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Abstract Perturbation of the GUE are known in physics to be related
to enumeration of graphs on surfaces. Following [14] and [15], we investigate
this idea and show that for a small convex perturbation we can perform a
genus expansion: the free energy and the moments of the empirical measure
can be developed into a series whose g-th term is a generating function of
graphs embedded on a surface of genus g.

1 Introduction

Wick’s calculus allows to easily compute any moments of Gaussian variables
and gives them a combinatorial interpretation since the p-th moment of a
Gaussian can be seen as the number of partitions in pairs of [|1, p|]. This
fact can be used to find moments of the GUE, the Gaussian unitary model.
Let µN be the law on HN (C)m the set of m-tuple A1, · · · , Am of N × N

hermitian matrices such that <eAi(kl), k < l, =mAi(kl), k < l, 2−
1
2 Ai(kk)

is a family of independent real Gaussian variables of variance (2N)−1 or
more directly

µN (dA) =
1

ZN
e−

N
2

tr(
Pm

i=1 A2
i )dNA

with dNA the Lebesgue measure on HN (C)m = (RN2
)m and ZN a constant

of normalization.
For a edge-colored graph on an orientated surface we say that a vertex

is of type q = Xi1 · · ·Xip for a monomial q if this vertex is of degree p and
when we look at the half-edges going out of it, starting from a distinguished
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one and going in the clockwise order the first half-edge is of color i1, the
second of color i2,. . . , the p-th of color ip. A graph on a surface is a map
if it is connected and its faces are homeomorphic to discs (see section 3 for
a precise definition of these notions). Then, a computation (see [17] for the
one matrix case and [20] for the general case) using Wick’s calculus shows
that for all non commutative monomials, Xi1 · · ·Xip ,

µN (
1
N

tr(Ai1 · · ·Aip)) =
∑
g∈N

1
N2g

Mg(Xi1 · · ·Xip) (1)

where Mg(Xi1 · · ·Xip) is the number up to isomorphism of maps with col-
ored edges on a surface of genus g with one vertex of type Xi1 · · ·Xip . The
contribution for higher asymptotics is given by graphs of higher genus. This
is called a genus expansion or a topological expansion. Besides, one can
use Euler’s formula to show that the sum in the right hand side is always
finite. We see that the first asymptotic of the moments of the GUE leads
to an enumeration of planar object. The link between limit moments of
matrices and combinatorial structure already appeared in the first works on
random matrices since [26] proved that the moments of hermitian matrices
with i.i.d. entries are catalan’s numbers. In the multi-matrix case this first
asymptotic can be described by the notion of freeness, a crucial property in
operator algebra, see [25] for an introduction and [24] which proves this type
of asymptotic is satisfied not only for the GUE but for a far more larger
class of matrices. This freeness has also a combinatorial interpretation as a
sum over non-crossing partitions (see [21]).

Can such an interpretation be generalized beyond the Gaussian case?
More general genus expansions are of particular interest in physics (see [22]
which introduce such a concept). The links between them and matrix inte-
grals were discovered in [6]. We present them here in a general setting. Take
a potential V (X1, · · · , Xm) =

∑
i tiqi with complex parameters t1, · · · , tn

and non-commutative monomials qi. We are interested in the following per-
turbation of the GUE

µN
V (dA1, · · · , dAm) =

1
ZN

V

e−N tr(V (A1,··· ,Am))dµN (A1, · · · , Am) (2)

where ZN
V is the normalizing constant making µN

V a probability measure.
The derivatives of the moments of this model at t = 0 are exactly moments of
the GUE and thus can be computed using Wick’s calculus and the limit can
be formally expressed as a generating function of graphs. For example, for
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a quartic potential V = tX4, we can obtain the following formal expansion
for the free energy (see [4])

log ZN
tX4 =

∑
g∈N

N2−2g
∑
k∈N

(−t)k

k!
Ck

g (3)

with Ck
g the number up to isomorphism of connected graphs on a surface

of genus g with k vertex of degree 4 and such that faces are homeomorphic
to discs (the so-called maps). Note that we have to be careful since the
right hand side of (3) is divergent for t 6= 0. Thus, this equality is purely
formal but we will be able to give it a precise mathematical meaning (at
least, Wick’s calculus shows that the derivatives of both sides are equal at
t = 0). Such a formal identity can also be stated for general potential Vt.

This paper is the sequel of the two articles [14] and [15]. One aim of this
series is to investigate what can be said of the previous equality beyond the
identification of the formal series. More precisely we would like to know if
for some parameters t the genus expansion is the large N expansion of the
free energy:

FN
Vt

:=
1

N2
lnZN

Vt
.

First we need to make some assumptions in order for our probability
measure to be well defined. We will always assume that:

1. The perturbation is small: we will restrict ourselves to small coeffi-
cients ti in V . Note that we can not get rid of this condition, as the
generating functions of combinatorial objects that we consider have
arbitrary small radius of convergence.

2. The potential V + 1
2

∑
i X

2
i is “uniformly” convex: there exists c > 0

such that for all N in N,

ϕN
V :

HN (C)m −→ C
(X1, · · · , Xm) −→ tr(V (X1, · · · , Xm) + 1−c

2

∑m
i=1 X2

i )

is a real and convex function. If V satisfies this condition, we say that
V is c-convex.

Thus, for Vt =
∑n

i=1 tiqi with t = (t1, · · · , tn) complex numbers and qi

non-commutative monomials we define

Bη,c = {t ∈ Cn||t| = max
i
|ti| 6 η, Vt is c-convex}.
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Examples of c-convex potentials can be built using Klein’s lemma (see [16])
is

V (X) =
∑

i

Pi(
∑

j

αijXj) +
∑
k`

βk`XkX`

with real and convex polynomials Pi, real αij , βkl and for all l,
∑
|βkl| < 1−c.

We proved in the previous articles the first two terms of the expansion
converge: Let Vt =

∑n
i=1 tiqi, and c > 0, there exists η > 0 such that for all

t in Bη,c, the free energy has the following expansion

FN
Vt

= F 0(t) +
1

N2
F 1(t) + o(

1
N2

).

We also showed that F i(t), i = 0, 1 enumerates maps of genus i with vertices
associated to the monomials of V . More precisely, [14] tackled the first
asymptotic for the free energy and for the moments of the measure. In [15],
we looked at the second asymptotic for those quantities and in addition we
proved a central limit theorem for the moment of the empirical measure
which will be crucial in this paper.

Our objective is to generalize this expansion to any genus. Our main
concern is the multi-matrix case since the one matrix case is already well
understood. For the latter, the first asymptotic of the empirical measure has
been studied from a non-perturbative perspective (that is with assumptions
only on the growth of V at infinity and not on the size of its coefficients). A
large deviation principle was obtained in [3] and a central limit theorem in
[18]. An explicit description of the density of the limit measure is given in [9].
The next orders in the expansion have also been studied. In [2], a recursive
procedure based on the loop equation is given to compute recursively the
asymptotics of observables such as the free energy. Our proofs also rely
on this loop equation, called Schwinger-Dyson’s equation. More recently,
[1] shows an expansion for the expectation of the Stieltjes transform of the
empirical measure. Finally, [9] gave a genus expansion for the free energy
using Riemann-Hilbert methods. This is exactly this expansion that we
would like to obtain in the multi-matrix case. Our tools are very different
from those of [9] but the hypotheses are comparable. (In [9] they assume
that V = t2mx2m +

∑
i<2m tix

i with t2m which dominates the other ti while
we assume the convexity of V ).

Many techniques used in these articles, such as the use of orthogonal
polynomials, can not be generalized to the multi-matrix case. However,
there is a huge litterature which tackles some specific models, such as the so
called two matrix model V = V1(A) + V2(B) + cAB, whose combinatorics
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is of crucial importance for models of statistical physics on random graphs.
The Ising model on random graphs was solved by physicists in [19] and then
by combinatoricians in [5] At a non-perturbative level the first order was
studied using large deviation technique in [13]. A recent series of papers
([7], [11], [10]) introduces tools of algebraic geometry and gives recursive
formula to study the asymptotics of these models.

The interested reader should consult the review [8] and [12] and the book
[27]. The last part of [14] also aims to present the many approaches to this
problem.

As in [14] and [15], our main tool will be the so-called Schwinger-Dyson’s
equation and we will try to interpret it as a higher genus Tutte’s equation
(see [23]). This will lead us to the combinatorial series.

The main result of this paper is that we can go beyond the first two
asymptotics, up to any order.

Theorem 1.1 Let Vt =
∑n

i=1 tiqi, and c > 0, for all g ∈ N, there exists
ηg > 0 such that for all t in Bηg ,c, the free energy has the following expansion

FN
Vt

:=
1

N2
log ZN

Vt
= F 0(t) +

1
N2

F 1(t) + · · ·+ 1
N2g

F g(t) + o(
1

N2g
)

with F g the generating function for maps of genus g associated with V :

F g(t) =
∑

k∈Nn\{0}

(−t)k

k!
Ck

g (P )

where k! =
∏

i ki!, (−t)k =
∏

i(−ti)ki and Ck
g is the number of maps on a

surface of genus g with ki vertices of type qi.

Note that increasing the order of the expansion is done at the cost of reducing
the radius of convergence since the full series in power of g is not convergent.

To tackle this problem, we will look at asymptotics of other observables
(like in [14] and [15]). In particular we will be interested by the asymptotic
of the non-commutative moments of our measure EµN

Vt

[ 1
N tr(P )] for a non-

commutative polynomial P . Such moments appear as derivatives of the free
energy since

EµN
Vt

[
1
N

tr(P )] = − ∂

∂u

∣∣∣∣
u=0

FN
Vt+uP .

Theorem 1.2 With the same hypotheses than in the previous theorem, for
all for all g ∈ N, there exists η > 0, such that for all t in Bη,c, for all
monomials P

EµN
Vt

[
1
N

tr(P )] = C0
t (P ) + · · ·+ 1

N2g
Cg
t (P ) + o(

1
N2g

)
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with Cg the generating function maps of genus g with some fixed vertices:

Cg
t (P ) =

∑
k∈Nn

(−t)k

k!
Ck

g (P )

where Ck
g (P ) is the number of maps on a surface of genus g with ki vertices

of type qi and one of type P .

In fact, we will be able to find the asymptotics of many more observables,
such as the higher derivatives of the free energy. Indeed, we show that we can
differentiate term by term the expansion of Theorem 1.1. Let us introduce
for j = (j1, · · · , jn) ∈ Nn, the operator of derivation

Dj =
∂
P

i ji

∂tj11 · · · ∂tjn
n

.

Theorem 1.3 With the same hypothesis than in the previous theorem, for
all j = (j1, · · · , jn) ∈ Nn\{0}, for all g ∈ N, there exists η > 0 such that for
all t in Bη,c,

DjF
N
Vt

= DjF
0(t) + · · ·+ 1

N2g
DjF

g(t) + o(
1

N2g
).

Besides, DjF
g is the generating function maps of genus g with some fixed

vertices:

DjF
g(t) =

∑
k∈Nn

(−t)k

k!
Ck+j

g .

In the next section, we will define some useful notations from non-
commutative probability theory and we will recall the main result of [14].
Next, we will look for recursive relations between the asymptotics of the
non-commutative moments of our model. This will lead us to study some
combinatorial objects in section 4 whose generating functions satisfy these
relations. In the sections 5 and 6, we will prove the equality of these moments
and these enumerating functions before proving our main results. Finally
the last section will be devoted to the proof of Theorem 1.3.

2 Notations and reminder

We denote by C〈X1, · · · , Xm〉 the set of complex polynomials on the non-
commutative unknown X1,. . . ,Xm i.e. the complex linear combination of
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monomials which are simply the set of finite words on X1, . . . , Xm. Monomi-
als must be thought as non-commutative moments. Let ∗ denotes the linear
involution on C〈X1, · · · , Xm〉 such that for all complex z and all monomials

(zXi1 . . . Xip)
∗ = zXip . . . Xi1 .

A polynomial P is self-adjoint if P = P ∗. We will denote C〈X1, · · · , Xm〉∗
the dual of C〈X1, · · · , Xm〉. If there exists R > 0 such that for all mono-
mial |τ(Xi1 . . . Xip)| 6 Rp we will say that τ has a compact support. By
analogy with the one variable case, the infimum of the R’s which satisfy this
inequality for all monomials will be called the radius of the support of τ .

For a polynomial P and a monomial q, we define λq(P ) as the coefficient
of q in the decomposition of P . For M > 0, we define the norm ‖.‖M on
polynomials:

||P ||M =
∑
l∈N

∑
q monomial

degq=l

|λq(P )|M l.

This norm ‖.‖M is an algebra norm, i.e. for all polynomials P , Q,

‖PQ‖M 6 ‖P‖M‖Q‖M .

Note that an element τ of C〈X1, · · · , Xm〉∗ has a support of radius less than
R if and only if for all polynomials P ,

|τ(P )| 6 ‖P‖R.

We extend ‖.‖M on C〈X1, · · · , Xm〉⊗C〈X1, · · · , Xm〉 by defining this norm
on the decomposition in monomials:

‖
∑

λq1,q2q1 ⊗ q2‖M =
∑

|λq1,q2 |Mdeg q1+deg q2

with this definition for all polynomials P,Q, ‖P ⊗Q‖M = ‖P‖M‖Q‖M .
For 1 6 i 6 m, we define the non-commutative derivatives ∂i from

C〈X1, · · · , Xm〉 to C〈X1, · · · , Xm〉⊗2 by the Leibniz rule

∂i(PQ) = ∂iP × (1⊗Q) + (P ⊗ 1)× ∂iQ

and ∂iXj = 1i=j1⊗ 1. For a monomial P , we will often use the convenient
expression

∂iP =
∑

P=RXiS

R⊗ S
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where the sum runs over all possible monomials R,S so that P decomposes
into RXiS. We also define another operator of derivation on polynomials,
the cyclic derivative Di which is linear and such that for all monomials:

DiP =
∑

P=RXiS

SR.

Alternatively, D can be defined as m◦∂ where m(A⊗B) = BA. We will see
that these two operators appear naturally when we differentiate products of
matrices and they both possesses a nice combinatorial interpretation. An
important fact we will use later is that for all M ′ > M , both ∂i and Di

are continuous from (C〈X1, · · · , Xm〉, ‖.‖M ′) to (C〈X1, · · · , Xm〉, ‖.‖M ). For
example for a monomial q,

‖Diq‖M

‖q‖M ′
= deg q

Mdeg q−1

M ′deg q
= M−1 deg q

(
M

M ′

)deg q

which is bounded. Note also that due to the particular form of this form, in
order to show that an operator θ has a norm bounded by C with respect to
this norm, it is sufficient to show that for all monomials q, ‖θq‖M 6 C‖q‖M

The main object of our study is the law µN
Vt

on HN (C)m

µN
Vt

(dA1, · · · , dAm) =
1

ZN
Vt

e−N tr(Vt(A1,··· ,Am))dµN (A1, · · · , Am)

and we are particulary interested by the behavior of the random variable

µ̂N :
C〈X1, · · · , Xm〉 −→ C

P −→ 1
N tr(P (A1, · · · , Am))

and its mean:

µN
t :

C〈X1, · · · , Xm〉 −→ C
P −→ EµN

Vt

[ 1
N tr(P (A1, · · · , Am))]

We can now state precisely the main result of [14], we will use it very
frequently it in the next sections. For any c > 0,R > 0 there exists η > 0
such that for all t ∈ Bη,c, for all polynomials P , µ̂N (P ) goes when N goes
to +∞, almost surely and in expectation towards µt(P ) with µt a solution
of the Schwinger-Dyson equation

µt ⊗ µt(∂iP ) = µt((Xi + DiVt)P ) ∀P ∈ C〈X1, · · · , Xm〉, ∀i ∈ {1, · · · ,m}.
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Besides, this solution is the unique one which has a support bounded by R:
for all monomial Xi1 · · ·Xip

|µt(Xi1 · · ·Xip)| 6 Rp. (4)

Moreover, on Bη,c, µt can be seen as a generating function of planar maps:
for all polynomials P ,

µt(P ) =
∑

k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Mk1,··· ,kn(P )

where Mk1,··· ,kn(P ) is the number of planar connected graphs with ki ver-
tices of type qi and one of type P . For the rest of the paper we will work in
this domain Bη,c where the convergence holds. In order to shorten a little
the notations the subscript t will be most of the time implicit, for example
we will often write µ instead of µt, V instead of Vt, µN instead of µN

t . . .

3 First order observable

The starting point is a relation already used in [14] for the matrix model
when N is fixed: for all polynomial P , for all i,

E[µ̂N ((Xi + DiV )P )] = E[(µ̂N ⊗ µ̂N )(∂iP )].

We will give the proof of a generalization of this equality later. Using this
equality and some concentration inequalities we were able to prove that for
t in Bη,c for a well chosen η, for all polynomial P , E[µ̂N (P )] was converging
towards µ(P ) with µ the unique solution of the Schwinger-Dyson’s equation
SD[V]:

µ((Xi + DiV )P )) = (µ⊗ µ)(∂iP ). (5)

In order to find the next asymptotic, we study the difference between the
equation for finite N and the limit equation, if νN = N2(µN −µ), we obtain
by substracting the two equations:

νN ((Xi +DiV )P )− (I⊗µ+µ⊗ I)∂iP ) = N2E[((µ̂N −µ)⊗ (µ̂N −µ))(∂iP )]
(6)

Here, an important operator shows up in the left hand side. For P =
Xi1 · · ·Xip a monomial, define the following operators:

Ξ1P =
1
p

∑
i

DiV DiP
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Ξ2P =
1
p

∑
i

(I ⊗ µ + µ⊗ I)∂iDiP.

We extend them by linearity on C〈X1, · · · , Xm〉 and we define Ξ0 = I − Ξ2

and Ξ = Ξ0+Ξ1. These operators were introduced in [15] to obtain a central
limit theorem for the matrix model. We also define the operator of division
by the degree i.e. the linear operator P → P such that for all monomial
P = Xi1 · · ·Xip , P = 1

pP and 1 = 0. These operators allow us to state the
relation for the first correction (6) in a simpler form. If we apply (6) to DiP
and then sum on i, we get:

νN (ΞP ) =
∑

i

N2E[((µ̂N − µ)⊗ (µ̂N − µ))(∂iDiP )]. (7)

Then, the strategy is simple, we only have to understand the asymptotic
of N2E[((µ̂N − µ) ⊗ (µ̂N − µ))(R ⊗ S)] and then ”invert” Ξ. The first
order asymptotic of N2E[((µ̂N −µ)⊗ (µ̂N −µ))(R⊗S)] is easy to compute
using [15] as it was shown that N(µ̂N − µ)(Q) converges in law towards a
Gaussian law when N goes to infinity. The main issue is that when we try to
investigate the next asymptotic, terms of type N3E[(µ̂N −µ)⊗3(R⊗S⊗T )]
will appear and at their turn they will create terms of greater complexity.
That’s why we are interested more generally in all the N `E[(µ̂N −µ)⊗`(P1⊗
· · · ⊗ P`)]’s and we will eventually find their full asymptotic. First remark
that according to [15], for all P , N(µ̂N (P )− µ(P )) converges to a gaussian
variable and this convergence occurs in moments (see Corollary 4.8 in [15]).
Thus N `E[(µ̂N−µ)⊗`(P1⊗· · ·⊗P`)] has a finite limit when N goes to infinity
and this limit is 0 if ` is odd. But we need a more precise result which state
that this convergence is uniform for all monomials P of reasonable degree.

Lemma 3.1 For all ` ∈ N∗, α > 0 there exists C, η,M0 > 0, such that
for all t ∈ Bη,c, M > M0 and all polynomials P1,. . . ,P` of degree less than
αN

1
2 , ∣∣∣E[N `(µ̂N − µ)⊗`(P1 ⊗ · · · ⊗ P`)]

∣∣∣ ≤ C‖P1‖M · · · ‖P`‖M .

Proof.
First using Hölder’s inequality, write

E[N `(µ̂N − µ)⊗`(P1 ⊗ · · · ⊗ P`)] ≤
∏̀
r=1

E[|N(µ̂N − µ)(Pr)|`]
1
` .
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Thus we only have to prove the claim if the Pr are equals. Then we substract
the mean

E[|N(µ̂N − µ)(P )|`] ≤ 2`{E[|N(µ̂N (P )− µN (P )|`] + |N(µN (P )− µ(P ))|`}
(8)

Proposition 3.1 in [15] state a rate of convergence of µN (P ) to µ(P ): there
exists C,M0 > 0 such that for M > M0, for all polynomials P of degree less
than εN

2
3 ,

|N(µN (P )− µ(P ))| 6 C
‖P‖M

N
. (9)

Thus in inequality (8) above, we only have to control the first term. We
decompose it into the sum

E[|N(µ̂N (P )− µN (P )|`] = E[|N(µ̂N (P )− µN (P )|`1‖A‖6M ] (10)

+ E[|N(µ̂N (P )− µN (P )|`1‖A‖>M ]

with ‖A‖ is the max of the operator norm of the Ai’s. The second term can
be bounded by

(2N)`µN ((PP∗)`)
1
2 P(‖A‖ > M) 6 (2N)`‖P‖`

MP(‖A‖ > M)

Now according to Lemma 2.2 in [15], we have a controll on the decay of the
largest eigenvalue: there exists a > 0 such that if M is sufficiently large,
P(‖A‖ > M) 6 e−aMN and since e−aMN (2N)` is uniformly bounded in N
we get:

E[|N(µ̂N (P )− µN (P )|`1‖A‖>M ] 6 C‖P‖`
M . (11)

with a constant which may depends on a, ` and M .
We are only left with the term

E[|N(µ̂N (P )− µN (P )|`1‖A‖6M ].

We can use the concentration inequality result of Lemma 2.3 in [15]. Bor-
rowing the notations from this lemma we have:

E[|N(µ̂N (P )− µN (P )|`1‖A‖6M ]

=
∫ +∞

0
`x`−1P(|N(µ̂N (P )− µN (P )| > x, ‖A‖ 6 M)dx

6 `(εN
P,M + mN

P,M )` +
∫ +∞

0
{`(x + εN

P,M + mN
P,M )`−1

× P(|N(µ̂N (P )− µN (P ))−mN
P,M | > x + εN

P,M , ‖A‖ 6 M)}dx

6 `(εN
P,M + mN

P,M )` + 2
∫ +∞

0
`(x + εN

P,M + mN
P,M )`−1e

−cx2

2(‖P‖M
L )2 dx
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Now observe that up to a little change in M , our norm ‖.‖M controll the
lipschitz norm of P :

‖P‖M
L 6 (

∑
k

‖DkPDkP
∗‖M )

1
2 6 C‖P‖M ′

for a M < M ′. This is a direct consequence of the continuity of the derivation
from C〈X1, · · · , Xm〉M ′ to C〈X1, · · · , Xm〉M for M < M ′. Thus

E[|N(µ̂N (P )− µN (P )|`1‖A‖6M ] 6 C((εN
P,M )` + (mN

P,M )` + ‖P‖`
M ′)

Note that since M < M ′, for all polynomial P , ‖P‖M 6 ‖P‖M ′ so that if
in the end we have a controll in terms of these two norms we will be able to
convert it into a controll with respect to the norm ‖.‖M ′ .

The last step is to controll εN
P,M and mN

P,M . The bound computed in
Lemma 2.3 in [15] for monomials is easily extended to polynomials: for all
P of degree less than αN ,

εN
P,M 6 C‖P‖M and mN

P,M 6 C‖P‖M .

Thus we get

E[|N(µ̂N (P )− µN (P )|`1‖A‖6M ] 6 C‖P‖M

which with (11) give the controll on the left hand side of (10). This with
(9) allow to controll (8) which conclude the proof.

�

We now try to find some relation between the N `E[(µ̂N − µ)⊗`(P1 ⊗
· · ·⊗P`)]’s which generalize (7). Remember that, for ` odd, those quantities
vanish when N goes to infinity. Thus in order to obtain non-trivial limits,
we have to distinguish the normalisation according to the parity of `.

For ` ≥ 1 we define:

ˆ̀=
{

` + 1 if ` is odd
` otherwise.

Note that ˆ̀ is always an even integer. We now define a function from
t`∈NC〈X1, · · · , Xm〉⊗` to C,

νN (P1 ⊗ · · · ⊗ P`) = EµN
V

[N ˆ̀(µ̂N − µ)⊗`(P1 ⊗ · · · ⊗ P`)].
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On C〈X1, · · · , Xm〉⊗`, this is a `-linear symmetric function which is tracial
in each Pr. Our convention will be that for λ in C = C〈X1, · · · , Xm〉⊗0,
νN (λ) = λ. The relation that will appear as our main tool are the aim of
the next property. In a tensor product P1⊗· · · P̌r · · ·⊗P` denotes the tensor
product of P1,. . . ,Pr−1,Pr+1, . . . ,P` i.e. the term Pr is omitted.

Property 3.2 For all `, for all polynomial P1,. . . ,P`, for all N , if ` is even

νN (ΞP ⊗ P2 ⊗ · · · ⊗ P`) =
∑
i,r

µt(DiPDiPr)νN (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
1

N2

∑
i,r

νN (DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
1

N2

∑
i

νN (∂iDiP ⊗ P2 ⊗ · · · ⊗ P`)

and if ` is odd

νN (ΞP ⊗ P2 ⊗ · · · ⊗ P`) =
∑
i,r

µt(DiPDiPr)νN (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,r

νN (DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

νN (∂iDiP ⊗ P2 ⊗ · · · ⊗ P`)

This property is the generalization of the equation (7). One may wonder
why we stress so much the difference between the odd and the even case.
The point is to keep in mind which terms are of order 1 and which are
negligible. In view of this, the νN

1 are convenient as they should all be of
order 1 and thus the previous equation will lead us to find their limit by
induction.

Proof.
To sum up the property in a shorter way, we have to prove that for all

` for all polynomials P1,. . . ,P` and for all N ,

N `E[(µ̂N − µ)⊗`(ΞP1 ⊗ P2 ⊗ · · · ⊗ P`)]

=
∑
i,r

µt(DiP1DiPr)N `−2E[(µ̂N − µ)⊗`−2(P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,r

N `−2E[(µ̂N − µ)⊗`−1(DiP1.DiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)]

+
∑

i

N `E[(µ̂N − µ)⊗`+1(∂iDiP1 ⊗ P2 ⊗ · · · ⊗ P`)].

13



We will use the integration by part formula:∫
xf(x)e−x2/2dx =

∫
f ′(x)e−x2/2dx.

We generalize this formula into∫
tr(AiP )f(trQ)dµN =

1
N

∑
α,β

∫
(∂Ai(αβ)Pβα)f(trQ)

+ Pβα∂Ai(αβ) trQf ′(trQ)dµN .

Two useful computations show the importance of the non-commutative
derivatives and their links with the derivation of polynomials of hermitian
matrices: if P is a monomial,∑

αβ

∂Ai(αβ)Pβα =
∑
αβ

∑
P=RXiS

RββSαα = tr⊗ tr(∂iP )

and
∂Ai(αβ) trP =

∑
P=RXiS,γ

RγβSαγ = (DP )αβ .

Thus, for P1,. . . ,P` polynomials:

N `E[µ̂N (XiP1)(µ̂N − µ)⊗`−1(P2 ⊗ · · · ⊗ P`)]

= N `E[(µ̂N ⊗ µ̂N )(∂iP1)(µ̂N − µ)⊗`−1(P2 ⊗ · · · ⊗ P`)]

+
∑

r

N `−2E[µ̂N (P1DiPr)(µ̂N − µ)⊗`−1(P2 ⊗ · · · P̌r · · · ⊗ P`)]

−N `E[µ̂N (P1DiV )(µ̂N − µ)⊗`−1(P2 ⊗ · · · ⊗ P`)].

Now remember that according to Schwinger-Dyson’s equation we have:

µ((Xi + DiV )P1)− µ⊗ µ(∂iP1) = 0

Then, we substract the two equalities and use the identity

µ̂N ⊗ µ̂N − µ⊗ µ = (µ̂N − µ)(I ⊗ µ + µ⊗ I) + (µ̂N − µ)⊗ (µ̂N − µ)

to obtain

N `E[(µ̂N − µ)((Xi + DiV )P1 − (I ⊗ µ + µ⊗ I)∂iP1)

(µ̂N − µ)⊗`−1(P2 ⊗ · · · ⊗ P`)]

= N `E[(µ̂N − µ)⊗`+1(∂iP ⊗ P2 ⊗ · · · ⊗ P`)]

+
∑

r

N `−2E[(µ̂N − µ)⊗`−1(PDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)]

+
∑

r

N `−2µ(PDiPr)E[(µ̂N − µ)⊗`−2 ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)].

14



To get the result it is now sufficient to aplly this equality with P1 = DiP̄
and then to sum on i.

�

This property gives us some precious hints on the limit ν of the νN . It
should satisfy the ”limit equation”, if ` is even

ν(ΞP ⊗ P2 ⊗ · · · ⊗ P`) =
∑
i,r

µt(DiPDiPr)ν(P2 ⊗ · · · P̌r · · · ⊗ P`) (12)

and if ` is odd

ν(ΞP ⊗ P2 ⊗ · · · ⊗ P`) =
∑
i,r

µt(DiPDiPr)ν(P2 ⊗ · · · P̌r · · · ⊗ P`) (13)

+
∑
i,r

ν(DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

ν(∂iDiP ⊗ P2 ⊗ · · · ⊗ P`).

Hopefully, we will be able to study the solutions ν of these equations. In fact,
following [14] we would be able to prove that for R,L > 0, there exists ε > 0
such that for |t| < ε there exists an unique ν : t2L

`=0C〈X1, · · · , Xm〉⊗` → C
linear on each set C〈X1, · · · , Xm〉⊗` with support bounded by R and which
satisfy each of the previous equation for ` ≤ 2L. But we will proceed in a
different way. Looking at these equations, we will try to recognize in them
some relations between enumeration of combinatorial objects. This is the
aim of the next section.

4 Maps of high genus

In this section, we describe the combinatorials objects that appear in the
asymptotic of our measure. Remember that it was shown in [14] that the
first asymptotic can be viewed as a generating function for the enumeration
of planar maps with vertices of a given type.

First, we choose m colors {1, · · · ,m}, one for each variable Xi. A star
must be thought as the neighbourhood of a vertex in a plane graph. More
precisely, it is a vertex with the half-edges coming out of it. One of these
half-edge is distinguished and starting from it the other one are clockwisely
ordered. Besides, each of these half-edges is colored.

We say that a star is of type q for a monomial q = Xi1 · · ·Xip if it has p
half-edges, the first half-edge is distinguished and of color i1 and then in the
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clockwise order the second half-edge is of color i2, the third of color i3, . . . ,
the p-th of color ip. This gives a bijection between monomials and stars.

The combinatorial objects that will appear in the asymptotic of our
matrix model are maps. A map is a connected graph on a compact orientated
connected surface such that edges do not cross each other and faces are
homeomorphic to discs. We will consider edge-colored maps such that each
vertex as a distinguished edge going out of it so that we can associate a star
and a well defined type to any vertex. The genus of the map is the genus of
the surface. We will count maps up to homeomorphism of the surface which
preserves the graph.

The typical way to construct a map is to put some stars q1, · · · , qp on a
surface of genus g. Then we consider all the half-edges that goes outside the
stars and glue them two by two while respecting the following constraints:

• Two half-edges can only be glued if they are of the same color

• The edges created by gluing two half-edges mustn’t cross any other
edge.

• At the end of the process faces must be homeomorphic to discs.

For example, one can ask how many maps of genus 1, we can construct
above two stars of type X1X2X1X2. The answer as shown in figure 1 is 4.
Note that as faces are homeomorphic to discs, it is sufficient to know which
pairs of half-edges are glued together to build the map.

Definition 4.1 For ` in N, P a monomial and integers k = (k1, · · · , kn),
let Mk(P ) be the number of maps of genus 0 (or planar maps) with for all
i, ki stars of type qi and one of type P where q1, · · · , qn are the monomials
which appear in the potential V .

We could define the same kind of quantities with the condition of being of
genus g for g > 1 but then we won’t be able to find any closed relation
of induction between these quantities. In order to get relation induction
on enumeration of maps we follow an idea of Tutte (see [23]). We try to
decompose a map in smaller ones by contracting one edge (Note that Tutte
used to work on the dual of the graph we are considering, thus his operation
is a little different).

Imagine a map of genus 1 with a root of type P = XRXS and that
the two half-edges corresponding to the X are glued together. Imagine also
that the loop resulting from this operation is not retractable on the surface.
How does the contraction of this edge decomposes the map? Now R and
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X1

X2

first star
second star

distinguished edges

Figure 1: Maps of genus 1 above two stars of type X1X2X1X2.

S are separated by that loop, we will have to remind these two monomials.
That’s why we will introduce maps above a root of type R ⊗ S. Besides R
and S must be linked together, otherwise there would be a face (touched by
the loop) which is not a disc, something to avoid for a map.

Thus we define some more complex vertices which will appear when we
will try to decompose our maps. Let P1,. . . ,P` be a family of monomials. We
associate to this family a bunch of `− 1 circles such that outside the circles
we put the half-edges of P1 and in the m-th circle we put the half-edges of
a star of type Pm+1 going out of the central point and in the same order.
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This object will be called the root and we will name each Pr a vertex of the
root (look at figure 2, to see a root of type X1X2X1X2 ⊗X2

1 ⊗X2X1).

PSfrag replacements
X1

X2

distinguished edge

Figure 2: Root of type X1X2X1X2 ⊗X2
1 ⊗X2X1.

This corresponds to a star coming from a vertex which have ` prescribed
loops, the m-th having the germs of edges corresponding to a star of type
Pr. Now we construct maps with a root of type P1⊗· · ·⊗P` and some other
vertices of type qi. We say that such a map is minimal if when we cut the
surface along the ` − 1 loops of the root, we do not obtain any component
homeomorphic to a disc. This means that for any Pi the component of Pi is
not planar i.e. either it is linked to another Pj or it is linked to some other
vertices in a way that can’t be embedded on a sphere.

Definition 4.2 For `, g in N, a family of monomials P1, · · · , P` and integers
k = (k1, · · · , kn), let Mk

g (P1 ⊗ · · · ⊗ P`) be the number of minimal maps of
genus g with a root of type P1 ⊗ · · · ⊗ P` and for all i, ki stars of type qi.

For example for V = tX1X2X1X2, the figure 1 shows that M1
1(X1X2X1X2)

the number of minimal maps of genus 1 with a star of type X1X2X1X2 and
a root of type X1X2X1X2 is 4.

We extend by linearity Mk and Mk
g so that we can compute them on

polynomials Pi instead of monomials and we define the power series for these
enumerations:

I(P ) =
∑
k∈Nn

n∏
i=1

(−ti)ki

ki!
Mk(P )
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and

Ig(P1 ⊗ · · · ⊗ P`) =
∑
k∈Nn

n∏
i=1

(−ti)ki

ki!
Mk

g (P1 ⊗ · · · ⊗ P`).

By convention we define for λ in C, Ig(λ) = λ1g=0 and Ig ≡ 0 ig g < 0.
Recall that it was proved in [14] that for t sufficiently small I(P ) = µ(P )

for all P . This was proved using the fact that these two quantities satisfy the
same induction relation. The induction relation for the enumeration of maps
where given by a decomposition of maps following the strategy of Tutte. We
now try to generalize this fact and we begin by looking at the relation given
by decomposing maps. First, some values can be directly computed

Mk
g (1⊗ P2 ⊗ · · · ⊗ P`) = 1g=k=`=0

because the component of 1 is automatically planar.
We now want to count maps that contribute to Mk

g (XiP1 ⊗ · · · ⊗ P`)
with Pi monomials. We look at the first half-edge of the root XiP1⊗· · ·⊗P`

and see where it is glued. Remember that it must not be planar.
Then three cases may occur (see figure 3):

1. Either (upper right picture in fig 3) the half-edge is glued to a vertex
of type qj = RXiS for a given j. First we have to choose between the
kj vertices of this type, then we contract the edge coming from this
gluing to form a vertex of type SRP1. This creates∑

1≤j≤n,kj 6=0

kjM
k1,··· ,kj−1,··· ,kn
g (DiqjP1 ⊗ P2 ⊗ · · · ⊗ P`)

possibilities.

2. The second case (bottom left picture in fig 3) occurs if the half-edge
is glued to another half-edge of P1 = RXiS. It cuts P1 in two: R and
S. It occurs for all decomposition of P1 into P1 = RXiS. To write the
expression that will arise in a more convenient way, we will use the
non-commutative derivative ∂ which satisfy for P a monomial

∂iP =
∑

P=RXiS

R⊗ S.

We are now left with two separate circles, one for R and one for S.
Either both are non-planar which leads to∑

P1=RXiS

Mk
g (R⊗ S ⊗ P2 ⊗ · · · ⊗ P`) = Mk

g (∂iP1 ⊗ P2 ⊗ · · · ⊗ P`)
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Figure 3: The decomposition process for maps.

possibilities or one of the component is planar then the two components
can not be linked thus we have to share the vertices of type qi between
them. They are

(
k
k′

)
=

∏
j

(
kj

k′j

)
ways of choosing for all j, k′j vertices

of type qj for the component of R.
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If the component of R is planar and the one of S is not this leads to∑
k′+k′′=k

(
k
k′

)
Mk′′

g ((Mk′ ⊗ I)(∂iP1)⊗ · · · ⊗ P`)

possibilities or S is planar and R is not,∑
k′+k′′=k

(
k
k′

)
Mk′

g ((I ⊗Mk′′)(∂iP1)⊗ · · · ⊗ P`)

possibilities.

3. The last case occurs if the half-edge is glued with another vertex Pr =
RXiS of the root. This create a vertex of type DiPrP1. Note that
the edge can not cross the circles of the root so it must go through
a handle of the surface thus it changes the genus by one. But this
vertex is now free from the condition of non planarity so it can either
be planar and thus be separate from the other vertices of the root:∑

2≤m≤l,k′+k′′=k

(
k
k′

)
Mk′(DiPrP1)Mk′′

g−1(P2 ⊗ · · · P̌r · · · ⊗ P`)

possibilities or it may still be non-planar:∑
2≤m≤`

Mk
g−1(DiPrP1 ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

possibilities.

We can sum these identities and then sum on the ki’s to obtain the following
equality, for all g, for all P1. . . ,P`,

Ig(XiP1 ⊗ · · · ⊗ P`) =
∑

j

(−tj)Ig(DiqjP1 ⊗ · · · ⊗ P`)

+ Ig((I ⊗ I + I ⊗ I + I ⊗ I)∂iP1 ⊗ · · · ⊗ P`)

+
∑
m≥2

Ig−1((I + I)DiPrP1 ⊗ · · · P̌r · · · ⊗ P`)

We can reformulate this by applying it to P1 = DiP̄ and then summing on

21



i:

Ig(ΞP ⊗ · · · ⊗ P`) =
∑

m≥2,i

µ(DiPrDiP̄ )Ig−1(P2 ⊗ · · · P̌r · · · ⊗ P`) (14)

+
∑

m≥2,i

Ig−1(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

Ig(∂iDiP̄ ⊗ · · · ⊗ P`).

where we used the identity I = µ. Note that maps that appear in the
enumeration must satisfy the condition of non-planarity, this imposes a high
genus. We have to break the “planarity” of ` components, this can’t be done
without at least [ `+1

2 ] handles on the surface (each handle allow one edge to
cross from one vertex of the root to another one, breaking the planarity of
two components at most). Thus if g < Ent( `+1

2 ), Ig(P1⊗· · ·⊗P`) = 0. This
allow us to write the previous equation in a special case which will appear
to be useful, if ` is even,

I `
2
(ΞP ⊗ · · · ⊗ P`) =

∑
m≥2,i

µ(DiPrDiP̄ )I `−2
2

(P2 ⊗ · · · P̌r · · · ⊗ P`). (15)

Thus for ` even, I `
2

satisfy the limit equation (12) of the matrix model. One
can easily check that for ` odd I ˆ̀

2

= I `+1
2

satisfy also the limit equation

(13):

I `+1
2

(ΞP ⊗ · · · ⊗ P`) =
∑

m≥2,i

I(DiPrDiP )I (`−2)+1
2

(P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

m≥2,i

I `−1
2

(DiPrDiP ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

I `+1
2

(∂iDiP̄ ⊗ · · · ⊗ P`).

We can deduce from these identities a control on these enumerations:

Lemma 4.3 For all g ≥ 0, there exists ε > 0 such that for t ∈ B(0, ε), Ig

is absolutely convergent and has a bounded support i.e. there exists M > 0
such that for all polynomials P1, · · · , P`,

|Ig(P1 ⊗ · · · ⊗ P`)| 6 ‖P1‖M · · · ‖P`‖M

.
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Proof.
It is sufficient to show that for all g ≥ 0, there exists Ag, Bg > 0 such

that for all h, for all monomials P1,. . . ,P`, and all integers ki:

Mk
g (P1 ⊗ · · · ⊗ P`)∏

i ki!
≤ AΣdegPi

g BΣki
g

This is easy by induction using the decomposition of maps.

�

Finally we need to know the effect of derivation on these generating
function. In fact, derivation adds some vertices to the enumeration.

Lemma 4.4 For all j = (j1, · · · , jn),

DjI(P ) = (−1)j
∑
k∈Nn

n∏
i=1

(−ti)ki

ki!
Mk+j(P )

and

DjIg(P1 ⊗ · · · ⊗ P`) = (−1)j
∑
k∈Nn

n∏
i=1

(−ti)ki

ki!
Mk+j

g (P1 ⊗ · · · ⊗ P`).

Besides, these series are absolutely convergent and has a bounded support.

Proof.
The proof is straightforward, I,Ig are analytic in a neightbourhood of

the origin thus their derivatives are analytic and their series are given by
differentiating term by term I and Ig.

�

Thus derivatives fix some vertices in the enumeration a fact often used in
combinatorics to find relation between generating functions of graphs.

5 High order observable

We have already seen that ν(P1 ⊗ · · · ⊗ P`) = I ˆ̀

2

(P1 ⊗ · · · ⊗ P`) satisfy the

limit equation of νN . This is our candidate for the limit of the νN ’s. In fact
this suggests a statement closely related to 1.1.
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Property 5.1 For all `, for all g ∈ N, there exists η > 0 such that for all t
in Bη,c, for all polynomials P1,. . . ,P`,

νN (P1 ⊗ · · · ⊗ P`) = I ˆ̀

2

(P1 ⊗ · · · ⊗ P`) +
1

N2
I ˆ̀

2
+1

(P1 ⊗ · · · ⊗ P`)+

· · ·+ 1
N2g

I ˆ̀

2
+g

(P1 ⊗ · · · ⊗ P`) + o(
1

N2g
).

To prove this we have to define all the correction to the convergence. We
define νN

1 = νN and by induction on h, for all N , all polynomials P1, . . . , P`,

νN
h+1(P1 ⊗ · · · ⊗ P`) = N2(νN

h − I ˆ̀

2
+h−1

)(P1 ⊗ · · · ⊗ P`).

Those quantities satisfy also some induction relation similar to those of
property 3.2

Property 5.2 For all h > 2, ` in N, for all polynomial P1,. . . ,P`, for all
N , the “finite Schwinger-Dyson’s equation of order h” (SDN

h,`) is satisfied
by νN : if ` is even

νN
h (ΞP ⊗ P2 ⊗ · · · ⊗ P`) =

∑
i,r

µ(DiPDiPr)νN
h (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,r

νN
h−1(DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`) (SDN

h,`)

+
∑

i

νN
h−1(∂iDiP ⊗ P2 ⊗ · · · ⊗ P`)

and if ` is odd

νN
h (ΞP ⊗ P2 ⊗ · · · ⊗ P`) =

∑
i,r

µ(DiPDiPr)νN
h (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,r

νN
h (DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`) (SDN

h,`)

+
∑

i

νN
h (∂iDiP ⊗ P2 ⊗ · · · ⊗ P`)

Proof.
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Remember that we have shown in Property 3.2, for ` even

νN
1 (ΞP ⊗ P2 ⊗ · · · ⊗ P`) =

∑
i,r

µt(DiPDiPr)νN
1 (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
1

N2

∑
i,r

νN
1 (DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
1

N2

∑
i

νN
1 (∂iDiP ⊗ P2 ⊗ · · · ⊗ P`)

and according to (15)

I `
2
(ΞP ⊗ · · · ⊗ P`) =

∑
m≥2,i

I(DiPrDiP̄ )I `−2
2

(P2 ⊗ · · · P̌r · · · ⊗ P`).

Thus if we substract these two equalities and multiply the result by N2 we
obtain (SDN

2,`) (Observe that with our convention νN (λ) = I0(λ)).

νN
2 (ΞP ⊗ P2 ⊗ · · · ⊗ P`) =

∑
i,r

µ(DiPDiPr)νN
2 (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,r

νN
1 (DiPDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

νN
1 (∂iDiP ⊗ P2 ⊗ · · · ⊗ P`).

Now suppose that for ` even, h > 2, for all polynomial P1,. . . ,P`, for all
N , (SDN

h,`) is satisfied. Then according to (14):

I `
2
+h−1(ΞP ⊗ · · · ⊗ P`) =

∑
i

I (`+1)+1
2

+h−2
(∂iDiP̄ ⊗ · · · ⊗ P`)

+
∑
r≥2,i

I (`−1)+1
2

+h−2
(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`)

+
∑
r≥2,i

µ(DiPrDiP̄ )I (`−2)
2

+h−1
(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`).

and this can be translated into

I ˆ̀

2
+h−1

(ΞP ⊗ · · · ⊗ P`) =
∑

i

Î̀+1
2

+h−2
(∂iDiP̄ ⊗ · · · ⊗ P`)

+
∑
r≥2,i

Î̀−1
2

+h−2
(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`)

+
∑
r≥2,i

µ(DiPrDiP̄ )Î̀−2
2

+h−1
(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`).
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Substracting this equality from (SDN
h,`) we get (SDN

h+1,`). This proves by
induction (SDN

h,`) for all h, and for all ` even.
We proceed in the same way for ` odd. Observe that the equation for `

odd and h = 1 is satisfied according to Property 3.2. Then observe that for
` odd, (SDN

h+1,`) can be obtained by substracting (14) with g = `+1
2 + h− 1

I ˆ̀

2
+h−1

(ΞP ⊗ · · · ⊗ P`) =
∑

i

Î̀+1
2

+h−2
(∂iDiP̄ ⊗ · · · ⊗ P`)

+
∑
r≥2,i

Î̀−1
2

+h−2
(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`)

+
∑
r≥2,i

µ(DiPrDiP̄ )Î̀−2
2

+h−1
(DiPrDiP̄ ⊗ · · · P̌r · · · ⊗ P`).

from (SDN
h,`).

�

6 Asymptotic of the matrix model

The issue with the previous relations is that they only give us the moments
of products of polynomials such that the first polynomial is in the image of
Ξ. Thus we need to invert Ξ. We define the operator norm with respect to
‖.‖M :

|||A|||M = sup
‖P‖M61

‖AP‖M .

In [14], we give some estimates on the operator norm of Ξ.

Lemma 6.1 1. The operator Ξ0 is invertible on C〈X1, · · · , Xm〉.

2. There exists M0 > 0 such that for all M > M0, the operators Ξ2, Ξ0

and Ξ−1
0 are continuous and their norm are uniformly bounded for t

in Bη.

3. For all polynomials P , deg Ξ−1
0 P 6 deg P and deg Ξ1P 6 deg P +

deg V − 2

4. For all ε, M > 0, there exists ηε > 0 such for |t| < ηε, Ξ1 is continuous
on C〈X1, · · · , Xm〉 and |||Ξ1|||M 6 ε.

The last step to proves Theorem 1.1 is to control the νh
N .
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Lemma 6.2 For all `, h ∈ N∗, α > 0, there exists C, η,M0 > 0, such that
for all t ∈ Bη,c, M > M0 and all polynomials P1,. . . ,P` of degree less than
αN

1
2 ,

|νN
h (P1 ⊗ · · · ⊗ P`)| ≤ C‖P1‖M · · · ‖P`‖M

Proof.
The case h = 1, ` even is a direct consequence of Lemma 3.1. We

treat the other cases by induction using Property 5.2. As the equations are
different according to the parity of `, we have to be careful: we prove the
result by an induction on h and for a fixed h we deal first with the case
` even and then with the case ` odd (Note that both time we will do an
induction on `). Now we choose `, h ∈ N∗, α > 0 and polynomials P1,. . . ,P`

of degree less than αN
1
2 .

Then, the idea to nearly invert Ξ on a polynomial P is to approximate
P1 by ΞQn = (Ξ0 + Ξ1)Qn with

Qn =
n−1∑
k=0

(−Ξ−1
0 Ξ1)kΞ−1

0 P1.

The remainder is

Rn = P1 − ΞQn = (−Ξ1Ξ−1
0 )nP1.

As Ξ1 is the multiplication by a derivative of V it should have a small norm
and the remainder should be easily controlled.

We can make the decomposition:

νN
h (P1 ⊗ · · · ⊗ P`) = νN

h (ΞQn ⊗ · · · ⊗ P`) + νN
h (Rn ⊗ · · · ⊗ P`) (16)

Now we let n goes to infinity with N , for example n = [
√

N ]. It is important
that n goes to infinity no too slowly but we must have n = O(

√
N) in order

to use all the induction hypothesis. An important fact is that the degrees
of Rn and Qn are O(

√
N) since Ξ−1

0 Ξ1 change the degree by at most D− 2.
We first control the term with Rn, by definition of the νh

N ,

νN
h (Rn⊗· · ·⊗P`) = (N2(h−1)νN

1 +N2(h−1)I ˆ̀

2

+ · · ·+I ˆ̀

2
+h−1

)(Rn⊗· · ·⊗P`).

Each of the Ig are compactly supported according to Lemma 4.3 so that if
η is sufficiently small, for t in Bη,c, I ˆ̀

2

, . . . ,I ˆ̀

2
+h−1

are convergent and we
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can take M bigger than the radius of their support. Besides, Property 3.1
shows that for polynomials P of degree of order N

1
2 ,

|νN
1 (P1 ⊗ · · · ⊗ P`)| 6 CN‖P1‖M · · · ‖P`‖M .

Thus according to Lemma 6.1, for η small, ‖Rn‖M 6 |||Ξ1Ξ−1
0 |||n‖P1‖M

decrease exponentially fast in n and this uniformly for t ∈ Bη,c. Then since
n ∼

√
N

|Ig(Rn ⊗ · · · ⊗P`)| 6 ‖Rn‖M‖P2‖M . . . ‖P`‖M 6 Ce−C′√N‖P1‖M . . . ‖P`‖M .

Thus,
|νN

h (Rn ⊗ · · · ⊗ P`)| 6 N2hCe−C′√N‖P1‖M . . . ‖P`‖M (17)

and N2hCe−C′√N is bounded.
Finally we have to deal with νN

h (ΞQn ⊗ · · · ⊗ P`). We can use (SDN
h,`):

νN
h (ΞQn ⊗ P2 ⊗ · · · ⊗ P`) =

∑
i,m

µt(DiQ̄nDiPr)νN
h (P2 ⊗ · · · P̌r · · · ⊗ P`)

(18)

+
∑
i,m

νN
h−1` even

(DiQ̄nDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

νN
h−1` even

(∂iDiQ̄n ⊗ P2 ⊗ · · · ⊗ P`)

We now use the induction hypothesis. Indeed if h is even, on the right
hand side either h decreases or h remains constant and ` decreases and
remains even. If h is odd, either ` becomes even or ` decreases. Now, let C
be an uniform bound on the norm of Ξ−1

0 (which exists according to Lemma
6.1) by definition of Qn,

‖Qn‖M 6
n−1∑
k=0

|||Ξ−1
0 Ξ1|||kM |||Ξ−1

0 |||M‖P‖M 6
C

1− C|||Ξ1|||M
‖P‖M .

Thus, using Lemma 6.1, if η is sufficiently small, for t in Bη,c, ‖Qn‖M 6
2‖P‖M . Note that

deg Qn 6 deg P1 + 2
√

N(D − 1) 6 (α + 2(D − 1))
√

N.

We can now apply the induction hypothesis with α′ = α + 2(D − 1), there
exists M,C, η such that for t in Bη,c,

|µt(DiQ̄nDiPr)νN
h (P2 ⊗ · · · P̌r · · · ⊗ P`)| (19)

6 C‖DiQ̄nDiPr‖M‖P2‖M · · · ‖P̌r‖M · · · ‖P`‖
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where we have assumed that M is bigger than the radius of the support of
µt which is bounded according to (4). Besides, by the induction hypothesis
we can obtain with the same constant,

|νN
h−1` even

(DiQ̄nDiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)| (20)

6 C‖DiQ̄nDiPr‖M‖P2‖M · · · ‖P̌r‖M · · · ‖P`‖M

and

|νN
h−1` even

(∂iDiQ̄n ⊗ P2 ⊗ · · · ⊗ P`)| (21)

6 ‖∂iDiQ̄n‖M‖P2‖M · · · ‖P̌r‖M · · · ‖P`‖M .

Now remember, that if M ′ > M ,

Di : (C〈X1, · · · , Xm〉, ‖.‖M ′) → (C〈X1, · · · , Xm〉, ‖.‖M )

is continuous, thus

‖DiQ̄nDiPr‖M 6 ‖DiQ̄n‖M‖DiPr‖M

6 C‖Qn‖M ′‖Pr‖M ′ 6 C‖P1‖M ′‖Pr‖M ′

and
‖∂iDiQ̄n‖M 6 C‖P1‖M ′ .

If we use inequalities (19), (20) and (21) in the decomposition (18), we get

|νN
h (ΞQn ⊗ P2 ⊗ · · · ⊗ P`)| 6 C‖P1‖M ′‖P2‖M ′ · · · ‖P`‖M ′ .

Finally, we conclude with (17) and (16)

�

Now, for all `, h there exists η > 0 such that for t ∈ Bη,c, for all
polynomials P1, · · · , P`,

νN
g (P1 ⊗ · · · ⊗ P`) = N2(νN

g − I ˆ̀

2
+g−1

)(P1 ⊗ · · · ⊗ P`)

is a bounded sequence for all g 6 h+1. Thus for all g 6 h, νN
g (P1⊗· · ·⊗P`)

goes to I ˆ̀

2
+g−1

and

νN (P1 ⊗ · · · ⊗ P`) = I ˆ̀

2

+
1

N2
I ˆ̀

2
+1

+ · · ·+ +
1

N2h
I ˆ̀

2
+h

+ o(
1

N2h
).
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Thus Property 5.1 is proved. The special case ` = 1 is exactly Theorem 1.2:

E[µ̂N (P )] = I(P ) +
1

N2
νN
1 (P )

= I(P ) +
1

N2
I1(P ) + · · ·+ 1

N2g
Ig(P ) + o(

1
N2g

).

Thus we can prove Theorem 1.1.

Theorem 6.3 For all g ∈ N, there exists η > 0 such that for all t in Bη,c,

FN
Vt

= F 0(t) + · · ·+ 1
N2g

F g(t) + o(
1

N2g
)

and F g is the generating function for maps of genus g associated with V :

F g(t) =
∑

k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Ck

where if k = (k1, · · · , kn), Ck is the number of maps on a surface of genus
g with ki vertices of type qi.

Proof.
Note that the estimate we get in Lemma 7.2 are uniform in t provided

we are in Bη,c. Now observe that if Vt is c-convex then for α in [0, 1], Vαt

is c-convex if c 6 1 and 1-convex if c > 1. Thus if t is in Bη,c, for all
0 < α < 1, αt ∈ Bη,min(c,1). This allow us to use Property 7.3 with an
uniformly bounded remainder.

FN
Vt

=
∫ 1

0
−EµN

Vαt

[µ̂N (Vt)]dα

= −
∫ 1

0
µαt(Vt)dα− 1

N2

∫ 1

0
νN

αt(µ̂
N (Vt))dα

= F 0(t) + · · ·+ 1
N2g

F g(t) + o(
1

N2g
)

with

F 0 = −
∫ 1

0

∑
k1,··· ,kn∈N

∏
i

(−αti)ki

ki!
Mk(Vt)dα

=
∑

k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Ck
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since it can be easily checked that

∑
k1,··· ,kn∈N

∏
i

(−uti)ki

ki!
Ck

has the same derivative in u than −
∫ u
0

∑
k1,··· ,kn∈N

∏
i

(−αti)
ki

ki!
Mk(Vt)dα.

With the same technique,

F g = −
∫ 1

0

∑
k1,··· ,kn∈N

∏
i

(−αti)ki

ki!
Mk

g (Vt)dα

=
∑

k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Ck

g

This proves the Theorem:

FN
Vt

= F 0 + · · ·+ 1
N2g

F g + o(
1

N2g
).

�

7 Higher derivatives.

In this section we will show that one can differentiate these expansions term
by terms. Indeed, the family of the νN

h ’s is sufficiently rich to express any of
its own derivatives. Thus, we will be able to find a recursive decomposition
of this derivatives.

Property 7.1 For all 1 6 j 6 n, for all polynomials P1, · · · , P`, if ` is
even,

∂

∂tj
νN
1 (P1 ⊗ · · · ⊗ P`) = −νN

1 (P1 ⊗ · · · ⊗ P` ⊗ qj)

+
∑̀
r=1

∂

∂tj
µ(Pr)νN

1 (P1 ⊗ · · · P̌r · · · ⊗ P`)

+ νN
1 (P1 ⊗ · · · ⊗ P`)νN

1 (qj)
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and if ` is odd,
∂

∂tj
νN
1 (P1 ⊗ · · · ⊗ P`) = −νN

2 (P1 ⊗ · · · ⊗ P` ⊗ qj)

+
∑̀
r=1

∂

∂tj
µ(Pr)νN

2 (P1 ⊗ · · · P̌r · · · ⊗ P`)

+ νN
1 (P1 ⊗ · · · ⊗ P`)νN

1 (qj).

Proof.
We simply need to differentiate

1
ZN

V

∫ ∏
r

(
1
N

tr−µ)(Pr)e−N tr V dµN .

In that expression we can either differentiate 1
ZN

V

, the potential e−N tr V or

one of the µ(Pr), this leads to
∂

∂tj
E[

∏
r

(
1
N

tr−µ)(Pr)] = N2E[
∏
r

(
1
N

tr−µ)(Pr)(
1
N

tr−µ)(qj)]

− E[
∏
r

(
1
N

tr−µ)(Pr)]N2E[(
1
N

tr−µ)(qj)]

+
∑

r

∂

∂tj
µ(Pr)E[

∏
r′ 6=r

(
1
N

tr−µ)(Pr′)]

Where one can notice that we have added in the two first terms of the right
hand side the quantity µ(qj) but these two modifications cancel each other.

Now multiply by the normalisation N ` to get the equation in the case `
even. In the case ` odd, if we multiply by N `+1 we get

∂

∂tj
νN
1 (P1 ⊗ · · · ⊗ P`) = −N2νN

1 (P1 ⊗ · · · ⊗ P` ⊗ qj)

+ N2
∑̀
r=1

∂

∂tj
µ(Pr)νN

1 (P1 ⊗ · · · P̌r · · · ⊗ P`)

+ νN
1 (P1 ⊗ · · · ⊗ P`)νN (qj)

= −νN
2 (P1 ⊗ · · · ⊗ P` ⊗ qj)

+
∑̀
r=1

∂

∂tj
µ(Pr)νN

2 (P1 ⊗ · · · P̌r · · · ⊗ P`)

+ νN
1 (P1 ⊗ · · · ⊗ P`)νN (qj)

+ N2rN
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with by definition of νN
2 ,

rN = −I l+1
2

(P1 ⊗ · · · ⊗ P` ⊗ qj) +
∑

r

∂

∂tj
µ(Pr)I l−1

2
(P1 ⊗ · · · P̌r · · · ⊗ P`).

Let’s have a closer look at this expression, I l+1
2

(P1 ⊗ · · · ⊗ P` ⊗ qj) counts

maps with l+1
2 handles and such none of the l + 1 components P1,. . . , P`,

qj is planar. Since each handle can break the planarity of at most two
components, the only way to obtain such a configuration is to form l+1

2
couples among these l components and in each of these couples to put a
handle between the two components. For example, one can decompose these
maps according to the other vertex in the couple of qj :

I l+1
2

(P1 ⊗ · · · ⊗ P` ⊗ qj) =
∑

r

I1(Pr ⊗ qj)I l−1
2

(P1 ⊗ · · · P̌r · · · ⊗ P`).

Now observe that I1(Pr⊗qj) counts maps of genus 1 such that the component
of Pr is linked to the component of qj , thus it is equivalent to the counting of
planar maps with two precribed vertices, one of type Pr and one of type qj .
According to Lemma 4.4, that exactly what count ∂

∂tj
µ(Pr). Thus rN = 0

and the Property is proved.

�

With this decomposition we can now show that the derivatives of the
νN

h ’s are of order 1.

Lemma 7.2 For all j = (j1, · · · , jn) , for all `, h ∈ N∗, α > 0, there ex-
ists constants C, η,M0 > 0, such that for all t ∈ Bη,c, M > M0 and all
polynomials P1,. . . ,P` of degree less than αN

1
2 ,

|Djν
N
h (P1 ⊗ · · · ⊗ P`)| ≤ C‖P1‖M · · · ‖P`‖M

Proof.
The proof is essentially the same than the proof of Lemma 6.2. We just

use in addition an induction on
∑

i ji. If
∑

i ji = 0 then we are exactly in the
case of the Lemma 6.2. Otherwise, Assume that we have already proved this
lemma up to the

∑
i ji − 1-th derivative. To prove it for

∑
i ji, we proceed

by induction. First we prove it for νN
1 , and it is straightforward since we

can express the derivatives of νN
1 as a function of derivatives of lesser degree
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according to Property 7.1. Then for h > 1 we need to find an induction
relation on the Djν

h
N . We start form Property 5.2:

νN
h (ΞP1 ⊗ P2 ⊗ · · · ⊗ P`) =

∑
i,m

µt(DiP̄1DiPr)νN
h (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,m

νN
h−1` even

(DiP̄1DiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

νN
h−1` even

(∂iDiP̄1 ⊗ P2 ⊗ · · · ⊗ P`)

and we take the derivative:

Djν
N
h (ΞP1 ⊗ P2 ⊗ · · · ⊗ P`)

=
∑

j′+j′′=j
j′′ 6=0

(
j′

j
)Dj′ν

N
h ((Dj′′Ξ)P1 ⊗ P2 ⊗ · · · ⊗ P`)

+
∑

j′+j′′=j
j′′ 6=0

∑
i,m

(
j′

j
)Dj′µt(DiP̄1DiPr)Dj′′ν

N
h (P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑
i,m

Djν
N
h−1` even

(DiP̄1DiPr ⊗ P2 ⊗ · · · P̌r · · · ⊗ P`)

+
∑

i

Djν
N
h−1` even

(∂iDiP̄1 ⊗ P2 ⊗ · · · ⊗ P`)

with

Dj′′ΞP = (I ⊗ (Dj′′µ) + (Dj′′µ)⊗ I)∂iDiP̄ − (Dj′′DiV )DiP̄ .

Thus Djν
N
h has a decomposition similar to the one of Property 5.2 and we

can use it in similar way we use it in the proof of Lemma 6.2. The rest of
the proof is identical to the one of Lemma 6.2 and we only give the main
steps.

We define the same Qn and Rn as in the previous proof to approximate
Ξ−1P . Then, Djν

N
h (ΞQn ⊗ P2 ⊗ · · · ⊗ P`) is controlled using the previous

decomposition, using the fact that Djµ has a bounded support and that the
norm of (Dj′′DiV ) is also bounded. Now write

Djν
N
h (Rn ⊗ P2 ⊗ · · · ⊗ P`) = (DjN

2(h−1)νN
1 + N2(h−1)DjIˆ̀+ · · ·

+DjIˆ̀+h−1)(Rn ⊗ P2 ⊗ · · · ⊗ P`)

Then for t sufficiently small these series are convergent and have uniformly
bounded support according to Lemma 4.4 and we can use Property 7.1 to
control one more time Djν

N
1 .
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From there we deduce

Property 7.3 For all `, for all g ∈ N, for all j = (j1, · · · , jn) there exists
η > 0 such that for all t in Bη,c, for all polynomials P1,. . . ,P`,

Djν
N (P1 ⊗ · · · ⊗ P`) = DjI ˆ̀

2

(P1 ⊗ · · · ⊗ P`) +
1

N2
DjI ˆ̀

2
+1

(P1 ⊗ · · · ⊗ P`)+

· · ·+ 1
N2g

DjI ˆ̀

2
+g

(P1 ⊗ · · · ⊗ P`) + o(
1

N2g
).

Finally we prove Theorem 1.3,

Theorem 7.4 For all j = (j1, · · · , jn), for all g ∈ N, there exists η > 0
such that for all t in Bη,c,

DjF
N
Vt

= DjF
0(t) + · · ·+DjF

g(t) + o(
1

N2g
).

Besides, DjF
g is the generating function for rooted maps of genus g associ-

ated with V :

DjF
g(t) =

∑
k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Ck+j

g (qi1 , · · · , qip)

where Ck1,··· ,kn
g is the number of maps on a surface of genus g with ki vertices

of type qi.

Proof.
The case j = 0 is just Theorem 1.1. Thus we can assume j 6= 0, for

example j1 6= 0. Observe that for all i,

∂

∂ti
FN

Vt
= −E[µ̂N (qi)] = −I(qi)−

1
N2

νN (qi).

we can use the Property 7.3: there exists η > 0 such that for t ∈ Bη,c,

DjF
N
Vt

= −Dj−1i=1
(I(q1) +

1
N2

νN (q1))

= −Dj−1i=1
I(q1)−

1
N2

Dj−1i=1
νN (q1)

= −Dj−1i=1
I(q1)−

1
N2

Dj−1i=1
I1(q1)− · · · − 1

N2g
Dj−1i=1

Ig(q1)

+ o(
1

N2g
)
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Observe now that according to Lemma 4.4

Dj−1i=1
Ig(q1) =

∑
k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Mk+j−1i=1

g (q1)

= −
∑

k1,··· ,kn∈N

∏
i

(−ti)ki

ki!
Ck+j

g = −DjFg

and by the same method, Dj−1i=1
I(q1) = −DjF0. Thus we get,

DjF
N
Vt

= DjF0 + · · ·+ 1
N2g

DjFg + o(
1

N2g
).

�
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