_{1} / d\right)!\ldots\left(s_{n} / d\right)!} \quad(s:=|s|, \mu=\text { mobius function })
$$

For $\delta \geqslant 2, \mathbb{E}_{\delta}^{s}$ is defined as follows. We consider all δ-partitions \mathcal{S}_{δ} of s :

$$
\mathcal{S}_{\delta}: s=s^{\mathbf{1}}+\cdots+s^{\boldsymbol{\delta}} \quad \text { with } \quad s^{i}=\left(s_{1}^{i}, \ldots, s_{n}^{i}\right) \quad \text { and } \quad s_{k}^{i} \geqslant 0 \quad \text { but }\left|s^{i}\right| \geqslant 1
$$

We then define \mathbb{E}_{δ}^{s} as the sum, for all δ-partitions of s, of the symmetrized products of the Lie spaces $\mathbb{E}_{1}^{s^{i}}$:

$$
\begin{equation*}
\mathbb{E}_{\delta}^{s}:=\oplus \mathcal{S}_{\delta} \operatorname{symmetrize}\left(\mathbb{E}_{1}^{s^{1}} \mathbb{E}_{1}^{s^{2}} \ldots \mathbb{E}_{1}^{s^{\delta}}\right) \tag{248}
\end{equation*}
$$

Here, symmetrize $\left(\mathbb{E}_{1}^{s^{1}} \mathbb{E}_{1}^{s^{2}} \ldots \mathbb{E}_{1}^{s^{\delta}}\right)$ obviously denotes the space spanned by all the symmetrized products of Lie elements $e^{\mathbf{1}}, e^{\mathbf{2}}, \ldots, e^{\boldsymbol{\delta}}$, with each e^{i} running through some basis of $\mathbb{E}_{1}^{s^{i}}$. The resulting space \mathbb{E}_{δ}^{s} does not depend on the choice of those bases. Moreover:

$$
\operatorname{dim}\left(\mathbb{E}_{\delta}^{s}\right)=\sum_{\mathcal{S}_{\delta}} \operatorname{dim}\left(\mathbb{E}_{1}^{s^{i}}\right) \ldots \operatorname{dim}\left(\mathbb{E}_{1}^{s^{\delta}}\right) \quad ; \quad \sum_{\delta} \operatorname{dim}\left(\mathbb{E}_{\delta}^{s}\right)=\operatorname{dim}\left(\mathbb{E}^{s}\right)=\frac{s!}{s_{1}!\ldots s_{n}!}
$$

In the case of distinct generators, i.e. for $s=(1, \ldots, 1)(r$ times $)$, we get:

$$
\sum_{1 \leqslant d \leqslant r} \operatorname{dim}\left(\mathbb{E}_{d}^{1, \ldots, 1} x^{d}=x(x+1) \ldots(x+d-1)\right.
$$

To illustrate the general case, let us consider the sequence $\boldsymbol{s}=(1,1,2)$. We then get the decomposition $\mathbb{E}^{s}=\oplus_{\delta} \mathbb{E}_{1}^{s}$ with

$$
\operatorname{dim}\left(\mathbb{E}_{1}^{s}\right)=3, \quad \operatorname{dim}\left(\mathbb{E}_{2}^{s}\right)=5, \quad \operatorname{dim}\left(\mathbb{E}_{3}^{s}\right)=3, \quad \operatorname{dim}\left(\mathbb{E}_{1}^{s}\right)=1
$$

and here is a possible choice of basis elements $\boldsymbol{\epsilon}_{\delta, k}$:

$$
\begin{aligned}
& \operatorname{basis}\left(\mathbb{E}_{1}^{\boldsymbol{s}}\right):\left\{\begin{array}{l}
\boldsymbol{\epsilon}_{1,1}=\left[\left[\left[e_{1}, e_{3}\right], e_{3}\right], e_{2}\right], \\
\boldsymbol{\epsilon}_{1,2}=\left[\left[e_{1}, e_{3}\right],\left[e_{2}, e_{3}\right]\right], \\
\boldsymbol{\epsilon}_{1,3}=\left[e_{1},\left[\left[e_{2}, e_{3}\right], e_{3}\right]\right]
\end{array}\right. \\
& \operatorname{basis}\left(\mathbb{E}_{2}^{\boldsymbol{s}}\right):\left\{\begin{array}{l}
\boldsymbol{\epsilon}_{2,1}=\left[\left[e_{3}, e_{1}\right], e_{2}\right] \cdot e_{3}+e_{3} \cdot\left[\left[e_{3}, e_{1}\right], e_{2}\right], \\
\boldsymbol{\epsilon}_{2,2}=\left[\left[e_{3}, e_{2}\right], e_{1}\right] \cdot e_{3}+e_{3} \cdot\left[\left[e_{3}, e_{2}\right], e_{1}\right], \\
\boldsymbol{\epsilon}_{2,3}=\left[\left[e_{1}, e_{3}\right], e_{3}\right] \cdot e_{2}+e_{2} \cdot\left[\left[e_{1}, e_{3}\right], e_{3}\right], \\
\boldsymbol{\epsilon}_{2,4}=\left[\left[e_{2}, e_{3}\right], e_{3}\right] \cdot e_{1}+e_{1} \cdot\left[\left[e_{2}, e_{3}\right], e_{3}\right], \\
\boldsymbol{\epsilon}_{2,5}=\left[e_{1}, e_{3}\right] \cdot\left[e_{2}, e_{3}\right]+\left[e_{2}, e_{3}\right] \cdot\left[e_{1}, e_{3}\right]
\end{array}\right. \\
& \operatorname{basis}\left(\mathbb{E}_{3}^{\boldsymbol{s}}\right):\left\{\begin{array}{r}
\boldsymbol{\epsilon}_{3,1}=\begin{array}{r}
{\left[e_{1}, e_{2}\right] \cdot e_{3} \cdot e_{3}+e_{3} \cdot\left[e_{1}, e_{2}\right] \cdot e_{3}+e_{3} \cdot e_{3} \cdot\left[e_{1}, e_{2}\right],}
\end{array} \\
\boldsymbol{\epsilon}_{3,2}=\left\{\begin{array}{c}
{\left[e_{1}, e_{3}\right] \cdot e_{2} \cdot e_{3}+e_{2} \cdot\left[e_{1}, e_{3}\right] \cdot e_{3}+e_{2} \cdot e_{3} \cdot\left[e_{1}, e_{3}\right]} \\
+\left[e_{1}, e_{3}\right] \cdot e_{3} \cdot e_{2}+e_{3} \cdot\left[e_{1}, e_{3}\right] \cdot e_{2}+e_{3} \cdot e_{2} \cdot\left[e_{1}, e_{3}\right],
\end{array}\right. \\
\boldsymbol{\epsilon}_{3,3}=\left\{\begin{array}{r}
{\left[e_{2}, e_{3}\right] \cdot e_{1} \cdot e_{3}+e_{1} \cdot\left[e_{2}, e_{3}\right] \cdot e_{3}+e_{1} \cdot e_{3} \cdot\left[e_{2}, e_{3}\right]} \\
+\left[e_{2}, e_{3}\right] \cdot e_{3} \cdot e_{1}+e_{3} \cdot\left[e_{2}, e_{3}\right] \cdot e_{1}+e_{3} \cdot e_{1} \cdot\left[e_{2}, e_{3}\right]
\end{array}\right.
\end{array}\right. \\
& \operatorname{basis}\left(\mathbb{E}_{4}^{\boldsymbol{s}}\right): \boldsymbol{\epsilon}_{4,1}=\left\{\begin{array}{r}
e_{1} \cdot e_{2} \cdot e_{3} \cdot e_{3}+e_{1} \cdot e_{3} \cdot e_{2} \cdot e_{3}+e_{1} \cdot e_{3} \cdot e_{3} \cdot e_{2}+e_{2} \cdot e_{1} \cdot e_{3} \cdot e_{3} \\
+e_{2} \cdot e_{3} \cdot e_{1} \cdot e_{3}+e_{2} \cdot e_{3} \cdot e_{3} \cdot e_{1}+e_{3} \cdot e_{1} \cdot e_{2} \cdot e_{3}+e_{3} \cdot e_{1} \cdot e_{3} \cdot e_{2} \\
+e_{3} \cdot e_{2} \cdot e_{1} \cdot e_{3}+e_{3} \cdot e_{2} \cdot e_{3} \cdot e_{1}+e_{3} \cdot e_{3} \cdot e_{1} \cdot e_{2}+e_{3} \cdot e_{3} \cdot e_{2} \cdot e_{1}
\end{array}\right.
\end{aligned}
$$

The bottomline is this:
(i) choosing a basis for all \mathbb{E}_{d}^{s} entirely reduces to choosing a basis for all \mathbb{E}_{1}^{s}
(ii) but picking a basis for any \mathbb{E}_{1}^{s} necessarily involves some arbitrariness.

6 Tree-indexed bases: binary, ordered, stacked.

6.1 Binary and ordered trees.

Let $\mathbb{B} \mathbb{T}_{r}$ denote the set of binary trees with r nodes and one root, and let $\mathbb{O} \mathbb{T}_{r}$ be the set of all ordered trees with r nodes and one or more than one root. It is well-known that both have the same number of elements:

$$
\begin{equation*}
\#\left(\mathbb{B T}_{r}\right)=\#\left(\mathbb{O} \mathbb{T}_{r}\right)=\kappa_{r}:=\frac{2 r!}{r!(r+1)!} \tag{249}
\end{equation*}
$$

while the subset of $\mathbb{O} \mathbb{T}_{r}$ consisting of one-rooted trees has κ_{r-1} elements.
For convenient enumeration, we introduce on the elements $b t_{r, k}$ of $\mathbb{B T}_{r}$ and
ot $t_{r, k}$ of $\mathbb{O} \mathbb{T}_{r}$ various orderings ${ }^{37}$ that reflect the trees' inductive construction:

$$
\begin{align*}
& \mathrm{bt}_{r, k}=\mathfrak{h}\left(\mathrm{bt}_{r_{1}, k_{1}}, \mathrm{bt}_{r_{2}, k_{2}}\right) \quad \text { with } \quad\left\{\begin{array}{l}
r_{1}+r_{2}=r-1 \\
1 \leqslant k_{i} \leqslant \kappa_{r_{i}}
\end{array}\right. \tag{250}
\end{align*}
$$

The gothic \mathfrak{h} (for heave) in (250) signals that $b t_{r_{1}, k_{1}}$ and $b t_{r_{2}, k_{2}}$ get attached to a root as left- and right-leaning branches, to produce a new binary tree. That same \mathfrak{h} in (251) means that the various $b t_{r_{i}, k_{i}}$ get attached to a root, as separate branches ordered from left to right, to produce a new, one-rooted ordered tree. Lastly, the gothic \mathfrak{j} (for juxtapose) means that the $b t_{r_{i}, k_{i}}$ simply get juxtaposed, resulting in an s-rooted, ordered tree.

Although we impose $1 \leqslant k_{i} \leqslant \kappa_{r_{i}}$ in (250) and $1 \leqslant k_{i} \leqslant \kappa_{r_{i}-1}$ in (??), the effect is the same: it allows only one-rooted trees inside \mathfrak{h} or \mathfrak{j}.

We can now return to the task of tree indexation. A quick, if artificiallooking way of going about this is by associating with each tree a function germ at $+\infty$. Here are the most useful choices, with the monomials given in order of decreasing dominance:

$$
\begin{align*}
\mathrm{bt}_{r, k} \mapsto \operatorname{gbt}_{r, k}(x) & :=-\left(\frac{r_{1}}{x}+\frac{r_{2}}{x^{2}}\right)+e^{-x}\left(\frac{k_{1}}{x}+\frac{k_{2}}{x^{2}}\right) \tag{252}\\
\mathrm{bt}_{r, k} \mapsto \operatorname{gbt}_{r, k}(x) & :=-\left(\frac{r_{1}}{x}+\frac{r_{2}}{x^{2}}\right)+e^{-x}\left(k_{2} x^{2}+k_{1} x\right) \tag{253}\\
\text { ot }_{r, k} \mapsto \operatorname{got}_{r, k}(x) & :=\epsilon e^{x}-\left(\frac{r_{1}}{x}+\ldots+\frac{r_{s}}{x^{s}}\right)+e^{-x}\left(\frac{k_{1}}{x}+\ldots+\frac{k_{s}}{x^{s}}\right) \tag{254}\\
\text { ot }_{r, k} \mapsto \operatorname{got}_{r, k}(x) & :=\epsilon e^{x}-\left(\frac{r_{1}}{x}+\ldots+\frac{r_{s}}{x^{s}}\right)+e^{-x}\left(k_{s} x^{s}+\ldots+k_{1} x\right) \tag{255}\\
\text { ot }_{r, k} \mapsto \operatorname{got}_{r, k}(x) & :=\epsilon e^{x}+x^{s}-\left(\frac{r_{1}}{x}+\ldots+\frac{r_{s}}{x^{s}}\right)+e^{-x}\left(\frac{k_{1}}{x}+\ldots+\frac{k_{s}}{x^{s}}\right) \tag{256}\\
\text { ot }_{r, k} \mapsto \operatorname{got}_{r, k}(x) & :=\epsilon e^{x}+x^{s}-\left(\frac{r_{1}}{x}+\ldots+\frac{r_{s}}{x^{s}}\right)+e^{-x}\left(k_{s} x^{s}+\ldots+k_{1} x\right) \\
\text { with } \epsilon & =\left\{\begin{array}{lll}
0 & \text { if } & \text { ot } t_{r, k} \text { is one-rooted, i.e. of the form } \mathfrak{h}(\ldots) \\
1 & \text { if } & \text { ot } t_{r, k} \text { is many-rooted, i.e. of the form } \mathfrak{j}(\ldots)
\end{array}\right.
\end{align*}
$$

We can then endow our trees with the k-indexation $\left(1 \leqslant k \leqslant \kappa_{r}\right)$ that mirrors the germs' behaviour at infinity:

$$
\begin{array}{ll}
\text { on } \mathbb{B T}_{r}: & \left\{k^{\prime}<k^{\prime \prime}\right\} \Longleftrightarrow \operatorname{gbt}_{r, k^{\prime}}(x)<\operatorname{gbt}_{r, k^{\prime \prime}}(x) \text { for } 1 \ll x \\
\text { on } \mathbb{O T}_{r}: & \left\{k^{\prime}<k^{\prime \prime}\right\} \Longleftrightarrow \operatorname{got}_{r, k^{\prime}}(x)<\operatorname{got}_{r, k^{\prime \prime}}(x) \text { for } 1 \ll x \tag{259}
\end{array}
$$

Different applications require different orderings. Whenever necessary, we shall specify which ordering we are working with.

[^24]
6.2 Binary trees for basis indexation.

To any basis $\left\{b t_{r, k}, 1 \leqslant k \leqslant \kappa_{r}\right\}$ of $\mathbb{B T}_{r}$ we associate a basis $\left\{\mathfrak{b t e} \mathfrak{e}_{r, k}^{\bullet}, 1 \leqslant k \leqslant \kappa_{r}\right\}$ of Flex $_{r}\left(\mathfrak{E}^{\bullet}\right)$ by means of inductions that run parallel to ??:

$$
\begin{equation*}
\mathfrak{b t e} \mathfrak{e}_{1,1}^{\bullet}=\mathfrak{E}^{\bullet} \quad ; \quad \mathfrak{b t e} \mathfrak{e}_{r, k}^{\bullet}=\operatorname{mdme}\left(\mathfrak{b t e} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \mathfrak{E}^{\bullet}, \mathfrak{b t e} \mathfrak{e}_{r_{2}, k_{2}}^{\bullet}\right) \tag{260}
\end{equation*}
$$

with the familiar semi-inflected ternary operation:

$$
\begin{equation*}
\operatorname{mdme}\left(A^{\bullet}, B^{\bullet}, C^{\bullet}\right):=\operatorname{de}^{-1} \cdot \operatorname{mu}\left(A^{\bullet}, \operatorname{de} . B^{\bullet}, C^{\bullet}\right) \tag{261}
\end{equation*}
$$

We denote by $\left\{b t a_{r, k}^{\bullet}, 1 \leqslant k \leqslant \kappa_{r}\right\}$ and $\left\{b t i_{r, k}^{\bullet}, 1 \leqslant k \leqslant \kappa_{r}\right\}$ the corresponding bases of $\operatorname{Flex}_{r}\left(P a^{\bullet}\right)$ and Flex $_{r}\left(P i^{\bullet}\right)$.

6.3 Ordered trees for basis indexation.

To any basis $\left\{o t_{r, k}, 1 \leqslant k \leqslant \kappa_{r}\right\}$ of $\mathbb{O T}_{r}$ we associate three variously accentuated sets $\left\{\mathfrak{o t e} \mathfrak{e}_{r, k}^{\bullet}, 1 \leqslant k \leqslant \kappa_{r}\right\}$ of Flex $_{r}\left(\mathfrak{E}^{\bullet}\right)$ by inductions that run parallel to (251).
 be proper bases of $\operatorname{Flex}_{r}\left(\mathfrak{E}^{\bullet}\right)$.

$$
\begin{align*}
& \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{1,1}^{\bullet}=\mathfrak{E}^{\bullet} \quad, \quad \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r, k}^{\bullet}= \begin{cases}\operatorname{calt}_{\boldsymbol{E}} \cdot \boldsymbol{\bullet}\left(\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \ldots, \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{s}, k_{s}}^{\bullet}\right) & \text { if } k \leqslant \kappa_{r-1} \\
\operatorname{dme}\left(\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \ldots, \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{s}, k_{s}}^{\bullet}\right) & \text { if } k>\kappa_{r-1}\end{cases} \tag{263}
\end{align*}
$$

Of course, when dealing with $F l e x_{r}\left(P a^{\bullet}\right)$ or $F l e x_{r}\left(P i^{\bullet}\right)$, we revert from gothic to roman, and change \mathfrak{e} to a or i.
Remark: In view of the systematic exchange $\stackrel{\leftarrow m e}{\leftarrow} \overrightarrow{m d e}$ in the definitions of the first two alternators (see §5.5), one might expect $d m e$ and $\overrightarrow{m d e}$ on the lower right-hand sides of (262) and (262) respectively - or the reverse! In fact, these choices would work fine, and still lead to proper bases, but with them the formulae for basis change would be slightly more awkward.

6.4 Stacked trees for basis indexation.

Stacked trees aren't trees proper, but rather linear combinations of ordered trees subject to definite alternation conditions on their branches. Before defining them, we require an auxiliary construction. Let \mathbb{E} be the associative algebra freely generated by non-commutative variables $e_{1}, e_{2} \ldots$, as in $\S 5.10$, and for any sequence $s=\left(s_{1}, \ldots, s_{n}\right)$ let \mathbb{E}^{s} be the subspace of \mathbb{E} spanned by elements of degree s_{1} in e_{1}, s_{2} in e_{2} etc. \mathbb{E}^{s} admits a natural decomposition $\mathbb{E}=\oplus_{1 \leqslant \delta \leqslant|s|} \mathbb{E}_{\delta}^{s}$ spanned by elements of 'differential degree' δ.

Construct, as in $\S 5.10$, a basis of $\mathbb{E}_{\delta}^{\boldsymbol{s}}$, consisting of elements $\boldsymbol{\epsilon}_{\delta, i}$

$$
\boldsymbol{\epsilon}_{\delta, i}=\sum_{\sigma} n_{i, \sigma} e_{\sigma(1)} \cdot e_{\sigma(2)} \ldots e_{\sigma(s)} \quad \text { with } \quad\left\{\begin{array}{c}
n_{i, \sigma} \in \mathbb{Z} \tag{265}\\
\sigma:\{1, \ldots, s\} \rightarrow\{1, \ldots, n\}
\end{array}\right.
$$

and consider the dual expansion in \mathbb{M} :

$$
\boldsymbol{m}_{\delta, i}=\sum_{\sigma} n_{i, \sigma}^{*} m_{\sigma(1)} \cdot m_{\sigma(2)} \ldots m_{\sigma(s)} \quad \text { with } \quad\left\{\begin{array}{c}
n_{i, \sigma}^{*} \in \mathbb{Z} \tag{266}\\
\sigma:\{1, \ldots, s\} \rightarrow\{1, \ldots, n\}
\end{array}\right.
$$

We are now in a position to inductively construct a complete system $\mathbb{S T}_{r}$ of stacked trees and, parallet with it, convenient bases of Flex $x_{r}\left(\mathfrak{E}^{\bullet}\right)$. However, we must now sharply distinguish the one-rooted stacked trees, to which there will correspond dme-generators of the Flex $\left(\mathfrak{E}^{\bullet}\right)$, and the many-rooted stacked trees, to which there will correspond $d m e$-products of generators, which together shall provided a graded basis of Flex $\left(\mathfrak{E}^{\bullet}\right)$.

One-rooted stacked trees with r nodes and co-degree d are inductively defined as the superposition: ${ }^{38}$

$$
\begin{align*}
\mathrm{st}_{r, d, k} & =\sum_{\sigma} n_{i, \sigma}^{*} \mathfrak{h}\left(\mathrm{st}_{r_{\sigma(1)}, d_{\sigma(1)}, k_{\sigma(1)}}, \ldots, \mathrm{st}_{r_{\sigma(s)}, d_{\sigma(s)}, k_{\sigma(s)}}\right) \tag{267}\\
\text { with } & =r=1+r_{1}+\cdots+r_{s} \quad \text { and } \quad d=1-d_{0}+d_{1}+\ldots+d_{s} \tag{268}
\end{align*}
$$

We have here the same coefficients $n_{i, \sigma}^{*}$ as in (266), and ($\mathrm{st}_{r_{1}, d_{1}, k_{1}}, \ldots, \mathrm{st}_{r_{s}, d_{s}, k_{s}}$) is still a sequence of multiplicity type, i.e. with a first element repeated s_{1} times, a second element s_{2} times, etc. The corresponding elements of Flex $\left(\mathfrak{E}^{\bullet}\right)$ are defined by:

$$
\begin{align*}
& \hat{\mathfrak{s} t \mathfrak{e}_{r, d, k}^{\bullet}}{ }^{\bullet}=\sum_{\sigma} n_{i, \sigma}^{*} \operatorname{câlt} \mathfrak{E}^{\bullet}\left(\hat{\mathfrak{s} t \mathfrak{e}_{r_{\sigma(1)}}^{\bullet}, d_{\sigma(1)}, k_{\sigma(1)}}, \ldots, \hat{\mathfrak{s t}}_{r_{\sigma(s)}^{\bullet}, d_{\sigma(s)}, k_{\sigma(s)}}\right) \tag{269}
\end{align*}
$$

The main point is of course the occurence of d_{0} with a minus sign in the second sum (268). That minus sign reflects the main property of the counteralternators: the more alternating they are as functions of their arguments $\left(A_{1}^{\bullet}, \ldots, A_{s}^{\bullet}\right)$, the less alternating they are as bimoulds, i.e. as functions of \bullet. In fact, the indexation by stacked trees is what shall enable us, in the next section (§8) to decompose Flex $\left(\mathfrak{E}^{\bullet}\right)$ as a sum Flex $x_{r, d}\left(\mathfrak{E}^{\bullet}\right)$ of subspaces with elements of co-degree d and to calculate their dimensions $\operatorname{dim}\left(F l e x_{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$ by means of interesting generating series.

[^25]But before proceeding, we must dispose of the case of many-rooted stacked trees. Here, the definition is more straightforward: ${ }^{39}$

$$
\mathrm{st}_{r, d, k}=\mathfrak{j}\left(\mathrm{st}_{r_{1}, d_{1}, k_{1}}, \ldots, \mathrm{st}_{r_{s}, d_{s}, k_{s}}\right) \quad \text { with } \quad\left\{\begin{array}{l}
s \geqslant 2 \tag{272}\\
r=r_{1}+\cdots+r_{s} \\
d=d_{1}+\cdots+d_{s}
\end{array}\right.
$$

and gives rise to the parallel construction on Flex $\left(\mathfrak{E}^{\bullet}\right)$:

6.5 Ordered trees and the pre-Lie products.

 in $\S 8$, let us mention here two statements that justify after the event their seemingly artificial construction. For simplicity, we limit ourselves to $\left\{\hat{\mathfrak{o}} \mathfrak{t}_{r, k}^{\bullet}\right\}$ and look at the action of the alternality-preserving pre-Lie brackets dle and dari as defined in §5.5.

Proposition 6.1 (The pre-Lie product $d l e$ as tree attachment).
For any pair of rooted, ordered trees ot ${ }_{r_{1}, k_{1}}$, ot ${ }_{r_{2}, k_{2}}$, the identity holds:

$$
\operatorname{dle}\left(\hat{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \hat{\mathfrak{o}} \mathfrak{\mathfrak { e } _ { r _ { 2 } , k _ { 2 } } ^ { \bullet }}\right)=-\sum_{1 \leqslant k \leqslant \kappa_{r-1}} l_{r, k} \hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}} \quad \text { with } \quad\left\{\begin{array}{l}
1 \leqslant k_{i} \leqslant \kappa_{r_{i}-1} \tag{274}\\
l_{r, k} \in \mathbb{N}
\end{array}\right.
$$

The ordered trees ot $_{r, k}$ on the right-hand side are exactly the trees (counted with their multiplicities) that can be obtained by attaching the tree ot $r_{r_{2}, k_{2}}$ to the tree ot $_{r_{1}, k_{1}}$, i.e. by attaching ot ${ }_{r_{2}, k_{2}}$ successively to all the nodes of ot $_{r_{1}, k_{1}}$.

Proposition 6.2 (The pre-Lie product $d a r i$ as tree insertion).
For any pair of rooted, ordered trees ot ${ }_{r_{1}, k_{1}}$, ot ${ }_{r_{2}, k_{2}}$, the identity holds:

The ordered trees ot $_{r, k}$ on the right-hand side are exactly the trees (counted with their multiplicities) that can be obtained by inserting the tree ot ${ }_{r_{2}}, k_{2}$ into the tree ot ${ }_{r_{1}, k_{1}}$, i.e. by inserting some rooted branch branch $\left(b_{*}\right)$ of ot $t_{r_{2}, k_{2}}$ into some edge $\left(a_{1}, a_{2}\right)$ of ot $_{r_{1}, k_{1}}$.

[^26]Explanation: An edge $\left(x_{1}, x_{2}\right)$ of a tree ot links two consecutive nodes. A branch $\operatorname{branch}\left(x_{*}\right)$ of ot consists of all nodes x anterior to x_{*}. It therefore contains the root x_{0} of ot. Note that x_{*} neednot be an end-point of the tree. It may even be the root of the tree, in which case $\operatorname{branch}\left(x_{0}\right)=\left\{x_{0}\right\}$.

Remark 1: Since in Proposition $6.2 a_{1} \neq a_{2}$, it follows that no tree can be inserted into a tree that reduces to a root. Therefore:

$$
\begin{equation*}
\operatorname{dari}\left(\hat{\mathfrak{o} t} \mathfrak{e}_{1,1}^{\bullet}, \hat{\left.\mathfrak{o} t \mathfrak{e}_{r_{2}, k_{2}}^{\bullet}\right) \equiv 0}\right. \tag{276}
\end{equation*}
$$

On the other hand, since a rooted branch may reduce to the root, it follows that:

$$
\begin{equation*}
\operatorname{dari}\left(\hat{\mathfrak{o} t} \mathfrak{e _ { r _ { 1 } , k _ { 1 } } ^ { \bullet }}, \hat{\left.\mathfrak{o} t \mathfrak{e}_{1,1}^{\bullet}\right) \neq 0 \quad \text { iff } \quad r_{1}>1}\right. \tag{277}
\end{equation*}
$$

This is in sharp contrast to Proposition 6.1, where the right-hand side of (274) never vanishes.

In fact, as a dle pre-Lie algebra, Flex ${ }^{a l}\left(\mathfrak{E}^{\bullet}\right)$ is freely generated by the single element $\mathfrak{E}_{a l}^{\bullet}$, whereas as a dari pre-Lie algebra, all non-trivial identities ${ }^{40}$ in Flex (E゙・) are generated by the identities (276).

Remark 2: Propositions 6.1 and 6.2 show that the subspace Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ spanned by the basis elements $\hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}}$ corresponding to rooted trees $\hat{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r, k}(k \leqslant$ κ_{r-1}), is stable under the pre-Lie products dle and dari, and therefore under
 the system $\left\{\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r, k}^{\bullet}\right\}$ (not a basis).
Remark 3: There is no way of modifying our definitions so as to get the same signs in front of \sum, on the right-hand sides of both (274) and (275). Here, we chose to have the plus sign for dari and the minus sign for dle because, on balance, it simplifies a larger number of formulae (even though it clashes with the convention usually adopted when defining the standard pre-Lie product on non-ordered trees).

Remark 4: Assume we have already constructed a system $\left\{\hat{\left.\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}\right\} \text { that verifies }}\right.$ (274) for all $r<r_{0}$. Then the same identities (274) fully determine - in fact, overdetermine - the system $\left\{\hat{\boldsymbol{o}} \mathfrak{e}_{r, k}^{\bullet}\right\}$ for $r=r_{0}$. In that sense, there is no latitude in the choice of system. Actually, solving (274) is how the system $\left\{\hat{\left.\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}\right\} \text { was }}\right.$ found and how, once found, it led to the counter-alternator câlt. The other counter-alternators followed by analogy.

6.6 From câlt to Câlt : an illusory, yet useful extension.

We are now going to construct counter-alternators $C \hat{a} l t$ indexed by ordered trees $o t_{r, k}$, or simply by (r, k). These capitalised $C \hat{a} l_{r, k}\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$

[^27]- appear to be more general than the ordinary $c_{a} l t_{H} \bullet\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$
- unexpectedly turn out to reduce to linear combinations of these ordinary counter-alternators
- nonetheless prove very useful to relate the $d m e$ and $m d e$ generation
- have the merit of highlighting the advantages of $c \hat{a} l t$ over $c a \check{l} l t$ and $c \bar{a} l t$.

Definition 6.1 (The tree-indexed counter-alternators Câlt ${ }_{r, k}(\boldsymbol{A})$). For any sequence $\boldsymbol{A}:=\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$ with $A_{i}^{\bullet} \in \operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right)$ we set:

$$
\begin{align*}
& \text { one-rooted case: } 1 \leqslant k \leqslant \kappa_{r-1} \text { and } \text { ot }_{r, k}=\mathfrak{h}\left(\text { ot }_{r_{1}, k_{1}}, \ldots, \text { ot }_{r_{s}, k_{s}}\right) \\
& \text { Câlt }_{r, k}(\boldsymbol{A}):=\text { câlt }_{A_{\mathbf{1}}}\left(\text { Câlt }_{r_{1}, k_{1}}\left(\boldsymbol{A}^{\mathbf{1}}\right), \ldots, \text { Câlt }_{r_{s}, k_{s}}\left(\boldsymbol{A}^{\boldsymbol{s}}\right)\right. \tag{278}\\
& \text { with } \begin{cases}1 \leqslant k_{i} \leqslant \kappa_{r_{i}-1} & \sum r_{i}=r \\
\boldsymbol{A}^{\mathbf{1}} \ldots \boldsymbol{A}^{\boldsymbol{s}}=\left(A_{2}^{\bullet}, \ldots, A_{s}^{\bullet}\right) & \operatorname{length}\left(\boldsymbol{A}^{\boldsymbol{i}}\right)=r_{i}\end{cases} \tag{279}\\
& \text { many-rooted case : } \kappa_{r-1}<k \leqslant \kappa_{r} \text { and ot }{ }_{r, k}=\mathfrak{j}\left(\text { ot }_{r_{1}, k_{1}}, \ldots, \text { ot }_{r_{s}, k_{s}}\right) \\
& \text { Câlt } t_{r, k}(\boldsymbol{A}):=\underset{\operatorname{dme}}{ }\left(\operatorname{Câlt}_{r_{1}, k_{1}}\left(\boldsymbol{A}^{\mathbf{1}}\right), \ldots, \operatorname{Câlt}_{r_{s}, k_{s}}\left(\boldsymbol{A}^{\boldsymbol{s}}\right)\right. \tag{280}\\
& \begin{cases}1<k_{i} \leqslant \kappa_{r_{i}-1} & \sum r_{i}=r \\
\boldsymbol{A}^{\mathbf{1}} \ldots \boldsymbol{A}^{\boldsymbol{s}}=\left(A_{2}^{\bullet}, \ldots, A_{s}^{\bullet}\right) & \operatorname{length}\left(\boldsymbol{A}^{\boldsymbol{i}}\right)=r_{i}\end{cases} \tag{281}
\end{align*}
$$

Pay attention: in all cases, whether one- or many-rooted, $C \hat{a} l_{r, k}$ is recursively defined in terms of one-rooted predecessors $C \hat{a} t_{r_{i}, k_{i}}$, with $1 \leqslant k_{i} \leqslant \kappa_{r_{i}}$. On the other hand, in the one-rooted tree, it is the sequence ${ }^{*} \boldsymbol{A}:=\left(A_{2}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$ that gets factored into subsequences $\boldsymbol{A}^{\boldsymbol{i}}$, whereas in the many-rooted case, it is the full $\boldsymbol{A}:=\left(A_{1}^{\bullet}, \ldots, A_{r}^{\bullet}\right)$. Lastly, note that, due to the inclusion of A_{1}^{\bullet}, we have $\sum r_{i}=r$ in (279)-(281) instead of $r-1$ in (251).

Clearly, the new $C \hat{a} l t(\ldots)$ are closely related to the basis elements $\left\{\hat{o} t e_{r, k}\right\}$. Indeed:

$$
\begin{equation*}
\hat{o}^{\text {ote }}{ }_{r, k}^{\bullet}=\operatorname{Câlt}_{r, k}\left(\stackrel{r}{\mathfrak{E}^{\bullet}}, \ldots, \mathfrak{E}\right) \tag{282}
\end{equation*}
$$

But it would seem that by allowing arbitary bimoulds A_{1}^{\bullet} in index position câlt $_{A_{\mathbf{i}}}(\ldots)$ in (278), we are going to generate new elements not covered by the $\left\{\hat{o} t e_{r, k}\right\}$ system. This, however, is not the case:

Proposition 6.3 (From Câlt to câlt).
For any sequence $\left\{A_{i}^{\bullet}:=\hat{o}^{\text {te }}{ }_{r_{i}, k_{i}}, 1 \leqslant k_{i} \leqslant \kappa_{r_{i}-1}\right\}$ of one-rooted basis element, the identity holds:

$$
\operatorname{câlt}_{A_{1}}\left(A_{2}^{\bullet}, \ldots, A_{s}^{\bullet}\right)=\sum_{1 \leqslant p \leqslant \kappa_{r-1}} m_{r, p} \text { ôte }{ }_{r, p}^{\bullet} \text { with }\left\{\begin{array}{l}
r=r_{1}+\ldots+r_{s} \tag{283}\\
m_{r, p} \in \mathbb{N}
\end{array}\right.
$$

with the sum extending to all one-rooted ordered trees ot ${ }_{r, p}$ (counted with their multiplicities) that can be obtained by attaching, in an order compatible manner, the one-rooted trees ot ${ }_{r_{2}}, k_{2}, \ldots$, ot $_{r_{s}, k_{s}}$ to the one-rooted tree ot ${ }_{r_{1}, k_{1}}$ featuring in index position.
"In an order compatible manner" obviously means than two trees ot ${ }_{r_{i}, k_{i}}$, ot ${ }_{r_{j}, k_{j}}$ should never be attached to two nodes of ot ${ }_{r_{1}, k_{1}}$ located in reverse order, and that, if attached to the same node, the order $i<j$ should be respected. Of course, some trees ot $r_{r, p}$ may occur several times ($m_{r, p}>1$) or none at all $\left(m_{r, p}=0\right)$. In the special case of just two trees, we fall back, signs aside, to the formula:

$$
\operatorname{calt}_{A_{1}}\left(A_{2}^{\bullet}\right)=-\operatorname{dle}\left(A_{1}^{\bullet}, A_{2}^{\bullet}\right)
$$

So, if the 'generalised' counter-alternators $C \hat{a} l t_{r, k}$ do not produce anything really new, why bother with them? The answer is that they are needed to bridge the gap between the $d m e$ - and $m d e$-products of one-rooted basis elements:

Proposition 6.4 (From dme to mde).
For any number of one-rooted trees ot $_{r_{i}, k_{i}}\left(1 \leqslant k_{i} \leqslant \kappa_{r_{i}-1}\right)$, the identity holds:

$$
\begin{equation*}
\overrightarrow{\operatorname{mde}}\left(\hat{o ̂ t e}_{r_{1}, k_{1}}^{\bullet}, \ldots, \text { ôte }_{r_{s}, k_{s}}^{\bullet}\right)=\sum_{1 \leqslant k \leqslant \kappa_{r}}^{r=r_{1}+\ldots+r_{s}} \text { Câlt }_{r, k}\left(\hat{\text { ote }}_{r_{s}, k_{s}}^{\bullet}, \ldots, \text { ôte }_{r_{1}, k_{1}}^{\bullet}\right) \tag{284}
\end{equation*}
$$

Note the order reversion on both sides of (284). Note further that, although all arguments are one-rooted $\left(k_{i} \leqslant \kappa_{r_{i}-1}\right)$, the sum in (284) extends to all trees ot ${ }_{r, k}$, one- or many-rooted: all are required. Note lastly that, due to the preceding Proposition 6.3, each term on the right-hand side of (284) reduces to a sum of basis elements ôte ${ }_{r, k}^{\bullet}$. The involutive identity (284) therefore does exactly what was requested of it: expressing $\overrightarrow{m d e}$ products in terms of $\underset{d m e}{\leftarrow}$ ones.

Remark 5: Neither Proposition 6.3 nor Proposition 6.4 would hold if we were to replace the pair (câlt, Câlt) by a similarly constructed pair (călt, Călt) or ($c \bar{a} l t, C \bar{a} l t)$. This again goes to show the privileged status of the first counteralternator.

6.7 Stacked trees and co-degree stratification.

Gradation of Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ by codegree.

In view of what precedes, the subspaces $\widetilde{\text { Flex }_{\text {root }}^{(d)}}\left(\mathbb{E}^{\bullet}\right)$ of Flex root $\left(\mathfrak{E}^{\bullet \bullet}\right)$ spanned by the basis elements $\hat{s} t e_{r, d^{\prime}, k}^{\bullet}$ corresponding to one-rooted stacked trees $\hat{s} t e_{r, d^{\prime}, k}^{\bullet}$ with $d^{\prime} \leqslant d$ clearly constitute a filtration by codegree of Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$. In fact, the smaller Flex root $\left(\mathfrak{E}^{(d)}\right)$ spanned by the sole elements $s t e_{r, d^{\prime}, k}^{\bullet}$ constitute a genuine polyalgebra gradation of Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$, in view of numerous inclusions of type:

$$
\begin{array}{rll}
\operatorname{lu}\left(\text { Flex }_{\text {root }}^{\left(d_{1}\right)}\left(\mathfrak{E}^{\bullet}\right), \text { Flex }_{\text {root }}^{\left(d_{2}\right)}\left(\mathfrak{E}^{\bullet}\right)\right) & \subset \text { Flex }_{\text {root }}^{\left(d_{1}+d_{2}-1\right)}\left(\mathfrak{E}^{\bullet}\right) \\
\operatorname{ari}\left(\text { Flex }_{\text {root }}^{\left(d_{1}\right)}\left(\mathfrak{E}^{\bullet}\right), \text { Flex }_{\text {root }}^{\left(d_{2}\right)}\left(\mathfrak{E}^{\bullet}\right)\right) & \subset \text { Flex root }_{\left(d_{1}+d_{2}-1\right)}^{\left(\mathfrak{E}^{\bullet}\right)} \tag{286}
\end{array}
$$

Free generation of Flex $\left(\mathfrak{E}^{\bullet}\right)$ from Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$.

The whole of Flex $\left(\mathfrak{E}^{\bullet}\right)$ can be freely generated from $F l e x_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ under either of the pre-associative products $d m e$ and $m d e$, in the sense that each many-rooted $\hat{s} t e_{r, d, k}^{\bullet}$ admits these two exressions, each of them unique:

$$
\begin{align*}
& \hat{\text { ste }} \stackrel{\bullet}{r, d, k}=\stackrel{\text { dme }}{\leftarrow}\left(\hat{\text { ste }}_{\boldsymbol{r}_{1}, d_{1}, k_{1}}^{\bullet}, \ldots, \hat{\text { ste }}_{\boldsymbol{r}_{s}, d_{s}, k_{s}}^{\bullet}\right) \tag{287}\\
& \hat{\text { ste }}_{r, d, k}^{\bullet}=\sum \beta_{r_{1}, d_{1}, k_{1} ; \ldots, r_{s}, d_{s}, k_{s}} \quad \overrightarrow{\operatorname{mde}}\left(\hat{\text { ste }_{r_{1}, d_{1}, k_{1}}^{\bullet}, \ldots, \hat{\text { ste}}_{r_{s}, d_{s}, k_{s}}^{\bullet}}\right)^{\bullet} \tag{288}
\end{align*}
$$

with $2 \leqslant s, \sum r_{i}=r, \sum d_{i}=d, \hat{\text { ste}}_{r_{i}, d_{i}, k_{i}}^{\bullet} \in$ Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ and with integer coefficients $\beta_{r_{1}, d_{1}, k_{1} ; \ldots, r_{s}, d_{s}, k_{s}} \in \mathbb{Z}$ calculable by (283) and (284)

Gradation of Flex $\left(\mathfrak{E}^{\bullet}\right)$ by codegree.

Here again, rather than a mere filtration of Flex $\left(\mathbb{E}^{\bullet}\right)$ by codegree, we have a genuine gradation by the subspaces Flex $^{(d)}\left(\mathfrak{E}^{\bullet}\right)$ spanned all the (one- or manyrooted) basis elements $s t e_{r, d, k}^{\bullet}$.

6.8 Improbable explicitness of the basis changes.

From binary to ordered trees, and back.
Set as usual $\kappa_{r}:=\frac{(2 r)!}{r!(r+1)!}$ and consider on Flex $_{r}\left(\mathbb{E}^{\bullet}\right)$ the basis changes

$$
\begin{array}{ll}
\text { ote }_{r, p}^{\bullet}=\sum_{1 \leqslant q \leqslant \kappa_{r}} \operatorname{mob}_{r}^{p, q} \text { bte }_{r, q}^{\bullet} & \text { (binary to ordered) } \\
\text { bte }_{r, p}^{\bullet}=\sum_{1 \leqslant q \leqslant \kappa_{r}} \operatorname{mbo}_{r}^{p, q} \text { ote }{ }_{r, q}^{\bullet} & \text { (ordered to binary) } \tag{290}
\end{array}
$$

and the corresponding matrices $\operatorname{mob}_{r}:=\left[\operatorname{mob}_{r}^{p, q}\right], m b o_{r}:=\left[m b o_{r}^{p, q}\right]$.
Proposition 6.5 (Properties of the matrices $m o b_{r}$ and $m b o_{r}$).
$\left(\mathcal{P}_{0}\right) \operatorname{det}\left(\operatorname{mob}_{r}\right)=\operatorname{det}\left(\operatorname{mbo}_{r}\right) \in\{1,-1\}$
$\left(\mathcal{P}_{1}\right) \operatorname{mob}_{r}$ has all its coefficients $\operatorname{mob}_{r}^{p, q}$ in $\{0,1,-1\}$
$\left(\mathcal{P}_{2}\right) \mathrm{mbo}_{r}$ has only integer, non-negative coefficients $\mathrm{mbo}_{r}^{p, q}$
$\left(\mathcal{P}_{3}\right) \sum_{1 \leqslant p, q \leqslant \kappa_{r}} \operatorname{mob}_{r}^{p, q} \equiv 1$
$\left(\mathcal{P}_{3}^{\prime}\right) \sum_{1 \leqslant p, q \leqslant \kappa_{r}}\left|\operatorname{mob}_{r}^{p, q}\right| \equiv \sum_{0 \leqslant k \leqslant r-1} \frac{(r+k-1)!(r-k)}{r!k!} 2^{k}$
$\left(\mathcal{P}_{4}\right) \sum_{1 \leqslant p, q \leqslant \kappa_{r}} \operatorname{mbo}_{r}^{p, q} \equiv 1 \times 3 \times 5 \times \cdots \times(2 r-1)$
$\left(\mathcal{P}_{5}\right) \sum_{1 \leqslant p \leqslant \kappa_{r}} \operatorname{mob}_{r}^{p, q}=\left\{\begin{array}{lll}1 & \text { if } & q=1 \\ 0 & \text { if } & q>1\end{array}\right.$
$\left(\mathcal{P}_{5}^{\prime}\right) \sum_{1 \leqslant p \leqslant \kappa_{r}}\left|\operatorname{mob}_{r}^{p, q}\right|=2^{r-\#\left(\text { leftmost branch of } \mathrm{bt}_{r, q}\right)}$
$\left(\mathcal{P}_{6}\right) \sum_{1 \leqslant p \leqslant \kappa_{r}} \operatorname{mbo}_{r}^{p, q}=\frac{r!}{\left(\operatorname{ot}_{r, q}\right)!} \in \mathbb{N}$

Remarkably, it is not the q-sums (rows) but the p-sums of the matrix elements that admit simple expressions.

In $\left(\mathcal{P}_{5}^{\prime}\right)$, the p-sum is equal to 1 if all the binary tree $b t_{r, q}$ consists of a single left-leaning branch, and in general it is equal to 2 to the number of nodes off the left-most branch of $b t_{r, q}$.

In $\left(\mathcal{P}_{6}\right)$, the expression of the p-sum involves the factorial of the ordered tree $o t_{r, q}$, defined in the usual way:

$$
\begin{equation*}
(\mathrm{ot})!:=\prod_{i \in \operatorname{Nodes}(\mathrm{ot})}\left(\sum_{i \leqslant \mathrm{ot}_{j}} 1\right) \quad(\mathrm{ot} \in \mathbb{O T}) \tag{291}
\end{equation*}
$$

with $\leqslant^{\text {ot }}$ denoting the partial order on Nodes(ot) induced by the vertical ${ }^{41}$ tree structure of ot. Note that the ratio $r!/(o t)!$ is also equal to the number of total orders on Nodes(ot) that are compatible with the (vertical) partial order on ot.

Proposition 6.6 (Making the matrices $o b_{r}$ and $b o_{r}$ triangular).
If we adopt on the binary trees the k-indexation induced by (252) and on the ordered trees the k-indexation induced by (254), then the matrices mob_{r} and mbo_{r} become upper-triangular, with all diagonal entries equal to 1.

Proposition 6.7 (Direct calculation of the matrix entries in $m o b_{r}$). Here is an algorithm for turning binary trees $\mathrm{bt}_{r, q}$ into linear combinations

$$
\text { fold }^{\infty}\left(\mathrm{bt}_{r, q}\right)=\sum_{p} \operatorname{mob}_{r}^{p, q} \text { ot }_{r, p} \quad\left\{\begin{array}{l}
\mathrm{ob}_{r, q} \mathbb{B} \mathbb{T} ; \text { ot }_{r, q} \mathbb{O T} ; \tag{292}\\
\operatorname{mob}_{r}^{p, q} \in\{0,1,-1\}
\end{array}\right.
$$

of ordered trees ot ${ }_{r, q}$ that carries all the information about the matrix entries $\operatorname{mob}_{r}^{p, q}$. The procedure applies recursively a linear operator fold to produce, at each step s, linear combinations

$$
\begin{equation*}
\operatorname{fold}^{s}\left(\mathrm{bt}_{r, q}\right)=\sum_{1 \leqslant k \leqslant 2^{s} n_{1} . . n_{s}} \epsilon_{r, s}^{q, k} \text { obt }_{r, k} \quad \text { with } \quad \epsilon_{r, s}^{q, k} \in\{0,1,-1\} \tag{293}
\end{equation*}
$$

of hybrid trees $\mathrm{obt}_{r, k}$ - part binary, part ordered - with the 'binary tree' aspect decreasing at eack step s , and the 'ordered tree' aspect becoming dominant towards the end. We also require the notion of anchor. For any node x of a binary tree, let $x^{\prime}, x^{\prime \prime}$ etc denote the successive antecedent nodes. The anchor x^{*} of x is the first node $x^{(l)}$ not aligned with the earlier antecedents. Each node that lies outside the leftmost and rightmost branches possesses a well-defined anchor. ${ }^{42}$

- Step 0: We mark all the n_{1} nodes x that lie ouside the leftmost branch of $\mathrm{bt}_{r, q}$ as movable by writing them in boldface: $x \rightarrow \boldsymbol{x}$. If $\mathrm{bt}_{r, q}$ has a non-void right branch issuing from its root x_{0}, we attach x_{0} (and with it the whole of $\mathrm{bt}_{r, q}$) to a new root x_{00} so as to get a new tree $\mathrm{bt}_{r+1, q}$, all movable nodes of which possess an anchor.

[^28]- Step 1: We take each one of the movable nodes x located at end points of $\mathrm{ob}_{r, q}$ and
(i) either leave it in place after unmarking and overlining it: $\boldsymbol{x} \rightarrow \bar{x}$
(ii) or we detach it from it direct antecedent x^{\prime} and attach it properly ${ }^{43}$ to its anchor, after unmarking and underlining it: $\boldsymbol{x} \rightarrow \underline{x}$.
This results in an expansion of type:

$$
\begin{equation*}
\operatorname{fold}\left(\mathrm{bt}_{r, q}\right)=\sum_{1 \leqslant k \leqslant 2 n_{1}} \epsilon_{r, 1}^{q, k} \text { obt }_{r, k} \quad \text { with } \quad \epsilon_{r, 1}^{q, k} \in\{1,-1\} \tag{294}
\end{equation*}
$$

with coefficients defined in this way:

- Step s: We repeat the procedure of Step 1 for each of the hybrid trees obt $t_{r, k}$ featuring in the expansion of type (294) obtained at Step s-1. Each such obt $t_{r, k}$ possesses the same number n_{s} of (still untouched) movable nodes \boldsymbol{x} situated in extreme position, i.e. at end points or with succesors that are all of type \bar{y} (movable points previously unmarked). These new \boldsymbol{x} are the ones that get unmarked at step s. They are either kept in place and overlined ($\boldsymbol{x} \rightarrow \bar{x}$) or properly attached to their anchors x^{*} and underlined $(\boldsymbol{x} \rightarrow \underline{x})$. In this way, the various hybrid obt $t_{r, k}$ from the preceding step producs n_{s} new hybrid trees, each preceded by a \pm sign calculated according to the rules (295).
- Final step: When we reach the stage when all the movable points have been unmarked, we are left with an expansion (294) where all the hybrid trees obt ${ }_{r, k}$ have completely shed their 'binary' nature. In other words, we have exactly the expansion (292) which we had set out to construct. However, if we had to introduce an additional root x_{00} at Step 0, we must now remove it and replace each one-rooted tree ot $=\mathfrak{h}\left(\right.$ ot $_{r_{1}, q_{1}}, \ldots$, ot $\left._{r_{s}, q_{s}}\right)$ by the juxtaposition $\mathfrak{j}\left(\mathrm{ot}_{r_{1}, q_{1}}, \ldots\right.$, ot $\left._{r_{s}, q_{s}}\right)$ of the various branches ot ${ }_{r_{i}, q_{i}}$ which may, in the course of the successive 'foldings', have attached themselves to x_{00} as their anchor.

Remark 1: 'Properly' attaching a movable node \boldsymbol{x} to its anchor $x^{*}=x^{(l)}$ means two things:
(i) If the original twig $\left(x^{\prime}, \boldsymbol{x}\right)$ is rigth-leaning (resp. leftleaning), then after detaching \boldsymbol{x} from its immediate antecedent x^{\prime} and attaching it to its anchor $x^{(l)}$, the new twig $\left(x^{(l)}, \underline{x}\right)$ must be squeezed between the twig $\left(x^{(l)}, x^{(l-1)}\right)$ and the various twigs which may already originate from $x^{(l)}$ to the right (resp. to the left) of $\left(x^{(l)}, x^{(l-1)}\right)$ as a result of previous relocations.
(ii) The movable node \boldsymbol{x} doesn?t migrate alone to its anchor $x^{*}=x^{(l)}$ but it carries with it the whole branch of previously unmarked and left-in-place nodes

[^29]$\bar{x}_{1}, \bar{x}_{2} \ldots$ which may be attached to it. That branch, though originally endowed with a binary tree structure, should henceforth be viewed as an ordered tree.

Provided we take these precautions, it doesn't matter in which order we detach and re-attach the various movable nodes at step s. But, at any given step, we must re-locate only the movable nodes situated in extreme position. Re-locating other, non-extremal nodes 'before time' would lead to completely wrong results.

Remark 2: The expansion (292) always contain on the right-hand side one ordered tree ot $r_{r, p}$ that coincides with the binary tree $\mathrm{bt}_{r, q}$ of the left-hand side, but stripped of its 'binary' structure, and preceded by a + (resp. -) sign if the original $\mathrm{bt}_{r, q}$ carries an even (resp. odd) number of right-leaning unit twigs.

Let us now give a series of examples to cover all the intricacies of the 'folding' procedure ${ }^{44}$ of Proposition 6.7. Trees (whether binary, ordered, or mixed) are represented by (clumsy but unambiguous) parenthesisings, of type (...) for onerooted and (...)...(..) for many-rooted trees. Each node is assigned a number ${ }^{45}$. The over- and underlinings are there simply to keep track of the folding history.

Here is an example with just two movable nodes and no need for an auxiliary root x_{00}.

$$
\begin{array}{rlll}
f:((1,(\mathbf{2},(\mathbf{3}))), 4) & \mapsto & \pm((1,(\mathbf{2},(\overline{3}))), 4) \pm((1,(\mathbf{2})), 4,(\underline{3})) \\
f^{2}:((1,(\mathbf{2},(\mathbf{3}))), 4) & \mapsto & \left\{\begin{array}{l}
+((1,(\overline{2},(\overline{3}))), 4)-((1), 4,(\underline{2},(\overline{3}))) \\
-((1,(\overline{2})), 4,(\underline{3}))+((1),(\underline{2}), 4,(\underline{3}))
\end{array}\right.
\end{array}
$$

Here we have three movable nodes and require an auxiliary root.

$$
\begin{array}{rlll}
f:(1,(((\mathbf{2}), \mathbf{3}), \mathbf{4})) & \mapsto & \pm(1,(((\overline{2}), \mathbf{3}), \mathbf{4})) \pm((\underline{2}), 1,((\mathbf{3}), \mathbf{4})) \\
f^{2}:(1,(((\mathbf{2}), \mathbf{3}), \mathbf{4})) & \mapsto & \left\{\begin{array}{l}
\pm(1,(((\overline{2}), \overline{3}), \mathbf{4})) \pm(((\overline{2}), \underline{3}), 1,(\mathbf{4})) \\
\pm((\underline{2}), 1,((\overline{3}), \mathbf{4})) \pm((\underline{2}),(\underline{3}), 1,(\mathbf{4}))
\end{array}\right. \\
f^{3}:(1,(((\mathbf{2}), \mathbf{3}), \boldsymbol{4})) & \mapsto & \left\{\begin{array}{l}
-(1,((\overline{2}), \overline{3}), \overline{4}))+\{(1) ;(((\overline{2}), \overline{3}), \underline{4})\} \\
+((\overline{2}), \underline{3}), 1,(\overline{4}))-\{(((\overline{2}), \underline{3}), 1) ;(\underline{4})\} \\
+((\underline{2}), 1,((\overline{3}), \overline{4}))-\{((\underline{2}), 1) ;((\overline{3}), \underline{4})\} \\
-((\underline{2}),(\underline{3}), 1,(\overline{4}))+\{((\underline{2}),(\underline{3}), 1) ;(\underline{4})\}
\end{array}\right.
\end{array}
$$

Here, we have again three movable nodes, but they are disposed of in just two

[^30]steps.
\[

\left.\left.\left.$$
\begin{array}{rl}
f:(1,((\mathbf{2}), \mathbf{3},(\mathbf{4}))) & \mapsto
\end{array}
$$ $$
\begin{array}{l}
\pm(1,((\overline{2}), \mathbf{3},(\overline{4}))) \pm\{(1,((\overline{2}), \mathbf{3})) ;(\underline{4})\} \\
\pm((\underline{2}), 1,(\mathbf{3},(\overline{4}))) \pm\{((\underline{2}), 1,(\mathbf{3})) ;(\underline{4})\}
\end{array}
$$\right\} $$
\begin{array}{l}
+(1,((\overline{2}), \overline{3},(\overline{4})))-\{(1) ;((\overline{2}), \underline{3},(\overline{4}))\}
\end{array}
$$\right\} $$
\begin{array}{l}
-\{(1,((\overline{2}), \overline{3})) ;(\underline{4})\}+\{(1) ;((\overline{2}), \underline{3}) ;(\underline{4})\} \\
f^{2}:(1,((\mathbf{2}), \mathbf{3},(\mathbf{4})))
\end{array}
$$\right) \mapsto $$
\begin{aligned}
& -((\underline{2}), 1,(\overline{3},(\overline{4})))+\{((\underline{2}), 1) ;(\underline{3},(\overline{4}))\} \\
& +\{((\underline{2}), 1,(\overline{3})) ;(\underline{4})\}-\{((\underline{2}), 1) ;(\underline{3}) ;(\underline{4})\}
\end{aligned}
$$ ~ ل
\]

The next case, with four movable nodes, it the simplest example to illustrate the caveat of Remark 1 on how to 'properly' attach movable nodes to their anchors. Disregarding it would yield wrong results.

$$
\begin{aligned}
& f:(((1,(\mathbf{2})), 3,(((\mathbf{4}), \mathbf{5}), \mathbf{6})), 7) \mapsto \\
& \left\{\begin{array}{l}
\pm(((1,(\overline{2})), 3,(((\overline{4}), \boldsymbol{5}), \boldsymbol{6})), 7) \pm(((1), 3,(\underline{2}),(((\overline{4}), \mathbf{5}), \mathbf{6})), 7) \\
\pm(((1,(\overline{2})), 3,(\underline{4}),((\mathbf{5}), \mathbf{6})), 7) \pm(((1), 3,(\underline{2}),(\underline{4}),((\mathbf{5}), \mathbf{6})), 7)
\end{array}\right. \\
& f^{2}:(((1,(\mathbf{2})), 3,(((\mathbf{4}), \mathbf{5}), \mathbf{6})), 7) \mapsto \\
& \left\{\begin{array}{l}
+(((1,(\overline{2})), 3,(((\overline{4}), \overline{5}), \boldsymbol{6})), 7)-(((1,(\overline{2})), 3,((\overline{4}), \underline{5}),(\mathbf{6})), 7) \\
-(((1), 3,(\underline{2}),(((\overline{4}), \overline{5}), \boldsymbol{6})), 7)+(((1), 3,(\underline{2}),((\overline{4}), \underline{5}),(\mathbf{6})), 7) \\
-(((1,(\overline{2})), 3,(\underline{4}),((\overline{5}), \boldsymbol{6})), 7)+(((1,(\overline{2})), 3,(\underline{4}),(\underline{5}),(\mathbf{6})), 7) \\
+(((1), 3,(\underline{2}),(\underline{4}),((\overline{5}), \boldsymbol{6})), 7)-(((1), 3,(\underline{2}),(\underline{4}),(\underline{5}),(\mathbf{6})), 7)
\end{array}\right. \\
& f^{3}:(((1,(\mathbf{2})), 3,(((\mathbf{4}), \mathbf{5}), \mathbf{6})), 7) \mapsto \\
& \left\{\begin{array}{l}
+(((1,(\overline{2})), 3,(((\overline{4}), \overline{5}), \overline{6})), 7)-(((1,(\overline{2})), 3),(((\overline{4}), \overline{5}), \underline{6}), 7) \\
-(((1,(\overline{2})), 3,((\overline{4}), \underline{5}),(\overline{6})), 7)+(((1,(\overline{2})), 3,((\overline{4}), \underline{5})),(\underline{6}), 7) \\
-(((1), 3,(\underline{2}),(((\overline{4}), \overline{5}), \overline{6})), 7)+(((1), 3,(\underline{2})),(((\overline{4}), \overline{5}), \underline{6}), 7) \\
+(((1), 3,(\underline{2}),((\overline{4}), \underline{5}),(\overline{6})), 7)-(((1), 3,(\underline{2}),((\overline{4}), \underline{5})),(\underline{6}), 7) \\
-(((1,(\overline{2})), 3,(\underline{4}),((\overline{5}), \overline{6})), 7)+(((1,(\overline{2})), 3,(\underline{4})),((\overline{5}), \underline{6}), 7) \\
+(((1,(\overline{2})), 3,(\underline{4}),(\underline{5}),(\overline{6})), 7)-(((1,(\overline{2})), 3,(\underline{4}),(\underline{5})),(\underline{6}), 7) \\
+(((1), 3,(\underline{2}),(\underline{4}),((\overline{5}), \overline{6})), 7)-(((1), 3,(\underline{2}),(\underline{4})),((\overline{5}), \underline{6}), 7) \\
-(((1), 3,(\underline{2}),(\underline{4}),(\underline{5}),(\overline{6})), 7)+(((1), 3,(\underline{2}),(\underline{4}),(\underline{5})),(\underline{6}), 7)
\end{array}\right.
\end{aligned}
$$

This last example, after the introduction of an auxiliary root $x_{00}=x_{7}$, takes us back to the preceding case and shows how, after removal of x_{7}, we are left with
eight one-rooted and eight multi-rooted trees.

$$
\begin{aligned}
& f^{3}:((1,(\mathbf{2})), 3, \\
& \qquad \begin{array}{l}
((\mathbf{4}), \mathbf{5}), \mathbf{6})) \mapsto \\
\\
+((1,(\overline{2})), 3,(((\overline{4}), \overline{5}), \overline{6}))-\{((1,(\overline{2})), 3) ;(((\overline{4}), \overline{5}), \underline{6})\} \\
-((1,(\overline{2})), 3,((\overline{4}), \underline{5}),(\overline{6}))+\{((1,(\overline{2})), 3,((\overline{4}), \underline{5})) ;(\underline{6})\} \\
-((1), 3,(\underline{2}),(((\overline{4}), \overline{5}), \overline{6}))+\{((1), 3,(\underline{2})) ;(((\overline{4}), \overline{5}), \underline{6})\} \\
\\
+((1), 3,(\underline{2}),((\overline{4}), \underline{5}),(\overline{6}))-\{((1), 3,(\underline{2}),((\overline{4}), \underline{5})) ;(\underline{6})\} \\
-((1,(\overline{2})), 3,(\underline{4}),((\overline{5}), \overline{6}))+\{((1,(\overline{2})), 3,(\underline{4})) ;((\overline{5}), \underline{6})\} \\
+((1,(\overline{2})), 3,(\underline{4}),(\underline{5}),(\overline{6}))-\{((1,(\overline{2})), 3,(\underline{4}),(\underline{5})) ;(\underline{6})\} \\
+((1), 3,(\underline{2}),(\underline{4}),((\overline{5}), \overline{6}))-\{((1), 3,(\underline{2}),(\underline{4})) ;((\overline{5}), \underline{6})\} \\
-((1), 3,(\underline{2}),(\underline{4}),(\underline{5}),(\overline{6}))+\{((1), 3,(\underline{2}),(\underline{4}),(\underline{5})) ;(\underline{6})\}
\end{array}
\end{aligned}
$$

Remark 3: There exists a similar algorithm, also based on tree surgery, for calculating the matrix entries $m b o_{r}^{p, q}$.

From ordered to stacked trees.

The equivalence, for each r, of the systems $\left\{o t_{r, k}\right\}$ (for ordered trees) and $\left\{s t_{r, d, k}\right\}$ (for stacked trees) isn't far-fetched. Indeed:

- They both have the same dimension $\kappa_{r}:=\frac{(2 r)!}{r!(r+1)!}$.
- We have shown that the $o t_{r, k}$, being independent, form a basis of $\mathbb{O} \mathbb{T}_{r}$.
- If, in the recursive construction of $\left\{s t_{r, d, k}\right\}$, we divide each symmetrised product by the number of summands, we get an equivalent system $\left\{s t_{r, d, k}^{*}\right\}$, but the matrix that takes us from $\left\{s t_{r, d, k}^{*}\right\}$ to $\left\{o t_{r, k}\right\}$ is now guaranteed to have its determinant equal to ± 1.

6.9 Scalar product on trees.

The correspondence between Flex $\left(\mathfrak{E}^{\bullet}\right)$ and $\mathbb{B T}_{t}$ (binary trees; see $\S 6.2$) or $\mathbb{O T}_{r}$ (ordered trees; see §6.3) makes it possible to define on trees extremely useful scalar products. Let us give here just one example.

Consider the 'flat' flexion unit Flat':

$$
\begin{equation*}
\operatorname{Flat}^{\left({ }_{v_{1}}^{v_{1}}\right)}:=\frac{1}{2}\left(\operatorname{sign}\left(u_{1}\right)+\operatorname{sign}\left(v_{1}\right)\right) \quad\left(u_{1}, v_{1} \in \mathbb{R}\right) \tag{296}
\end{equation*}
$$

Viewed as an almost everywhere defined function, it does indeed verify a flexion unit's functional identities (see $\S 4.5$). Let us set, with self-explanatory notations:

$$
\begin{align*}
\operatorname{mbt}_{r}^{p, q} & :=\frac{1}{2^{r}} \int_{\left|u_{i}\right|<1,\left|v_{i}\right|<1} \text { btflat }_{r, p}^{\boldsymbol{w}} \text { btflat }_{r, q}^{\boldsymbol{w}} d u_{1} \ldots d u_{r} d v_{1} \ldots d v_{r} \tag{297}\\
\operatorname{mot}_{r}^{p, q} & :=\frac{1}{2^{r}} \int_{\left|u_{i}\right|<1,\left|v_{i}\right|<1} \hat{o t f l a t}_{r, p}^{\boldsymbol{w}} \hat{o t f l a t}_{r, q}^{\boldsymbol{w}} d u_{1} \ldots d u_{r} d v_{1} \ldots d v_{r} \tag{298}
\end{align*}
$$

These elementary integrals induce scalar products on $\mathbb{B} \mathbb{T}_{r}$ and $\mathbb{O} \mathbb{T}_{r}$:

$$
\begin{align*}
\left\langle\mathrm{bt}_{r, p}, \mathrm{bt}_{r, p}\right\rangle: & =\operatorname{mbt}_{r}^{p, q} & & \left(\mathrm{bt}_{r, p}, \mathrm{bt}_{r, q} \in \mathbb{B T}_{r}\right) \tag{299}\\
\left\langle\mathrm{ot}_{r, p}, \text { ot }_{r, p}\right\rangle: & =\operatorname{mot}_{r}^{p, q} & & \left(\text { ot }_{r, p}, \text { ot }_{r, q} \in \mathbb{O T}_{r}\right) \tag{300}
\end{align*}
$$

Here are the matrices $m b t_{r}:=\left[m b t_{r}^{p, q}\right]$ and $m \hat{o} t_{r}:=\left[m \hat{o} t_{r}^{p, q}\right]$ up to $r=3:$

$$
\begin{aligned}
& \operatorname{mbt}_{2}=\frac{1}{4}\left[\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right], \quad \text { môt }_{2}=\frac{1}{4}\left[\begin{array}{rr}
8 & -4 \\
-4 & 3
\end{array}\right] \\
& \operatorname{mbt}_{3}=\frac{1}{8}\left[\begin{array}{rrrrr}
\frac{13}{3} & -2 & -\frac{3}{2} & -\frac{7}{18} & \frac{8}{9} \\
-2 & \frac{13}{3} & \frac{1}{2} & -\frac{10}{9} & -\frac{7}{18} \\
-\frac{3}{2} & \frac{1}{2} & \frac{14}{3} & \frac{1}{2} & -\frac{3}{2} \\
-\frac{7}{18} & -\frac{10}{9} & \frac{1}{2} & \frac{13}{3} & -2 \\
\frac{8}{9} & -\frac{7}{18} & -\frac{3}{2} & -2 & \frac{13}{3}
\end{array}\right] \\
& \text { môt }_{3}=\frac{1}{8}\left[\begin{array}{rrrrr}
\frac{238}{9} & -\frac{65}{9} & -\frac{119}{9} & -6 & \frac{137}{18} \\
-\frac{65}{9} & \frac{82}{9} & \frac{65}{18} & -\frac{11}{2} & -\frac{8}{9} \\
-\frac{119}{9} & \frac{65}{18} & \frac{38}{3} & 2 & -\frac{19}{3} \\
-6 & -\frac{11}{2} & 2 & \frac{34}{3} & -\frac{23}{6} \\
\frac{137}{18} & -\frac{8}{9} & -\frac{19}{3} & -\frac{23}{6} & \frac{13}{3}
\end{array}\right]
\end{aligned}
$$

7 Filtration by co-degree. Dimensions.

7.1 Filtrations, gradations, dimensions: a road map.

We have already encountered the filtration/gradation of the polygebras Flex (\mathfrak{E}^{\bullet}) and Flex ${ }^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ by depth r and alternality co-degree d :

$$
\begin{aligned}
\operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right) & =\oplus_{r, d} \operatorname{Flex}_{r, d}\left(\mathfrak{E}^{\bullet}\right) \text { with } \operatorname{Flex}_{r, d}\left(\mathfrak{E}^{\bullet}\right) \sim \operatorname{Flex}_{r,(d)}\left(\mathfrak{E}^{\bullet}\right) / \operatorname{Flex}_{r,(d-1)}\left(\mathfrak{E}^{\bullet}\right) \\
\operatorname{Flex}^{\operatorname{root}}\left(\mathfrak{E}^{\bullet}\right) & =\oplus_{r, d} \operatorname{Flex}_{r, d}^{\text {rot }}\left(\mathfrak{E}^{\bullet}\right) \text { with } \operatorname{Flex}_{r, d}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right) \sim \operatorname{Flex}_{r,(d)}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right) / \operatorname{Flex}_{r,(d-1)}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)
\end{aligned}
$$

Recall that $\operatorname{Flex}_{r,(d)}\left(\mathfrak{E}^{\bullet}\right)$ and $F l e x_{r,(d)}^{r o t}\left(\mathfrak{E}^{\bullet}\right)$ denote the subspaces whose elements have depth r and co-degree at most d (filtration), while Flex $x_{r, d}\left(\mathfrak{E}^{\bullet}\right)$ and Flex $_{r, d}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ denote the natural incarnation ${ }^{46}$ of the corresponding quotients (gradation).

Our aim in this section is to calculate the dimensions of the above subspaces. These dimensions matter on many counts - as important features of Flex (E゚ $)$; as key to the structure of the pre-associative algebras in general (cf §10); and because of the rich combinatorics involved in their calculation.

Now, it will turn out that:

[^31]- The proper numbers to consider are the dimensions corresponding to the gradation rather than the filtration.
- The hard part is to find the dimensions on Flex $^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$; those on Flex $\left(\mathfrak{E}^{\bullet}\right)$ easily follow.
- The pertinent indexation for the dimensions on Flex $\left(\mathfrak{E}^{\bullet}\right)$ is by the codegree d and on Flex ${ }^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ by the shifted co-degree $\delta:=d-1$.
- While there exist no manageable, closed expressions for the dimensions themselves, such formulae, fairly complex yet elegant, do exist for their simple generating series (in r) and even more so for their double generating series (in r and d),

So we are justified in setting:

$$
\begin{array}{lllll}
\gamma_{r, \delta}:=\operatorname{dim}\left(\mathrm{Flex}_{r, \delta+1}^{\mathrm{root}}\left(\mathfrak{E}^{\bullet}\right)\right) & \| & \gamma_{\delta}(t):=\sum \gamma_{r, \delta} t^{r} & \| & \Gamma(t, x):=\sum \gamma_{\delta}(t) x^{\delta} \\
\xi_{r, \delta}:=\operatorname{dim}\left(\mathrm{Flex}_{r, d}\left(\mathfrak{E}^{\bullet}\right)\right) & \| & \xi_{d}(t):=\sum \xi_{r, d} t^{d} & \| & \Xi(t, x):=\sum \xi_{d}(t) x^{d}
\end{array}
$$

We shall proceed as follows:

- Introduce the main tools - the framing function and pilot polynomials needed for the calculations.
- State the main results, with some illustrations.
- Sketch two proofs, one indirect but natural, the other more direct but with a whiff of artificiality about it.
- Provide summary tables at the end of this section, and more extensive ones towards the end of the paper.

7.2 Framing function and pilot polynomials.

Proposition 7.1 (Framing function).

The framing function, defined by the infinite product ${ }^{47}$

$$
\begin{equation*}
\mathcal{F}\left(x ; y_{1}, y_{2}, y_{3}, \ldots\right):=\prod_{1 \leqslant d}\left(1-x^{d} y_{d}\right)^{-\frac{1}{d} \sum_{d_{1} \mid d} \mu\left(\frac{d}{d_{1}}\right) x^{-d_{1}}} \tag{301}
\end{equation*}
$$

may be viewed as a power series of $x, y_{1}, y_{2}, y_{3} \ldots$ It admits a factorisation:

$$
\begin{equation*}
\mathcal{F}\left(x ; y_{1}, y_{2}, y_{3}, \ldots\right)=\mathcal{P}\left(x ; y_{1}, y_{2}, y_{3}, \ldots\right) \exp \left(\sum_{1 \leqslant n} \frac{1}{n} y_{n}\right) \tag{302}
\end{equation*}
$$

[^32]into an elementary exponential and a factor \mathcal{P} which itself possesses a rather elementary logarithm:
\[

$$
\begin{align*}
\mathcal{P}\left(x ; y_{1}, y_{2}, y_{3}, \ldots\right) & =1+\sum_{1 \leqslant n} x^{n} P_{n}\left(y_{1}, \ldots, y_{2 n}\right) & \left(P_{n} \text { polynomial }\right) \tag{303}\\
\log \mathcal{P}\left(x ; y_{1}, y_{2}, y_{3}, \ldots\right) & =\sum_{1 \leqslant n} x^{n} L_{n}\left(y_{1}, \ldots, y_{2 n}\right) & \left(L_{n} \text { polynomial }\right) \tag{304}
\end{align*}
$$
\]

Each 'pilot polynomial' P_{n} and L_{n} splits into 'homogeneous' and highly lacunary ${ }^{48}$ components $\mathrm{L}_{r, d}$ and $\mathrm{P}_{r, d}$:

$$
\begin{align*}
& P_{n}(\boldsymbol{y})=\sum_{n<d \leqslant 2 n} P_{n, d}(\boldsymbol{y}) \tag{305}\\
& L_{n}(\boldsymbol{y})=\sum_{\delta \mid n} L_{n, n+\delta}(\boldsymbol{y}) \text { with } L_{n, n+\delta}(\boldsymbol{y})=\frac{1}{n+\delta} \sum_{\delta_{1} \left\lvert\, \frac{n+\delta}{\delta}\right.} \mu\left(\delta_{1}\right)\left(y_{\delta_{1} \delta}\right)^{\frac{n+\delta}{\delta_{1} \delta}} \tag{306}\\
& \text { with }\left\{\begin{array}{l}
P_{n, d}\left(y_{1} y, y_{2} y^{2}, \ldots, y_{d} y^{d}\right) \equiv y^{d} P_{n, d}\left(y_{1}, y_{2}, \ldots, y_{d}\right) \\
L_{n, d}\left(y_{1} y, y_{2} y^{2}, \ldots, y_{d} y^{d}\right) \equiv y^{d} L_{n, d}\left(y_{1}, y_{2}, \ldots, y_{d}\right)
\end{array}\right.
\end{align*}
$$

Pilot polynomials.

Though much more complex than the L_{n}, and lacking in closed expressions of type (306), the pilot polynomials P_{n} also matter, by reason of their close relation with the 'copilot polynomials' Q_{n} (see infra) which count the dimensions $\operatorname{dim}\left(\mathbb{E}_{n}^{n_{1}, \ldots, n_{s}}\right)$.

Here are the first four pilot polynomials P_{n} with their n homogeneous parts. For more extensive tables, see $\S 11$.

$$
\begin{aligned}
& P_{1}\left(y_{1}, y_{2}\right):=+\frac{1}{2}\left(y_{1}^{2}-y_{2}\right) \\
& P_{2}\left(y_{1}, . ., y_{4}\right):= \begin{cases}+\frac{1}{3} & \left(y_{1}^{3}-y_{3}\right) \\
+\frac{1}{8} & \left(y_{1}^{4}-2 y_{1}^{2} y_{2}+3 y_{2}^{2}-2 y_{4}\right)\end{cases} \\
& P_{3}\left(y_{1}, . ., y_{6}\right):=\left\{\begin{array}{l}
+\frac{1}{4}\left(y_{1}^{4}-y_{2}^{2}\right) \\
+\frac{1}{6}\left(\begin{array}{l}
6 \\
6
\end{array} y_{3}^{2}\right) \\
+\frac{1}{48}\left\{\begin{array}{l}
+y_{1}^{6}-3 y_{1}^{4} y_{2}+9 y_{1}^{2} y_{2}^{2}-6 y_{1}^{2} y_{4} \\
-7 y_{2}^{3}+6 y_{2} y_{4}+8 y_{3}^{2}-8 y_{6}
\end{array}\right.
\end{array}\right. \\
& P_{4}\left(y_{1}, . ., y_{8}\right):=\left\{\begin{array}{l}
+\frac{1}{5}\left(\begin{array}{l}
\left.y_{1}^{5}-y_{5}\right) \\
+\frac{1}{72}\left\{\begin{array}{l}
+13 y_{1}^{6}-9 y_{1}^{4} y_{2}-8 y_{1}^{3} y_{3} \\
-9 y_{1}^{2} y_{2}^{2}+21 y_{2}^{3}+4 y_{3}^{2}-12 y_{6}
\end{array}\right. \\
+\frac{1}{24}\left(y_{1}^{4}-2 y_{1}^{2} y_{2}+3 y_{2}^{2}-2 y_{4}\right)\left(y_{1}^{3}-y_{3}\right)
\end{array}\right. \\
+\frac{1}{384}\left\{\begin{array}{l}
+y_{1}^{8}-4 y_{1}^{6} y_{2}+18 y_{1}^{4} y_{2}^{2}-12 y_{1}^{4} y_{4}-28 y_{1}^{2} y_{2}^{3} \\
+24 y_{1}^{2} y_{2} y_{4}+32 y_{1}^{2} y_{3}^{2}+25 y_{2}^{4}-32 y_{1}^{2} y_{6} \\
-36 y_{2}^{2} y_{4}-32 y_{2} y_{3}^{2}+32 y_{2} y_{6}+60 y_{4}^{2}-48 y_{8}
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

[^33]Observe that the homogeneous parts $P_{n, d}\left(y_{1}, \ldots, y_{d}\right)$ may be constant in some of their variables y_{i}.

The pilot polynomials possess many remarkable properties, but since these aren't directly relevant to our purpose, we shall mention but a few.

The lowest homogeneous components are $P_{r, r+1}$ are particularly simple, given that they coincide with $L_{r, r+1}$:

$$
\begin{equation*}
P_{r, r+1}\left(y_{1}, \ldots, y_{r+1}\right)=\frac{1}{r+1} \sum_{d \mid r+1} \mu(d)\left(y_{d}\right)^{\frac{r+1}{d}}=L_{r, r+1}\left(y_{1}, \ldots, y_{r+1}\right) \tag{307}
\end{equation*}
$$

The highest homogeneous components, on the other hand, verify:

$$
\begin{equation*}
P_{r, 2 r}(y, \ldots, y)=\frac{1}{2^{r} r!} \prod_{0 \leqslant d \leqslant r-1}\left(y^{2}-y+2 d\right) \tag{308}
\end{equation*}
$$

When y_{1}, \ldots, y_{r} assume distinct integer values picked at random, the fractions $P_{r, d}\left(y_{1}, \ldots, y_{d}\right)$ tend to have large denominators, but the situation changes completely when all y_{i} coincide: for any integer $\mathrm{y}, P_{r, d}(y, \ldots, y)$ is itself an integer ${ }^{49}$ That case gives rise to many special identities such as:

$$
\begin{aligned}
P_{r, d}(1, \ldots, 1) & =0 \quad \forall r, d \\
P_{r, d}(-1, \ldots,-1) & = \begin{cases}1 & \text { if } d=2 r \\
0 & \text { otherwise }\end{cases} \\
P_{r, d}(2, \ldots, 2) & \text { is of the form } \theta(2 r-d)(\in \mathbb{N}) \text { if } \frac{3 r}{2} \leqslant d
\end{aligned}
$$

7.3 Dimensions. Main statements.

Recall the definitions of the generating series

$$
\begin{array}{rlrl}
\gamma_{\delta}(t) & :=\sum_{1 \leqslant r} \gamma_{r, \delta} t^{r} & \text { with } & \gamma_{r, \delta} \\
:=\operatorname{dim}\left(\operatorname{Flex}_{r, \delta+1}^{\mathrm{root}}\left(\mathfrak{E}^{\bullet}\right)\right) \tag{310}\\
\xi_{d}(t) & :=\sum_{1 \leqslant r} \xi_{r, d} t^{r} & \text { with } & \xi_{r, d}
\end{array}
$$

and of their own generating series:

$$
\begin{align*}
& \Gamma(t, x):=\gamma_{0}(t)+\gamma_{1}(t) x+\gamma_{2}(t) x^{2}+\ldots \tag{311}\\
& \Xi(t, x) \quad:=1+\xi_{1}(t) x+\xi_{2}(t) x^{2}+\ldots \tag{312}
\end{align*}
$$

Proposition 7.2 (The series $\xi_{d}(t)$ from the series $\gamma_{\delta}(t)$).
The series $\xi_{d}(t)$ and $\Xi(t, x)$ readily follow from the $\gamma_{d}(t)$ and $\Gamma(t, x)$

$$
\begin{equation*}
\Xi(t, x) \equiv \frac{1}{1-x \Gamma(t, x)} \tag{313}
\end{equation*}
$$

with the x in front of $\Gamma(t, x)$ accounting for the shift $\delta=d-1$.

[^34]We find in particular

$$
\xi_{1}=\gamma_{0} \quad ; \quad \xi_{2}=\gamma_{1}+\gamma_{0}^{2} \quad ; \quad \xi_{3}=\gamma_{2}+2 \gamma_{0} \gamma_{1}+\gamma_{0}^{3} \quad ; \quad \ldots
$$

Proposition 7.3 (Enumerating the alternals) .
All alternals automatically belong to Flex ${ }^{\text {root }}\left(\mathbb{E}^{\bullet}\right)$ and the corresponding dimensions $\gamma_{r, 0} \equiv \xi_{r, 1}$ are inductively calculable from a functional equation verified by the generating series $\gamma_{0}(t)$:

$$
\begin{equation*}
\gamma_{0}(t) \equiv t \exp \left(\gamma_{0}(t)+\frac{1}{2} \gamma_{0}\left(t^{2}\right)+\frac{1}{3} \gamma_{0}\left(t^{3}\right)+\ldots\right) \tag{314}
\end{equation*}
$$

The proof here is straightforward. Since in the basis $\left\{s t e_{r, d, k}^{\bullet}\right\}$ of Flex $\left(\mathfrak{E}^{\bullet}\right)$, the alternal elements $\left\{s t e_{r, d, k}^{\bullet}\right\}$ naturally indexed by unordered rooted trees (elements of $\mathbb{U T}$), we fall back on the induction for generating such trees, and that induction readily translates into the functional equation (313). In any case, (314) is a well-known formula for enumerating the unordered rooted trees.

Proposition 7.4 (General formula: theoretical version).
The general dimensions $\gamma_{r, \delta}$ also are inductively calculable from a functional equation bearing on the double generating series $\Gamma(t, x)$:

$$
\begin{equation*}
\Gamma(t, x) \equiv t \mathcal{F}\left(x ; \Gamma(t, x), \Gamma\left(t^{2}, x^{2}\right), \Gamma\left(t^{3}, x^{3}\right), \ldots\right) \tag{315}
\end{equation*}
$$

Apart from involving the highly complex framing function \mathcal{F}, the functional equation (315) closely resembles (314). Indeed, for $x=0$, (315) reduces to (314). But for all its indisputable elegance, (315) has a drawback: when expanded in powers of x, it expresses any given $\gamma_{r}(t)$ as a polynomial in $\gamma_{1}(t), \ldots, \gamma_{r-1}(t)$ and their first 'dilatees' $\gamma_{i}\left(t^{k}\right)$, but as a full-blown entire function of γ_{0} and its dilatees. ${ }^{50}$

To remedy this, we must replace (315) by the more practical, if less shapely, formula (316) below, which is obtained by factoring away from (315) the equation (314), which is itself but a special case of (315) for $x=0$.

Proposition 7.5 (General formula: practical version).
The double generating function $\Gamma(t, x)$ verifies the functional equation

$$
\Gamma(t, x)=\Gamma_{0}(t, 0) \times\left\{\begin{array}{l}
\exp \left(\sum_{1 \leqslant n} \frac{1}{n}\left(\Gamma\left(t^{n}, x^{n}\right)-\Gamma_{0}\left(t^{n}, 0\right)\right)\right) \times \tag{316}\\
\mathcal{P}\left(x ; \Gamma(t, x), \Gamma\left(t^{2}, x^{2}\right), \Gamma\left(t^{3}, x^{3}\right), \ldots\right)
\end{array}\right.
$$

which may also be written as

$$
\Gamma(t, x)=\gamma_{0}(t) \times\left\{\begin{array}{l}
\exp \left(\sum_{1 \leqslant n} \frac{1}{n}\left(\Gamma\left(t^{n}, x^{n}\right)-\gamma_{0}\left(t^{n}\right)\right)\right) \times \tag{317}\\
\mathcal{P}\left(x ; \Gamma(t, x), \Gamma\left(t^{2}, x^{2}\right), \Gamma\left(t^{3}, x^{3}\right), \ldots\right)
\end{array}\right.
$$

[^35]or better still:
\[

\log \frac{\Gamma(t, x)}{\gamma_{0}(t)}=\times\left\{$$
\begin{array}{l}
\left(\sum_{1 \leqslant n} \frac{1}{n}\left(\Gamma\left(t^{n}, x^{n}\right)-\gamma_{0}\left(t^{n}\right)\right)\right) \times \tag{318}\\
+\log \mathcal{P}\left(x ; \Gamma(t, x), \Gamma\left(t^{2}, x^{2}\right), \Gamma\left(t^{3}, x^{3}\right), \ldots\right)
\end{array}
$$\right.
\]

When expanded in powers of x, this equation expresses any given $\gamma_{r}(t)$ as a polynomial in $\gamma_{0}(t), \gamma_{1}(t), \ldots, \gamma_{r-1}(t)$ and their first 'dilatees'.

Before sketching, in $\S 7.6$ and $\S 7.7$, two proofs of the central Proposition 7.4 (of which Proposition 7.5 is a mere corollary), let us make a few comments and give some illustrations.

Relations between the generating series.

Since $\operatorname{dim}\left(\operatorname{Flex}_{r}\left(\mathfrak{E}^{\bullet}\right)\right)=\kappa_{r}$ and $\operatorname{dim}\left(\right.$ Flex $\left._{r}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)\right)=\kappa_{r-1}$ and since the Catalan numbers $\kappa_{r}:=\frac{2 r)!}{r!(r+1)!}$ admit the generating function

$$
\begin{equation*}
\kappa(t):=\sum_{0 \leqslant r} \kappa_{r} t^{r}=\frac{1}{2 t}\left(1-(1-4 t)^{\frac{1}{2}}\right) \quad\left(\text { solution of } \kappa^{2}-t \kappa+1=0\right) \tag{319}
\end{equation*}
$$

our generating functions $\xi_{d}(t)$ and $\gamma_{\delta}(t)$ must clearly add up to $\kappa(t)$ and $t \kappa(t)$ respectively:

$$
\begin{align*}
\sum_{0 \leqslant r} \xi_{r}(t) \equiv \kappa(t) & \text { i.e. } & \Xi(t, 1) \equiv \kappa(t) \tag{320}\\
\sum_{1 \leqslant r} \gamma_{r}(t) \equiv t \kappa(t) & \text { i.e. } & \Gamma(t, 1) \equiv t \kappa(t) \tag{321}
\end{align*}
$$

The relation (321) immediately follows from (313) due to (319) and κ 's functional equation $\kappa(t)=(1-t \kappa(t))^{-1}$.

Practical calculations.

When taking the coefficient of x^{n} on both sides of (317), or preferably (318), we find respectively: ${ }^{51}$

$$
\begin{align*}
& \gamma_{n}(t)=\sum_{0 \leqslant p \leqslant n}\left[\left\{\begin{array}{l}
\gamma_{0}(t) \exp \left(\sum_{1 \leqslant r}^{1 \leqslant k} \gamma_{r}\left(t^{k}\right) \frac{x^{k r}}{k}\right) \times \\
P_{p}\left(\sum_{0 \leqslant r} \gamma_{r}(t) x^{1 . r}, \ldots, \sum_{0 \leqslant r} \gamma_{r}\left(t^{2 p r}\right) x^{2 p r}\right)
\end{array}\right]_{x^{n-p}}\right. \tag{322}\\
& {\left[\log \left(1+\sum_{r \leqslant n} \frac{\gamma_{r}(t)}{\gamma_{0}(t)} x^{r}\right)\right]_{x^{n}}=} \\
& \sum_{k r=n} \frac{1}{k} \gamma_{r}\left(t^{k}\right)+\sum_{0 \leqslant n \leqslant p}\left[L_{p}\left(\sum_{0 \leqslant r} \gamma_{r}(t) x^{1 . r}, \ldots, \sum_{0 \leqslant r} \gamma_{r}\left(t^{2 p r}\right) x^{2 p r}\right)\right]_{x^{n-p}} \tag{323}
\end{align*}
$$

[^36]with, in the second case, the elementary polynomial L_{n} of (304) and (306).
As already pointed out, the 'practical formulae' have the advantage of producing, on either side, polynomials in finitely many terms of the form $\gamma_{i}\left(t^{k}\right)$ with $0 \leqslant i \leqslant n-1$ and with products $i k$ bounded by simple homogeneousness conditions. In fact, when expanding (323), we get:
$\frac{\gamma_{n}(t)}{\gamma_{0}(t)}+\sum_{n_{j}<n}^{s \leqslant n} a^{n_{1}, \ldots, n_{s}} \frac{\gamma_{n_{1}}(t)}{\gamma_{0}(t)} \ldots \frac{\gamma_{n_{s}}(t)}{\gamma_{0}(t)}=\gamma_{n}(t)+\sum_{n_{j}<n}^{s \leqslant n} b_{k_{1}, \ldots, k_{s}}^{n_{1}, \ldots, n_{s}} \gamma_{n_{1}}\left(t^{k_{1}}\right) \ldots \gamma_{n_{s}}\left(t^{k_{s}}\right)$
with $a^{n_{1}, \ldots, n_{s}}$ and $b_{k_{1}, \ldots, k_{s}}^{n_{1}, \ldots, n_{s}} \in \mathbb{Q}$ and $\sum k_{j} n_{j} \leqslant n$. Since γ_{0} is known, (323) amounts, for the generating functions γ_{n}, to a recursion of the form:
\[

\gamma_{n}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)} \sum_{n_{j}<n}^{s \leqslant n} c_{k_{1}, ···, k_{s}}^{n_{1}, ···, n_{s}} \gamma_{n_{1}}\left(t^{n_{1} k_{1}}\right) ··· \gamma_{n_{s}}\left(t^{n_{s} k_{s}}\right) \quad\left\{$$
\begin{array}{l}
c_{k_{1}, \ldots, k_{s}}^{n_{1}, \ldots, n_{s}} \in \mathbb{Q} \tag{324}\\
\sum k_{j} n_{j} \leqslant n
\end{array}
$$\right.
\]

The first five generating series $\gamma_{r}(t)$ are given in $\S 11.5$. With the pilot polynomials, tabulated $\S 11.4$, one can easily calculate the next $\gamma_{r}(t)$ which, however, become too unwieldy to write down.

In fact, by repeatedly re-injecting earlier versions of (324) (i.e. versions relative to smaller values of n) into itself, we can rid the right-hand side of (324) of all terms $\gamma_{n_{i}}\left(t^{n_{i} k_{i}}\right)$ with $1 \leqslant n_{i}$. Eventually, we get $\gamma_{n}(t)$ expressed as a rational function of the already known series $\gamma_{0}(t)$ and its dilatees $\gamma_{0}\left(t^{2}\right), \ldots, \gamma_{0}\left(t^{2 n}\right)$. These successive eliminations, however, tend to complicate rather than simplify the expression of $\gamma_{n}(t)$. This is why we opted, in the tables of $\S 11.15$, for the 'raw' form (324).

7.4 Codimensions. Main statements.

$$
\begin{aligned}
& \gamma_{r, d}^{\mathrm{co}}:=\operatorname{dim}\left(\operatorname{Flex}_{r, r-d}^{\mathrm{root}}\left(\mathfrak{E}^{\bullet}\right)\right)\left\|\gamma_{d}^{\mathrm{co}}(t):=\sum \gamma_{r, d}^{\mathrm{co}} t^{r} \quad\right\| \quad \Gamma^{\mathrm{co}}(t, x):=\sum_{0 \leqslant d} \gamma_{\delta}(t) x^{\delta} \\
& \xi_{r, d}^{\mathrm{co}}:=\operatorname{dim}\left(\operatorname{Flex}_{r, r-d}\left(\mathfrak{E}^{\bullet}\right)\right)\left\|\xi_{d}^{\mathrm{co}}(t):=\sum \xi_{r, d}^{\mathrm{co}} t^{d} \quad\right\| \Xi^{\mathrm{co}}(t, x):=\sum_{0 \leqslant d} \xi_{d}^{\mathrm{co}}(t) x^{d}
\end{aligned}
$$

Here is how new generating series relate to the old, and to each other: ${ }^{52}$

$$
\begin{align*}
& \Gamma^{\mathrm{co}}(t, x)=x^{-1} \Gamma\left(t x, x^{-1}\right) \tag{325}\\
& \Xi^{\mathrm{co}}(t, x)=\Xi\left(t x, x^{-1}\right)=\left(1-\Gamma^{\mathrm{co}}(t, x)\right)^{-1} \tag{326}
\end{align*}
$$

The functional equation for $\Gamma^{c o}(t, x)$.
Clearly, $\Gamma^{\mathrm{co}}(t, x)=t+x t^{2}+\sum_{2 \leqslant n} x^{n} \gamma_{n}^{\mathrm{co}}(t)$, and due to (315) the functional equation (325) becomes:

$$
\begin{equation*}
\log \left(\frac{\Gamma^{\mathrm{co}}(t, x)}{t}\right)=-\sum_{1 \leqslant n} \log \left(1-\Gamma^{\mathrm{co}}\left(t^{n}, x^{n}\right)\right) \times\left(\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) x^{n}\right) \tag{327}
\end{equation*}
$$

[^37]Written in this way, it is inconvenient, because comparing the coefficient of x^{n} on both sides doesn't give $\gamma_{n}^{\mathrm{co}}(t)$ as a finite expression of x and the earlier $\gamma_{n^{\prime}}^{\text {co }}(t)$. However, by 'Möbius inversion', the identity $\sum_{1 \leqslant n} \frac{t^{n}}{n}=-\log (1-t)$ yields successively

$$
\begin{align*}
t & \equiv-\sum_{1 \leqslant n} \log \left(1-t^{n}\right) \frac{\mu(n)}{n} \tag{328}\\
-\log (1-t x) & \equiv-\sum_{1 \leqslant n} \log \left(1-t^{n}\right) \frac{1}{n} \times\left(\sum_{d \mid n} \mu\left(\frac{n}{d}\right) x^{n}\right) \tag{329}
\end{align*}
$$

By subtracting (329) from (327), we can re-write the functional equation as

$$
\begin{align*}
& \log \left(\frac{\Gamma^{\mathrm{co}}(t, x)}{t}\right)+\log (1-t x)= \\
& \quad-\sum_{1 \leqslant n} \log \left(1-\frac{\Gamma^{\mathrm{co}}\left(t^{n}, x^{n}\right)-t^{n}}{1-t^{n}}\right) \times\left(\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) x^{n}\right) \tag{330}
\end{align*}
$$

which yields a proper induction, since by equating the coefficients of x^{n} on both sides, we now find $\gamma_{n}(t)$ expressed in closed form in terms of the earlier $\gamma_{n^{\prime}}(t)$.

The generating series $\gamma_{d}^{c o}(t)$.
Proposition 7.6 (Rationalness of $\gamma_{d}^{c o}(t)$).
Unlike the $\gamma_{d}(t)$, the $\gamma_{d}^{c o}(t)$ are rational functions of t.
Thus, $\gamma_{0}^{\mathrm{co}}(t)=t, \gamma_{1}^{\mathrm{co}}(t)=t^{2}$ and for $n \geqslant 2$:

$$
\begin{equation*}
\gamma_{n}^{\mathrm{co}}(t)=t^{n+1} \frac{\left(\gamma_{0, n+1}+\cdots+(-1)^{n-1} t^{\frac{n(n-1)}{2}}\right)}{\prod_{k=1}^{n-1}\left(1-t^{k}\right)}=\frac{t^{n+1} \widehat{\gamma}_{n}^{\mathrm{co}}(t)}{\prod_{k=1}^{n-1}\left(1-t^{k}\right)} \tag{331}
\end{equation*}
$$

The numerator $\widehat{\gamma}_{n}^{\mathrm{co}}(t)$ in (331) is a polynomial with integer coefficients of mixed signs. Its first coefficient $\gamma_{0, n+1}$ is the number of rooted, non-ordered trees with $n+1$ nodes.

The generating series $\xi_{d}^{c o}(t)$.
Proposition 7.7 (Rationalness and positiveness of $\xi_{d}^{c o}(t)$).
The $\xi_{d}^{c o}(t)$'s are also rational functions of t, but of a more regular type than the $\gamma_{d}^{c o}(t)$'s. Thus, $\xi_{0}(t)=(1-t)^{-1}, \xi_{1}(t)=t^{2}(1-t)^{-2}$ and for $n \geqslant 2$:

$$
\begin{equation*}
\xi_{n}^{\mathrm{co}}(t)=t^{n+1} \frac{\left(\gamma_{0, n+1}+\cdots+c_{n} t^{\left[\frac{(n-1)}{1}\right]}\right)}{(1-t)^{2} \prod_{k=1}^{n-1}\left(1-t^{k}\right)}=\frac{t^{n+1} \widehat{\xi}_{n}^{\mathrm{co}}(t)}{(1-t)^{2} \prod_{k=1}^{n-1}\left(1-t^{k}\right)} \tag{332}
\end{equation*}
$$

with $\left[\frac{(n-1)}{2}\right]$ denoting the integer part of $\frac{(n-1)}{2}$ and $c_{n}=\left\{\begin{array}{cl}n / 2+2 & \text { if } n \text { even } \\ 1 & \text { if } n \text { odd }\end{array}\right.$
The numerator $\widehat{\xi}_{n}^{\mathrm{co}}(t)$ in (332) is a polynomial with positive integer coefficients.

We may get $\Xi^{c o}$ from $\Gamma^{c o}$ or directly from the Möbius inverse ${ }^{53}$ of (333):

$$
\begin{equation*}
\log \left(\Xi^{\mathrm{co}}(t, x)\right)=\sum_{1 \leqslant n} \log \left(\frac{\Xi^{\mathrm{co}}\left(t^{n}, x^{n}\right)-1}{t^{n} \Xi^{\mathrm{co}}\left(t^{n}, x^{n}\right)}\right) \frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \frac{1}{x^{d}} \tag{333}
\end{equation*}
$$

Here again, to get a finite induction, we must subtract from (326) the following identity

$$
\begin{equation*}
\log \left(\frac{1-t^{2} x}{1-t}\right)=\sum_{1 \leqslant n} \log \left(1+t^{n} x^{n}\right) \frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tag{334}
\end{equation*}
$$

and write

$$
\log \left((1-t) \Xi^{\mathrm{co}}(t, x)\right)=\left\{\begin{array}{l}
+\log \left(1-t^{2} x\right) \tag{335}\\
+\sum_{1 \leqslant n} \log \left(\frac{\Xi^{\mathrm{co}}\left(t^{n}, x^{n}\right)-1}{t^{n}\left(1+t^{n} x^{n}\right) \Xi^{\mathrm{co}}\left(t^{n}, x^{n}\right)}\right) \frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \frac{1}{x^{d}}
\end{array}\right.
$$

The fact, not immediately apparent from the induction (335), that $\widehat{\xi}_{n}^{\mathrm{co}}(t)$ has only positive integer coefficients is quite significant. It implies - or should we say, suggests - that we can produce, from a finite number of elements of Flex (\mathfrak{E}^{\bullet}) a basis for the infinite dimensional space \oplus_{r} Flex $x_{r, r-d}\left(\mathfrak{E}^{\bullet}\right)$.

Remark: As should be expected (see below $\S 7.5$), the polynomials $\widehat{\gamma}_{n}^{\text {co }}(t)$ and $\hat{\xi}_{n}^{\mathrm{co}}(t)$ often assume remarkable values when t is a unit root. Leaving aside the relations that trivially follow from

$$
\widehat{\gamma}_{n}^{\mathrm{co}}(t) \equiv \widehat{\xi}_{n}^{\mathrm{co}}(t) \quad \bmod \left(1+t+t^{2}+\cdots+t^{n-2}\right)
$$

we have numerous identities of type

$$
\left|\frac{\widehat{\gamma}_{4 n+1}^{\mathrm{co}}(i)}{\widehat{\gamma}_{4 n}^{\mathrm{co}}(i)}\right|^{2} \equiv 9 \quad, \quad\left|\frac{\widehat{\xi}_{4 n+1}^{\mathrm{co}}(i)}{\widehat{\xi}_{4 n}^{\mathrm{co}}(i)}\right|^{2} \equiv 5
$$

7.5 Analytic properties of $\Gamma(t, x)$ and $\Xi(t, x)$.

Special Möbius inversion.

Lemma 7.1 (Special Möbius inversion) .
Setting $\chi_{s, d}(x):=d^{-s} \sum_{d_{1} \mid d} \mu\left(\frac{d}{d_{1}}\right) x^{d_{1}}$, we have the formal equivalence

$$
\begin{equation*}
\left\{A(t, x)=\prod_{1 \leqslant n} \chi_{s, d}(x) B\left(t^{n}, x^{n}\right)\right\} \Longleftrightarrow\left\{B(t, x)=\prod_{1 \leqslant n} \chi_{s, d}\left(\frac{1}{x}\right) A\left(t^{n}, x^{n}\right)\right\} \tag{336}
\end{equation*}
$$

resting on the elementary identity

$$
\sum_{d_{1} d_{2}=d} \chi_{s, d_{1}}(x) \chi_{s, d_{2}}\left(x^{-d_{1}}\right) \equiv \begin{cases}1 & \text { if } d=1 \tag{337}\\ 0 & \text { otherwise }\end{cases}
$$

[^38]For a clearer overview, let us again write the two pairs of mutually inverse identities:

$$
\begin{align*}
\frac{\Gamma(t, x)}{t} & =\prod_{1 \leqslant n}\left(\Xi\left(t^{n}, x^{n}\right)\right)^{\chi_{1, n}\left(\frac{1}{x}\right)} \quad \text { with } \quad \Xi(t, x)=\frac{1}{1-x \Gamma(t, x)} \tag{338}\\
\Xi(t, x) & =\prod_{1 \leqslant n}\left(\frac{\Gamma\left(t^{n}, x^{n}\right)}{t^{n}}\right)^{\chi_{1, n}(x)} \quad \text { with } \quad \Gamma(t, x)=\frac{\Xi(t, x)-1}{x(t, x)} \tag{339}\\
\frac{\Gamma^{\mathrm{co}}(t, x)}{t} & =\prod_{1 \leqslant n}\left(\Xi^{\mathrm{co}}\left(t^{n}, x^{n}\right)\right)^{\chi_{1, n}(x)} \quad \text { with } \quad \Xi^{\mathrm{co}}(t, x)=\frac{1}{1-\Gamma^{\mathrm{co}}(t, x)} \tag{340}\\
\Xi^{\mathrm{co}}(t, x) & =\prod_{1 \leqslant n}\left(\frac{\Gamma^{\mathrm{co}}\left(t^{n}, x^{n}\right)}{t^{n}}\right)^{\chi_{1, n}\left(\frac{1}{x}\right)} \text { with } \quad \Gamma^{\mathrm{co}}(t, x)=\frac{\Xi^{\mathrm{co}}(t, x)-1}{\Xi^{\mathrm{co}}(t, x)} \tag{341}
\end{align*}
$$

Neither correspondence $\Gamma \leftrightarrow \Xi$ or $\Gamma^{c o} \leftrightarrow \Xi^{c o}$ being involutive, the above identities do not in any way relate our four functions for inverse values x and $1 / x$. It is not even clear whether they admit (ramified) analytic continuations at infinity in x, or in t, for that matter. Nevertheless, these two pairs of identities raise the question as to the analytic nature of $\Gamma, \Gamma^{c o}$ and $\Xi, \Xi^{c o}$. Let us limit ourselves to a few sketchy indications.

Analyticity of $\Gamma(t, x)$. The case $x= \pm 1$.

$$
\begin{align*}
& \Gamma(t, 1)=\frac{1}{2}\left(1-(1-4 t)^{\frac{1}{2}}\right) \quad ; \quad \Xi(t, 1)=\frac{1}{2 t}\left(1-(1-4 t)^{\frac{1}{2}}\right) \tag{342}\\
& \Gamma(t,-1)=\frac{1}{2}\left(1-\left(\frac{1+2 t}{1-2 t}\right)^{\frac{1}{2}}\right) \quad ; \quad \Xi(t,-1)=\frac{1}{2 t}\left(-1+2 t+\left(1-4 t^{2}\right)^{\frac{1}{2}}\right) \tag{343}\\
& \mathcal{P}_{4}:=\left\{n ; n=p_{1}^{\pi_{1}} \ldots p_{s}^{\pi_{s}} \text { with } s \geqslant 1 \text { and }\left\{\begin{array}{l}
p_{i} \text { prime } \geqslant 3 \\
p_{i} \equiv-1 \\
\bmod 4
\end{array}\right\}\right. \tag{344}
\end{align*}
$$

It follows that, for any fixed $x, \Gamma(t, x)$ and $\Xi(t, x)$ as series of t , have positive convergence radii.

The case when $x^{3}=1$ or $x^{4}=1$.
Consider the integer sets

$$
\left.\begin{array}{l}
\mathcal{P}_{3}:=\left\{n ; n=p_{1}^{\pi_{1}} \ldots p_{s}^{\pi_{s}} \text { with } p_{i} \text { prime and } p_{i} \equiv-1 \quad \bmod 3\right\} \\
\mathcal{P}_{4}:=\left\{n ; n=p_{1}^{\pi_{1}} \ldots p_{s}^{\pi_{s}} \text { with } p_{i} \text { prime and } p_{i} \equiv-1\right. \tag{346}\\
\bmod 4
\end{array}\right\}
$$

and for $n \in \mathcal{P}_{3}$ or \mathcal{P}_{4} set $\epsilon(n):=(-1)^{\pi_{1}+\ldots+\pi_{s}}$ and $\sigma(n):=2^{s}$. Then

$$
\Gamma(t, j)=\left\{\begin{array}{l}
t(1-j \Gamma(t, j))^{-j}\left(1-\Gamma\left(t^{3}, 1\right)\right)^{-\frac{1}{2}-\frac{1}{6}(j-\bar{j})} \times \tag{347}\\
\prod_{\epsilon \in \mathcal{P}_{3}}^{n \in+1}\left(1-j \Gamma\left(t^{n}, j\right)\right)^{\frac{1}{2 n} \epsilon(n) \sigma(n)(j-\bar{j})} \times \\
\prod_{\epsilon \in \mathcal{P}_{3}=-1}^{n \in\left(1+\bar{j} \Gamma\left(t^{n}, \bar{j}\right)\right)^{\frac{1}{2 n} \epsilon(n) \sigma(n)(j-\bar{j})} \times} \begin{array}{l}
\prod_{\epsilon(n)= \pm 1}^{n \in \mathcal{P}_{3}}\left(1-\Gamma\left(t^{3 n}, 1\right)\right)^{-\frac{1}{6 n} \epsilon(n) \sigma(n)(j-\bar{j})}
\end{array} .
\end{array}\right.
$$

with $j=e^{2 \pi i / 3}$.

$$
\Gamma(t, i)=\left\{\begin{array}{l}
t(1-i \Gamma(t, i))^{i}\left(1+\Gamma\left(t^{2},-1\right)\right)^{1-i}\left(1-\Gamma\left(t^{4}, 1\right)\right)^{-\frac{1}{2}} \times \tag{348}\\
\prod_{\epsilon(n)=+1}^{n \in \mathcal{P}_{4}}\left(1-i \Gamma\left(t^{n}, i\right)\right)^{\frac{1}{n} \epsilon(n) \sigma(n) i} \times \\
\prod_{\substack{\left.n \in \mathcal{P}_{4} \\
n\right)=-1}}\left(1+i \Gamma\left(t^{n},-i\right)\right)^{\frac{1}{n} \epsilon(n) \sigma(n) i} \times \\
\prod_{\substack{ \\
\epsilon(n)= \pm \pm 1}}^{n \in \mathcal{P}_{4}}\left(1+\Gamma\left(t^{2 n},-1\right)\right)^{-\frac{1}{2 n} \epsilon(n) \sigma(n) i}
\end{array}\right.
$$

The relations (347) and (348), together with the conjugate relations, completely determine $\Gamma(t, j)$ and $\Gamma(t, i)$.

The case when x is a general unit root.

Similar systems obtain when $x=\epsilon$, for ϵ a prime unit root of order $q:=\prod q_{i}^{m_{i}}$ (q_{i} prime), but with this difference that we no longer have simple formulae for expressing the exponents $h(n, \epsilon):=\sum_{d \mid n} \mu(n / d) \epsilon^{-d}$. Still, the set \mathcal{P}_{q} of relevant integers n, i.e. of all n for which $h(n, \epsilon) \neq 0$, remains fairly lacunary, as it excludes (in particular) all n that are

- divisible by $\prod q_{i}^{m_{i}+1}$
- or divisible by some q_{0} with $q_{0} \equiv 1 \bmod q$
- or divisible by some $q_{0} \prod q_{i}^{m_{i}^{\prime}}$ with $q_{0} \equiv 1 \bmod \prod q_{i}^{m_{i}^{\prime \prime}}$ and $m_{i}^{\prime}+m_{i}^{\prime \prime}>m_{i}$.

If ϵ is a prime root of order q, then $\Gamma(t, \epsilon)$ and $\Xi(t, \epsilon)$ have radius of convergence $4^{-1 / q}$, with (unless $\epsilon= \pm 1$) an analytic boundary at the unit circle, on all their Riemann sheets.

If $\epsilon=e^{2 \pi i \theta}$ is not a unit root, it would seem that $\Gamma(t, \epsilon)$ and $\Xi(t, \epsilon)$ have 1 as radius of convergence, unless perhaps for strongly Liouvillian θ.

No special significance attaches to the case t unit root, x small.
Lastly, the case when t and x are both unit roots (but $x \neq \pm 1$) falls outside the domain of definition of $\Gamma(t, x)$ and $\Xi(t, x)$.

7.6 Sketch of proof: first approach.

Roadmap.

We consider the following generating series $\gamma_{0}(t), \gamma_{\delta}(t), \gamma_{\delta}^{*}(t)$:

$$
\begin{array}{lll}
\gamma_{0}(t):=\sum \gamma_{r, 1} t^{r} & \text { with } & \gamma_{r, 1}:=\operatorname{dim}\left(\operatorname{Flex}_{r, 1}^{\mathrm{root}}\left(\mathfrak{E}^{\bullet}\right)\right)=\operatorname{dim}\left(\operatorname{Flex}_{r}^{\mathrm{al}}\left(\mathfrak{E}^{\bullet}\right)\right) \\
\gamma_{\delta}(t):=\sum \gamma_{r, 1+\delta} t^{r} & \text { with } & \gamma_{r, 1+\delta}:=\operatorname{dim}\left(\operatorname{Flex}_{r, 1+\delta}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)\right) \\
\gamma_{\delta}^{*}(t):=\sum \gamma_{r, 1+\delta}^{*} t^{r} & \text { with } & \gamma_{r, 1+\delta}^{*}:=\sum \operatorname{dim}\left(\operatorname{sym} . c a l t^{*}\left(\operatorname{Flex}_{r_{1}}^{\mathrm{al}}\left(\mathfrak{E}^{\bullet}\right), . ., \operatorname{Flex}_{r_{s}}^{\mathrm{al}}\left(\mathfrak{E}^{\bullet}\right)\right)\right.
\end{array}
$$

where the 'restricted dimension' $\gamma_{r, \delta+1}^{*}$ denotes the dimension of the space spanned by all bimoulds B^{\bullet} of depth r and co-alternality $\delta+1$ that can be formed directly from alternal bimoulds A_{i}^{\bullet} by forming partially symmetrised counter-alternators according to the procedure of $\S 6.4$; in other words, by all B^{\bullet} of the form:

$$
\begin{equation*}
B^{\bullet}:=\sum_{\sigma} n_{i, \sigma}^{*} \operatorname{calt}_{\mathfrak{E}} \bullet\left(A_{\sigma(1)}^{\bullet}, \ldots, A_{\sigma(s)}^{\bullet}\right) \tag{349}
\end{equation*}
$$

We then proceed as follows:

- We provisionally assume $\gamma_{0}(t)$ to be known.
- We directly calculate the 'restricted dimensions' $\gamma_{r, \delta+1}^{*}$ by using the 'copilot polynomials'.
- We form the corresponding generating series $\gamma_{\delta}^{*}(t)$ by using the conversion matrices $\boldsymbol{m o e}_{n}$.
- Lastly, we easily go from the 'restricted' series $\gamma_{\delta}^{*}(t)$ to the full series $\gamma_{\delta}(t)$.

The conversion matrices.

The first ingredient in this approach are the conversion matrices meo ${ }_{n}$ and their inverses moe_{n}, whose entries are indexed by $\mathfrak{p}, \mathfrak{q}$ ranging through the set of all partitions of the integer n.

Proposition 7.8 (The matrices meo_{n} and meo_{n}).
For any partition $\mathfrak{n}=\left[n_{1}, \ldots, n_{s}\right]$ of n, we set

$$
\begin{align*}
\boldsymbol{y}^{\mathfrak{n}} & :=\prod_{i=1}^{i=n} y_{i}^{n_{i}} \tag{350}\\
\boldsymbol{y}_{\mathfrak{n}} & :=\prod_{i=1}^{i=n} \sum_{j=1}^{j=n} y_{j}^{n_{i}} \tag{351}\\
<\prod y_{i}^{p_{i}}, \prod y_{i}^{q_{i}}> & :=\left\{\begin{array}{cr}
1 & \text { if } p_{i} \equiv q_{i} \\
0 & \text { otherwise }
\end{array}\right. \tag{352}
\end{align*}
$$

For a suitable ordering ${ }^{54}$ of the set Par_{n} of all partitions of n, the matrix meo_{n} with positive integer entries

$$
\begin{equation*}
\operatorname{meo}_{n}[\mathfrak{p}, \mathfrak{q}]:=<\boldsymbol{y}^{\mathfrak{p}}, \boldsymbol{y}_{\mathfrak{q}}>\quad\left(\mathfrak{p} \in \operatorname{Par}_{n}, \mathfrak{q} \in \operatorname{Par}_{n}\right) \tag{353}
\end{equation*}
$$

is inferior triangular, with non-vanishing diagonal elements. The inverse matrix $\mathrm{moe}_{n}=\mathrm{meo}_{n}^{-1}$ has rational entries of mixted signs. Moreover:

$$
\begin{align*}
\sum_{\mathfrak{p}, \mathfrak{q} \in \operatorname{Par}_{n}} \operatorname{moe}_{n}[\mathfrak{p}, \mathfrak{q}] & \equiv 1 & \forall n \tag{354}\\
\sum_{\mathfrak{p}, \mathfrak{q} \in \operatorname{Par}_{n}}\left|\operatorname{moe}_{n}[\mathfrak{p}, \mathfrak{q}]\right| & \equiv 2^{n-1} & \forall n \tag{355}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Par}_{1}=[[1]], \operatorname{Par}_{2}=[[1,1],[2]], \quad \operatorname{Par}_{3}=[[1,1,1],[2,1],[3]], \\
& \operatorname{Par}_{4}=[[1,1,1,1],[2,1,1],[2,2],[3,1],[4]] \\
& \operatorname{Par}_{5}=[[1,1,1,1,1],[2,1,1,1],[2,2,1],[3,1,1],[3,2],[4,1],[5]], \\
& \operatorname{Par}_{6}=[[1,1,1,1,1,1],[2,1,1,1,1],[2,2,1,1],[3,1,1,1],[2,2,2],[3,2,1],[4,1,1],[3,3],[4,2],[5,1],[6]]
\end{aligned}
$$

Here are the first six matrices $m e o_{n}$, duly diagonal:
$[1],\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{lll}6 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & 1\end{array}\right],\left[\begin{array}{ccccc}24 & 0 & 0 & 0 & 0 \\ 12 & 2 & 0 & 0 & 0 \\ 6 & 2 & 2 & 0 & 0 \\ 4 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right],\left[\begin{array}{ccccccc}120 & 0 & 0 & 0 & 0 & 0 & 0 \\ 60 & 6 & 0 & 0 & 0 & 0 & 0 \\ 30 & 6 & 2 & 0 & 0 & 0 & 0 \\ 20 & 6 & 0 & 2 & 0 & 0 & 0 \\ 10 & 4 & 2 & 1 & 1 & 0 & 0 \\ 5 & 3 & 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

$$
\text { meo }_{6}:=\left[\begin{array}{ccccccccccc}
720 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
360 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
180 & 24 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
120 & 24 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
90 & 18 & 6 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
60 & 16 & 4 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
30 & 12 & 2 & 6 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
20 & 8 & 4 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
15 & 7 & 3 & 3 & 3 & 1 & 1 & 0 & 1 & 0 & 0 \\
6 & 4 & 2 & 3 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

[^39]And here are the first six matrices moe $_{n}$:

$$
\begin{aligned}
& {[1],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
\overline{1} & 1
\end{array}\right],\left[\begin{array}{lll}
\frac{1}{6} & 0 & 0 \\
\overline{1} & 1 & 0 \\
\frac{1}{3} & \overline{1} & 1
\end{array}\right],\left[\begin{array}{ccccc}
\frac{1}{24} & 0 & 0 & 0 & 0 \\
\overline{1} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{8} & \overline{1} & \frac{1}{2} & 0 & 0 \\
\frac{1}{3} & \overline{1} & 0 & 1 & 0 \\
\overline{1} & 1 & \overline{1} & \overline{1} & 1
\end{array}\right],\left[\begin{array}{ccccccc}
\frac{1}{120} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{12} & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{8} & \overline{1} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{6} & \frac{5}{6} & \overline{1} & \frac{1}{2} & 1 & 0 & 0 \\
\overline{1} & 1 & \overline{1} & \overline{1} & 0 & 1 & 0 \\
\frac{1}{5} & \overline{1} & 1 & 1 & \overline{1} & \overline{1} & 1
\end{array}\right]} \\
& \operatorname{moe}_{n}:=\left[\begin{array}{ccccccccccc}
\frac{1}{720} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{48} & \frac{1}{24} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{16} & \overline{1} & \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\cdots & & & & & & & & & & \\
\frac{1}{48} & \frac{1}{8} & \overline{1} & 0 & \frac{1}{6} & 0 & 0 & 0 & 0 & 0 & 0 \\
\overline{1} & \frac{5}{6} & \overline{1} & \overline{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\overline{1} & \frac{1}{2} & \overline{1} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{18} & \overline{1} & \frac{1}{2} & \frac{1}{3} & 0 & \overline{1} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{8} & \frac{\overline{3}}{4} & \frac{5}{4} & \frac{1}{2} & \overline{1} & \overline{1} & \overline{1} & 0 & 1 & 0 & 0 \\
\frac{1}{5} & \overline{1} & 1 & 1 & 0 & \overline{1} & \overline{1} & 0 & 0 & 1 & 0 \\
\overline{1} & 1 & \frac{3}{2} & \overline{1} & \frac{1}{3} & 2 & 1 & \overline{1} & \overline{1} & \overline{1} & 1
\end{array}\right]
\end{aligned}
$$

Proposition 7.9 (Properties of the matrices moe $_{6}$).
Despite having rational rather than integer entries, the matrices $\boldsymbol{m o e}_{n}$ are in some respects more regular than the matrices $\boldsymbol{m e o}_{n}$. In particular:

$$
\begin{align*}
& \sum_{\mathfrak{p}} \operatorname{moe}_{n}[\mathfrak{p}, \mathfrak{q}] \equiv 1 \quad \text { if } \mathfrak{q}=[n] \quad \text { and } 0 \quad \text { otherwise } \tag{356}\\
& \sum_{\mathfrak{p}}\left|\operatorname{moe}_{n}[\mathfrak{p}, \mathfrak{q}]\right| \equiv \frac{\left(d_{1}+\ldots+d_{s}\right)!}{d_{1}!\ldots d_{s}!} \quad \text { if } \mathfrak{q}=\left[q_{1}^{\left(d_{1}\right)}, \ldots, q_{s}^{\left(d_{s}\right)}\right] \tag{357}\\
& \sum_{\mathfrak{q}} \operatorname{moe}_{n}[\mathfrak{p}, \mathfrak{q}] \equiv \frac{1}{d_{1}!p_{1}^{d_{1}} \ldots d_{s}!p_{s}^{d_{s}}} \quad \text { if } \mathfrak{p}=\left[p_{1}^{\left(d_{1}\right)}, \ldots, p_{s}^{\left(d_{s}\right)}\right] \tag{358}
\end{align*}
$$

The rows and columns of $\boldsymbol{m e o}_{n}$, on the other hand, have completely unremarkable sums.

The second ingredient in this approach are the dual pilot and copilot polynomials. They derive from the conversion matrices. Actually, the copilot polynomials come first.

The copilot polynomials.

$Q_{1,2}\left(x_{1}\right)=$	$\left[\delta_{1}\right]$	$\left[\sigma_{1}, \sigma_{2} \ldots\right]$
$+\frac{1}{2} \hat{x}_{1}\left(\hat{x}_{1}-1\right)$	[1]	$[1,1]$
$Q_{2,3}\left(x_{1}, x_{2}\right)=$	$\left[\delta_{1}\right]$	$\left[\sigma_{1}, \sigma_{2} \ldots\right]$
$+\frac{1}{3} \hat{x}_{1}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)$	[2]	[1, 1, 1]
$+1 \hat{x}_{2}\left(\hat{x}_{1}-1\right)$	[2]	$[2,1]$
$Q_{2,4}\left(x_{1}, x_{2}\right)=$	$\left[\delta_{1}, \delta_{2}\right]$	$\left[\sigma_{1}, \sigma_{2} \ldots\right]$
$+\frac{1}{8} \hat{x}_{1}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)$	[1, 1]	[1, 1, 1, 1]
$+\frac{1}{2} \hat{x}_{2}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)$	[1, 1]	[2, 1, 1]
$+\frac{1}{2} \hat{x}_{2}\left(\hat{x}_{2}-1\right)$	[1, 1]	[2, 2]
$Q_{3,4}\left(x_{1}, x_{2}, x_{3}\right)=$	$\left[\delta_{1}\right]$	$\left[\sigma_{1}, \sigma_{2} \ldots\right]$
$+\frac{1}{4} \hat{x}_{1}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)$	[3]	[1, 1, 1, 1]
$+\frac{3}{2} \hat{x}_{2}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)$	[3]	[2, 1, 1]
$+\frac{1}{2} \hat{x}_{2}\left(\hat{x}_{2}-1\right)$	[3]	[2, 2]
$+1 \hat{x}_{3}\left(\hat{x}_{1}-1\right)$	[3]	$[3,1]$
$Q_{3,5}\left(x_{1}, x_{2}, x_{3}\right)=$	$\left[\delta_{1}, \delta_{2}\right]$	$\left[\sigma_{1}, \sigma_{2} \ldots\right]$
$+\frac{1}{6} \hat{x}_{1}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)\left(\hat{x}_{1}-4\right)$	[2, 1]	[1, 1, 1, 1, 1]
$+\frac{3}{2} \hat{x}_{2}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)$	[2, 1]	[2, 1, 1, 1]
$+2 \hat{x}_{2}\left(\hat{x}_{2}-1\right)\left(\hat{x}_{1}-2\right)$	[2, 1]	[2, 2, 1]
$+1 \hat{x}_{3}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)$	[2, 1]	[3, 1, 1]
$+1 \hat{x}_{3}\left(\hat{x}_{2}-1\right)$	[2, 1]	$[3,2]$
$Q_{3,6}\left(x_{1}, x_{2}, x_{3}\right)=$	$\left[\delta_{1}, \delta_{2}, \delta_{3}\right]$	$\left[\sigma_{1}, \sigma_{2} \ldots\right]$
$+\frac{1}{48} \hat{x}_{1}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)\left(\hat{x}_{1}-4\right),\left(\hat{x}_{1}-5\right)$	[1, 1, 1]	$[1,1,1,1,1,1]$
$+\frac{1}{4} \hat{x}_{2}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)\left(\hat{x}_{1}-4\right)$	[1, 1, 1]	[2, 1, 1, 1, 1]
$+\frac{1}{6} \hat{x}_{3}\left(\hat{x}_{1}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)$	[1, 1, 1]	[3, 1, 1, 1]
$+\frac{3}{4} \hat{x}_{2}\left(\hat{x}_{2}-1\right)\left(\hat{x}_{1}-2\right)\left(\hat{x}_{1}-3\right)$	[1, 1, 1]	[2, 2, 1, 1]
$+\frac{1}{6} \hat{x}_{2}\left(\hat{x}_{2}-1\right)\left(\hat{x}_{2}-2\right)$	[1, 1, 1]	[2, 2, 2]
$+1 \hat{x}_{3}\left(\hat{x}_{2}-1\right)\left(\hat{x}_{1}-2\right)$	[1, 1, 1]	$[3,2,1]$
$+\frac{1}{2} \hat{x}_{3}\left(\hat{x}_{3}-1\right)$	[1, 1, 1]	$[3,3]$

The pilot-copilot correspondence.
Proposition 7.10 (The $P_{r} \leftrightarrow Q_{r}$ and $P_{r, d} \leftrightarrow Q_{r, d}$ correspondence). For any n, let Par_{n} be set of all partitions $\mathfrak{n}:=\left[n_{1}, \ldots, n_{s}\right]$ of n, with the n_{i} arranged in non-increasing order. To each n we also attach a matrix moe ${ }_{n}$ and two vectors $\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y})$, ve $\left(Q_{r}\right)$:
(i) $\boldsymbol{m o x}_{n}$ is the above defined square matrix, of entries $\boldsymbol{m o e}_{n}[\mathfrak{p}, \mathfrak{q}]$, with \mathfrak{p} and \mathfrak{q} running through Par $_{n}$.
(ii) $\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y})$ is the vector of entries $\boldsymbol{y}^{\mathfrak{p}}=\prod y_{i}^{p_{i}}$ with $\mathfrak{p}=\left[p_{1}, p_{2}, \ldots\right]$ also running
through Par $_{n}$.
(iii) $\boldsymbol{v} \boldsymbol{e}\left(Q_{r}\right)$ is the vector of entries $Q_{r}\left(\boldsymbol{q}^{*}\right)=Q_{r}\left(q_{1}^{*}, q_{2}^{*}, \ldots\right)$ with $\mathfrak{q}=\left[q_{1}, q_{2}, \ldots\right]$ again running through Par_{n} and \mathfrak{q}^{*} denoting the conjugate partition:

$$
\begin{equation*}
\mathfrak{q}^{*}=\left[q_{1}^{*}, q_{2}^{*}, \ldots\right] \quad \text { with } \quad q_{i}^{*}=\sum_{i \leqslant q_{j}} 1 \quad\left(\sum q_{i}^{*} \equiv \sum q_{j}\right) \tag{359}
\end{equation*}
$$

Then the identity holds:

$$
\begin{equation*}
P_{r}(\boldsymbol{y}) \exp \left(\sum \frac{1}{n} y_{n}\right) \equiv \sum_{r \leqslant n}<\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y}), \boldsymbol{m o e}_{n}, \boldsymbol{v} \boldsymbol{e}_{n}\left(Q_{r}\right)> \tag{360}
\end{equation*}
$$

with both sides viewed as power series of y_{1}, y_{2}, \ldots. If we view y_{i} as having homogeneous degree i and introduce a variable y to order the terms according to their global homogeneous degree, (360) becomes:

$$
\begin{equation*}
\left(\sum_{d=r+1}^{d=2 r} y^{d} P_{r, d}(\boldsymbol{y})\right) \exp \left(\sum \frac{y^{n}}{n} y_{n}\right) \equiv \sum_{r \leqslant n} y^{n}<\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y}), \boldsymbol{m o e}_{n}, \boldsymbol{v} \boldsymbol{e}_{n}\left(Q_{r}\right)> \tag{361}
\end{equation*}
$$

The identity (361) actually holds true for each pair $\left(P_{r, d}, Q_{r, d}\right)$ separately:

$$
\begin{align*}
y^{d} P_{r, d}(\boldsymbol{y}) \exp \left(\sum \frac{y^{n}}{n} y_{n}\right) & \equiv \sum_{r \leqslant n} y^{n}<\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y}), \boldsymbol{m o e}_{n}, \boldsymbol{v} \boldsymbol{e}_{n}\left(Q_{r, d}\right)> \tag{362}\\
& \equiv \sum_{d \leqslant n} y^{n}<\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y}), \boldsymbol{m o e}_{n}, \boldsymbol{v} \boldsymbol{v e}_{n}\left(Q_{r, d}\right)> \tag{363}
\end{align*}
$$

The elementary identities $\boldsymbol{v} \boldsymbol{e}_{n}\left(Q_{r, d}\right) \equiv 0$ for n in the interval $[r, d[$ ensure the equivalence of (362) and (363).

The pilot-copilot correspondence at the most basic level.
Proposition 7.11 (The $P^{\left[r_{1}, \ldots, r_{s}\right]} \leftrightarrow Q^{\left[r_{1}, \ldots, r_{s}\right]}$ and correspondence) .
If we define the atomic pilot and copilot polynomials as follows

$$
\begin{align*}
Q^{\left[r_{1}, \ldots, r_{s}\right]}\left(x_{1}, x_{2}, \ldots\right) & :=\prod_{1 \leqslant i \leqslant r}\left(x_{r_{i}}-i+1\right) \quad\left(r_{1} \geqslant r_{2} \geqslant \ldots r_{s}\right) \tag{364}\\
P^{\left[r_{1}, \ldots, r_{s}\right]}\left(y_{1}, y_{2}, \ldots\right) & :=\sum_{\mathcal{J}_{1} \cup \ldots \mathcal{J}_{t}=\{1, \ldots, s\}}^{1 \leqslant t \leqslant s}(-1)^{s-t} \prod_{1 \leqslant i \leqslant s} \Gamma\left(\mathcal{J}_{i}\right) y_{r\left(\mathcal{J}_{i}\right)} \tag{365}\\
\text { with } & := \begin{cases}\Gamma\left(\mathcal{J}_{i}\right) & :=\left(\#\left(\mathcal{J}_{i}\right)-1\right)! \\
r\left(\mathcal{J}_{i}\right) & :=\sum_{k \in \mathcal{J}_{i}} r_{k}\end{cases} \tag{366}
\end{align*}
$$

the early correspondence still holds

$$
\begin{aligned}
y^{|\boldsymbol{r}|} P^{\left[r_{1}, ., r_{s}\right]}(\boldsymbol{y}) \exp \left(\sum \frac{y^{n}}{n} y_{n}\right) & \equiv \sum_{r_{1} \leqslant n} y^{n}<\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y}), \boldsymbol{m o e}_{n}, \boldsymbol{v} \boldsymbol{e}_{n}\left(Q^{\left[r_{1}, \ldots, r_{s}\right]}\right) \ngtr(367) \\
& \equiv \sum_{|\boldsymbol{r}| \leqslant n} y^{n}<\boldsymbol{v} \boldsymbol{o}_{n}(\boldsymbol{y}), \boldsymbol{m o e}_{n}, \boldsymbol{v} \boldsymbol{e}_{n}\left(Q^{\left[r_{1}, . ., r_{s}\right]}\right) \ngtr(368)
\end{aligned}
$$

with $|\boldsymbol{r}|:=r_{1}+\cdots+r_{s}$ and with the elementary identities

$$
\boldsymbol{v} \boldsymbol{e}_{n}\left(Q^{\left[r_{1}, \ldots, r_{s}\right]}\right) \equiv 0 \quad \forall n \in\left[r_{1},|\boldsymbol{r}|[\right.
$$

ensuring the equivalence of (367) and (368).
Except in the trivial case $P^{\left[n_{1}\right]}(\boldsymbol{y})=y_{n_{1}}, Q^{\left[n_{1}\right]}(\boldsymbol{x})=x_{n_{1}}$, the construction (367)-(368) implies

$$
\begin{align*}
P^{\left[n_{1}, \ldots, n_{s}\right]}\left(y, y^{2}, y^{3}, \ldots\right) & \equiv 0 \tag{369}\\
P^{\left[n_{1}, \ldots, n_{s}\right]}(y, y, y, \ldots) & \equiv y(y-1)(y-2) \ldots(y-s+1) \tag{370}
\end{align*}
$$

Here are two elementary instances of pilot-copilot pairs:

$$
\begin{aligned}
& \left\{\begin{array}{l}
P^{\left[n_{1}, n_{2}\right]}(\boldsymbol{y})=y_{n_{1}} y_{n_{2}}-y_{n_{1}+n_{2}} \\
Q^{\left[n_{1}, n_{2}\right]}(\boldsymbol{x})=x_{n_{1}}\left(x_{n_{2}}-1\right) \quad\left(n_{1} \geqslant n_{2}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
P^{\left[n_{1}, n_{2}, n_{3}\right]}(\boldsymbol{y})=y_{n_{1}} y_{n_{2}} y_{n_{3}}-y_{n_{1}+n_{2}} y_{n_{3}}-y_{n_{1}+n_{3}} y_{n_{2}}-y_{n_{2}+n_{3}} y_{n_{1}}+2 y_{n_{1}+n_{2}+n_{3}} \\
Q^{\left[n_{1}, n_{2}, n_{3}\right]}(\boldsymbol{x})=x_{n_{1}}\left(x_{n_{2}}-1\right)\left(x_{n_{3}}-2\right) \quad\left(n_{1} \geqslant n_{2} \geqslant n_{3}\right)
\end{array}\right.
\end{aligned}
$$

Here is yet another example, with all n_{i} 's equal to distinct powers of 2 to preempt repetitions in the sums of n_{i} 's:

$$
\left\{\begin{array}{l}
P^{[8,4,2,1]}(\boldsymbol{y})=\left\{\begin{array}{l}
+0!0!0!0!y_{1} y_{2} y_{4} y_{8} \\
-0!0!1!\left(y_{1} y_{4} y_{10}+y_{1} y_{2} y_{12}+y_{1} y_{8} y_{6}+y_{2} y_{4} y_{9}+y_{2} y_{8} y_{5}+y_{4} y_{8} y_{3}\right) \\
+0!2!\left(y_{1} y_{14}+y_{4} y_{11}+y_{2} y_{13}+y_{8} y_{7}\right) \\
+1!1!\left(y_{6} y_{9}+y_{3} y_{12}+y_{5} y_{10}\right) \\
-3!y_{15} ;
\end{array}\right. \\
Q^{[8,4,2,1]}(\boldsymbol{x})=x_{8}\left(x_{4}-1\right)\left(x_{2}-2\right)\left(x_{1}-3\right)
\end{array}\right.
$$

Remark: Let $\operatorname{Par}_{r}(\boldsymbol{y})$ be the linear space spanned by the monomials $\boldsymbol{y}^{\mathfrak{r}}:=\prod y_{r_{i}}$, with $\mathfrak{r}=\left[r_{1}, \ldots, r_{s}\right]$ running through Par $_{r}$. Then the endomorphism f of $\operatorname{Par}_{r}(\boldsymbol{y})$

$$
\begin{equation*}
f: \quad y_{r_{1}} \ldots y_{r_{s}} \mapsto \sum_{\mathcal{J}_{1} \cup \ldots \mathcal{J}_{t}=\{1, \ldots, s\}}^{1 \leqslant t \leqslant s}(-1)^{s-t} \prod_{1 \leqslant i \leqslant s} \Gamma\left(\mathcal{J}_{i}\right) y_{r\left(\mathcal{J}_{i}\right)} \tag{371}
\end{equation*}
$$

which according to Proposition 8.9 encodes the correspondence $Q^{\boldsymbol{r}} \mapsto P^{\boldsymbol{r}}$, admits an even simpler inverse

$$
\begin{equation*}
f^{-1}: \quad y_{r_{1}} \ldots y_{r_{s}} \mapsto \sum_{\mathcal{J}_{1} \cup \ldots \mathcal{J}_{t}=\{1, \ldots, s\}}^{1 \leqslant t \leqslant s} \quad \prod_{1 \leqslant i \leqslant s} y_{r\left(\mathcal{J}_{i}\right)} \tag{372}
\end{equation*}
$$

which encodes the correspondence $P^{r} \mapsto Q^{r}$

Higher order contributions: going from $\gamma_{\delta}^{*}(t)$ to $\gamma_{\delta}(t)$.
Piecing together the results of this section, we can state that the restricted, double generating function:

$$
\Gamma^{*}(t, x):=\gamma_{0}^{*}(t)+\gamma_{1}^{*}(t) x+\gamma_{2}^{*}(t) x^{2}+\ldots \quad\left\{\begin{array}{l}
\gamma_{0}^{*}=\gamma_{0} \tag{373}\\
\gamma_{\delta}^{*} \neq \gamma_{\delta}
\end{array} \text { if } 1 \leqslant \delta\right.
$$

verifies the equation

$$
\begin{align*}
\Gamma^{*}(t, x) & =t \mathcal{F}\left(x, \Gamma^{*}(t, 0), \Gamma^{*}\left(t^{2}, 0\right), \Gamma^{*}\left(t^{3}, 0\right), \ldots\right) \tag{374}\\
& =t \mathcal{F}\left(x, \gamma(t), \gamma\left(t^{2}\right), \gamma\left(t^{3}\right), \ldots\right) \tag{375}
\end{align*}
$$

though with a framing function \mathcal{F} defined, not directly by (302) but rather by (302) plus (303) relative to the pilot polynomials $P_{r, d}$ determined in Proposition 7.11.

Finally, to 'unrestrict' the series $\Gamma^{*}(t, x)$ to the full series $\Gamma(t, x)$ and establish the functional equation

$$
\Gamma(t, x)=t \mathcal{F}\left(x, \Gamma(t, x), \Gamma\left(t^{2}, x^{2}\right), \Gamma\left(t^{3}, x^{3}\right), \ldots\right)
$$

we use the following lemma:

Lemma 7.2

In conclusion, for all its detours and meanderings, the approach followed in this section has the merit of drawing attention to the remarkable conversion matrices $\boldsymbol{m e} \boldsymbol{o}_{n} \cdot \boldsymbol{m o e}_{n}$ and of breaking down the pilot polynomials $P_{r, d}$ into completely explicit 'atoms':

$$
P_{r, d}(t)=\sum \alpha_{d_{1}, \ldots, d_{s}} P^{\left[d_{1}, \ldots, d_{s}\right]}(t) \quad \text { with } \quad\left\{\begin{array}{l}
d_{1}+\ldots+d_{s}=d \\
\alpha_{d_{1}, \ldots, d_{s}} \in \mathbb{Q}^{+}
\end{array}\right.
$$

7.7 Sketch of proof: second approach.

As in $\S 5.10$ let us decompose the associative algebra \mathbb{E} freely generated by elements $e_{1}, e_{2} \ldots$ into spaces $\mathbb{E}^{s_{1}, \ldots, s_{r}}$ of degree s_{i} in e_{i}, and let us split these spaces into sums

$$
\mathbb{E}^{s_{1}, \ldots, s_{r}}=\oplus_{1 \delta \leqslant s} \mathbb{E}_{d}^{s_{1}, \ldots, s_{r}} \quad\left(s=\sum s_{i}\right)
$$

of subspacesc \mathbb{E}_{d}^{s} consisting of distinguished elements of 'differential' degree d. The immediate aim is to calculate $\operatorname{dim}\left(\mathbb{E}_{d}^{s_{1}, \ldots, s_{r}}\right)$. For $d=1$ we have classically:

$$
\operatorname{dim}\left(\mathbb{E}^{s_{1}, \ldots, s_{r}}\right)=\frac{s!}{s_{1}!\ldots s_{r}!} \quad ; \quad \operatorname{dim}\left(\mathbb{E}_{1}^{s_{1}, \ldots, s_{r}}\right)=\frac{1}{s} \sum_{\delta \mid s_{i}} \mu(d) \frac{(s / d)!}{\left(s_{1} / d\right)!\ldots\left(s_{r} / d\right)!}
$$

Next, consider the three cgenerating series:

$$
\begin{align*}
S(\boldsymbol{x}) & =1+\sum_{1 \leqslant r} \sum_{s_{1}, s_{2} \ldots}^{i_{1}<i_{2} \ldots} x_{i_{1}}^{s_{1}} \ldots x_{i_{r}}^{s_{r}} \operatorname{dim}\left(\mathbb{E}_{1}^{s_{1}, \ldots, s_{r}}\right)=\left(1-\sum x_{i}\right)^{-1} \tag{376}\\
M(\boldsymbol{x}) & =\sum_{1 \leqslant r} \sum_{s_{1}, s_{2} \ldots}^{i_{1}<i_{2} \ldots} x_{i_{1}}^{s_{1}} \ldots x_{i_{r}}^{s_{r}} \operatorname{dim}\left(\mathbb{E}_{1}^{s_{1}, \ldots, s_{r}}\right) \tag{377}\\
S_{w}(\boldsymbol{x}) & =1+\sum_{1 \leqslant r}^{1 \leqslant d} \sum_{s_{1}, s_{2} \ldots}^{i_{1}<i_{2} \ldots} x_{i_{1}}^{s_{1}} \ldots x_{i_{r}}^{s_{r}} \operatorname{dim}\left(\mathbb{E}_{d}^{s_{1}, \ldots, s_{r}}\right) \tag{378}
\end{align*}
$$

Clearly
$S_{w}(\boldsymbol{x})=\exp \left(\sum_{1 \leqslant k} \frac{w^{k}}{k} M\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)\right) \quad$ with $\quad S_{1}(\boldsymbol{x}) \equiv S(\boldsymbol{x})$
and in the special case $w=1$:

$$
\begin{equation*}
S_{1}(\boldsymbol{x})=\exp \left(\sum_{1 \leqslant k} \frac{w^{k}}{k} M\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)\right) \equiv S(\boldsymbol{x}) \tag{380}
\end{equation*}
$$

By Möbius inversion, (380) leads to

$$
\begin{equation*}
\left.M(\boldsymbol{x})=\sum_{1 \leqslant k} \frac{1}{k} \log \left(S\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)\right)=-\sum_{1 \leqslant k} \frac{1}{k} \log \left(\left(1-\sum x_{i}^{k}\right)\right)\right) \tag{381}
\end{equation*}
$$

and then to

$$
\begin{equation*}
S_{w}(x)=\prod\left(1-\sum_{i} x_{i}^{k}\right)^{-\frac{1}{k} \sum_{d \mid k} \mu\left(\frac{k}{d}\right) w^{d}} \tag{382}
\end{equation*}
$$

So we can now calculate $\operatorname{dim}\left(\mathbb{E}_{d}^{s}\right)$ from (382). However, as noted in $\S 7$, the elements of Flex $_{r}^{\text {root }}(\mathfrak{E})$ of alternality co-degree $\delta=d-1$ that can be obtained as counter-alternaltors of elements alternal elements correspond do not correspond to elements of \mathbb{E}^{s} of degree d, but of supplementory degree $s-d$. This leads us to replace the series S_{w} by \mathcal{G} with:

$$
\begin{align*}
\mathcal{G}\left(z ; x_{1}, x_{2}, \ldots\right) & =S_{z^{-1}}\left(x_{1} z, x_{2} z, \ldots\right) \tag{383}\\
& =\prod\left(1-\sum x_{i}^{k} z^{k}\right)^{-1 k \sum_{d \mid k} \mu(k d) z^{-d}} \tag{384}
\end{align*}
$$

But going from $\mathcal{G}(z ; \boldsymbol{x})$ as just defined to $\mathcal{F}(x ; \boldsymbol{y})$ as defined in (302) exactly corresponds to applying the transform (367) with the matrices moe ${ }_{r}$. So, the restricted generating series $\Gamma^{*}(t, x)$ verifies the functional equation (374). We can then go to the full generation series $\Gamma(t, x)$ and its functional equation (315) by using the same trick than at the end of $\S 7.6$.

7.8 Dimensions.

Here are the first dimensions $\operatorname{dim}\left(F l e x_{r, d}^{\text {root }}\right)$ and $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\right)$. All calculations are based on the functional equation (315) in the 'practical' form (318). The columns are indexed by the depth r and the row by the co-degree d. For consistency, we used d rather than the shifted co-degree $\delta=d-1$ even in the first table. The reader may check that, in both tables, the entries in each column sum up to a Catalan number; and also that the first lines of either table (corresponding to the alternals) do coincide, as implied by (320)-(321).

Table for $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}^{r o t}\right)$.

1	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	1	1	2	4	9	20	48	115	286	719	1842	4766	12486	32973	87811	
3	0	0	0	1	4	15	49	156	479	1452	4343	12908	38146	112358	330064	
4	0	0	0	0	1	6	27	108	405	1446	5013	16953	56321	184385	596741	
5	0	0	0	0	0	1	7	40	191	839	3440	13475	50889	186888	670807	
6	0	0	0	0	0	0	1	8	58	317	1568	7197	31258	129898	521166	
7	0	0	0	0	0	0	0	1	10	76	476	2654	13539	64729	293759	
8	0	0	0	0	0	0	0	0	1	12	100	693	4249	23749	123608	
9	0	0	0	0	0	0	0	0	0	1	13	124	954	6433	39183	
10	0	0	0	0	0	0	0	0	0	0	1	15	153	1285	9391	
11	0	0	0	0	0	0	0	0	0	0	0	1	16	183	1672	
12	0	0	0	0	0	0	0	0	0	0	0	0	1	18	218	
13	0	0	0	0	0	0	0	0	0	0	0	0	0	1	19	

Table for $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\right)$.

8 Main bases of Flex ($\left.\mathfrak{E}^{\bullet}\right)$ and $F l e x^{a l}\left(\mathfrak{E}^{\bullet}\right)$.

8.1 $m u$-generation versus $d m u$-generation.

Instead of the counter-alternators, consider the simpler operation malt:

$$
\begin{align*}
A_{0}^{\bullet}, \ldots, A_{s}^{\bullet} & \mapsto \operatorname{malt}_{A_{0}}\left(A_{1}^{\bullet}, \ldots, A_{s}^{\bullet}\right):=\operatorname{dmu}\left(A_{0}^{\bullet}, \operatorname{mu}\left(A_{1}^{\bullet}, \ldots, A_{s}\right)\right) \tag{385}\\
\otimes_{i} \text { Flex }_{r_{i}}\left(\mathcal{E}^{\bullet}\right) & \rightarrow \text { Flex }_{r_{0}+\ldots+r_{s}}\left(\mathfrak{E}^{\bullet}\right)
\end{align*}
$$

and the system $\left\{\mathfrak{m o t e} \mathfrak{e}_{r, k}^{\bullet}\right\}$ constructed parallel to the system $\left\{\hat{\left.\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}\right\} \text {, but with }}\right.$ the operations malt, $m u$ now playing the part of $c \hat{a} l t, d m u$, as follows:

```
mote}\mp@subsup{\mathfrak{Q}}{1,1}{,= \mathfrak{E}\quad (prime element)
mote}\mp@subsup{\mathfrak{e},1}{\bullet}{:= malte
motere,
```



```
mote}\mp@subsup{\mathfrak{B}}{,2}{0}:=\mp@subsup{\operatorname{malt}}{\mathfrak{E}\bullet}{\bullet}(\mp@subsup{\mathfrak{mote}}{1,1}{0},\mathfrak{mote}\mp@subsup{\mathfrak{e}}{1,1}{\bullet})\quad\mathrm{ (prime element)
mote}\mp@subsup{\mathfrak{e}}{3,3}{\bullet}:=\operatorname{mu}(\mp@subsup{\mathfrak{mote}}{1,1}{\boldsymbol{\bullet}},\mp@subsup{\mathfrak{mote}}{2,1}{\bullet})\quad\mathrm{ (composite element)
mote}\mp@subsup{\mathfrak{e}}{3,4}{\bullet}:=\operatorname{mu}(\mp@subsup{\mathfrak{mote}}{2,1}{\bullet,},\mp@subsup{\mathfrak{mote}}{1,1}{\bullet})\quad\mathrm{ (composite element)
mote}\mp@subsup{\mathfrak{B},5}{\bullet}{:}:=\operatorname{mu}(\mp@subsup{\mathfrak{mote}}{1,1}{\bullet},\mathfrak{mote}\mp@subsup{\mathfrak{e}}{1,1}{0},\mathfrak{mote}\mp@subsup{\mathfrak{e}}{1,1}{\bullet})\quad(\mathrm{ composite element)
etc...
```


Lemma 8.1 ($m u$-generated basis) .

The 'prime elements' or 'generators' $\left\{\mathfrak{m o t e}_{r, k}^{\bullet} ; k \leqslant \kappa_{r-1}\right\}$, together with their mu-products $\left\{\operatorname{mot}_{r, k}^{\bullet} ; \kappa_{r-1}<k \leqslant \kappa_{r}\right\}$, constitute a basis of Flex $\left(\mathfrak{E}^{\bullet}\right)$ naturally indexed by ordered trees.

The shortest proof again lies in the fact that, for a suitable ordering on $\mathbb{O T}$ and $\mathbb{B} \mathbb{T}$, the $\mathbb{O T}$-indexed $\mathfrak{m o t} \mathfrak{e}_{r, k}^{\bullet}$ relate to the $\mathbb{B} \mathbb{T}$-indexed $\mathfrak{b t} \mathfrak{e}_{r, k}^{\bullet}$ according to

$$
\begin{array}{rlll}
\mathfrak{m o t e}_{r, k_{1}}^{\bullet} & =\sum_{k_{2} \leqslant \kappa_{r}} a_{r, k_{1}}^{r, k_{2}} \mathfrak{b t e}_{r, k_{2}}^{\bullet} & \text { with } & a_{r}^{r, k_{2}} \in\{0,1\} \\
\mathfrak{b t e} \mathfrak{e}_{r, k_{1}}^{\bullet} & =\sum_{k_{2} \leqslant \kappa_{r}} b_{r, k_{1}}^{r, k_{2}} \mathfrak{m o t e}_{r, k_{2}}^{\bullet} & \text { with } & b_{r, k_{1}}^{r, k_{2}} \in\{0,1,-1\}
\end{array}
$$

with triangular matrices $\left[a_{\bullet}^{\bullet}\right]$ and $\left[b_{\bullet}^{\bullet}\right]$ whose diagonal elements are all $\equiv 1$.
The system $\left\{\mathfrak{m o t e}_{r, k}^{\bullet}\right\}$ is essentially the simplest ${ }^{55}$ basis of Flex $\left(\mathfrak{E}^{\bullet}\right)$ that comes with a natural ©T-indexation, but it does not lead to simple expressions for the basic mould operations. Worse still, it does not, any more than $\left\{\mathfrak{b t e}_{r, k}^{\bullet}\right\}$, reflect the alternality stratification of Flex $\left(\mathfrak{E}^{\bullet}\right)$. Actually, no system relying on $m u$-generation can reflect that stratification. The reason is that, if the space spanned by the 'prime elements' or 'generators' is to contain the whole of Flex ${ }^{a l}(\mathbb{E} \bullet)$, then the 'composites elements' will automatically reproduce some of the alternal elements already constructed (since superpositions of $m u$-products cover all $l u$-bracketings) and cannot therefore be truly independent of the 'primes'. So, to get alternality-friendly bases, we must now return to the proper counter-alternators.

8.2 Main bases of Flex $\left(\mathfrak{E}^{\bullet}\right)$.

Proposition 8.1 (Counter-alternators and bases of Flex $\left(\mathfrak{E}^{\bullet}\right)$).
(i) The elements $\hat{\mathfrak{o}} \mathfrak{e}_{r, k}^{\bullet}$ indexed by ordered, one-rooted trees ot $_{r, k}\left(k \leqslant \kappa_{r-1}\right)$ and built from the main counter-alternator calt according to the procedure of

[^40]§.. condtitute a full system of dmu- and mdu-generators, in the sense that any element $\mathfrak{e}^{\bullet} \in$ Flex $\left(\mathfrak{E}^{\bullet}\right)$ admits a unique expansion of the form
\[

\mathfrak{e}^{\bullet}=\sum_{1 \leqslant s \leqslant r}^{r_{1}+···+r_{s}=r} \sum_{k_{i} \leqslant \kappa_{r_{i}-1}} \hat{a}^{\left($$
\begin{array}{ccc}
r_{1} & \ldots & r_{s} \tag{386}\\
k_{1} \ldots & k_{s}
\end{array}
$$\right)} \mathrm{dmu}\left(\hat{\left.\mathfrak{o} t \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, ···, \hat{\mathfrak{o} t} \mathfrak{e}_{r_{s}, k_{s}}^{\bullet}\right)}\right.
\]

and another of the form

$$
\left.\mathfrak{e}^{\bullet}=\sum_{1 \leqslant s \leqslant r}^{r_{1}+\ldots+r_{s}=r} \sum_{k_{i} \leqslant \kappa_{r_{i}-1}} \hat{b}^{\left(\begin{array}{ccc}
r_{1} & \ldots & r_{s} \tag{387}\\
k_{1} \ldots
\end{array}\right)} \overrightarrow{k_{s}}\right) \overrightarrow{\operatorname{ldu}}\left(\hat{\left.\mathfrak{o} t \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \ldots, \hat{\mathfrak{o} t} \mathfrak{e}_{r_{s}, k_{s}}^{\bullet}\right)}\right.
$$

with a conversion formula $\hat{a}^{\bullet} \leftrightarrow \hat{b}^{\bullet}$ given by the identity (??).
The closely related system $\left\{\operatorname{ate}_{r, d, r}^{\bullet} ; k \leqslant \gamma_{r, d}\right\}$ indexed by aggregated trees at $_{r, d, k}$ faithfully reflects the alternality gradation of $\operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right)$.
(ii) The same holds for the elements $\mathfrak{\mathfrak { o } t \mathfrak { t } _ { r , k } ^ { \bullet }}$ built from the second counter-alternator cǎlt, but with a less simple concersion rule for the expansions

$$
\begin{align*}
& \mathfrak{e}^{\bullet}=\sum_{1 \leqslant s \leqslant r}^{r_{1}+\ldots+r_{s}=r} \sum_{k_{i} \leqslant \kappa_{r_{i}-1}} \check{a}^{\left(\begin{array}{ccc}
r_{1} & \ldots & r_{s} \\
k_{1} & \ldots & k_{s}
\end{array}\right)} \mathrm{dmu}\left(\stackrel{\mathfrak{o} t \mathfrak{e}_{r_{1}}^{\bullet}, k_{1}}{\bullet}, \ldots, \check{\mathfrak{o} t \mathfrak{e}_{r_{s}}^{\bullet}, k_{s}}\right) \tag{388}\\
& \mathfrak{e}^{\bullet}=\sum_{1 \leqslant s \leqslant r}^{r_{1}+\ldots+r_{s}=r} \sum_{k_{i} \leqslant \kappa_{r_{i}-1}} \check{b}_{\left(\begin{array}{cc}
r_{1} & \ldots r_{s} \\
k_{1} & \ldots \\
k_{s}
\end{array}\right)} \operatorname{mdu}\left(\check{\mathfrak{o} t \mathfrak{e}_{r_{1}}^{\bullet}, k_{1}}, \ldots, \check{\mathfrak{o} t \mathfrak{e}_{r_{s}}^{\bullet}, k_{s}}\right) \tag{389}
\end{align*}
$$

and with further differences pertaining to the behaviour of the generators $\hat{\mathrm{s}}_{\mathrm{t}}^{\boldsymbol{\bullet}, k}{ }^{\bullet}$ under the brackets lu and ari.
(iii) The elements $\overline{\mathfrak{o}} \mathfrak{e} \mathfrak{e}_{r, k}^{\bullet}$ constructed in the same way from the weakly inflected counter-alternator cālt do not constitute a full system of dmu or mdu generators. Indeed, from $r=7$ onwards the generators $\overline{\mathfrak{o} t \mathfrak{t}_{r, k}^{\bullet}}\left(k \leqslant \kappa_{r-1}\right)$ cease to be independent; and the same holds even earlier, starting from $r=4$, for the would-be basis elements $\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r, k}^{\bullet}\left(k \leqslant \kappa_{r}\right)$.

However, the elements $\overline{\mathfrak{u}} \mathfrak{e}_{r, 1, k}^{\bullet}\left(k \leqslant \gamma_{1, r}\right)$ constructed from cālt and indexed by unordered trees in $\mathbb{U T}^{56}$ do constitute a basis of $\operatorname{Flex}_{r}^{\mathrm{al}}\left(\mathfrak{E}^{\bullet}\right)$ (alternal elements) which in some contexts compares advantageously with the analogous bases derived from calt or câlt. See $\S 9 \ldots$ and $\S 9$ infra.

Sketch of proof:
(i) The independence of the generator set $\hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}}\left(k \leqslant \kappa_{r-1}\right)$ follows from that of the full set $\hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}}\left(k \leqslant \kappa_{r}\right)$ and the latter follows from the form (lower triangular, with non-zero diagonal entries) of the conversion matrices exchanging the $\mathbb{O T}$ indexed systems $\left\{\hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}} ; k \leqslant \kappa_{r}\right\}$ and the $\mathbb{B} \mathbb{T}$-indexed systems $\left\{\hat{\mathfrak{b}} \mathfrak{e}_{r, k}^{\bullet} ; k \leqslant \kappa_{r}\right\}$, as explained in $\S \ldots$

[^41](ii) Here again, the proofs relies on the triangular nature of the conversion matrices. Due to the lesser importance of that case, we haven't described these matrices, but some instances may be found in the tables of $\S 13.3$.
(iii) Even for small depths r, the dimensions $\bar{\kappa}_{r-1}$ of the spaces spanned by
 number κ_{r-1}, and the dimensions $\overline{\bar{\kappa}}_{r}$ of the full systems $\left\{\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r, k} ; k \leqslant \kappa_{r}\right\}$ start diverging from κ_{r} even sooner and faster, as shown by this table:

r	$\\|$	1	2	3	4	5	6	7	8
$\left(\bar{\kappa}_{r-1}, \kappa_{r-1}\right)$	$\\|(1,1)$	$(1,1)$	$(2,2)$	$(5,5)$	$(14,14)$	$(42,42)$	$(131,132)$	$(423,429)$	
$\left(\overline{\bar{\kappa}}_{r}, \kappa_{r}\right)$	$\\|(1,1)$	$(2,2)$	$(5,5)$	$(13,14)$	$(36,42)$	$(104,132)$	$(316,429)$	$(\ldots, 1430)$	

To illustrate the mechanism behind these discrepancies, here are the first dependence relations between general elements or between generators, at depth $r=4$ and $r=7$ respectively:

$$
\begin{align*}
0 & \equiv+\overline{\mathfrak{o} t \mathfrak{e}} \mathfrak{e}_{4,1}-\overline{\mathfrak{o} t \mathfrak{e}} \mathfrak{e}_{4,2}+\overline{\mathfrak{o} t \mathfrak{e}} \mathfrak{e}_{4,3}^{\bullet}-\overline{\mathfrak{o} t \mathfrak{e}_{4,4}^{\bullet}}+2 \overline{\mathfrak{o} t \mathfrak{e}} \mathbf{e}_{4,8}^{\bullet}-2 \overline{\mathfrak{o} t \mathfrak{e}_{4,9}^{\bullet}} \tag{390}\\
0 & \equiv+3 \mathfrak{e}_{1}^{\bullet}+4 \mathfrak{e}_{2}^{\bullet}+3 \mathfrak{e}_{3}^{\bullet} \tag{391}
\end{align*}
$$

with

Let us parse (??) first:

$$
\begin{aligned}
\overline{\mathfrak{o}} t \mathfrak{e}_{4,1}^{\bullet}, \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{4,1}^{\bullet} & \in \operatorname{Flex}_{4,1}\left(\mathfrak{E}^{\bullet}\right) \\
\overline{\mathfrak{o}} \mathfrak{e} \mathfrak{e}_{4,3}^{\bullet}-\overline{\mathfrak{o}} \mathfrak{e} \mathfrak{e}_{4,4}^{\bullet} & \in \operatorname{Flex} 4,2\left(\mathfrak{E}^{\bullet}\right) \\
\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{4,8}^{\bullet}-\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{4,9}^{\bullet} & =\operatorname{dmu}\left(\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{2,1}^{\bullet}, \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{2,1}^{\bullet}\right)-\operatorname{dmu}\left(\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{3,1}^{\bullet}, \overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{1,1}^{\bullet}\right) \in \operatorname{Flex}_{4,2}\left(\mathfrak{E}^{\bullet}\right)
\end{aligned}
$$

Now, to (??). Here are the three elements of Flex $\left(\mathfrak{E} \bullet_{\bullet}\right)$

$$
\begin{aligned}
\mathfrak{a}_{1}^{\bullet} & :=\overline{\mathfrak{o} t \mathfrak{e}_{1,1}^{\bullet} \in \text { Flex }_{1,1}\left(\mathfrak{E}^{\bullet}\right)} \\
\mathfrak{a}_{2}^{\bullet} & :=\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{2,1}^{\bullet} \in \operatorname{Flex}_{2,1}\left(\mathfrak{E}^{\bullet}\right) \\
\mathfrak{a}_{3}^{\bullet} & :=\overline{\bar{o}} \mathfrak{t} \mathfrak{e}_{3,1}^{\bullet}-\overline{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{3,2}^{\bullet} \in \text { Flex }_{3,1}\left(\mathfrak{E}^{\bullet}\right)
\end{aligned}
$$

that go into the making of $\mathfrak{e}_{1}^{\mathbf{0}}, \mathfrak{e}_{2}^{\mathbf{0}}, \mathfrak{e}_{3}^{\mathbf{0}}$:

$$
\begin{aligned}
& \mathfrak{e}_{1}^{\bullet}=\operatorname{cālt}_{\mathfrak{E}}\left(\mathfrak{a}_{3}^{\bullet}, \mathfrak{a}_{3}^{\bullet}\right) \quad \in \operatorname{Flex}_{7,2}(\mathfrak{E} \bullet)
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{e}_{3}^{\bullet}=\left\{\begin{array}{l}
+\operatorname{cālt} \mathfrak{E}^{\bullet}\left(\mathfrak{a}_{1}^{\bullet}, \mathfrak{a}_{2}^{\bullet}, \mathfrak{a}_{1}^{\bullet}, \mathfrak{a}_{2}^{\bullet}\right)+\operatorname{cālt} \mathfrak{E}^{\bullet}\left(\mathfrak{a}_{2}^{\bullet}, \mathfrak{a}_{1}^{\bullet}, \mathfrak{a}_{2}^{\bullet}, \mathfrak{a}_{1}^{\bullet}\right) \\
-\operatorname{cālt}_{\mathfrak{E}} \cdot\left(\mathfrak{a}_{1}^{\bullet}, \mathfrak{a}_{2}^{\bullet}, \mathfrak{a}_{2}^{\bullet}, \mathfrak{a}_{1}^{\bullet}\right)-\operatorname{cātt} \mathfrak{E} \cdot\left(\mathfrak{a}_{2}^{\bullet}, \mathfrak{a}_{1}^{\bullet}, \mathfrak{a}_{1}^{\bullet}, \mathfrak{a}_{2}^{\bullet}\right)
\end{array} \quad \in \quad \operatorname{Flex}_{7,3}\left(\mathfrak{E}^{\bullet}\right)\right.
\end{aligned}
$$

8.3 Main bases of Flex $^{a l}\left(\mathfrak{E}^{\bullet}\right)$.

8.4 Lie and pre-Lie brackets in the main bases.

Lemma 8.2 (Tree operations: attachment and insertion) .
Let $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$ denote ordered, planar, one-rooted trees, i.e. elements of $\mathbb{O T}^{(1)}$.
(i) Attaching T_{2} to T_{1} means connecting the root node j_{*} of T_{2} to some node i of T_{1} via a new vertex v from i to j_{*}, and assigning v a definite position among the various edges of T_{1} issuing from i, so as to unambiguously define a new ordered tree T_{3}. If T_{1} has r_{1} nodes, there are exactly $2 r_{1}-1$ ways of attaching to it any given T_{2}.
(ii) Inserting T_{2} into T_{1} means producing a tree T_{3} whose nodes can be assigned colours 1 or 2 in such a way that:
(1) The 2-coloured nodes of T_{3} constitute a connected sub-tree T_{2}^{\prime} of T_{3} isomorphic to T_{2}.
(2) There is at least one 2-coloured node immediately preceding one 1-coloured node. ${ }^{57}$
(3) The root node of T_{2}^{\prime} is distinct from the root node of T_{3} and has for immediate antecedent some 1-coloured node i of T_{3}.
(4) By retaining only the 1-coloured nodes of T_{3}, i.e. by collapsing the whole of T_{2}^{\prime} to the 1-coloured node i of T_{3}, one gets a tree T_{1}^{\prime} isomorphic to T_{1}.

Let r_{2} be the node number of T_{2} and for each node i of T_{1}, let p_{i} be the number of vertices issuing from i. Then there exist exactly $\sum_{i} h\left(p_{i}, r_{2}\right)$ distinct ways of inserting T_{2} into T_{1}, with

$$
\begin{equation*}
h(p, q):=\frac{(p+2 q)!}{p!(2 q)!}-1-p \tag{392}
\end{equation*}
$$

The only point to check is formula (??). Assume first that T_{2} is linear, with each node (other than the end node) having just one successor. Let i be the node of T_{1}^{\prime} immediately preceding the root node j_{*} of T_{2}^{\prime}. In the insertion process, each of the p_{i} nodes of T_{1} immediately following i either remains attached to i or moves upward to attach itself to some of the r_{2} nodes of T_{2}, with the only proviso that not all p_{i} successor nodes should remain attached to i (for that would contradict clause (2); it would in effect mean that T_{2} is getting attached to T_{1} rather than inserted into it). Now, the number of distinct ways to achieve this is exactly

$$
\begin{equation*}
-1-p_{i}+\sum_{1 \leqslant k \leqslant p_{i}} \frac{\left(2 r_{2}+1\right)!}{k!\left(2 r_{2}+1-k\right)!} \frac{\left(p_{i}-1\right)!}{(k-1)!\left(p_{i}-k\right)!} \equiv h\left(p_{i}, r_{2}\right) \tag{393}
\end{equation*}
$$

The $k^{\text {th }}$ summand counts all possible ways of attaching the p_{i} succesor nodes of i to k distinct nodes of T_{2} and the corrective term $-1-p_{i}$ accounts for the

[^42]impossibility of keeping all successor nodes attached to i. To complete the proof, it suffices to check that nothing changes if we gradually modify the structure of T_{2}, from linear to arbitrary, while keeping the total number of nodes equal to r_{2}.

Just three more remarks:
(i) The end nodes i of T_{1} play no part in the insertion process, since for them $p_{i}=0$ and so $h\left(p_{i}, r_{2}\right) \equiv 0$.
(ii) For $r_{1}=1$, i.e. when T_{1} reduces to a root node, the definition makes it clear that T_{1} cannot have anything inserted into it.
(iii) Conversely, when $r_{2}=1$, inserting T_{2} into T_{1} reduces to grafting the single node of T_{2} onto any one of T_{1} 's edges.

Proposition 8.2 (Generators $\mathfrak{o t e}_{r, k}^{\bullet}$ and pre-Lie products).
(i) The generators $\hat{\mathfrak{o}} \mathfrak{e}_{r, k}^{\bullet}\left(k \leqslant \kappa_{r-1}\right)$ constructed from the main counter-alternator câlt and indexed by ordered trees ot ${ }_{r, k}$ behave optimally simply under the pre-Lie products dlu and dari:

$$
\begin{align*}
& \operatorname{dlu}\left(\hat{\left.\mathfrak{o} t \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \hat{\mathfrak{o} t \mathfrak{e}_{r_{2}, k_{2}}^{\bullet}}\right)=-\sum_{k \leqslant \kappa_{r-1}}^{r=r_{1}+r_{2}} \hat{\alpha}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k} \quad \hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}} \quad \text { with } \quad \alpha \quad \alpha_{\bullet, \bullet}^{\bullet} \in \mathbb{N}, ~}\right. \tag{394}\\
& \operatorname{dari}\left(\hat{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \hat{\mathfrak{o}} \mathfrak{t} \mathfrak{e}_{r_{2}, k_{2}}^{\bullet}\right)=+\sum_{k \leqslant \kappa_{r-1}}^{r=r_{1}+r_{2}} \hat{\beta}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k} \quad \hat{\mathfrak{o}} \mathfrak{e}_{r, k}^{\bullet} \quad \text { with } \quad \beta_{\bullet, \bullet} \in \mathbb{N} \tag{395}
\end{align*}
$$

In terms of the indexing trees ot ${ }_{r, k}$, the operation dlu corresponds to attaching the second tree ot ${ }_{r_{2}, k_{2}}$ successively to each node of the first tree ot ${ }_{r_{1}, k_{1}}$, in all possible arrangements, and the operation dari corresponds to inserting the second tree ot ${ }_{r_{2}, k_{2}}$ into the first tree ot $_{r_{1}, k_{1}}$, again in all possible ways (see details below). As for the integer coefficients involved in these identities, they verify

$$
\begin{align*}
\sum_{k} \hat{\alpha}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k} & =2 r_{1}-1 \tag{396}\\
\sum_{k} \hat{\beta}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k} & =\sum_{p_{i}=\operatorname{ramif}(i)}^{i \in \operatorname{nodes}\left(\mathrm{ot}_{\mathrm{r}_{1}, \mathrm{k}_{1}}\right)}\left(\frac{\left(p_{i}+2 r_{2}\right)!}{p_{i}!\left(2 r_{2}\right)!}-1-p_{i}\right) \tag{397}
\end{align*}
$$

In (??), the $\hat{\alpha}$-sum depends only on the node number r_{1} of the first tree ot ${ }_{r_{1}, k_{1}}$, and not at all on the second tree. In (??), the $\hat{\beta}$-sum depends on the ramification numbers p_{i} at each node i of the first tree ot $_{r_{1}, k_{1}}$ (i.e. on the number of branches issuing from i) but only on the node number r_{2} of the second tree.
(ii) The generators ofte $_{r, k}^{\bullet}\left(k \leqslant \kappa_{r-1}\right)$ constructed from the second counteralternator cǎlt and indexed by ordered trees ot ${ }_{r, k}$ behave under the pre-Lie products dlu and dari under (slightly less) simple rules. The formulae now involve
coefficient $\check{\alpha}, \check{\beta}$ of mixed signs:

The integer coefficients involved in these identities verify

$$
\begin{align*}
& \sum_{k} \check{\alpha}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k}=1 \tag{400}\\
& \sum_{k} \check{\beta}_{r_{1}, k, k_{1} ; r_{2}, k_{2}}^{r, k}=r_{1}-1 \tag{401}
\end{align*}
$$

But the main difference is that in the new expansions k may run up to κ_{r} instead of κ_{r-1} in (i), meaning that, beside simple generators, we may also get dmu products of these. The remark applies not just to dlu and dari but also to lu and ari.
(iii) Turning now to the weak counter-alternator cālt, the system $\overline{\mathfrak{o} t \mathbf{t e}_{r, k}^{\bullet}}\left(k \leqslant \kappa_{r}\right)$ indexed by ordered trees is not complete in $\operatorname{Flex}_{r}\left(\mathfrak{E}^{\bullet}\right)$, but the system $\overline{\mathfrak{u} t \mathfrak{e}_{r, k}^{\bullet}}$ $\left(k \leqslant \varkappa_{r}\right)$ indexed by unordered trees does span $\operatorname{Flex}_{r}^{\mathrm{al}}\left(\mathbb{E}^{\bullet}\right)$ and gives rise there to expansions of the form:

$$
\begin{align*}
& \mathrm{dlu}\left(\overline{\mathfrak{u}} \mathfrak{t}_{r_{1}, k_{1}}^{\bullet}, \overline{\mathfrak{u}} \mathfrak{e}_{r_{2}, k_{2}}^{\bullet}\right)=-\sum_{k \leqslant \varkappa_{r}}^{r=r_{1}+r_{2}} \bar{\alpha}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k} \quad \overline{\mathfrak{u}} \mathbf{t}_{r, k}^{\bullet} \quad \text { with } \quad \bar{\alpha}:, \in \mathbb{Q} \tag{402}\\
& \text { dari }\left(\overline{\mathfrak{u}} \mathfrak{t} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \overline{\mathfrak{u}} \mathfrak{e}_{r_{2}, k_{2}}^{\bullet}\right)=+\sum_{k \leqslant \varkappa_{r}}^{r=r_{1}+r_{2}} \bar{\beta}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k} \quad \overline{\mathfrak{u}} \mathfrak{e}_{r, k}^{\bullet} \quad \text { with } \quad \bar{\beta} \cdot, \in \mathbb{Q} \tag{403}
\end{align*}
$$

with rational coefficients that verify

$$
\begin{align*}
& \sum_{k} \bar{\alpha}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k}=1 \tag{404}\\
& \sum_{k} \bar{\beta}_{r_{1}, k_{1} ; r_{2}, k_{2}}^{r, k}=r_{1}-1 \tag{405}
\end{align*}
$$

Sketch of proof:
(i) The counter-alternator câlt was precisely devised to ensure that calculating $\mathrm{dlu}\left(\hat{\boldsymbol{o}} \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}, \hat{\mathrm{o}} \mathbf{t e}_{r_{2}, k_{2}}^{\bullet}\right)$ should reduce to attaching the tree $o t_{r_{2}, k_{2}}$ to the tree $o t_{r_{1}, k_{1}}$, in all possible ways. To infer from that the more complicated insertion rule for the dari product, one starts from the trivial identity dari $\left(\hat{\left.\boldsymbol{o} t \mathbf{t e}_{r_{1}, k_{1}}^{\bullet}, \hat{o}^{\bullet} \mathfrak{t}_{r_{2}, k_{2}}^{\bullet}\right) \equiv 0}\right.$ when $r_{1}=k_{1}=1$ (i.e. $\hat{\mathfrak{o} t \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}}=\mathfrak{E}^{\bullet \bullet}$). One then observes

- that any $\hat{\boldsymbol{o}} \mathfrak{e}_{r_{1}, k_{1}}^{\boldsymbol{e}}$, can be constructed from units \mathfrak{E}^{\bullet} through a succession of operations $d l u, d m u$, $m d u$;
- that $\operatorname{dari}\left(A^{\bullet}, B^{\bullet}\right)=\operatorname{arit}\left(B^{\bullet}\right) A^{\bullet}+\operatorname{dlu}\left(A^{\bullet}, B^{\bullet}\right)$;
- that the operator $\operatorname{arit}\left(B^{\bullet}\right)$??? is a $d l u-, d m u$-, $m d u$-automorphism;
- that at each stage of $\hat{\mathfrak{o} t \mathfrak{e}_{r_{1}, k_{1}}^{\bullet}}$'s reconstruction the insertion rule applies.
 have only integer entries, the coefficients $\check{\alpha}, \check{\beta}$ will be integers, just like $\hat{\alpha}, \hat{\beta}$, though not necessarily positive. The coefficients $\bar{\alpha}, \bar{\beta}$, on the other hand, are merely rational. As for the curious identities (??)-(??) and (??)-(??), they are mentioned here only for the record, but can be checked (painstakingly) by induction on r_{1}.

8.5 Main sub-algebras.

$$
\begin{equation*}
\operatorname{he} A^{\bullet}:=\operatorname{arit}\left(A^{\bullet}\right) \cdot \mathfrak{E}^{\bullet}=\operatorname{câlt}_{\mathfrak{E}}\left(A^{\bullet}\right)=\operatorname{cǎlt}_{\mathfrak{E}}\left(A^{\bullet}\right)=\operatorname{cā}^{\log }\left(A^{\bullet}\right) \tag{406}
\end{equation*}
$$

$\forall A^{\bullet} \in \operatorname{Flex}(\mathfrak{E})$

Proposition 8.3 ($\operatorname{Flex}(\mathfrak{E})$ and its subalgebras) .

These are the main ari-subalgebras of Flex (\mathfrak{E}) or Flex for short :

$$
\begin{equation*}
\text { he }^{\infty} \text { Flex }^{\text {al }} \subset \ldots \text { he }^{2} \text { Flex }^{\text {al }} \subset \text { he }^{1} \text { Flex }^{\text {al }} \subset \text { Flex }^{\text {al }}=\oplus_{1 \leqslant n} \text { be }^{n} \text { Flex }^{\text {al }} \subset \text { Flex }^{\text {root }} \tag{407}
\end{equation*}
$$

Each he ${ }^{n}$ Flex $^{\text {al }}(0 \leqslant n \leqslant \infty)$ and each be ${ }^{n}$ Flex $^{\text {al }}(1 \leqslant n<\infty)$ is stable under ari, while Flex ${ }^{\text {al }}$ and Flex ${ }^{\text {root }}$ are stable under both ari and lu. Moreover:

$$
\left.\begin{array}{rl}
\text { dari }\left(\text { be }^{\mathrm{n}_{1}} \text { Flex }^{\text {al }}, \text { be }^{\mathrm{n}_{2}} \text { Flex }{ }^{\text {al }}\right) & \in \text { be }^{\mathrm{n}_{1}} \text { Flex }{ }^{\text {al }} \\
\text { ari }\left(\text { be }^{\mathrm{n}_{1}} \text { Flex }^{\text {al }}, \text { be }^{\mathrm{n}_{2}}\right. \text { Flex } \tag{409}
\end{array}\right) \in \text { be }^{\mathrm{al}_{1}} \text { Flex }^{\text {al }} \oplus \text { be }^{\mathrm{n}_{2}} \text { Flex }^{\text {al }}
$$

Here are the identities responsible for the ari-stability of he ${ }^{n}$ Flex $^{\text {al }}$:

$$
\begin{align*}
& \text { ari: } \quad\left(\operatorname{he}^{n} \text { Flex }_{r_{1}}(\mathfrak{E}), \operatorname{he}^{n} \operatorname{Flex}_{r_{2}}(\mathfrak{E})\right) \quad \rightarrow \quad \operatorname{he}^{n} \operatorname{Flex}_{r_{1}+r_{2}+n}(\mathfrak{E}) \\
& \operatorname{arihe}_{\mathrm{n}}: \quad\left(\operatorname{Flex}_{r_{1}}(\mathfrak{E}), \text { Flex }_{r_{2}}(\mathfrak{E})\right) \quad \rightarrow \quad \operatorname{Flex}_{r_{1}+r_{2}+n}(\mathfrak{E}) \\
& \operatorname{ari}\left(\text { he }^{n} A^{\bullet}, \text { he }^{n} B^{\bullet}\right) \equiv \operatorname{he}^{n} \operatorname{arihe}_{n}\left(A^{\bullet}, B^{\bullet}\right) \tag{410}\\
& \text { with } \quad \operatorname{arihe}_{n}\left(A^{\bullet}, B^{\bullet}\right):=\left\{\begin{array}{l}
-\operatorname{arit}\left(\mathrm{he}^{n} A^{\bullet}\right) B^{\bullet}+\operatorname{arit}\left(\mathrm{he}^{n} B^{\bullet}\right) A^{\bullet} \\
+\sum_{n_{1}+n_{2}=n}^{0 \leqslant n_{i}} \operatorname{lu}\left(\mathrm{he}^{\mathrm{n}_{1}} A^{\bullet}, \mathrm{he}^{\mathrm{n}_{2}} B^{\bullet}\right)
\end{array}\right. \tag{411}
\end{align*}
$$

And here is the identity responsible for the ari-stability of $\mathrm{be}^{n} \mathrm{Flex}^{\mathrm{al}}$:

$$
\begin{align*}
& \operatorname{dari}\left(\operatorname{cālt}_{\mathfrak{E}}\left(A_{1}^{\bullet}, \ldots, A_{s}^{\bullet}\right), B^{\bullet}\right) \equiv \sum_{j} \operatorname{cālt}_{\mathfrak{E}}\left(A_{1}^{\bullet}, \ldots, \operatorname{tari}\left(A_{j}^{\bullet}, B^{\bullet}\right), \ldots, A_{s}^{\bullet}\right) \tag{412}\\
& \text { with } \begin{cases}\operatorname{dari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{dlu}\left(A^{\bullet}, B^{\bullet}\right) \\
\operatorname{tari}\left(A^{\bullet}, B^{\bullet}\right) & :=\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{lu}\left(A^{\bullet}, B^{\bullet}\right)\end{cases} \tag{413}
\end{align*}
$$

8.6 Push-invariance.

Proposition 8.4 (câlt, cǎlt, cālt and push-invariance) .
(i) In the $\left\{\hat{\mathfrak{o} t} \mathfrak{e}_{r, k}^{\bullet}\right\}$-basis, we have expansions of type

$$
\begin{equation*}
\sum_{0 \leqslant n \leqslant r} \operatorname{push}^{n} \cdot \hat{\mathfrak{o} t \mathfrak{e}_{r, p}^{\bullet}}=\sum_{q} \hat{a}_{p, q} \hat{\mathfrak{o} t \mathfrak{e}_{r, q}^{\bullet}} \quad\left(p, q \leqslant \kappa_{r} ; \hat{a}_{p, q} \in \mathbb{Z}\right) \tag{414}
\end{equation*}
$$

with integers $\hat{a}_{p, q}$ whose sum $\sum_{q} \hat{a}_{p, q}$ is divisible by $2 r+1$ whenever $2 r+1$ is prime.
(ii) In the $\left\{\check{\left.\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}\right\} \text {-basis, we have expansions of type }}\right.$

$$
\begin{equation*}
\sum_{0 \leqslant n \leqslant r} \operatorname{push}^{n} . \check{\mathfrak{o} t}_{r, p}^{\bullet}=\sum_{q} \check{a}_{p, q} \check{\mathfrak{o} t \mathfrak{e}_{r, q}^{\bullet}} \quad\left(p, q \leqslant \kappa_{r} ; \check{a}_{p, q} \in \mathbb{Z}\right) \tag{415}
\end{equation*}
$$

with integers $\check{a}_{p, q}$ whose sum $\sum_{q} \check{a}_{p, q}$ is always $\equiv 0$.
(iii) The system $\left\{\overline{\mathfrak{o}} \mathfrak{e}_{r, k}^{\bullet}\right\}$ being no basis of $\mathrm{Flex}_{r}\left(\mathfrak{E}^{\bullet}\right)$, the above relations have no exact counterpart here. However, the system $\left\{\overline{\mathfrak{u}} \mathfrak{t e}_{r, k}^{\bullet}\right\}$ indexed by unordered trees of $\mathbb{U T}_{r}$ is a basis of the alternal subspace $\operatorname{Flex}_{r}^{\mathrm{al}}\left(\mathfrak{E}^{\bullet}\right)$, and gives rise to remarkable expansions of type:

$$
\begin{equation*}
\sum_{0 \leqslant n \leqslant r} \operatorname{push}^{n} \cdot \overline{\mathfrak{u} t \mathfrak{e}_{r, p}^{\bullet}}=\sum_{q} \bar{a}_{p, q} \overline{\mathfrak{u} t \mathfrak{e}_{r, q}^{\bullet}} \quad\left(p, q \leqslant \varkappa_{r} ; \bar{a}_{p, q} \in \mathbb{Q}\right) \tag{416}
\end{equation*}
$$

that involve only basis elements $\overline{\mathfrak{u}} \mathfrak{t}_{r, q}^{\bullet}$ indexed by unordered trees with oddbranching roots, i.e. with roots having a odd number of edges issuing from them. Thus, in (??), about half the basis elements are automatically ruled out. Moreover, if we normalise the basis $\left\{\overline{\mathfrak{u} t} \mathfrak{e}_{r, k}^{\bullet}\right\}$ (see (??)), the remaining coefficients sum up to zero: $\sum_{q} \bar{a}_{p, q} \equiv 0$

9 Expanding the dimorphic bimoulds.

9.1 The main bases and the universal alternals.

We shall construct in Flex (\mathfrak{E}) two elementary and three semi-elementary series of alternals, namely $\left\{\mathfrak{r} \mathfrak{e}_{r}^{\bullet}\right\},\left\{\mathfrak{l} \mathfrak{e}_{r}^{\bullet}\right\}$ and $\left\{\mathfrak{h} \mathfrak{e}_{r}^{\bullet}\right\},\left\{\mathfrak{k} \mathfrak{e}_{2 r}^{\bullet}\right\},\left\{\mathfrak{g} \mathfrak{e}_{r}^{\bullet}\right\}$, by giving in each case a direct description side by side with an inductive definition.

The first alternal series $\left\{\mathfrak{r e}{ }_{r}^{\bullet}\right\}$.
The inductive definition, which immediately implies alternality, reads:

$$
\begin{equation*}
\mathfrak{r} \mathfrak{e}_{1}^{\bullet}:=\mathfrak{E}^{\bullet} \quad ; \quad \mathfrak{r} \mathfrak{e}_{\mathfrak{r}}^{\bullet}:=\operatorname{arit}\left(\mathfrak{r e}_{r-1}^{\bullet}\right) \mathfrak{E}^{\bullet} \quad(\forall r \geqslant 2) \tag{417}
\end{equation*}
$$

The most outstanding property of the alternals $\mathfrak{r e}_{r}^{\bullet}$ is their self-reproduction à la Witt under the ari bracket:

$$
\begin{equation*}
\operatorname{ari}\left(\mathfrak{v e}_{r_{1}}^{\bullet}, \mathfrak{e}_{r_{2}}^{\bullet}\right)=\left(r_{1}-r_{2}\right) \mathfrak{e}_{r_{1}+r_{2}}^{\bullet} \tag{418}
\end{equation*}
$$

The second alternal series $\left\{\mathfrak{l e}_{r}^{\bullet}\right\}$.
Here the direct definition reads:

$$
\begin{equation*}
\mathfrak{l e}_{r}^{w_{1}, \ldots, w_{r}}:=\sum_{1 \leqslant i \leqslant r}(-1)^{i-1} \frac{(r-1)!}{(i-1)!(r-i)!} \mathfrak{E}^{\left(u_{1}+\ldots+u_{r}\right)} \prod_{j \neq i} \mathfrak{E}^{\left({ }_{v_{j}-v_{i}}^{u_{j}}\right)}(\tag{419}
\end{equation*}
$$

The third alternal series $\left\{\mathfrak{h e}_{r}^{\bullet}\right\}$.
The series $\left\{\mathfrak{h} \mathfrak{e}_{r}^{\bullet}\right\}$ is best defined in the binary basis $\left\{\mathfrak{e}_{\boldsymbol{t}}^{\bullet}\right\}$:

$$
\mathfrak{h} \mathfrak{e}_{r}^{\bullet}=\sum_{\boldsymbol{t} \in \mathbb{B T}_{r}} \operatorname{slant}(\boldsymbol{t}) \mathfrak{e}_{\boldsymbol{t}}^{\boldsymbol{\bullet}} \text { with }\left\{\begin{array}{l}
\boldsymbol{t}=h\left(\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}\right) \tag{420}\\
\mathfrak{e}_{\boldsymbol{t}}^{\bullet}=\operatorname{amnit}\left(\mathfrak{e}_{\boldsymbol{t}_{1}}^{\bullet}, \mathfrak{e}_{\boldsymbol{t}_{\mathbf{2}}}^{\bullet}\right) \mathfrak{E}^{\bullet} \\
\operatorname{slant}(\boldsymbol{t})=\operatorname{slant}\left(\left.\begin{array}{l}
p_{1} \\
q_{1}
\end{array} \right\rvert\, \begin{array}{l}
p_{2} \\
q_{2}
\end{array}\right)
\end{array}\right.
$$

with slant coefficients

$$
\operatorname{slant}\left(\begin{array}{ll}
p_{1} & p_{2} \tag{421}\\
q_{1} & q_{2}
\end{array}\right)=(-1)^{q_{12}-1} \frac{\left(p_{1}+p_{2}\right)!\left(q_{1}+q_{2}\right)!}{\left(p_{1}+p_{2}+q_{1}+q_{2}\right)!} \operatorname{det}\left[\begin{array}{r|r}
p_{1} & 1+p_{2} \\
1+q_{1} & q_{2}
\end{array}\right]
$$

that depend only on the number p_{1}, p_{2} (resp. q_{1}, q_{2}) of left-leaning (resp. rightleaning) edges in the subtrees $\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}$ attached to the root-node of \boldsymbol{t}. One of these subtrees may be void, in which case the corresponding pair $\left(p_{1}, q_{1}\right)$ or $\left(p_{2}, q_{2}\right)$ is taken to be $(0,0)$.

The fourth alternal series $\left\{\mathfrak{k e}_{2 r_{*}}^{\boldsymbol{\bullet}}\right\}$.
The series $\left\{\mathfrak{k}_{2 r}^{\bullet}\right\}$ is defined only at even depths $2 r$:

$$
\mathfrak{k e}_{2 r}^{\bullet}=\sum_{\boldsymbol{t} \in \mathbb{B T}_{2 r}} \operatorname{stack}(\boldsymbol{t}) \mathfrak{e}_{\boldsymbol{t}}^{\bullet} \text { with }\left\{\begin{array}{l}
\boldsymbol{t}=h\left(\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}\right) \tag{422}\\
\mathfrak{e}_{\boldsymbol{t}}^{\bullet}=\operatorname{amnit}\left(\mathfrak{e}_{\boldsymbol{t}_{1}}^{\bullet}, \mathfrak{e}_{\boldsymbol{t}_{2}}^{\bullet}\right) \mathfrak{E}^{\bullet} \\
\operatorname{stack}(\boldsymbol{t})=\operatorname{stack}\left(\left.\begin{array}{c}
m_{1} \\
n_{1}
\end{array} \right\rvert\, \begin{array}{c}
m_{2} \\
n_{2}
\end{array}\right)
\end{array}\right.
$$

with stack coefficients
$\operatorname{stack}\left(\begin{array}{ll}p_{1} & p_{2} \\ q_{1} & q_{2}\end{array}\right)=(-2)^{m_{12}-1}\left(m_{1}+m_{2}-1\right)!\frac{\left(n_{1}+n_{2}-m_{1}-m_{2}\right)!!}{\left(n_{1}+n_{2}+m_{1}+m_{2}-2\right)!!} \operatorname{det}\left[\left.\begin{array}{r}m_{1} \\ 1+n_{1}\end{array} \right\rvert\, \begin{array}{r}m_{2} \\ 1+n_{2}\end{array}\right]$
that depend only on the number m_{1}, m_{2} (resp. n_{1}, n_{2}) of end-nodes (resp. non end-nodes) in the subtrees $\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}$ attached to the root-node of \boldsymbol{t}.

The fifth alternal series $\left\{\mathfrak{g e}_{r}^{\bullet}\right\}$.

$$
\begin{align*}
\operatorname{gi}_{r}^{w_{1}, \ldots, w_{r}} & :=\left(\sum_{1 \leqslant i \leqslant r} P\left(v_{i}\right)\right) \prod_{1 \leqslant i<r} P\left(v_{i}-v_{i+1}\right) \tag{424}\\
\operatorname{gic}_{r}^{w_{1}, \ldots, w_{r}} & :=\left(\sum_{1 \leqslant i \leqslant r} Q\left(v_{i}\right)\right)\left[\left(1+\sum \frac{(i c)^{2 n}}{1+2 n} \partial_{t}^{2 n}\right) \prod_{1 \leqslant i<r}\left(Q\left(v_{i}-v_{i+1}\right)+t\right)\right]_{t=0} \tag{425}
\end{align*}
$$

with as usual $P\left(v_{i}\right):=\frac{1}{v_{i}}$ and $Q\left(v_{i}\right):=\frac{c}{\tan \left(c v_{i}\right)}$

9.2 The main bases and the bisymmetrals.

$$
\begin{aligned}
& \text { pal }{ }^{\bullet}=\operatorname{mdu}\left(\text { pal }{ }^{\bullet}, \text { dupal }^{\bullet}\right) \quad \text { with } \quad \text { dupal }{ }^{\bullet}=-\sum_{1 \leqslant r} \alpha_{r} \mathrm{la}_{r}^{\bullet} \\
& \operatorname{pal}_{\mathrm{ev}}^{\bullet}=\operatorname{mdu}^{\bullet}\left(\text { pal }_{\mathrm{ev}}^{\bullet}, \text { dupal }_{\mathrm{ev}}^{\bullet}\right) \quad \text { with dupal }{ }_{\mathrm{ev}}^{\bullet}=-\sum_{1 \leqslant r} \alpha_{2 r} \mathrm{la}_{2 r}^{\bullet} \\
& \text { d.pil }{ }^{\boldsymbol{\bullet}}=\operatorname{preari}\left(\text { pil }^{\boldsymbol{\bullet}}, \text { dipil }^{\boldsymbol{\bullet}}\right) \quad \text { with } \quad \text { dipil }{ }^{\boldsymbol{\bullet}}=-\sum_{1 \leqslant r} \frac{1}{(r+1)!} \mathrm{ri}_{r}^{\boldsymbol{\bullet}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d.ripal }{ }^{\bullet}=\text { preari }^{\boldsymbol{\bullet}}\left(\text { ripal }^{\boldsymbol{\bullet}} \text {, diripal }^{\boldsymbol{\bullet}}\right) \text { with } \text { diripal }^{\boldsymbol{\bullet}}=\sum_{1 \leqslant r} \frac{1}{r(r+1)} \mathrm{ha}_{r}^{\bullet} \\
& \text { d.ripal }{ }_{\text {ev }}^{\bullet}=\text { preari(ripal }{ }_{\mathrm{ev}}^{\bullet} \text {, } \text { diripal }_{\mathrm{evv}^{\bullet}} \text {) with } \text { diripal }_{\mathrm{ev}}^{\bullet}=\sum_{1 \leqslant r} \frac{2^{1-2 r}}{4 r^{2}-1} \mathrm{ka}_{2 r}^{\bullet} \\
& \text { d.ripil } \left.{ }^{\boldsymbol{\bullet}}=\text { preari(ripil } \boldsymbol{}^{\boldsymbol{\bullet}} \text {, diripil }{ }^{\boldsymbol{\bullet}}\right) \text { with } \quad \text { diripil }{ }^{\boldsymbol{\bullet}}=\sum_{1 \leqslant r} \frac{1}{r(r+1)} \mathrm{ri}_{r}^{\boldsymbol{\bullet}} \\
& \text { d.ripal }{ }_{\mathrm{ev}}^{\bullet}=\operatorname{preari}\left(\text { ripil }_{\mathrm{ev}}^{\bullet}, \operatorname{diripil}_{\mathrm{ev}}^{\bullet}\right) \quad \text { with } \operatorname{diripil}_{\mathrm{ev}}^{\bullet}=\sum_{1 \leqslant r} \frac{2^{1-2 r}}{4 r^{2}-1} \mathrm{ri}_{2 r}^{\bullet} \\
& \begin{array}{l}
{\left[\begin{array}{llllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{3}{2} & \frac{3}{2} & 3 & 0 & 0 & \ldots \\
{[0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{3}{2} & -\frac{3}{2} & 3 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{5}{2} & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & \frac{5}{2} & 0 & 0 & 0 & 0 & 0 & \ldots
\end{array}\right.}
\end{array} \\
& \left.\begin{array}{lllrrrllllllllllll}
\ldots & 0 & 0 & \frac{1}{2} & 1 & \frac{3}{2} & \frac{3}{2} & 3 & 0 & 0 & -\frac{5}{2} & 0 & 0 & -\frac{5}{2}-\frac{5}{2} & 0 & 0-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{45}{2} \\
\ldots & 0 & 0 & -\frac{1}{2} & 1 & -\frac{3}{2} & -\frac{3}{2} & 3 & 0 & 0 & -\frac{5}{2} & 0 & 0 & -\frac{5}{2}-\frac{5}{2} & 0 & 0-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{45}{2} \\
\ldots & 0 & 0 & \frac{1}{2} & \frac{5}{2} & 0 & 0 & 0 & 0 & 0-\frac{5}{2} & 0 & 0-\frac{5}{2}-\frac{5}{2} & 0 & 0-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{45}{2} \\
\ldots & 0 & 0 & -2 & \frac{5}{2} & 0 & 0 & 0 & 0 & 0-\frac{5}{2} & 0 & 0-\frac{5}{2}-\frac{5}{2} & 0 & 0-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{15}{2}-\frac{45}{2}
\end{array}\right]
\end{aligned}
$$

9.3 The main bases and the alternal dilators.

9.4 The main bases and the bialternal dilators.

$$
\begin{align*}
& \text { pal }{ }^{\bullet}=\operatorname{gari}\left(\operatorname{par}^{\bullet}, \mathrm{eral}^{\bullet}\right) \text { with }\left\{\begin{array}{cc}
\mathrm{pal}^{\bullet}, \mathrm{pal}^{\bullet} & \in \mathrm{GARI}^{\text {as } / \mathrm{as}} \\
\mathrm{eral}^{\bullet} & \in \mathrm{GARI}^{\text {as }} / \text { as }
\end{array}\right. \tag{426}\\
& \text { pil }{ }^{\bullet}=\operatorname{gari}\left(\text { pir }^{\bullet}, \text { eril }^{\bullet}\right) \quad \text { with } \quad\left\{\begin{array}{cc}
\text { pil }^{\bullet}, \text { pil }^{\bullet} & \in \mathrm{GARI}^{\text {as/as }} \\
\text { eril }^{\bullet} & \in \mathrm{GARI}^{\text {as } / \text { as }}
\end{array}\right. \tag{427}\\
& \mathrm{ral}^{\bullet}=\operatorname{logari}\left(\mathrm{eral} l^{\bullet}\right) \quad \text { with } \quad \mathrm{ral}^{\bullet} \in \mathrm{ARI}^{\mathrm{al} / \mathrm{al}^{-}} \tag{428}\\
& \text {ril }{ }^{\bullet}=\operatorname{logari}\left(\text { eril }^{\bullet}\right) \quad \text { with } \quad \text { ril }{ }^{\bullet} \in A R I^{\underline{\mathrm{a}} / \underline{\mathrm{al}}} \tag{429}
\end{align*}
$$

$$
\begin{array}{lll}
\left\{\text { pal }{ }^{\bullet},\right. \text { par } \\
\bullet & \left., \text { ral }^{\bullet}\right\} & \stackrel{\text { swap }}{\longleftrightarrow}
\end{array}\left\{\begin{array}{l}
\text { pil } \tag{431}\\
\bullet
\end{array}, \text { pir }^{\bullet}, \text { ril }^{\bullet}\right\},
$$

$5!\mathrm{ral}_{4}^{\bullet}$ in the cālt-basis
$5!\mathrm{ral}_{4}^{\bullet}$ in the câlt-basis
$5!$
$5!\mathrm{ral}_{4}^{\bullet}$ in the cǎlt-basis $\quad\left[\begin{array}{llll}\frac{1}{4} & -\frac{5}{12} & 0 & \frac{1}{6}\end{array}\right]$

Here is $7!\mathrm{ral}_{6}^{\bullet}$ successively in the $c \bar{a} l t-, c \hat{a} l t-$, călt-bases:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrrrrrrrrrrrrrrr}
-\frac{5}{12} & \frac{35}{36} & 0 & -\frac{35}{36} & 0 & 0 & 0 & 0 & \frac{7}{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \frac{5}{6} & -\frac{10}{3} & -\frac{10}{3} & \frac{10}{3} & \frac{20}{3} & \frac{5}{2} & 15 & 10 & -\frac{5}{3} & -\frac{10}{3} & -10 & -10 & -\frac{10}{3} & -\frac{20}{3} & -10 & -20 & -15 & -40 \\
{\left[\begin{array}{rr}
0 & \frac{5}{6}
\end{array}\right]} \\
{\left[\begin{array}{r}
0
\end{array}-\frac{5}{6}\right.} & \frac{25}{3}-\frac{25}{3} & -\frac{10}{3} & \frac{20}{3} & \frac{5}{2} & -15 & 10 & -\frac{5}{3} & \frac{10}{3} & -10 & 10 & -\frac{10}{3} & \frac{20}{3} & 10 & -20 & -15 & 40 & -20]
\end{array}\right.}
\end{aligned}
$$

Lastly, here is $9!r a l_{8}^{\bullet}$ successively in the $c \bar{a} l t$-basis:

$$
\left[\begin{array}{rrrrrrrrrrrrrrrrr}
\frac{7}{4}-\frac{133}{32} & \frac{7}{12} & \frac{427}{96} & -\frac{7}{8} & \frac{35}{48} & 0 & -\frac{49}{32} & -\frac{1463}{400} & -\frac{63}{40} & \frac{49}{20} & \frac{21}{20} & -\frac{77}{40} & 0 & 0 & -\frac{21}{40} & \frac{7}{5} \\
0 & \frac{21}{40} & \frac{7}{4} & -\frac{21}{16} & \frac{77}{40} & \frac{7}{8} & -\frac{119}{80} & \frac{21}{10} & -\frac{147}{40} & 0 & \frac{21}{80} & \frac{21}{16} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{189}{160} & -\frac{273}{160} & -\frac{63}{80} & \frac{21}{16} & 0 & 0 & 0 & \frac{21}{40} & -\frac{7}{8} & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{189}{160} & -\frac{273}{160} & -\frac{63}{80} & \frac{21}{16} & -\frac{63}{40} & \frac{21}{8} & 0 & 0 & -\frac{21}{20} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{3}{10}
\end{array}\right]
$$

9.5 Survey.

- On the flexion algebra Flex (\mathfrak{E}^{\bullet}) there exist natural systems of $m u$ generators, but none can adequately reflect the alternality filtration. Only systems of $d m u$-generators built from the counter-alternators câlt or călt can do that. Systems of $d m u$-generators built from the weakly inflected counter-alternator cālt do reflect the alternality gradation, but are not complete.
- The system $\left\{\hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}}\right.$; ot $\left.t_{r, k} \in \mathbb{O T}_{r}, k \leqslant \kappa_{r-1}\right\}$ of $d m u$-generators built from câlt (and indexed by one-rooted ordered trees) is stable not only under the Lie brackets $l u$ and ari, but also under the pre-Lie products $d l u$ and dari, and that too in a transparent manner: $d l u$ corresponds to the operation of tree attachment and dari to that of tree insertion.
- The system $\left\{\check{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}} ;\right.$ ot $\left.t_{r, k} \in \mathbb{O T}_{r}, k \leqslant \kappa_{r-1}\right\}$ of $d m u$-generators built from cǎlt is stable under neither $l u$ nor ari, nor even under $d l u$ and dari. There still exist rather simple formulae for all four operations, but they are not 'closed', in the sense that they also involve $d m u$-products, i.e. 'manyrooted' elements $\hat{o} t e_{r, k}^{\bullet}$ with $k>\kappa_{r-1}$,
- The full systems $\left\{\hat{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}} ;\right.$ ot $\left.t_{r, k} \in \mathbb{O} \mathbb{T}_{r}, k \leqslant \kappa_{r}\right\}$ and $\left\{\check{\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}} ;\right.$ ot $t_{r, k} \in \mathbb{O T}_{r}, k \leqslant$ $\left.\kappa_{r}\right\}$ indexed by one- or many rooted oredered trees (hence $k \leqslant \kappa_{r}$ instead of $\left.k \leqslant \kappa_{r-1}\right)$ constitute each a basis of $F l e x_{r}\left(\mathfrak{E}^{\bullet}\right)$. The conversion matrices from either basis to the basis $\left\{b t e_{r, t}^{\bullet} ; b t_{r, k} \in \mathbb{B}_{r}, k \leqslant \kappa_{r}\right\}$ are
lower-triangular (for a suitable ordering on $\mathbb{O} \mathbb{T}_{r}$ and $\mathbb{B T}_{r}$) with integer entries given by rather explicit formulae, and of course non-zero diagonal elements.
- The closely related systems $\left\{s t e_{r, k}^{\bullet} ; s t_{r, k} \in \mathbb{S T}_{r}, k \leqslant \kappa_{r}\right\}$ and $\left\{\hat{s} t e_{r, k}^{\bullet} ; s t_{r, k} \in\right.$ $\left.\mathbb{S T}_{r}, k \leqslant \kappa_{r}\right\}$ accurately reflect the alternality gradation, and permit the calculation of the dimensions $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)\right)$ and $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$ via the generating series $\Gamma(t, x)$ and $\Xi(t, x)$ and the functional equations that these verify.
- The system $\left\{\bar{u} t e_{r, k}^{\bullet} ; u t_{r, k} \in \mathbb{U T}_{r}, k \leqslant \kappa_{r-1}\right\}$ built from the weakly inflected counter-alternator $c \bar{a} l t$ and indexed by one-rooted, unordered trees, ${ }^{58}$ constitutes a basis of the alternal sub-algebra $F l e x_{r}^{a l}\left(\mathfrak{E}^{\bullet}\right)$. Even though it does not extend to a full basis of $\operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right)$ as the calt- or câlt-based systems do, it is a valuable tool for expanding the elements of $F l e x_{r}^{a l}\left(\mathbb{E}^{\bullet}\right)$ (alternals) or $F l e x_{r}^{a l / p u s h}\left(\mathfrak{E}^{\bullet}\right)\left(\right.$ push-invariant alternals) or $F l e x \frac{a l}{r} / \underline{a l}\left(\mathfrak{E}^{\bullet}\right)$ (bialternals), due mainly to the fact that, in this system, the ari-bracket respects the number of edges issuing from the root of the indexing tree, and also to the fact that push-invariant alternals automatically project onto basis elements $\bar{u} t e_{r, k}^{\bullet}$ indexed by trees with odd-branching roots. ${ }^{59}$

10 Pre-Lie and pre-associative algebras.

This informal and avowedly tentative section attempts to detach the main results of the present paper from their origin in flexion theory, especially in Flex $\left(\mathfrak{E}^{\bullet}\right)$ and its two 'polar' models, and to put them on a neat axiomatic foundation. The proper framework appears to be that of pre-associative algebras ${ }^{60}$, taken in their natural context:

Although it is way too early to say if these algebras will justify the hopes reposited in them (- of rendering roughly the same services as pre-Lie algebras do -), they have at least one immediate use: shedding an oblique light on the counter-alternators and providing a quick proof of their main property.

[^43]
10.1 Pre-associativity: definitions and first properties.

A pre-associative algebra is a vector space endowed with a linear involution $x \mapsto x_{*}$ and two bilinear binary operations μ and $\bar{\mu}$ that verify:

$$
\begin{array}{lll}
\mathcal{R}_{0}: & \mu_{*}(x, y) & \equiv\left(\mu\left(y_{*}, x_{*}\right)\right)_{*} \\
\mathcal{R}_{1}: & \mu\left(\mu_{*}(x, y), z\right) & \equiv \mu_{*}(x, \mu(y, z)) \\
\mathcal{R}_{2}: & \mu(\mu(x, y), z) & \equiv \mu(x, \mu(y, z))+\mu\left(x, \mu_{*}(y, z)\right) \\
\mathcal{R}_{3}: & \mu_{*}\left(x, \mu_{*}(y, z)\right) & \equiv \mu_{*}(\mu(x, y), z)+\mu_{*}\left(\mu_{*}(x, y), z\right)
\end{array}
$$

Since μ_{*} and \mathcal{R}_{3} follow from μ and \mathcal{R}_{2} under the involution, the whole structure is fixed as soon as we define an operation μ compatible with the axioms $\mathcal{R}_{1}, \mathcal{R}_{2}$.

Proposition 10.1 (The offspring of a pre-associative product).
If we set:

$$
\begin{align*}
m(x, y) & :=\mu(x, y)+\mu_{*}(x, y) \tag{432}\\
\lambda(x, y) & :=\mu(x, y)-\mu_{*}(y, x) \tag{433}\\
\lambda_{*}(x, y) & :=\mu_{*}(x, y)-\mu(y, x) \equiv\left(\lambda\left(x_{*}, y_{*}\right)\right)_{*} \tag{434}\\
l(x, y) & :=m(x, y)-m(y, x) \equiv \lambda(x, y)-\lambda(y, x) \equiv \lambda_{*}(x, y)-\lambda_{*}(y, x) \tag{435}
\end{align*}
$$

and if μ, μ_{*} verify the pre-associativity axioms, then
(i) \boldsymbol{m} is an associative product, with e as unit element.
(ii) \boldsymbol{l} is the Lie bracket associated with \boldsymbol{m}
(iii) $\boldsymbol{\lambda}$ and $\boldsymbol{\lambda}_{*}$ define a right resp. left pre-Lie product for \boldsymbol{l}

Indeed, if we set

$$
\begin{aligned}
& R_{1}(x, y, z):=\mu\left(\mu_{*}(x, y), z\right)-\mu_{*}(x, \mu(y, z)) \\
& R_{2}(x, y, z):=\mu(\mu(x, y), z)-\mu(x, \mu(y, z))-\mu\left(x, \mu_{*}(y, z)\right) \\
& R_{3}(x, y, z):=\mu_{*}\left(x, \mu_{*}(y, z)\right)-\mu_{*}(\mu(x, y), z)-\mu_{*}\left(\mu_{*}(x, y), z\right)
\end{aligned}
$$

we find

$$
m(m(x, y), z)-m(x, m(y, z)) \equiv R_{1}(x, y, z)+R_{2}(x, y, z)-R_{3}(x, y, z) \equiv 0
$$

This confirms the associativity of \boldsymbol{m}. Next we find

$$
\left\{\begin{array} { l }
{ + \lambda (\lambda (x , y) , z) - \lambda (x , \lambda (y , z)) } \\
{ - \lambda (\lambda (x , z) , y) + \lambda (x , \lambda (z , y)) }
\end{array} \equiv \left\{\begin{array}{l}
+R_{1}(z, x, y)-R_{1}(y, x, z) \\
+R_{2}(x, y, z)-R_{2}(x, z, y) \\
+R_{3}(z, y, x)-R_{3}(y, z, x)
\end{array} \equiv 0\right.\right.
$$

This confirms the pre-Lie nature of $\boldsymbol{\lambda}$ and, by symmetry, of $\boldsymbol{\lambda}_{*}$ as well.
Remark: It would be tempting to introduce a 'unit element' ${ }^{61} e$ such that:

$$
\begin{cases}\mu(x, e) \equiv x \quad ; \quad \mu_{*}(e, y) \equiv y & (\forall x, y \neq e) \tag{436}\\ \mu(e, y) \equiv 0 \quad ; \quad \mu_{*}(x, e) \equiv 0 & (\forall x, y \neq e) \\ \mu(e, e)=\mu_{*}(e, e)=\frac{1}{2} e & \end{cases}
$$

but in formulae involving several consecutive units we would run into unsurmountable contradictions.

[^44]
10.2 Counter-alternality defined.

A co-degree on a pre-associative algebra $\mathcal{P} \mathcal{A}$ is function $d: \mathcal{P} \mathcal{A} \rightarrow \mathbb{N}^{*}$ giving rise to a filtration and a gradation:

$$
\begin{equation*}
\mathcal{P} \mathcal{A}_{(d)} \subset \mathcal{P} \mathcal{A}_{(d+1)} \quad ; \quad \mathcal{P} \mathcal{A}_{d}=\mathcal{P} \mathcal{A}_{(d)} / \mathcal{P} \mathcal{A}_{(d-1)} \tag{437}
\end{equation*}
$$

such that:

$$
\left\{\begin{align*}
\mu\left(\mathcal{P} \mathcal{A}_{\left(d_{1}\right)}, \mathcal{P} \mathcal{A}_{\left(d_{1}\right)}\right) & \subset \mathcal{P} \mathcal{A}_{\left(d_{1}+d_{2}\right)} \tag{438}\\
\mu_{*}\left(\mathcal{P} \mathcal{A}_{\left(d_{1}\right)}, \mathcal{P} \mathcal{A}_{\left(d_{1}\right)}\right) & \subset \mathcal{P} \mathcal{A}_{\left(d_{1}+d_{2}\right)} \\
\lambda\left(\mathcal{P} \mathcal{A}_{\left(d_{1}\right)}, \mathcal{P} \mathcal{A}_{\left(d_{1}\right)}\right) & \subset \mathcal{P} \mathcal{A}_{\left(d_{1}+d_{2}-1\right)}
\end{align*}\right.
$$

The the natural tools for investigating a co-degree gradation are the three counter-alternators, ${ }^{62}$ which are defined as follows. In view of \mathcal{R}_{1} we may set:

$$
\begin{equation*}
\widetilde{\mu}(x, y, z):=\mu\left(\mu_{*}(x, y), z\right)=\mu_{*}(x, \mu(y, z)) \tag{439}
\end{equation*}
$$

We then transpose the construction of $\S 5.5$:

Definition 10.1 (Strict and loose counter-alternators) .

$$
\begin{align*}
& \operatorname{câlt}_{x_{0}}\left(x_{1}, . ., x_{s}\right):=\sum_{0 \leqslant i \leqslant s}(-1)^{s-i} \widetilde{\mu}\left(\overleftarrow{\mu}\left(x_{1}, . ., x_{i}\right), x_{0}, \vec{\mu}_{*}\left(x_{i+1}, . ., x_{s}\right)\right) \tag{440}\\
& \operatorname{cǎlt}_{x_{0}}\left(x_{1}, . ., x_{s}\right):=\sum_{0 \leqslant i \leqslant s}(-1)^{s-i} \widetilde{\mu}\left(\overrightarrow{\mu_{*}}\left(x_{1}, . ., x_{i}\right), x_{0}, \overleftarrow{\mu}\left(x_{i+1}, . ., x_{s}\right)\right) \tag{441}\\
& \operatorname{cālt}_{x_{0}}\left(x_{1}, . ., x_{s}\right):=\sum_{0 \leqslant i \leqslant s} \frac{(-1)^{s-i} s!}{i!(s-i)!} \widetilde{\mu}\left(m\left(x_{1}, . ., x_{i}\right), x_{0}, m\left(x_{i+1}, . ., x_{s}\right)\right) \tag{442}
\end{align*}
$$

Next, we construct the partially symmetrized alternators exactly as we did on Flex $(\mathfrak{E} \bullet$):

Definition 10.2 (d-alternators.) For $1 \leqslant d \leqslant r$ we set:

$$
\begin{align*}
\operatorname{câlt}_{x_{0}}^{r, d}\left(x_{1}, \ldots, x_{r}\right) & :=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \text { câlt }_{x_{0}}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \tag{443}\\
\operatorname{cǎlt}_{x_{0}}^{r, d}\left(x_{1}, \ldots, x_{r}\right) & :=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \text { cǎlt }_{x_{0}}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \tag{444}\\
\text { cālt }_{x_{0}}^{r, d}\left(x_{1}, \ldots, x_{r}\right) & :=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{cālt}_{x_{0}}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \tag{445}
\end{align*}
$$

with the coefficients $\mathrm{h}_{r, \delta}(\sigma)$ associated with the projectors pr $_{: d}$ as in $\S 5.8$.

[^45]
10.3 Counter-alternality modelized and proved.

Let \mathbb{E} be the graded, non-associative algebra freely generated by the symbols $e_{0}, e_{1}, e_{2} \ldots$, with coefficients in the commutative algebra $\mathbb{Q}\left\{\alpha_{0}, \alpha_{1}, \alpha_{2} \ldots\right\}$, whereby the α_{i} 's are assumed to be positive, transcendental, and algebraically independent. We assign the grade α_{i} to each generator e_{i} and consider on \mathbb{D} the derivation ∂ (with its antiderivation ∂^{-1}) acting as follows:

$$
\begin{equation*}
\partial e_{i}:=\alpha_{i} e_{i} \quad ; \quad \partial^{-1} e_{i}:=\alpha_{i}^{-1} e_{i} \quad ; \quad \partial \alpha_{i}:=0 \tag{446}
\end{equation*}
$$

Finally, we notice that the operations μ, μ_{*} thus defined:

$$
\begin{array}{rll}
\mu\left(E_{1}, E_{2}\right) & :=\partial^{-1}\left(\left(\partial E_{1}\right) E_{2}\right) & \left(\forall E_{1}, D_{2} \in \mathbb{D}\right) \\
\mu_{*}\left(E_{1}, E_{2}\right) & :=\partial^{-1}\left(D_{1}\left(\partial D_{2}\right)\right) & \left(\forall E_{1}, E_{2} \in \mathbb{D}\right) \tag{448}
\end{array}
$$

endow \mathbb{E} with a pre-associative structure, which we shall call \mathcal{E} for distinction. By assigning co-degree 1 to all generators e_{i}, we also endow \mathcal{E} with a co-degree filtration $\mathcal{E}=\cup^{\uparrow} \mathcal{E}_{d}$.

Though free as an associative algebra, \mathcal{E} is far from free with respect to its ∂-induced pre-associative structure. ${ }^{63}$ Nonetheless, the subspace of elements separately linear in $e_{0}, e_{1}, \ldots, e_{r}$ is free in the sense that it faithfully reflects the structure of the corresponding subspace in the free pre-associative algebra generated by $e_{0}, e_{1}, e_{2} . .-$ a fortunate circumstance that leads, first to an interpretation of the counter-alternators, then to a proof of their signature properties, namely

$$
\begin{equation*}
\operatorname{codeg}\left(\operatorname{calt}_{x_{0}}^{r, d}\left(x_{1}, \ldots, x_{r}\right)\right) \leqslant d_{0}+d_{1}+\ldots+d_{r}+d-r-1 \quad \text { if } \quad \operatorname{codeg}\left(x_{i}\right)=d_{i} \tag{449}
\end{equation*}
$$

with exact equality for the strict counter-alternators câlt or călt.
Consider now these particular identities in \mathcal{E} :

$$
\begin{align*}
\operatorname{câlt}_{e_{0}}\left(e_{1}, \ldots, e_{r}\right) & \equiv \hat{c}_{r} \sum_{0 \leqslant i \leqslant r} \mathrm{te}^{1, \ldots, i, 0, i+1, \ldots, r} e_{1} \ldots e_{i} e_{0} e_{i+1} \ldots e_{r} \tag{450}\\
\operatorname{cǎlt}_{e_{0}}\left(e_{1}, \ldots, e_{r}\right) & \equiv \hat{c}_{r} \sum_{0 \leqslant i \leqslant r} \mathrm{te}^{1, \ldots, i, 0, i+1, \ldots, r} e_{1} \ldots e_{i} e_{0} e_{i+1} \ldots e_{r} \tag{451}
\end{align*}
$$

with pre-sum factors:

$$
\begin{equation*}
\hat{c}_{r}=\frac{\alpha_{0} \alpha_{1} \ldots \alpha_{r}}{\alpha_{0}+\alpha_{1}+\ldots+\alpha_{r}} \quad ; \quad \hat{c}_{r}=\frac{\alpha_{0} \alpha_{1} \ldots \alpha_{r}}{\alpha_{0}+\alpha_{1}+\ldots+\alpha_{r}} \tag{452}
\end{equation*}
$$

and alternal moulds $t \hat{e}^{\bullet}, t \check{e}^{\bullet}$:

$$
\begin{align*}
\mathrm{te}^{1, \ldots, i, 0, i+1, \ldots, r} & :=\mathrm{se}^{1, \ldots, i} \mathrm{ze}^{i+1, \ldots r} \tag{453}\\
\mathrm{te}^{1, \ldots, i, 0, i+1, \ldots, r} & :=\mathrm{ze}^{1, \ldots, i} \mathrm{se}^{i+1, \ldots r} \tag{454}
\end{align*}
$$

[^46]themselves built from two symmetral, mutually inverse moulds $s e^{\bullet}, z e^{\bullet}$:
\[

$$
\begin{equation*}
\mathrm{se}^{1, \ldots, r}:=\prod_{i=1}^{r} \frac{1}{\alpha_{i}+\cdots+\alpha_{r}} ; \mathrm{ze}^{1, \ldots, r}:=\prod_{i=1}^{r} \frac{(-1)^{r}}{\alpha_{1}+\cdots+\alpha_{i}} \tag{455}
\end{equation*}
$$

\]

Any mould t^{\bullet} of type $t^{\bullet}=s^{\bullet} \times i d^{\bullet} \times z^{\bullet}$ with s^{\bullet}, z^{\bullet} symmetral and mutually inverse, is obviously alternal, but here $t \hat{e}^{\bullet}$ and $t \check{e}^{\bullet}$ are of a distinct type, and their alternality results from the identities:

$$
\begin{align*}
& \sum_{\boldsymbol{\gamma} \in \operatorname{sha}(\boldsymbol{\alpha}, \boldsymbol{\beta})} \mathrm{te}^{\boldsymbol{\gamma}} \equiv \begin{cases}\mathrm{se}^{\boldsymbol{\alpha}^{\prime}} \mathrm{ze}^{\boldsymbol{\alpha}^{\prime \prime}}\left(\sum_{\boldsymbol{\beta}^{\prime}} \boldsymbol{\beta}^{\prime \prime}=\boldsymbol{\beta}^{\prime \prime} \mathrm{se}^{\boldsymbol{\beta}^{\prime}} \mathrm{ze}^{\boldsymbol{\beta}^{\prime \prime}}\right) \equiv 0 & \text { if } \boldsymbol{\alpha}=\left(\boldsymbol{\alpha}^{\prime}, 0, \boldsymbol{\alpha}^{\prime \prime}\right) \\
\left(\sum_{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}^{\prime \prime}=\boldsymbol{\alpha}} \mathrm{se}^{\alpha^{\prime}} \mathrm{ze}^{\boldsymbol{\alpha}^{\prime \prime}}\right) \mathrm{se}^{\boldsymbol{\beta}^{\prime}} \mathrm{ze}^{\boldsymbol{\beta}^{\prime \prime}} \equiv 0 & \text { if } \boldsymbol{\beta}=\left(\boldsymbol{\beta}^{\prime}, 0, \boldsymbol{\beta}^{\prime \prime}\right)\end{cases} \tag{456}\\
& \sum_{\gamma \in \operatorname{sha}(\boldsymbol{\alpha}, \boldsymbol{\beta})} \mathrm{te}^{\check{\gamma}} \equiv\left\{\begin{array}{lll}
\mathrm{ze}^{\alpha^{\prime}} \mathrm{se}^{\alpha^{\prime \prime}}\left(\sum_{\boldsymbol{\beta}^{\prime} \boldsymbol{\beta}^{\prime \prime}=\boldsymbol{\beta}} \mathrm{ze}^{\boldsymbol{\beta}^{\prime}} \mathrm{se}^{\boldsymbol{\beta}^{\prime \prime}}\right) \equiv 0 & \text { if } \boldsymbol{\alpha}=\left(\boldsymbol{\alpha}^{\prime}, 0, \boldsymbol{\alpha}^{\prime \prime}\right) \\
\left(\sum_{\alpha^{\prime} \alpha^{\prime \prime}=\alpha^{2}} \mathrm{ze}^{\alpha^{\prime}} \mathrm{se}^{\alpha^{\prime \prime}}\right) \mathrm{ze}^{\boldsymbol{\beta}^{\prime}} \mathrm{se}^{\boldsymbol{\beta}^{\prime \prime}} \equiv 0 & \text { if } \boldsymbol{\beta}=\left(\boldsymbol{\beta}^{\prime}, 0, \boldsymbol{\beta}^{\prime \prime}\right)
\end{array}\right. \tag{457}
\end{align*}
$$

As usual, $\operatorname{sha}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ denotes the set of all shuffle products of the sequences $\boldsymbol{\alpha}, \boldsymbol{\beta}$, and the right-hand sides in (456) or (457) vanish due to the factors $\sum \mathrm{se}^{\alpha^{\prime}} \mathrm{ze}^{\alpha^{\prime \prime}} \equiv$ 0 or $\sum \mathrm{se}^{\boldsymbol{\beta}^{\prime}} \mathrm{ze}^{\boldsymbol{\beta}^{\prime \prime}} \equiv 0$ corresponding to the sequence ($\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$) that does not contain the exceptional term 0 .

Let us return to the proof. To this end, we fix $d \in[1, r]$; replace ($c \hat{a} l t, c$ ălt) by ($c \hat{a} l t^{r, d}, c \check{a} l t^{r, d}$) in (450)-(451); and call $\hat{X}^{r, d}, \check{X}^{r, d}$ the new values assumed by the right-hand sides of (450)-(451). To prove that $\hat{X}^{r, d}, \check{X}^{r, d}$ have 'differential degree' d as elements of \mathbb{D} or, equivalently, co-degree d as elements of \mathcal{D}, we use the earlier Lemma 5.2 in the special case $\left(d_{1}, d_{2}\right)=(1, r)$, and the following Lemma 10.1 in the special case $\delta_{0}=1+r-d, \delta=1$ and $T^{\bullet}=t \hat{e}$ or $t e^{\bullet}$:

Lemma 10.1 (Mould-comould contractions) .
Let $\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)$ run through all permutations of $(1, \ldots, r)$ and consider the mould T^{\bullet} defined by

$$
\begin{equation*}
H^{\epsilon_{1}, \ldots, \epsilon_{r}}:=\sum_{\sigma \in \mathfrak{S}_{r}} h_{r, \delta_{0}}(\sigma) A^{\sigma\left(\epsilon_{1}\right), \ldots, \sigma\left(\epsilon_{r}\right)} e_{\sigma\left(\epsilon_{1}\right) \ldots e_{\sigma\left(\epsilon_{r}\right)}} \tag{458}
\end{equation*}
$$

with the coefficients $h_{r, d}(\sigma)$ of \ldots and with some mould T^{\bullet} of alternality codegree δ_{1} and with values in $\mathbb{Q}\left[\cup_{i} \alpha_{i}\right] / \mathbb{Q}\left[\cup_{i} \alpha_{i}\right]$. Then, as an element of \mathbb{E}, H^{\bullet} has degree $\delta_{2}=\delta_{1}-\delta_{0}+r$. In particular, if $\delta_{0}=1+r-d$ as in (443)-(444) and $\delta_{1}=1$ as with t \hat{e}^{\bullet} and tě ${ }^{\bullet}$, we get $\delta_{2}=d$.
Writing (458) compactly as $H^{\bullet}=\sum_{\sigma} h_{r, \delta_{0}}(\sigma) T^{\sigma(\bullet)} e_{\sigma(\bullet)}$; then invoking the δ_{1-} alternality of the mould T^{\bullet} to express it as $T^{\bullet}=\sum_{\sigma_{1}} h_{r, \delta_{1}}\left(\sigma_{1}\right) A^{\sigma_{1}(\bullet)}$ for some arbitrary mould A^{\bullet}; and lastly expressing that the projector $p r_{: \delta_{2}}$ acting solely on the bimould part annihilates H^{\bullet} if $\delta_{2}-\delta_{1}+\delta_{0}>r$, we find that Lemma 10.1 amouts to the identity:

$$
\begin{equation*}
\sum_{\tau \in \mathfrak{G}_{r}} h_{\delta_{0}}(\tau) h_{\delta_{1}}\left(\tau_{1} \circ \tau\right) h_{\delta_{2}}\left(\tau^{-1} \circ \tau_{2}\right) \equiv 0 \quad \text { if } \quad \delta_{2}-\delta_{1}+\delta_{0}>r\left(\forall \tau_{1}, \tau_{2}\right) \tag{459}
\end{equation*}
$$

This applies in fact even when $\delta_{2}-\delta_{1}+\delta_{0}-r$ is negative but odd, for trivial reasons of invariance under \pm anti .

10.4 Counter-alternality made manifest.

The partially symmetrized counter-alternators calt ${ }^{r, d}$ can be written as partially symmetrized expressions kalt $^{r, d}$ whose co-degree d is immediately apparent instead of hidden, as in the definitions (440)-(442) and (443)-(445). Indeed:

Proposition 10.2 (d-alternality made manifest) .

The d-alternators are capable of an equivalent definition, of type:

$$
\begin{align*}
\operatorname{câlt}_{x_{0}}^{r, d}\left(x_{1}, \ldots, x_{r}\right) & \equiv \sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{kâlt}_{x_{0}}^{r, d}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \tag{460}\\
\operatorname{cǎlt}_{x_{0}}^{r, d}\left(x_{1}, \ldots, x_{r}\right) & \equiv \sum_{\sigma \in \mathfrak{G}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{kǎlt}_{x_{0}}^{r, d}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \tag{461}\\
\operatorname{cā}^{r}{\underset{x}{x}}_{r, d}^{r, d}\left(x_{1}, \ldots, x_{r}\right) & \equiv \sum_{\sigma \in \mathfrak{S}_{r}} h_{r, 1+r-d}(\sigma) \operatorname{kā}^{r} \mathrm{lt}_{x_{0}}^{r, d}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \tag{462}
\end{align*}
$$

where each $(r+1)$-linear term $\operatorname{kalt}_{x_{0}}^{r, d}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)$ can be written as a finite sum of elementary summands involving the operations λ, μ, μ_{*} respectively r_{0}, r_{1}, r_{2} times, with $r_{0}=r+1-d$ and $r_{1}+r_{2}=d-1$.
Unfortunately, there exist scores of possible expressions for $k a l t^{r, d}$, and so far we found universal (for all r) and compellingly natural expressions only in the extreme cases $d=1$ or $d=r$, corresponding to maximal and minimal symmetrization. Here are these natural expressions:
Proposition 10.3 (Maximally symmetrized counter-alternators)

$$
\begin{align*}
& \operatorname{kâlt}_{x_{0}}^{r, 1}\left(x_{1}, . ., x_{r}\right):=\sum_{1 \leqslant s \leqslant r} \operatorname{sâ}^{s_{1}, \ldots, s_{r}} \vec{\lambda}\left(\overleftarrow{\lambda}\left(x_{0}, \boldsymbol{x}^{\mathbf{1}}\right), \overleftarrow{\lambda}\left(\boldsymbol{x}^{\mathbf{2}}\right), \ldots, \overleftarrow{\lambda}\left(\boldsymbol{x}^{\boldsymbol{s}}\right)\right) \tag{463}\\
& \operatorname{kǎlt}_{x_{0}}^{r, 1}\left(x_{1}, . ., x_{r}\right):=\sum_{1 \leqslant s \leqslant r} \operatorname{să}^{s_{1}, \ldots, s_{r}} \vec{\lambda}\left(\overleftarrow{\lambda}\left(x_{0}, \boldsymbol{x}^{\mathbf{1}}\right), \overleftarrow{\lambda}\left(\boldsymbol{x}^{\mathbf{2}}\right), \ldots, \overleftarrow{\lambda}\left(\boldsymbol{x}^{\boldsymbol{s}}\right)\right) \tag{464}\\
& \operatorname{kā}^{r}{ }_{x_{0}}^{r, 1}\left(x_{1}, . ., x_{r}\right):=\sum_{1 \leqslant r \leqslant s}^{\sum s_{i}=s}(-1)^{r} \vec{\lambda}\left(x_{0}, x_{\sigma(1)}, \ldots, x_{\sigma(s)}\right) \tag{465}
\end{align*}
$$

with the coefficients:

$$
\begin{align*}
& \mathrm{s} \hat{\mathrm{a}}^{s_{1}, \ldots, s_{r}}=(-1)^{r} \prod_{1 \leqslant i \leqslant r} \frac{1}{s_{1}+\ldots+s_{i}} \tag{466}\\
& \mathrm{sa}^{s_{1}, \ldots, s_{r}}=(-1)^{s_{1}+\ldots+s_{r}} \prod_{1 \leqslant i \leqslant r} \frac{1}{s_{i}+\ldots+s_{r}} \tag{467}
\end{align*}
$$

Proposition 10.4 (Minimally symmetrized counter-alternators)

$$
\begin{align*}
& \text { kâlt }_{x_{0}}^{r, r}\left(x_{1}, . ., x_{r}\right):=\sum_{1 \leqslant s \leqslant r}(-1)^{s-1} \vec{\mu}\left(\lambda\left(x_{0}, \overleftarrow{\mu}\left(\boldsymbol{x}^{\mathbf{1}}\right)\right), \overleftarrow{\mu}\left(\boldsymbol{x}^{\mathbf{2}}\right), \ldots, \overleftarrow{\mu}\left(\boldsymbol{x}^{\boldsymbol{s}}\right)\right) \tag{468}\\
& \text { kǎlt }_{x_{0}}^{r, r}\left(x_{1}, . ., x_{r}\right):=\sum_{1 \leqslant s \leqslant r}(-1)^{s-1} \vec{\mu}\left(\lambda\left(x_{0}, \overrightarrow{\mu_{*}}\left(\boldsymbol{x}^{\mathbf{1}}\right)\right), \overrightarrow{\mu_{*}}\left(\boldsymbol{x}^{\mathbf{2}}\right), \ldots, \overrightarrow{\mu_{*}}\left(\boldsymbol{x}^{\boldsymbol{s}}\right)\right) \tag{469}\\
& \operatorname{kālt}_{x_{0}}^{r, r}\left(x_{1}, . ., x_{r}\right):=\sum_{1 \leqslant s \leqslant r}(-1)^{r-s+1} \mu\left(\lambda\left(x_{0}, \mathrm{~m}\left(x_{1}, . ., x_{s}\right)\right), \mathrm{m}\left(x_{s+1}, . ., x_{r}\right)\right) \tag{470}
\end{align*}
$$

10.5 Structure of free pre-associative algebras.

A pre-associative algebra generated by one element is automatically isomorphic to Flex $\left(\mathfrak{E}^{\bullet}\right)$. It also admits a tree theoretical model, namely the space $\mathbb{C}[\mathbb{O T}]$ of linear combinations of orderer trees $o t_{r, k}$ equipped with the operations λ, μ, μ_{*} 'lifted' from dle, dme, mde via the correspondence $\hat{\mathfrak{o}} \mathfrak{t}_{r, k}^{\bullet} \mapsto t_{r, k}$.

With pre-associative algebras freely generated by n elements, the situation is slightly different: while such an algebra still admits a privileged tree theoretical model, it admits several mould theoretical ones. Chief amongst the latter are the sub-algebras of BIMU generated under the operations dla, dma, mda ${ }^{64}$ by n depth- 1 bimoulds $A_{1}^{w_{1}}:=a_{1}\left(u_{1}\right), \ldots, A_{n}^{w_{1}}:=a_{n}\left(u_{1}\right)$, for any choice of transcendental functions $a_{i}\left(u_{1}\right)$, algebraically independent and verifying no functional equations. As for the tree theoretical model, it is the same as in the case of one generators, but with n-decorated trees, i.e. trees whose nodes are assigned various colours, from a set of n.

10.6 Filtration by co-degree. Dimensions.

For free pre-associative algebras with one generator, he co-degree filtration and gradation, along with the corresponding dimensions, are exactly those of Flex $\left(\mathfrak{E}^{\bullet}\right)$: see $\S 7.3$. The case of several generators immediately follows, modulo the introduction of colours.

10.7 Examples of non-free pre-associative algebras.

Any subalgebra of the bimould algebra $B I M U^{* 65}$ generated by the operations $d l a, d m a, m d a$ (see (198)-(200) in $\S 5.3$.) as stand-ins for λ, μ, μ_{*}, from any set of bimoulds $A_{i}^{\bullet} \in B I M U^{\bullet}$ patently constitutes a pre-associative algebra, generally non-free, and with a structure that entirely depends on the mutual relations that the generators A_{i}^{\bullet} may entertain.

The same applies with $B I M U^{v-v}$ (see (201)) in place of BIMU* and $d l i, d m i, m d i$ (see (202)-(204)) as basic operations in place of dla, dma, mda.

But there also exist numerous pre-associative algebras with no apparent link to $B I M U$. For instance, given any associative algebra \mathbb{E}, free or not, and any uniquely invertible derivation ∂ on \mathbb{E}, the operations μ, μ_{*} defined as in (447)-(448) turn \mathbb{E} into a pre-associative algebra \mathcal{E}, non-free even when, as an associative algebra, \mathbb{E} is free. An important sub-instance is that of a derivation ∂ induced as in (446) by a scalar gradation on \mathbb{E} with values in \mathbb{R}^{+}.

[^47]
10.8 Enveloping and enfolding algebras.

To sum up, we have a pleasant four-fold scheme:

And coursing through that four-fold scheme, we have a double movement of restriction (right- and downward arrows) and unfolding (left- and upward arrows), with uniqueness of construction in the case of double-barred arrows, but not in the case of simple arrows.

10.9 Dynkin-like projectors.

Known projectors:

If a sum $\sum a_{i} m\left(x_{i, 1}, \ldots, x_{i, n}\right)$ of n-linear associative summands is known to be in the Lie algebra, we have the well-known Dynkin projectors
$\sum_{i} a_{i} m\left(x_{i, 1}, \ldots, x_{i, n}\right)=\frac{1}{n} \sum_{i} a_{i} \vec{l}\left(x_{i, 1}, \ldots, x_{i, n}\right)=\frac{1}{n} \sum_{i} a_{i} \overleftarrow{l}\left(x_{i, 1}, \ldots, x_{i, n}\right)$
to make that Lie nature manifest.
We have similar projectors for sums of n-linear pre-Lie brackets that are known to be in the Lie algebra, especially when the bracketing is uniformly forward or backward, i.e. of the form $\sum_{i} a_{i} \vec{\lambda}\left(x_{i, 1}, \ldots, x_{i, n}\right)$ or $\sum_{i} a_{i} \overleftarrow{\lambda}\left(x_{i, 1}, \ldots, x_{i, n}\right)$

Wanted projectors: But quid of the following projectors?

$$
\begin{gathered}
\text { Pre-associative } \xrightarrow{?} \text { Associative } \\
\downarrow ? \\
\text { Pre-Lie }
\end{gathered}
$$

And quid of the projectors of a pre-associative algebra $\mathcal{P A}$ on its components $\mathcal{P} \mathcal{A}_{(d)}$ of co-degree d ? Such projectors ought to exist in explicit presentation ${ }^{66}$ and manageable form, and would come quite handy (they would in particular automatically determine privileged choices for the kalt $^{r, d}$ of Proposition 10.2, but finding them seems to be no trivial matter. ${ }^{67}$

[^48]
10.10 Notion of Janus algebra.

On Flex (\mathfrak{E}^{\bullet}) the identities

$$
\begin{align*}
\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right) & =\operatorname{dari}\left(A^{\bullet}, B^{\bullet}\right)-\operatorname{dari}\left(B^{\bullet}, A^{\bullet}\right) \tag{472}\\
\operatorname{dari}\left(A^{\bullet}, B^{\bullet}\right) & =\operatorname{arit}\left(B^{\bullet}\right) \cdot A^{\bullet}+\operatorname{dle}\left(A^{\bullet}, B^{\bullet}\right) \tag{473}
\end{align*}
$$

reduce the calculation of ari to that of arit and dle. But the operator arit $\left(B^{\bullet}\right)$ is a derivation not only with respect to the non-inflected products $l u$ and $m u$, but also with respect to the semi-inflected ones $d l e, d m e, m d e$:

$$
\begin{align*}
\operatorname{arit}\left(B^{\bullet}\right) \gamma\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right) & \equiv \gamma\left(\operatorname{arit}\left(B^{\bullet}\right) M_{1}^{\bullet}, M_{2}^{\bullet}\right)+\gamma\left(M_{1}^{\bullet}, \operatorname{arit}\left(B^{\bullet}\right) M_{2}^{\bullet}\right) \tag{474}\\
\forall \gamma & \in\{\operatorname{dle}, \mathrm{dme}, \mathrm{mde}, \mathrm{lu}, \mathrm{mu}\}
\end{align*}
$$

Therefore, for any element A^{\bullet} in $F l e x\left(\mathbb{E}^{\bullet}\right)$ and any expression of A^{\bullet} as a sum of r linear monomials h_{i} involving the operations dle, dme, mde respectively r_{0}, r_{1}, r_{2} times, with $r_{0}+r_{1}+r_{2}=r-1$:

$$
\begin{equation*}
A^{\bullet}=\sum_{i} h_{i}\left(\mathfrak{E}^{\text {® times }}, \ldots, \mathbb{E}^{\bullet \bullet}\right) \tag{475}
\end{equation*}
$$

we can write:

$$
\begin{equation*}
\operatorname{arit}\left(B^{\bullet}\right) A^{\bullet}=\sum_{i} \sum_{j} h_{i}\left(\mathfrak{E}^{\bullet}, \ldots, \operatorname{arit}\left(B^{\bullet \bullet}\right)^{j^{\text {th }}} \mathfrak{E}^{\text {term }}, \ldots, \mathfrak{E}^{\bullet}\right) \tag{476}
\end{equation*}
$$

Moreover, setting $A^{\bullet}=\mathfrak{E}^{\bullet}$ in (473) and using $\operatorname{dari}\left(\mathfrak{E}^{\bullet}, B^{\bullet}\right) \equiv 0$ (see $\S 8.4$), we find:

$$
\begin{equation*}
\operatorname{arit}\left(B^{\bullet}\right) \mathfrak{E}^{\bullet \bullet} \equiv-\operatorname{dle}\left(\mathfrak{E}^{\bullet}, B^{\bullet}\right) \tag{477}
\end{equation*}
$$

Combining (476)-(477) with the earlier identities (472)-(473), we find that, on the one-generator, free pre-associative algebra Flex $\left(\mathcal{E}_{\bullet}\right)$, the operations dari and ari can be expressed entirely in terms of $d l e, d m e, m d e$. In view of $\S 10.5$, we can duplicate that in any free pre-associative algebra, no matter with how many generators, simply by reasoning on the tree theoretical model $\mathbb{C}[\mathbb{O T} ; n$ colours $]$ and by transposing the preceding operations in terms of λ, μ, μ_{*}. The bottomline is this:

Proposition 10.5 (Janus algebra) .
Any free pre-associative algebra, side by side with the 'outer' operations

$$
\boldsymbol{\lambda} \text { (pre-Lie) and } \boldsymbol{l} \text { (Lie) }
$$

automatically possesses two 'inner' operations

$$
\boldsymbol{\rho} \text { (pre-Lie) and } \quad \boldsymbol{r} \text { (Lie) }
$$

with (ρ, r) relating to (λ, l) exactly as (dari, ari) to (dle, lu).

Here, inner and outer allude to the shape that these operations assume in the tree theoretical model: simple tree insertion for ρ and r; subtle tree attachment for λ and l. It is this inner/outer dichotomy, corresponding to the inflected/uninflected dichotomy familiar from the flexion model, that (arguably) justifies attaching the name of Janus (the god of thresholds; he of the two faces, inward- and outward-looking) to these algebras. But we are treading on thin ice here: for the name to stick, and the notion to prove its worth, it would take the discovery of interesting examples of non-free Janus algebras. And the difficulty in the non-free context is clearly that the procedure (475)-(476) no longer applies: different expansions (476) of a given A^{\bullet} may no longer lead to an unambiguous action (476) of $\operatorname{arit}\left(B^{\bullet}\right)$ on A^{\bullet}.

11 Tables.

11.1 From binary to ordered trees.

Here are the first matrices mob_{r} corresponding to the basis change of Flex $_{r}(\mathfrak{E} \bullet)$, relative to the standard k-indexation:

$$
\begin{aligned}
\left\{\mathfrak{b t e _ { r } ^ { \bullet }}\right\} & \mapsto\left\{\hat{\left.\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}\right\}} \quad\right. \\
\text { ote }_{r, p}^{\bullet} & =\sum_{1 \leqslant q \leqslant \kappa_{r}} \operatorname{mob}_{r}^{p, q} \text { bte }_{r, q}^{\bullet}
\end{aligned}
$$

Their coefficients $m o b_{r}^{p, q}$ are all of the form 0,1 , or $\overline{1}:=-1$ and verify the properties listed in $\S 6.8$.

$$
\operatorname{mob}_{1}:=[1] \quad \operatorname{mob}_{2}:=\left[\begin{array}{cc}
1 & \overline{1} \\
0 & 1
\end{array}\right] \quad \operatorname{mob}_{3}:=\left[\begin{array}{ccccc}
1 & \overline{1} & 0 & \overline{1} & 1 \\
0 & 1 & \overline{1} & 1 & 0 \\
0 & 0 & 1 & \overline{1} & \overline{1} \\
0 & 0 & 0 & 1 & \overline{1} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\operatorname{mob}_{4}=\left[\begin{array}{cccccccccccccc}
1 & \overline{1} & 0 & \overline{1} & 1 & 0 & 0 & 0 & 0 & \overline{1} & 1 & 0 & 1 & \overline{1} \\
0 & 1 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \overline{1} & 1 & \overline{1} & 0 \\
0 & 0 & 1 & \overline{1} & \overline{1} & \overline{1} & 1 & 0 & 0 & 1 & \overline{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \overline{1} & 0 & 0 & \overline{1} & 1 & \frac{1}{1} & 1 & \overline{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & \overline{1} & 1 & 0 & \overline{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 0 & 0 & \overline{1} & 1 & \overline{1} & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & \overline{1} & \frac{1}{1} & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & \overline{1} & \frac{1}{1} & \frac{1}{1} & \overline{1} & \frac{1}{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \overline{1} & 0 & \frac{0}{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 0 & \overline{1} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & \overline{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\operatorname{mob}_{5}=\left[\begin{array}{ccc}
\operatorname{mob}_{5}^{1,1} & \operatorname{mob}_{5}^{1,2} & \operatorname{mob}_{5}^{1,3} \\
{[0]} & \operatorname{mob}_{5}^{2,2} & \operatorname{mob}_{5}^{2,3} \\
{[0]} & {[0]} & \operatorname{mob}_{5}^{3,3}
\end{array}\right] \quad \text { with }\left\{\begin{array}{l}
\operatorname{mob}_{5}^{1,1}=\operatorname{mob}_{5}^{3,3}=\operatorname{mob}_{4} \\
\text { and the other } \operatorname{mob}_{5}^{i, j} \text { as follows }
\end{array}\right.
$$

$\operatorname{mob}_{5}^{1,2}=\left[\begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{1} & 1 & 0 & 1 & \overline{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \overline{1} & 1 & \overline{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \overline{1} & 1 & 1 & \overline{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \overline{1} & 1 & 1 & 1 & \frac{1}{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{1} & \frac{1}{1} & 0 & 1 & \overline{1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \overline{1} & 1 & \overline{1} & 0 \\ 0 & 0 & 0 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \overline{1} & 0 & 1 & 1 & 1 & \overline{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & \overline{1} & 0 & 1 & 0 & 0 & \frac{1}{1} & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{mob}_{5}^{1,3}=\left[\begin{array}{cccccccccccccc}\overline{1} & 1 & 0 & 1 & \overline{1} & 0 & 0 & 0 & 0 & 1 & \overline{1} & 0 & \overline{1} & 1 \\ 0 & \overline{1} & 1 & \overline{1} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 1 & 0 \\ 0 & 0 & \overline{1} & 1 & 1 & 1 & \overline{1} & 0 & 0 & \overline{1} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \overline{1} & 1 & 0 & 0 & 1 & \overline{1} & \overline{1} & \overline{1} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \overline{1} & 0 & 1 & \overline{1} & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & \overline{1} & 0 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{1} & \overline{1} & 1 & \overline{1} & \overline{1} & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & \overline{1} & 1 & \overline{1} & 0 & 0 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & \overline{1} & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \overline{1} & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{1} & 0 & \overline{1} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{mob}_{5}^{2,2}=\left[\begin{array}{cccccccccccccc}1 & \overline{1} & 0 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \overline{1} & \overline{1} & \overline{1} & 1 & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \overline{1} & 0 & 0 & 0 & 0 & \overline{1} & 1 & \overline{1} & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & \overline{1} & 0 & \overline{1} & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & \overline{1} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \overline{1} & \overline{1} & \overline{1} & 1 & \overline{1} & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \overline{1} & 0 & \overline{1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 0 & \frac{0}{1} & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{1} & \frac{1}{1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \overline{1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

11.2 From ordered to binary trees.

Here are the first matrices $m b o_{r}$ corresponding to the basis change of $F l e x_{r}\left(\mathfrak{E}^{\bullet}\right)$, relative to the standard k-indexation:

$$
\begin{aligned}
\left\{\hat{\left.\hat{o t e}_{r, k}^{\bullet}\right\}}\right. & \mapsto\left\{\mathfrak{b t e}_{r, k}^{\bullet}\right\} \quad \text { (ordered to binary) } \\
\text { bte }_{r, p}^{\bullet} & =\sum_{1 \leqslant q \leqslant \kappa_{r}} \operatorname{mbo}_{r}^{p, q} \text { ôte } \boldsymbol{e}_{r, q}^{\bullet}
\end{aligned}
$$

Their coefficients $m o b_{r}^{p, q}$ are always non-negative integers and verify the properties listed in §6.8.

$$
\mathrm{mbo}_{1}=[1] \quad \mathrm{mbo}_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \mathrm{mbo}_{3}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

mbo $_{4}=\left[\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\mathrm{mbo}_{5}=\left[\begin{array}{ccc}
\mathrm{mbo}_{5}^{1,1} & \mathrm{mbo}_{5}^{1,2} & \operatorname{mbo}_{5}^{1,3} \\
{[0]} & \operatorname{mbo}_{5}^{2,2} & \mathrm{mbo}_{5}^{2,3} \\
{[0]} & {[0]} & \mathrm{mbo}_{5}^{3,3}
\end{array}\right] \quad \text { with }\left\{\begin{array}{l}
\mathrm{mbo}_{5}^{1,1}=\mathrm{mbo}_{5}^{1,3}=\mathrm{mbo}_{5}^{3,3}=\mathrm{mbo}_{4} \\
\text { and the other mbo } \\
5, j \text { as follows }
\end{array}\right.
$$

$$
\text { mbo }_{5}^{1,2}=\left[\begin{array}{llllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 2 & 0 & 0 & 1 & 1 & 2 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 1 & 2 & 2 & 3 \\
0 & 1 & 2 & 1 & 3 & 1 & 1 & 2 & 3 & 0 & 1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 3 & 1 & 2 & 1 & 3 & 1 & 2 & 2 & 2 & 3 \\
0 & 0 & 1 & 1 & 3 & 0 & 1 & 1 & 3 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 0 & 1 & 0 & 2 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\mathbf{m b o}_{5}^{2,2}=\left[\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 3 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 2 & 2 & 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 1 & 2 & 1 & 2 & 2 & 4 & 1 & 2 & 3 & 3 & 6 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 2 & 1 & 1 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 2 & 2 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
mbo $_{5}^{2,3}=\left[\begin{array}{llllllllllllll}1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 2 & 2 & 3 & 3 & 4 \\ 0 & 1 & 1 & 0 & 1 & 1 & 2 & 1 & 3 & 0 & 2 & 2 & 1 & 4 \\ 0 & 0 & 1 & 1 & 2 & 1 & 2 & 2 & 4 & 1 & 2 & 4 & 4 & 8 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 4 \\ 1 & 1 & 2 & 2 & 3 & 2 & 3 & 3 & 4 & 2 & 3 & 4 & 4 & 6 \\ 0 & 1 & 1 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 3 & 3 & 6 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 3 & 1 & 1 & 3 & 3 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 0 & 1 & 2 & 2 & 6 \\ 1 & 2 & 2 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 & 3 & 3 & 4 \\ 0 & 0 & 1 & 1 & 3 & 1 & 3 & 1 & 3 & 0 & 1 & 2 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 4 & 1 & 2 & 4 & 4 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 4\end{array}\right]$

The block decompositions
$\operatorname{mob}_{5}=\left[\begin{array}{ccc}\operatorname{mob}_{r}^{1,1} & \operatorname{mob}_{r}^{1,2} & \operatorname{mob}_{r}^{1,3} \\ {[0]} & \operatorname{mob}_{r}^{2,2} & \operatorname{mob}_{r}^{2,3} \\ {[0]} & {[0]} & \operatorname{mob}_{r}^{3,3}\end{array}\right], \operatorname{mbo}_{5}=\left[\begin{array}{ccc}\mathrm{mbo}_{r}^{1,1} & \mathrm{bo}_{r}^{1,2} & \mathrm{mbo}_{r}^{1,3} \\ {[0]} & \mathrm{mbo}_{r}^{2,2} & \mathrm{mbo}_{r}^{2,3} \\ {[0]} & {[0]} & \mathrm{mbo}_{r}^{3,3}\end{array}\right]$ (478)
with the identities $\left\{\begin{array}{l}\operatorname{mob}_{r}^{1,1}=\operatorname{mob}_{r}^{3,3}=\operatorname{mob}_{r-1} \\ \operatorname{mbo}_{r}^{1,1}=\operatorname{mbo}_{r}^{1,3}=\operatorname{mbo}_{r}^{3,3}=\operatorname{mbo}_{r-1}\end{array} \quad\right.$ hold for all values of r, but only for $r=5$ do we get square blocks $\operatorname{mob}_{r}^{1,2}, \operatorname{mob}_{r}^{2,3}, \operatorname{mbo}_{r}^{1,2}, \operatorname{mbo}_{r}^{2,3}$.

11.3 The cǎlt- and cālt-based conversion matrices.

11.4 Pilot polynomials.

The pilot polynomials $P_{r, d}, Q_{r, d}, L_{r, d}$ enter, as their main ingredient, the formulae for $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$ - the number of independent elements in Flex $x_{r, d}\left(\mathfrak{E}^{\bullet}\right)$ with depth r and co-alternality degree d. We tabulate here only the first $P_{r, d}$
which, unlike the other two series, don't admit explicit expansions.

$$
\begin{aligned}
P_{0} & =1 \\
P_{1,2} & =\frac{1}{2}\left(y_{1}^{2}-y_{2}\right) \\
P_{2,3} & =\frac{1}{3}\left(y_{1}^{3}-y_{3}\right) \\
P_{2,4} & =\frac{1}{8}\left(y_{1}^{4}-2 y_{1}^{2} y_{2}+3 y_{2}^{2}-2 y_{4}\right) \\
P_{3,4} & =\frac{1}{4}\left(y_{1}^{2}-y_{2}\right)\left(y_{1}^{2}+y_{2}\right) \\
P_{3,5} & =\frac{1}{6}\left(y_{1}^{3}-y_{3}\right)\left(y_{1}^{2}-y_{2}\right) \\
P_{3,6} & =\frac{1}{48}\left\{\left(y_{1}^{6}-3 y_{1}^{4} y_{2}+9 y_{1}^{2} y_{2}^{2}-6 y_{1}^{2} y_{4}-7 y_{2}^{3}+6 y_{2} y_{4}+8 y_{3}^{2}-8 y_{6}\right)\right.
\end{aligned}
$$

$$
P_{4,5}=\frac{1}{5}\left(y_{1}^{5}-y_{5}\right)
$$

$$
P_{4,6}=\frac{1}{72}\left(13 y_{1}^{6}-9 y_{1}^{4} y_{2}-8 y_{1}^{3} y_{3}-9 y_{1}^{2} y_{2}^{2}+21 y_{2}^{3}+4 y_{3}^{2}-12 y_{6}\right)
$$

$$
P_{4,7}=\frac{1}{24}\left(y_{1}^{3}-y_{3}\right)\left(y_{1}^{4}-2 y_{1}^{2} y_{2}+3 y_{2}^{2}-2 y_{4}\right)
$$

$$
P_{4,8}=\frac{1}{384}\left\{\begin{array}{l}
+y_{1}^{8}-4 y_{1}^{6} y_{2}+18 y_{1}^{4} y_{2}^{2}-12 y_{1}^{4} y_{4}-28 y_{1}^{2} y_{2}^{3}+24 y_{1}^{2} y_{2} y_{4}+32 y_{1}^{2} y_{3}^{2} \\
+25 y_{2}^{4}-32 y_{1}^{2} y_{6}-36 y_{2}^{2} y_{4}-32 y_{2} y_{3}^{2}+32 y_{2} * y_{6}+60 y_{4}^{2}-48 y_{8}
\end{array}\right.
$$

$$
\begin{aligned}
P_{5,6} & =\frac{1}{6}\left(y_{1}^{6}-y_{2}^{3}-y_{3}^{2}+y_{6}\right) \\
P_{5,7} & =\frac{1}{60}\left(y_{1}^{2}-y_{2}\right)\left(11 y_{1}^{5}+5 y_{1}^{3} y_{2}-5 y_{1}^{2} y_{3}-5 y_{2} y_{3}-6 y_{5}\right) \\
P_{5,8} & =\frac{1}{288}\left(y_{1}^{2}-y_{2}\right)\left\{\begin{array}{l}
+17 y_{1}^{6}-9 y_{1}^{4} y_{2}-16 y_{1}^{3} y_{3}+9 y_{1}^{2} y_{2}^{2}-18 y_{1}^{2} y_{4} \\
+51 y_{2}^{3}-18 y_{2} y_{4}+8 y_{3}^{2}-24 y_{6}
\end{array}\right. \\
P_{5,9}= & \frac{1}{144}\left(y_{1}^{3}-y_{3}\right)\left(y_{1}^{6}-3 y_{1}^{4} y_{2}+9 y_{1}^{2} y_{2}^{2}-6 y_{1}^{2} y_{4}-7 y_{2}^{3}+6 y_{2} y_{4}+8 y_{3}^{2}-8 y_{6}\right) \\
P_{5,10}= & \frac{1}{3840}\left\{\begin{array}{l}
+y_{1}^{10}-5 y_{1}^{8} y_{2}+30 y_{1}^{6} y_{2}^{2}-20 y_{1}^{6} y_{4}-70 y_{1}^{4} y_{2}^{3}+60 y_{1}^{4} y_{2} y_{4} \\
+80 y_{1}^{4} y_{3}^{2}+125 y_{1}^{2} y_{2}^{4}-80 y_{1}^{4} * y_{6}-180 y_{1}^{2} y_{2}^{2} y_{4}-160 y_{1}^{2} y_{2} y_{3}^{2} \\
-81 y_{2}^{5}+160 y_{1}^{2} y_{2} y_{6}+300 y_{1}^{2} y_{4}^{2}+140 y_{2}^{3} y_{4}+240 y_{2}^{2} y_{3}^{2} \\
-240 y_{1}^{2} y_{8}-240 y_{2}^{2} y_{6}-300 y_{2} y_{4}^{2}-160 y_{3}^{2} y_{4}+240 y_{2} y_{8} \\
+160 y_{4} y_{6}+384 y_{5}^{2}-384 y_{10}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& P_{6,7}=\frac{1}{7}\left(y_{1}^{7}-y_{7}\right) \\
& P_{6,8}=\frac{1}{480}\left\{\begin{array}{l}
+87 y_{1}^{8}-40 y_{1}^{6} y_{2}-32 y_{1}^{5} y_{3}-30 y_{1}^{4} y_{2}^{2}-40 y_{1}^{2} y_{2}^{3}-32 y_{1}^{3} y_{5}-40 y_{1}^{2} y_{3}^{2} \\
+115 y_{2}^{4}+40 y_{1}^{2} y_{6}+40 y_{2} y_{3}^{2}-40 y_{2} y_{6}+32 y_{3} y_{5}-60 y_{4}^{2}
\end{array}\right. \\
& P_{6,9}=\frac{1}{3240}\left\{\begin{array}{l}
+236 y_{1}^{9}-297 y_{1}^{7} y_{2}-195 y_{1}^{6} y_{3}+108 y_{1}^{5} y_{2}^{2}-162 y_{1}^{5} y_{4}+135 y_{1}^{4} y_{2} y_{3} \\
+315 y_{1}^{3} y_{2}^{3}-81 y_{1}^{4} y_{5}+60 y_{1}^{3} y_{3}^{2}+135 y_{1}^{2} y_{2}^{2} y_{3}-180 y_{1}^{3} y_{6} \\
+162 y_{1}^{2} y_{2} y_{5}-315 y_{2}^{3} y_{3}-243 y_{2}^{2} y_{5}+340 y_{3}^{3}+180 y_{3} y_{6} \\
+162 y_{4} y_{5}-360 y_{9}
\end{array}\right. \\
& P_{6,10}=\frac{1}{576}\left\{\begin{array}{l}
+7 y_{1}^{10}-17 y_{1}^{8} y_{2}-8 y_{1}^{7} y_{3}+36 y_{1}^{6} y_{2}^{2}-26 y_{1}^{6} y_{4}+16 y_{1}^{5} y_{2} y_{3} \\
+18 y_{1}^{4} y_{2} y_{4}+28 y_{1}^{4} y_{3}^{2}-24 y_{1}^{3} y_{2}^{2} y_{3}-51 y_{1}^{2} y_{2}^{4}-36 y_{1}^{4} y_{6}+16 y_{1}^{3} y_{3} y_{4} \\
+18 y_{1}^{2} y_{2}^{2} y_{4}-8 y_{1}^{2} y_{2} y_{3}^{2}+57 y_{2}^{5}+24 y_{1}^{2} y_{2} y_{6}-42 y_{2}^{3} y_{4}-12 y_{2}^{2} y_{3}^{2} \\
-12 y_{2}^{2} y_{6}-8 y_{3}^{2} y_{4}+24 y_{4} y_{6}
\end{array}\right. \\
& P_{6,11}=\frac{1}{1152}\left(y_{1}^{3}-y_{3}\right)\left\{\begin{array}{l}
+y_{1}^{8}-4 y_{1}^{6} y_{2}+18 y_{1}^{4} y_{2}^{2}-12 y_{1}^{4} y_{4}-28 y_{1}^{2} y_{2}^{3} \\
+24 y_{1}^{2} y_{2} y_{4}+32 y_{1}^{2} y_{3}^{2}+25 y_{2}^{4}-32 y_{1}^{2} y_{6}-36 y_{2}^{2} y_{4} \\
-32 y_{2} y_{3}^{2}+32 y_{2} y_{6}+60 y_{4}^{2}-48 y_{8}
\end{array}\right. \\
& P_{6,12}=\frac{1}{46080}\left\{\begin{array}{l}
+y_{1}^{12}-6 y_{1}^{10} y_{2}+45 y_{1}^{8} y_{2}^{2}-30 y_{1}^{8} y_{4}-140 y_{1}^{6} y_{2}^{3}+120 y_{1}^{6} y_{2} y_{4} \\
+160 y_{1}^{6} y_{3}^{2}+375 y_{1}^{4} y_{2}^{4}-160 y_{1}^{6} y_{6}-540 y_{1}^{4} y_{2}^{2} y_{4}-480 y_{1}^{4} y_{2} y_{3}^{2} \\
-486 y_{1}^{2} y_{2}^{5}+480 y_{1}^{4} y_{2} y_{6}+900 y_{1}^{4} y_{4}^{2}+840 y_{1}^{2} y_{2}^{3} y_{4}+1440 y_{1}^{2} y_{2}^{2} y_{3}^{2} \\
+331 y_{2}^{6}-720 y_{1}^{4} y_{8}-1440 y_{1}^{2} y_{2}^{2} y_{6}-1800 y_{1}^{2} y_{2} y_{4}^{2}-960 y_{1}^{2} y_{3}^{2} y_{4} \\
-750 y_{2}^{4} y_{4}-1120 y_{2}^{3} y_{3}^{2}+1440 y_{1}^{2} y_{2} y_{8}+960 y_{1}^{2} y_{4} y_{6}+2304 y_{1}^{2} y_{5}^{2} \\
+1120 y_{2}^{3} y_{6}+2700 y_{2}^{2} y_{4}^{2}+960 y_{2} y_{3}^{2} y_{4}+640 y_{3}^{4}-2304 y_{1}^{2} y_{10} \\
-2160 y_{2}^{2} y_{8}-960 y_{2} y_{4} y_{6}-2304 y_{2} y_{5}^{2}-1280 y_{3}^{2} y_{6}-1560 y_{4}^{3} \\
+2304 y_{10} y_{2}+1440 y_{4} y_{8}+4480 y_{6}^{2}-3840 y_{12}
\end{array}\right.
\end{aligned}
$$

11.5μ-generators and enumerating series.

Recall that $\gamma_{\delta}(t):=\sum t^{r} \operatorname{dim}\left(\right.$ Flex $\left._{r, 1+\delta}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)\right)$ and $\xi_{d}(t):=\sum t^{r} \operatorname{dim}\left(\right.$ Flex $\left._{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$. Here are the first generating series γ_{δ} up to $\delta=5$, calculated from formula (324). The same series assume distinct and more complex, though equivalent, expressions $\tilde{\gamma}_{\delta}$ when calculated from formula (322). We mention the $\widetilde{\gamma}_{\delta}$'s up to $\delta=3$, after which they become too clumsy, while the γ_{δ} 's remain manageable. The two systems are seen to coincide only after each $\gamma_{\delta}(t)$ and each $\widetilde{\gamma}_{\delta}(t)$ gets expressed in terms of the sole series $\gamma_{0}(t)$ and its dilatees $\gamma_{0}\left(t^{k}\right)$.
$\gamma_{1}(t)=\widetilde{\gamma}_{1}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left(\frac{1}{2} \gamma_{0}(t)^{2}-\frac{1}{2} \gamma_{0}\left(t^{2}\right)\right)$

$$
\gamma_{4}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left\{\begin{array}{l}
+\frac{1}{5}\left(\gamma_{0}(t)^{5}-\gamma_{0}\left(t^{5}\right)\right)+\frac{1}{6}\left(\gamma_{0}\left(t^{2}\right)^{3}-\gamma_{0}\left(t^{6}\right)\right)+\frac{1}{8}\left(\gamma_{0}\left(t^{4}\right)^{2}-\gamma_{0}\left(t^{8}\right)\right) \\
+\gamma_{0}(t)^{3} \gamma_{1}(t) \\
+\gamma_{0}(t)^{2} \gamma_{2}(t)+\gamma_{0}(t) \gamma_{1}(t)^{2}+\frac{1}{2} \gamma_{0}\left(t^{2}\right) \gamma_{1}\left(t^{2}\right) \\
+\gamma_{0}(t) \gamma_{3}(t)+\gamma_{1}(t) \gamma_{2}(t) \\
+\frac{1}{4} \gamma_{1}\left(t^{4}\right)+\frac{1}{2} \gamma_{2}\left(t^{2}\right) \\
+\left\{\begin{array}{l}
+\gamma_{0}(t)^{-2} \gamma_{1}(t) \gamma_{3}(t)+\frac{1}{2} \gamma_{0}(t)^{-2} \gamma_{2}(t)^{2} \\
-\gamma_{0}(t)^{-3} \gamma_{1}(t)^{2} \gamma_{2}(t)+\frac{1}{4} \gamma_{0}(t)^{-4} \gamma_{1}(t)^{4}
\end{array}\right.
\end{array}\right.
$$

$$
\begin{aligned}
& \gamma_{2}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left\{\begin{array}{l}
+\frac{1}{3}\left(\gamma_{0}(t)^{3}-\gamma_{0}\left(t^{3}\right)\right)+\frac{1}{4}\left(\gamma_{0}\left(t^{2}\right)^{2}-\gamma_{0}\left(t^{4}\right)\right) \\
+\gamma_{0}(t) \gamma_{1}(t) \\
+\frac{1}{2}\left(\gamma_{1}\left(t^{2}\right)+\gamma_{0}(t)^{2} \gamma_{1}(t)^{2}\right)
\end{array}\right. \\
& \widetilde{\gamma}_{2}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left\{\begin{array}{l}
+\frac{1}{2} \gamma_{1}(t)^{2}+\frac{1}{2} \gamma_{1}\left(t^{2}\right) \\
+\gamma_{1}(t)\left(\frac{1}{2} \gamma_{0}(t)^{2}-\frac{1}{2} \gamma_{0}\left(t^{2}\right)+\gamma_{0}(t)\right) \\
+\frac{1}{8} \gamma_{0}(t)^{4}-\frac{1}{4} \gamma_{0}\left(t^{4}\right)+\frac{3}{8} \gamma_{0}\left(t^{2}\right)^{2}-\frac{1}{4} \gamma_{0}(t)^{2} \gamma_{0}\left(t^{2}\right) \\
+\frac{1}{3} \gamma_{0}(t)^{3}-\frac{1}{3} \gamma_{0}\left(t^{3}\right)
\end{array}\right. \\
& \gamma_{3}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left\{\begin{array}{l}
+\frac{1}{4}\left(\gamma_{0}(t)^{4}-\gamma_{0}\left(t^{2}\right)^{2}\right)+\frac{1}{6}\left(\gamma_{0}\left(t^{3}\right)^{2}-\gamma_{0}\left(t^{6}\right)\right) \\
+\gamma_{0}(t)^{2} \gamma_{1}(t) \\
+\frac{1}{2}\left(\gamma_{1}(t)^{2}-\gamma_{1}\left(t^{2}\right)\right)+\gamma_{0}(t) \gamma_{2}(t) \\
+\frac{1}{3} \gamma_{1}\left(t^{3}\right)+\gamma_{0}(t)^{-2} \gamma_{1}(t) \gamma_{2}(t)-\frac{1}{3} \gamma_{0}(t)^{-3} \gamma_{1}(t)^{3}
\end{array}\right. \\
& \tilde{\gamma}_{3}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left\{\begin{array}{l}
+\frac{1}{3} \gamma_{1}\left(t^{3}\right)+\frac{1}{6} \gamma_{1}(t)^{3}+\frac{1}{2} \gamma_{1}(t) \gamma_{1}\left(t^{2}\right)+\gamma_{1}(t) \gamma_{2}(t) \\
+\gamma_{2}(t)\left(\frac{1}{2} \gamma_{0}(t)^{2}-\frac{1}{2} \gamma_{0}\left(t^{2}\right)+\gamma_{0}(t)\right) \\
+\gamma_{1}\left(t^{2}\right)\left(\frac{1}{4} \gamma_{0}(t)^{2}-\frac{1}{4} \gamma_{0}\left(t^{2}\right)-\frac{1}{2}\right) \\
+\gamma_{1}(t)^{2}\left(\frac{1}{4} \gamma_{0}(t)^{2}-\frac{1}{4} \gamma_{0}\left(t^{2}\right)+\gamma_{0}(t)+\frac{1}{2}\right) \\
\\
+\gamma_{1}(t) \times\left\{\begin{array}{l}
+\frac{1}{8} \gamma_{0}(t)^{4}-\frac{1}{4} \gamma_{0}\left(t^{4}\right)-\frac{1}{4} \gamma_{0}(t)^{2} \gamma_{0}\left(t^{2}\right) \\
+\frac{3}{8} \gamma_{0}\left(t^{2}\right)^{2}+\frac{5}{6} \gamma_{0}(t)^{3}-\frac{1}{3} \gamma_{0}\left(t^{3}\right) \\
-\frac{1}{2} \gamma_{0}(t) \gamma_{0}\left(t^{2}\right)+\gamma_{0}(t)^{2}
\end{array}\right. \\
+\frac{1}{4}\left(\gamma_{0}(t)^{2}-\gamma_{0}\left(t^{2}\right)\right)\left(\gamma_{0}(t)^{2}+\gamma_{0}\left(t^{2}\right)\right) \\
+\frac{1}{6}\left(\gamma_{0}(t)^{3}-\gamma_{0}\left(t^{3}\right)\right)\left(\gamma_{0}(t)^{2}-\gamma_{0}\left(t^{2}\right)\right) \\
+\frac{1}{48} \gamma_{0}(t)^{6}-\frac{1}{6} \gamma_{0}\left(t^{6}\right)-\frac{1}{16} \gamma_{0}(t)^{4} \gamma_{0}\left(t^{2}\right)+\frac{3}{16} \gamma_{0}(t)^{2} \gamma_{0}\left(t^{2}\right)^{2} \\
-\frac{1}{8} \gamma_{0}(t)^{2} \gamma_{0}\left(t^{4}\right)-\frac{7}{48} \gamma_{0}\left(t^{2}\right)^{3}+\frac{1}{8} \gamma_{0}\left(t^{2}\right) \gamma_{0}\left(t^{4}\right)+\frac{1}{6} \gamma_{0}\left(t^{3}\right)^{2}
\end{array}\right.
\end{aligned}
$$

$$
\gamma_{5}(t)=\frac{\gamma_{0}(t)}{1-\gamma_{0}(t)}\left\{\begin{array} { l }
{ + \frac { 1 } { 1 0 } (\gamma _ { 0 } (t ^ { 5 }) ^ { 2 } - \gamma _ { 0 } (t ^ { 1 } 0)) + \frac { 1 } { 6 } (\gamma _ { 0 } (t ^ { 6 }) - \gamma _ { 0 } (t ^ { 3 }) ^ { 2 } - \gamma _ { 0 } (t ^ { 2 }) ^ { 3 } + \gamma _ { 0 } (t) ^ { 6 }) } \\
{ + \gamma _ { 0 } (t) ^ { 4 } \gamma _ { 1 } (t) } \\
{ - \frac { 1 } { 2 } \gamma _ { 0 } (t ^ { 2 }) \gamma _ { 1 } (t ^ { 2 }) + \gamma _ { 0 } (t) ^ { 3 } \gamma _ { 2 } (t) + \frac { 3 } { 2 } \gamma _ { 0 } (t) ^ { 2 } \gamma _ { 1 } (t) ^ { 2 } } \\
{ + \frac { 1 } { 3 } (\gamma _ { 1 } (t) ^ { 3 } - \gamma _ { 1 } (t ^ { 3 })) + 2 \gamma _ { 0 } (t) \gamma _ { 1 } (t) \gamma _ { 2 } (t) + \gamma _ { 0 } (t) ^ { 2 } \gamma _ { 3 } (t) } \\
{ + \frac { 1 } { 2 } (\gamma _ { 2 } (t) ^ { 2 } - \gamma _ { 2 } (t ^ { 2 })) + \gamma _ { 1 } (t) \gamma _ { 3 } (t) + \gamma _ { 0 } (t) \gamma _ { 4 } (t) }
\end{array} \left\{\begin{array}{l}
+\frac{1}{5} \gamma_{1}\left(t^{5}\right)+\gamma_{0}(t)^{-2} \gamma_{1}(t) \gamma_{4}(t)+\gamma_{0}(t)^{-2} \gamma_{2}(t) \gamma_{3}(t) \\
-\gamma_{0}(t)^{-3} \gamma_{1}(t)^{2} \gamma_{3}(t)-\gamma_{0}(t)^{-3} \gamma_{1}(t) \gamma_{2}(t)^{2} \\
+\gamma_{0}(t)^{-4} \gamma_{1}(t)^{3} \gamma_{2}(t)-\frac{1}{5} \gamma_{0}(t)^{-5} \gamma_{1}(t)^{5}
\end{array}\right.\right.
$$

There is no need to tabulate the series ξ_{d} since they relate quite elementarily to the series γ_{δ} :

$$
\begin{equation*}
1+\sum_{1 \leqslant d} x^{d} \xi_{d}(t)=\left(1-\sum_{0 \leqslant \delta} x^{\delta+1} \gamma_{\delta}(t)\right)^{-1} \tag{479}
\end{equation*}
$$

With the complementary dimensions and their generating series

$$
\gamma_{d}^{\mathrm{co}}(t):=\sum t^{r} \operatorname{dim}\left(\text { Flex }_{r, r-d}^{\text {root }}\left(\mathfrak{E}^{\bullet}\right)\right) \quad, \quad \xi_{d}^{\mathrm{co}}(t):=\sum t^{r} \operatorname{dim}\left(\text { Flex }_{r, r-d}\left(\mathfrak{E}^{\bullet}\right)\right)
$$

the position is reversed: it is the $\xi_{d}^{c o}(t)$'s that are now more basic and regular that the $\gamma_{d}^{c o}(t)$'s. We have $\gamma_{0}^{c o}(t)=\frac{1}{1-t}, \gamma_{t}^{c o}(t)=\frac{t^{2}}{1-t^{2}}$ and for $2 \leqslant d$:

$$
\xi_{d}^{\mathrm{co}}(t)=\frac{t^{d+1} \widehat{\xi}_{d}^{\mathrm{co}}(t)}{(1-t)^{2} \prod_{k=1}^{d-1}\left(1-t^{k}\right)}\left(\widehat{\xi}_{d}^{\mathrm{co}} \text { polynomial with positive coefficients. }\right)
$$

$$
\begin{aligned}
& \widehat{\xi}_{2}^{\mathrm{co}}(t)=2 \\
& \widehat{\xi}_{3}^{\mathrm{co}}(t)=4+4 t+t^{2} \\
& \widehat{\xi}_{4}^{\mathrm{co}}(t)=9+18 t+21 t^{2}+13 t^{3}+4 t^{4} \\
& \hat{\xi}_{5}^{\mathrm{co}}(t)=20+63 t+117 t^{2}+150 t^{3}+144 t^{4}+99 t^{5}+48 t^{6}+12 t^{7}+t^{8} \\
& \widehat{\xi}_{6}^{\mathrm{co}}(t)=\left\{\begin{array}{l}
+48+200 t+492 t^{2}+874 t^{3}+1250 t^{4}+1470 t^{5}+1454 t^{6}+1200 t^{7} \\
+823 t^{8}+446 t^{9}+179 t^{10}+43 t^{11}+5 t^{12}
\end{array}\right. \\
& \widehat{\xi}_{7}^{\mathrm{co}}(t)=\left\{\begin{array}{l}
+115+612 t+1856 t^{2}+4092 t^{3}+7338 t^{4}+11188 t^{5}+14952 t^{6} \\
+17685 t^{7}+18720 t^{8}+17734 t^{9}+15038 t^{10}+11305 t^{11}+7472 t^{12} \\
+4220 t^{13}+1959 t^{14}+691 t^{15}+164 t^{1} 6+20 t^{17}+t^{18}
\end{array}\right. \\
& \widehat{\xi}_{8}^{\mathrm{co}}(t)=\left\{\begin{array}{l}
+286+1829 t+6579 t^{2}+17158 t^{3}+36312 t^{4}+65747 t^{5}+105393 t^{6} \\
+152363 t^{7}+201245 t^{8}+244664 t^{9}+275326 t^{10}+287521 t^{11} \\
+279084 t^{12}+251511 t^{13}+210011 t^{14}+161704 t^{15}+114080 t^{16} \\
+72919 t^{17}+41576 t^{18}+20578 t^{19}+8504 t^{20}+2749 t^{21}+631 t^{22} \\
+86 t^{23}+6 t^{24}
\end{array}\right. \\
& \widehat{\xi}_{9}^{\mathrm{co}}(t)=\left\{\begin{array}{l}
+719+5400, t+22435 t^{2}+67252 t^{3}+162840 t^{4}+337008 t^{5} \\
+617895 t^{6}+1026063 t^{7}+1567380 t^{8}+2224883 t^{9}+2957005 t^{10} \\
+3698414 t^{11}+4370415 t^{12}+4891788 t^{13}+5195758 t^{14}+5240862 t^{15} \\
+5021676 t^{16}+4567601 t^{17}+3939032 t^{18}+3213160 t^{19}+2471544 t^{20} \\
+1784369 t^{21}+1201926 t^{22}+748696 t^{23}+426166 t^{24}+217766 t^{25} \\
+97470 t^{26}+36824 t^{27}+11143 t^{28}+2485 t^{29}+363 t^{30}+29 t^{31}+t^{32}
\end{array}\right.
\end{aligned}
$$

11.6 Generators.

We tabulate here the dimensions $\operatorname{dim}\left(\operatorname{Flex}_{r, d}^{r o o t}\left(\mathfrak{E}^{\bullet}\right)\right)$. They coincide with the number of independent $d m e$-generators of $F l e x\left(\mathfrak{E}^{\bullet}\right)$ of depth r and alternality codegree d; or again with the number of independent mde-generators of Flex $\left(\mathfrak{E}^{\bullet}\right)$ of depth r and alternality co-degree d.

$r \backslash d$	1	2		3	4	5	6		7
1	1	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0
3	2	0	0	0	0	0	0	0	0
4	4	1	1	0	0	0	0	0	0
5	9	4		1	0	0	0	0	0
6	20	15		6	1	0	0	0	0
7	48	49		27	7	1	0	0	0
8	115	156		108	40	9	1	1	0
9	286	479		405	191	58	10		1
10	719	1452		1446	839	317	76		12
11	1842	4343		5013	3440	1568	476		100
12	4766	12908		16953	13475	7197	2654		693
13	12486	38146		56321	50889	31258	13539		4249
14	32973	112358		184385	186888	129898	64729		23749
15	87811	330064		596741	670807	521166	293759		123608
16	235381	967945		1912776	2363337	2031072	1278615		607456
17	634847	2834876		6082890	8197048	7726269	5375539		2848373
18	1721159	8295446		19214918	28057873	28793800	21951639		12842065
19	4688676	24258864		60352718	94957627	105438275	87443367		56007142
20	12826228	70912286		188635971	318236848	380265993	340952408		237391625
21	35221832	207230122		587096310	1057437216	1353335199	1304863162		981631597
22	97055181	605501661		820465044	3487307579	4760371271	4912774608		3972200135
23	2682828551	1769064947		62650931811	114243022011	16571839003	18230407812		15769569776
24	743724984	5168521107	1733	33970320337	372038295605	57158419908	66782132346		61551392031
25	206717464515	15100910989		330015440912	2051226681919	195516025077	241824272661		236627078432
$r \backslash d$		8	9	10	11	12	13		14
10		1	0	0	0 0	0	0		0
11	13	3	1	0	00	0	0		0
12	124		15	1	10	0	0		0
13	954		153	16	6	0	0		0
14	6433		1285	183	-18	- 1	0		0
15	39183		9391	1672	218	-19	1		0
16	220826		1791	13228	82143	253	21		1
17	1168622		4432	93614	$4 \quad 18164$	2679	294		22
18	5873298	8 2121	1851	607327	$7 \quad 137419$	24321	3314		335
19	28265358	11374	4830	3669736	6949677	196038	31960		4025
20	131101055	558186	6393	20902760	6093480	1438399	273220		41221
21	589040325	5285949	993	113250510	036744581	9767987	2120267		372725
22	2574293016	61357342	2490	587795091	1210179270	62167992	15190258		3051014
23	10980031682	2250542	2434	2939087278	81148763383	374370222	101746710		22998920
24	45834498690	28024212	21591	14223161327	76034760155	2149215465	643394656	16	61727336
25	187689037253	122697191	12766	66868523384	430616496083	11833911912	387059251110	107	71442242

11.7 Dimensions.

We tabulate here the dimensions $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$, that is to say, the number of independent elements of Flex $\left(\mathfrak{E}^{\bullet}\right)$ with depth r and alternality co-degree d.

$r \backslash d$	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	0
3	2	2	1	0	0	0	0
4	4	6	3	1	0	0	0
5	9	16	12	4	1	0	0
6	20	45	41	20	5	1	0
7	48	123	138	83	30	6	1
8	115	344	446	328	147	42	7
9	286	957	1428	1222	667	237	56
10	719	2687	4497	4422	2815	1216	358
11	1842	7557	14068	15554	11364	5737	2049
12	4766	21358	43668	53702	44164	25586	10687
13	12486	60516	134911	182423	166881	108917	52194
14	32973	172034	414952	611986	615935	447319	241591
15	87811	490204	1272130	2031248	2230554	1783137	1071839
16	235381	1400182	3888611	6682780	7948687	6935568	4590562
17	634847	4007312	11858590	21819467	27942665	26418916	19091289
18	1721159	11490316	36088314	70777645	97080238	98857214	77431998
19	4688676	33000306	109629926	228277456	333854328	364239242	307360178
20	12826228	94919331	332512570	732566279	1137838606	1324025804	1197360112
21	35221832	273384776	1007132571	2340399407	3847252697	4755820093	4588243551
22	97055181	788366353	3046685364	7447310395	12916320185	16902453286	17327285879
23	268282855	2275974509	9206344974	23612856446	43088443273	59504811265	64589660866
24	743724984	6577376047	27791460920	74625349650	142917362794	207703204583	237970147740
25	2067174645	19025986499	83818587788	235147762795	471566018441	719406620114	867566561776

$r \backslash d$	8	9	10	11	12	13	14
8	1	0	0	0	0	0	0
9	8	1	0	0	0	0	0
10	72	9	1	0	0	0	0
11	514	90	10	1	0	0	0
12	3249	710	110	11	1	0	0
13	18566	4911	950	132	12	1	0
14	98584	30517	7140	1239	156	13	1
15	493086	175067	47938	10053	1581	182	14
16	2350797	941072	295521	72526	13776	1981	210
17	10767971	4798866	1699270	478164	106285	18448	2443
18	47692835	23414204	9230508	2928874	746342	151574	24217
19	205246164	110053967	47799379	16885954	4851914	1129447	211113
20	861583377	500956305	237668718	92506872	29592819	7767218	1663843
21	3538999442	2217703307	1141051386	485173466	171010505	49970416	12068604
22	14260869394	9580881784	5313567180	2450468536	943597282	303804250	81682686
23	56496657745	40507559140	24088665924	11975644498	5001919605	1759411155	521214461
24	220440855233	168004013976	106637213867	56850890652	25599480499	9767448516	3161242858
25	848430232360	684889453403	462148297540	263008126630	127010918277	52248113104	18343321538

12 Conclusion.

12.1 Survey of the main results.

- We replace the usual pre-Lie formulae (for group composition, inversion, iteration; also for the group-to-algebra logarithm), which indiscriminately
use all bracket combinations, by optimally economical formulae, which make do with only two types of bracketing: backward within forward. Beside using less summands, these formulae, unlike the old ones, affect their summands with quite explicit coefficients.
- We consider exotic pre-Lie products and connect them to exotic composition laws, which are rather trite in the identity-tangent case, but become interesting in the general transserial setting.
- We construct a pre-Lie product dle (pre-Lie to $l u$) which, unlike those previously in service, preserves alternality and generates the whole of Flex ${ }^{a l}\left(\mathfrak{E}^{\bullet}\right)$ from \mathfrak{E}^{\bullet} alone. This naturally leads to another pre-Lie product dari (pre-Lie to ari), which also preserves alternality. To go from there to the whole of Flex $\left(\mathfrak{E}^{\bullet}\right)$, yet another operation is needed: either the pre-associative product $d m e$ or its twin mde.
- By suitably combining $d m e$, mde and $d l e$, we construct three rather complex, multivariate functions câlt, călt, cālt of Flex(\mathfrak{E}) into itself. They are the counter-alternators, so-called because they combine and transform the alternality properties of their arguments in a counter-intuitive manner. For all their outward similarities, one of them, the counter-alternator câlt, turns out to possess the nicest properties.
- We use câlt to construct on Flex $\left(\mathfrak{E}^{\bullet}\right)$ a basis $\left\{\hat{\left.\mathfrak{o} t \mathfrak{e}_{r, k}^{\bullet}\right\} \text {, indexed by ordered }}\right.$ trees, where the pre-Lie operations dle and dari assumes the simplest possible form: with dle, the second tree gets 'attached' to the first; with dari it gets 'inserted' into it. We then construct, again relying on câlt, yet another basis $\left\{\mathfrak{s t e}_{r, d, k}^{\bullet}\right\}$, indexed by stacked trees (appropriate tree superpositions), which faithfully reflects the stratification of $F l e x(\mathbb{E})$ by alternality co-degree d.
- The dimensions of the sub-spaces Flex $_{r, 1}\left(\mathfrak{E}^{\bullet}\right)=$ Flex $_{r}^{a l}\left(\mathfrak{E}^{\bullet}\right)$ (alternal elements of depth r) are rather easy to determine. Not so the dimensions of the general sub-spaces $F l e x_{r, d}\left(\mathfrak{E}^{\bullet}\right)$ (elements of depth r and alternality co-degree d). With the help of the basis $\left\{s t e_{r, d, k}^{\bullet}\right\}$ and of special 'pilot' polynomials, we calculate the dimensions $\operatorname{dim}\left(\right.$ Flex $\left._{r, d}\left(\mathfrak{E}^{\bullet}\right)\right)$ as well as their more tractable generating series.
- We introduce a notion of pre-associative ${ }^{68}$ algebra (- they 'enfold' preLie algebras much like associative algebras 'envelope' Lie algebras -) with three aims in mind:
(i) to detach the preceding construction from its origin in Flex (\mathfrak{E}) and the two rather dissimilar 'polar' models Flex (Pa) and Flex (Pi).
(ii) to put notions like counter-alternator and alternality co-degree on a neat natural axiomatic basis
(iii) to pave the way for possible extensions (for a start, we describe the structure of free pre-associative algebras with any number of generators).

[^49]- Using the correspondence $\hat{\mathfrak{o} t e} \mapsto$ ot of $\operatorname{Flex}\left(\mathfrak{E}^{\bullet}\right)$ onto $\mathbb{O T}$, we upload the whole of flexion algebra onto tree algebra. In the process, the inflected ari bracket receives as striking an interpretation as the uninflected $l u$ bracket: inserting trees into one another or attaching them to one another. On the axiomatic side, this leads to the notion of Janus algebra,

12.2 Some open questions.

- \mathbf{Q}_{1} : Just as we have (two) natural Dynkin projectors from an associative algebra onto the Lie algebra it 'envelopes', it would be nice to have simple projectors dealing with the whole 'fourfold unfolding', that is to say:
(i) from pre-associative onto pre-Lie
(ii) from pre-associative onto associative
(iii) (directly) from pre-associative onto Lie
- $\mathbf{Q}_{\mathbf{2}}$: Are there natural incarnations (in flexion algebra or elsewhere) of the pre-associative algebras freely generated by more than one element?
- \mathbf{Q}_{3} : Is there a simple way of expressing the core involution swap and the related notions of bialternality, bisymmetrality etc ${ }^{69}$ in any of the tree indexed bases?
- $\mathbf{Q}_{\mathbf{4}}$: Are there simple Hermitian forms on Flex $_{r}\left(P a^{\bullet}\right)$ or Flex $_{r}\left(P i^{\bullet \bullet}\right)$ that
 Hermitian forms of type: $<A^{\bullet}, B^{\bullet}>=\sum_{\boldsymbol{w}, \boldsymbol{w}^{\prime}} h\left(\boldsymbol{w}, \boldsymbol{w}^{\prime}\right) A^{\boldsymbol{w}} \bar{B}^{\boldsymbol{w}^{\prime}}$ with the sequences \boldsymbol{w} and \boldsymbol{w}^{\prime} consisting of finite sums of differences of unit roots of order $r+1$. Same question with $F l e x_{r}\left(F^{\bullet}\right)$, where F^{\bullet} denotes the flat flexion unit: $F^{w_{1}}=\frac{1}{2}\left(\operatorname{sgn}\left(u_{1}\right)+\left(\operatorname{sgn}\left(v_{1}\right)\right)\right.$.
- $\mathbf{Q}_{\mathbf{5}}$: Does there exist (say, for $\mathbb{E}^{\bullet}=P a^{\bullet}$ or $P i^{\bullet}$) a simple, direct characterisation of the important and remarkably stable ${ }^{70}$ subspace Flex $_{\text {root }}\left(\mathfrak{E}^{\bullet}\right)$ spanned by all elements of the form $\hat{\mathfrak{o}} \mathfrak{t}_{r, k}^{\bullet}$, with $1 \leqslant k \leqslant \kappa_{r-1}$, i.e. spanned by bimoulds attached to one-rooted trees?

12.3 Forthcoming: "the flexion structure and its plethora of dualities".

In this follow-up paper, we shall return to the flexion algebra $B I M U$ of general bimoulds, and use Flex $\left(\mathfrak{E}^{\bullet}\right)$ to shed light on the many symmetries, involutions, and dualities that exist on BIMU and make it such a pliant tool for the study of arithmetic dimorphy, most glaringly manifest in the ring of multizetas. The centre-piece of the paper will be the bisymmetral bimoulds tal $\bullet^{\bullet} / t i l^{\bullet}$. They are the trigonometric counterpart of the polar bimoulds pal $\boldsymbol{l}^{\boldsymbol{\bullet}} /$ pil ${ }^{\bullet}$, and an ideal key to the understanding of rational Drinfeld associators, of which they provide two completely distinct encodings.

[^50]
12.4 Index of terms.

ari: $\S 4.2, \S 4.3$
arit: $\S 4.2, \S 4.3$
alternal: §4.1, §4.2
bialternal: §4.2, §4.3
bisymmetral: §4.2, §4.3
counter-alternators: $\S 5.5-\S 5.7, \S 11.2-\S 11.4$
dari: §5.3
dla, dli: §5.2, §5.3
dle: §5.2
$d m a, d m i: \S 5.2, \S 5.3$
dme: §5.2
exotic composition: §3.2-§3.5
framing function: §7.2
pilot polynomials: $\S 6.4, \S 11.4$
lu: §4.2
mu: §4.3
mde: §5.2
$m d a$, mdi: §5.2, §5.3
stacked tree: $\S 6.4$
symmetral: §4.1, §4.2

12.5 Index of notations.

```
BIMU: §4.1, §4.2
BIMU v-v}:\S5.
câlt, călt, cālt: §5.5, §10.2
câlt r,d, călt r,d},c\overline{a}l\mp@subsup{t}{}{r,d}:\S5.5,\S5.
Callt: §6.6
Flex(\mathfrak{E}),Flex al (E``): §4.6, §5.2
Flex}\mp@subsup{}{}{\mathrm{ root (E*`): §8.2, §8.5}
Flex (Pa`}\mp@subsup{}{}{\bullet}),Flex al (Pa`):§5.
Flex (Pi`),Flex al (Pi`): §5.3
Pa
P
L}\mp@subsup{r}{r,d}{}:\S7.
Qr,d}\\S7.
Qa
\mathcal{F}}(x,\boldsymbol{y}):\S7.
\mathcal{P}(x,y): §7.2
\Gamma}(t,x):\S7.
\Xi(t,x):\S7.3
\Gamma}\mp@subsup{}{}{co}(t,x):\S7.
\Xi `co (t,x):\S7.4
kâlttr,d,kălt r,d},k\overline{a}l\mp@subsup{t}{}{r,d}:\S5.
```

$\mu, \mu_{*}, \lambda: \S 10.1$
©T: $\S 6.2$
$\mathbb{B T}: \S 6.3$
UT: $\S 6.4$
ST: §6.4

12.6 References.

[C-L]: F.Chapoton, M. Livernet, Pre-Lie algebras and the rooted tree operad, International Math. Research Notices, 2001 (8), pp 395-408.
[E-V]: J.Ecalle, B.Vallet, The arborification-coarborification transform: analytic, combinatorial, and algebraic aspects, Ann. Fac. Sc. Toulouse, Ser. 6, 13, no 4, 2004, pp 575-657.
[E1]: J.Ecalle, ARI-GARI, la dimorphie et l'arithmetique des multizetas: un premier bilan, Journal de Theorie des Nombres de Bordeaux, Vol .15, 2003, pp 411-478.
[E2]: J.Ecalle, The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles, Ann. Scuola Normale Pisa, 2011, Vol. 2, in Asymptotics in Dynamics, Geometry and PDEs, ed. O.Costin, F.Fauvet, F.Menous, D.Sauzin.
[E3]: J.Ecalle, Eupolars and their bialternality grid, Acta Mathematica Vietnamica, 2015 (114 pp).
[E4]: J.Ecalle, Dualities upon dualities: the flexion structure and its embarrassment of richess, forthcoming.
[K-M-P]: M.J.H.al-Kaabi, D.Manchon, F.Patras, Monomial bases and pre-Lie structure for free Lie algebras, Journal of Lie Theory, 2018, Vol. 28, No 4, pp 941-967 (also on ArXiv)

[^0]: ${ }^{1}$ Here, M^{\bullet} denotes a scalar mould, and B • a operatorial bimould - typically, a string of differential operators.
 ${ }^{2}$ by means of the dual tranforms $M^{\boldsymbol{\omega}^{<}}=\sum_{\boldsymbol{\omega} \ll \boldsymbol{\omega}} M^{\boldsymbol{\omega}}, B_{\boldsymbol{\omega}}=\sum_{\boldsymbol{\omega} \ll \boldsymbol{\omega}} B^{\boldsymbol{\omega}^{<}}$that turns ordered sequences $\boldsymbol{\omega}$ into partially ordered ones $\boldsymbol{\omega}^{<}$.
 ${ }^{3}$ The reason the magic works is that, in most instances, the change hardly affects the size of the mould part but drastically shrinks the comould part: $\left|M^{\omega^{<}}\right| \sim\left|M^{\boldsymbol{\omega}}\right|,\left|B_{\omega^{<}}\right| \ll\left|B_{\omega}\right|$.

[^1]: ${ }^{4}$ Mark that it has nothing to with what sometimes goes by that name in the literature.

[^2]: ${ }^{5}$ Actually, a right pre-Lie bracket, i.e. one whose commutator $\left\langle A_{*}, B_{*}\right\rangle-\left\langle B_{*}, A_{*}\right\rangle$ coincides with the Lie bracket $\left[A_{*}, B_{*}\right]$ and whose associator $\langle A,\langle B, C\rangle\rangle-\langle\langle A, B\rangle, C\rangle$ is symmetrical in the last two arguments B, C.
 ${ }^{6}$ The pre-Lie bracket will act mainly on elements $A_{*}, B_{*} \ldots$ of the Lie algebra, and occasionally on elements $A, B \ldots$ of the group itself.

[^3]: ${ }^{7}$ i.e. of the form $\left\langle A_{1 \overleftarrow{+n_{1}}}, A_{\overleftarrow{n}_{r}}, \ldots, A_{\overleftarrow{n}_{r}}\right\rangle \rightarrow$.

[^4]: $8_{\text {i.e. }}$ the ideal \mathbb{I} such that .

[^5]: ${ }^{9}$ i.e. the ideal \mathbb{I} such that .

[^6]: ${ }^{10}$ i.e. the ideal \mathbb{I} generated by the two functional identities of the pre-Lie bracket $\langle.,$.$\rangle .$

[^7]: ${ }^{11}$ No contradiction there: it is simply that each of these basis elements resolves itself into a sum of elementary summands. But this in no way diminishes the importance of the alternative expansions.
 ${ }^{12}$ Don't mix up the ordering on the set of unordered trees and the internal order of an ordered tree, i.e. the order on the edges issuing from a given node.

[^8]: ${ }^{13}$ with $\mu^{r, k}=\mu_{k}$ the multiplicity factor as above (cf beginning of $\S 2.4$).

[^9]: ${ }^{14}$ The better way, or pared-down expansion, involves, at each order, a minimal number of summands.

[^10]: ${ }^{15}$ Hint: for each resurgent germ, write down the standard diplay then re-phrase it in the exotic context.

[^11]: ${ }^{16} B I M U_{r}$ of course regroups all bimoulds whose components of length other than r vanish. These are often dubbed "length- r bimoulds" (or "depth- r bimoulds") for short.

[^12]: ${ }^{17}$ The reason for dignifying the humble sign change in (109) with the special name minu is that minu enters the definition of scores of operators acting on various algebras: the rule for forming the corresponding operators acting on the corresponding groups, is then simply to change the trivial, linear minu, which commutes with everybody, into the non-trivial, nonlinear invmu, which commutes with practically nobody (see (107)). To keep the minus sign instead of minu (especially when it occurs twice and so cancels out) would be a sure recipe for getting the transposition wrong.
 ${ }^{18}$ pus resp. push is a circular permutation in the short resp. long indexation of bimoulds. Indeed: (push. $M)^{\left[w_{0}\right], w_{1}, \ldots, w_{r}}=M^{\left[w_{r}\right], w_{0}, \ldots, w_{r-1}}$.

[^13]: ${ }^{19}$ The sum \sum^{1} resp. \sum^{2} extends to all sequence factorisations $\boldsymbol{w}=\boldsymbol{a} . \boldsymbol{b} . \boldsymbol{c}$ with $\boldsymbol{b} \neq \varnothing$, $\boldsymbol{c} \neq \varnothing$ resp. $\boldsymbol{a} \neq \varnothing, \boldsymbol{b} \neq \varnothing$. The sum \sum^{3} extends to all factorisations $\boldsymbol{w}=$ $a^{1} \cdot b^{1} \cdot \boldsymbol{c}^{1} \cdot a^{2} \cdot b^{2} \cdot c^{2} \ldots a^{s} \cdot b^{s} \cdot \boldsymbol{c}^{s}$ such that $s \geqslant 1, b^{i} \neq \varnothing, \boldsymbol{c}^{i} \cdot a^{i+1} \neq \varnothing \forall i$. Note that the extreme factor sequences \boldsymbol{a}^{1} and $\boldsymbol{c}^{\boldsymbol{s}}$ may be \varnothing.

[^14]: ${ }^{20}$ meaning that the group operation (like $A^{\bullet}, B^{\bullet} \mapsto \operatorname{gari}\left(A^{\bullet}, B^{\bullet}\right)$ in our example) is linear in A^{\bullet} but highly non-linear in B^{\bullet}.

[^15]: ${ }^{21}$ Here, the associator assobin of a binary operation bin is straightforwardly defined as $\operatorname{assobin}(a, b, c):=\operatorname{bin}(\operatorname{bin}(a, b), c)-\operatorname{bin}(a, \operatorname{bin}(b, c))$. Nothing to do with the Drinfeld associators of the sequel!

[^16]: ${ }^{22}$ Properly speaking, preari applies only to elements M^{\bullet} of $A R I$, i.e. such that $M^{\varnothing}=0$. Here, however, only B^{\bullet} is in $A R I$, whilst A^{\bullet} is in $G A R I$ and therefore $A^{\varnothing}=1$. But this is no obstacle to applying the rule (151).
 ${ }^{23}$ Properly speaking, fragari applies only to arguments $S_{1}^{\bullet}, S_{2}^{\bullet}$ in $G A R I$, i.e. such that $S_{i}^{\varnothing}=1$. Here, however, only $S_{2}^{\bullet}:=A^{\bullet}$ is in $G A R I$, whilst $S_{1}^{\bullet}:=\operatorname{preari}\left(A^{\bullet}, B^{\bullet}\right)$ is in $A R I$ and therefore $S_{1}^{\varnothing}=0$. But this is no obstacle to applying the rule:
 $\operatorname{fragari}\left(S_{1}^{\bullet}, S_{2}^{\bullet}\right):=\operatorname{mu}\left(\operatorname{garit}\left(S_{2}^{\bullet}\right)^{-1} . S_{1}^{\bullet}, \operatorname{invgari} . S_{2}^{\bullet}\right)=\operatorname{mu}\left(\operatorname{garit}\left(\operatorname{invgari} . S_{2}^{\bullet}\right) . S_{1}^{\bullet}\right.$, invgari. $\left.S_{2}^{\bullet}\right)$
 ${ }^{24}$ Despite the spontaneous occurence of the pre-ari product in (161), it should be noted that $\operatorname{adari}\left(A^{\bullet}\right)$ is an automorphisms of $A R I$ but not of PREARI.

[^17]: ${ }^{25}$ when viewed as a distribution or as an almost-everywhere defined function on \mathbb{R}. But when viewed as a function on \mathbb{Z}, it becomes an approximate unit.
 ${ }^{26}$ In terms of applications, the failure of imparity has more disruptive consequences than the failure to verify the exact tripartite equation, because it means that \mathfrak{E} has no proper conjugate \mathfrak{O}, which in turn prevents it from serving as building block for dimorphic bimoulds such as $\mathfrak{e s s}^{\bullet}$ etc.
 ${ }^{27}$ To be carefully distinguished from the involution swap, as defined in (114).

[^18]: ${ }^{28}$ Nonetheless, they admit a preferred expansion in the 'binary tree' basis.

[^19]: ${ }^{29}$ where $\sigma_{k}\left(v_{1}, \ldots, v_{r}\right)$ denotes the $k^{t h}$ symmetric function of the indices v_{j}, and \hat{v}_{i} signals the removal of $v_{i}: \sum_{0 \leqslant k \leqslant r} \sigma_{k}\left(v_{1}, \ldots, v_{r}\right) t^{k}:=\prod_{1 \leqslant j \leqslant r}\left(1+t v_{j}\right)$

[^20]: ${ }^{30}$ That impossibility is easily proven. It is also worth noting that Flex $\left(Q a^{\bullet}\right)$ and $F l e x\left(Q i^{\bullet}\right)$ are not isomorphic, unlike Flex $\left(Q a^{\bullet}\right)$ and Flex $\left(Q i^{\bullet}\right)$.

[^21]: ${ }^{31}$ This is essentially a consequence if its definition involving the uninflected product $m u$ instead of the inflected midme, mde.
 ${ }^{32}$ This difference explains why, whereas cālt cannot replace călt or câlt as counteralternator, sālt often proves - due to the greater simplicity of its definition - a more convenient alternator than sâlt or sălt .

[^22]: ${ }^{33}$ For details, see "Combinatorial tidbits" on our homepage.
 ${ }^{34}$ Recall that anti denotes the reversal of the sequence \bullet.

[^23]: ${ }^{35}$ usually with the index $H^{\bullet}:=\mathfrak{E}^{\bullet}$.

[^24]: ${ }^{37}$ For clarity, let us speak of orderings when comparing tres, and of orders when comparing edges issuing from the same node in a given tree.

[^25]: ${ }^{38}$ since the $s t_{r_{i}, d_{i}, k_{i}}$ inside \mathfrak{h} are tree superpositions ('stacked trees'), \mathfrak{h} must be viewed as a multilinear function of its arguments.

[^26]: ${ }^{39}$ once again, since the $s t_{r_{i}, d_{i}, k_{i}}$ inside \mathfrak{j} are tree superpositions ('stacked trees'), \mathfrak{j} must be viewed as a multilinear function of its arguments.

[^27]: ${ }^{40}$ i.e. all identities that do not result from the universal pre-Lie identities $\operatorname{dari}\left(\operatorname{dari}\left(A^{\bullet}, B^{\bullet}\right), C^{\bullet}\right)-\operatorname{dari}\left(A^{\bullet}, \operatorname{dari}\left(B^{\bullet}, C^{\bullet}\right)\right)=\operatorname{dari}\left(\operatorname{dari}\left(A^{\bullet}, C^{\bullet}\right), B^{\bullet}\right)-\operatorname{dari}\left(A^{\bullet}, \operatorname{dari}\left(C^{\bullet}, B^{\bullet}\right)\right)$

[^28]: ${ }^{41}$ without regard for the order on the branches issuing from a given node.
 ${ }^{42}$ i.e. the first $x^{(l)}$ such that the twig $\left(x^{(l)}, x^{(l-1)}\right)$ has not the same slant as the twig $\left(x^{\prime}, x\right)$.

[^29]: ${ }^{43}$ See details infra.

[^30]: ${ }^{44}$ the procedure is actually simpler to program than to expound!
 ${ }^{45}$ Since the procedure starts with a binary tree $b t$, we resort to the natural enumeration of its nodes, that is to say, the enumeration for which the image $b t a^{\bullet}$ of $b t$ in $F l e x(P a)$ is of the form bta ${ }^{\boldsymbol{w}}=\prod_{i} P\left(\sum_{i \leqslant b t}{ }_{j} u_{j}\right)$

[^31]: ${ }^{46}$ given by the basis $\left\{s t e_{r, d, k}^{\bullet}\right\}$ indexed by stacked trees.

[^32]: ${ }^{47}$ where μ denotes the Möbius function.

[^33]: ${ }^{48}$ That applies above all to the components $L_{n, d}$.

[^34]: ${ }^{49}$ For $P_{r, 2 r}$ this can be checked directly with the help of formula (??). For the other homogeneous components $P_{r, d}$, this is not a trivial consequence of the way the pilot polynomials are defined.

[^35]: ${ }^{50}$ Indeed, since in this context the component γ_{0} behaves as an object of homogeneous degree 0 , there is nothing to prevent all powers γ_{0}^{n} from occurring on the right-hand side of (315). Not so the other components γ_{i}, which have positive homogeneous degree.

[^36]: ${ }^{51}$ For consistency, we must set $P_{0} \equiv 1$.

[^37]: ${ }^{52}$ The presence of a factor x^{-1} in front of $\Gamma\left(t x, x^{-1}\right)$ but not $\Xi\left(t x, x^{-1}\right)$ comes from the shift between the δ and d-indexation for Γ and Ξ, which has no parallel for $\Gamma^{c o}$ and $\Xi^{c o}$.

[^38]: ${ }^{53}$ See (??) below.

[^39]: ${ }^{54}$ Roughly, from $[1, \ldots, 1]$ to $[\mathrm{n}]$. See the examples below (355).

[^40]: ${ }^{55}$ in the sense of making minimal use of inflected operations.

[^41]: ${ }^{56}$ or, what amounts to the same, by aggregated trees in $\mathbb{A} \mathbb{T}^{(1)}$.

[^42]: ${ }^{57}$ This clause ensures that one and the same T_{3} cannot simultaneously be the attachment of T_{2} onto T_{1} and the insertion of T_{2} into T_{1}.

[^43]: ${ }^{58}$ Unordered trees being a subset of stacked trees, the above (free) system is a sub-system of the (non-free, as already ponted out) system $\left\{\bar{s} t e_{r, k}^{\bullet} ;\right.$ not $\left._{r, k} \in \mathbb{S T}_{r}, k \leqslant \kappa_{r}\right\}$.
 ${ }^{59}$ i.e. with roots from which there issue an odd number of edges.
 ${ }^{60}$ though not in the sense usually given to 'pre-associative'.

[^44]: ${ }^{61}$ such an element would indeed be a unit for the associative product m associated with μ.

[^45]: ${ }^{62}$ For reasons we have already encountered in the flexion context, the first two (câlt, călt) are declared strict, the last one loose.

[^46]: ${ }^{63}$ Think of the sub-algebras generated from one single e_{i} under repeated action of μ and μ_{*}.

[^47]: ${ }^{64}$ See (198)-(200) in $\S 5.3$.
 ${ }^{65}$ BIMU ${ }^{*}$ is BIMU minus the unit mould 1^{\bullet} and its multiples. Regarding the necessary absence of units in pre-associative algebras, see the remark at the end of $\S 10.1$.

[^48]: ${ }^{66}$ as opposed to the implicit presentation of the counter-alternators calt ${ }^{r, d}$, which work just fine as projectors, but not transparently so.
 ${ }^{67}$ due to the enormous number of a priori relations that connect multiple superpositions of the three basic operations λ, μ, μ_{*}.

[^49]: ${ }^{68}$ Quite distinct from what sometimes goes by this name.

[^50]: ${ }^{69}$ also the bialternality grid: see [E3].
 ${ }^{70}$ Notably, under the Lie products $l u$, ari and their pre-Lie companions dle, dari.

