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Abstract As mathematical objects, finite trees would seem to be nearly as basic
and ubiquitous as the natural integers, were it not for their apparent ‘chemical
inertness’, by which we mean the paucity of natural operations (of any given
arity) defined on them. The present paper tries to redress this state of affairs
by bringing trees into close relation with FlexpEq — the flexion polyalgebra gen-
erated by a so-called flexion unit E, and by uploading the rich structure of that
polyalgebra onto trees. The rapprochement also benefits FlexpEq, leading in par-
ticular
(i) to a neat filtration by depth and alternality codegree,
(ii) to exact formulae for the dimensions that go with that filtration,
(iii) to remarkable expansions for all the main elements of FlexpEq.
We conclude by introducing the notion of pre-associative algebra, parallel to
that of pre-Lie algebra and potentially capable of rendering roughly the same
services.
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1 Introduction.

1.1 Flexion algebra.

Flexion (poly)-algebra has been around for some 22 years. It deals with bi-
moulds, i.e. functions of double strings of variables (ui’s and vi’s) of any length,
and with a host of bimould operations that typically add the ui’s (clusterwise)
and subtract the vi’s (pairwise). It possesses a central involtion, swap, and
excels at handling double symmetries, i.e. symmetries that simultaneously af-
fect a bimould and its swappee. Flexion algebra originally arose in Analysis, to
describe some intricate resurgence patterns. It was later applied to multizeta
algebra to elucidate the fascinating subject of arithmetical dimorphy. But it is
also a subject with definite contours and great inner unity, well deserving of
being studied for its own sake.

1.2 Tree algebra.

Trees, of course, make out an important and sprawling chapter of graph theory,
but it is only recently that they entered algebra proper, thanks in particular to
seminal papers by F. Chapoton, M. Livernet, D. Manchon (see §11.6). These
authors equipped trees with a natural pre-Lie product, and derived therefrom,
among other results, a precise description of free pre-Lie algebras.

1.3 The encounter.

Even prior to this paper, trees and moulds were no strangers to one another.
Indeed, in [E-V], we had developed the so-called arborification-coarborification
technique, which in many situations of Analysis restores convergence in ex-
pansions of mould-comould1 type

ř

‚M
‚B‚ by changing them2 to expansions

ř

‚ăM
‚
ă

B‚ă , formally equivalent but no longer divergent.3

The present paper, however, is about a quite distinct mathematical en-
counter, namely the match between
(i) the polyalgebra Flex pEq generated by a flexion unit E
(ii) the free pre-Lie algebra UT on unordered trees, equipped with its standard
pre-Lie product, and its natural extension OT to ordered trees.

As it happens, when equipped with a suitable pre-Lie product and a suit-
able basis, Flex pEq maps naturally onto OT and the alternal part Flexal

pEq of
Flex pEq maps naturally onto UT.

Like with most such mathematical rapprochements, both sides stand to ben-
efit, but here it is tree algebra that gains most. In very rough terms:
(i) Flexion algebra gains very convenient, tree indexed bases, which in turn lead

1Here, M‚ denotes a scalar mould, and B‚ a operatorial bimould – typically, a string of
differential operators.

2by means of the dual tranforms Mωă “
ř

ωăăω M
ω , Bω “

ř

ωăăω B
ωă that turns

ordered sequences ω into partially ordered ones ωă.
3The reason the magic works is that, in most instances, the change hardly affects the size

of the mould part but drastically shrinks the comould part: |Mωă | „ |Mω | , |Bωă | ăă |Bω |.
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to a resolution of the long-standing problem of ’alternality stratification’: cal-
culating the dimensions of the subspaces of Flex pEq of depth r and alternality
co-degree d.
(ii) Tree algebra experiences a massive influx of structure, with the full array of
operations (inflected or non-inflected) defined on Flex pEq and Flexal

pEq auto-
matically carrying over to OT and UT.

1.4 Articulation of the paper.

• §2: We begin with some reminders on pre-Lie calculus. We then show
how to improve the usual pre-Lie formulae (for group composition, group
inversion, group iteration, group-to-algebra logarithm) by relying on just
two types of bracketings – backward inside forward – rather than on the
general bracket combinations commonly used. Besides being more eco-
nomical (they carry far fewer terms), the new formulae have the added
merit of uniqueness and expliciteness.

• §3: We illustrate the technique on the group of identity-tangent diffeomor-
phisms, and investigate in passing two ‘exotic’ pre-Lie products alongside
the ‘exotic’ group laws that go with them.

• §4: To set the stage for the encounter between flexion and tree algebra,
we give a short introduction to the lesser known of the two: flexion algebra
(a subcategory of mould and bimould algebra), with special emphasis on
the prototypal case of the algebra Flex pEq generated by a ‘flexion unit’ E.

• §5: From the very start, flexion algebra has made liberal use of pre-Lie
products, but here we introduce yet another type, the so-called semi-
inflected pre-Lie product dle, which commends itself on at least three
grounds:
(i) it preserves the alternality of bimoulds, which the earlier pre-Lie prod-
ucts (whether uninflected or fully inflected) did not
(ii) it generates the whole algebra Flex pEq from E alone, which none of
the ealier products did
(iii) it shall prove admirably suited for the future link-up with tree algebra.

We then use the pre-Lie product dle and a kindred, ’pre-associative’ op-
eration dme to construct multilinear operators:

câlt : pA‚0, A
‚
1, . . . , A

‚
rq ÞÑ B‚ “ câltA‚0pA

‚
1, . . . , A

‚
rq

with the unexpected property that the alternality of B‚ as a bimould
decreases, in an exactly quantifiable way, when the alternality of câlt , as a
function of its arguments A‚i , increases. We actually construct three such
operators, câlt , cǎlt , cālt . Though all three share ‘counter-alternality’ and
seem equally promising, on closer examination câlt proves the best choice
by a long stretch.
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• §6: There exists on Flex pEq an appealing basis, naturally indexed by
binary trees and quite simple to construct, but with the downside that
none of the flexion operations possesses a transparent expression in that
basis. To remedy this, we harness the counter-alternators to construct two
new bases. The simpler of the two, indexed by ordered trees, will facilitate
the link-up with tree algebra (§8). The other one, indexed by stacked trees
(which are carefully crafted linear combinations of ordered trees), will help
clarify the structure of Flex pEq through a filtration according to alternality
(§7). The upshot is that we must juggle three distinct bases, but this isn’t
nearly as bad as it sounds, since the matrices connecting these bases admit
remarkable expressions, directly in terms of the underlying trees (§6.8).

• §7: This section, technically the most demanding, solves the delicate prob-
lem of splitting each space Flex rpEq into subspaces ‘dFlex r,dpEq of alter-
nality co-degree d, i.e. consisting of bimoulds which, when contracted
with differential operators, yield a result of differential degree d. Rather
than directly calculating dimpFlex r,dpEqq, for which there exist no closed
formulae, we form the generating series of these dimensions with the help
of some remarkable special polynomials, the so-called ’pilot polynomials’.

• §8: This section returns to the basis indexed by ordered trees to show
how all useful operations on the polygebra Flex pEq admit transparent in-
terpretations in that basis. Thus, the uninflected Lie bracket lu reduces
to attaching two trees to each other, while the inflected Lie bracket ari re-
duces to grafting two trees onto each other. Strictly speaking, this applies
only to the basis that relies on the ’good’ counter-alternator câlt . But the
parallel constructions relying on cǎlt or cālt also have their uses, especially
for expanding the push-invariant or bialternal elements of Flex pEq.

• §9: As it happens, the monogenous polyalgebra Flex pEq, which is in every
way the core and marrow of the polyalgebra BIMU , possesses its own core
and marrow, consisting of the bisymmetral bimoulds pal‚ and pil‚, and
it is truly gratifying to observe that these two bimoulds, along with the
numerous alternal or bialternal bimoulds naturally attached to them, tend
to admit surprisingly explicit expansions in the new bases of Flex pEq.

• §10: The interpretation of all flexion operations in terms of the ordered
tree basis of Flex pEq, apart from leading to a massive enrichment of ‘tree
algebra’, also acts as an invitation to put the whole thing on a clean
axiomatic basis to unleash its full potential. The result is the two notions
of pre-associative4 and Janus algebra.

Pre-associative algebras relate to associative algebras as pre-Lie to Lie.
But pre-associative algebras also ‘enfold’ pre-Lie algebras in much the
same way as associative algebras ‘envelop’ Lie algebras. The upshot is an
elegant four-fold ‘unfolding’ of Lie algebras, which helps clarify a host of

4Mark that it has nothing to with what sometimes goes by that name in the literature.
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notions such as degree, co-degree, counter-alternator, µ-generator etc. We
describe the structure of free pre-associative algebras, their various strat-
ifications and dimensions, and provide some examples of pre-associative
algebras, some free, some not.

Whereas pre-associatice algebra, strictly speaking, merely extends the un-
inflected or semi-inflected operations on Flex pEq, the richer (but still in-
choate) notion of Janus or bifrons algebra purports to take on board the
fully inflected operations as well, beginning with the ari bracket. However,
it deliberately leaves out the involution swap and the whole ‘dimorphy’
aspect, because adding these would impose far too many constraints and
practically shrink the construction to something isomorphic to bimould
algebra.

• §11: For illustration, and also to palliate what may be an excessive con-
ciseness in parts of the exposition, we provide extensive tables, notably on
the connection matrices; the pilot polynomials; the co-degee dimensions
and their generating functions.

• §12: We wind up with a list of the most salient results, and hint at some
open questions and possible developments.

2 Pre-Lie calculus: optimal formulae.

2.1 Some auxiliary moulds.

Let us settle some notations:
Let G be a Lie group with elements A,B, ... and the group law: A,B ÞÑ A ˝B.
Let L be its Lie algebra with elements A˚, B˚, ... and the Lie bracket: A˚, B˚ ÞÑ
rA˚, B˚s
Let there be a pre-Lie bracket5: A˚, B˚ ÞÑ

〈
A˚, B˚

〉
or6 A,B ÞÑ

〈
A,B

〉〈
..
〈〈
A1, A2

〉
, A3

〉
, ..., Ar

〉
will get abbreviated as

ÝÑ〈
A1, ..., Ar

〉
or

〈
A1, ..., Ar

〉Ñ〈
A1, ..,

〈
Ar´2,

〈
Ar´1, Ar

〉〉
..
〉

will get abbreviated as
ÐÝ〈

A1, ..., Ar
〉

or
〈
A1, ..., Ar

〉Ð
n times〈

..
〈〈
A,A

〉
, A

〉
, ..., A

〉
will get abbreviated as AÑ

n
n times〈

A, ...,
〈
A,

〈
A,A

〉〉
..
〉

will get abbreviated as AÐ
n

We take as our starting point the fact that each Lie group exactly determines
its Lie algebra, but that a Lie algebra determines its Lie group only up to
isomorphism. However, when there exists a pre-Lie operation behind the Lie

5Actually, a right pre-Lie bracket, i.e. one whose commutator
〈
A˚, B˚

〉
´

〈
B˚, A˚

〉
co-

incides with the Lie bracket rA˚, B˚s and whose associator
〈
A,

〈
B,C

〉〉
´

〈〈
A,B

〉
, C

〉
is

symmetrical in the last two arguments B,C.
6The pre-Lie bracket will act mainly on elements A˚, B˚... of the Lie algebra, and occa-

sionally on elements A,B... of the group itself.
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bracket, with it goes a privileged realisation of the Lie group, induced by the
mapping:

algebra Ñ group : A˚ ÞÑ A “
ÿ

1ďr

1

r!

r times〈
A˚, ..., A˚

〉Ñ
(1)

That mapping can then be reversed by brute force, that is to say, by treating
the pre-Lie bracket as if it were an arbitrary binary operation subject to no
other constraint than bilinearity. The result is what we may call a raw expan-
sion. Via transfer of the Campbell-Hausdorff formula from algebra to group, it
eases the way for two new raw expansions — one for group composition, an-
other for continuous iteration. These expansions are raw not just on account of
their rough mode of derivation, but also in the sense of involving close to the

maximum number of summands, namely p2 r´2q!
r! pr´1q! at each order r — far more,

as it happens, than strictly necessary. To improve on that, we must take into
account the functional identities of the pre-Lie brackets. The result will be opti-
mal expansions, that involve at most 2r´1 summands at order r, all of the form
leftward within rightward,7 with the added bonus of explicit coefficients (absent
from the raw expansions).

Let us first introduce a few moulds essential for the sequel:

Lemma 2.1 (The auxiliary moulds San‚,Zan‚,Lit‚, It‚w ) .
The moulds San‚,Zan‚ on N defined by SanH “ ZanH “ 1 and

Sann1,...,nr :“ p´1qr`
ř

nj
ź

1ďjďr

1

n1`...`nj
(2)

Zann1,...,nr :“ p´1q
ř

nj
ź

1ďjďr

1

nj`...`nr
(3)

are symmetral and mutually inverse (for mould multiplication).
The mould It‚w on N equivalently defined by (4) or (5)

It‚w :“ w.1‚ `
ÿ

1ďkďrp‚q

śk
j“0 pw ´ jq

pk`1q!

`

San‚ ´ 1‚
˘ˆk

(4)

“ w.1‚ ´
ÿ

1ďkďrp‚q

p´1qk
śk´1
j“´1 pw ` jq

pk`1q!

`

Zan‚ ´ 1‚
˘ˆk

(5)

is not symmetral, but verifies the difference equations

It‚w`1 :“ It‚w ˆ San‚ ` 1‚ (6)

It‚w´1 :“ It‚w ˆ Zan‚ ´ Zan‚ (7)

and the reflection equation

It‚w ` anti .pari .It‚1´w ” 1‚ (8)

7i.e. of the form
〈
A Ð

1`n1

, AÐ
nr
, ..., AÐ

nr

〉Ñ
.
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Lastly, the mould Lit‚ on N equivalently defined by (9) or (10) or (11)

Lit‚ :“ 1‚ `
ÿ

1ďkďrp‚q

p´1qk

pk`1q

`

San‚ ´ 1‚
˘ˆk

(9)

:“ 1‚ ´
ÿ

1ďkďrp‚q

p´1qk

k pk`1q

`

Zan‚ ´ 1‚
˘ˆk

(10)

:“ BwIt‚w}w“0 (11)

verifies only ’traces’ of the reflection equation (see below).

Proof: The moulds Hit‚w and varHit‚w defined by (4) and (5) respectively are
clearly the only solutions of (6) resp. (7) that vanish for w “ 0. But since Hit‚w
and varHit‚w, by construction, commute with San‚ and Zan‚, it follows that
the relations (6) and (7) are equivalent. Hence the identity Hit‚w “ varHit‚w,
and the equivalence of (9), (10), (11).

Note that It‚0 “ 0‚, It‚1 “ 1‚, It‚2 “ San‚, It‚´1 “ ´Zan‚. Note, too, that
for w in Z (resp. not in it) the mould It‚w, along with its arborified and anti-
arborified variants, grows exponentially (resp. super-exponentially) as the depth
rp‚q increases.
Remark: some properties of Lit‚.
(i) Zeros of Lit‚. Setting xrns :“ px, ..., xq (n times), we have:

Lit1rns
” 0 if n odd (12)

Lit1rns,2
” 0 if n odd (13)

Lit1rns,2,1rns
” 0 @ n ě 1 (14)

Lit1r2
n´1s,2n,1

” 0 @ n ě 1 (15)

(ii) Link with the Bernoulli numbers:

Lit1r2ns
“

B2n

p2nq!
@n ě 1 (16)

Lit1rps,2,1rqs
“ ´

1

2

Bp̀ q̀ 1

pp`q`1q!

`

1` p´1qp
pp`qq!

p! q!

˘

if p`q odd (17)

Lit1rps,3,1rqs
` Lit1rqs,3,1rps

“ 2 p´1qp
Bp̀ q̀ 2

pp`q`2q!

pp`qq!

p! q!
if p`q even (18)

Lit1rps,3,1rqs
´ Lit1rqs,3,1rps

“ p´1qp
Bp̀ q̀ 1

pp`q`1q!

pp`qq!

p! q!
if p`q even (19)

(iii) Faint traces of the reflection equation (8) :
On average, Lit‚ ` anti .pari .Lit‚ is much smaller than Lit‚ ´ anti .pari .Lit‚.

In particular Lit1rps,2,1rqs
`Lit1rqs,2,1rps

” 0 for p`q even. For p`q odd, see (17).
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(iv) Stability under arborification. As a special instance, we get the identities:

ÿ

σPSprq

It
nσprq,...,nσp1q
w “

1

r!

p´1qr`
ř

nj

n1 . . . nr
It
r times
1,...,1
w (20)

ÿ

σPSprq

Litnσprq,...,nσp1q “
1

r!

p´1qr`
ř

nj

n1 . . . nr
Lit

r times
1,...,1 (21)

2.2 Optimal formulae.

Let us now enuntiate straightaway the optimal formulae, using the notations
and special moulds of the previous section.

Proposition 2.1 .
Algebra-to-group exponential:

A “
ÿ

1ďr

1

r!
A˚Ñr “

ÿ

1ďr

1

r!

r times〈
A˚, ..., A˚

〉Ñ
(22)

Group-to-algebra logarithm:

A˚ “ A`
ÿ

1ďr,1ďni

Litn1,...,nr
〈
A,AÐ

n1
, ..., AÐ

nr

〉Ñ
(23)

“ A`
ÿ

1ďr,1ďni

Litn1,...,nr
〈
A Ð

1`n1

, ..., AÐ
nr

〉Ñ
(24)

Group law of G:

A ˝B “ A`B `
ÿ

1ďr,1ďni

Sann1,...,nr
〈
A,BÐ

n1
, ..., BÐ

nr

〉Ñ
(25)

Inversion in G:

A´1 “ ´A´
ÿ

1ďr,1ďni

Zann1,...,nr
〈
A,AÐ

n1
, ..., AÐ

nr

〉Ñ
(26)

“ ´A´
ÿ

1ďr,1ďni

Zann1,...,nr
〈
A Ð

1`n1

, ..., AÐ
nr

〉Ñ
(27)

Continuous iteration in G:

Aw “ w.A`
ÿ

1ďr,1ďni

Itn1,...,nr
w

〈
A,AÐ

n1
, ..., AÐ

nr

〉Ñ
(28)

“ w.A`
ÿ

1ďr,1ďni

Itn1,...,nr
w

〈
A Ð

1`n1

, ..., AÐ
nr

〉Ñ
(29)

Proof of formula (25) for the group law.
We first check it in a case of special interest to us: A “ apxq, B “ bpxq, tA,Bu “
a1pxq bpxq. Let us denote by En the n-linear term on the left-hand side of (25)
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and let us check inductively that En “
1
n! a

pnq. If the relation (clearly true for
n “ 1) holds up to n´ 1, it also holds for n, due to the identity:

En “
ÿ

1ďkďn

p´1qk´1

n
En´k Bk with Bk :“ pb1qk´1 b (30)

Indeed, in the above sum, the term of index k“1 contributes the required result
bn

n! a
pnq, while all other contributions, of type apn´kq bn´k pb1qk and stemming

from the terms of index k and k`1, cancel out pairwise.
However, this doesn’t quite clinch the proof, as the bracket ta, bu “ a?pxq bpxq

doesn’t define a free pre-Lie algebra. So we now turn to local vector fields on
Cs and to the pre-Lie bracket

tA,Bu :“
ÿ

bjpBxj aiq Bxi with

#

A “
řs
r“1 aipxq Bxi

B “
řs
r“1 bipxq Bxi

(31)

which for s“8 (but for no finite s) does indeed define a free pre-Lie algebra.
The proof is on the same lines as in the case s“1, with the induction-enabling
identity (30) still in force, and the terms En, Bk re-interpreted as:

En :“
ÿ

en,iBxi with en,i :“

njě0
ÿ

ř

nj“n

´

ź

j

b
nj
j

nj !

¯

Bn1
x1
...Bnsxs ai (32)

Bk :“
ÿ

bk,iBxi with bk,i :“
ÿ

j1,...,jk

pBxjk
bjk´1

q...pBxj2 bj1q.pBxj1 biq (33)

Proof of formula (28) for continous iteration.
Apply the composition law (25) with pA˝w, Aq in place of pA,Bq and use the
functional equation (6)-(7) for the mould It‚w.

Proof of formula (26) for group inversion.
Treat this as a special case of continuous iteration for w “ ´1 and use the
mould identity It‚´1 “ ´Zan‚.

Proof of formula (23) for group-to-algebra logarithm.
Differentiate in w the formula (28) for continuous iteration; then set w “ 0 and
use the mould identity (11).
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2.3 ’Optimal’ vs ’raw’ formulae:

Let us compare the raw and optimal formulae up to order 5.

raw expansion || optimal expansion

pA˝Bqraw “ A`B || pA˝Bqopt “ A`B

`1
〈
A,B

〉
|| `1

〈
A,B

〉
` 1

2

〈〈
A,B

〉
, B

〉
|| ` 1

2

〈〈
A,B

〉
, B

〉
´ 1

2

〈
A,

〈
B,B

〉〉
|| ´ 1

2

〈
A,

〈
B,B

〉〉
` 1

6

〈〈〈
A,B

〉
, B

〉
, B

〉
|| ` 1

6

〈〈〈
A,B

〉
, B

〉
, B

〉
´ 1

4

〈〈
A,

〈
B,B

〉〉
, B

〉
|| ´ 1

6

〈〈
A,

〈
B,B

〉〉
, B

〉
´ 1

4

〈〈
A,B

〉
,
〈
B,B

〉〉
|| ´ 1

3

〈〈
A,B

〉
,
〈
B,B

〉〉
` 1

4

〈
A,

〈
B,

〈
B,B

〉〉〉
|| ` 1

3

〈
A,

〈
B,

〈
B,B

〉〉〉
` 1

12

〈
A,

〈〈
B,B

〉
, B

〉〉
||

` 1
24

〈〈〈〈
A,B

〉
, B

〉
, B

〉
, B

〉
|| ` 1

24

〈〈〈〈
A,B

〉
, B

〉
, B

〉
, B

〉
´ 1

12

〈〈〈
A,

〈
B,B

〉〉
, B

〉
, B

〉
|| ´ 1

24

〈〈〈
A,

〈
B,B

〉〉
, B

〉
, B

〉
´ 1

12

〈〈〈
A,B

〉
,
〈
B,B

〉〉
, B

〉
|| ´ 1

12

〈〈〈
A,B

〉
,
〈
B,B

〉〉
, B

〉
` 1

8

〈〈
A,

〈
B,

〈
B,B

〉〉〉
, B

〉
|| ` 1

12

〈〈
A,

〈
B,

〈
B,B

〉〉〉
, B

〉
´ 1

12

〈〈〈
A,B

〉
, B

〉
,
〈
B,B

〉〉
|| ´ 1

8

〈〈〈
A,B

〉
, B

〉
,
〈
B,B

〉〉
` 1

8

〈〈
A,

〈
B,B

〉〉
,
〈
B,B

〉〉
|| ` 1

8

〈〈
A,

〈
B,B

〉〉
,
〈
B,B

〉〉
` 1

8

〈〈
A,B

〉
,
〈
B,

〈
B,B

〉〉〉
|| ` 1

4

〈〈
A,B

〉
,
〈
B,

〈
B,B

〉〉〉
´ 1

8

〈
A,

〈
B,

〈
B,

〈
B,B

〉〉〉〉
|| ´ 1

4

〈
A,

〈
B,

〈
B,

〈
B,B

〉〉〉〉
` 1

24

〈〈
A,

〈〈
B,B

〉
, B

〉〉
, B

〉
||

` 1
24

〈〈
A,B

〉
,
〈〈
B,B

〉
, B

〉〉
||

`0
〈
A,

〈〈〈
B,B

〉
, B

〉
, B

〉〉
||

´ 1
24

〈
A,

〈〈
B,

〈
B,B

〉〉
, B

〉〉
||

´ 1
24

〈
A,

〈〈
B,B

〉
,
〈
B,B

〉〉〉
||

´ 1
24

〈
A,

〈
B,

〈〈
B,B

〉
, B

〉〉〉
||

`OpAB5q || `OpAB5q

Starting from the terms of order 4, the optimal expansion differs from the raw
expansion: it carries only 2r´1 non-zero summands of order r`1 whereas the

raw expansion has nearly all possible p2ŕ 2q!
pŕ 1q! r! summands affected with non-zero

coefficients. Denoting by

lipA,B,Cq :“

#

`
〈〈
A,B

〉
, C

〉
´
〈
A,

〈
B,C

〉〉
´
〈〈
A,C

〉
, B

〉
`
〈
A,

〈
C,B

〉〉 (34)

the generators of the pre-Lie ideal8 I and defining AÐ
n

as in (??), we find for the
terms of order 4 and 5 the identities
`

pA˝Bqraw ´ pA˝Bqeco
˘

4
“

1

12
lipA,BÐ

1
, BÐ

2
q

`

pA˝Bqraw ´ pA˝Bqeco
˘

5
“

1

24

#

2̀ lipA,BÐ
3
, BÐ

1
q`

〈
A, lipBÐ

1
, BÐ

2
, BÐ

1
q
〉

l̀ip
〈
A,BÐ

1

〉
, BÐ

1
, BÐ

2
q`

〈
lipA,BÐ

1
, BÐ

2
q, BÐ

1

〉
8i.e. the ideal I such that .
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which confirm that the two expansions do coincide modulo I.

raw expansion || optimal expansion

A´1
raw “ ´A || A´1

opt “ ´A

`1
〈
A,A

〉
|| `1

〈
A,A

〉
´ 1

2

〈〈
A,A

〉
, A

〉
|| ´ 1

2

〈〈
A,A

〉
, A

〉
´ 1

2

〈
A,

〈
A,A

〉〉
|| ´ 1

2

〈
A,

〈
A,A

〉〉
` 1

6

〈〈〈
A,A

〉
, A

〉
, A

〉
|| ` 1

6

〈〈〈
A,A

〉
, A

〉
, A

〉
` 1

4

〈〈
A,

〈
A,A

〉〉
, A

〉
|| ´ 1

3

〈〈
A,

〈
A,A

〉〉
, A

〉
` 1

4

〈〈
A,A

〉
,
〈
A,A

〉〉
|| ` 1

6

〈〈
A,A

〉
,
〈
A,A

〉〉
` 1

4

〈
A,

〈
A,

〈
A,A

〉〉〉
|| ` 1

3

〈
A,

〈
A,

〈
A,A

〉〉〉
` 1

12

〈
A,

〈〈
A,A

〉
, A

〉〉
||

´ 1
24

〈〈〈〈
A,A

〉
, A

〉
, A

〉
, A

〉
|| ´ 1

24

〈〈〈〈
A,A

〉
, A

〉
, A

〉
, A

〉
´ 1

12

〈〈〈
A,

〈
A,A

〉〉
, A

〉
, A

〉
|| ´ 1

8

〈〈〈
A,

〈
A,A

〉〉
, A

〉
, A

〉
´ 1

12

〈〈〈
A,A

〉
,
〈
A,A

〉〉
, A

〉
|| ´ 1

12

〈〈〈
A,A

〉
,
〈
A,A

〉〉
, A

〉
´ 1

8

〈〈
A,

〈
A,

〈
A,A

〉〉〉
, A

〉
|| ´ 1

4

〈〈
A,

〈
A,

〈
A,A

〉〉〉
, A

〉
´ 1

12

〈〈〈
A,A

〉
, A

〉
,
〈
A,A

〉〉
|| ´ 1

24

〈〈〈
A,A

〉
, A

〉
,
〈
A,A

〉〉
´ 1

8

〈〈
A,

〈
A,A

〉〉
,
〈
A,A

〉〉
|| ´ 1

8

〈〈
A,

〈
A,A

〉〉
,
〈
A,A

〉〉
´ 1

8

〈〈
A,A

〉
,
〈
A,

〈
A,A

〉〉〉
|| ´ 1

12

〈〈
A,A

〉
,
〈
A,

〈
A,A

〉〉〉
´ 1

8

〈
A,

〈
A,

〈
A,

〈
A,A

〉〉〉〉
|| ´ 1

4

〈
A,

〈
A,

〈
A,

〈
A,A

〉〉〉〉
´ 1

24

〈〈
A,

〈〈
A,A

〉
, A

〉〉
, A

〉
||

´ 1
24

〈〈
A,A

〉
,
〈〈
A,A

〉
, A

〉〉
||

`0
〈
A,

〈〈〈
A,A

〉
, A

〉
, A

〉〉
||

´ 1
24

〈
A,

〈〈
A,

〈
A,A

〉〉
, A

〉〉
||

´ 1
24

〈
A,

〈〈
A,A

〉
,
〈
A,A

〉〉〉
||

´ 1
24

〈
A,

〈
A,

〈〈
A,A

〉
, A

〉〉〉
||

`OpA6q || `OpA6q

Starting from the terms of order 4, the optimal expansion starts differing from,
and improving on, the raw expansion: at order r it carries only 2r´1 non-zero
summands, whereas the raw expansion has nearly all possible summands affected
with non-zero coefficients. Denoting by

lipA,B,Cq :“

#

`
〈〈
A,B

〉
, C

〉
´
〈
A,

〈
B,C

〉〉
´
〈〈
A,C

〉
, B

〉
`
〈
A,

〈
C,B

〉〉 (35)

the generators of the pre-Lie ideal9 I and defining AÐ
n

as in (??), we find for the
terms of order 4 and 5 the identities

`

A´1
raw ´A

´1
eco

˘

4
“

1

12
lipAÐ

1
, AÐ

1
, AÐ

2
q

`

A´1
raw ´A

´1
eco

˘

5
“

1

24
pt2´

1

4
q

#

`2 lipAÐ
1
, AÐ

3
, AÐ

1
q `

〈
AÐ

1
, lipAÐ

1
, AÐ

2
, AÐ

1
q
〉

´ lipAÐ
2
, AÐ

1
, AÐ

2
q ´

〈
lipAÐ

1
, AÐ

1
, AÐ

2
q, AÐ

1

〉
9i.e. the ideal I such that .
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which confirm that the two expansions do coincide modulo I.

raw expansion || optimal expansion

A˚, raw “ A || A˚, opt “ A

´ 1
2

〈
A,A

〉
|| ´ 1

2

〈
A,A

〉
` 1

12

〈〈
A,A

〉
, A

〉
|| ` 1

12

〈〈
A,A

〉
, A

〉
` 1

4

〈
A,

〈
A,A

〉〉
|| ` 1

4

〈
A,

〈
A,A

〉〉
`0

〈〈〈
A,A

〉
, A

〉
, A

〉
|| `0

〈〈〈
A,A

〉
, A

〉
, A

〉
´ 1

24

〈〈
A,

〈
A,A

〉〉
, A

〉
|| ´ 1

12

〈〈
A,

〈
A,A

〉〉
, A

〉
´ 1

24

〈〈
A,A

〉
,
〈
A,A

〉〉
|| `0

〈〈
A,A

〉
,
〈
A,A

〉〉
´ 1

8

〈
A,

〈
A,

〈
A,A

〉〉〉
|| ´ 1

6

〈
A,

〈
A,

〈
A,A

〉〉〉
´ 1

24

〈
A,

〈〈
A,A

〉
, A

〉〉
||

´ 1
720

〈〈〈〈
A,A

〉
, A

〉
, A

〉
, A

〉
|| ´ 1

720

〈〈〈〈
A,A

〉
, A

〉
, A

〉
, A

〉
`0

〈〈〈
A,

〈
A,A

〉〉
, A

〉
, A

〉
|| ` 1

144

〈〈〈
A,

〈
A,A

〉〉
, A

〉
, A

〉
`0

〈〈〈
A,A

〉
,
〈
A,A

〉〉
, A

〉
|| `0

〈〈〈
A,A

〉
,
〈
A,A

〉〉
, A

〉
` 1

48

〈〈
A,

〈
A,

〈
A,A

〉〉〉
, A

〉
|| ` 5

72

〈〈
A,

〈
A,

〈
A,A

〉〉〉
, A

〉
´0

〈〈〈
A,A

〉
, A

〉
,
〈
A,A

〉〉
|| ´ 1

144

〈〈〈
A,A

〉
, A

〉
,
〈
A,A

〉〉
` 1

48

〈〈
A,

〈
A,A

〉〉
,
〈
A,A

〉〉
|| ` 1

48

〈〈
A,

〈
A,A

〉〉
,
〈
A,A

〉〉
` 1

48

〈〈
A,A

〉
,
〈
A,

〈
A,A

〉〉〉
|| ´ 1

72

〈〈
A,A

〉
,
〈
A,

〈
A,A

〉〉〉
` 1

16

〈
A,

〈
A,

〈
A,

〈
A,A

〉〉〉〉
|| ` 1

8

〈
A,

〈
A,

〈
A,

〈
A,A

〉〉〉〉
` 1

144

〈〈
A,

〈〈
A,A

〉
, A

〉〉
, A

〉
||

` 1
144

〈〈
A,A

〉
,
〈〈
A,A

〉
, A

〉〉
||

`0
〈
A,

〈〈〈
A,A

〉
, A

〉
, A

〉〉
||

` 1
48

〈
A,

〈〈
A,

〈
A,A

〉〉
, A

〉〉
||

` 1
48

〈
A,

〈〈
A,A

〉
,
〈
A,A

〉〉〉
||

` 1
48

〈
A,

〈
A,

〈〈
A,A

〉
, A

〉〉〉
||

`OpA6q || `OpA6q

Here, we find for the terms of order 4 and 5 the identities

`

A˚, raw ´A˚, eco
˘

4
“ ´

1

24
lipAÐ

1
, AÐ

1
, AÐ

2
q

`

A˚, raw ´A˚, eco
˘

5
“ ´

1

144

#

6̀ lipAÐ
1
, AÐ

3
, AÐ

1
q`3

〈
AÐ

1
, lipAÐ

1
, AÐ

2
, AÐ

1
q
〉

ĺipAÐ
2
, AÐ

1
, AÐ

2
q´

〈
lipAÐ

1
, AÐ

1
, AÐ

2
q, AÐ

1

〉
which confirm that the two expansions do coincide modulo I.
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raw expansion || optimal expansion

A
t` 1

2
raw “ pt` 1

2 qA || A
t` 1

2
opt “ pt` 1

2 qA

` 1
2 pt

2 ´ 1
4 q

〈
A,A

〉
|| ` 1

2 pt
2 ´ 1

4 q
〈
A,A

〉
` 1

6 t pt
2 ´ 1

4 q
〈〈
A,A

〉
, A

〉
|| ` 1

6 t pt
2 ´ 1

4 q
〈〈
A,A

〉
, A

〉
´ 1

4 pt
2 ´ 1

4 q
〈
A,

〈
A,A

〉〉
|| ´ 1

4 pt
2 ´ 1

4 q
〈
A,

〈
A,A

〉〉
` 1

24 pt
2 ´ 1

4 q
2

〈〈〈
A,A

〉
, A

〉
, A

〉
|| ` 1

24 pt
2 ´ 1

4 q
2

〈〈〈
A,A

〉
, A

〉
, A

〉
´ 1

12 t pt
2 ´ 1

4 q
〈〈
A,

〈
A,A

〉〉
, A

〉
|| ´ 1

12 pt
2 ´ 1

4 q pt´
1
2 q

〈〈
A,

〈
A,A

〉〉
, A

〉
´ 1

12 t pt
2 ´ 1

4 q
〈〈
A,A

〉
,
〈
A,A

〉〉
|| ´ 1

12 pt
2 ´ 1

4 q pt`
1
2 q

〈〈
A,A

〉
,
〈
A,A

〉〉
` 1

8 pt
2 ´ 1

4 q
〈
A,

〈
A,

〈
A,A

〉〉〉
|| ` 1

6 pt
2 ´ 1

4 q
〈
A,

〈
A,

〈
A,A

〉〉〉
` 1

24 pt
2 ´ 1

4 q
〈
A,

〈〈
A,A

〉
, A

〉〉
||

` 1
120 tpt

2´ 1
4 qpt

2´ 7
12 q

〈〈〈〈
A,A

〉
, A

〉
, A

〉
, A

〉
|| ` 1

120 tpt
2´ 1

4 qpt
2´ 7

12 q
〈〈〈〈

A,A
〉
, A

〉
, A

〉
, A

〉
´ 1

48 pt
2 ´ 1

4 q
2

〈〈〈
A,

〈
A,A

〉〉
, A

〉
, A

〉
|| ´ 1

48 pt
2´ 1

4 qpt
2´ 2

3 t´
1
4 q

〈〈〈
A,

〈
A,A

〉〉
, A

〉
, A

〉
´ 1

48 pt
2 ´ 1

4 q
2

〈〈〈
A,A

〉
,
〈
A,A
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〉〉〉
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〉〉〉
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〉〉〉
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〉〉〉
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〉〉
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〉〉〉
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Starting from the terms of order 4, the optimal expansion starts differing from,
and improving on, the raw expansion: at order r it carries only 2r´1 non-zero
summands, whereas the raw expansion has nearly all possible summands affected
with non-zero coefficients. Denoting by

lipA,B,Cq :“

#

`
〈〈
A,B

〉
, C

〉
´
〈
A,

〈
B,C

〉〉
´
〈〈
A,C

〉
, B

〉
`
〈
A,

〈
C,B

〉〉 (36)

the generators of the pre-Lie ideal10 I and defining AÐ
n

as in (??), we find for
the terms of order 4 and 5 the identities
`

A
t` 1

2
raw ´A

t` 1
2

eco

˘

4
“

1

24
pt2´

1

4
q lipAÐ

1
, AÐ

1
, AÐ

2
q

`

A
t` 1

2
raw ´A

t` 1
2

eco

˘

5
“

1

144
pt2´

1

4
q

#

6̀ lipAÐ
1
, AÐ

3
, AÐ

1
q`3

〈
AÐ

1
, lipAÐ

1
, AÐ

2
, AÐ

1
q
〉

2̀ t lipAÐ
2
, AÐ

1
, AÐ

2
q`2 t

〈
lipAÐ

1
, AÐ

1
, AÐ

2
q, AÐ

1

〉
which confirm that the two expansions do coincide modulo I.

10i.e. the ideal I generated by the two functional identities of the pre-Lie bracket
〈
., .

〉
.
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2.4 Alternative expansions.

The expansions we have just constructed are optimal only in the sense of mini-
mizing the number of elementary summands at each order r. But there exist al-
ternative expansions that sometimes look simpler, and more appealing, because
involving fewer basis elements11 in this or that standard basis of PreLierpAq,
by which we denote the set spanned by all multiple pre-Lie brackets of arity r.
We shall give here three instances of such alternative expansions, using three
distinct bases of PreLierpAq. The corresponging basis elements being naturally
indexed by unordered, rooted trees, let us say a few words about these.

Unordered, rooted trees utr,k admit a decomposition

utr,k “ hputr1,k1 , . . . ,utrd,kdq with

#

r1 ` ...` rd “ r ´ 1

utrj ,kj ď utrj`1,kj`1

(37)

with r the total node number; with utrj ,kj the subtrees attached to the root
node; and with an indexation k P r1,κprqs reflecting the tree ordering. They
also admit a full ordering ă inductively defined in this way: we set utr,k ă utr1,k1

iff either of the three following relations hold

piq r ă r1

piiq r “ r1 but d ă d1

piiiq rr, d, k1, ..., kj´1s “ rr
1, d1, k11, ..., k

1
j´1s but kj ă k1j for some j

This ordering has the advantage that many functions attached to unordered
trees utr,k turn out to be independent of r, or elementarily dependent on it.
One such function is the multiplicity µr,k ” µk of utr,k , i.e. the number of
rooted, ordered trees which reduce to utr,k after obliteration of the order.12

Assuming at least a fleeting acquaintance with the three bases t̄utr,ku, tûtr,ku,
ťutr,ku of PreLierpAq to be constructed in §8.3 as images of the bases tūter,ku,

tûter,ku, tǔter,ku of Flexal
pEq, we can now proceed to present our alternative

expansions, first in the basis t̄utr,ku, then in tûtr,ku and ťutr,ku.

Proposition 2.2 (Alternative expansions in t̄utr,ku) .

A˝t “ t A`
ÿ

2ďr

ÿ

1ďkďκprq

`

B1`dptq ´B1`dp0q
˘

Γr,k ūtr,kpAq (38)

A´1 “ ´A`
ÿ

2ďr

ÿ

1ďkďκprq
pd`1qBd Γr,k ūtr,kpAq (39)

A˚ “ A`
ÿ

2ďr

ÿ

1ďkďκprq
p´1qd̀ 1 pd`1qΓr,k ūtr,kpAq (40)

11No contradiction there: it is simply that each of these basis elements resolves itself into a
sum of elementary summands. But this in no way diminishes the importance of the alternative
expansions.

12Don’t mix up the ordering on the set of unordered trees and the internal order of an
ordered tree, i.e. the order on the edges issuing from a given node.
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with the Bernoulli numbers Bd and polynomials Bdptq. The rational coefficients
Γr,k are defined by the recursion:

Γr,k ”
2d

pd`1q!
Γr1̀ 1,k1 . . .Γrd̀ 1,kd (41)

Γr̀ 1,k ” ´
d`1

2
Bd Γr,k (42)

with the initial conditions Γ1,1 “ 1,Γ2,1 “ ´ 1
2 . If d ą 1, then rj`1 ă r for all j,

so that (41) is properly inductive. If d “ 1, (41) becomes tautological, but then
(42) springs by to save the induction.

Remark 1. When the pre-Lie product derives from an associative product, i.e.〈
A1, A2

〉
” pA1, A2q ´ pA2, A1q with p., .q associative

all r-linear terms ūtr,kpAq in A coincide 13 and the expansions (38)-(40) reduce
to

ÿ

1ďkďκprq
µk Γr,k

`

Bd̀ 1ptq ´Bd̀ 1p0q
˘

” p´1qr´1 t!

pt´ rq! r!
(43)

ÿ

1ďkďκprq
µk Γr̀ 1,k ” ´

1

2r
(44)

Remark 2. The link-up between the ’alternative’ expansion (38) and its ’opti-
mal’ counterpart (28) is via the identities:

Ur,dpAq :“
ÿ

stemputr,kq“d

Γr,k ūtr,kpAq ”
r1`¨¨¨`rδ“r´1

ÿ

dďδďr´1

Cr1,...,rδd

〈
A Ð

1`r1
, ..., AÐ

r δ

〉Ñ
The less important coefficients C‚d also verify their own induction, but let us
simply mention the relations:

Cr1,...,rδd ” p´1qd´δCrδ,...,r1d (45)

C

r´1 times
hkkikkj

1, . . . , 1
d “

#

1
r! if d “ r ´ 1

0 if d ă r ´ 1
(46)

Remark 3. The coefficients involved in the expansions (38)-(40) are one more
instance of scalars attached to trees utr,k that depend essentially on k and
trivially on r. Indeed, we may set:

γk :“ 2r´1Γr,k for the integer r such that κpr´1q ă k ď κprq (47)

γ˚k :“ 2r´1Γr,k for all integers r such that k ď κpr´1q (48)

13with µr,k “ µk the multiplicity factor as above (cf beginning of §2.4).
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The above induction for Γr,k then simplifies to

γk ”
2d

pd`1q!
γ˚k1 . . . γ

˚
kd

with d “ dk (49)

γ˚k ” ´pd`1qBd γk with d “ dk (50)

with the attendant identities
ÿ

1ďkďκprq
µk γk

`

Bd̀ 1ptq ´Bd̀ 1p0q
˘

” p´1qr´1 t!

pt´ rq! r!
(51)

ÿ

1ďkďκprq
µk γ

˚
k ” ´

2r´1

r
(52)

In the four identities above, d “ dk ě 2 is the number of edges issuing from the
root node of the tree utr,k, for the only integer r such that κpr´1q ă k ď κprq.
The rule makes no sense for k “ 1, but in that case we set d1 “ 0 and (50) then
reduces to γ˚1 “ ´γ1 “ ´1.

Here are the sequences tγku and tγ˚k u up to k “ κp6q “ 20, along with the
multiplicities µk and the stem numbers dk involved in the relations (43)-(44):

k } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

γk } 1 2
3

2
3

1́
3

2
3

2
9

2
3

1́
3

2
15

2
3

2
9

2
9 0 2

3
2
9

1́
3

1́
9

1́
3

2
15

2́
45

γ˚k } 1́ 1́
3

1́
3 0 1́

3
1́
9

1́
3 0 1

45
1́
3

1́
9

1́
9 0 1́

3
1́
9 0 0 0 1

45 0

µk } 1 1 2 1 2 2 1 3 1 2 2 4 2 2 2 3 3 3 4 1
dk } 0 2 2 3 2 2 2 3 4 2 2 2 2 2 2 3 3 3 4 5

Proposition 2.3 (Alternative expansions in tûtr,ku and ťutr,ku ) .
The simplest expansions in the bases tûtr,ku and tǔtr,ku are

A˝2 “ 2A`
ÿ

2ďr

p´1qr̀ 1ûtr,κprqpAq (53)

A˝´1 “ ´A`

1ďkďκprq
ÿ

2ďr

ûtr,kpAq (54)

A˝´1 “ ´A´
ÿ

2ďr

ǔtr,κprqpAq (55)

A˚ “ A`

1ďkďκprq
ÿ

2ďr

cr,k ǔtr,kpAq (56)

with coefficients cr,k that depend only on utr,k as a non-rooted tree. In other
words, cr,k1 “ cr,k2 when utr,k1 and utr,k2 coincide as graphs, after erasure of
the orientation on their edges.

Thus, in (??) the 5-linear terms consist of three clusters
$

’

&

’

%

` 1
30

`

ǔt5,1pAq ` ǔt5,5pAq ` ǔt5,7pAq
˘

` 1
60

`

ǔt5,2pAq ` ǔt5,3pAq ` ǔt5,6pAq ` ǔt5,8pAq
˘

´ 1
30

`

ǔt5,4pAq ` ǔt5,9pAq
˘
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corresponding to the three non-rooted trees with 5 nodes.
Like the coefficients Γr,k of (43)-(44), the new coefficients cr,k are given by

a simple induction, but based this time on non-rooted trees. Thus we find:

cr,1 “
r!

r r´1
2 s!r

r´1
2 s!

(57)

cr,2 “

#

r!
p
r´1
2 q!p r´3

2 q!
if r odd

0 if r even
(58)

cr,κprq “ cr,κpŕ 1q “ Br´1 p“ Bernoulli numberq if r ě 3 (59)

Note that the number κ̄prq of non-rooted, unordered trees with r nodes is much
less than the number κprq of rooted, unordered trees, since κ̄prq ď κpr´1q. In
fact, their respective generating series relate like

X̄ptq “ Xptq ´
1

2
X2ptq `

1

2
Xpt2q with

#

Xptq :“
ř

1ďr κprq tr

X̄ptq :“
ř

1ďr κ̄prq tr
(60)

The series Xptq is the more basic of the two, being directly calculable from the
relation:

Xptq ” t exp
`

ÿ

1ďk

1

k
Xptkq

˘

(61)

3 Exotic pre-Lie products and exotic functional
composition.

3.1 The pre-Lie products ta, buexo
σ and ta, buexxo .

Consider the group G of identity-tangent local diffeomorphisms of C in its three
main incarnations, corresponding to germs of type:

f : t ÞÑ t`
ř

1ďn αn t
1`n t small (62)

f : t ÞÑ t`
ř

1ďn βn t
1´n t large (63)

f : t ÞÑ t`
ř

1ďn γn e
´n t <ptq large (64)

The group law of G is ordinary composition pf, gq ÞÑ f ˝ g. The corresponding
Lie algebra L has for bracket

rf˚, g˚s “ f 1˚ g˚ ´ f˚ g
1
˚ (65)

with f˚, g˚ standing for the infinitesimal generators of f, g.

Proposition 1. The Lie bracket (65) is induced by the classical pre-Lie product
(66) as well as two others ‘exotic’ pre-Lie products, namely:
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(i) the one-parameter family (67)
(ii) the isolated pre-Lie product (68)〈
f˚, g˚

〉
:“ f 1˚ g˚ (66)〈

f˚, g˚
〉exo
σ

:“ f 1˚ g˚ ´ σ

ż

pf 1˚ g
1
˚q “

ż

pf 11˚ g˚ ` p1´ σq f
1
˚ g
1
˚q (67)〈

f˚, g˚
〉exxo

:“ f 1˚ g˚ ´

ż

pf 1˚ g
1
˚q ´

żżż

pf 11˚ g
11
˚q “

ż

pf 11˚ g˚q ´

żżż

pf 11˚ g
11
˚q (68)

with p
ş

f˚qptq :“

#

şt

0
f˚psq ds for f of type p62q

ş8

t
f˚psq ds for f of type p63q-p64q.

3.2 The exotic compositions ˝exo
σ and ˝exxo .

There is a standard way – two ways, actually14 – of expressing a group law in
terms of the underlying pre-Lie product. In the present instance, however, we
can do better than express ˝exoσ or ˝exxo in terms of t., .uexoσ or t., .uexxo . We
can directly relate the exotic composition to the standard one, via the detour
through the common Lie algebra L :

f “ id ` f P G
ÔŒ

ÒÓ L Q f˚
ÖÕ

fexo “ id ` f exo
P Gexo

and the explicit mappings:

$

&

%

f “ f˚ `
ř

1
n!

ÝÑ〈
f˚, ..., f˚

〉
f exo

“ f˚ `
ř

1
n!

ÝÑ〈
f˚, ..., f˚

〉exo
$

&

%

f˚ “ f `
ř

cØ
ÐÑ〈

f , ..., f
〉

f˚ “ f exo
`
ř

cØ

ÐÑ〈
f exo , ..., f exo

〉exo (69)

The algebra-to-group formulae (118-left) involve multiple pre-Lie brackets
Ñ〈
. . .

〉
or

Ñ〈
. . .

〉exo
with forward parenthesising, so that at depth n we have just one

term, with coefficient 1{n!. The group-to-algebra formulae (118-right) also in-

volve multiple pre-Lie brackets
Ø〈
. . .

〉
or

Ø〈
. . .

〉exo
, but with a mixed forward-

backward parenthesising and suitably chosen rational coefficients cØ. The ex-
pansion here is no longer unique, but uniqueness can be restored if we exclude
(except in initial position) triplets of the form

〈〈
‚, ‚

〉
, ‚
〉
. We then get the so-

called pared-down formula, which involves the least possible number of terms at
depth n, namely 2n´1 n-uplets, each with a pleasantly explicit coefficient cØ,
whereas the brute force inversion of the algebra-to-group formula would yield a

14The better way, or pared-down expansion, involves, at each order, a minimal number of
summands.
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far larger number of n-uplets and uglier coefficients cØ.

Proposition 2: the correspondence GØ Gexxo .
It is non-linear and fully determined by the formulae:

B3
t f

exxo “ Sw f with pfexxo´ fqptq “

$

’

&

’

%

opt2q for f of type p62q

opt´1q for f of type p63q

ope´tq for f of type p64q

(70)

and as usual Swpfq “ p f
11

f 1 q
1 ´ 1

2 p
f 11

f 1 q
2.

To express the natural correspondence between GØ Gexo
σ , we require functions

hσ2,σ1 along with their main properties:

hσ2,σ1
ptq :“ t`

ÿ

1ďn

tn`1

pn` 1q!

ź

1ďkďn

`

k pσ1 ´ 1q ´ pσ2 ´ 1q
˘

(71)

“

`

1` p1´ σ1q t
˘

1´σ2
1´σ1 ´ 1

1´ σ2
if σ1 ­“ 1, σ2 ­“ 1 (72)

hσ,σptq “ t (73)

h1,0ptq “ logp1` tq (74)

h0,1ptq “ expptq ´ 1 (75)

hσ3,σ2
˝ hσ2,σ1

“ hσ3,σ2
(76)

Bt hσ2,σ1ptq “
1´ pσ2 ´ 1qhσ2,σ1

ptq

1´ pσ1 ´ 1q t
(77)

pSw hσ2,σ1qptq “
1

2

pσ1 ´ σ2qpσ1 ` σ2 ´ 2q
`

1´ pσ1 ´ 1q t
˘2 pSw “ Schwarzianq (78)

Proposition 3: the correspondence GØ Gexo
σ .

The correspondence is non-linear and fully determined by either of the formulae:

h0,σ pBt f
exo
σ ´ 1q “ pBt f ´ 1q , hσ,0 pBt f ´ 1q “ pBt f

exo
σ ´ 1q (79)

More generally, the correspondence Gexo
σ1
Ø Gexo

σ2
goes by the formula:.

hσ2,σ1
pBt f

exo
σ1

´ 1q “ pBt f
exo
σ2

´ 1q (80)

Two exo-compositions stand out:

(i) One is the case σ “ 1. It goes with the pre-Lie product tf , guexo1 “
ş

pf 11 gq and
the elementary connecting functions h1,0ptq “ logp1` tq , h0,1ptq “ expptq ´ 1.

(ii)The other is the case σ “ 2. It corresponds to the pre-Lie product tf , guexo2 “
ş

pf 11 g ´ f 1 g 1q, which has the property that te´n t, e´n tuexo2 ” 0 for all n. This
considerably simplifies calculations when exo-composing germs of type (64).
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3.3 Left-linear expression of the exo-compositions.

Consider two elements f, g of Gexo
σ and their product f ˝exoσ g. Using the corre-

spondence of Proposition 3, we can calculate their images fst , gst and fst ˝ gst
in the standard group G:

exo-composition ˝exoσ : pGexo
σ , Gexo

σ q ÝÑ Gexo
σ

Ó Ó Ò

standard composition ˝ : pG , G q ÝÑ G

This gives us f ˝exoσ g purely in terms of f, g and the standard composition ˝:

pf ˝exoσ gq1 ´ 1 “ hσ,0
`

pfst ˝ gstq
1 ´ 1

˘

(81)

“ hσ,0
`

g1st ´ 1` pfst ´ idq ˝ gstq
1
˘

(82)

“ hσ,0
`

g1st ´ 1` pfst ´ idq1 ˝ gst .g
1
st

˘

(83)

“ hσ,0
`

g1st ´ 1` ph0,σpf
1 ´ 1qq ˝ gst .g

1
st

˘

(84)

“
ÿ

0ďn

1

n!
h
pnq
σ,0pg

1
st ´ 1q ˆ ph0,σpf

1 ´ 1q ˝ gstq
n.pg1stq

n (85)

The above expression (85), on the face of it, is not linear in f ´ id . We know,
however, that it has to be. So we are justified in neglecting the higher-order
terms

ř

2ďn and in replacing h0,σ “ id ` p. . . q by id in
ř

1“n. As for the
term

ř

0“n, it simply yields g1 ´ 1. So, using hσ,0 ˝ h0,σ “ id and after a few
elementary simplifications, we arrive at the final result:

Proposition 4: ˝exoσ in terms of ˝. Setting

gst :“ id `

ż

h0,σpg
1 ´ 1q “

ż

´

σ ` p1´ σq g1
¯

1
1´σ

(86)

we get:

f ˝exoσ g “ g `

ż

´

pf ˝ gst ´ gstq
1 g

11

g11st

¯

with

$

’

&

’

%

fptq :“ t`
ř

1ďn αn t
n`1

gptq :“ t`
ř

1ďn βn t
n`1

gst “
ş

h0,σpg
1q

(87)

a ˝exoσ g “

ż

´

pa ˝ gstq
1 g

11

g11st

¯

with

$

’

&

’

%

aptq :“
ř

1ďn αn t
n`1

gptq :“ t`
ř

1ďn βn t
n`1

gst “
ş

h0,σpg
1q

(88)

Or purely in terms of gst :

f ˝exoσ g “ g `

ż

´

pf 1 ˝ gst ´ 1q ˆ pg1stq
1´σ

¯

(89)

a ˝exoσ g “

ż

´

pa1 ˝ gstq ˆ pg
1
stq

1´σ
¯

(90)
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Better proof:

pfσ ˝σ gσq
1 ´ 1 “ hσ,0ppf ˝ gq

1 ´ 1q “
pf ˝ gq1q1´σ ´ 1

1´ σ
(91)

pfσ ˝σ gσq
1 ´ 1 “

pg1q1´σ ´ 1

1´ σ
`
` pf 1q1´σ ´ 1

1´ σ

˘

˝ g pg1q1´σ (92)

pfσ ˝σ gσq
1 ´ 1 “ hσ,0pg

1 ´ 1q `
`

hσ,0pf
1 ´ 1q

˘

˝ g pg1q1´σ (93)

pfσ ˝σ gσq
1 ´ 1 “ g1σ ´ 1` pf 1σ ´ 1q ˝ g pg1q1´σ (94)

Integrating the last indentity and adjusting the integration constants so as to
make all germs vanish at 0, we arrive at (89).

Proposition 5: ˝exxo in terms of ˝. Setting g111 “ Sw .gst , we get:

f ˝exxo g “ g `
şşş

´

pf 111 ˝ gstq ˆ pg
1
stq

2
¯

if

#

fptq “ t` optq

gptq “ t` optq
(95)

a ˝exxo g “
şşş

´

pa111 ˝ gstq ˆ pg
1
stq

2
¯

if

#

aptq “ optq

gptq “ t` optq
(96)

3.4 Extending exotic composition to transseries: the three
main steps.

We consider here germs f, g etc.. at `8 on the real axis.

(i) The formulae (118) and (79) extend exo-composition in a straightforward
manner to the set of transserial mappings of the form f :“ t ÞÑ t`

ř

mptq, with
elementary transmonomial mptq, i.e. transmonomials of type logmptq “ Optq.

(ii) For general transserial mappings, the formulae (118) and (79) of Proposi-
tion 2 and 3 still hold, but when exo-composing large monomials (exponentials
or towers of exponentials) one must carefully chose the integration constants
implicit in the symbol

ş

.

(iii) When going beyond the range of transseries by allowing exponential iter-
ates of transfinite order, one encounters the same indeterminacy issues as with
ordinary composition

Remark: Except for σ “ 1, there exist no bilinear exotic multiplications ˆexo
σ

that would ensure the Leibniz rule〈
aˆexo

σ b, g
〉exo
σ

”
〈
a, g

〉exo
σ
ˆexo
σ b ` aˆexo

σ

〈
b, g

〉exo
σ

(97)

or, equivalently, the distributivity of post-composition:

paˆexo
σ bq ˝exoσ g ” pa ˝exoσ gq ˆexo

σ pb ˝exoσ gq (98)

For σ “ 1, there does exist an exotic multiplication a ˆexo
1 b :“

ş

pa1b1q, but it
has unpleasant properties.
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3.5 Exotic composition and resurgence.

We now turn to analytic germs at 8 on the Riemann sphere. The above Propo-
sitions make it abundantly clear that exo-composition preserves the local analyt-
icity of such germs. On the other hand, fractional exo-iteration (i.e. fractional
iteration under exo-composition) turns local-analytic, identity-tangent germs
into resurgent ones, just as in the case of standard fractional iteration, and that
too with the same resurgence lattice, the same resurgence constants, and the
same resurgence equations simply re-interpreted in the new context.15

Proofs. Let

gw “ g˝w P G
Œ

g˚ common infinitesimal generator P L
Õ

γw “ g˝
exo
σ w P Gexo

σ

Bgw “ g˚ g
1
w “ tgw, g˚u (99)

Bg1w “ g1˚ g
1
w ` g˚ g

11
w (100)

Bwγw “ g˚ γ
1
w ´ σ

ż

pg1˚γ
1
wq ` σg˚ (101)

Bwγ
1
w “ p1´ σqg1˚ γ

1
w ` g˚γ

11
wq ` σg

1
˚ (102)

Notice the difference: Bgw “
〈
gw, g˚

〉
but Bγw “

〈
gw, g˚

〉exo
σ

` σ g˚. The
parasitical term σ g˚ in the second identity comes from:

γw “ t`
ÿ

1ďn

wn

n!

ÝÑ〈
g˚, . . . , g˚

〉
(103)

Now, let us check the identity

γ1w ´ 1 “ hσ,0pg
1
w ´ 1q (104)

or rather the equation derived by applying Bw:

Bwγ
1
w “ h1σ,0pg

1
w ´ 1q Bwg

1
w (105)

After expressing Bwγ
1
w as in (102), Bwg

1
w as in (100) and replacing h1σ,0pg

1
w ´ 1q

by pg1wq
´σ, we find that (105) turns into an identity. l

4 The prototypal flexion algebra Flex pEq.

To prepare the way for the proper object of this paper – the rapprochement
between tree and flexion algebra – we must first recall some basic notions about
the latter. (The reader already familiar with the subject may skip this section).

15Hint: for each resurgent germ, write down the standard diplay then re-phrase it in the
exotic context.
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We shall first (§4.1 through §4.4) present in rough terms the general setting,
that is to say the polyalgebra BIMU of general bimoulds. We shall then (§4.5
through §4.7) zoom in on the monogenous polyalgebra Flex pEq generated by a
so-called flexion unit E. Not only is Flex pEq the core part of BIMU ; it is also
the part that most naturally lends itself to an interpretation in terms of trees.
Hence its relevance to the present investigation.

4.1 Flexion symbols. The space BIMU of bimoulds.

For now, let BIMU be simply the space of bimoulds, i.e. of moulds M‚ indexed
by double sequences w “ p

u
v q “ p

u1

v1

,...,
,...,

ur
vr
q, with the ui’s and vi’s ranging

through some ring, generally Q, R or C. Sequences (simple or double) are
systematically noted in boldface, with their indices (when needed) in upper
position. Their elements wi, ui, vi are noted in ordinary print, with indices in
lower position.
Elementary flexions.
In addition to ordinary, non-commutative mould multiplication mu (or ˆ):

A‚ “ B‚ ˆ C‚ “ mupB‚, C‚q ðñ Aw “

rpw1
q,rpw2

qě0
ÿ

w1.w2
“w

Bw
1

Cw
2

(106)

and its inverse invmu:

pinvmu.Aqw “
ÿ

1ďsďrpwq

p´1qs
ÿ

w1...ws “ w

Aw
1

. . . Aw
s

pwi ­“ Hq (107)

the bimoulds A‚ in BIMU “ ‘0ďrBIMUr
16 can be subjected to a host of

specific operations, all constructed from four elementary flexions t, s, r, u that
are always defined relative to a given factorisation of the total sequence w. The
way the flexions act is apparent from the following examples:

w “ a.b a “
`

u1,
v1,

u2,
v2,

u3

v3

˘

b “
`

u4,
v4,

u5,
v5,

u6

v6

˘

ùñ au “
`

u1,
v1:4,

u2,
v2:4,

u3

v3:4

˘

rb “
`

u1234,
v4,

u5,
v5,

u6

v6

˘

w “ b.c b “
`

u1,
v1,

u2,
v2,

u3

v3

˘

c “
`

u4,
v4,

u5,
v5,

u6

v6

˘

ùñ bs “
`

u1,
v1,

u2,
v2,

u3456

v3

˘

tc “
`

u4,
v4:3,

u5,
v5:3,

u6

v6:3

˘

w “ a.b.c a “
`

u1,
v1,

u2,
v2,

u3

v3

˘

b “
`

u4,
v4,

u5,
v5,

u6

v6

˘

c “
`

u7,
v7,

u8,
v8,

u9

v9

˘

ùñ au “
`

u1,
v1:4,

u2,
v2:4,

u3

v3:4

˘

rbs “
`

u1234,
v4,

u5,
v5,

u6789

v6

˘

tc “
`

u7,
v7:6,

u8,
v8:6,

u9

v9:6

˘

with the usual short-hand: ui,...,j :“ ui` ...`uj and vi:j :“ vi´ vj . Here
and throughout the sequel, we use boldface (with upper indexation) to denote
sequences (w,wi,wj etc), and ordinary characters (with lower indexation) to
denote single sequence elements (wi, wj etc), or sometimes sequences of length

16BIMUr of course regroups all bimoulds whose components of length other than r vanish.
These are often dubbed “length-r bimoulds” (or “depth-r bimoulds”) for short.
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rpwq “ 1. Of course, the ‘product’ w1.w2 denotes the concatenation of the two
factor sequences.

Short and long indexations on bimoulds.
For bimoulds M‚ P BIMU r it is sometimes convenient to switch from the usual
short indexation (with r indices wi’s) to a more homogeneous long indexation
(with a redundant initial w0 which gets bracketted for distinctiveness). The
correspondence goes like this:

M p
u1
v1

,...,
,...,

ur
vr
q
–M

p
ru˚0 s,

rv˚0 s,

u˚1

v˚1

,...,
,...,

u˚r

v˚r
q

(108)

with the dual conditions on upper and lower indices:

u˚0 “ ´u1...r :“ ´pu1`...`urq , u˚i “ ui @i ě 1
v˚0 arbitrary , v˚i ´ v

˚
0 “ vi @i ě 1

and of course
ř

1ďiďr uivi ”
ř

0ďiďr u
˚
i v
˚
i .

Unary operations.
The following linear transformations on BIMU are of constant use:17

B‚ “ minu.A‚ ñ Bw1,...,wr “ ´Aw1,...,wr (109)

B‚ “ pari.A‚ ñ Bw1,...,wr “ p´1qr Aw1,...,wr (110)

B‚ “ anti.A‚ ñ Bw1,...,wr “ Awr,...,w1 (111)

B‚ “ mantar.A‚ ñ Bw1,...,wr “ p´1qŕ 1Awr,...,w1 (112)

B‚ “ neg.A‚ ñ Bw1,...,wr “ A´w1,...,´wr (113)

B‚ “ swap.A‚ ñ Bp
u1
v1

,...,
,...,

ur
vr
q
“ Ap

vr
u1..r

,...,
,...,

v3:4 ,
u123,

v2:3,
u12,

v1:2
u1
q (114)

B‚ “ pus.A‚ ñ Bp
u1
v1

,...,
,...,

ur
vr
q
“ A

p
ur,
vr,

u1,
v1,

u2
v2

,...,
,...,

uŕ 1
vŕ 1

q
(115)

B‚ “ push.A‚ ñ Bp
u1
v1

,...,
,...,

ur
vr
q
“ A

p
´u1...r,
´vr ,

u1 ,
v1:r,

u2
v2:r

,...,
,...,

uŕ 1
vŕ 1:r

q
(116)

All are involutions, save for pus and push, whose restrictions to each BIMUr

reduce to circular permutations of order r resp. r`1:18

push “ neg.anti.swap.anti.swap (117)

lengr “ pushr̀ 1.lengr “ pusr.lengr (118)

with lengr standing for the natural projection of BIMU onto BIMUr.

17The reason for dignifying the humble sign change in (109) with the special name minu
is that minu enters the definition of scores of operators acting on various algebras: the rule
for forming the corresponding operators acting on the corresponding groups, is then simply
to change the trivial, linear minu, which commutes with everybody, into the non-trivial, non-
linear invmu, which commutes with practically nobody (see (107)). To keep the minus sign
instead of minu (especially when it occurs twice and so cancels out) would be a sure recipe
for getting the transposition wrong.

18pus resp. push is a circular permutation in the short resp. long indexation of bimoulds.
Indeed: ppush.Mqrw0s,w1,...,wr “M rwrs,w0,...,wŕ 1 .
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4.2 Flexion operations. BIMU as polyalgebra.

Inflected derivations and automorphisms of BIMU.
Let BIMU ˚ resp. BIMU ˚ denote the subset of all bimoulds M‚ such that
MH “ 0 resp. MH “ 1. To each pair A‚ “ pA‚L,A‚Rq P BIMU ˚ˆBIMU ˚ resp.
BIMU ˚

ˆ BIMU ˚ we attach two remarkable operators:

axitpA‚q P DerpBIMUq resp. gaxitpA‚q P AutpBIMUq

whose action on BIMU is given by:19

N‚ “ axitpA‚q.M‚ ô Nw“
ÿ1

MarcAbu

L `
ÿ2

MaucAtb
R (119)

N‚“gaxitpA‚q.M‚ ô Nw “
ÿ3

M rb1s . . . rbssAa
1

u

L . . .Aa
s

u

L A
tc1

R . . .Atcs

R (120)

and verifies the identities:

axitpA‚q.mupM‚
1 ,M

‚
2 q ” mupaxitpA‚q.M‚

1 ,M
‚
2 q`mupM‚

1 , axitpA‚q.M‚
2 q(121)

gaxitpA‚q.mupM‚
1 ,M

‚
2 q ” mupgaxitpA‚q.M‚

1 , gaxitpA‚q.M‚
2 q (122)

The BIMU-derivations axit are stable under the Lie bracket for operators. More
precisely, the identity holds:

raxitpB‚q, axitpA‚qs “ axitpC‚q with C‚ “ axipA‚,B‚q (123)

relative to a Lie law axi on BIMU ˚ ˆ BIMU ˚ given by:

C‚L :“ axitpB‚q.A‚L ´ axitpA‚q.B‚L ` lupA‚L,B‚Lq (124)

C‚R :“ axitpB‚q.A‚R ´ axitpA‚q.B‚R ´ lupA‚R,B‚Rq (125)

Here, lu denotes the standard (non-inflected) Lie law on BIMU:

lupA‚, B‚q :“ mupA‚, B‚q ´mupB‚, A‚q (126)

Let AXI denote the Lie algebra consisting of all pairs A‚ P BIMU ˚ ˆ BIMU ˚

under this law axi.
Likewise, the BIMU-automorphisms gaxit are stable under operator compo-

sition. More precisely:

gaxitpB‚q.gaxitpA‚q “ gaxitpC‚q with C‚ “ gaxipA‚,B‚q (127)

relative to a law gaxi on BIMU ˚
ˆ BIMU ˚ given by:

C‚L :“ mupgaxitpB‚q.A‚L,B‚Lq (128)

C‚R :“ mupB‚R, gaxitpB‚q.A‚Rq (129)

19The sum
ř1 resp.

ř2 extends to all sequence factorisations w “ a.b.c with b ­“ H,
c ­“ H resp. a ­“ H, b ­“ H. The sum

ř3 extends to all factorisations w “

a1.b1.c1.a2.b2.c2...as.bs.cs such that s ě 1, bi ­“ H, ci.aì 1 ­“ H @i. Note that the
extreme factor sequences a1 and cs may be H.
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Let GAXI denote the Lie group consisting of all pairs A‚ P BIMU ˚
ˆ BIMU ˚

under this law gaxi. This group GAXI clearly admits AXI as its Lie algebra.

The mixed operations amnit = anmit :
For A‚ :“ pA‚, 0‚q and B‚ :“ p0‚, B‚q the operators axitpA‚q and axitpB‚q
reduce to amitpA‚q and anitpB‚q respectively (see (137) and (138) infra) and
the identity (462) becomes:

amnitpA‚, B‚q ” anmitpA‚, B‚q p@A‚, B‚ P BIMU˚q (130)

with

amnitpA‚, B‚q :“ amitpA‚q.anitpB‚q ´ anitpamitpA‚q.B‚q (131)

anmitpA‚, B‚q :“ anitpB‚q.amitpA‚q ´ amitpanitpB‚q.A‚q (132)

When one of the two arguments pA‚, B‚q vanishes, the definitions reduce to:

amnitpA‚, 0‚q “ anmitpA‚, 0‚q :“ amitpA‚q (133)

amnitp0‚, B‚q “ anmitp0‚, B‚q “ anitpB‚q (134)

Moreover, when amnit operates on a one-component bimould M‚ P BIMU 1

(such as the flexion units E‚, see §3.1 and §3.3 infra), its action drastically
simplifies :

N‚ :“amnitpA‚, B‚q.M‚”anmitpA‚, B‚q.M‚ ô Nw:“
ÿ

awib“w

AauM rwisBtb (135)

Unary substructures.
We have two obvious subalgebras//subgroups of AXI//GAXI, answering to the
conditions:

AMI Ă AXI : A‚R “ 0‚ , GAMI Ă GAXI : A‚R “ 1‚

ANI Ă AXI : A‚L “ 0‚ , GANI Ă GAXI : A‚L “ 1‚

but we are more interested in the mixed unary substructures, consisting of ele-
ments of the form:

A‚ “ pA‚L,A‚Rq with A‚R ” hpA‚Lq and h a fixed involution (136)

with everything expressible in terms of the left element A‚L of the pair A‚. There
exist, up to isomorphism, exactly seven such mixed unary substructures:

algebra h swap algebra h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ARI minu Ø IRA minu.push
ALI anti .pari Ø ILA anti .pari .neg
ALA anti .pari .negu Ø ALA anti .pari .negu
ILI anti .pari .negv Ø ILI anti .pari .negv

AWI anti .neg Ø IWA anti
AWA anti .negu Ø AWA anti .negu
IWI anti .negv Ø IWI anti .negv
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group h swap group h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GARI invmu Ø GIRA push.swap.invmu.swap
GALI anti .pari Ø GILA anti .pari .neg
GALA anti .pari .negu Ø GALA anti .pari .negu
GILI anti .pari .negv Ø GILI anti .pari .negv

GAWI anti .neg Ø GIWA anti
GAWA anti .negu Ø GAWA anti .negu
GIWI anti .negv Ø GIWI anti .negv

Each algebra in the first table (e.g. ARI) is of course the Lie algebra of the
like-named group (e.g. GARI). Conversely, each Lie group in the second table
is essentially determined by its eponymous Lie algebra and the condition of left-
linearity.20

Dimorphic substructures.
Among all seven pairs of substructures, only two respect dimorphy, namely
ARI//GARI and ALI//GALI. Moreover, when restricted to dimorphic objects,
they actually coincide:

ARIal{al
“ ALIal{al with tal{alu “ talternal{alternal and evenu

GARIas{as
“ GALIas{as with tas{asu “ tsymmetral{symmetral and evenu

We shall henceforth work with the pair ARI//GARI, whose definition involves
a simpler involution h (it dispenses with the sequence inversion anti : see above
table).

4.3 Flexion polyalgebra.

Basic anti-actions.
The proper way to proceed is to define the anti-actions (on BIMU, with its
uninflected product mu and bracket lu) first of the lateral pairs AMI//GAMI,
ANI//GANI and then of the mixed pair ARI//GARI:

N‚ “ amitpA‚q.M‚ ô Nw “
ÿ1

MarcAbu (137)

N‚ “ anitpA‚q.M‚ ô Nw “
ÿ2

MaucAtb (138)

N‚ “ aritpA‚q.M‚ ô Nw “
ÿ1

MarcAbu ´
ÿ2

MaucAtb (139)

with sums
ř1

(resp.
ř2

) ranging over all sequence factorisations w “ abc such

20meaning that the group operation (like A‚, B‚ ÞÑ garipA‚, B‚q in our example) is linear
in A‚ but highly non-linear in B‚.
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that b ­“ H, c ­“ H (resp. a ­“ H, b ­“ H).

N‚ “ gamitpA‚q.M‚ ô Nw “
ÿ1

M rb1 . . . rbsAa
1

u . . . Aa
s

u (140)

N‚ “ ganitpA‚q.M‚ ô Nw “
ÿ2

Mb1s . . . bssAtc1 . . . Atcs (141)

N‚ “ garitpA‚q.M‚ ô Nw “
ÿ3

M rb1s . . . rbssAa
1

u . . . Aa
s

uA
tc1

˚ . . . A
tcs

˚ (142)

with A‚˚ :“ invmupA‚q and with sums
ř1

,
ř2

,
ř3

ranging respectively over all
sequence factorisations of the form :

w “ a1b1 . . . asbs ps ě 1 , only a1 may be Hq
w “ b1c1 . . . bscs ps ě 1 , only cs may be Hq
w “ a1b1c1 . . . asbscs ps ě 1 , with bi ­“ H and ciaì 1 ­“ Hq

More precisely, in
ř3

two inner neighbour factors ci and aì 1 may vanish sep-
arately but not simultaneously, whereas the outer factors a1 and cs may of
course vanish separately or even simultaneously.

Lie brackets and group laws.
We can now concisely express the Lie algebra brackets ami, ani, ari and the
group products gami, gani, gari :

amipA‚, B‚q :“ amitpB‚q.A‚ ´ amitpA‚q.B‚ ` lupA‚, B‚q (143)

anipA‚, B‚q :“ anitpB‚q.A‚ ´ anitpA‚q.B‚ ´ upA‚, B‚q (144)

aripA‚, B‚q :“ aritpB‚q.A‚ ´ aritpA‚q.B‚ ` lupA‚, B‚q (145)

gamipA‚, B‚q :“ mupgamitpB‚q.A‚q, B‚q (146)

ganipA‚, B‚q :“ mupB‚, ganitpB‚q.A‚qq (147)

garipA‚, B‚q :“ mupgaritpB‚q.A‚q, B‚q (148)

Pre-Lie products (‘pre-brackets’).
Parallel with the three Lie brackets, we have three pre-Lie brackets:

preamipA‚, B‚q :“ amitpB‚q.A‚ `mupA‚, B‚q (149)

preanipA‚, B‚q :“ anitpB‚q.A‚ ´mupA‚, B‚q psign!q (150)

prearipA‚, B‚q :“ aritpB‚q.A‚ `mupA‚, B‚q (151)

with the usual relations:

aripA‚, B‚q ” prearipA‚, B‚q ´ prearipB‚, A‚q (152)

assoprearipA‚, B‚, C‚q ” assoprearipA‚, C‚, B‚q (153)

with assopreari denoting the associator21 of the pre-bracket preari. The same
holds of course for ami and ani.

21Here, the associator assobin of a binary operation bin is straightforwardly defined as
assobinpa, b, cq :“ binpbinpa, bq, cq ´ binpa, binpb, cqq. Nothing to do with the Drinfeld asso-
ciators of the sequel!
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Exponentiation from ARI to GARI.
Provided we properly define the multiple pre-Lie brackets, i.e. from left to right:

ÝÑ

preari pA‚1, . . . , A
‚
sq “ prearipp

ÝÑ

preari pA‚1, . . . , A
‚
ś 1q, A

‚
sq (154)

we have a simple expression for the exponential mapping from a Lie algebra to
its group. Thus, the exponential expari : ARI Ñ GARI can be expressed as a
series of pre-brackets:

exparipA‚q “ 1‚ `
ÿ

1ďn

1

n!

ÝÑ

preari p

n times
hkkkkkikkkkkj

A‚, . . . , A‚q (155)

or, what amounts to the same, as a mixed mu+arit -expansion:

exparipA‚q “ 1‚ `
ÿ

1ďr , 1ďni

Exn1,...,nrmupA‚n1
, . . . , A‚nr q (156)

with A‚n :“
`

aritpA‚q
˘n´1

. A‚ and with the symmetral mould Ex ‚:

Exn1,...,nr :“
1

pn1´1q!

1

pn2´1q!
. . .

1

pnr´1q!

1

n1...r n2...r . . . nr
(157)

The operation from GARI to ARI that inverses expari shall be denoted as logari.
It, too, can be expressed as a series of multiple pre-ari products, but in a much
less straightforward manner than (155).

For any alternal mould L‚ we also have the identities:

ÿ

σĂSprq

Lωσp1q,..., ωσprqprearipA‚σp1q, . . . , A
‚
σprqq ”

1

r

ÿ

σĂSprq

Lωσp1q,..., ωσprqaripA‚σp1q, . . . , A
‚
σprqq p@A‚1, . . . , A

‚
rq (158)

which actually characterise preari.

Adjoint actions.
We shall require the adjoint actions, adgari and adari, of GARI on GARI and
ARI respectively. The definitions are straightforward:

adgaripA‚q.B‚ :“ garipA‚, B‚, invgari.A‚q pA‚, B‚ P GARIq (159)

adaripA‚q.B‚ :“ logaripadgaripA‚q.exparipB‚qq (160)

:“ fragaripprearipA‚, B‚q, A‚q pA‚ P GARI, B‚ P ARIq (161)

except for definition (161), which results from (160) and (148) and uses the
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pre-ari product 22 defined as in (151) supra and the gari-quotient23 defined as
in (??) infra.

Definition (161) has over the equivalent definition (160) the advantage of
bringing out the B‚-linearity of adaripA‚q.B‚ and of leading to much simpler
calculations.24

The centers of ARI and GARI.
The sets Center(ARI) resp. Center(GARI) consist of all bimoulds M‚ that
verify
(i) MH “ 0 resp. MH “ 1

(ii) M p
u1
0
,...,
,...,

ur
0 q “ mr P C @ui

(iii) M p
u1
v1

,...,
,...,

ur
vr
q
“ 0 unless 0 “ v1 “ ¨ ¨ ¨ “ vr

Moreover, in view of (148), gari-multiplication by a central element C‚

amounts to ordinary post-multiplication by that same C‚:

garipC‚, A‚q ” garipA‚, C‚q ” mupA‚, C‚q pC‚ P CenterpGARIqq (162)

4.4 Basic symmetries and symmetry conservations.

‚ alternality and symmetrality.
Like a mould, a bimould A‚ is said to be alternal (resp. symmetral) if it verifies

ÿ

wPshapw1,w2q

Aw ” 0
`

resp. ” Aw
1

Aw
2˘

@w1 ­“ H , @w2 ­“ H (163)

with w running through the set shapw1,w2q of all shufflings of w1 and w2.

‚ {alternal} ùñ{mantar-invariant, pus-neutral}.
Alternality implies mantar-invariance, with mantar “ minu.pari .anti defined as
in (112).
It also implies pus-neutrality, which means this:

`

ÿ

1ďlďrp‚q

pusl
˘

.A‚ ” 0 i.e.
ÿ

w1
circ
„ w

Aw
1

” 0 pif rpwq ě 2q (164)

22Properly speaking, preari applies only to elements M‚ of ARI, i.e. such that MH “ 0.
Here, however, only B‚ is in ARI, whilst A‚ is in GARI and therefore AH “ 1. But this is
no obstacle to applying the rule (151).

23Properly speaking, fragari applies only to arguments S‚1 , S
‚
2 in GARI, i.e. such that

SHi “ 1. Here, however, only S‚2 :“ A‚ is in GARI, whilst S‚1 :“ prearipA‚, B‚q is in ARI

and therefore SH1 “ 0. But this is no obstacle to applying the rule:

fragaripS‚1 , S
‚
2q :“ mupgaritpS‚2q

´1.S‚1 , invgari.S‚2q “ mupgaritpinvgari.S‚2q.S
‚
1 , invgari.S‚2q

24Despite the spontaneous occurence of the pre-ari product in (161), it should be noted
that adaripA‚q is an automorphisms of ARI but not of PREARI.
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‚ {symmetral} ùñ{gantar-invariant, gus-neutral}.
Symmetrality implies likewise gantar-invariance, with

gantar :“ invmu.anti.pari (165)

as well as gus-neutrality, which means
`
ř

1ďlďrp‚qpusl
˘

.logmu.A‚ ” 0 i.e.

ÿ

1ďkďrpwq

p´1qk´1
ÿ

w1...wk
circ
„ w

Aw
1

. . . Aw
k

” 0 pif rpwq ě 2q (166)

‚ {bialternal} essly

ùñ{neg-invariant, push-invariant}.
Bialternality implies not only invariance under neg.push but also separate neg-
invariance and push-invariance for any A‚ P BIMUr but the implication holds
only if r ą 1, since on BIMU1 we have neg=push. So neg.push=id, meaning that
there is no constraint at all on elements of BIMU1. But we must nonetheless im-
pose neg-invariance on BIMU1 (or what amounts to the same, push-invariance)
to ensure the stability of bialternals under the ari-bracket: see §2.7.

‚ {bisymmetral} essly

ùñ{neg-invariant, gush-invariant}.
Bisymmetrality implies not only invariance under neg.gush, with

gush :“ neg.gantar.swap.gantar.swap (167)

but also separate neg-invariance and gush-invariance, but only if we assume neg-
invariance for the component of length 1. If we do not make that assumption,
every bisymmetral bimould in GARI splits into two bisymmetral factors: a
regular right factor (invariant under neg) and an irregular left factor (invariant
under pari.neg)

4.5 Flexion units.

As it happens, the most useful monogenous algebras Flex pEq are not those
spawned by ‘random’ generators E but on the contrary by very special ones -
the so-called flexion units.

Exact flexion units. The tripartite relation.
A flexion unit is a bimould E‚ P BIMU1 that is odd in w1 and verifies the
tripartite relation below. More precisely:

E´w1 ” ´Ew1 , Ew1 Ew2 ” Ew1u Erw2 ` Ew1s Etw2 i .e

E
p
´u1
´v1

q
” ´Ep

u1
v1
q , Ep

u1
v1
qEp

u2
v2
q
” Ep

u1
v1:2

qEp
u12
v2
q
` Ep

u12
v1
qEp

u2
v2:1

q (168)

In view of the imparity of E‚ the tripartite identity may also be written in more
symmetric form:

Ep
u1
v1:0

qEp
u2
v2:0

q
`Ep

u2
v2:1

qEp
u0
v0:1

q
`Ep

u0
v0:2

qEp
u1
v1:2

q
” 0 @ui,@vi with u0`u1`u2 “ 0
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Another way of characterising flexion units is via the push-neutrality of their
powers munpE‚q. Indeed, if we set:

munpE‚q “ mup

n times
hkkkkikkkkj

E‚, . . . ,E‚q (169)

then E is a flexion unit iff mu1pE‚q and mu2pE‚q are push-neutral, in which case
it can be shown that all powers munpE‚q are automatically push-neutral:

!

E is a flexion unit
)

ô

!

`

ÿ

0ďkďn

pushk
˘

.munpE‚q “ 0 , @n P N˚
)

(170)

If two units E‚ and O‚ are constant respectively in v1 and u1 , then the sum
E‚ `O‚ is also a unit.

Lastly, if E‚ is a unit, then for each α, β, γ, δ P C the relation

E
p
u1
v1
q

rα,β,γ,δs :“ δ eγ u1 v1 E
p
u1{α
v1{β

q
(171)

defines a new unit E‚
rα,β,γ,δs.

Conjugate units:

If E‚ is a unit, then the relation Op
u1
v1
q :“ Ep

v1
u1
q define another unit O‚ – the

so-called conjugate of E‚. Indeed, setting pu1, u2q :“ pv11, v
1
2´v

1
1q, pv1, v2q :“

pu11`u
1
2, u

1
2q, then using the imparity of E‚ and re-ordering the terms, we find

that (168) becomes:

O
p
u11
v11
q
O
p
u12
v12
q
” O

p
u11
v11:2

q
O
p
u112
v12
q
`O

p
u112
v11
q
O
p
u12
v12:1

q
with Op

u1
v1
q :“ Ep

v1
u1
q

i.e. conserves its form.
Let us now mention the most useful flexion units, some exact and others

only approximate. Throughout the sequel, we shall set:

P ptq :“
1

t
, Qptq :“

1

tanptq
, Qcptq :“

c

tanpc tq
(172)

Polar units:
They consist purely of poles at the origin:

Paw1 “ P pu1q (173)

Piw1 “ P pv1q (174)

Paiw1

α,β “ P p
u1

α
q ` P p

v1

β
q “

α

u1
`
β

v1
(175)

Pa‚,Pi‚,Pai‚α,β are exact units.
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Trigonometric units:
They are ‘periodised’ variants of the polar units:

Qaw1
c “ Qcpu1q “

c

tanpc u1q
(176)

Qiw1
c “ Qcpv1q “

c

tanpc v1q
(177)

Qaiw1

c,α,β “ Qcp
u1

α
q `Qcp

v1

β
q “

c

tanp c u1

α q
`

c

tanp c v1β q
(178)

Qa‚c , Qi‚c are approximate units but Qai‚c,α,β is exact.

Elliptic units (after C. Brembilla):
Let σpz ; g2, g3q be the classical Weierstrass sigma function:

σpz ; g2, g3q “ z ´
g2

24.3.5
z5 ´

g3

23.3.5.7
z7 `Opz9q with

σpz ; g2, g3q ” ´σp´z ; g2, g3q ” t σpz t´1 ; g2 t
4, g3 t

6q p@tq

Then for all g2, g3, α, β, γ, δ P C pαβ ­“ 0q, the relation

E
p
u1
v1
q

g2,g3 :“
σpu1 ` v1 ; g2, g3q

σpu1 ; g2, g3q σpv1 ; g2, g3q
(179)

defines a two-parameter family of exact flexion units, which in turn, under the
standard parameter saturation of (171), give rise to:

E
p
u1
v1
q

g2,g3,α,β,γ,δ
:“ δ eγ u1 v1 E

p
u1{α
v1{β

q

g2,g3 (180)

E‚g2,g3,α,β,γ,δ ” E‚g2 t4 ,g3 t6 ,α t ,β t ,γ ,δ t´1 p@tq (181)

This six-parameter, five-dimensional complex variety of flexion units contains
all previously listed exact units (polar or trigonometric) as limit cases. In fact,
it would seem (the matter is still under investigation) that it exhausts all flexion
units meromorphic in both u1 and v1.

We must now examine further units, exact or approximate, that fail to be
meromorphic in one of these variables, or both.

.
Bitrigonometric units:
Qaaw1

c (resp. Qiiw1
c ) is defined for u1 P C and v1 P Q{Z (resp. vice versa):

Qaa
p
u1
v1
q

c :“
ÿ

n1PZ

c e´2πin1v1

πn1`cu1
“

ÿ

1ďn1ďdenpv1q

c e´2πin1v1

denpv1q
Qc

´π n1`c u1

denpv1q

¯

(182)

Qii
p
u1
v1
q

c :“
ÿ

n1PZ

c e´2πin1u1

πn1`cv1
“

ÿ

1ďn1ďdenpu1q

c e´2πin1u1

denpu1q
Qc

´π n1`c v1

denpu1q

¯

“ Qaa
p
v1
u1
q

c
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with den denoting the denominator (of a rational number). Qaa‚c and Qii‚c are
both approximate units (see (??),(??) below).

Flat units:
Let σ be the sign function on R, i.e. σpR˘q “ ˘1 and σp0q “ 0. Then set:

Saw1 “ σpu1q , Siw1 “ σpv1q , Saiw1 “ σpu1q ` σpv1q (183)

Sa‚ , Si‚ are approximate units but Sai‚ is exact.25

Mixed units:

Qasw1
c,˘ “ Qcpu1q ˘ c i σpv1q , Qisw1

c,˘ “ Qcpv1q ˘ c i σpu1q (184)

Qas‚c,˘ , Qis‚c,˘ are exact units.

“False” units:

Qiw1
c,˘ “ Qiw1

c ˘ c i “ cQpc v1q ˘ c i “ ˘ 2 c i
e˘ 2 c i v1

e˘ 2 c i v1 ´ 1
(185)

Qi‚c,` and Qi‚c,´ verify the exact tripartite relation but not the imparity condi-
tion.26

4.6 The prototypal polyalgebra Flex pE‚q.

All polyalgebras generated by a proper flexion unit E‚ are isomorphic, so that
we are justified in referring to the polyalgebra Flex pE‚q. Within the polyalgebra
of general bimoulds, Flex pE‚q occupies a neuralgic, but somewhat paradoxical
position.

Indeed, it appear to be the most regular part of BIMU, in the sense that it
is on Flex pE‚q, and on Flex pE‚q alone, that the involution syap,27 which simply
exchanges the ui’s and the vi’s, commutes with all flexion operations.

Yet at the same time, Flex pE‚q can be said to absorb, fixate, and concen-
trate on itself, all the irregularity inherent in BIMU, especially in the part of
BIMU that is specially relevant to multizeta arithmetic and which consists of
bimoulds Mw polynomial in either u or v. It is also Flex pE‚q, or rather its polar
specialisations Flex pPa‚q and Flex pPi‚q: cf next subsection) that contain the
bisymmetral bimoulds pal‚{pil‚, whose importance can hardly be overstated,
since they hold the key to an understanding of double symmetries, hence of
arithmetical dimorphy.

25when viewed as a distribution or as an almost-everywhere defined function on R. But
when viewed as a function on Z, it becomes an approximate unit.

26In terms of applications, the failure of imparity has more disruptive consequences than the
failure to verify the exact tripartite equation, because it means that E has no proper conjugate
O, which in turn prevents it from serving as building block for dimorphic bimoulds such as
ess‚ etc.

27To be carefully distinguished from the involution swap, as defined in (114).
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For our present purpose, however, Flex pE‚q has a more immediate distinc-
tion: of all substructures of the polyalgebra BIMU, it will turn out to be the
one most readily, and most fully, describable in terms of trees.

4.7 Flex pPa‚q and Flex pPi‚q: similarities/dissimilarities.

The most important incarnations of Flex pE‚q, the ones we should constantly
keep at the back of our minds, correspond to the polar flexion units Paw1 :“
1{u1 and Piw1 :“ 1{v1. But although fully isomorphic as far as the flexion
structure is concerned, Flex pPa‚q and Flex pPi‚q appear profoundly different
when it comes to the shape of their elements: as algebraic functions (of the
ui’s or vi’s), these will often differ markedly, in terms of degree, complexity,
amenability to factorization, etc. We shall see striking illustrations of that
fact in §5, when examining the semi-inflected operations on Flex pE‚q and their
extendibility to BIMU, and again in §8, when describing the standard bases of
Flex pE‚q. So, when reasoning on the polyalgebra Flex pE‚q, we should always
harken back to its two polar specialisations, but also be prepared to constantly
juggle them.

5 Alternators and counter-alternators.

5.1 Introduction.

Despite its rich array of binary operations, inflected or not, the flexion structure
lacked so far a single operation capable of generating Flexal

pE‚q from E‚ alone.
It also lacked a pair of operations capable of generating the whole of Flex pE‚q
from E‚. To remedy this, we introduce in this section a weakly inflected deriva-
tion de on Flex pE‚q and from it we construct:

• a pre-Lie braket dle of lu that generates Flexal
pE‚q from E‚.

• two operations dme and mde, pre-associative relative to mu, which jointly
generates the whole of Flex pE‚q from E‚. Either of them, in combination
with dle, also generates Flex pE‚q from E‚

Another benefit is this. While the alternality-preserving Lie brackets ari and
ali already possessed pre-Lie brackets preari and preali, these did not preserve
alternality. With de, however, we can slightly tweak their definitions to obtain
alternality-preserving pre-Lie brakets dari and dali.

But the main dividends from the having the new operations dle, dme, mde
will come with the introduction of the so-called counter-alternators. These
are multivariate, multilinear applications of Flex pE‚q into itself that possess a
counter-intuitive property: the more symmetrical (i.e. the less alternal) they are
as functions of their arguments, the more alternal (i.e. the less symmetrical)
they become as bimoulds, i.e. as functions of the sequence w. This vague-
sounding property actually lends itself to an exact description, and has two
fortunate consequences:
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• It leads to a neat decomposition Flex rpE
‚q “ ‘1ďdďrFlex r,dpE

‚q of Flex rpE
‚q

into subspaces consisting of bimoulds of co-alternality degree d, and yields
neat formulae for dimpFlex r,dpE

‚qq

• It also permits a natural identification of the elements of Flex pE‚q (resp.
Flexal

pE‚q) with ordered (resp. unordered) trees, and, building on that,
a far-going merger of flexion and tree algebra, with benefits in both direc-
tions.

5.2 Semi-inflected operations on Flex pE‚q.

Any element of Flex rpEq can be expressed as a sum

Mp
u1
v1

,...,
,...,

ur
vr
q
“

ÿ

1ďiďr

E
p
u1`...`ur

vi
q
M
p
u1
v1

,...,
,...,

ur
vr
q

i (186)

with components M‚
i that are themselves of the form

M
p
u1
v1

,...,
,...,

ur
vr
q

i “
ÿ

k

mi,k

r´1
ź

k“1

E
p
u1i,k

v1
i,k

q

and

#

mi,k P C
řr´1
k“1 u

1
i,kv

1
i,k “

řr
k“1 ukpvk ´ viq

(187)

The components M‚
i are uniquely defined, though their expansions (187) are

not.28 If we now set de.M‚ :“
ř

M‚
i , we see at once that

(i) de is a linear bijection of Flex rpE
‚q onto de.Flex rpE

‚q

(ii) both spaces mu
`

Flex pE‚q, de.Flex pE‚q
˘

and mu
`

de.Flex pE‚q,Flex pE‚q
˘

are
subspaces of de.Flex pE‚q
(iii) de is a derivation relative to the associative product mu, hence also to the
Lie product lu.

We can therefore define on Flex pE‚q bilinear applications dme, mde, dle of
Flex pE‚q into itself:

dmepA‚,B‚q :“ de´1 mupdeA‚,B‚q (188)

mdepA‚,B‚q :“ de´1 mupA‚,deB‚q (189)

dlepA‚,B‚q :“ de´1 lupdeA‚,B‚q (190)

These operations are clearly pre-associative and pre-Lie relative to mu and lu,
since they relate to the latter according to:

mupA‚,B‚q ” dmepA‚,B‚q `mdepA‚,B‚q (191)

lupA‚,B‚q ” dlepA‚,B‚q ´ dlepB‚,A‚q (192)

while verifying the pre-associativity (resp. pre-Lie) identities:

anti.dmepA‚,B‚q ” mdepanti.A‚, anti.B‚q

dmepdmepA‚,B‚q,C‚q ” dmepA‚,dmepB‚,C‚qq ` dmepA‚,mdepB‚,C‚qq

mdepA‚,mdepB‚,C‚qq ” mdepdmepA‚,B‚q,C‚q `mdepmdepA‚,B‚q,C‚q

28Nonetheless, they admit a preferred expansion in the ’binary tree’ basis.
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dlepdlepA‚,B‚q,C‚q´dlepA‚,dlepB‚,C‚qq ” dlepdlepA‚,C‚q,B‚q´dlepA‚,dlepC‚,B‚qq

Though skin-deep, the above identities, when iterated and combined with the
functional equation (168) of the flexion unit E‚, produce far-reaching conse-
quences, as we shall soon find out. But before proceeding, let us for clarity spell
out the analytical expressions of dme, mde, dle:

C‚ “ dmepA‚,B‚q ô Cw “
w1w2

“w
ÿ

i,j

E
p
u1`...`ur

vi
q
E
p
u1`r1

`...`ur

vj´vi
q
Aw

1

i Bw2

j (193)

C‚ “ mdepA‚,B‚q ô Cw “
w1w2

“w
ÿ

i,j

E
p
u1`...`ur1
vi´vj

q
E
p
u1`...`ur

vj
q
Aw

1

i Bw2

j (194)

C‚ “ dlepA‚,B‚q ô Cw “
w1w2

“w
ÿ

i,j

$

&

%

`E
p
u1`...`ur

vi
q
E
p
u1`r1

`...`ur

vj´vi
q
Aw

1

i Bw2

j

´E
p
u1`...`ur1
vi´vj

q
E
p
u1`...`ur

vj
q
Bw1

i Aw
2

j

(195)

Here r, r1, r2 denote the lengths of the sequences w,w1,w2, so that r “ r1`r2.

5.3 Semi-inflected operations on Flex pPa‚q and Flex pPi‚q.

The most important flextion units are Pa‚ and Pi‚, followed by the approximate
units Qa‚ and Qi‚. But whereas the derivation de reduces on Flex pPa‚q to an
elementary multiplication da

da.Mw ” pu1 ` ¨ ¨ ¨ ` urqM
w (196)

its specialisation di on Flex pPi‚q is less elementary. Indeed, although the deriva-
tive di .M‚ “

ř

M‚
i and its components M‚

i may also be calculated from a
general functional formula29

di.Mw ”

r´1
ÿ

k“0

1

k!
σk̀ 1pv1, ..., vrq pBv1`...`Bvr q

kMw (197)

Mi
w
“ vri

`

r´1
ÿ

k“0

1

k!
σkpv1, ..., pvi, ..., vrq pBv1`...`Bvr q

kMw
˘

j ­“i
ź

1ďjďr

1

vi´vj

the difference is not merely one of complexity. It also impacts the extension
of da, di and their offspring to larger spaces. Thus, while the relation (196)
immediately leads to operations dma, mda (pre-associative) and dla (pre-Lie)
defined on the whole of BIMU

dmapA‚, B‚q :“ da´1 mupdaA‚, B‚q (198)

mdapA‚, B‚q :“ da´1 mupA‚,daB‚q (199)

dlapA‚, B‚q :“ da´1 lupdaA‚, B‚q (200)

29where σkpv1, ..., vrq denotes the kth symmetric function of the indices vj , and v̂i signals
the removal of vi:

ř

0ďkďr σkpv1, ..., vrq t
k :“

ś

1ďjďrp1` t vjq

39



the relation (197) makes full sense only on the subspace BIMU v-v of BIMU
consisting of bimoulds of the form:

Mw “
ÿ

1ďiďrpwq

P pviqM
w
i with M

p
u1

v1́ v0

,...,
,...,

ur
vŕ v0

q
”M p

u1
v1

,...,
,...,

ur
vr
q
@v0 (201)

It leads there to operations dmi, mdi (pre-associative) and dli (pre-Lie):

C‚ “ dmipA‚, B‚q ðñ Cw “
w1w2

“w
ÿ

i,j

P pviqP pvj´viqA
w1

i Bw
2

j (202)

C‚ “ mdipA‚, B‚q ðñ Cw “
w1w2

“w
ÿ

i,j

P pvi´vjqP pvjqA
w1

i Bw
2

j (203)

C‚ “ dlipA‚, B‚q ðñ Cw “
w1w2

“w
ÿ

i,j

#

`P pviqP pvj´viqA
w1

i Bw
2

j

´P pvi´vjqP pvjqB
w1

i Aw
2

j

(204)

A further point deserves emphasizing, regarding the approximate units Qa‚,Qi‚.
Although dma, mda, dla or dmi, mdi, dli may be made to act on Flex pQa‚q or
Flex pQi‚q, their action there is clearly not internal, nor can it me made so by
tampering with the definitions.30 This fact considerably complicates the inves-
tigation of the bimoulds tal‚{til‚ (– the trigonometric bisymmetrals, essentially
equivalent to a Drinfeld associator–) in comparison with the simpler bimoulds
pal‚{pil‚ (– the polar bisymmetrals, key to understanding flexion dimorphy–)

5.4 Alternality-preserving pre-Lie brackets.

Let us now revert to the general flexion algebra Flex pE‚q. The pre-Lie brackets
preari, preali hithertoo associated with the alternality-preserving Lie brackets
ari,ali, themselves fail the preserve alternality.

prearipA‚, B‚q :“ aritpB‚qA‚ `mupA‚, B‚q (205)

prealipA‚, B‚q :“ alitpB‚qA‚ `mupA‚, B‚q (206)

But the modified pre-Lie brackets dari, dali do preserve alternality:

daripA‚, B‚q :“ aritpB‚qA‚ ` dlepA‚, B‚q (207)

dalipA‚, B‚q :“ alitpB‚qA‚ ` dlepA‚, B‚q (208)

They have the further advantage (especially dari) of admitting a simple inter-
pretation in terms of tree operations.

30That impossibility is easily proven. It is also worth noting that FlexpQa‚q and FlexpQi‚q
are not isomorphic, unlike FlexpQa‚q and FlexpQi‚q.
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5.5 The counter-alternaltors câlt , cǎlt , cālt .

We first require a trinary operation mdme, thus defined:

mdme pA‚, B‚, C‚q :“ de´1.mupA‚,de.B‚, C‚q (209)

” mdepA‚,dmepB‚, C‚qq (210)

” dmepmdepA‚, B‚q, C‚q (211)

We can now proceed with the definition of the counter-alternators câlt , cǎlt ,
cālt . As usual with iterated binary operations, the arrows denote the direction
of the multibrackets: rightward or leftward.

Definition 5.1 (Counter-alternators.)

câltH‚pA
‚
1, ..., A

‚
rq :“

ÿ

0ďiďr

p´1qr´imdme
`
Ð

dmepA‚1, .., A
‚
i q, H

‚,
Ñ

mdepA‚i`1, .., A
‚
rq
˘

(212)

cǎltH‚pA
‚
1, ..., A

‚
rq :“

ÿ

0ďiďr

p´1qr´imdme
`
Ñ

mdepA‚1, .., A
‚
i q, H

‚,
Ð

dmepA‚i`1, .., A
‚
rq
˘

(213)

cāltH‚pA
‚
1, ..., A

‚
rq :“

ÿ

0ďiďr

p´1qr´i r!

i! pr´iq!
mdme

`

mupA‚1, .., A
‚
i q, H

‚,mupA‚i`1, .., A
‚
rq
˘

(214)

etc. Of course, when the argument of a multibracket is the empty sequence, the

result must be taken to be unit mould. Thus
Ð

dmepHq “
Ñ

mdepHq “ 1‚ and:

câltH‚pA
‚
1q :“

$

&

%

`mdmep
Ð

dmepA‚1q, H
‚, 1 ‚q

´mdmep1 ‚, H‚,
Ñ

mdepA‚1qq
(215)

câltH‚pA
‚
1, A

‚
2q :“

$

’

’

&

’

’

%

`mdmep
Ð

dmepA‚1, A
‚
2q, H

‚, 1 ‚q

´mdmep
Ð

dmepA‚1q, H
‚,

Ñ

mdepA‚2qq

`mdmep1 ‚, H‚,
Ñ

mdepA‚1, A
‚
2qq

(216)

Note that since
Ð

dmepA‚1q “
Ñ

mdepA‚1q “ A‚1, for r “ 1 the three counter-
alternators câltH‚pA

‚
1q, cǎltH‚pA

‚
1q, cāltH‚pA

‚
1q all reduce to´dlepH‚, A‚1q. But

as soon as r ě 2 they cease to be expressible in terms of the sole pre-Lie product
dle and requires dme and mde.

It is also worth noting that there is complete rigidity in the definition of

the counter-alternators. In particular no formula involving
Ñ

dme,
Ð

mde instead of
Ð

dme,
Ñ

mde would yield interesting results.

Remark: The counter-alternators are also capable of an inductive construction
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by depth r. Thus for câlt we have:

câltH‚pA
‚
1, .., A

‚
rq :“

$

&

%

´dlepH‚,
Ð

dmepA‚1, .., A
‚
rqq

´
ř

1ďjăr

Ð

dme
`

câltH‚pA
‚
1, .., A

‚
j q, A

‚
j`1, .., A

‚
rq
˘

(217)

”

$

&

%

p´1qr dlepH‚,
Ñ

mdepA‚1, .., A
‚
rqq

´
ř

1ďjărp´1qj
Ñ

mde
`

A‚1, .., A
‚
j q, câltH‚pA

‚
j`1, .., A

‚
rq

(̆218)

5.6 The symmetrical alternaltors sâlt , sǎlt , sālt .

The symmetrical alternators can be defined directly, by full symmetrization of
the arguments in the counter-alternators:

Definition 5.2 (Alternators.)

sâltH‚pA
‚
1, .., A

‚
rq :“

ÿ

σPSr

câltH‚pA
‚
σp1q, .., A

‚
σprqq (219)

sǎltH‚pA
‚
1, .., A

‚
rq :“

ÿ

σPSr

cǎltH‚pA
‚
σp1q, .., A

‚
σprqq (220)

sāltH‚pA
‚
1, .., A

‚
rq :“

ÿ

σPSr

cāltH‚pA
‚
σp1q, .., A

‚
σprqq (221)

Two of them, sâlt and sālt , also admit an inductive construction:

sâltH‚pA
‚
1, .., A

‚
rq :“

#

´dle
`

sâltH‚pA
‚
1, .., A

‚
r´1q, A

‚
r

˘

`
ř

1ďjăr sâltH‚
`

A‚1, ..,
pA‚j , .., A

‚
r´1,dlepA‚j , A

‚
rq
˘ (222)

sāltH‚pA
‚
1, .., A

‚
rq :“ ´dle

`

sāltH‚pA
‚
1, ..,

pA‚j , .., A
‚
rq, A

‚
j

˘

(223)

Remarkably, no such induction exists for sǎlt .

The symmetrical alternator purely in terms of dle:
To state the result, we once again require the specific combinations of leftward
and rightward multiple pre-Lie brackets already encountered in the ’optimal
formulae’ of §2.2, but this time with distinct arguments A‚i . So we set:

ler1,...,rspA
‚
1, ..., A

‚
rq :“

Ñ

dle
`
Ð

dlepA1
q, ...,

Ð

dlepAs
q
˘

(224)

with

$

’

&

’

%

A“A1...As
“pA‚1, ..., A

‚
rq

lengthpAi
q “ ri

r1 ` ...` rs “ r

We alse require, to express the coefficients of our expansions, two symmetral
moulds sâ‚ and sǎ‚:

sâs1,...,sr “ p´1qr
ź

1ďiďr

1

s1 ` ...` si
(225)

sǎs1,...,sr “ p´1qs1`...`sr
ź

1ďiďr

1

si ` ...` sr
(226)
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Proposition 5.1 (dle-expansions of the alternators.)

sâltA‚0pA
‚
1, .., A

‚
rq :“

ÿ

σPSprq

ř

ri“r
ÿ

1ďsďr

sâr1,...,rs le1`r1,...,rspA
‚
0, A

‚
σp1q, ..., A

‚
σprqq (227)

sǎltA‚0pA
‚
1, .., A

‚
rq :“

ÿ

σPSprq

ř

ri“r
ÿ

1ďsďr

sǎr1,...,rs le1`r1,...,rspA
‚
0, A

‚
σp1q, ..., A

‚
σprqq (228)

sāltA‚0pA
‚
1, .., A

‚
rq :“

ÿ

σPSprq

ř

ri“r
ÿ

1ďsďr

p´1qr
Ñ

le pA‚0, A
‚
σp1q, ..., A

‚
σprqq (229)

5.7 Main properties of the alternators:

Recall that a mould or bimould A‚ is said to have alternality codegree δ if it
meets either of the two equivalent conditions:

ÿ

wPshapw1,...,wδ`1
q

Aw ” 0 p@ w1, ...,wδ`1q (230)

deg
`

ÿ

σPSr

Awσp1q,...,wσprqD1 . . . Dr

˘

” δ p@ D1, ..., Drq (231)

Here, w runs through all shuffle products of δ`1 non-empty sequences wj , and
the Dj denote independent abstract derivations.

Proposition 5.2 (Properties of the strict counter-alternators câlt , cǎlt)
Let here calt, salt stand for either câlt, sâlt or cǎlt, sǎlt, and consider a superpo-
sition Bw1,...,wd of counter-alternators involving the same arguments A‚1, .., Ar
in different arrangements:

B‚ :“
ÿ

σPSr

cσ caltH‚pAσp1q, ..., Aσprqq with

$

’

’

’

&

’

’

’

%

cσ P C
depthpH‚q “ d0

depthpA‚i q “ di

d “ d0 ` d1 ` ...` dr

(232)

(i) The less alternal Bw1,...,wd is as a function of pA‚1, ..., A
‚
rq, the more alternal

it is as a function of pw1, ..., wdq - which of course is why calt is called a counter-
alternator.
(ii) More precisely, let the bimoulds H‚ and A‚i have alternality co-degrees δ0
and δi (as functions of their indices w) and let B‚ have alternality co-degree
δ˚ as a function of its bimould arguments pA‚1, ..., A

‚
rq, then that same B‚, as a

function of its indices w “ pw1, ..., wdq, has alternality co-degree

δ “ δ0 ` δ1 ` ...` δr ´ δ˚ (233)

(iii) In particular, if cσ ” 1 @σ, then δ˚ “ r and B‚ reduces to the symmetrical
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alternator saltH‚pA
‚
1, ..., A

‚
rq. As a function of its indices w “ pw1, ..., wdq it

has therefore co-degree δ “ δ0 ` δ1 ` ...` δr ´ r. If moreover, the bimoulds H‚

and A‚i are all alternal, then δ0 “ δi “ 1 so that δ “ 1, meaning that B‚ also is
alternal. In that sense, it may be said that salt preserves alternality.

Proposition 5.3 (Properties of the loose counter-alternator cālt) .
The same holds for cālt, but with (233) giving way to a simple inequality

δ ď δ0 ` δ1 ` ...` δr ´ δ˚ (234)

except of course when the right-hand side is 1, in which case δ has to be 1 also.
This is exactly what happens when cσ ” 1 and all bimould inputs H‚, A‚i are
alternal. Thus, although cālt may be dismissed as a loose counter-alternator31,
sālt is very much a strict alternator.32

5.8 Alternality projectors:

For a better grasp of the phenomenon of ’counter-alternativity’, let us decom-
pose the algebra M of all moulds into subspaces M:d consisting of d-alternal bi-
moulds expressible as fully symmetrized sums of mu-products of alternal moulds.
Similarly, let us decompose the algebra E freely generated by abstract degree-1
derivations e1, e2... into subspaces E;d spanned by degree-d derivations express-
ible as fully symmetrized products of d degree-1 derivations (those in turn being
expressible as multiple Lie-brackets of the generators e1, e2....

M “ ‘1ďd M:d , pr:d : M projection
ÝÑ M:d (235)

E “ ‘1ďd E:d , pr:d : E projection
ÝÑ E:d (236)

Due to (231), the projectors pr :d and pr :d are mutually transposed operators,
and necessarily of the form:

pr:dpM
‚q “M‚

:d with Mw1,...,wr
:d “

ÿ

σPSr

hr,dpσqM
wσp1q,...,wσp1q (237)

pr:dpe‚q “ e:d
‚ with pe1...erq

:d “
ÿ

σPSr

hr,dpσ
´1q eσp1q...eσprq (238)

The simplest way to calculate the coefficients hr,dpσq is to consider symmetral
moulds S‚ and form their tth powers (respective to mould mutiplication:

pS‚qˆt :“ 1‚ `
ÿ

1ďn

tpt´ 1q...pt´ n` 1q

n!

n times

pS‚ ´ 1‚q ˆ ¨ ¨ ¨ ˆ pS‚ ´ 1‚q (239)

31This is essentially a consequence if its definition involving the uninflected product mu
instead of the inflected midme,mde.

32This difference explains why, whereas cālt cannot replace cǎlt or câlt as counter-
alternator, sālt often proves – due to the greater simplicity of its definition – a more convenient
alternator than sâlt or sǎlt .
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We then take advantage of the symmetrality relations to linearize all terms
Sw

1

...Sw
n

present on the right-hand side of (239). Next, we collect all terms
in front of the powers td: their sum is garanteed to be d-alternal. This gives us
the action of the projector pr :d not just on symmetral moulds, but also, due to
the universality and uniqueness of the expansion (239), on all moulds.33

We can now re-interpret and sharpen Proposition 5.1 and 5.2.

Proposition 5.4 (Measuring counter-alternality) .
Let calt denote any of the three counter-alternators. Then, for any mould B‚

of the form

B‚ :“
ÿ

σPSr

hr,δ˚pσq caltH‚pA
‚
σp1q, ..., A

‚
σprqq with

#

H‚ PM:δ0

A‚i PM:δi

(240)

the inclusion holds:

B‚ PM:δ ‘M:δ´2 ‘M:δ´4 . . . with δ :“ δ0`δ1`...`δr ´ δ˚ (241)

The minus sign in front of δ˚ is precisely the algebraic expression of ’counter-
alternality’. As for the absence of components M:δ´1, M:δ´3 etc, it simply
follows from the fact that all elements M‚ of M:d verify antiM‚ ” p´1qd̀ 1M‚.34

Here are two elementary but useful lemmas about the stability properties of
d-alternality:

Lemma 5.1 We have the following inclusions:

mupM:d1 ,M:d2q Ă ‘0ďδM:d1`d2´δ

lupM:d1 ,M:d2q Ă ‘0ďδM:d1`d2´2 δ

dme
`

Flex:d1pEq,Flex:d2pE
˘

Ă ‘0ďδFlex:d1`d2´δpEq

mde
`

Flex:d1pEq,Flex:d2pE
˘

Ă ‘0ďδFlex:d1`d2´δpEq

dle
`

Flex:d1pEq,Flex:d2pE
˘

Ă ‘0ďδFlex:d1`d2´1´δpEq

Lemma 5.2 Let Hw :“ hpu1v1`...`urvrq for some function h. Let r1`r2 “ r
and denote by Hwr1,r2 the sum of all terms resulting from shuffling the r1 first
ui’s with the r2 last ui’s while leaving the vi’s in place. Next, take d1 ď r1,
d2 ď r2 and let the projectors pr:d1 and pr:d2 act respectively on the variables
u1, ..., ur1 and ur1`1, ..., ur of Hwr1,r2 . Then the result, viewed as a function of

the sole vi’s, is in BIMU:d1`d2 . In other words:

pr:d
v .pru

1

:d1 .pru
2

:d2 .shaur1,r2 .H
w “

#

Hw if d “ d1 ` d2

0 otherwise

33For details, see ”Combinatorial tidbits” on our homepage.
34Recall that anti denotes the reversal of the sequence ‚.
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Remark 1: If we were to replace hr,δ˚pσq by hr,δ˚pσ
´1q in (240), we couldn’t

draw any definite conclusions about the alternality co-degree of B‚. This un-
derscores the (non-obvious) fact that the arguments A‚j of a counter-alternator
must be treated like the indices wj of a mould rather than like the factors Dj

of a product of derivations.

Remark 2: The elementary projectors

pr:d : Mw1,...,wr ÞÑMw1,...,wr
:d “

ÿ

σPSr

hr,dpσqM
wσp1q,...,wσp1q

of BIMU r onto BIMU r,d cease to act internally on Flex rpE
‚q from r “ 4 onward.

For r “ 4, we still have elementary projectors of Flex rpE
‚q onto Flex r,dpE

‚q, of
the form:

pr˚:d : Mw1,...,wr ÞÑMw1,...,w4

:d “
ÿ

σPS4

h˚4,dpσqM
wσp1q,...,wσp4q

but with pr :1 ­“ pr˚:1 and pr :3 ­“ pr˚:3. For comparison, here are the coefficients
h4,dpσq and h˚4,dpσq in vis-a-vis:

σpwq | h4,1 h˚4,1 | h4,2 h˚4,2 | h4,3 h˚4,3 | h4,4 h˚4,4 |

w1, w2, w3, w4 | 6 6 | 11 11 | 6 6 | 1 1 |

w1, w2, w4, w3 | ´2 ´6 | ´1 ´1 | 2 6 | 1 1 |

w1, w3, w2, w4 | ´2 6 | ´1 ´1 | 2 ´6 | 1 1 |

w1, w3, w4, w2 | ´2 6 | ´1 ´1 | 2 ´6 | 1 1 |

w1, w4, w2, w3 | ´2 ´6 | ´1 ´1 | 2 6 | 1 1 |

w1, w4, w3, w2 | 2 6 | ´1 ´1 | ´2 ´6 | 1 1 |

w2, w1, w3, w4 | ´2 ´6 | ´1 ´1 | 2 6 | 1 1 |

w2, w1, w4, w3 | 2 ´6 | ´1 ´1 | ´2 6 | 1 1 |

w2, w3, w1, w4 | ´2 ´6 | ´1 ´1 | 2 6 | 1 1 |

w2, w3, w4, w1 | ´2 ´6 | ´1 ´1 | 2 6 | 1 1 |

w2, w4, w1, w3 | 2 ´6 | ´1 ´1 | ´2 6 | 1 1 |

w2, w4, w3, w1 | 2 ´6 | ´1 ´1 | ´2 6 | 1 1 |

w3, w1, w2, w4 | ´2 6 | ´1 ´1 | 2 ´6 | 1 1 |

w3, w1, w4, w2 | ´2 6 | ´1 ´1 | 2 ´6 | 1 1 |

w3, w2, w1, w4 | 2 6 | ´1 ´1 | ´2 ´6 | 1 1 |

w3, w2, w4, w1 | 2 6 | ´1 ´1 | ´2 ´6 | 1 1 |

w3, w4, w1, w2 | ´2 6 | ´1 ´1 | 2 ´6 | 1 1 |

w3, w4, w2, w1 | 2 6 | ´1 ´1 | ´2 ´6 | 1 1 |

w4, w1, w2, w3 | ´2 ´6 | ´1 ´1 | 2 6 | 1 1 |

w4, w1, w3, w2 | 2 6 | ´1 ´1 | ´2 ´6 | 1 1 |

w4, w2, w1, w3 | 2 ´6 | ´1 ´1 | ´2 6 | 1 1 |

w4, w2, w3, w1 | 2 ´6 | ´1 ´1 | ´2 6 | 1 1 |

w4, w3, w1, w2 | 2 6 | ´1 ´1 | ´2 ´6 | 1 1 |

w4, w3, w2, w1 | ´6 ´6 | 11 11 | ´6 ´6 | 1 1 |
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For r ě 5 we no longer have projectors of Flex rpE
‚q onto Flex r,dpE

‚q expressible
purely via index substitutions. In place of these elementary projectors, we must
resort to the partially symmetrized alternators of the next subsection.35

5.9 Partially symmetrized alternators:

Definition 5.3 (d-alternators.) For 1 ď d ď r we set:

câltr,dH‚pA
‚
1, ..., A

‚
rq :“

ÿ

σPSr

hr,1`r´dpσq câltH‚pA
‚
σp1q, ..., A

‚
σprqq (242)

cǎltr,dH‚pA
‚
1, ..., A

‚
rq :“

ÿ

σPSr

hr,1`r´dpσq cǎltH‚pA
‚
σp1q, ..., A

‚
σprqq (243)

cāltr,dH‚pA
‚
1, ..., A

‚
rq :“

ÿ

σPSr

hr,1`r´dpσq cāltH‚pA
‚
σp1q, ..., A

‚
σprqq (244)

with the coefficients hr,δpσq associated with the projectors pr :d: see (237).

Proposition 5.4 tells us, inter alia, that when we insert alternal arguments H‚

and A‚i into our d-alternators, the result is going to be a d-alternal bimould M‚.
It is therefore tempting to try to rephrase the definition of the d-alternators in a
way that would make their signature property manifest. This is indeed possible,
due to:

Proposition 5.5 (d-alternality made manifest) .
The d-alternators are capable of an equivalent definition, of type:

câltr,dH‚pA
‚
1, ..., A

‚
rq ”

ÿ

σPSr

hr,1`r´dpσq kâltr,dH‚pA
‚
σp1q, ..., A

‚
σprqq (245)

cǎltr,dH‚pA
‚
1, ..., A

‚
rq ”

ÿ

σPSr

hr,1`r´dpσq kǎltr,dH‚pA
‚
σp1q, ..., A

‚
σprqq (246)

cāltr,dH‚pA
‚
1, ..., A

‚
rq ”

ÿ

σPSr

hr,1`r´dpσq kāltr,dH‚pA
‚
σp1q, ..., A

‚
σprqq (247)

where each pr`1q-linear term kaltr,dH‚pA
‚
σp1q, ..., A

‚
σprqq can be written as a finite

sum of elementary summands involving the operations dle,dme,mde respectively
r0, r1, r2 times, with r0 “ r`1´d and r1`r2 “ d´1.

Unfortunately, there exist scores of equivalent expressions for kaltr,dH‚p...q, and
so far we failed to come up with a clearly privileged choice, except in the two
extreme cases, namely when d “ 1 or d “ r. Indeed:

Proposition 5.6 (1-alternality and r-alternality made manifest) .

The 1-alternators caltr,dH‚ coincide with the alternators saltr,dH‚ of Definition 5.2,
and for these the formulae (227)-(229) clearly amount to expansions of type

35usually with the index H‚ :“ E‚.
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(245)-(247). As for the r-alternators, they too admit expansions of such type,
to wit:

kâltr,rH‚pA
‚
1, .., A

‚
rq :“

ÿ

1ďsďr

p´1qs´1
Ñ

dme
´

dle
`

H‚,
Ð

dmepA1q
˘

,
Ð

dmepA2q, ...,
Ð

dmepAsq
¯

kǎltr,rH‚pA
‚
1, .., A

‚
rq :“

ÿ

1ďsďr

p´1qs´1
Ñ

dme
´

dle
`

H‚,
Ñ

mdepA1q
˘

,
Ñ

mdepA2q, ...,
Ñ

mdepAsq
¯

kāltr,rH‚pA
‚
1, .., A

‚
rq :“

ÿ

1ďsďr

p´1qs´1dme
´

dle
`

H‚,mupA‚1, .., A
‚
sq
˘

,mupA‚s`1, .., A
‚
rq

¯

5.10 Complement: dimensions of the component spaces.

Let us illustrate the dual gradations by degree and codegree, while focusing
on the former, for greater ease of notations. Let E be the associative algebra
freely generated by non-commutative variables e1, e2... and for any sequence
s “ ps1, ..., snq let Es be the subspace of E spanned by elements of degree s1 in
e1, s2 in e2 etc. Es admits a natural decomposition E “ ‘1ďδď|s|Esδ spanned by
elements of ’differential degree’ δ 36. Es1 is simply the subspace of Lie elements,
with dimension

dimpEs1q “
1

s

ÿ

d|si

µpdq
ps{dq!

ps1{dq!...psn{dq!
ps :“ |s|, µ “ mobius functionq

For δ ě 2, Esδ is defined as follows.We consider all δ-partitions Sδ of s:

Sδ : s “ s1 ` ¨ ¨ ¨ ` sδ with si “ psi1, ..., s
i
nq and sik ě 0 but |si| ě 1

We then define Esδ as the sum, for all δ-partitions of s, of the symmetrized

products of the Lie spaces Esi1 :

Esδ :“ ‘SδsymmetrizepEs
1

1 Es
2

1 . . .Es
δ

1 q (248)

Here, symmetrizepEs11 Es21 . . .Esδ1 q obviously denotes the space spanned by all
the symmetrized products of Lie elements e1, e2, ..., eδ, with each ei running

through some basis of Esi1 . The resulting space Esδ does not depend on the
choice of those bases. Moreover:

dimpEsδq “
ÿ

Sδ

dimpEs
i

1 q . . . dimpEs
δ

1 q ;
ÿ

δ

dimpEsδq “ dimpEsq “
s!

s1! . . . sn!

In the case of distinct generators, i.e. for s “ p1, ..., 1q pr timesq, we get:

ÿ

1ďdďr

dimpE1,...,1
d xd “ x px` 1q . . . px` d´ 1q

36
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To illustrate the general case, let us consider the sequence s “ p1, 1, 2q. We then
get the decomposition Es “ ‘δEs1 with

dimpEs1q “ 3 , dimpEs2q “ 5 , dimpEs3q “ 3 , dimpEs1q “ 1

and here is a possible choice of basis elements εδ,k:

basispEs1q :

$

’

&

’

%

ε1,1 “ rrre1, e3s, e3s, e2s,

ε1,2 “ rre1, e3s, re2, e3ss,

ε1,3 “ re1, rre2, e3s, e3ss

basispEs2q :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε2,1 “ rre3, e1s, e2s.e3 ` e3.rre3, e1s, e2s,

ε2,2 “ rre3, e2s, e1s.e3 ` e3.rre3, e2s, e1s,

ε2,3 “ rre1, e3s, e3s.e2 ` e2.rre1, e3s, e3s,

ε2,4 “ rre2, e3s, e3s.e1 ` e1.rre2, e3s, e3s,

ε2,5 “ re1, e3s.re2, e3s ` re2, e3s.re1, e3s

basispEs3q :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε3,1 “ re1, e2s.e3.e3 ` e3.re1, e2s.e3 ` e3.e3.re1, e2s,

ε3,2 “

#

re1, e3s.e2.e3 ` e2.re1, e3s.e3 ` e2.e3.re1, e3s

`re1, e3s.e3.e2 ` e3.re1, e3s.e2 ` e3.e2.re1, e3s,

ε3,3 “

#

re2, e3s.e1.e3 ` e1.re2, e3s.e3 ` e1.e3.re2, e3s

`re2, e3s.e3.e1 ` e3.re2, e3s.e1 ` e3.e1.re2, e3s

basispEs4q : ε4,1 “

$

’

&

’

%

e1.e2.e3.e3 ` e1.e3.e2.e3 ` e1.e3.e3.e2 ` e2.e1.e3.e3

`e2.e3.e1.e3 ` e2.e3.e3.e1 ` e3.e1.e2.e3 ` e3.e1.e3.e2

`e3.e2.e1.e3 ` e3.e2.e3.e1 ` e3.e3.e1.e2 ` e3.e3.e2.e1

The bottomline is this:
(i) choosing a basis for all Esd entirely reduces to choosing a basis for all Es1
(ii) but picking a basis for any Es1 necessarily involves some arbitrariness.

6 Tree-indexed bases: binary, ordered, stacked.

6.1 Binary and ordered trees.

Let BTr denote the set of binary trees with r nodes and one root, and let OTr
be the set of all ordered trees with r nodes and one or more than one root. It
is well-known that both have the same number of elements:

#pBTrq “ #pOTrq “ κr :“
2 r!

r! pr ` 1q!
(249)

while the subset of OTr consisting of one-rooted trees has κr´1 elements.
For convenient enumeration, we introduce on the elements btr,k of BTr and
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otr,k of OTr various orderings37 that reflect the trees’ inductive construction:

btr,k “ hpbtr1,k1 ,btr2,k2q with

#

r1 ` r2 “ r ´ 1

1 ď ki ď κri
(250)

otr,k “

$

’

’

’

’

&

’

’

’

’

%

either hpotr1,k1 , ..., otrs,ksq with

#

r1 ` ¨ ¨ ¨ ` rs “ r´1

1 ď s , 1 ď ki ď κri´1

or jpotr1,k1 , ..., otrs,ksq with

#

r1 ` ¨ ¨ ¨ ` rs “ r

2 ď s , 1 ď ki ď κri´1

(251)

The gothic h (for heave) in (250) signals that btr1,k1 and btr2,k2 get attached
to a root as left- and right-leaning branches, to produce a new binary tree. That
same h in (251) means that the various btri,ki get attached to a root, as separate
branches ordered from left to right, to produce a new, one-rooted ordered tree.
Lastly, the gothic j (for juxtapose) means that the btri,ki simply get juxtaposed,
resulting in an s-rooted, ordered tree.

Although we impose 1 ď ki ď κri in (250) and 1 ď ki ď κri´1 in (??), the
effect is the same: it allows only one-rooted trees inside h or j.

We can now return to the task of tree indexation. A quick, if artificial-
looking way of going about this is by associating with each tree a function germ
at `8. Here are the most useful choices, with the monomials given in order of
decreasing dominance:

btr,k ÞÑ gbtr,kpxq :“ ´
`r1

x
`
r2

x2

˘

` e´x
`k1

x
`
k2

x2

˘

(252)

btr,k ÞÑ gbtr,kpxq :“ ´
`r1

x
`
r2

x2

˘

` e´x
`

k2 x
2 ` k1x

˘

(253)

otr,k ÞÑ gotr,kpxq :“ ε ex ´
`r1

x
` ...`

rs
xs

˘

` e´x
`k1

x
` ...`

ks
xs

˘

(254)

otr,k ÞÑ gotr,kpxq :“ ε ex ´
`r1

x
` ...`

rs
xs

˘

` e´x
`

ks x
s ` ...` k1x

˘

(255)

otr,k ÞÑ gotr,kpxq :“ ε ex ` xs ´
`r1

x
` ...`

rs
xs

˘

` e´x
`k1

x
` ...`

ks
xs

˘

(256)

otr,k ÞÑ gotr,kpxq :“ ε ex ` xs ´
`r1

x
` ...`

rs
xs

˘

` e´x
`

ks x
s ` ...` k1x

˘

(257)

with ε “

#

0 if otr,k is one-rooted , i .e. of the form hp. . . q

1 if otr,k is many-rooted , i .e. of the form jp. . . q

We can then endow our trees with the k-indexation (1 ď k ď κr) that mirrors
the germs’ behaviour at infinity:

on BTr : tk1 ă k11u ðñ gbtr,k1pxq ă gbtr,k11pxq for 1 ăă x (258)

on OTr : tk1 ă k11u ðñ gotr,k1pxq ă gotr,k11pxq for 1 ăă x (259)

Different applications require different orderings. Whenever necessary, we shall
specify which ordering we are working with.

37For clarity, let us speak of orderings when comparing tres, and of orders when comparing
edges issuing from the same node in a given tree.
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6.2 Binary trees for basis indexation.

To any basis tbtr,k, 1ď k ďκru of BTr we associate a basis tbte‚r,k, 1ď k ďκru
of Flex rpE

‚q by means of inductions that run parallel to ??:

bte‚1,1 “ E‚ ; bte‚r,k “ mdmepbte‚r1,k1 ,E
‚, bte‚r2,k2q (260)

with the familiar semi-inflected ternary operation:

mdme pA‚, B‚, C‚q :“ de´1.mupA‚,de.B‚, C‚q (261)

We denote by tbta‚r,k, 1ďkďκru and tbti‚r,k, 1ďkďκru the corresponding bases
of Flex rpPa‚q and Flex rpPi‚q.

6.3 Ordered trees for basis indexation.

To any basis totr,k, 1ďkďκru of OTr we associate three variously accentuated
sets tote‚r,k, 1ď k ď κru of Flex rpE

‚q by inductions that run parallel to (251).

Only the first two, tôte‚r,k, 1ď kď κru and tǒte‚r,k, 1ď kď κru, will turn out to
be proper bases of Flex rpE

‚q.

ôte‚1,1 “ E‚ , ôte‚r,k “

#

câltE‚pôte
‚
r1,k1 , ..., ôte

‚
rs,ksq if k ď κr´1

Ð

dme pôte‚r1,k1 , ..., ôte
‚
rs,ksq if k ą κr´1

(262)

ǒte‚1,1 “ E‚ , ǒte‚r,k “

#

cǎltE‚pǒte
‚
r1,k1 , ..., ǒte

‚
rs,ksq if k ď κr´1

Ð

dme pǒte‚r1,k1 , ..., ǒte
‚
rs,ksq if k ą κr´1

(263)

ōte‚1,1 “ E‚ , ōte‚r,k “

#

cāltE‚pōte
‚
r1,k1

, ..., ōte‚rs,ksq if k ď κr´1
Ð

dme pōte‚r1,k1 , ..., ōte
‚
rs,ks

q if k ą κr´1

(264)

Of course, when dealing with Flex rpPa‚q or Flex rpPi‚q, we revert from gothic
to roman, and change e to a or i.

Remark: In view of the systematic exchange
Ð

dme Ø
Ñ

mde in the definitions

of the first two alternators (see §5.5), one might expect
Ð

dme and
Ñ

mde on the
lower right-hand sides of (262) and (262) respectively — or the reverse! In fact,
these choices would work fine, and still lead to proper bases, but with them the
formulae for basis change would be slightly more awkward.

6.4 Stacked trees for basis indexation.

Stacked trees aren’t trees proper, but rather linear combinations of ordered trees
subject to definite alternation conditions on their branches. Before defining
them, we require an auxiliary construction. Let E be the associative algebra
freely generated by non-commutative variables e1, e2..., as in §5.10, and for any
sequence s “ ps1, ..., snq let Es be the subspace of E spanned by elements of
degree s1 in e1, s2 in e2 etc. Es admits a natural decomposition E “ ‘1ďδď|s|Esδ
spanned by elements of ’differential degree’ δ.
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Construct, as in §5.10, a basis of Esδ , consisting of elements εδ,i

εδ,i “
ÿ

σ

ni,σ eσp1q.eσp2q . . . eσpsq with

#

ni,σ P Z
σ : t1, ..., su Ñ t1, ..., nu

(265)

and consider the dual expansion in M:

mδ,i “
ÿ

σ

n˚i,σmσp1q.mσp2q . . .mσpsq with

#

n˚i,σ P Z
σ : t1, ..., su Ñ t1, ..., nu

(266)
We are now in a position to inductively construct a complete system STr of

stacked trees and, parallet with it, convenient bases of Flex rpE
‚q. However, we

must now sharply distinguish the one-rooted stacked trees, to which there will
correspond dme-generators of the Flex pE‚q, and the many-rooted stacked trees,
to which there will correspond dme-products of generators, which together shall
provided a graded basis of Flex pE‚q.

One-rooted stacked trees with r nodes and co-degree d are inductively defined
as the superposition: 38

str,d,k “
ÿ

σ

n˚i,σ hpstrσp1q,dσp1q,kσp1q , ..., strσpsq,dσpsq,kσpsqq (267)

with “ r “ 1` r1 ` ¨ ¨ ¨ ` rs and d “ 1´d0`d1`...`ds (268)

We have here the same coefficients n˚i,σ as in (266), and pstr1,d1,k1 , ..., strs,ds,ksq
is still a sequence of multiplicity type, i.e. with a first element repeated s1

times, a second element s2 times, etc. The corresponding elements of Flex pE‚q
are defined by:

ŝte‚r,d,k “
ÿ

σ

n˚i,σ câltE‚pŝte
‚
rσp1q,dσp1q,kσp1q

, ..., ŝte‚rσpsq,dσpsq,kσpsqq (269)

šte‚r,d,k “
ÿ

σ

n˚i,σ cǎltE‚pšte
‚
rσp1q,dσp1q,kσp1q

, ..., šte‚rσpsq,dσpsq,kσpsqq (270)

s̄te‚r,d,k “
ÿ

σ

n˚i,σ cāltE‚ps̄te
‚
rσp1q,dσp1q,kσp1q

, ..., s̄te‚rσpsq,dσpsq,kσpsqq (271)

The main point is of course the occurence of d0 with a minus sign in the sec-
ond sum (268). That minus sign reflects the main property of the counter-
alternators: the more alternating they are as functions of their arguments
pA‚1, ..., A

‚
sq, the less alternating they are as bimoulds, i.e. as functions of ‚.

In fact, the indexation by stacked trees is what shall enable us, in the next
section (§8) to decompose Flex rpE

‚q as a sum Flex r,dpE
‚q of subspaces with

elements of co-degree d and to calculate their dimensions dimpFlex r,dpE
‚qq by

means of interesting generating series.

38since the stri,di,ki inside h are tree superpositions (‘stacked trees’), h must be viewed as
a multilinear function of its arguments.
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But before proceeding, we must dispose of the case of many-rooted stacked
trees. Here, the definition is more straightforward: 39

str,d,k “ jpstr1,d1,k1 , . . . , strs,ds,ksq with

$

’

&

’

%

s ě 2

r “ r1 ` ¨ ¨ ¨ ` rs

d “ d1 ` ¨ ¨ ¨ ` ds

(272)

and gives rise to the parallel construction on Flex pE‚q:

$

’

’

&

’

’

%

ŝte‚r,d,k “
Ð

dme pŝte‚r1,d1,k1 , . . . , ŝte
‚
rs,ds,ksq

šte‚r,d,k “
Ð

dme pšte‚r1,d1,k1 , . . . , šte
‚
rs,ds,ksq

s̄te‚r,d,k “
Ð

dme ps̄te‚r1,d1,k1 , . . . , s̄te
‚
rs,ds,ks

q

with

$

’

&

’

%

s ě 2

r “ r1 ` ...` rs

d “ d1 ` ...` ds

(273)

6.5 Ordered trees and the pre-Lie products.

Anticipating on the systematic investigation of the bases tôte‚r,ku and tǒte‚r,ku
in §8, let us mention here two statements that justify after the event their
seemingly artificial construction. For simplicity, we limit ourselves to tôte‚r,ku
and look at the action of the alternality-preserving pre-Lie brackets dle and dari
as defined in §5.5.

Proposition 6.1 (The pre-Lie product dle as tree attachment) .
For any pair of rooted, ordered trees otr1,k1 , otr2,k2 , the identity holds:

dlepôte‚r1,k1 , ôte
‚
r2,k2q “ ´

ÿ

1ďkďκr´1

lr,k ôte‚r,k with

#

1 ď ki ď κri´1

lr,k P N
(274)

The ordered trees otr,k on the right-hand side are exactly the trees (counted with
their multiplicities) that can be obtained by attaching the tree otr2,k2 to the tree
otr1,k1 , i.e. by attaching otr2,k2 successively to all the nodes of otr1,k1 .

Proposition 6.2 (The pre-Lie product dari as tree insertion) .
For any pair of rooted, ordered trees otr1,k1 , otr2,k2 , the identity holds:

daripôte‚r1,k1 , ôte
‚
r2,k2q“ `

ÿ

1ďkďκr´1

dr,k ôte‚r,k with

#

1 ď ki ď κri´1

dr,k P N
(275)

The ordered trees otr,k on the right-hand side are exactly the trees (counted with
their multiplicities) that can be obtained by inserting the tree otr2,k2 into the
tree otr1,k1 , i.e. by inserting some rooted branch branchpb˚q of otr2,k2 into some
edge pa1, a2q of otr1,k1 .

39once again, since the stri,di,ki inside j are tree superpositions (‘stacked trees’), j must be
viewed as a multilinear function of its arguments.
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Explanation: An edge px1, x2q of a tree ot links two consecutive nodes. A branch
branchpx˚q of ot consists of all nodes x anterior to x˚. It therefore contains the
root x0 of ot. Note that x˚ neednot be an end-point of the tree. It may even
be the root of the tree, in which case branchpx0q “ tx0u.

Remark 1: Since in Proposition 6.2 a1 ­“ a2, it follows that no tree can be
inserted into a tree that reduces to a root. Therefore:

daripôte‚1,1, ôte
‚
r2,k2q ” 0 (276)

On the other hand, since a rooted branch may reduce to the root, it follows
that:

daripôte‚r1,k1 , ôte
‚
1,1q ­“ 0 iff r1 ą 1 (277)

This is in sharp contrast to Proposition 6.1, where the right-hand side of (274)
never vanishes.

In fact, as a dle pre-Lie algebra, Flexal
pE‚q is freely generated by the single

element E‚al , whereas as a dari pre-Lie algebra, all non-trivial identities40 in
Flex pE‚q are generated by the identities (276).

Remark 2: Propositions 6.1 and 6.2 show that the subspace Flex rootpE
‚q

spanned by the basis elements ôte‚r,k corresponding to rooted trees ôter,k (k ď
κr´1), is stable under the pre-Lie products dle and dari, and therefore under
the Lie brackets lu and ari. This is no longer the case with the basis tǒte‚r,ku or
the system tōte‚r,ku(not a basis).

Remark 3: There is no way of modifying our definitions so as to get the same
signs in front of

ř

, on the right-hand sides of both (274) and (275). Here,
we chose to have the plus sign for dari and the minus sign for dle because, on
balance, it simplifies a larger number of formulae (even though it clashes with
the convention usually adopted when defining the standard pre-Lie product on
non-ordered trees).

Remark 4: Assume we have already constructed a system tôte‚r,ku that verifies
(274) for all r ă r0. Then the same identities (274) fully determine – in fact,
overdetermine – the system tôte‚r,ku for r “ r0. In that sense, there is no latitude
in the choice of system. Actually, solving (274) is how the system tôte‚r,ku was
found and how, once found, it led to the counter-alternator câlt . The other
counter-alternators followed by analogy.

6.6 From câlt to Câlt : an illusory, yet useful extension.

We are now going to construct counter-alternators Câlt indexed by ordered trees
otr,k, or simply by pr, kq. These capitalised Câltr,kpA

‚
1, ..., A

‚
rq

40i.e. all identities that do not result from the universal pre-Lie identities

daripdaripA‚, B‚q, C‚q´daripA‚, daripB‚, C‚qq “ daripdaripA‚, C‚q, B‚q´daripA‚, daripC‚, B‚qq
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• appear to be more general than the ordinary câltH‚pA
‚
1, ..., A

‚
rq

• unexpectedly turn out to reduce to linear combinations of these ordinary
counter-alternators

• nonetheless prove very useful to relate the dme and mde generation

• have the merit of highlighting the advantages of câlt over cǎlt and cālt .

Definition 6.1 (The tree-indexed counter-alternators Câltr,kpAq) .
For any sequence A :“ pA‚1, ..., A

‚
rq with A‚i P Flex pE‚q we set:

one-rooted case : 1 ď k ď κr´1 and otr,k “ hpotr1,k1 , . . . , otrs,ksq

Câltr,kpAq :“ câltA‚1pCâltr1,k1pA
1q, ...,Câltrs,kspA

sq (278)

with

#

1 ď ki ď κri´1

ř

ri “ r

A1...As “ pA‚2, ..., A
‚
sq lengthpAiq “ ri

(279)

many-rooted case : κr´1 ă k ď κr and otr,k “ jpotr1,k1 , . . . , otrs,ksq

Câltr,kpAq :“
Ð

dme pCâltr1,k1pA
1q, ...,Câltrs,kspA

sq (280)

with

#

1 ă ki ď κri´1

ř

ri “ r

A1...As “ pA‚2, ..., A
‚
sq lengthpAiq “ ri

(281)

Pay attention: in all cases, whether one- or many-rooted, Câltr,k is recursively
defined in terms of one-rooted predecessors Câltri,ki , with 1 ď ki ď κri . On the
other hand, in the one-rooted tree, it is the sequence ˚A :“ pA‚2, ..., A

‚
rq that

gets factored into subsequences Ai, whereas in the many-rooted case, it is the
full A :“ pA‚1, ..., A

‚
rq. Lastly, note that, due to the inclusion of A‚1, we have

ř

ri “ r in (279)-(281) instead of r´1 in (251) .
Clearly, the new Câltp. . . q are closely related to the basis elements tôter,ku.

Indeed:

ôte‚r,k “ Câltr,kp
r times

E‚, . . . ,Eq (282)

But it would seem that by allowing arbitary bimoulds A‚1 in index position
câltA‚1p...q in (278), we are going to generate new elements not covered by the
tôter,ku system. This, however, is not the case:

Proposition 6.3 (From Câlt to câlt) .
For any sequence tA‚i :“ ôteri,ki , 1 ď ki ď κri´1u of one-rooted basis element,
the identity holds:

câltA‚1pA
‚
2, ..., A

‚
sq “

ÿ

1ďpďκr´1

mr,p ôte‚r,p with

#

r “ r1 ` ...` rs

mr,p P N
(283)

with the sum extending to all one-rooted ordered trees otr,p (counted with their
multiplicities) that can be obtained by attaching, in an order compatible manner,
the one-rooted trees otr2,k2 , ..., otrs,ks to the one-rooted tree otr1,k1 featuring in
index position.
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”In an order compatible manner” obviously means than two trees otri,ki , otrj ,kj
should never be attached to two nodes of otr1,k1 located in reverse order, and
that, if attached to the same node, the order i ă j should be respected. Of
course, some trees otr,p may occur several times (mr,p ą 1) or none at all
(mr,p “ 0). In the special case of just two trees, we fall back, signs aside, to the
formula:

caltA‚1pA
‚
2q “ ´dlepA‚1, A

‚
2q

.
So, if the ’generalised’ counter-alternators C âltr,k do not produce anything

really new, why bother with them? The answer is that they are needed to bridge
the gap between the dme- and mde-products of one-rooted basis elements:

Proposition 6.4 (From
Ð

dme to
Ñ

mde) .
For any number of one-rooted trees otri,ki (1 ď ki ď κri´1), the identity holds:

Ñ

mde pôte‚r1,k1 , ..., ôte‚rs,ksq “
r“r1`...`rs

ÿ

1ďkďκr

Câltr,kpôte‚rs,ks , ..., ôte‚r1,k1q (284)

Note the order reversion on both sides of (284). Note further that, although
all arguments are one-rooted (ki ď κri´1), the sum in (284) extends to all
trees otr,k, one- or many-rooted: all are required. Note lastly that, due to the
preceding Proposition 6.3, each term on the right-hand side of (284) reduces
to a sum of basis elements ôte‚r,k. The involutive identity (284) therefore does

exactly what was requested of it: expressing
Ñ

mde products in terms of
Ð

dme
ones.

Remark 5: Neither Proposition 6.3 nor Proposition 6.4 would hold if we were
to replace the pair pcâlt ,Câltq by a similarly constructed pair pcǎlt ,Cǎltq or
pcālt , C̄altq. This again goes to show the privileged status of the first counter-
alternator.

6.7 Stacked trees and co-degree stratification.

Gradation of Flex rootpE
‚q by codegree.

In view of what precedes, the subspaces
Č

Flex
pdq
rootpE

‚q of Flex rootpE
‚q spanned

by the basis elements ŝte‚r,d1,k corresponding to one-rooted stacked trees ŝte‚r,d1,k
with d1 ď d clearly constitute a filtration by codegree of Flex rootpE

‚q. In fact, the

smaller Flex
pdq
rootpE

‚q spanned by the sole elements ste‚r,d1,k constitute a genuine
polyalgebra gradation of Flex rootpE

‚q, in view of numerous inclusions of type:

lupFlex
pd1q
rootpE

‚q,Flex
pd2q
rootpE

‚qq Ă Flex
pd1`d2´1q
root pE‚q (285)

aripFlex
pd1q
rootpE

‚q,Flex
pd2q
rootpE

‚qq Ă Flex
pd1`d2´1q
root pE‚q (286)
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Free generation of Flex pE‚q from Flex rootpE
‚q.

The whole of Flex pE‚q can be freely generated from Flex rootpE
‚q under either of

the pre-associative products dme and mde, in the sense that each many-rooted
ŝte‚r,d,k admits these two exressions, each of them unique:

ŝte‚r,d,k “
Ð

dme pŝte‚r1,d1,k1 , . . . , ŝte
‚
rs,ds,ksq (287)

ŝte‚r,d,k “
ÿ

βr1,d1,k1;...,rs,ds,ks

Ñ

mde pŝte‚r1,d1,k1 , . . . , ŝte
‚
rs,ds,ksq (288)

with 2 ď s ,
ř

ri “ r ,
ř

di “ d , ŝte‚ri,di,ki P FlexrootpE
‚q and with integer

coefficients βr1,d1,k1;...,rs,ds,ks P Z calculable by (283) and ( 284)

Gradation of Flex pE‚q by codegree.

Here again, rather than a mere filtration of Flex pE‚q by codegree, we have a

genuine gradation by the subspaces Flex pdqpE‚q spanned all the (one- or many-
rooted) basis elements ste‚r,d,k.

6.8 Improbable explicitness of the basis changes.

From binary to ordered trees, and back.

Set as usual κr :“ p2 rq!
r!pr`1q! and consider on Flex rpE

‚q the basis changes

ôte‚r,p “
ÿ

1ďqďκr

mobp,qr bte‚r,q pbinary to orderedq (289)

bte‚r,p “
ÿ

1ďqďκr

mbop,qr ôte‚r,q pordered to binaryq (290)

and the corresponding matrices mobr :“ rmobp,qr s, mbor :“ rmbop,qr s.

Proposition 6.5 (Properties of the matrices mobr and mbor) .

pP0q detpmobrq “ detpmborq P t1,´1u

pP1q mobr has all its coefficients mobp,qr in t0, 1,´1u
pP2q mbor has only integer, non-negative coefficients mbop,qr

pP3q
ř

1ďp,qďκr
mobp,qr ” 1

pP 13q
ř

1ďp,qďκr
|mobp,qr | ”

ř

0ďkďr´1
pr`k´1q! pr´kq

r! k! 2k

pP4q
ř

1ďp,qďκr
mbop,qr ” 1ˆ 3ˆ 5ˆ ¨ ¨ ¨ ˆ p2 r ´ 1q

pP5q
ř

1ďpďκr
mobp,qr “

#

1 if q “ 1

0 if q ą 1

pP 15q
ř

1ďpďκr
|mobp,qr | “ 2r´#pleftmost branch of btr,qq

pP6q
ř

1ďpďκr
mbop,qr “ r!

potr,qq!
P N
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Remarkably, it is not the q-sums (rows) but the p-sums of the matrix elements
that admit simple expressions.

In pP 15q, the p-sum is equal to 1 if all the binary tree btr,q consists of a single
left-leaning branch, and in general it is equal to 2 to the number of nodes off
the left-most branch of btr,q.

In pP6q, the expression of the p-sum involves the factorial of the ordered tree
otr,q, defined in the usual way:

potq! :“
ź

iPNodespotq

`

ÿ

iďotj

1
˘

pot P OTq (291)

with ďot denoting the partial order on Nodespotq induced by the vertical 41 tree
structure of ot . Note that the ratio r!{potq! is also equal to the number of total
orders on Nodespotq that are compatible with the (vertical) partial order on ot .

Proposition 6.6 (Making the matrices obr and bor triangular) .
If we adopt on the binary trees the k-indexation induced by (252) and on the
ordered trees the k-indexation induced by (254), then the matrices mobr and
mbor become upper-triangular, with all diagonal entries equal to 1.

Proposition 6.7 (Direct calculation of the matrix entries in mobr) .
Here is an algorithm for turning binary trees btr,q into linear combinations

fold8pbtr,qq “
ÿ

p

mobp,qr otr,p

#

obr,qBT ; otr,qOT ;

mobp,qr P t0, 1,´1u
(292)

of ordered trees otr,q that carries all the information about the matrix entries
mobp,qr . The procedure applies recursively a linear operator fold to produce, at
each step s, linear combinations

foldspbtr,qq “
ÿ

1ďkď2sn1..ns

εq,kr,s obtr,k with εq,kr,s P t0, 1,´1u (293)

of hybrid trees obtr,k – part binary, part ordered – with the ’binary tree’ aspect
decreasing at eack step s, and the ’ordered tree’ aspect becoming dominant to-
wards the end. We also require the notion of anchor. For any node x of a binary
tree, let x1, x11 etc denote the successive antecedent nodes. The anchor x˚ of x is
the first node xplq not aligned with the earlier antecedents. Each node that lies
outside the leftmost and rightmost branches possesses a well-defined anchor. 42

• Step 0: We mark all the n1 nodes x that lie ouside the leftmost branch
of btr,q as movable by writing them in boldface: x Ñ x. If btr,q has a
non-void right branch issuing from its root x0, we attach x0 (and with it
the whole of btr,q) to a new root x00 so as to get a new tree btr`1,q, all
movable nodes of which possess an anchor.

41without regard for the order on the branches issuing from a given node.
42i.e. the first xplq such that the twig pxplq, xpl´1qq has not the same slant as the twig px1, xq.
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• Step 1: We take each one of the movable nodes x located at end points
of obr,q and
(i) either leave it in place after unmarking and overlining it: xÑ x
(ii) or we detach it from it direct antecedent x1 and attach it properly 43

to its anchor, after unmarking and underlining it: xÑ x .
This results in an expansion of type:

foldpbtr,qq “
ÿ

1ďkď2n1

εq,kr,1 obtr,k with εq,kr,1 P t1,´1u (294)

with coefficients defined in this way:

(295)

• Step s: We repeat the procedure of Step 1 for each of the hybrid trees obtr,k
featuring in the expansion of type (294) obtained at Step s´1. Each such
obtr,k possesses the same number ns of (still untouched) movable nodes
x situated in extreme position, i.e. at end points or with succesors that
are all of type y (movable points previously unmarked).These new x are
the ones that get unmarked at step s. They are either kept in place and
overlined (xÑ x) or properly attached to their anchors x˚ and underlined
(x Ñ x). In this way, the various hybrid obtr,k from the preceding step
producs ns new hybrid trees, each preceded by a ˘ sign calculated according
to the rules (295).

• Final step: When we reach the stage when all the movable points have
been unmarked, we are left with an expansion (294) where all the hybrid
trees obtr,k have completely shed their ’binary’ nature. In other words,
we have exactly the expansion (292) which we had set out to construct.
However, if we had to introduce an additional root x00 at Step 0, we must
now remove it and replace each one-rooted tree ot “ hpotr1,q1 , ..., otrs,qsq by
the juxtaposition jpotr1,q1 , ..., otrs,qsq of the various branches otri,qi which
may, in the course of the successive ’foldings’, have attached themselves
to x00 as their anchor.

Remark 1: ’Properly’ attaching a movable node x to its anchor x˚ “ xplq

means two things:
(i) If the original twig px1,xq is rigth-leaning (resp. leftleaning), then after
detaching x from its immediate antecedent x1 and attaching it to its anchor
xplq, the new twig pxplq, x q must be squeezed between the twig pxplq, xpl´1qq and
the various twigs which may already originate from xplq to the right (resp. to
the left) of pxplq, xpl´1qq as a result of previous relocations.
(ii) The movable node x doesn?t migrate alone to its anchor x˚ “ xplq but it
carries with it the whole branch of previously unmarked and left-in-place nodes

43See details infra.
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x 1, x 2 . . . which may be attached to it. That branch, though originally endowed
with a binary tree structure, should henceforth be viewed as an ordered tree.

Provided we take these precautions, it doesn’t matter in which order we
detach and re-attach the various movable nodes at step s. But, at any given
step, we must re-locate only the movable nodes situated in extreme position.
Re-locating other, non-extremal nodes ’before time’ would lead to completely
wrong results.

Remark 2: The expansion (292) always contain on the right-hand side one
ordered tree otr,p that coincides with the binary tree btr,q of the left-hand side,
but stripped of its ’binary’ structure, and preceded by a + (resp. -) sign if the
original btr,q carries an even (resp. odd) number of right-leaning unit twigs.

Let us now give a series of examples to cover all the intricacies of the ’folding’
procedure44 of Proposition 6.7. Trees (whether binary, ordered, or mixed) are
represented by (clumsy but unambiguous) parenthesisings, of type (...) for one-
rooted and (...)...(...) for many-rooted trees. Each node is assigned a number45.
The over- and underlinings are there simply to keep track of the folding history.

Here is an example with just two movable nodes and no need for an auxiliary
root x00.

f : pp1, p2, p3qqq, 4q ÞÑ ˘pp1, p2, p3qqq, 4q ˘ pp1, p2qq, 4, p3qq

f2 : pp1, p2, p3qqq, 4q ÞÑ

#

`pp1, p2, p3qqq, 4q ´ pp1q, 4, p2, p3qqq

´pp1, p2qq, 4, p3qq ` pp1q, p2q, 4, p3qq

Here we have three movable nodes and require an auxiliary root.

f : p1, ppp2q,3q,4qq ÞÑ ˘p1, ppp2q,3q,4qq ˘ pp2q, 1, pp3q,4qq

f2 : p1, ppp2q,3q,4qq ÞÑ

#

˘p1, ppp2q, 3q,4qq ˘ ppp2q, 3q, 1, p4qq

˘pp2q, 1, pp3q,4qq ˘ pp2q, p3q, 1, p4qq

f3 : p1, ppp2q,3q,4qq ÞÑ

$

’

’

’

&

’

’

’

%

´p1, ppp2q, 3q, 4qq ` tp1q; ppp2q, 3q, 4qu

`ppp2q, 3q, 1, p4qq ´ tppp2q, 3q, 1q; p4qu

`pp2q, 1, pp3q, 4qq ´ tpp2q, 1q; pp3q, 4qu

´pp2q, p3q, 1, p4qq ` tpp2q, p3q, 1q; p4qu

Here, we have again three movable nodes, but they are disposed of in just two

44the procedure is actually simpler to program than to expound!
45Since the procedure starts with a binary tree bt , we resort to the natural enumeration of

its nodes, that is to say, the enumeration for which the image bta‚ of bt in FlexpPaq is of the
form btaw “

ś

i P p
ř

iďbt j ujq
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steps.

f : p1, pp2q,3, p4qqq ÞÑ

#

˘p1, pp2q,3, p4qqq ˘ tp1, pp2q,3qq; p4qu

˘pp2q, 1, p3, p4qqq ˘ tpp2q, 1, p3qq; p4qu

f2 : p1, pp2q,3, p4qqq ÞÑ

$

’

’

’

&

’

’

’

%

`p1, pp2q, 3, p4qqq ´ tp1q; pp2q, 3, p4qqu

´tp1, pp2q, 3qq; p4qu ` tp1q; pp2q, 3q; p4qu

´pp2q, 1, p3, p4qqq ` tpp2q, 1q; p3, p4qqu

`tpp2q, 1, p3qq; p4qu ´ tpp2q, 1q; p3q; p4qu

The next case, with four movable nodes, it the simplest example to illustrate the
caveat of Remark 1 on how to ’properly’ attach movable nodes to their anchors.
Disregarding it would yield wrong results.

f : ppp1, p2qq, 3, ppp4q,5q,6qq, 7q ÞÑ
#

˘ppp1, p2qq, 3, ppp4q,5q,6qq, 7q ˘ ppp1q, 3, p2q, ppp4q,5q,6qq, 7q

˘ppp1, p2qq, 3, p4q, pp5q,6qq, 7q ˘ ppp1q, 3, p2q, p4q, pp5q,6qq, 7q

f2 : ppp1, p2qq, 3, ppp4q,5q,6qq, 7q ÞÑ
$

’

’

’

&

’

’

’

%

`ppp1, p2qq, 3, ppp4q, 5q,6qq, 7q ´ ppp1, p2qq, 3, pp4q, 5q, p6qq, 7q

´ppp1q, 3, p2q, ppp4q, 5q,6qq, 7q ` ppp1q, 3, p2q, pp4q, 5q, p6qq, 7q

´ppp1, p2qq, 3, p4q, pp5q,6qq, 7q ` ppp1, p2qq, 3, p4q, p5q, p6qq, 7q

`ppp1q, 3, p2q, p4q, pp5q,6qq, 7q ´ ppp1q, 3, p2q, p4q, p5q, p6qq, 7q

f3 : ppp1, p2qq, 3, ppp4q,5q,6qq, 7q ÞÑ
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

`ppp1, p2qq, 3, ppp4q, 5q, 6qq, 7q ´ ppp1, p2qq, 3q, ppp4q, 5q, 6q, 7q

´ppp1, p2qq, 3, pp4q, 5q, p6qq, 7q ` ppp1, p2qq, 3, pp4q, 5qq, p6q, 7q

´ppp1q, 3, p2q, ppp4q, 5q, 6qq, 7q ` ppp1q, 3, p2qq, ppp4q, 5q, 6q, 7q

`ppp1q, 3, p2q, pp4q, 5q, p6qq, 7q ´ ppp1q, 3, p2q, pp4q, 5qq, p6q, 7q

´ppp1, p2qq, 3, p4q, pp5q, 6qq, 7q ` ppp1, p2qq, 3, p4qq, pp5q, 6q, 7q

`ppp1, p2qq, 3, p4q, p5q, p6qq, 7q ´ ppp1, p2qq, 3, p4q, p5qq, p6q, 7q

`ppp1q, 3, p2q, p4q, pp5q, 6qq, 7q ´ ppp1q, 3, p2q, p4qq, pp5q, 6q, 7q

´ppp1q, 3, p2q, p4q, p5q, p6qq, 7q ` ppp1q, 3, p2q, p4q, p5qq, p6q, 7q

This last example, after the introduction of an auxiliary root x00 “ x7, takes us
back to the preceding case and shows how, after removal of x7, we are left with
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eight one-rooted and eight multi-rooted trees.

f3 : pp1, p2qq, 3, ppp4q,5q,6qq ÞÑ
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

`pp1, p2qq, 3, ppp4q, 5q, 6qq ´ tpp1, p2qq, 3q; ppp4q, 5q, 6qu

´pp1, p2qq, 3, pp4q, 5q, p6qq ` tpp1, p2qq, 3, pp4q, 5qq; p6qu

´pp1q, 3, p2q, ppp4q, 5q, 6qq ` tpp1q, 3, p2qq; ppp4q, 5q, 6qu

`pp1q, 3, p2q, pp4q, 5q, p6qq ´ tpp1q, 3, p2q, pp4q, 5qq; p6qu

´pp1, p2qq, 3, p4q, pp5q, 6qq ` tpp1, p2qq, 3, p4qq; pp5q, 6qu

`pp1, p2qq, 3, p4q, p5q, p6qq ´ tpp1, p2qq, 3, p4q, p5qq; p6qu

`pp1q, 3, p2q, p4q, pp5q, 6qq ´ tpp1q, 3, p2q, p4qq; pp5q, 6qu

´pp1q, 3, p2q, p4q, p5q, p6qq ` tpp1q, 3, p2q, p4q, p5qq; p6qu

Remark 3: There exists a similar algorithm, also based on tree surgery, for
calculating the matrix entries mbop,qr .

From ordered to stacked trees.

The equivalence, for each r, of the systems totr,ku (for ordered trees) and
tstr,d,ku (for stacked trees) isn’t far-fetched. Indeed:

• They both have the same dimension κr :“ p2 rq!
r! pr`1q! .

• We have shown that the otr,k, being independent, form a basis of OTr.

• If, in the recursive construction of tstr,d,ku, we divide each symmetrised
product by the number of summands, we get an equivalent system tst˚r,d,ku,
but the matrix that takes us from tst˚r,d,ku to totr,ku is now guaranteed
to have its determinant equal to ˘1.

6.9 Scalar product on trees.

The correspondence between Flex rpE
‚q and BTt (binary trees; see §6.2) or OTr

(ordered trees; see §6.3) makes it possible to define on trees extremely useful
scalar products. Let us give here just one example.

Consider the ’flat’ flexion unit Flat‚:

Flatp
u1
v1
q :“

1

2

`

signpu1q ` signpv1q
˘

pu1, v1 P Rq (296)

Viewed as an almost everywhere defined function, it does indeed verify a flexion
unit’s functional identities (see §4.5). Let us set, with self-explanatory notations:

mbtp,qr :“
1

2r

ż

|ui|ă1,|vi|ă1

btflatwr,p btflatwr,q du1...dur dv1...dvr (297)

motp,qr :“
1

2r

ż

|ui|ă1,|vi|ă1

ôtflatwr,p ôtflatwr,q du1...dur dv1...dvr (298)
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These elementary integrals induce scalar products on BTr and OTr:〈
btr,p,btr,p

〉
:“ mbtp,qr pbtr,p,btr,q P BTrq (299)〈

otr,p, otr,p
〉

:“ môtp,qr potr,p, otr,q P OTrq (300)

Here are the matrices mbtr :“ rmbtp,qr s and môtr :“ rmôtp,qr s up to r “ 3:

mbt2 “
1
4

«

3 ´1

´1 3

ff

, môt2 “
1
4

«

8 ´4

´4 3

ff

mbt3 “ 1
8

»

—

—

—

—

—

—

—

—

–

13
3 ´2 ´ 3

2 ´ 7
18

8
9

´2 13
3

1
2 ´ 10

9 ´ 7
18

´ 3
2

1
2

14
3

1
2 ´ 3

2

´ 7
18 ´ 10

9
1
2

13
3 ´2

8
9 ´ 7

18 ´ 3
2 ´2 13

3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

môt3 “ 1
8

»

—

—

—

—

—

—

—

—

–

238
9 ´ 65

9 ´ 119
9 ´6 137

18

´ 65
9

82
9

65
18 ´ 11

2 ´ 8
9

´ 119
9

65
18

38
3 2 ´ 19

3

´6 ´ 11
2 2 34

3 ´ 23
6

137
18 ´ 8

9 ´ 19
3 ´ 23

6
13
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

7 Filtration by co-degree. Dimensions.

7.1 Filtrations, gradations, dimensions: a road map.

We have already encountered the filtration/gradation of the polygebras Flex pE‚q
and Flex root

pE‚q by depth r and alternality co-degree d:

FlexpE‚q “ ‘r,dFlexr,dpE
‚q with Flexr,dpE

‚q „ Flexr,pdqpE
‚q{Flexr,pd´1qpE

‚q

Flexroot
pE‚q“‘r,dFlexroot

r,d pE
‚q with Flexroot

r,d pE
‚q „ Flexroot

r,pdqpE
‚q{Flexroot

r,pd´1qpE
‚q

Recall that Flex r,pdqpE
‚q and Flex root

r,pdqpE
‚q denote the subspaces whose ele-

ments have depth r and co-degree at most d (filtration), while Flex r,dpE
‚q and

Flex root
r,d pE

‚q denote the natural incarnation46 of the corresponding quotients
(gradation).

Our aim in this section is to calculate the dimensions of the above subspaces.
These dimensions matter on many counts – as important features of Flex pE‚q;
as key to the structure of the pre-associative algebras in general (cf §10); and
because of the rich combinatorics involved in their calculation.

Now, it will turn out that:

46given by the basis tste‚r,d,ku indexed by stacked trees.
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• The proper numbers to consider are the dimensions corresponding to the
gradation rather than the filtration.

• The hard part is to find the dimensions on Flex root
pE‚q; those on Flex pE‚q

easily follow.

• The pertinent indexation for the dimensions on Flex pE‚q is by the co-
degree d and on Flex root

pE‚q by the shifted co-degree δ :“ d´ 1.

• While there exist no manageable, closed expressions for the dimensions
themselves, such formulae, fairly complex yet elegant, do exist for their
simple generating series (in r) and even more so for their double generating
series (in r and d),

So we are justified in setting:

γr,δ :“ dim
`

Flexroot
r,δ`1pE

‚q
˘

} γδptq :“
ř

γr,δ t
r } Γpt, xq :“

ř

γδptq x
δ

ξr,δ :“ dim
`

Flexr,dpE
‚q
˘

} ξdptq :“
ř

ξr,d t
d } Ξpt, xq :“

ř

ξdptq x
d

We shall proceed as follows:

• Introduce the main tools – the framing function and pilot polynomials –
needed for the calculations.

• State the main results, with some illustrations.

• Sketch two proofs, one indirect but natural, the other more direct but
with a whiff of artificiality about it.

• Provide summary tables at the end of this section, and more extensive
ones towards the end of the paper.

7.2 Framing function and pilot polynomials.

Proposition 7.1 (Framing function) .
The framing function, defined by the infinite product 47

Fpx; y1, y2, y3, ...q :“
ź

1ďd

´

1´ xd yd

¯´ 1
d

ř

d1|d
µp dd1

q x´d1

(301)

may be viewed as a power series of x, y1, y2, y3. . . . It admits a factorisation:

Fpx; y1, y2, y3, ...q “ Ppx; y1, y2, y3, ...q exp
`

ÿ

1ďn

1

n
yn
˘

(302)

47where µ denotes the M:obius function.
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into an elementary exponential and a factor P which itself possesses a rather
elementary logarithm:

Ppx; y1, y2, y3, ...q “ 1`
ÿ

1ďn

xn Pnpy1, . . . , y2nq pPn polynomialq (303)

logPpx; y1, y2, y3, ...q “
ÿ

1ďn

xn Lnpy1, . . . , y2nq pLn polynomialq (304)

Each ‘pilot polynomial’ Pn and Ln splits into ‘homogeneous’ and highly lacu-
nary48 components Lr,d and Pr,d:

Pnpyq “
ÿ

nădď2n

Pn,dpyq (305)

Lnpyq “
ÿ

δ|n

Ln,n`δpyq with Ln,n`δpyq “
1

n` δ

ÿ

δ1|
ǹ δ
δ

µpδ1q pyδ1δq
n`δ
δ1δ (306)

with

#

Pn,dpy1 y, y2 y
2, . . . , yd y

dq ” yd Pn,dpy1, y2, . . . , ydq

Ln,dpy1 y, y2 y
2, . . . , yd y

dq ” yd Ln,dpy1, y2, . . . , ydq

Pilot polynomials.

Though much more complex than the Ln, and lacking in closed expressions
of type (306), the pilot polynomials Pn also matter, by reason of their close
relation with the ’copilot polynomials’Qn (see infra) which count the dimensions
dimpEn1,...,ns

n q.
Here are the first four pilot polynomials Pn with their n homogeneous parts.

For more extensive tables, see §11.

P1py1, y2q :“ `
1

2
py2

1 ´ y2q

P2py1, .., y4q :“

#

` 1
3 py3

1 ´ y3q

` 1
8 py4

1 ´ 2 y2
1y2 ` 3 y2

2 ´ 2 y4q

P3py1, .., y6q :“

$

’

’

’

&

’

’

’

%

` 1
4 py4

1 ´ y
2
2q

` 1
6 py6

1 ´ y
2
3q

` 1
48

#

`y6
1 ´ 3 y4

1y2 ` 9 y2
1y

2
2 ´ 6 y2

1y4

´7 y3
2 ` 6 y2y4 ` 8 y2

3 ´ 8 y6

P4py1, .., y8q :“

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

` 1
5 py5

1 ´ y5q

` 1
72

#

`13 y6
1 ´ 9 y4

1y2 ´ 8 y3
1y3

´9 y2
1y

2
2 ` 21 y3

2 ` 4 y2
3 ´ 12 y6

` 1
24 py4

1 ´ 2 y2
1y2 ` 3 y2

2 ´ 2 y4q py
3
1 ´ y3q

` 1
384

$

’

&

’

%

`y8
1 ´ 4 y6

1y2 ` 18 y4
1y

2
2 ´ 12 y4

1y4 ´ 28 y2
1y

3
2

`24 y2
1y2y4 ` 32 y2

1y
2
3 ` 25 y4

2 ´ 32 y2
1y6

´36 y2
2y4 ´ 32 y2y

2
3 ` 32 y2y6 ` 60 y2

4 ´ 48 y8

48That applies above all to the components Ln,d.
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Observe that the homogeneous parts Pn,dpy1, ..., ydq may be constant in some
of their variables yi.

The pilot polynomials possess many remarkable properties, but since these
aren’t directly relevant to our purpose, we shall mention but a few.

The lowest homogeneous components are Pr,r`1 are particularly simple,
given that they coincide with Lr,r`1:

Pr,r̀ 1py1, ..., yr̀ 1q “
1

r`1

ÿ

d|r̀ 1

µpdq pydq
r`1
d “ Lr,r̀ 1py1, ..., yr̀ 1q (307)

The highest homogeneous components, on the other hand, verify:

Pr,2rpy, ..., yq “
1

2r r!

ź

0ďdďŕ 1

py2 ´ y ` 2 dq (308)

When y1, ..., yr assume distinct integer values picked at random, the fractions
Pr,dpy1, ..., ydq tend to have large denominators, but the situation changes com-
pletely when all yi coincide: for any integer y, Pr,dpy, ..., yq is itself an integer49

That case gives rise to many special identities such as:

Pr,dp1, ..., 1q “ 0 @r, d

Pr,dp´1, ....,´1q “

#

1 if d “ 2 r

0 otherwise

Pr,dp2, ...., 2q is of the form θp2 r´dq pP Nq if
3 r

2
ď d

7.3 Dimensions. Main statements.

Recall the definitions of the generating series

γδptq :“
ÿ

1ďr

γr,δ t
r with γr,δ :“ dim

´

Flexroot
r,δ`1pE

‚q

¯

(309)

ξdptq :“
ÿ

1ďr

ξr,d t
r with ξr,d :“ dim

´

Flexr,dpE
‚q

¯

(310)

and of their own generating series:

Γpt, xq :“ γ0ptq ` γ1ptqx` γ2ptqx
2 ` . . . (311)

Ξpt, xq :“ 1` ξ1ptqx` ξ2ptqx
2 ` . . . (312)

Proposition 7.2 (The series ξdptq from the series γδptq) .
The series ξdptq and Ξpt, xq readily follow from the γdptq and Γpt, xq

Ξpt, xq ”
1

1´ xΓpt, xq
(313)

with the x in front of Γpt, xq accounting for the shift δ “ d´ 1.

49For Pr,2r this can be checked directly with the help of formula (??). For the other homo-
geneous components Pr,d, this is not a trivial consequence of the way the pilot polynomials
are defined.
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We find in particular

ξ1 “ γ0 ; ξ2 “ γ1 ` γ
2
0 ; ξ3 “ γ2 ` 2 γ0 γ1 ` γ

3
0 ; . . .

Proposition 7.3 (Enumerating the alternals) .
All alternals automatically belong to Flexroot

pE‚q and the corresponding dimen-
sions γr,0 ” ξr,1 are inductively calculable from a functional equation verified by
the generating series γ0ptq:

γ0ptq ” t exp
`

γ0ptq `
1

2
γ0pt

2q `
1

3
γ0pt

3q ` . . .
˘

(314)

The proof here is straightforward. Since in the basis tste‚r,d,ku of Flex pE‚q,
the alternal elements tste‚r,d,ku naturally indexed by unordered rooted trees (ele-
ments of UT), we fall back on the induction for generating such trees, and that
induction readily translates into the functional equation (313). In any case,
(314) is a well-known formula for enumerating the unordered rooted trees.

Proposition 7.4 (General formula: theoretical version) .
The general dimensions γr,δ also are inductively calculable from a functional
equation bearing on the double generating series Γpt, xq:

Γpt, xq ” t F
`

x ; Γpt, xq,Γpt2, x2q,Γpt3, x3q, . . .
˘

(315)

Apart from involving the highly complex framing function F , the functional
equation (315) closely resembles (314). Indeed, for x “ 0, (315) reduces to (314).
But for all its indisputable elegance, (315) has a drawback: when expanded in
powers of x, it expresses any given γrptq as a polynomial in γ1ptq, . . . , γr´1ptq
and their first ’dilatees’ γipt

kq, but as a full-blown entire function of γ0 and its
dilatees.50

To remedy this, we must replace (315) by the more practical, if less shapely,
formula (316) below, which is obtained by factoring away from (315) the equa-
tion (314), which is itself but a special case of (315) for x “ 0.

Proposition 7.5 (General formula: practical version) .
The double generating function Γpt, xq verifies the functional equation

Γpt, xq “ Γ0pt, 0q ˆ

#

exp
`
ř

1ďn
1
n pΓpt

n, xnq ´ Γ0pt
n, 0qq

˘

ˆ

P
`

x ; Γpt, xq,Γpt2, x2q,Γpt3, x3q, . . .
˘ (316)

which may also be written as

Γpt, xq “ γ0ptq ˆ

#

exp
`
ř

1ďn
1
n pΓpt

n, xnq ´ γ0pt
nqq

˘

ˆ

P
`

x ; Γpt, xq,Γpt2, x2q,Γpt3, x3q, . . .
˘ (317)

50Indeed, since in this context the component γ0 behaves as an object of homogeneous
degree 0, there is nothing to prevent all powers γn0 from occurring on the right-hand side of
(315). Not so the other components γi, which have positive homogeneous degree.
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or better still:

log
Γpt, xq

γ0ptq
“ ˆ

#

`
ř

1ďn
1
n pΓpt

n, xnq ´ γ0pt
nqq

˘

ˆ

` logP
`

x ; Γpt, xq,Γpt2, x2q,Γpt3, x3q, . . .
˘ (318)

When expanded in powers of x, this equation expresses any given γrptq as a
polynomial in γ0ptq, γ1ptq, . . . , γr´1ptq and their first ’dilatees’.

Before sketching, in §7.6 and §7.7, two proofs of the central Proposition 7.4 (of
which Proposition 7.5 is a mere corollary), let us make a few comments and give
some illustrations.

Relations between the generating series.

Since dim
`

Flex rpE
‚q
˘

“ κr and dim
`

Flex root
r pE‚q

˘

“ κr´1 and since the Cata-

lan numbers κr :“ 2 rq!
r! pr`1q! admit the generating function

κptq :“
ÿ

0ďr

κr t
r “

1

2 t

`

1´ p1´ 4 tq
1
2

˘

psolution of κ2 ´ t κ` 1 “ 0q (319)

our generating functions ξdptq and γδptq must clearly add up to κptq and t κptq
respectively:

ÿ

0ďr

ξrptq ” κptq i.e. Ξpt, 1q ” κptq (320)

ÿ

1ďr

γrptq ” t κptq i.e. Γpt, 1q ” t κptq (321)

The relation (321) immediately follows from (313) due to (319) and κ’s func-
tional equation κptq “ p1´ t κptqq´1.

Practical calculations.

When taking the coefficient of xn on both sides of (317), or preferably (318),
we find respectively:51

γnptq “
ÿ

0ďpďn

«#

γ0ptq exp
´

ř1ďk
1ďr γrpt

kqx
k r

k

¯

ˆ

Pp
`
ř

0ďr γrptqx
1.r, ...,

ř

0ďr γrpt
2prqx2pr

˘

ff

xn´p

(322)

«

log
`

1`
ÿ

rďn

γrptq

γ0ptq
xr
˘

ff

xn

“

ÿ

kr“n

1

k
γrpt

kq `
ÿ

0ďnďp

«

Lp
`

ÿ

0ďr

γrptqx
1.r, ...,

ÿ

0ďr

γrpt
2prqx2pr

˘

ff

xn´p

(323)

51For consistency, we must set P0 ” 1.
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with, in the second case, the elementary polynomial Ln of (304) and (306).
As already pointed out, the ’practical formulae’ have the advantage of pro-
ducing, on either side, polynomials in finitely many terms of the form γipt

kq

with 0 ď i ď n´1 and with products i k bounded by simple homogeneousness
conditions. In fact, when expanding (323), we get:

γnptq

γ0ptq
`

sďn
ÿ

njăn

an1,...,ns
γn1
ptq

γ0ptq
...
γnsptq

γ0ptq
“ γnptq `

sďn
ÿ

njăn

bn1,...,ns
k1,...,ks

γn1
ptk1q...γnspt

ksq

with an1,...,ns and bn1,...,ns
k1,...,ks

P Q and
ř

kj nj ď n. Since γ0 is known, (323)
amounts, for the generating functions γn, to a recursion of the form:

γnptq “
γ0ptq

1´ γ0ptq

sďn
ÿ

njăn

cn1,...,ns
k1,...,ks

γn1
ptn1k1q...γnspt

nsksq

#

cn1,...,ns
k1,...,ks

P Q
ř

kj nj ď n
(324)

The first five generating series γrptq are given in §11.5. With the pilot polyno-
mials, tabulated §11.4, one can easily calculate the next γrptq which, however,
become too unwieldy to write down.

In fact, by repeatedly re-injecting earlier versions of (324) (i.e. versions rela-
tive to smaller values of n) into itself, we can rid the right-hand side of (324) of
all terms γnipt

ni kiq with 1 ď ni. Eventually, we get γnptq expressed as a ratio-
nal function of the already known series γ0ptq and its dilatees γ0pt

2q, ..., γ0pt
2nq.

These successive eliminations, however, tend to complicate rather than simplify
the expression of γnptq. This is why we opted, in the tables of §11.15, for the
’raw’ form (324).

7.4 Codimensions. Main statements.

γco
r,d :“ dim

`

Flexroot
r,r´dpE

‚q
˘

} γco
d ptq :“

ř

γco
r,d t

r } Γcopt, xq :“
ř

0ďd γδptq x
δ

ξco
r,d :“ dim

`

Flexr,r´dpE
‚q
˘

} ξco
d ptq :“

ř

ξco
r,d t

d } Ξcopt, xq :“
ř

0ďd ξ
co
d ptq x

d

Here is how new generating series relate to the old, and to each other:52

Γcopt, xq “ x´1 Γpt x, x´1q (325)

Ξcopt, xq “ Ξpt x, x´1q “

´

1´ Γcopt, xq
¯´1

(326)

The functional equation for Γcopt, xq.

Clearly, Γcopt, xq “ t ` x t2 `
ř

2ďn x
n γco

n ptq, and due to (315) the functional
equation (325) becomes:

logp
Γcopt, xq

t
q “ ´

ÿ

1ďn

log
`

1´ Γcoptn, xnq
˘

ˆ

´ 1

n

ÿ

d|n

µp
n

d
qxn

¯

(327)

52The presence of a factor x´1 in front of Γpt x, x´1q but not Ξpt x, x´1q comes from the
shift between the δ and d-indexation for Γ and Ξ, which has no parallel for Γco and Ξco .
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Written in this way, it is inconvenient, because comparing the coefficient of
xn on both sides doesn’t give γco

n ptq as a finite expression of x and the earlier
γco
n1 ptq. However, by ’M:obius inversion’, the identity

ř

1ďn
tn

n “ ´ logp1 ´ tq
yields successively

t ” ´
ÿ

1ďn

logp1´ tnq
µpnq

n
(328)

´ logp1´ t xq ” ´
ÿ

1ďn

logp1´ tnq
1

n
ˆ

´

ÿ

d|n

µp
n

d
q xn

¯

(329)

By subtracting (329) from (327), we can re-write the functional equation as

logp
Γcopt, xq

t
q ` logp1´ t xq “

´
ÿ

1ďn

log
´

1´
Γcoptn, xnq ´ tn

1´ tn

¯

ˆ

´ 1

n

ÿ

d|n

µp
n

d
qxn

¯

(330)

which yields a proper induction, since by equating the coefficients of xn on both
sides, we now find γnptq expressed in closed form in terms of the earlier γn1ptq.

The generating series γcod ptq.

Proposition 7.6 (Rationalness of γcod ptq) .

Unlike the γdptq, the γcod ptq are rational functions of t.
Thus, γco

0 ptq “ t, γco
1 ptq “ t2 and for n ě 2:

γco
n ptq “ tn`1

`

γ0,n`1 ` ¨ ¨ ¨ ` p´1qn´1 t
npn´1q

2

˘

śn´1
k“1p1´t

kq
“

tǹ 1
pγco
n ptq

śn´1
k“1p1´t

kq
(331)

The numerator pγ co
n ptq in (331) is a polynomial with integer coefficients of mixed

signs. Its first coefficient γ0,n`1 is the number of rooted, non-ordered trees with
n`1 nodes.

The generating series ξcod ptq.

Proposition 7.7 (Rationalness and positiveness of ξcod ptq) .

The ξcod ptq’s are also rational functions of t, but of a more regular type than the
γcod ptq’s. Thus, ξ0ptq “ p1´ tq

´1, ξ1ptq “ t2 p1´ tq´2 and for n ě 2:

ξco
n ptq “ tn`1

`

γ0,n`1 ` ¨ ¨ ¨ ` cn t
r
pn´1q

1 s
˘

p1´tq2
śn´1
k“1p1´t

kq
“

tǹ 1
pξco
n ptq

p1´tq2
śn´1
k“1p1´t

kq
(332)

with r pn´1q
2 s denoting the integer part of pn´1q

2 and cn “

#

n{2` 2 if n even

1 if n odd

The numerator pξ co
n ptq in (332) is a polynomial with positive integer coefficients.
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We may get Ξco from Γco or directly from the M:obius inverse53 of (333):

log
`

Ξcopt, xq
¯

“
ÿ

1ďn

log
´Ξcoptn, xnq ´ 1

tn Ξcoptn, xnq

¯ 1

n

ÿ

d|n

µp
n

d
q

1

xd
(333)

Here again, to get a finite induction, we must subtract from (326) the following
identity

log
´1´ t2 x

1´ t

¯

“
ÿ

1ďn

log
´

1` tn xn
¯ 1

n

ÿ

d|n

µp
n

d
q (334)

and write

log
`

p1´tqΞcopt, xq
˘

“

#

` logp1´ t2 xq

`
ř

1ďn log
` Ξco

ptn,xnq´1
tnp1̀ tn xnqΞcoptn,xnq

˘

1
n

ř

d|n µp
n
d q

1
xd

(335)

The fact, not immediately apparent from the induction (335), that pξ co
n ptq has

only positive integer coefficients is quite significant. It implies – or should we
say, suggests – that we can produce, from a finite number of elements of Flex pE‚q
a basis for the infinite dimensional space ‘rFlex r,r´dpE

‚q.

Remark: As should be expected (see below §7.5), the polynomials pγ co
n ptq and

pξ co
n ptq often assume remarkable values when t is a unit root. Leaving aside the

relations that trivially follow from

pγ co
n ptq ”

pξ co
n ptq mod p1` t` t2 ` ¨ ¨ ¨ ` tn´2q

we have numerous identities of type

ˇ

ˇ

ˇ

ˇ

ˇ

pγ co
4n`1piq

pγ co
4npiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

” 9 ,

ˇ

ˇ

ˇ

ˇ

ˇ

pξ co
4n`1piq

pξ co
4npiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

” 5

7.5 Analytic properties of Γpt, xq and Ξpt, xq.

Special M:obius inversion.

Lemma 7.1 (Special M:obius inversion) .
Setting χs,dpxq :“ d´s

ř

d1|d
µp dd1 qx

d1 , we have the formal equivalence

!

Apt, xq “
ź

1ďn

χs,dpxqBpt
n, xnq

)

ðñ

!

Bpt, xq “
ź

1ďn

χs,dp
1

x
qAptn, xnq

)

(336)
resting on the elementary identity

ÿ

d1 d2“d

χs,d1pxqχs,d2px
´d1q ”

#

1 if d “ 1

0 otherwise
(337)

53See (??) below.
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For a clearer overview, let us again write the two pairs of mutually inverse
identities:

Γpt, xq

t
“

ź

1ďn

´

Ξptn, xnq
¯χ1,np

1
x q

with Ξpt, xq “
1

1´ xΓpt, xq
(338)

Ξpt, xq “
ź

1ďn

´Γptn, xnq

tn

¯χ1,npxq

with Γpt, xq “
Ξpt, xq ´ 1

x Ξpt, xq
(339)

Γcopt, xq

t
“

ź

1ďn

´

Ξcoptn, xnq
¯χ1,npxq

with Ξcopt, xq “
1

1´ Γcopt, xq
(340)

Ξcopt, xq “
ź

1ďn

´Γcoptn, xnq

tn

¯χ1,np
1
x q

with Γcopt, xq “
Ξcopt, xq ´ 1

Ξcopt, xq
(341)

Neither correspondence Γ Ø Ξ or Γco Ø Ξco being involutive, the above identi-
ties do not in any way relate our four functions for inverse values x and 1{x. It is
not even clear whether they admit (ramified) analytic continuations at infinity
in x, or in t, for that matter. Nevertheless, these two pairs of identities raise the
question as to the analytic nature of Γ,Γco and Ξ,Ξco . Let us limit ourselves
to a few sketchy indications.

Analyticity of Γpt, xq. The case x “ ˘1.

Γpt, 1q “
1

2

´

1´p1´4 tq
1
2

¯

; Ξpt, 1q “
1

2 t

´

1´p1´4 tq
1
2

¯

(342)

Γpt, 1́q “
1

2

´

1´
`1`2 t

1´2 t

˘
1
2

¯

; Ξpt, 1́q “
1

2 t

´

´1` 2 t`p1´4 t2q
1
2

¯

(343)

P4 :“
!

n ; n “ pπ1
1 . . . pπss with s ě 1 and

#

pi prime ě 3

pi ” ´1 mod 4

)

(344)

It follows that, for any fixed x, Γpt, xq and Ξpt, xq as series of t, have positive
convergence radii.

The case when x3 “ 1 or x4 “ 1.

Consider the integer sets

P3 :“
!

n ; n “ pπ1
1 . . . pπss with pi prime and pi ” ´1 mod 3

)

(345)

P4 :“
!

n ; n “ pπ1
1 . . . pπss with pi prime and pi ” ´1 mod 4

)

(346)

and for n P P3 or P4 set εpnq :“ p´1qπ1`...`πs and σpnq :“ 2s. Then

72



Γpt, jq “

$

’

’

’

’

’

&

’

’

’

’

’

%

t
`

1´j Γpt, jq
˘´j `

1´ Γpt3, 1q
˘´1

2´
1
6 pj´j̄q ˆ

śnPP3

εpnq“`1

`

1´ j Γptn, jq
˘

1
2n εpnqσpnq pj´j̄q ˆ

śnPP3

εpnq“´1

`

1` j̄ Γptn, j̄q
˘

1
2n εpnqσpnq pj´j̄q ˆ

śnPP3

εpnq“˘1

`

1 ´ Γpt3n, 1q
˘´ 1

6n εpnqσpnq pj´j̄q

(347)

with j “ e2π i{3.

Γpt, iq “

$

’

’

’

’

’

&

’

’

’

’

’

%

t
`

1´iΓpt, iq
˘i `

1` Γpt2, 1́q
˘1́ i `

1´ Γpt4, 1q
˘´ 1

2 ˆ
śnPP4

εpnq“`1

`

1´ iΓptn, iq
˘

1
n εpnqσpnq i ˆ

śnPP4

εpnq“´1

`

1` iΓptn,´iq
˘

1
n εpnqσpnq i ˆ

śnPP4

εpnq“˘1

`

1 ` Γpt2n, 1́q
˘´ 1

2n εpnqσpnq i

(348)

The relations (347) and (348), together with the conjugate relations, completely
determine Γpt, jq and Γpt, iq.

The case when x is a general unit root.

Similar systems obtain when x “ ε, for ε a prime unit root of order q :“
ś

qmii
( qi prime), but with this difference that we no longer have simple formulae for
expressing the exponents hpn, εq :“

ř

d|n µpn{dq ε
´d. Still, the set Pq of relevant

integers n, i.e. of all n for which hpn, εq ­“ 0, remains fairly lacunary, as it
excludes (in particular) all n that are

• divisible by
ś

qmi`1
i

• or divisible by some q0 with q0 ” 1 mod q

• or divisible by some q0

ś

q
m1i
i with q0 ” 1 mod

ś

q
m11i
i and m1i`m

11
i ą mi.

If ε is a prime root of order q, then Γpt, εq and Ξpt, εq have radius of conver-
gence 4´1{q, with (unless ε “ ˘1) an analytic boundary at the unit circle, on
all their Riemann sheets.

If ε “ e2πiθ is not a unit root, it would seem that Γpt, εq and Ξpt, εq have 1
as radius of convergence, unless perhaps for strongly Liouvillian θ.

No special significance attaches to the case t unit root, x small.
Lastly, the case when t and x are both unit roots (but x ­“ ˘1) falls outside

the domain of definition of Γpt, xq and Ξpt, xq.
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7.6 Sketch of proof: first approach.

Roadmap.

We consider the following generating series γ0ptq, γδptq, γ
˚
δ ptq:

γ0ptq :“
ř

γr,1 t
r with γr,1 :“ dim

`

Flexroot
r,1 pE

‚q
˘

“ dim
`

Flexal
r pE

‚q
˘

γδptq :“
ř

γr,1`δ t
r with γr,1`δ :“ dim

`

Flexroot
r,1`δpE

‚q
˘

γ˚δ ptq :“
ř

γ˚r,1`δ t
r with γ˚r,1`δ :“

ř

dim
`

sym.caltδpFlexal
r1pE

‚q, ..,Flexal
rspE

‚q
˘

where the ’restricted dimension’ γ˚r,δ`1 denotes the dimension of the space
spanned by all bimoulds B‚ of depth r and co-alternality δ`1 that can be
formed directly from alternal bimoulds A‚i by forming partially symmetrised
counter-alternators according to the procedure of §6.4; in other words, by all
B‚ of the form:

B‚ :“
ÿ

σ

n˚i,σ caltE‚pA
‚
σp1q, . . . , A

‚
σpsqq (349)

We then proceed as follows:

• We provisionally assume γ0ptq to be known.

• We directly calculate the ’restricted dimensions’ γ˚r,δ`1 by using the ’copi-
lot polynomials’.

• We form the corresponding generating series γ˚δ ptq by using the conversion
matrices moen.

• Lastly, we easily go from the ’restricted’ series γ˚δ ptq to the full series γδptq.

The conversion matrices.

The first ingredient in this approach are the conversion matrices meon and their
inverses moen, whose entries are indexed by p, q ranging through the set of all
partitions of the integer n.

Proposition 7.8 (The matrices meon and meon) .
For any partition n “ rn1, ..., nss of n, we set

yn :“
i“n
ź

i“1

ynii (350)

yn :“
i“n
ź

i“1

j“n
ÿ

j“1

ynij (351)

ă
ź

ypii ,
ź

yqii ą :“

#

1 if pi ” qi

0 otherwise
(352)
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For a suitable ordering54 of the set Parn of all partitions of n, the matrix meon
with positive integer entries

meonrp, qs :“ ă yp,yq ą
`

p P Parn, q P Parn
˘

(353)

is inferior triangular, with non-vanishing diagonal elements. The inverse matrix
moen “ meo´1

n has rational entries of mixted signs. Moreover:

ÿ

p,qPParn

moenrp, qs ” 1 @n (354)

ÿ

p,qPParn

|moenrp, qs | ” 2n´1 @n (355)

Par1 “ rr1ss , Par2 “ rr1, 1s, r2ss , Par3 “ rr1, 1, 1s, r2, 1s, r3ss ,
Par4 “ rr1, 1, 1, 1s, r2, 1, 1s, r2, 2s, r3, 1s, r4ss ,
Par5 “ rr1, 1, 1, 1, 1s, r2, 1, 1, 1s, r2, 2, 1s, r3, 1, 1s, r3, 2s, r4, 1s, r5ss ,
Par6 “ rr1, 1, 1, 1, 1, 1s, r2, 1, 1, 1, 1s, r2, 2, 1, 1s, r3, 1, 1, 1s, r2, 2, 2s, r3, 2, 1s, r4, 1, 1s, r3, 3s, r4, 2s, r5, 1s, r6ss

Here are the first six matrices meon, duly diagonal:

“

1
‰

,

„

2 0
1 1



,

»

–

6 0 0
3 1 0
1 1 1

fi

fl ,

»

—

—

—

—

–

24 0 0 0 0
12 2 0 0 0
6 2 2 0 0
4 2 0 1 0
1 1 1 1 1

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

120 0 0 0 0 0 0
60 6 0 0 0 0 0
30 6 2 0 0 0 0
20 6 0 2 0 0 0
10 4 2 1 1 0 0
5 3 1 2 0 1 0
1 1 1 1 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

meo6 :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

720 0 0 0 0 0 0 0 0 0 0
360 24 0 0 0 0 0 0 0 0 0
180 24 4 0 0 0 0 0 0 0 0
120 24 0 6 0 0 0 0 0 0 0
90 18 6 0 6 0 0 0 0 0 0
60 16 4 3 0 1 0 0 0 0 0
30 12 2 6 0 0 2 0 0 0 0
20 8 4 2 0 2 0 2 0 0 0
15 7 3 3 3 1 1 0 1 0 0
6 4 2 3 0 1 2 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

54Roughly, from [1,...,1] to [n]. See the examples below (355).
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And here are the first six matrices moen:

“

1
‰

,

«

1
2 0

1
2 1

ff

,

»

—

–

1
6 0 0

1
2 1 0
1
3 1 1

fi

ffi

fl

,

»

—

—

—

—

—

—

—

–

1
24 0 0 0 0

1
4

1
2 0 0 0

1
8

1
2

1
2 0 0

1
3 1 0 1 0

1
4 1 1

2 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
120 0 0 0 0 0 0

1
12

1
6 0 0 0 0 0

1
8

1
2

1
2 0 0 0 0

1
6

1
2 0 1

2 0 0 0

1
6

5
6 1 1

2 1 0 0

1
4 1 1

2 1 0 1 0
1
5 1 1 1 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

moen :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
720 0 0 0 0 0 0 0 0 0 0

1
48

1
24 0 0 0 0 0 0 0 0 0

1
16

1
4

1
4 0 0 0 0 0 0 0 0

. . .

1
48

1
8

1
4 0 1

6 0 0 0 0 0 0

1
6

5
6 1 1

2 0 1 0 0 0 0 0

1
8

1
2

1
4

1
2 0 0 1

2 0 0 0 0

1
18

1
3

1
2

1
3 0 1 0 1

2 0 0 0

1
8

3
4

5
4

1
2

1
2 1 1

2 0 1 0 0
1
5 1 1 1 0 1 1 0 0 1 0

1
6 1 3

2 1 1
3 2 1 1

2 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Proposition 7.9 (Properties of the matrices moe6) .
Despite having rational rather than integer entries, the matrices moen are in
some respects more regular than the matrices meon. In particular:

ÿ

p

moenrp, qs ” 1 if q “ rns and 0 otherwise (356)

ÿ

p

|moenrp, qs| ”
pd1`...`dsq!

d1! . . . ds!
if q “ rq

pd1q
1 , . . . , qpdsqs s (357)

ÿ

q

moenrp, qs ”
1

d1! pd11 ... ds! p
ds
s

if p “ rp
pd1q
1 , . . . , ppdsqs s (358)

The rows and columns of meon, on the other hand, have completely unremark-
able sums.

The second ingredient in this approach are the dual pilot and copilot poly-
nomials. They derive from the conversion matrices. Actually, the copilot poly-
nomials come first.
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The copilot polynomials.

Q1,2px1q “ } rδ1s rσ1, σ2...s

` 1
2 x̂1 px̂1´1q } r1s r1, 1s

Q2,3px1, x2q “ } rδ1s rσ1, σ2...s

` 1
3 x̂1 px̂1´1q px̂1´2q } r2s r1, 1, 1s

`1 x̂2 px̂1´1q } r2s r2, 1s

Q2,4px1, x2q “ } rδ1, δ2s rσ1, σ2...s

` 1
8 x̂1 px̂1´1q px̂1´2q px̂1´3q } r1, 1s r1, 1, 1, 1s

` 1
2 x̂2 px̂1´1q px̂1´2q } r1, 1s r2, 1, 1s

` 1
2 x̂2 px̂2´1q } r1, 1s r2, 2s

Q3,4px1, x2, x3q “ } rδ1s rσ1, σ2...s

` 1
4 x̂1 px̂1´1q px̂1´2q px̂1´3q } r3s r1, 1, 1, 1s

` 3
2 x̂2 px̂1´1q px̂1´2q } r3s r2, 1, 1s

` 1
2 x̂2 px̂2´1q } r3s r2, 2s

`1 x̂3 px̂1´1q } r3s r3, 1s

Q3,5px1, x2, x3q “ } rδ1, δ2s rσ1, σ2...s

` 1
6 x̂1 px̂1´1q px̂1´2q px̂1´3q px̂1´4q } r2, 1s r1, 1, 1, 1, 1s

` 3
2 x̂2 px̂1´1q px̂1´2q px̂1´3q } r2, 1s r2, 1, 1, 1s

`2 x̂2 px̂2´1q px̂1´2q } r2, 1s r2, 2, 1s

`1 x̂3 px̂1´1q px̂1´2q } r2, 1s r3, 1, 1s

`1 x̂3 px̂2´1q } r2, 1s r3, 2s

Q3,6px1, x2, x3q “ } rδ1, δ2, δ3s rσ1, σ2...s

` 1
48 x̂1 px̂1´1q px̂1´2q px̂1´3q px̂1´4q, px̂1´5q } r1, 1, 1s r1, 1, 1, 1, 1, 1s

` 1
4 x̂2 px̂1´1q px̂1´2q px̂1´3q px̂1´4q } r1, 1, 1s r2, 1, 1, 1, 1s

` 1
6 x̂3 px̂1´1q px̂1´2q px̂1´3q } r1, 1, 1s r3, 1, 1, 1s

` 3
4 x̂2 px̂2´1q px̂1´2q px̂1´3q } r1, 1, 1s r2, 2, 1, 1s

` 1
6 x̂2 px̂2´1q px̂2´2q } r1, 1, 1s r2, 2, 2s

`1 x̂3 px̂2´1q px̂1´2q } r1, 1, 1s r3, 2, 1s

` 1
2 x̂3 px̂3´1q } r1, 1, 1s r3, 3s

The pilot-copilot correspondence.

Proposition 7.10 (The Pr Ø Qr and Pr,d Ø Qr,d correspondence) .
For any n, let Parn be set of all partitions n :“ rn1, . . . , nss of n, with the ni
arranged in non-increasing order. To each n we also attach a matrix moen and
two vectors vonpyq, vepQrq:
(i) moen is the above defined square matrix, of entries moenrp, qs, with p and
q running through Parn.
(ii) vonpyq is the vector of entries yp “

ś

ypii with p “ rp1, p2, ...s also running
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through Parn.
(iii) vepQrq is the vector of entries Qrpq

˚q “ Qrpq
˚
1 , q

˚
2 , ...q with q “ rq1, q2, ...s

again running through Parn and q˚ denoting the conjugate partition:

q˚ “ rq˚1 , q
˚
2 , . . . s with q˚i “

ÿ

iďqj

1
`

ÿ

q˚i ”
ÿ

qj
˘

(359)

Then the identity holds:

Prpyq expp
ÿ 1

n
ynq ”

ÿ

rďn

ăvonpyq,moen,venpQrqą (360)

with both sides viewed as power series of y1, y2, .... If we view yi as having
homogeneous degree i and introduce a variable y to order the terms according to
their global homogeneous degree, (360) becomes:

`

d“2 r
ÿ

d“r̀ 1

yd Pr,dpyq
˘

expp
ÿ yn

n
ynq ”

ÿ

rďn

ynăvonpyq,moen,venpQrqą (361)

The identity (361) actually holds true for each pair pPr,d, Qr,dq separately:

yd Pr,dpyq expp
ÿ yn

n
ynq ”

ÿ

rďn

ynăvonpyq,moen,venpQr,dqą (362)

”
ÿ

dďn

ynăvonpyq,moen,venpQr,dqą (363)

The elementary identities venpQr,dq ” 0 for n in the interval rr, dr ensure the
equivalence of (362) and (363).

The pilot-copilot correspondence at the most basic level.

Proposition 7.11 (The P rr1,...,rss Ø Qrr1,...,rss and correspondence) .
If we define the atomic pilot and copilot polynomials as follows

Qrr1,...,rsspx1, x2, ...q :“
ź

1ďiďr

pxri´ i` 1q pr1 ě r2 ě ...rsq (364)

P rr1,...,rsspy1, y2, ...q :“
1ďtďs
ÿ

J1Y...Jt“t1,...,su

p´1qs´t
ź

1ďiďs

ΓpJiq yrpJiq (365)

with :“

#

ΓpJiq :“ p#pJiq ´ 1q!

rpJiq :“
ř

kPJi rk
(366)

the early correspondence still holds

y|r|P rr1,..,rsspyq expp
ÿ yn

n
ynq ”

ÿ

r1ďn

ynăvonpyq,moen,venpQ
rr1,..,rssqą(367)

”
ÿ

|r|ďn

ynăvonpyq,moen,venpQ
rr1,..,rssqą(368)
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with |r| :“ r1 ` ¨ ¨ ¨ ` rs and with the elementary identities

venpQ
rr1,...,rssq ” 0 @n P r r1, |r| r

ensuring the equivalence of (367) and (368).

Except in the trivial case P rn1spyq “ yn1
, Qrn1spxq “ xn1

, the construction
(367)-(368) implies

P rn1,...,nsspy, y2, y3, . . . q ” 0 (369)

P rn1,...,nsspy, y, y, . . . q ” y py´1q py´2q . . . py´s`1q (370)

Here are two elementary instances of pilot-copilot pairs:

#

P rn1,n2spyq “ yn1
yn2
´yn1`n2

Qrn1,n2spxq “ xn1
pxn2

´1q pn1 ě n2q
#

P rn1,n2,n3spyq “ yn1
yn2

yn3
´yn1`n2

yn3
´yn1`n3

yn2
´yn2`n3

yn1
` 2 yn1`n2`n3

Qrn1,n2,n3spxq “ xn1
pxn2

´1q pxn3
´2q pn1 ě n2 ě n3q

Here is yet another example, with all ni’s equal to distinct powers of 2 to preempt
repetitions in the sums of ni’s:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

P r8,4,2,1spyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`0! 0! 0! 0! y1 y2 y4 y8

´0! 0! 1!
`

y1y4y10`y1y2y12`y1y8y6`y2y4y9`y2y8y5`y4y8y3

˘

`0! 2!
`

y1y14`y4y11`y2y13`y8y7

˘

`1! 1!
`

y6y9`y3y12`y5y10

˘

´3! y15;

Qr8,4,2,1spxq “ x8 px4´1q px2´2q px1´3q

Remark: Let Parrpyq be the linear space spanned by the monomials
yr :“

ś

yri , with r “ rr1, ..., rss running through Parr. Then the endomorphism
f of Parrpyq

f : yr1 . . . yrs ÞÑ
1ďtďs
ÿ

J1Y...Jt“t1,...,su

p´1qs´t
ź

1ďiďs

ΓpJiq yrpJiq (371)

which according to Proposition 8.9 encodes the correspondence Qr ÞÑ P r, ad-
mits an even simpler inverse

f´1 : yr1 . . . yrs ÞÑ
1ďtďs
ÿ

J1Y...Jt“t1,...,su

ź

1ďiďs

yrpJiq (372)

which encodes the correspondence P r ÞÑ Qr
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Higher order contributions: going from γ˚δ ptq to γδptq.

Piecing together the results of this section, we can state that the restricted,
double generating function:

Γ˚pt, xq :“ γ˚0 ptq ` γ
˚
1 ptqx` γ

˚
2 ptqx

2 ` . . .

#

γ˚0 “ γ0

γ˚δ ­“ γδ if 1 ď δ
(373)

verifies the equation

Γ˚pt, xq “ t F
`

x,Γ˚pt, 0q,Γ˚pt2, 0q,Γ˚pt3, 0q, . . .
˘

(374)

“ t F
`

x, γptq, γpt2q, γpt3q, . . .
˘

(375)

though with a framing function F defined, not directly by (302) but rather by
(302) plus (303) relative to the pilot polynomials Pr,d determined in Proposition
7.11.

Finally, to ’unrestrict’ the series Γ˚pt, xq to the full series Γpt, xq and establish
the functional equation

Γpt, xq “ t F
`

x,Γpt, xq,Γpt2, x2q,Γpt3, x3q, . . .
˘

we use the following lemma:

Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In conclusion, for all its detours and meanderings, the approach followed in this
section has the merit of drawing attention to the remarkable conversion matrices
meon.moen and of breaking down the pilot polynomials Pr,d into completely
explicit ’atoms’:

Pr,dptq “
ÿ

αd1,...,ds P
rd1,...,dssptq with

#

d1 ` ...` ds “ d

αd1,...,ds P Q`

7.7 Sketch of proof: second approach.

As in §5.10 let us decompose the associative algebra E freely generated by
elements e1, e2... into spaces Es1,...,sr of degree si in ei, and let us split these
spaces into sums

Es1,...,sr “ ‘1δďsEs1,...,srd ps “
ÿ

siq

of subspacesc Esd consisting of distinguished elements of ’differential’ degree d.
The immediate aim is to calculate dimpEs1,...,srd q. For d“1 we have classically:

dimpEs1,...,sr q “
s!

s1!...sr!
; dimpEs1,...,sr1 q “

1

s

ÿ

δ|si

µpdq
ps{dq!

ps1{dq!...psr{dq!

80



Next, consider the three cgenerating series:

Spxq “ 1`
ÿ

1ďr

i1ăi2...
ÿ

s1,s2...

xs1i1 ...x
sr
ir

dimpEs1,...,sr1 q “
`

1´
ÿ

xi
˘´1

(376)

Mpxq “
ÿ

1ďr

i1ăi2...
ÿ

s1,s2...

xs1i1 ...x
sr
ir

dimpEs1,...,sr1 q (377)

Swpxq “ 1`
1ďd
ÿ

1ďr

i1ăi2...
ÿ

s1,s2...

xs1i1 ...x
sr
ir

dimpEs1,...,srd q (378)

Clearly

Swpxq “ exp
´

ÿ

1ďk

wk

k
Mpxk1 , x

k
2 , . . . q

¯

with S1pxq ” Spxq (379)

and in the special case w “ 1:

S1pxq “ exp
´

ÿ

1ďk

wk

k
Mpxk1 , x

k
2 , . . . q

¯

” Spxq (380)

By M:obius inversion, (380) leads to

Mpxq “
ÿ

1ďk

1

k
log

`

Spxk1 , x
k
2 , . . . q

˘

“ ´
ÿ

1ďk

1

k
log

`

p1´
ÿ

xki qq
˘

(381)

and then to

Swpxq “
ź

´

1´
ÿ

i

xki

¯´ 1
k

ř

d|k µp
k
d qw

d

(382)

So we can now calculate dimpEsdq from (382). However, as noted in §7, the
elements of Flex root

r pEq of alternality co-degree δ “ d´1 that can be obtained as
counter-alternaltors of elements alternal elements correspond do not correspond
to elements of Es of degree d, but of supplementory degree s´ d. This leads us
to replace the series Sw by G with:

Gpz;x1, x2, . . . q “ Sz´1px1 z, x2 z, . . . q (383)

“
ź

´

1´
ÿ

xki z
k
¯´1k

ř

d|k µpkdq z
´d

(384)

But going from Gpz;xq as just defined to Fpx;yq as defined in (302) exactly
corresponds to applying the transform (367) with the matrices moer. So, the
restricted generating series Γ˚pt, xq verifies the functional equation (374). We
can then go to the full generation series Γpt, xq and its functional equation (315)
by using the same trick than at the end of §7.6.
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7.8 Dimensions.

Here are the first dimensions dim
`

Flex root
r,d

˘

and dim
`

Flex r,d
˘

. All calculations
are based on the functional equation (315) in the ‘practical’ form (318). The
columns are indexed by the depth r and the row by the co-degree d. For con-
sistency, we used d rather than the shifted co-degree δ “ d´ 1 even in the first
table. The reader may check that, in both tables, the entries in each column
sum up to a Catalan number; and also that the first lines of either table (corre-
sponding to the alternals) do coincide, as implied by (320)-(321).

Table for dim
`

Flex root
r,d

˘

.

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 | 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973 87811
2 | 0 0 0 1 4 15 49 156 479 1452 4343 12908 38146 112358 330064
3 | 0 0 0 0 1 6 27 108 405 1446 5013 16953 56321 184385 596741
4 | 0 0 0 0 0 1 7 40 191 839 3440 13475 50889 186888 670807
5 | 0 0 0 0 0 0 1 8 58 317 1568 7197 31258 129898 521166
6 | 0 0 0 0 0 0 0 1 10 76 476 2654 13539 64729 293759
7 | 0 0 0 0 0 0 0 0 1 12 100 693 4249 23749 123608
8 | 0 0 0 0 0 0 0 0 0 1 13 124 954 6433 39183
9 | 0 0 0 0 0 0 0 0 0 0 1 15 153 1285 9391

10 | 0 0 0 0 0 0 0 0 0 0 0 1 16 183 1672
11 | 0 0 0 0 0 0 0 0 0 0 0 0 1 18 218
12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 19
13 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table for dim
`

Flex r,d
˘

.

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 | 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973 87811
2 | 0 1 2 6 16 45 123 344 957 2687 7557 21358 60516 172034 490204
3 | 0 0 1 3 12 41 138 446 1428 4497 14068 43668 134911 414952 1272130
4 | 0 0 0 1 4 20 83 328 1222 4422 15554 53702 182423 611986 2031248
5 | 0 0 0 0 1 5 30 147 667 2815 11364 44164 166881 615935 2230554
6 | 0 0 0 0 0 1 6 42 237 1216 5737 25586 108917 447319 1783137
7 | 0 0 0 0 0 0 1 7 56 358 2049 10687 52194 241591 1071839
8 | 0 0 0 0 0 0 0 1 8 72 514 3249 18566 98584 493086
9 | 0 0 0 0 0 0 0 0 1 9 90 710 4911 30517 175067

10 | 0 0 0 0 0 0 0 0 0 1 10 110 950 7140 47938
11 | 0 0 0 0 0 0 0 0 0 0 1 11 132 1239 10053
12 | 0 0 0 0 0 0 0 0 0 0 0 1 12 156 1581
13 | 0 0 0 0 0 0 0 0 0 0 0 0 1 13 182
14 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14
15 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

8 Main bases of Flex pE‚q and Flex al
pE‚q .

8.1 mu -generation versus dmu -generation.

Instead of the counter-alternators, consider the simpler operation malt :

A‚0, . . . , A
‚
s ÞÑ maltA‚0pA

‚
1, ..., A

‚
sq :“ dmu

`

A‚0,mupA‚1, ..., Asq
˘

(385)

biFlex ripE
‚q Ñ Flex r0`...`rspE

‚q
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and the system tmote‚r,ku constructed parallel to the system tôte‚r,ku, but with
the operations malt, mu now playing the part of câlt , dmu, as follows:

mote‚1,1 :“ E‚ pprime elementq

mote‚2,1 :“ maltE‚pmote‚1,1q pprime elementq
mote‚2,2 :“ mupmote‚1,1,mote‚1,1q pcomposite elementq

mote‚3,1 :“ maltE‚pmote‚2,1q pprime elementq
mote‚3,2 :“ maltE‚pmote‚1,1,mote‚1,1q pprime elementq
mote‚3,3 :“ mupmote‚1,1,mote‚2,1q pcomposite elementq
mote‚3,4 :“ mupmote‚2,1,mote‚1,1q pcomposite elementq
mote‚3,5 :“ mupmote‚1,1,mote‚1,1,mote‚1,1q pcomposite elementq

etc . . .

Lemma 8.1 (mu-generated basis) .
The ’prime elements’ or ’generators’ tmote‚r,k; k ď κr´1u, together with their
mu-products tmote‚r,k;κr´1 ă k ď κru, constitute a basis of FlexpE‚q naturally
indexed by ordered trees.

The shortest proof again lies in the fact that, for a suitable ordering on OT and
BT, the OT-indexed mote‚r,k relate to the BT-indexed bte‚r,k according to

mote‚r,k1 “
ř

k2ďκr
ar,k2r,k1

bte‚r,k2 with ar,k2r,k1
P t0, 1u

bte‚r,k1 “
ř

k2ďκr
br,k2r,k1

mote‚r,k2 with br,k2r,k1
P t0, 1,´1u

with triangular matrices ra‚‚s and rb‚‚s whose diagonal elements are all ” 1.
The system tmote‚r,ku is essentially the simplest55 basis of Flex pE‚q that

comes with a natural OT-indexation, but it does not lead to simple expres-
sions for the basic mould operations. Worse still, it does not, any more than
tbte‚r,ku, reflect the alternality stratification of Flex pE‚q. Actually, no system
relying on mu-generation can reflect that stratification. The reason is that,
if the space spanned by the ‘prime elements’ or ‘generators’ is to contain the
whole of Flexal

pE‚q, then the ‘composites elements’ will automatically repro-
duce some of the alternal elements already constructed (since superpositions of
mu-products cover all lu-bracketings) and cannot therefore be truly independent
of the ‘primes’. So, to get alternality-friendly bases, we must now return to the
proper counter-alternators.

8.2 Main bases of Flex pE‚q.

Proposition 8.1 (Counter-alternators and bases of Flex pE‚q) .
(i) The elements ôte‚r,k indexed by ordered, one-rooted trees otr,k (k ď κr´1)
and built from the main counter-alternator calt according to the procedure of

55in the sense of making minimal use of inflected operations.
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§.. condtitute a full system of dmu- and mdu-generators, in the sense that any
element e‚ P Flex pE‚q admits a unique expansion of the form

e‚ “
r1`...`rs“r

ÿ

1ďsďr

ÿ

kiďκrí 1

â
p
r1
k1

...

...
rs
ks
q
Ð

dmu
`

ôte‚r1,k1 , . . . , ôte
‚
rs,ks

˘

(386)

and another of the form

e‚ “
r1`...`rs“r

ÿ

1ďsďr

ÿ

kiďκrí 1

b̂
p
r1
k1

...

...
rs
ks
q
Ñ

mdu
`

ôte‚r1,k1 , . . . , ôte
‚
rs,ks

˘

(387)

with a conversion formula â‚ Ø b̂‚ given by the identity (??).
The closely related system tate‚r,d,r; k ď γr,du indexed by aggregated trees atr,d,k
faithfully reflects the alternality gradation of FlexpE‚q.

(ii) The same holds for the elements ǒte‚r,k built from the second counter-alternator
cǎlt, but with a less simple concersion rule for the expansions

e‚ “
r1`...`rs“r

ÿ

1ďsďr

ÿ

kiďκrí 1

ǎ
p
r1
k1

...

...
rs
ks
q
Ð

dmu
`

ǒte‚r1,k1 , . . . , ǒte
‚
rs,ks

˘

(388)

e‚ “
r1`...`rs“r

ÿ

1ďsďr

ÿ

kiďκrí 1

b̌
p
r1
k1

...

...
rs
ks
q
Ñ

mdu
`

ǒte‚r1,k1 , . . . , ǒte
‚
rs,ks

˘

(389)

and with further differences pertaining to the behaviour of the generators ŝte‚r,k
under the brackets lu and ari.

(iii) The elements ōte‚r,k constructed in the same way from the weakly inflected
counter-alternator cālt do not constitute a full system of dmu or mdu gener-
ators. Indeed, from r “ 7 onwards the generators ōte‚r,k pk ď κr´1q cease to
be independent; and the same holds even earlier, starting from r “ 4, for the
would-be basis elements ōte‚r,k pk ď κrq.

However, the elements ūte‚r,1,k pk ď γ1,rq constructed from cālt and indexed

by unordered trees in UT56 do constitute a basis of Flexal
r pE

‚q (alternal elements)
which in some contexts compares advantageously with the analogous bases de-
rived from calt or câlt. See §9... and §9 infra.

Sketch of proof:

(i) The independence of the generator set ôte‚r,k pk ď κr´1q follows from that of
the full set ôte‚r,k pk ď κrq and the latter follows from the form (lower triangular,
with non-zero diagonal entries) of the conversion matrices exchanging the OT-

indexed systems tôte‚r,k ; k ď κru and the BT-indexed systems tb̂te
‚

r,k ; k ď κru,
as explained in §...

56or, what amounts to the same, by aggregated trees in ATp1q.
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(ii) Here again, the proofs relies on the triangular nature of the conversion
matrices. Due to the lesser importance of that case, we haven’t described these
matrices, but some instances may be found in the tables of §13.3.

(iii) Even for small depths r, the dimensions κ̄r´1 of the spaces spanned by
the cālt-based generators tōter,k ; k ď κr´1u start lagging behind the required
number κr´1, and the dimensions ¯̄κr of the full systems tōter,k ; k ď κru start
diverging from κr even sooner and faster, as shown by this table:

r } 1 2 3 4 5 6 7 8

pκ̄ŕ 1, κŕ 1q } p1, 1q p1, 1q p2, 2q p5, 5q p14, 14q p42, 42q p131, 132q p423, 429q
p¯̄κr, κrq } p1, 1q p2, 2q p5, 5q p13, 14q p36, 42q p104, 132q p316, 429q p..., 1430q

To illustrate the mechanism behind these discrepancies, here are the first de-
pendence relations between general elements or between generators, at depth
r “ 4 and r “ 7 respectively:

0 ” `ōte‚4,1 ´ ōte‚4,2 ` ōte‚4,3 ´ ōte‚4,4 ` 2 ōte‚4,8 ´ 2 ōte‚4,9 (390)

0 ” `3 e‚1 ` 4 e‚2 ` 3 e‚3 (391)

with
$

’

&

’

%

e‚1 “`̄ote
‚
7,62´ōte‚7,63´ōte‚7,64`ōte‚7,65

e‚2 “`̄ote
‚
7,90´ōte‚7,91´ōte‚7,99`ōte‚7,100´ōte‚7,104`ōte‚7,105`ōte‚7,106´ōte‚7,107

e‚2 “´̄ote
‚
7,118`ōte‚7,119`ōte‚7,122 ´´̄ote

‚
7,123

Let us parse (??) first:

ōte‚4,1 , ōte
‚
4,1 P Flex4,1pE

‚q

ōte‚4,3 ´ ōte‚4,4 P Flex4,2pE
‚q

ōte‚4,8 ´ ōte‚4,9 “ dmupōte‚2,1, ōte
‚
2,1q ´ dmupōte‚3,1, ōte

‚
1,1q P Flex4,2pE

‚q

Now, to (??). Here are the three elements of Flex pE‚q

a‚1 :“ ōte‚1,1 P Flex1,1pE
‚q

a‚2 :“ ōte‚2,1 P Flex2,1pE
‚q

a‚3 :“ ōte‚3,1 ´ ōte‚3,2 P Flex3,1pE
‚q

that go into the making of e‚1, e
‚
2, e

‚
3 :

e‚1 “ cāltEpa
‚
3, a

‚
3q P Flex7,2pE

‚q

e‚2 “

#

`cāltE‚pa
‚
1, a

‚
2, a

‚
3q ` cāltE‚pa

‚
3, a

‚
1, a

‚
2q

´cāltE‚pa
‚
2, a

‚
1, a

‚
3q ´ cāltE‚pa

‚
3, a

‚
2, a

‚
1q

P Flex7,3pE
‚q

e‚3 “

#

`cāltE‚pa
‚
1, a

‚
2, a

‚
1, a

‚
2q ` cāltE‚pa

‚
2, a

‚
1, a

‚
2, a

‚
1q

´cāltE‚pa
‚
1, a

‚
2, a

‚
2, a

‚
1q ´ cāltE‚pa

‚
2, a

‚
1, a

‚
1, a

‚
2q

P Flex7,3pE
‚q
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8.3 Main bases of Flex al
pE‚q.

8.4 Lie and pre-Lie brackets in the main bases.

Lemma 8.2 (Tree operations: attachment and insertion) .
Let T1,T2,T3 denote ordered, planar, one-rooted trees, i.e. elements of OTp1q.

(i) Attaching T2 to T1 means connecting the root node j˚ of T2 to some node i
of T1 via a new vertex v from i to j˚, and assigning v a definite position among
the various edges of T1 issuing from i, so as to unambiguously define a new
ordered tree T3. If T1 has r1 nodes, there are exactly 2 r1´1 ways of attaching
to it any given T2.

(ii) Inserting T2 into T1 means producing a tree T3 whose nodes can be assigned
colours 1 or 2 in such a way that:
(1) The 2-coloured nodes of T3 constitute a connected sub-tree T12 of T3 isomor-
phic to T2.
(2) There is at least one 2-coloured node immediately preceding one 1-coloured
node.57

(3) The root node of T12 is distinct from the root node of T3 and has for imme-
diate antecedent some 1-coloured node i of T3.
(4) By retaining only the 1-coloured nodes of T3, i.e. by collapsing the whole of
T12 to the 1-coloured node i of T3, one gets a tree T11 isomorphic to T1.

Let r2 be the node number of T2 and for each node i of T1, let pi be the number
of vertices issuing from i. Then there exist exactly

ř

i hppi, r2q distinct ways of
inserting T2 into T1, with

hpp, qq :“
pp` 2 qq!

p! p2 qq!
´ 1´ p (392)

The only point to check is formula (??). Assume first that T2 is linear, with
each node (other than the end node) having just one successor. Let i be the node
of T 1

1 immediately preceding the root node j˚ of T 1
2 . In the insertion process,

each of the pi nodes of T1 immediately following i either remains attached to i
or moves upward to attach itself to some of the r2 nodes of T2 , with the only
proviso that not all pi successor nodes should remain attached to i (for that
would contradict clause (2); it would in effect mean that T2 is getting attached
to T1 rather than inserted into it). Now, the number of distinct ways to achieve
this is exactly

´1´ pi `
ÿ

1ďkďpi

p2 r2`1q!

k! p2 r2`1´kq!

ppi´1q!

pk´1q!ppi´kq!
” hppi, r2q (393)

The kth summand counts all possible ways of attaching the pi succesor nodes
of i to k distinct nodes of T2 and the corrective term 1́´pi accounts for the

57This clause ensures that one and the same T3 cannot simultaneously be the attachment
of T2 onto T1 and the insertion of T2 into T1.
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impossibility of keeping all successor nodes attached to i. To complete the proof,
it suffices to check that nothing changes if we gradually modify the structure of
T2, from linear to arbitrary, while keeping the total number of nodes equal to
r2.

Just three more remarks:
(i) The end nodes i of T1 play no part in the insertion process, since for them
pi “ 0 and so hppi, r2q ” 0.
(ii) For r1 “ 1, i.e. when T1 reduces to a root node, the definition makes it
clear that T1 cannot have anything inserted into it.
(iii) Conversely, when r2 “ 1, inserting T2 into T1 reduces to grafting the single
node of T2 onto any one of T1 ’s edges.

Proposition 8.2 (Generators ote‚r,k and pre-Lie products) .

(i) The generators ôte‚r,k pk ď κr´1q constructed from the main counter-alternator
câlt and indexed by ordered trees otr,k behave optimally simply under the pre-Lie
products dlu and dari:

dlupôte‚r1,k1 , ôte
‚
r2,k2q “ ´

r“r1`r2
ÿ

kďκr´1

α̂ r,k
r1,k1;r2,k2

ôte‚r,k with α‚‚,‚ P N (394)

daripôte‚r1,k1 , ôte
‚
r2,k2q “ `

r“r1`r2
ÿ

kďκr´1

β̂ r,k
r1,k1;r2,k2

ôte‚r,k with β‚‚,‚ P N (395)

In terms of the indexing trees otr,k , the operation dlu corresponds to attaching
the second tree otr2,k2 successively to each node of the first tree otr1,k1 , in all
possible arrangements, and the operation dari corresponds to inserting the sec-
ond tree otr2,k2 into the first tree otr1,k1 , again in all possible ways (see details
below). As for the integer coefficients involved in these identities, they verify

ÿ

k

α̂r,kr1,k1;r2,k2
“ 2 r1 ´ 1 (396)

ÿ

k

β̂r,kr1,k1;r2,k2
“

iPnodespotr1,k1 q
ÿ

pi“ramifpiq

´

ppi`2 r2q!

pi! p2 r2q!
´ 1´ pi

¯

(397)

In (??), the α̂-sum depends only on the node number r1 of the first tree otr1,k1 ,

and not at all on the second tree. In (??), the β̂-sum depends on the ramifica-
tion numbers pi at each node i of the first tree otr1,k1 (i.e. on the number of
branches issuing from i) but only on the node number r2 of the second tree.

(ii) The generators ǒte‚r,k pk ď κr´1q constructed from the second counter-
alternator cǎlt and indexed by ordered trees otr,k behave under the pre-Lie prod-
ucts dlu and dari under (slightly less) simple rules. The formulae now involve
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coefficient α̌, β̌ of mixed signs:

dlupǒte‚r1,k1 , ǒte
‚
r2,k2q “ ´

r“r1`r2
ÿ

kďκr

α̌ r,k
r1,k1;r2,k2

ǒte‚r,k with α̌‚‚,‚ P Z (398)

daripǒte‚r1,k1 , ǒte
‚
r2,k2q “ `

r“r1`r2
ÿ

kďκr

β̌ r,k
r1,k1;r2,k2

ǒte‚r,k with β̌‚‚,‚ P Z (399)

The integer coefficients involved in these identities verify

ÿ

k

α̌r,kr1,k1;r2,k2
“ 1 (400)

ÿ

k

β̌r,kr1,k1;r2,k2
“ r1 ´ 1 (401)

But the main difference is that in the new expansions k may run up to κr
instead of κr´1 in (i), meaning that, beside simple generators, we may also get
dmu products of these. The remark applies not just to dlu and dari but also to
lu and ari.

(iii) Turning now to the weak counter-alternator cālt, the system ōte‚r,k pk ď κrq
indexed by ordered trees is not complete in FlexrpE

‚q, but the system ūte‚r,k
pk ď κrq indexed by unordered trees does span Flexal

r pE
‚q and gives rise there

to expansions of the form:

dlupūte‚r1,k1 , ūte
‚
r2,k2q “ ´

r“r1`r2
ÿ

kďκr

ᾱ r,k
r1,k1;r2,k2

ūte‚r,k with ᾱ‚‚,‚ P Q (402)

daripūte‚r1,k1 , ūte
‚
r2,k2q “ `

r“r1`r2
ÿ

kďκr

β̄ r,k
r1,k1;r2,k2

ūte‚r,k with β̄‚‚,‚ P Q (403)

with rational coefficients that verify

ÿ

k

ᾱr,kr1,k1;r2,k2
“ 1 (404)

ÿ

k

β̄r,kr1,k1;r2,k2
“ r1 ´ 1 (405)

Sketch of proof:
(i) The counter-alternator câlt was precisely devised to ensure that calculating
dlupôte‚r1,k1 , ôte

‚
r2,k2q should reduce to attaching the tree otr2 ,k2 to the tree otr1 ,k1 ,

in all possible ways. To infer from that the more complicated insertion rule for
the dari product, one starts from the trivial identity daripôte‚r1,k1 , ôte

‚
r2,k2q ” 0

when r1 “ k1 “ 1 (i.e. ôte‚r1,k1 “ E‚). One then observes

• that any ôte‚r1,k1 can be constructed from units E‚ through a succession
of operations dlu, dmu, mdu;
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• that daripA‚, B‚q “ aritpB‚qA‚ ` dlupA‚, B‚q ;

• that the operator aritpB‚q ???is a dlu-, dmu-, mdu-automorphism;

• that at each stage of ôte‚r1,k1 ’s reconstruction the insertion rule applies.

(ii) and (iii). Since the conversion matrices from tôte‚r,ku to tǒte‚r,ku, and back,

have only integer entries, the coefficients α̌, β̌ will be integers, just like α̂, β̂,
though not necessarily positive. The coefficients ᾱ, β̄, on the other hand, are
merely rational. As for the curious identities (??)-(??) and (??)-(??), they
are mentioned here only for the record, but can be checked (painstakingly) by
induction on r1.

8.5 Main sub-algebras.

heA‚ :“ aritpA‚q.E‚ “ câltEpA
‚q “ cǎltEpA

‚q “ cāltEpA
‚q (406)

@A‚ P FlexpEq

Proposition 8.3 ( FlexpEq and its subalgebras) .

These are the main ari-subalgebras of FlexpEq or Flex for short :

he8Flexal
Ă ...he2Flexal

Ăhe1Flexal
ĂFlexal

“ ‘1ďnbenFlexal
ĂFlexroot (407)

Each henFlexal
p0 ď n ď 8q and each benFlexal

p1 ď n ă 8q is stable under
ari, while Flexal and Flexroot are stable under both ari and lu. Moreover:

daripben1 Flexal,ben2 Flexal
q P ben1 Flexal (408)

aripben1 Flexal,ben2 Flexal
q P ben1 Flexal

‘ ben2 Flexal (409)

Here are the identities responsible for the ari-stability of henFlexal:

ari :
´

henFlexr1pEq , henFlexr2pEq
¯

Ñ henFlexr1̀ r2̀ npEq

arihen :
´

Flexr1pEq , Flexr2pEq
¯

Ñ Flexr1̀ r2̀ npEq

ariphenA‚,henB‚q ” hen arihenpA
‚, B‚q (410)

with arihenpA
‚, B‚q :“

$

&

%

´aritphenA‚qB‚ ` aritphenB‚qA‚

`
ř0ďni
n1̀ n2“n

luphen1A‚,hen2B‚q
(411)

And here is the identity responsible for the ari-stability of benFlexal:

dari
´

cāltEpA
‚
1, . . . , A

‚
sq, B

‚
¯

”
ÿ

j

cāltE

´

A‚1, . . . , taripA‚j , B
‚q, . . . , A‚s

¯

(412)

with

#

daripA‚, B‚q :“ aritpB‚q.A‚ ` dlupA‚, B‚q

taripA‚, B‚q :“ aritpB‚q.A‚ ` lupA‚, B‚q
(413)
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8.6 Push -invariance.

Proposition 8.4 (câlt , cǎlt , cālt and push-invariance) .
(i) In the tôte‚r,ku-basis, we have expansions of type

ÿ

0ďnďr

pushn. ôte‚r,p “
ÿ

q

âp,q ôte
‚
r,q pp, q ď κr ; âp,q P Zq (414)

with integers âp,q whose sum
ř

q âp,q is divisible by 2 r`1 whenever 2 r`1 is
prime.

(ii) In the tǒte‚r,ku-basis, we have expansions of type

ÿ

0ďnďr

pushn. ǒte‚r,p “
ÿ

q

ǎp,q ǒte
‚
r,q pp, q ď κr ; ǎp,q P Zq (415)

with integers ǎp,q whose sum
ř

q ǎp,q is always ” 0.

(iii) The system tōte‚r,ku being no basis of FlexrpE
‚q, the above relations have

no exact counterpart here. However, the system tūte‚r,ku indexed by unordered

trees of UTr is a basis of the alternal subspace Flexal
r pE

‚q, and gives rise to
remarkable expansions of type:

ÿ

0ďnďr

pushn. ūte‚r,p “
ÿ

q

āp,q ūte
‚
r,q pp, q ď κr ; āp,q P Qq (416)

that involve only basis elements ūte‚r,q indexed by unordered trees with odd-
branching roots, i.e. with roots having a odd number of edges issuing from
them. Thus, in (??), about half the basis elements are automatically ruled out.
Moreover, if we normalise the basis tūte‚r,ku (see (??)), the remaining coefficients
sum up to zero:

ř

q āp,q ” 0

9 Expanding the dimorphic bimoulds.

9.1 The main bases and the universal alternals.

We shall construct in Flex pEq two elementary and three semi-elementary series
of alternals, namely tre‚ru, tle

‚
ru and the‚ru, tke

‚
2ru, tge

‚
ru, by giving in each case a

direct description side by side with an inductive definition.

The first alternal series tre‚ru .

The inductive definition, which immediately implies alternality, reads:

re‚1 :“ E‚ ; rer
‚ :“ aritpre‚r´1qE

‚ p@r ě 2q (417)

The most outstanding property of the alternals re‚r is their self-reproduction à
la Witt under the ari bracket:

aripre‚r1 , re
‚
r2q “ pr1´r2q re

‚
r1̀ r2 (418)
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The second alternal series tle‚ru .

Here the direct definition reads:

lew1,...,wr
r :“

ÿ

1ďiďr

p´1qi´1 pr ´ 1q!

pi´ 1q!pr ´ iq!
E

`

u1`...`ur
vi

˘

ź

j ­“i

E

`

uj
vj´vi

˘

(419)

The third alternal series the‚ru.

The series the‚ru is best defined in the binary basis te‚tu:

he‚r “
ÿ

tPBTr

slantptq e‚t with

$

’

’

’

&

’

’

’

%

t “ hpt1, t2q

e‚t “ amnitpe‚t1 , e
‚
t2qE

‚

slantptq “ slantpp1q1

ˇ

ˇ

p2
q2
q

(420)

with slant coefficients

slant
`p1

q1

ˇ

ˇ

p2

q2

˘

“ p´1qq12´1 pp1`p2q!pq1`q2q!

pp1`p2`q1`q2q!
det

” p1

1`q1

ˇ

ˇ

ˇ

1`p2

q2

ı

(421)

that depend only on the number p1, p2 (resp. q1, q2) of left-leaning (resp. right-
leaning) edges in the subtrees t1, t2 attached to the root-node of t. One of these
subtrees may be void, in which case the corresponding pair pp1, q1q or pp2, q2q

is taken to be p0, 0q.

The fourth alternal series tke‚2r˚u .

The series tke‚2ru is defined only at even depths 2r:

ke‚2r “
ÿ

tPBT2r

stackptq e‚t with

$

’

’

’

&

’

’

’

%

t “ hpt1, t2q

e‚t “ amnitpe‚t1 , e
‚
t2qE

‚

stackptq “ stackpm1

n1

ˇ

ˇ

m2

n2
q

(422)

with stack coefficients

stack
`p1

q1

ˇ

ˇ

p2

q2

˘

“ p´2qm12́ 1pm1`m2´1q!
pn1`n2´m1´m2q!!

pn1`n2`m1`m2´2q!!
det

” m1

1`n1

ˇ

ˇ

ˇ

m2

1`n2

ı

(423)

that depend only on the number m1,m2 (resp. n1, n2) of end-nodes (resp. non
end-nodes) in the subtrees t1, t2 attached to the root-node of t.

The fifth alternal series tge‚ru .

giw1,...,wr
r :“

´

ÿ

1ďiďr

P pviq
¯

ź

1ďiăr

P pvi´vì 1q (424)

gicw1,...,wr
r :“

´

ÿ

1ďiďr

Qpviq
¯”

`

1`
ÿ pi cq2n

1`2n
B2n
t

˘

ź

1ďiăr

`

Qpvi´vì 1q`t
˘

ı

t“0
(425)

with as usual P pviq :“ 1
vi

and Qpviq :“ c
tanpc viq
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9.2 The main bases and the bisymmetrals.

pal‚ “ mduppal‚,dupal‚q with dupal‚ “ ´
ř

1ďr αr la‚r

pal‚ev “ mduppal‚ev,dupal‚evq with dupal‚ev “ ´
ř

1ďr α2r la‚2r

d.pil‚ “ prearippil‚,dipil‚q with dipil‚ “ ´
ř

1ďr
1

pr̀ 1q! ri‚r

d.pil‚ev “ prearippil‚ev,dipil‚evq with dipil‚ev “ ´
ř

1ďr
1

pr̀ 1q! ri‚2r

d.ripal‚ “ prearipripal‚,diripal‚q with diripal‚ “
ř

1ďr
1

rpr`1q ha‚r

d.ripal‚ev “ prearipripal‚ev,diripal‚evq with diripal‚ev “
ř

1ďr
21´2r

4r2́ 1 ka‚2r

d.ripil‚ “ prearipripil‚,diripil‚q with diripil‚ “
ř

1ďr
1

rpr`1q ri‚r

d.ripal‚ev “ prearipripil‚ev,diripil‚evq with diripil‚ev “
ř

1ďr
21´2r

4r2́ 1 ri‚2r

“

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 3

2
3
2 3 0 0 ...

“

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´ 1
2 1 ´ 3

2 ´ 3
2 3 0 0 ...

“

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

5
2 0 0 0 0 0 ...

“

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´2 5
2 0 0 0 0 0 ...

... 0 0 1
2 1 3

2
3
2 3 0 0 ´ 5

2 0 0 ´ 5
2 ´

5
2 0 0 ´ 15

2 ´ 15
2 ´ 15

2 ´ 15
2 ´ 45

2

‰

... 0 0 ´ 1
2 1 ´ 3

2 ´
3
2 3 0 0 ´ 5

2 0 0 ´ 5
2 ´

5
2 0 0 ´ 15

2 ´ 15
2 ´ 15

2 ´ 15
2 ´ 45

2

‰

... 0 0 1
2

5
2 0 0 0 0 0 ´ 5

2 0 0 ´ 5
2 ´

5
2 0 0 ´ 15

2 ´ 15
2 ´ 15

2 ´ 15
2 ´ 45

2

‰

... 0 0 ´2 5
2 0 0 0 0 0 ´ 5

2 0 0 ´ 5
2 ´

5
2 0 0 ´ 15

2 ´ 15
2 ´ 15

2 ´ 15
2 ´ 45

2

‰

9.3 The main bases and the alternal dilators.

9.4 The main bases and the bialternal dilators.

pal‚ “ garippar‚, eral‚q with

#

pal‚,pal‚ P GARIas{as

eral‚ P GARIas{as (426)

pil‚ “ garippir‚, eril‚q with

#

pil‚,pil‚ P GARIas{as

eril‚ P GARIas{as (427)

ral‚ “ logariperal‚q with ral‚ P ARIal{al (428)

ril‚ “ logariperil‚q with ril‚ P ARIal{al (429)

tpal‚ , par‚ , ral‚u
swap
ÐÑ tpil‚ , pir‚ , ril‚u (430)

tpal‚ , par‚ , ral‚u
slap
ÐÑ tpir‚ , pil‚ , lir‚ “ ´ril‚u (431)
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5! ral‚4 in the cālt-basis : r 14 ´
5
12 0 1

6 s

5! ral‚4 in the câlt-basis : r0 ´ 1
2 1 1s

5! ral‚4 in the cǎlt-basis : r 12 ´ 1
2 ´1 1s

Here is 7 ! ral‚6 successively in the cālt-, câlt-, cǎlt-bases:

“

´ 5
12

35
36 0 ´ 35

36 0 0 0 0 7
12 0 0 0 0 0 0 0 0 0 0 ´ 1

6

‰

“

0 5
6 ´

10
3 ´ 10

3
10
3

20
3

5
2 15 10 ´ 5

3 ´
10
3 ´10 ´10 ´ 10

3 ´ 20
3 ´10 ´20 ´15 ´40 ´20

‰

“

0 ´ 5
6

25
3 ´ 25

3 ´ 10
3

20
3

5
2 ´15 10 ´ 5

3
10
3 ´10 10 ´ 10

3
20
3 10 ´20 ´15 40 ´20

‰

Lastly, here is 9 ! ral‚8 successively in the cālt-basis:

”

7
4 ´

133
32

7
12

427
96 ´ 7

8
35
48 0 ´ 49

32 ´
1463
480 ´ 63

40
49
20

21
20 ´

77
40 0 0 ´ 21

40
7
5

0 21
40

7
4 ´ 21

16
77
40

7
8 ´

119
80

21
10 ´ 147

40 0 21
80

21
16 0 0 0 0 0

0 0 189
160 ´

273
160 ´

63
80

21
16 0 0 0 21

40 ´
7
8 0 0 ´1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 189
160 ´

273
160 ´ 63

80
21
16 ´

63
40

21
8 0 0 ´ 21

20 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3
10

ı

9.5 Survey.

• On the flexion algebra Flex pE‚q there exist natural systems of mu-
generators, but none can adequately reflect the alternality filtration. Only
systems of dmu-generators built from the counter-alternators câlt or cǎlt
can do that. Systems of dmu-generators built from the weakly inflected
counter-alternator cālt do reflect the alternality gradation, but are not
complete.

• The system tôte‚r,k ; otr,k P OTr, k ď κr´1u of dmu-generators built from
câlt (and indexed by one-rooted ordered trees) is stable not only under the
Lie brackets lu and ari, but also under the pre-Lie products dlu and dari,
and that too in a transparent manner: dlu corresponds to the operation
of tree attachment and dari to that of tree insertion.

• The system tǒte‚r,k ; otr,k P OTr, k ď κr´1u of dmu-generators built from
cǎlt is stable under neither lu nor ari, nor even under dlu and dari. There
still exist rather simple formulae for all four operations, but they are not
’closed’, in the sense that they also involve dmu-products, i.e. ’many-
rooted’ elements ôte‚r,k with k ą κr´1,

• The full systems tôte‚r,k ; otr,k P OTr, k ď κru and tǒte‚r,k ; otr,k P OTr, k ď
κru indexed by one- or many rooted oredered trees (hence k ď κr in-
stead of k ď κr´1 ) constitute each a basis of Flex rpE

‚q. The conversion
matrices from either basis to the basis tbte‚r,t ; btr,k P BTr, k ď κru are
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lower-triangular (for a suitable ordering on OTr and BTr) with integer
entries given by rather explicit formulae, and of course non-zero diagonal
elements.

• The closely related systems tste‚r,k ; str,k P STr, k ď κru and t̂ste‚r,k ; str,k P
STr, k ď κru accurately reflect the alternality gradation, and permit the
calculation of the dimensions dim

`

Flex root
r,d pE

‚q
˘

and dim
`

Flex r,dpE
‚q
˘

via
the generating series Γpt, xq and Ξpt, xq and the functional equations that
these verify.

• The system t̄ute‚r,k ; utr,k P UTr, k ď κr´1u built from the weakly inflected

counter-alternator cālt and indexed by one-rooted, unordered trees,58 con-
stitutes a basis of the alternal sub-algebra Flexal

r pE
‚q. Even though it does

not extend to a full basis of Flex rpE
‚q as the calt- or câlt-based systems do,

it is a valuable tool for expanding the elements of Flexal
r pE

‚q (alternals)

or Flexal{push
r pE‚q (push-invariant alternals) or Flexal{al

r pE‚q (bialternals),
due mainly to the fact that, in this system, the ari-bracket respects the
number of edges issuing from the root of the indexing tree, and also to
the fact that push-invariant alternals automatically project onto basis el-
ements ūte‚r,k indexed by trees with odd-branching roots.59

10 Pre-Lie and pre-associative algebras.

This informal and avowedly tentative section attempts to detach the main
results of the present paper from their origin in flexion theory, especially in
Flex pE‚q and its two ‘polar’ models, and to put them on a neat axiomatic foun-
dation. The proper framework appears to be that of pre-associative algebras60,
taken in their natural context:

pre-associative Ñ associative
Ó Ó

pre-Lie Ñ Lie

Although it is way too early to say if these algebras will justify the hopes
reposited in them (– of rendering roughly the same services as pre-Lie algebras
do –), they have at least one immediate use: shedding an oblique light on the
counter-alternators and providing a quick proof of their main property.

58Unordered trees being a subset of stacked trees, the above (free) system is a sub-system
of the (non-free, as already ponted out) system t̄ste‚r,k ; notr,k P STr, k ď κru.

59i.e. with roots from which there issue an odd number of edges.
60though not in the sense usually given to ‘pre-associative’.
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10.1 Pre-associativity: definitions and first properties.

A pre-associative algebra is a vector space endowed with a linear involution
x ÞÑ x˚ and two bilinear binary operations µ and µ that verify:

R0 : µ˚px, yq ” pµpy˚, x˚qq˚
R1 : µpµ˚px, yq, zq ” µ˚px, µpy, zqq
R2 : µpµpx, yq, zq ” µpx, µpy, zqq ` µpx, µ˚py, zqq
R3 : µ˚px, µ˚py, zqq ” µ˚pµpx, yq, zq ` µ˚pµ˚px, yq, zq

Since µ˚ and R3 follow from µ and R2 under the involution, the whole structure
is fixed as soon as we define an operation µ compatible with the axioms R1,R2.

Proposition 10.1 (The offspring of a pre-associative product) .
If we set:

mpx, yq :“ µpx, yq ` µ˚px, yq (432)

λpx, yq :“ µpx, yq ´ µ˚py, xq (433)

λ˚px, yq :“ µ˚px, yq ´ µpy, xq ” pλpx˚, y˚qq˚ (434)

lpx, yq :“ mpx, yq ´mpy, xq ” λpx, yq ´ λpy, xq ” λ˚px, yq ´ λ˚py, xq (435)

and if µ, µ˚ verify the pre-associativity axioms, then
(i) m is an associative product, with e as unit element.
(ii) l is the Lie bracket associated with m
(iii) λ and λ˚ define a right resp. left pre-Lie product for l

Indeed, if we set

R1px, y, zq :“ µpµ˚px, yq, zq ´ µ˚px, µpy, zqq p” 0q
R2px, y, zq :“ µpµpx, yq, zq ´ µpx, µpy, zqq ´ µpx, µ˚py, zqq p” 0q
R3px, y, zq :“ µ˚px, µ˚py, zqq ´ µ˚pµpx, yq, zq ´ µ˚pµ˚px, yq, zq p” 0q

we find

mpmpx, yq, zq ´mpx,mpy, zqq ” R1px, y, zq `R2px, y, zq ´R3px, y, zq ” 0

This confirms the associativity of m. Next we find

#

`λpλpx, yq, zq ´ λpx, λpy, zqq

´λpλpx, zq, yq ` λpx, λpz, yqq
”

$

’

&

’

%

`R1pz, x, yq ´R1py, x, zq

`R2px, y, zq ´R2px, z, yq

`R3pz, y, xq ´R3py, z, xq

” 0

This confirms the pre-Lie nature of λ and, by symmetry, of λ˚ as well.

Remark: It would be tempting to introduce a ‘unit element’ 61 e such that:
$

’

&

’

%

µpx, eq ” x ; µ˚pe, yq ” y p@x, y ­“ eq

µpe, yq ” 0 ; µ˚px, eq ” 0 p@x, y ­“ eq

µpe, eq “ µ˚pe, eq “
1
2 e

(436)

but in formulae involving several consecutive units we would run into unsur-
mountable contradictions.

61such an element would indeed be a unit for the associative product m associated with µ.
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10.2 Counter-alternality defined.

A co-degree on a pre-associative algebra PA is function d : PAÑ N˚ giving rise
to a filtration and a gradation:

PApdq Ă PApd`1q ; PAd “ PApdq{PApd´1q (437)

such that:
$

’

&

’

%

µ
`

PApd1q,PApd1q
˘

Ă PApd1`d2q
µ˚
`

PApd1q,PApd1q
˘

Ă PApd1`d2q
λ
`

PApd1q,PApd1q
˘

Ă PApd1`d2´1q

(438)

The the natural tools for investigating a co-degree gradation are the three
counter-alternators,62 which are defined as follows. In view of R1 we may set:

rµpx, y, zq :“ µpµ˚px, yq, zq “ µ˚px, µpy, zqq (439)

We then transpose the construction of §5.5:

Definition 10.1 (Strict and loose counter-alternators) .

câltx0
px1, .., xsq :“

ÿ

0ďiďs

p´1qs´i rµ
`

µÐpx1, .., xiq, x0, µ˚
Ñ pxi`1, .., xsq

˘

(440)

cǎltx0
px1, .., xsq :“

ÿ

0ďiďs

p´1qs´i rµ
`

µ˚
Ñ px1, .., xiq, x0, µ

Ðpxi`1, .., xsq
˘

(441)

cāltx0px1, .., xsq :“
ÿ

0ďiďs

p´1qs´is!

i! ps´iq!
rµ
`

mpx1, .., xiq, x0,mpxi`1, .., xsq
˘

(442)

Next, we construct the partially symmetrized alternators exactly as we did on
Flex pE‚q:

Definition 10.2 (d-alternators.) For 1 ď d ď r we set:

câltr,dx0
px1, ..., xrq :“

ÿ

σPSr

hr,1`r´dpσq câltx0
pxσp1q, ..., xσprqq (443)

cǎltr,dx0
px1, ..., xrq :“

ÿ

σPSr

hr,1`r´dpσq cǎltx0
pxσp1q, ..., xσprqq (444)

cāltr,dx0
px1, ..., xrq :“

ÿ

σPSr

hr,1`r´dpσq cāltx0pxσp1q, ..., xσprqq (445)

with the coefficients hr,δpσq associated with the projectors pr :d as in §5.8.

62For reasons we have already encountered in the flexion context, the first two (câlt , cǎlt)
are declared strict, the last one loose.
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10.3 Counter-alternality modelized and proved.

Let E be the graded, non-associative algebra freely generated by the sym-
bols e0, e1, e2..., with coefficients in the commutative algebra Qtα0, α1, α2...u,
whereby the αi’s are assumed to be positive, transcendental, and algebraically
independent. We assign the grade αi to each generator ei and consider on D
the derivation B (with its antiderivation B´1) acting as follows:

B ei :“ αiei ; B´1ei :“ α´1
i ei ; Bαi :“ 0 (446)

Finally, we notice that the operations µ, µ˚ thus defined:

µ pE1, E2q :“ B´1
´

pBE1qE2

¯

p@E1, D2 P Dq (447)

µ˚pE1, E2q :“ B´1
´

D1pBD2q

¯

p@E1, E2 P Dq (448)

endow E with a pre-associative structure, which we shall call E for distinction.
By assigning co-degree 1 to all generators ei, we also endow E with a co-degree
filtration E “ YÒEd.

Though free as an associative algebra, E is far from free with respect to its
B-induced pre-associative structure.63 Nonetheless, the subspace of elements
separately linear in e0, e1, ..., er is free in the sense that it faithfully reflects
the structure of the corresponding subspace in the free pre-associative algebra
generated by e0, e1, e2.. – a fortunate circumstance that leads, first to an inter-
pretation of the counter-alternators, then to a proof of their signature properties,
namely

codeg
`

caltr,dx0
px1, ..., xrq

˘

ď d0`d1`...`dr`d´r´1 if codegpxiq “ di (449)

with exact equality for the strict counter-alternators câlt or cǎlt .
Consider now these particular identities in E :

câlte0pe1, ..., erq ” ĉr
ÿ

0ďiďr

tê1,...,i,0,i`1,...,re1...ei e0 ei`1...er (450)

cǎlte0pe1, ..., erq ” ĉr
ÿ

0ďiďr

tě1,...,i,0,i`1,...,re1...ei e0 ei`1...er (451)

with pre-sum factors:

ĉr “
α0 α1 . . . αr

α0`α1`. . .`αr
; ĉr “

α0 α1 . . . αr
α0`α1`. . .`αr

(452)

and alternal moulds t ê‚, t ě‚:

tê1,...,i,0,i`1,...,r :“ se1,...,izei`1,...r (453)

tě1,...,i,0,i`1,...,r :“ ze1,...,isei`1,...r (454)

63Think of the sub-algebras generated from one single ei under repeated action of µ and
µ˚.
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themselves built from two symmetral, mutually inverse moulds se‚, ze‚:

se1,...,r :“
r
ź

i“1

1

αi ` ¨ ¨ ¨ ` αr
; ze1,...,r :“

r
ź

i“1

p´1qr

α1 ` ¨ ¨ ¨ ` αi
(455)

Any mould t‚ of type t‚ “ s‚ ˆ id‚ ˆ z ‚ with s‚, z ‚ symmetral and mutually
inverse, is obviously alternal, but here t ê‚ and t ě‚ are of a distinct type, and
their alternality results from the identities:

ÿ

γPshapα,βq

têγ ”

#

seα
1

zeα
11

p
ř

β1 β11“β seβ
1

zeβ
11

q ” 0 if α “ pα1, 0,α11q

p
ř

α1 α11“α seα
1

zeα
11

q seβ
1

zeβ
11

” 0 if β “ pβ1, 0,β11q
(456)

ÿ

γPshapα,βq

těγ ”

#

zeα
1

seα
11

p
ř

β1 β11“β zeβ
1

seβ
11

q ” 0 if α “ pα1, 0,α11q

p
ř

α1 α11“α zeα
1

seα
11

q zeβ
1

seβ
11

” 0 if β “ pβ1, 0,β11q
(457)

As usual, shapα, βq denotes the set of all shuffle products of the sequences α,β,
and the right-hand sides in (456) or (457) vanish due to the factors

ř

seα
1

zeα
11

”

0 or
ř

seβ
1

zeβ
11

” 0 corresponding to the sequence (α or β) that does not contain
the exceptional term 0.

Let us return to the proof. To this end, we fix d P r1, rs; replace pcâlt , cǎltq
by pcâltr,d, cǎltr,dq in (450)-(451); and call X̂r,d, X̌r,d the new values assumed by
the right-hand sides of (450)-(451). To prove that X̂r,d, X̌r,d have ’differential
degree’ d as elements of D or, equivalently, co-degree d as elements of D, we use
the earlier Lemma 5.2 in the special case pd1, d2q “ p1, rq , and the following
Lemma 10.1 in the special case δ0 “ 1` r ´ d, δ “ 1 and T ‚ “ t ê‚ or t ě‚:

Lemma 10.1 (Mould-comould contractions) .
Let pε1, ..., εrq run through all permutations of p1, ..., rq and consider the mould
T ‚ defined by

Hε1,...,εr :“
ÿ

σPSr

hr,δ0pσq A
σpε1q,...,σpεrq eσpε1q...eσpεrq (458)

with the coefficients hr,dpσq of . . . and with some mould T ‚ of alternality co-
degree δ1 and with values in QrYiαis{QrYiαis. Then, as an element of E, H‚

has degree δ2 “ δ1 ´ δ0 ` r. In particular, if δ0 “ 1 ` r ´ d as in (443)-(444)
and δ1 “ 1 as with t ê‚ and tě‚, we get δ2 “ d.

Writing (458) compactly as H‚ “
ř

σ hr,δ0pσqT
σp‚q eσp‚q; then invoking the δ1-

alternality of the mould T ‚ to express it as T ‚ “
ř

σ1
hr,δ1pσ1qA

σ1p‚q for some
arbitrary mould A‚; and lastly expressing that the projector pr :δ2 acting solely
on the bimould part annihilates H‚ if δ2´ δ1` δ0 ą r, we find that Lemma 10.1
amouts to the identity:
ÿ

τPSr

hδ0pτqhδ1pτ1 ˝ τqhδ2pτ
´1˝ τ2q ” 0 if δ2´δ1`δ0 ą r p@τ1, τ2q (459)

This applies in fact even when δ2´δ1`δ0 ´ r is negative but odd, for trivial
reasons of invariance under ˘anti .
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10.4 Counter-alternality made manifest.

The partially symmetrized counter-alternators caltr,d can be written as partially
symmetrized expressions kaltr,d whose co-degree d is immediately apparent –
instead of hidden, as in the definitions (440)-(442) and (443)-(445). Indeed:

Proposition 10.2 (d-alternality made manifest) .
The d-alternators are capable of an equivalent definition, of type:

câltr,dx0
px1, ..., xrq ”

ÿ

σPSr

hr,1`r´dpσq kâltr,dx0
pxσp1q, ..., xσprqq (460)

cǎltr,dx0
px1, ..., xrq ”

ÿ

σPSr

hr,1`r´dpσq kǎltr,dx0
pxσp1q, ..., xσprqq (461)

cāltr,dx0
px1, ..., xrq ”

ÿ

σPSr

hr,1`r´dpσq kāltr,dx0
pxσp1q, ..., xσprqq (462)

where each pr` 1q-linear term kaltr,dx0
pxσp1q, ..., xσprqq can be written as a fi-

nite sum of elementary summands involving the operations λ, µ, µ˚ respectively
r0, r1, r2 times, with r0 “ r`1´d and r1`r2 “ d´1.

Unfortunately, there exist scores of possible expressions for kaltr,d, and so far
we found universal (for all r) and compellingly natural expressions only in the
extreme cases d “ 1 or d “ r, corresponding to maximal and minimal sym-
metrization. Here are these natural expressions:

Proposition 10.3 (Maximally symmetrized counter-alternators)

kâltr,1x0
px1, .., xrq :“

ÿ

1ďsďr

sâs1,...,sr
Ñ

λ
´

Ð

λpx0,x
1q,

Ð

λpx
2q, ...,

Ð

λpx
sq

¯

(463)

kǎltr,1x0
px1, .., xrq :“

ÿ

1ďsďr

sǎs1,...,sr
Ñ

λ
´

Ð

λpx0,x
1q,

Ð

λpx
2q, ...,

Ð

λpx
sq

¯

(464)

kāltr,1x0
px1, .., xrq :“

ř

si“s
ÿ

1ďrďs

p´1qr
Ñ

λ px0, xσp1q, ..., xσpsqq (465)

with the coefficients:

sâs1,...,sr “ p´1qr
ź

1ďiďr

1

s1 ` ...` si
(466)

sǎs1,...,sr “ p´1qs1`...`sr
ź

1ďiďr

1

si ` ...` sr
(467)

Proposition 10.4 (Minimally symmetrized counter-alternators)

kâltr,rx0
px1, .., xrq :“

ÿ

1ďsďr

p´1qs´1 Ñµ
´

λ
`

x0,
Ð
µpx1q

˘

,
Ð
µpx2q, ...,

Ð
µpxsq

¯

(468)

kǎltr,rx0
px1, .., xrq :“

ÿ

1ďsďr

p´1qs´1 Ñµ
´

λ
`

x0,
Ñ
µ˚px

1q
˘

,
Ñ
µ˚px

2q, ...,
Ñ
µ˚px

sq

¯

(469)

kāltr,rx0
px1, .., xrq :“

ÿ

1ďsďr

p´1qr´s`1µ
´

λ
`

x0,mpx1, .., xsq
˘

,mpxs`1, .., xrq
¯

(470)
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10.5 Structure of free pre-associative algebras.

A pre-associative algebra generated by one element is automatically isomorphic
to Flex pE‚q. It also admits a tree theoretical model, namely the space CrOTs of
linear combinations of orderer trees otr,k equipped with the operations λ, µ, µ˚
‘lifted’ from dle, dme,mde via the correspondence ôte‚r,k ÞÑ otr,k.

With pre-associative algebras freely generated by n elements, the situation
is slightly different: while such an algebra still admits a privileged tree theoret-
ical model, it admits several mould theoretical ones. Chief amongst the latter
are the sub-algebras of BIMU generated under the operations dla, dma,mda
64 by n depth-1 bimoulds Aw1

1 :“ a1pu1q, . . . , A
w1
n :“ anpu1q, for any choice

of transcendental functions aipu1q, algebraically independent and verifying no
functional equations. As for the tree theoretical model, it is the same as in the
case of one generators, but with n-decorated trees, i.e. trees whose nodes are
assigned various colours, from a set of n.

10.6 Filtration by co-degree. Dimensions.

For free pre-associative algebras with one generator, he co-degree filtration
and gradation, along with the corresponding dimensions, are exactly those of
Flex pE‚q: see §7.3. The case of several generators immediately follows, modulo
the introduction of colours.

10.7 Examples of non-free pre-associative algebras.

Any subalgebra of the bimould algebra BIMU ˚65 generated by the operations
dla, dma,mda (see (198)-(200) in §5.3.) as stand-ins for λ, µ, µ˚, from any set of
bimoulds A‚i P BIMU ‚ patently constitutes a pre-associative algebra, generally
non-free, and with a structure that entirely depends on the mutual relations
that the generators A‚i may entertain.

The same applies with BIMU v-v (see (201)) in place of BIMU ˚ and dli , dmi ,mdi
(see (202)-(204)) as basic operations in place of dla, dma,mda.

But there also exist numerous pre-associative algebras with no apparent
link to BIMU . For instance, given any associative algebra E, free or not, and
any uniquely invertible derivation B on E, the operations µ, µ˚ defined as in
(447)-(448) turn E into a pre-associative algebra E , non-free even when, as an
associative algebra, E is free. An important sub-instance is that of a derivation
B induced as in (446) by a scalar gradation on E with values in R`.

64See (198)-(200) in §5.3.
65BIMU˚ is BIMU minus the unit mould 1‚ and its multiples. Regarding the necessary

absence of units in pre-associative algebras, see the remark at the end of §10.1.
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10.8 Enveloping and enfolding algebras.

To sum up, we have a pleasant four-fold scheme:
#

enfolding algebra

ppre-associativeq
ÐÝ

ùñ

#

enveloping algebra

passociativeq
} M Ą M } µ ñ m

õ õ } Y Y } ó ó

pre-Lie algebra ÐÝ

ùñ
Lie algebra } L Ą L } λ ñ l

And coursing through that four-fold scheme, we have a double movement of re-
striction (right- and downward arrows) and unfolding (left- and upward arrows),
with uniqueness of construction in the case of double-barred arrows, but not in
the case of simple arrows.

10.9 Dynkin-like projectors.

Known projectors:

Associative
Ó

Pre-Lie Ñ Lie

If a sum
ř

aimpxi,1, ..., xi,nq of n-linear associative summands is known to
be in the Lie algebra, we have the well-known Dynkin projectors

ÿ

i

aimpxi,1, ..., xi,nq“
1

n

ÿ

i

ai
Ñ

l pxi,1, ..., xi,nq“
1

n

ÿ

i

ai
Ð

l pxi,1, ..., xi,nq (471)

to make that Lie nature manifest.
We have similar projectors for sums of n-linear pre-Lie brackets that are

known to be in the Lie algebra, especially when the bracketing is uniformly for-

ward or backward, i.e. of the form
ř

i ai
Ñ

λ pxi,1, ..., xi,nq or
ř

i ai
Ð

λ pxi,1, ..., xi,nq
.
Wanted projectors: But quid of the following projectors?

Pre-associative
?
Ñ Associative

Ó?
Pre-Lie

And quid of the projectors of a pre-associative algebra PA on its components
PApdq of co-degree d? Such projectors ought to exist in explicit presentation66

and manageable form, and would come quite handy (they would in particular
automatically determine privileged choices for the kaltr,d of Proposition 10.2,
but finding them seems to be no trivial matter.67

66as opposed to the implicit presentation of the counter-alternators caltr,d, which work just
fine as projectors, but not transparently so.

67due to the enormous number of a priori relations that connect multiple superpositions of
the three basic operations λ, µ, µ˚.
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10.10 Notion of Janus algebra.

On Flex pE‚q the identities

aripA‚, B‚q “ daripA‚, B‚q ´ daripB‚, A‚q (472)

daripA‚, B‚q “ aritpB‚q.A‚ ` dlepA‚, B‚q (473)

reduce the calculation of ari to that of arit and dle. But the operator aritpB‚q
is a derivation not only with respect to the non-inflected products lu and mu,
but also with respect to the semi-inflected ones dle, dme, mde:

aritpB‚q γpM‚
1 ,M

‚
2 q ” γparitpB‚qM‚

1 ,M
‚
2 q ` γpM

‚
1 , aritpB‚qM‚

2 q (474)

@γ P tdle,dme,mde, lu,muu

Therefore, for any elementA‚ in Flex pE‚q and any expression ofA‚ as a sum of r-
linear monomials hi involving the operations dle,dme,mde respectively r0, r1, r2

times, with r0 ` r1 ` r2 “ r ´ 1:

A‚ “
ÿ

i

hip
r times

E‚, . . . ,E‚q (475)

we can write:

aritpB‚qA‚ “
ÿ

i

ÿ

j

hipE
‚, . . . , aritpB‚q

jth term

E‚ , . . . ,E‚q (476)

Moreover, setting A‚ “ E‚ in (473) and using daripE‚, B‚q ” 0 (see §8.4), we
find:

aritpB‚qE‚ ” ´dlepE‚, B‚q (477)

Combining (476)-(477) with the earlier identities (472)-(473), we find that, on
the one-generator, free pre-associative algebra Flex pE‚q, the operations dari and
ari can be expressed entirely in terms of dle, dme, mde. In view of §10.5, we
can duplicate that in any free pre-associative algebra, no matter with how many
generators, simply by reasoning on the tree theoretical model CrOT;n colourss
and by transposing the preceding operations in terms of λ, µ, µ˚. The bottomline
is this:

Proposition 10.5 (Janus algebra) .
Any free pre-associative algebra, side by side with the ‘outer’ operations

λ ppre-Lieq and l pLieq

automatically possesses two ‘inner’ operations

ρ ppre-Lieq and r pLieq

with pρ, rq relating to pλ, lq exactly as pdari , ariq to pdle, luq.
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Here, inner and outer allude to the shape that these operations assume
in the tree theoretical model: simple tree insertion for ρ and r; subtle tree
attachment for λ and l. It is this inner/outer dichotomy, corresponding to the
inflected/uninflected dichotomy familiar from the flexion model, that (arguably)
justifies attaching the name of Janus (the god of thresholds; he of the two faces,
inward- and outward-looking) to these algebras. But we are treading on thin
ice here: for the name to stick, and the notion to prove its worth, it would
take the discovery of interesting examples of non-free Janus algebras. And the
difficulty in the non-free context is clearly that the procedure (475)-(476) no
longer applies: different expansions (476) of a given A‚ may no longer lead to
an unambiguous action (476) of aritpB‚q on A‚.

11 Tables.

11.1 From binary to ordered trees.

Here are the first matrices mobr corresponding to the basis change of Flex rpE
‚q,

relative to the standard k-indexation:

tbte‚r,ku ÞÑ tôte‚r,ku pbinary to orderedq

ôte‚r,p “
ÿ

1ďqďκr

mobp,qr bte‚r,q

Their coefficients mobp,qr are all of the form 0, 1, or 1̄ :“ ´1 and verify the
properties listed in §6.8.

mob1 :“
“

1
‰

mob2 :“

„

1 1
0 1



mob3 :“

»

—

—

—

—

–

1 1 0 1 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

mob4 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 1 1 1 0 0 0 0 0 0 1 1 1 0
0 0 1 1 1 1 1 0 0 1 1 0 0 0
0 0 0 1 1 0 0 1 1 1 1 1 0 0
0 0 0 0 1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

mob5 “

»

—

—

—

—

–

mob1,1
5 mob1,2

5 mob1,3
5

r0s mob2,2
5 mob2,3

5

r0s r0s mob3,3
5

fi

ffi

ffi

ffi

ffi

fl

with

$

’

&

’

%

mob1,1
5 “ mob3,3

5 “ mob4

and the other mobi,j5 as follows

103



mob1,2
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 1 1 1 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

mob1,3
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 1 1 1 0 0 0 0 0 0 1 1 1 0
0 0 1 1 1 1 1 0 0 1 1 0 0 0
0 0 0 1 1 0 0 1 1 1 1 1 0 0
0 0 0 0 1 0 1 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 0 0 0 0 0
0 0 1 0 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

mob2,2
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 1 1 1 1
0 0 0 0 1 0 1 0 1 1 0 1 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

mob2,3
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 0 1 1 1 1 0 0 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 1 0 1 1
0 0 1 0 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 1 1 1 1 0 0 1 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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11.2 From ordered to binary trees.

Here are the first matrices mbor corresponding to the basis change of Flex rpE
‚q,

relative to the standard k-indexation:

tôte‚r,ku ÞÑ tbte‚r,ku pordered to binaryq

bte‚r,p “
ÿ

1ďqďκr

mbop,qr ôte‚r,q

Their coefficients mobp,qr are always non-negative integers and verify the prop-
erties listed in §6.8.

mbo1 “
“

1
‰

mbo2 “

„

1 1
0 1



mbo3 “

»

—

—

—

–

1 1 1 1 1
0 1 1 0 1
0 0 1 1 2
0 0 0 1 1
0 0 0 0 1

fi

ffi

ffi

ffi

fl

mbo4 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 0 1 0 1 1 0 1
0 0 1 1 2 1 2 1 2 0 0 1 1 2
0 0 0 1 1 0 1 1 1 0 0 0 1 1
0 0 0 0 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 1 1 2 1 1 2 2 3
0 0 0 0 0 0 1 1 2 0 1 1 1 3
0 0 0 0 0 0 0 1 1 1 2 2 2 3
0 0 0 0 0 0 0 0 1 0 0 1 1 3
0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

mbo5 “

»

—

—

—

—

–

mbo1,1
5 mbo1,2

5 mbo1,3
5

r0s mbo2,2
5 mbo2,3

5

r0s r0s mbo3,3
5

fi

ffi

ffi

ffi

ffi

fl

with

$

’

&

’

%

mbo1,1
5 “ mbo1,3

5 “ mbo3,3
5 “ mbo4

and the other mboi,j5 as follows

mbo1,2
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 0 1 1 0 1
1 2 2 1 2 1 1 2 2 0 0 1 1 2
0 1 1 0 1 1 1 1 1 0 0 0 1 1
0 1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 2 2 3 1 2 2 3 1 1 2 2 3
0 1 2 1 3 1 1 2 3 0 1 1 1 3
0 0 1 2 3 1 2 1 3 1 2 2 2 3
0 0 1 1 3 0 1 1 3 0 0 1 1 3
0 0 0 1 1 0 1 0 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1 0 1 1 0 1
0 0 0 1 2 0 1 0 2 0 0 1 1 2
0 0 0 0 1 0 1 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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mbo2,2
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 1 1 2 2 1 1 2 2 3
0 1 1 0 1 1 1 2 2 0 1 1 1 3
0 0 1 1 2 1 2 2 4 1 2 3 3 6
0 0 0 1 1 0 1 0 2 1 1 2 2 3
0 0 0 0 1 0 1 0 2 0 1 1 1 3
0 0 0 0 0 1 1 1 1 1 2 2 2 3
0 0 0 0 0 0 1 0 1 1 2 2 2 3
0 0 0 0 0 0 0 1 1 0 0 1 1 3
0 0 0 0 0 0 0 0 1 0 0 1 1 3
0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

mbo2,3
5 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 1 1 2 2 2 3 2 2 3 3 4
0 1 1 0 1 1 2 1 3 0 2 2 1 4
0 0 1 1 2 1 2 2 4 1 2 4 4 8
0 0 0 1 1 0 1 1 1 1 1 2 3 4
0 0 0 0 1 0 1 0 1 0 1 1 1 4
1 1 2 2 3 2 3 3 4 2 3 4 4 6
0 1 1 1 3 1 3 1 3 1 3 3 3 6
0 0 0 0 0 1 1 1 3 1 1 3 3 6
0 0 0 0 0 0 1 1 2 0 1 2 2 6
1 2 2 2 3 2 3 2 3 2 3 3 3 4
0 0 1 1 3 1 3 1 3 0 1 2 1 4
0 0 0 0 0 1 2 2 4 1 2 4 4 8
0 0 0 0 0 0 0 1 1 1 2 2 3 4
0 0 0 0 0 0 0 0 1 0 0 1 1 4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The block decompositions

mob5 “

»

—

—

—

–

mob1,1
r mob1,2

r mob1,3
r

r0s mob2,2
r mob2,3

r

r0s r0s mob3,3
r

fi

ffi

ffi

ffi

fl

, mbo5 “

»

—

—

—

–

mbo1,1
r bo1,2

r mbo1,3
r

r0s mbo2,2
r mbo2,3

r

r0s r0s mbo3,3
r

fi

ffi

ffi

ffi

fl

(478)

with the identities

#

mob1,1
r “ mob3,3

r “ mobr´1

mbo1,1
r “ mbo1,3

r “ mbo3,3
r “ mbor´1

hold for all values

of r, but only for r “ 5 do we get square blocks mob1,2
r ,mob2,3

r ,mbo1,2
r ,mbo2,3

r .

11.3 The cǎlt- and cālt-based conversion matrices.

11.4 Pilot polynomials.

The pilot polynomials Pr,d, Qr,d, Lr,d enter, as their main ingredient, the formu-
lae for dim

`

Flex r,dpE
‚q
˘

— the number of independent elements in Flex r,dpE
‚q

with depth r and co-alternality degree d. We tabulate here only the first Pr,d
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which, unlike the other two series, don’t admit explicit expansions.

P0 “ 1

P1,2 “
1

2
py2

1 ´ y2q

P2,3 “
1

3
py3

1 ´ y3q

P2,4 “
1

8
py4

1 ´ 2 y2
1 y2 ` 3 y2

2 ´ 2 y4q

P3,4 “
1

4
py2

1 ´ y2q py
2
1 ` y2q

P3,5 “
1

6
py3

1 ´ y3q py
2
1 ´ y2q

P3,6 “
1

48

!

py6
1 ´ 3 y4

1 y2 ` 9 y2
1 y

2
2 ´ 6 y2

1 y4 ´ 7 y3
2 ` 6 y2 y4 ` 8 y2

3 ´ 8 y6q

P4,5 “
1

5
py5

1 ´ y5q

P4,6 “
1

72
p13 y6

1 ´ 9 y4
1y2 ´ 8 y3

1y3 ´ 9 y2
1y

2
2 ` 21 y3

2 ` 4 y2
3 ´ 12 y6q

P4,7 “
1

24
py3

1 ´ y3q py
4
1 ´ 2 y2

1y2 ` 3 y2
2 ´ 2 y4q

P4,8 “
1

384

#

`y8
1 ´ 4 y6

1y2 ` 18 y4
1y

2
2 ´ 12 y4

1y4 ´ 28 y2
1y

3
2 ` 24 y2

1y2y4 ` 32 y2
1y

2
3

`25 y4
2 ´ 32 y2

1y6 ´ 36 y2
2y4 ´ 32 y2y

2
3 ` 32 y2 ˚ y6 ` 60 y2

4 ´ 48 y8

P5,6 “
1

6
py6

1 ´ y
3
2 ´ y

2
3 ` y6q

P5,7 “
1

60
py2

1 ´ y2q p11 y5
1 ` 5 y3

1y2 ´ 5 y2
1y3 ´ 5 y2y3 ´ 6 y5q

P5,8 “
1

288
py2

1 ´ y2q

#

`17 y6
1 ´ 9y4

1y2 ´ 16 y3
1y3 ` 9 y2

1y
2
2 ´ 18 y2

1y4

`51 y3
2 ´ 18 y2y4 ` 8 y2

3 ´ 24 y6

P5,9 “
1

144
py3

1 ´ y3q py
6
1 ´ 3 y4

1y2 ` 9 y2
1y

2
2 ´ 6 y2

1y4 ´ 7 y3
2 ` 6 y2y4 ` 8 y2

3 ´ 8 y6q

P5,10 “
1

3840

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`y10
1 ´ 5 y8

1y2 ` 30 y6
1y

2
2 ´ 20 y6

1y4 ´ 70 y4
1 y

3
2 ` 60 y4

1y2y4

`80 y4
1y

2
3 ` 125 y2

1y
4
2 ´ 80 y4

1 ˚ y6 ´ 180 y2
1y

2
2y4 ´ 160 y2

1y2y
2
3

´81 y5
2 ` 160 y2

1y2y6 ` 300 y2
1y

2
4 ` 140 y3

2y4 ` 240 y2
2y

2
3

´240 y2
1y8 ´ 240 y2

2y6 ´ 300 y2y
2
4 ´ 160 y2

3y4 ` 240 y2y8

`160 y4y6 ` 384 y2
5 ´ 384 y10
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P6,7 “
1

7
py7

1 ´ y7q

P6,8 “
1

480

#

`87 y8
1 ´ 40 y6

1y2 ´ 32 y5
1y3 ´ 30 y4

1y
2
2 ´ 40 y2

1y
3
2 ´ 32 y3

1y5 ´ 40 y2
1y

2
3

`115 y4
2 ` 40 y2

1y6 ` 40 y2y
2
3 ´ 40 y2y6 ` 32 y3y5 ´ 60 y2

4

P6,9 “
1

3240

$

’

’

’

&

’

’

’

%

`236 y9
1 ´ 297 y7

1y2 ´ 195 y6
1y3 ` 108 y5

1y
2
2 ´ 162 y5

1y4 ` 135 y4
1y2y3

`315 y3
1y

3
2 ´ 81 y4

1y5 ` 60 y3
1y

2
3 ` 135 y2

1y
2
2y3 ´ 180 y3

1y6

`162 y2
1y2y5 ´ 315 y3

2y3 ´ 243 y2
2y5 ` 340 y3

3 ` 180 y3y6

`162 y4y5 ´ 360 y9

P6,10 “
1

576

$

’

’

’

&

’

’

’

%

`7 y10
1 ´ 17 y8

1y2 ´ 8 y7
1y3 ` 36 y6

1y
2
2 ´ 26 y6

1y4 ` 16 y5
1y2y3

`18 y4
1y2y4 ` 28 y4

1y
2
3 ´ 24 y3

1y
2
2y3 ´ 51 y2

1y
4
2 ´ 36 y4

1y6 ` 16 y3
1y3y4

`18 y2
1y

2
2y4 ´ 8 y2

1y2y
2
3 ` 57 y5

2 ` 24 y2
1y2y6 ´ 42 y3

2y4 ´ 12 y2
2y

2
3

´12 y2
2y6 ´ 8 y2

3y4 ` 24 y4y6

P6,11 “
1

1152
py3

1 ´ y3q

$

’

&

’

%

`y8
1 ´ 4 y6

1y2 ` 18 y4
1y

2
2 ´ 12 y4

1y4 ´ 28 y2
1y

3
2

`24 y2
1y2y4 ` 32 y2

1y
2
3 ` 25 y4

2 ´ 32 y2
1y6 ´ 36 y2

2y4

´32 y2y
2
3 ` 32 y2y6 ` 60 y2

4 ´ 48 y8

P6,12 “
1

46080

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

`y12
1 ´ 6 y10

1 y2 ` 45 y8
1y

2
2 ´ 30 y8

1y4 ´ 140 y6
1y

3
2 ` 120 y6

1y2y4

`160 y6
1y

2
3 ` 375 y4

1y
4
2 ´ 160 y6

1y6 ´ 540 y4
1y

2
2y4 ´ 480 y4

1y2y
2
3

´486 y2
1y

5
2 ` 480 y4

1y2y6 ` 900 y4
1y

2
4 ` 840 y2

1y
3
2y4 ` 1440 y2

1y
2
2y

2
3

`331 y6
2 ´ 720 y4

1y8 ´ 1440 y2
1y

2
2y6 ´ 1800 y2

1y2y
2
4 ´ 960 y2

1y
2
3y4

´750 y4
2y4 ´ 1120 y3

2y
2
3 ` 1440 y2

1y2y8 ` 960 y2
1y4y6 ` 2304 y2

1y
2
5

`1120 y3
2y6 ` 2700 y2

2y
2
4 ` 960 y2y

2
3y4 ` 640 y4

3 ´ 2304 y2
1y10

´2160 y2
2y8 ´ 960 y2y4y6 ´ 2304 y2y

2
5 ´ 1280 y2

3y6 ´ 1560 y3
4

`2304 y10y2 ` 1440 y4y8 ` 4480 y2
6 ´ 3840 y12

11.5 µ-generators and enumerating series.

Recall that γδptq :“
ř

tr dim
`

Flex root
r,1`δpE

‚q
˘

and ξdptq :“
ř

tr dim
`

Flex r,dpE
‚q
˘

.
Here are the first generating series γδ up to δ “ 5, calculated from formula
(324). The same series assume distinct and more complex, though equivalent,
expressions rγδ when calculated from formula (322). We mention the rγδ’s up to
δ “ 3, after which they become too clumsy, while the γδ’s remain manageable.
The two systems are seen to coincide only after each γδptq and each rγδptq gets
expressed in terms of the sole series γ0ptq and its dilatees γ0pt

kq.

γ1ptq “ rγ1ptq “
γ0ptq

1´ γ0ptq

`1

2
γ0ptq

2 ´
1

2
γ0pt

2q
˘
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γ2ptq “
γ0ptq

1´ γ0ptq

$

’

&

’

%

` 1
3 pγ0ptq

3 ´ γ0pt
3qq ` 1

4 pγ0pt
2q2 ´ γ0pt

4qq

`γ0ptqγ1ptq

` 1
2 pγ1pt

2q ` γ0ptq
2γ1ptq

2q

rγ2ptq “
γ0ptq

1´ γ0ptq

$

’

’

’

&

’

’

’

%

` 1
2γ1ptq

2 ` 1
2γ1pt

2q

`γ1ptq
`

1
2γ0ptq

2 ´ 1
2γ0pt

2q ` γ0ptq
˘

` 1
8γ0ptq

4 ´ 1
4γ0pt

4q ` 3
8γ0pt

2q2 ´ 1
4γ0ptq

2γ0pt
2q

` 1
3γ0ptq

3 ´ 1
3γ0pt

3q

γ3ptq “
γ0ptq

1´ γ0ptq

$

’

’

’

&

’

’

’

%

` 1
4 pγ0ptq

4 ´ γ0pt
2q2q ` 1

6 pγ0pt
3q2 ´ γ0pt

6qq

`γ0ptq
2γ1ptq

` 1
2 pγ1ptq

2 ´ γ1pt
2qq ` γ0ptqγ2ptq

` 1
3γ1pt

3q ` γ0ptq
´2γ1ptqγ2ptq ´

1
3γ0ptq

´3γ1ptq
3

rγ3ptq “
γ0ptq

1´ γ0ptq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

` 1
3γ1pt

3q ` 1
6γ1ptq

3 ` 1
2γ1ptqγ1pt

2q ` γ1ptqγ2ptq

`γ2ptq
`

1
2γ0ptq

2 ´ 1
2γ0pt

2q ` γ0ptq
˘

`γ1pt
2q
`

1
4γ0ptq

2 ´ 1
4γ0pt

2q ´ 1
2

˘

`γ1ptq
2
`

1
4γ0ptq

2 ´ 1
4γ0pt

2q ` γ0ptq `
1
2

˘

`γ1ptq ˆ

$

’

&

’

%

` 1
8γ0ptq

4 ´ 1
4γ0pt

4q ´ 1
4γ0ptq

2γ0pt
2q

` 3
8γ0pt

2q2 ` 5
6γ0ptq

3 ´ 1
3γ0pt

3q

´ 1
2γ0ptqγ0pt

2q ` γ0ptq
2

` 1
4

`

γ0ptq
2 ´ γ0pt

2qq pγ0ptq
2 ` γ0pt

2q
˘

` 1
6

`

γ0ptq
3 ´ γ0pt

3qq pγ0ptq
2 ´ γ0pt

2q
˘

` 1
48γ0ptq

6 ´ 1
6γ0pt

6q ´ 1
16γ0ptq

4γ0pt
2q ` 3

16γ0ptq
2γ0pt

2q2

´ 1
8γ0ptq

2γ0pt
4q ´ 7

48γ0pt
2q3 ` 1

8γ0pt
2qγ0pt

4q ` 1
6γ0pt

3q2

γ4ptq “
γ0ptq

1´γ0ptq

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

`1
5 pγ0ptq

5´γ0pt
5qq` 1

6 pγ0pt
2q3´γ0pt

6qq` 1
8 pγ0pt

4q2´γ0pt
8qq

`γ0ptq
3γ1ptq

`γ0ptq
2γ2ptq ` γ0ptqγ1ptq

2 ` 1
2 γ0pt

2qγ1pt
2q

`γ0ptqγ3ptq ` γ1ptqγ2ptq

` 1
4γ1pt

4q ` 1
2γ2pt

2q

`

#

`γ0ptq
´2γ1ptqγ3ptq `

1
2 γ0ptq

´2γ2ptq
2

´γ0ptq
´3γ1ptq

2γ2ptq `
1
4 γ0ptq

´4γ1ptq
4
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γ5ptq “
γ0ptq

1´ γ0ptq

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

` 1
10 pγ0pt

5q2´γ0pt
10qq` 1

6 pγ0pt
6q´γ0pt

3q2´γ0pt
2q3`γ0ptq

6q

`γ0ptq
4γ1ptq

´ 1
2 γ0pt

2qγ1pt
2q ` γ0ptq

3γ2ptq `
3
2 γ0ptq

2γ1ptq
2

` 1
3 pγ1ptq

3 ´ γ1pt
3qq ` 2 γ0ptqγ1ptqγ2ptq ` γ0ptq

2γ3ptq

` 1
2 pγ2ptq

2 ´ γ2pt
2qq ` γ1ptqγ3ptq ` γ0ptqγ4ptq

`

$

’

&

’

%

` 1
5 γ1pt

5q ` γ0ptq
´2γ1ptqγ4ptq ` γ0ptq

´2γ2ptqγ3ptq

´γ0ptq
´3γ1ptq

2γ3ptq ´ γ0ptq
´3γ1ptqγ2ptq

2

`γ0ptq
´4γ1ptq

3γ2ptq ´
1
5 γ0ptq

´5γ1ptq
5

There is no need to tabulate the series ξd since they relate quite elementarily to
the series γδ:

1`
ÿ

1ďd

xd ξdptq “
´

1´
ÿ

0ďδ

xδ`1 γδptq
¯´1

(479)

With the complementary dimensions and their generating series

γco
d ptq :“

ÿ

tr dim
`

Flex root
r,r´dpE

‚q
˘

, ξco
d ptq :“

ÿ

tr dim
`

Flex r,r´dpE
‚q
˘

the position is reversed: it is the ξcod ptq’s that are now more basic and regular

that the γcod ptq’s. We have γco0 ptq “
1

1´t ,γ
co
t ptq “

t2

1´t2 and for 2 ď d:

ξco
d ptq “

td`1
pξco
d ptq

p1´ tq2
śd´1
k“1p1´ t

kq

´

pξco
d polynomial with positive coefficients.

¯
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pξco
2 ptq “ 2

pξco
3 ptq “ 4` 4 t` t2

pξco
4 ptq “ 9` 18 t` 21 t2 ` 13 t3 ` 4 t4

pξco
5 ptq “ 20` 63 t` 117 t2 ` 150 t3 ` 144 t4 ` 99 t5 ` 48 t6 ` 12 t7 ` t8

pξco
6 ptq “

#

`48` 200 t` 492 t2 ` 874 t3 ` 1250 t4 ` 1470 t5 ` 1454 t6 ` 1200 t7

`823 t8 ` 446 t9 ` 179 t10 ` 43 t11 ` 5 t12

pξco
7 ptq “

$

’

&

’

%

`115` 612 t` 1856 t2 ` 4092 t3 ` 7338 t4 ` 11188 t5 ` 14952 t6

`17685 t7 ` 18720 t8 ` 17734 t9 ` 15038 t10 ` 11305 t11 ` 7472 t12

`4220 t13 ` 1959 t14 ` 691 t15 ` 164 t16` 20 t17 ` t18

pξco
8 ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

`286` 1829 t` 6579 t2 ` 17158 t3 ` 36312 t4 ` 65747 t5 ` 105393 t6

`152363 t7 ` 201245 t8 ` 244664 t9 ` 275326 t10 ` 287521 t11

`279084 t12 ` 251511 t13 ` 210011 t14 ` 161704 t15 ` 114080 t16

`72919 t17 ` 41576 t18 ` 20578 t19 ` 8504 t20 ` 2749 t21 ` 631 t22

`86 t23 ` 6 t24

pξco
9 ptq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

`719` 5400, t` 22435 t2 ` 67252 t3 ` 162840 t4 ` 337008 t5

`617895 t6 ` 1026063 t7 ` 1567380 t8 ` 2224883 t9 ` 2957005 t10

`3698414 t11 ` 4370415 t12 ` 4891788 t13 ` 5195758 t14 ` 5240862 t15

`5021676 t16 ` 4567601 t17 ` 3939032 t18 ` 3213160 t19 ` 2471544 t20

`1784369 t21 ` 1201926 t22 ` 748696 t23 ` 426166 t24 ` 217766 t25

`97470 t26 ` 36824 t27 ` 11143 t28 ` 2485 t29 ` 363 t30 ` 29 t31 ` t32

11.6 Generators.

We tabulate here the dimensions dim
`

Flex root
r,d pE

‚q
˘

. They coincide with the
number of independent dme-generators of Flex pE‚q of depth r and alternality co-
degree d; or again with the number of independent mde-generators of Flex pE‚q
of depth r and alternality co-degree d.
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rzd 1 2 3 4 5 6 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
3 2 0 0 0 0 0 0
4 4 1 0 0 0 0 0
5 9 4 1 0 0 0 0
6 20 15 6 1 0 0 0
7 48 49 27 7 1 0 0
8 115 156 108 40 9 1 0
9 286 479 405 191 58 10 1

10 719 1452 1446 839 317 76 12
11 1842 4343 5013 3440 1568 476 100
12 4766 12908 16953 13475 7197 2654 693
13 12486 38146 56321 50889 31258 13539 4249
14 32973 112358 184385 186888 129898 64729 23749
15 87811 330064 596741 670807 521166 293759 123608
16 235381 967945 1912776 2363337 2031072 1278615 607456
17 634847 2834876 6082890 8197048 7726269 5375539 2848373
18 1721159 8295446 19214918 28057873 28793800 21951639 12842065
19 4688676 24258864 60352718 94957627 105438275 87443367 56007142
20 12826228 70912286 188635971 318236848 380265993 340952408 237391625
21 35221832 207230122 587096310 1057437216 1353335199 1304863162 981631597
22 97055181 605501661 1820465044 3487307579 4760371271 4912774608 3972200135
23 268282855 1769064947 5626509318 11424302201 16571839003 18230407812 15769569776
24 743724984 5168521107 17339703203 37203829560 57158419908 66782132346 61551392031
25 2067174645 15100910989 53300154409 120512266819 195516025077 241824272661 236627078432

rzd 8 9 10 11 12 13 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 1 0 0 0 0 0 0
11 13 1 0 0 0 0 0
12 124 15 1 0 0 0 0
13 954 153 16 1 0 0 0
14 6433 1285 183 18 1 0 0
15 39183 9391 1672 218 19 1 0
16 220826 61791 13228 2143 253 21 1
17 1168622 374432 93614 18164 2679 294 22
18 5873298 2121851 607327 137419 24321 3314 335
19 28265358 11374830 3669736 949677 196038 31960 4025
20 131101055 58186393 20902760 6093480 1438399 273220 41221
21 589040325 285949923 113250510 36744581 9767987 2120267 372725
22 2574293016 1357342490 587795091 210179270 62167992 15190258 3051014
23 10980031682 6250542434 2939087278 1148763383 374370222 101746710 22998920
24 45834498690 28024212159 14223161327 6034760155 2149215465 643394656 161727336
25 187689037253 122697191276 66868523384 30616496083 11833911912 3870592511 1071442242
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11.7 Dimensions.

We tabulate here the dimensions dim
`

Flex r,dpE
‚q
˘

, that is to say, the number
of independent elements of Flex pE‚q with depth r and alternality co-degree d.

rzd 1 2 3 4 5 6 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 2 2 1 0 0 0 0
4 4 6 3 1 0 0 0
5 9 16 12 4 1 0 0
6 20 45 41 20 5 1 0
7 48 123 138 83 30 6 1
8 115 344 446 328 147 42 7
9 286 957 1428 1222 667 237 56

10 719 2687 4497 4422 2815 1216 358
11 1842 7557 14068 15554 11364 5737 2049
12 4766 21358 43668 53702 44164 25586 10687
13 12486 60516 134911 182423 166881 108917 52194
14 32973 172034 414952 611986 615935 447319 241591
15 87811 490204 1272130 2031248 2230554 1783137 1071839
16 235381 1400182 3888611 6682780 7948687 6935568 4590562
17 634847 4007312 11858590 21819467 27942665 26418916 19091289
18 1721159 11490316 36088314 70777645 97080238 98857214 77431998
19 4688676 33000306 109629926 228277456 333854328 364239242 307360178
20 12826228 94919331 332512570 732566279 1137838606 1324025804 1197360112
21 35221832 273384776 1007132571 2340399407 3847252697 4755820093 4588243551
22 97055181 788366353 3046685364 7447310395 12916320185 16902453286 17327285879
23 268282855 2275974509 9206344974 23612856446 43088443273 59504811265 64589660866
24 743724984 6577376047 27791460920 74625349650 142917362794 207703204583 237970147740
25 2067174645 19025986499 83818587788 235147762795 471566018441 719406620114 867566561776

.

rzd 8 9 10 11 12 13 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 1 0 0 0 0 0 0
9 8 1 0 0 0 0 0

10 72 9 1 0 0 0 0
11 514 90 10 1 0 0 0
12 3249 710 110 11 1 0 0
13 18566 4911 950 132 12 1 0
14 98584 30517 7140 1239 156 13 1
15 493086 175067 47938 10053 1581 182 14
16 2350797 941072 295521 72526 13776 1981 210
17 10767971 4798866 1699270 478164 106285 18448 2443
18 47692835 23414204 9230508 2928874 746342 151574 24217
19 205246164 110053967 47799379 16885954 4851914 1129447 211113
20 861583377 500956305 237668718 92506872 29592819 7767218 1663843
21 3538999442 2217703307 1141051386 485173466 171010505 49970416 12068604
22 14260869394 9580881784 5313567180 2450468536 943597282 303804250 81682686
23 56496657745 40507559140 24088665924 11975644498 5001919605 1759411155 521214461
24 220440855233 168004013976 106637213867 56850890652 25599480499 9767448516 3161242858
25 848430232360 684889453403 462148297540 263008126630 127010918277 52248113104 18343321538

12 Conclusion.

12.1 Survey of the main results.

• We replace the usual pre-Lie formulae (for group composition, inversion,
iteration; also for the group-to-algebra logarithm), which indiscriminately
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use all bracket combinations, by optimally economical formulae, which
make do with only two types of bracketing: backward within forward.
Beside using less summands, these formulae, unlike the old ones, affect
their summands with quite explicit coefficients.

• We consider exotic pre-Lie products and connect them to exotic composi-
tion laws, which are rather trite in the identity-tangent case, but become
interesting in the general transserial setting.

• We construct a pre-Lie product dle (pre-Lie to lu) which, unlike those
previously in service, preserves alternality and generates the whole of
Flexal

pE‚q from E‚ alone. This naturally leads to another pre-Lie prod-
uct dari (pre-Lie to ari), which also preserves alternality. To go from
there to the whole of Flex pE‚q, yet another operation is needed: either
the pre-associative product dme or its twin mde.

• By suitably combining dme, mde and dle, we construct three rather com-
plex, multivariate functions câlt , cǎlt , cālt of Flex pEq into itself. They
are the counter-alternators, so-called because they combine and transform
the alternality properties of their arguments in a counter-intuitive man-
ner. For all their outward similarities, one of them, the counter-alternator
câlt , turns out to possess the nicest properties.

• We use câlt to construct on Flex pE‚q a basis tôte‚r,ku, indexed by ordered
trees, where the pre-Lie operations dle and dari assumes the simplest
possible form: with dle, the second tree gets ‘attached’ to the first; with
dari it gets ‘inserted’ into it. We then construct, again relying on câlt ,
yet another basis tste‚r,d,ku, indexed by stacked trees (appropriate tree
superpositions), which faithfully reflects the stratification of Flex pEq by
alternality co-degree d.

• The dimensions of the sub-spaces Flex r,1pE
‚q “ Flexal

r pE
‚q (alternal ele-

ments of depth r) are rather easy to determine. Not so the dimensions
of the general sub-spaces Flex r,dpE

‚q (elements of depth r and alternality
co-degree d). With the help of the basis tste‚r,d,ku and of special ’pilot’
polynomials, we calculate the dimensions dimpFlex r,dpE

‚qq as well as their
more tractable generating series.

• We introduce a notion of pre-associative68 algebra (– they ‘enfold’ pre-
Lie algebras much like associative algebras ‘envelope’ Lie algebras –) with
three aims in mind:
(i) to detach the preceding construction from its origin in Flex pEq and the
two rather dissimilar ‘polar’ models Flex pPaq and Flex pPiq.
(ii) to put notions like counter-alternator and alternality co-degree on a
neat natural axiomatic basis
(iii) to pave the way for possible extensions (for a start, we describe the
structure of free pre-associative algebras with any number of generators).

68Quite distinct from what sometimes goes by this name.
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• Using the correspondence ôte ÞÑ ot of Flex pE‚q onto OT, we upload the
whole of flexion algebra onto tree algebra. In the process, the inflected ari
bracket receives as striking an interpretation as the uninflected lu bracket:
inserting trees into one another or attaching them to one another. On the
axiomatic side, this leads to the notion of Janus algebra,

12.2 Some open questions.

• Q1: Just as we have (two) natural Dynkin projectors from an associative
algebra onto the Lie algebra it ‘envelopes’, it would be nice to have simple
projectors dealing with the whole ’fourfold unfolding’, that is to say:
(i) from pre-associative onto pre-Lie
(ii) from pre-associative onto associative
(iii) (directly) from pre-associative onto Lie

• Q2: Are there natural incarnations (in flexion algebra or elsewhere) of the
pre-associative algebras freely generated by more than one element?

• Q3: Is there a simple way of expressing the core involution swap and the
related notions of bialternality, bisymmetrality etc69 in any of the tree
indexed bases?

• Q4: Are there simple Hermitian forms on Flex rpPa‚q or Flex rpPi‚q that
make the bases tbte‚r,ku or tôte‚r,ku or tŝte‚r,d,ku orthonormal? Say, discrete

Hermitian forms of type: ă A‚, B‚ ą“
ř

w,w1 hpw,w
1q Aw B̄w

1

with the
sequences w and w1 consisting of finite sums of differences of unit roots
of order r`1. Same question with Flex rpF

‚q, where F ‚ denotes the flat
flexion unit: Fw1 “ 1

2

`

sgnpu1q ` psgnpv1q
˘

.

• Q5: Does there exist (say, for E‚ “ Pa‚ or Pi‚) a simple, direct charac-
terisation of the important and remarkably stable70 subspace Flex rootpE

‚q

spanned by all elements of the form ôte‚r,k with 1 ď k ď κr´1, i.e. spanned
by bimoulds attached to one-rooted trees?

12.3 Forthcoming: “the flexion structure and its plethora
of dualities”.

In this follow-up paper, we shall return to the flexion algebra BIMU of general
bimoulds, and use Flex pE‚q to shed light on the many symmetries, involutions,
and dualities that exist on BIMU and make it such a pliant tool for the study
of arithmetic dimorphy, most glaringly manifest in the ring of multizetas. The
centre-piece of the paper will be the bisymmetral bimoulds tal‚{til‚. They are
the trigonometric counterpart of the polar bimoulds pal‚{pil‚, and an ideal key
to the understanding of rational Drinfeld associators, of which they provide two
completely distinct encodings.

69also the bialternality grid: see [E3].
70Notably, under the Lie products lu, ari and their pre-Lie companions dle, dari .

115



12.4 Index of terms.

ari: §4.2, §4.3
arit: §4.2, §4.3
alternal: §4.1, §4.2
bialternal: §4.2, §4.3
bisymmetral: §4.2, §4.3
counter-alternators: §5.5-§5.7, §11.2-§11.4
dari: §5.3
dla, dli: §5.2, §5.3
dle: §5.2
dma, dmi: §5.2, §5.3
dme: §5.2
exotic composition: §3.2-§3.5
framing function: §7.2
pilot polynomials: §6.4, §11.4
lu: §4.2
mu: §4.3
mde: §5.2
mda, mdi: §5.2, §5.3
stacked tree: §6.4
symmetral: §4.1, §4.2

12.5 Index of notations.

BIMU : §4.1, §4.2
BIMU v-v: §5.3
câlt , cǎlt , cālt : §5.5, §10.2
câltr ,d , cǎltr ,d , cāltr ,d : §5.5, §5.8
C âlt : §6.6
Flex pE‚q,FlexalpE‚q: §4.6, §5.2
Flex rootpE‚q: §8.2, §8.5
Flex pPa‚q,FlexalpPa‚q: §5.3
Flex pPi‚q,FlexalpPi‚q: §5.3
Pa‚, Pi‚: §4.5
Pr,d: §7.2
Lr,d: §7.2
Qr,d: §7.6
Qa‚, Qi‚: §4.5
Fpx,yq: §7.2
Ppx,yq: §7.2
Γpt, xq: §7.3
Ξpt, xq: §7.3
Γcopt, xq: §7.4
Ξcopt, xq: §7.4
k âltr ,d , kǎltr ,d , k āltr ,d : §5.8
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µ, µ˚, λ: §10.1
OT: §6.2
BT: §6.3
UT: §6.4
ST: §6.4
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