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UNITARY MATRIX INTEGRALS

BENOÎT COLLINS, ALICE GUIONNET, AND EDOUARD MAUREL-SEGALA

Abstract. We prove that the limit of various unitary matrix integrals, including
the Itzykson-Zuber integral, exists in a small parameters region and is analytic in
these parameters.

Introduction

Unitary matrix integrals are of fundamental importance for mathematical physics.
Their large N limit is both supposed to describe physical systems (2D quantum
gravitation, gauge theory, renormalization, etc...), and on a more pedestrian point
of view, to be generating series enumerating combinatorial objects (see e.g [14, 18]).

The Gaussian matrices are the most studied by physicists, and their limits have
been proved to exist and match with the formal power limit on a mathematical
level of rigor by two authors [10, 11, 16] and previously in the one matrix case
(corresponding to non-colored graphs) in [1, 2] and [7].

In this paper we will rather concentrate on unitary matrix integrals

IN (V,AN
i ) :=

∫

U(N)
eNTr(V (Ui,U

∗
i ,AN

i ,1≤i≤m))dU1 · · · dUm

where AN
i are N × N deterministic uniformly bounded matrices, dU denotes the

Haar measure on the unitary group U(N) and V is a non-commutative polynomial.
To simplify the exposition, we shall assume hereafter that the AN

i are Hermitian
matrices. We shall only consider non-oscillatory integrals and thus assume that the
polynomial V is such that Tr(V (Ui, U

∗
i , AN

i )) is real for all U ∈ U(N), all N ∈ N .
We shall assume that the joint distribution of the AN

i , 1 ≤ i ≤ m converges;
namely for all polynomial function P in m non-commutative indeterminates

(1) lim
N→∞

1

N
Tr(P (AN

i , 1 ≤ i ≤ m)) = τ(P )

for some linear functionnal τ on the set of polynomials. We shall then consider the
problem of the asymptotic behaviour of IN (V,AN

i ) as N goes to infinity.
In the most general framework, nothing was known about the convergence of these

matrix integrals, except the formal convergence. Namely, it was proved [5] by one
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author that for each k, the limit

∂k

∂zk
N−2 log

∫

U(N)
ezNTr(V (Ui,U

∗
i ,AN

i ))dU1 · · · dUm|z=0

converges towards an integer fk(V, τ) depending only on the limiting distribution of
the AN

i ’s and V .
The goal of this article is to show the following theorem

Theorem 0.1. Under the above hypotheses and if we further assume that the spectral
radius of the matrices (AN

i , 1 ≤ i ≤ m,N ∈ N) is uniformly bounded (by say M),
there exists ε = ε(M,V ) > 0 so that for z ∈ [−ε, ε],

lim
N→∞

1

N2
log

∫

U(N)
ezNTr(V (Ui,U

∗
i ,AN

i ,1≤i≤m))dU1 · · · dUm := FV,τ (z).

Moreover, FV,τ (z) is an analytic function of z ∈ C ∩ B(0, ε).

We will hopefully prove rapidly that the derivatives of FV,τ (z) at z = 0 match
with the coefficients fk(V, τ) of the formal expansion. Our approach is based on
non-commutative differential calculus and perturbation analysis as developped in
the context of Gaussian matrices in [10, 11, 16].

The most important example of unitary matrix integral is the so-called spherical
integral, studied by Harisch-Chandra and re-computed by Itzykson and Zuber

HCIZ(A,B) =

∫

U∈Un

eNTr(AUBU∗)dU.

This integral is of fundamental importance in analytic Lie theory and was computed
for the first time by Harish-Chandra in [13]. In the last two decades it has also
become an issue to compute its large dimension asymptotics.

Theorem 0.1 holds true for the HCIZ integral as well. It thus relate the results of
[5] who computed the formal limit of the HCIZ integral and those of [12] where the
limit of HCIZ(A,B) was computed (regardless of any small parameters assump-
tions) by using large deviations techniques. In fact, it implies that the free energy
found in [12] is analytic in the vicinity of the origin. Let

I(µ) =
1

2
µ(x2) +

1

2

∫ ∫

log |x − y|dµ(x)dµ(y).

If µA (resp. µB) denote the limiting spectral measure of A (resp. B), assume
that I(µA) and I(µB) are finite. Then, the limit of N−2 log HCIZ(A,B) is given,
according to [12], by

(2) I(µA, µB) = −I(µA)−I(µB)−
1

2
inf
ρ,m

{

∫ 1

0

∫

mt(x)2

ρt(x)
dxdt+

π2

3

∫ 1

0

∫

ρt(x)3dxdt}

where the inf is taken over m,ρ so that µt(dx) = ρt(x)dx ∈ P(R) is a continuous
process, µ0 = µA, µ1 = µB and

∂tρt(x) + ∂xmt(x) = 0.
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The inf over (ρt,mt) is taken (see [8]) at the solution of an Euler equation for

isentropic flow with negative pressure −π2

3 ρ3.
When µA and µB have a small compact support of width ρ, our result shows also

that I(µA, µB) expends analytically in ρ, a result which is not obvious from formula
(2).

The convergence of other integrals was still unknown and it is one of the points
of this paper to show their convergence. We use it to study Voiculescu’s microstates
entropy at laws which are small perturbations of the law of free variables (this
generalizes section 4 in [10]).

The paper is organized as follows.
We first study the action of perturbations upon the integral IN (V,AN

i ) and deduce
some properties of the related Gibbs measure; namely that the so-called empirical
distribution of the matrices under this Gibbs measure satisfies asymptotically an
equation called the Schwinger-Dyson equation. In a second section, we study this
equation and in particular the uniqueness of the solution to this equation upon the
assumptions that the parameters of V are small enough. This allows us in a third
section to obtain the convergence of the integrals IN (V,AN

i ). Finally, we point out
some consequence of our result about the free entropy.

1. Notations

We let m be a fixed integer number throughout this article.

(1) We denote by (AN
i )1≤i≤m a m-uple of N ×N Hermitian matrices. We shall

assume that the sequence (AN
i )1≤i≤m is uniformly bounded for the operator

norm, and without loss of generality that they are bounded by one;

‖AN
i ‖∞ = lim

p→∞

(

Tr((AN
i )2p)

)
1
2p ≤ 1

(2) UN (C) denotes the set of unitary matrices, MN the set of N × N matrices
with complex entries, HN the subset of Hermitian matrices of MN and AN

the subset of antihermitian matrices of MN ;

A∗ = −A for A ∈ AN .

(3) We denote C〈(Ui, U
−1
i , Ai)1≤i≤m〉 the set of polynomial functions in the non-

commutative indeterminates (Ui, U
−1
i , Ai)1≤i≤m. C〈(Ui, U

−1
i , Ai)1≤i≤m〉 is

equipped with the involution ∗ so that A∗
i = Ai and U∗

i = U−1
i and for any

X1, · · · ,Xn ∈ (Ui, U
−1
i , Ai)1≤i≤m, any z ∈ C,

(zX1X2 · · ·Xn−1Xn)∗ = z̄X∗
nX∗

n−1 · · ·X
∗
2X∗

1 .

Note that for any Ui ∈ U(N) and Ai ∈ HN , any P ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉,

(

P (Ui, U
−1
i , Ai, 1 ≤ i ≤ m)

)∗
= P ∗(Ui, U

−1
i , Ai, 1 ≤ i ≤ m)

where in the left hand side ∗ denotes the standard involution on MN . We
denote C〈(Ui, U

−1
i , Ai)1≤i≤m〉h the set of Hermitian polynomials; P = P ∗,

and C〈(Ui, U
−1
i , Ai)1≤i≤m〉a the set of antihermitian polynomials ; P ∗ = −P .
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In the sequel, except when something different is explicitly assumed, we
shall assume that the potential V belongs to C〈(Ui, U

−1
i , Ai)1≤i≤m〉h, which

insures that Tr
(

V (Ui, U
−1
i , AN

i , 1 ≤ i ≤ m)
)

∈ R for all Ui ∈ U(N) and

AN
i ∈ HN .

(4) C〈(Ui, U
−1
i , Ai)1≤i≤m〉 is equipped with the non-commutative derivatives ∂i,

1 ≤ i ≤ m, given by

∂iAj = 0, ∀j, ∂iUj = 1i=jUj ⊗ 1 ∂iU
−1
j = −1i=j1 ⊗ U−1

j

and satisfying the Leibnitz rule for P,Q ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉,

(3) ∂i(PQ) = ∂iP × 1 ⊗ Q + P ⊗ 1 × 1∂iQ.

Here, × denotes the product P1 ⊗ Q1 × P2 ⊗ Q2 = P1P2 ⊗ Q1Q2. We also
let Di be the corresponding cyclic derivatives such that if m(A⊗ B) = BA,
Di = m ◦ ∂i.

If q is a monomial in C〈(Ui, U
−1
i , Ai)1≤i≤m〉, we more specifically have

∂iq =
∑

q=q1Uiq2

q1Ui ⊗ q2 −
∑

q=q1U−1
i

q2

q1 ⊗ U−1
i q2(4)

Diq =
∑

q=q1Uiq2

q2q1Ui −
∑

q=q1U−1
i q2

U−1
i q2q1(5)

(5) T will denote the set of tracial states on the algebra generated by (Ui, U
−1
i , Ai)1≤i≤m,

that is the set of linear forms on C〈(Ui, U
−1
i , Ai)1≤i≤m〉 such that

µ(PP ∗) ≥ 0, µ(PQ) = µ(QP ), µ(1) = 1.

Throughout this article, we restrict ourselves to tracial states τ ∈ T such
that

τ((AN
i (AN

i )∗)n) ≤ 1 ∀n ∈ N, ∀i ∈ {1, · · · ,m}.

We denote M this subset of T . Note that for any monomial q ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉,

non-commutative Hölder’s inequality implies that for τ ∈ M,

(6) τ(qq∗) ≤ 1.

We endow M with its weak topology; τn converges to τ iff for all P ∈
C〈(Ui, U

−1
i , Ai)1≤i≤m〉,

lim
n→∞

τn(P ) = τ(P ).

By Banach-Alaoglu theorem and (6), M is a compact metric space.
M|(Ai)1≤i≤m

will denote tracial states of M restricted to the algebra

(Ai)1≤i≤m.
We denote τ̂N

AN
i ,Ui,1≤i≤m

the empirical distribution of matrices AN
i ∈ HN

and Ui ∈ UN which is given by

τ̂N
AN

i ,Ui,1≤i≤m
(P ) =

1

N
Tr
(

P (Ui, U
−1
i , AN

i )1≤i≤m)
)
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for all P ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉. τ̂N

AN
i ,Ui,1≤i≤m

belongs to M, whereas

τ̂N
AN

i ,1≤i≤m
belongs to M|(Ai)1≤i≤m

for any AN
i ∈ HN and Ui ∈ UN , 1 ≤

i ≤ m. In particular, the limiting distribution τ given by (1) belongs to
M|(Ai)1≤i≤m

.

2. Matrix models

Let µN
V be the distribution on U(N) given by

µN
V (dU1, · · · , dUm) = IN (V,AN

i )−1 exp(NTr(V ))dU1 · · · dUm.

Let τ̂N be the random tracial state (or the empirical distribution of U1, · · · , Um, A1, · · · , Am)
defined for P ∈ C〈(Ui, U

−1
i , Ai)1≤i≤m〉 by

τ̂N (P ) = τ̂N
Ai,Ui,1≤i≤m =

1

N
Tr(P (Ai, Ui, U

−1
i , 1 ≤ i ≤ m)).

In this section, we investigate the behavior of τ̂N under µN
V when N goes to infinity.

Note that τ̂N belongs to M.
The main result of this section is the following

Theorem 2.1. Assume that V is Hermitian. For all polynomial P ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉,

lim sup
N→∞

∣

∣τ̂N ⊗ τ̂N (∂iP ) + τ̂N (DiV P )
∣

∣ = 0 a.s.

In particular, any limit point µ ∈ M of τ̂N satisfies the Schwinger-Dyson equation

(7) µ ⊗ µ(∂iP ) = −µ(DiV P ) ∀P ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉

and µ|(Ai)1≤i≤m
= τ.

The idea of the proof, which is rather common in quantum field theory and was
succesfully used in [10, 11, 16], is to obtain equations on τ̂N by performing an
infinitesimal change of variables in IN (V,AN

i ). More precisely we make the change
of variable U = (U1, · · · , Um) → Ψ(U) = (Ψ1(U), · · · , Ψm(U)) with

Ψj : U → Uje
λ
N

Pj(U)

where the Pj are antisymmetric polynomials (i.e. P ∗ = −P ). This change of variable
becomes very close to the identity when N goes to infinity, reason why it is called
“infinitesimal”.

Lemma 2.1. Ψ is a local diffeomorphism and its Jacobian has the following devel-
oppement when N goes to infinity

JΨ = e
λ
N

∑

i Tr⊗Tr(∂iPi)+
λ2

2N2 {
∑

i Tr⊗Tr(∂iPiPi+Pi∂iPi)−
∑

ij Tr⊗Tr(∂iPj∂jPi))}+O( 1
N

)

Proof. First we will use some elementary tools about the differentials of matrix
functionnals:
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(1) The map exp : MN (C) −→ MN (C) is differentiable and:

DMexp.H = (

+∞
∑

p=0

(AdM )k

(k + 1)!
H)eM

where AdM is the operator defined by AdMH = MH − HM .
(2) If P ∈ C〈(Ui, U

−1
i , Ai)1≤i≤m〉 is considered as a function of the Ui’s, then it

is differentiable and:

D(Ui → P (U)).H = ∂iP♯H.

This is a justification of the definition of the non-commutative derivative.

Fix A in AN (C), 1 6 i 6 m and

Ũ = (U1, · · · , Ui−1, Uie
sA, Ui+1, · · · , Um).

Then

Ψj(Ũ) − Ψj(U) = Uj(e
sAe

λ
N

Pj(Ũ)e−
λ
N

Pj(U) − I)e
λ
N

Pj(U).

Thus, we can compute the differential of Ψ,

D(Ui → Ψ(U)).A = A + D λ
N

Pj(U)exp.(
λ

N
∂iPj♯A)e−

λ
N

Pj(U)

= A +
λ

N

+∞
∑

k=0

(Ad λ
N

Pj(U))
k

(k + 1)!
(∂iPj♯A).

We can then deduce that for sufficiently large N , Ψ is at least a local diffeomorphism
and we can compute its Jacobian. Let us define Ψ̃ the linear map:

Ψ̃jiA =

+∞
∑

k=0

(Ad λ
N

Pj(U))
k

(k + 1)!
(∂iPj♯A)

Ψ̃(A1, · · · , Am) =
∑

ij

Ψ̃jiAi

The norm of λ
N

Ψ̃ goes to 0 when N goes to infinity thus for large N ,

JΨ = |det(I +
λ

N
Ψ̃)| = exp(Tr ln(I +

λ

N
Ψ̃))

= exp





∑

p≥1

(−λ)p

pNp
Tr(Ψ̃p)





Note that since Ψ̃ is a bounded operator on AN (C) which is a space of dimension
N2, the p-th term in the previous sum is at most of order N2−p. We only look at
the terms up to the order O(1). A quick computation show that if

ϕ :
AN(C) → AN (C)

X →
∑

l AlXBl
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then considered as a real endomorphism, Trϕ =
∑

l TrAlTrBl (this can be checked
by decomposing ϕ on the canonical base of AN(C)). This is sufficient to obtain the
first terms of the Jacobian:

λ

N
Tr(Ψ̃) =

λ

N

∑

i

Tr(Ψ̃ii)

=
∑

i

λ

N
Tr ⊗ Tr(∂iPi) +

λ2

2N2
Tr ⊗ Tr(Pi∂iPi − ∂iPiPi) + O(

1

N
)

and

λ2

N2
Tr(Ψ̃2) =

λ2

N2

∑

ij

Tr(Ψ̃ijΨ̃ji) =
λ2

N2

∑

ij

Tr ⊗ Tr(∂iPj∂jPi) + O(
1

N
).

�

Before trying to make the change of variable we need to know whether Ψ is really
a bijection.

Lemma 2.2. For N large enough, Ψ is a diffeomorphism of UN (C)m.

Proof. The only non-trivial property is the injectivity of Ψ. If Ψ(U) = Ψ(V ) then

U∗V − I = e
λ
N

P (U)e−
λ
N

P (V ) − I

thus,

‖U − V ‖ = ‖e
λ
N

P (U) − e
λ
N

P (V )‖

and the results follows since exp is uniformly lipschitz on UN (C). �

Proof of Theorem 2.1. We now perform the change of variables U → Ψ(U) in
IN (V,AN

i );

IN (V,AN
i ) =

∫

eN(Tr(V (Ψ(U))−Tr(V ))JΨ(U)eNTr(V )dU1 · · · dUm

=

∫

eNY N (P )+CN (P )+o(1)eNTr(V )dU1 · · · dUm

where in the density we have expanded TrV (Ψ(U)) as

Tr(V (Ψ(U)) − Tr(V ) =
λ

N

∑

i

Tr(DiV Pi) +
λ2

2N2
(∂2

ijV.(Pi, Pj)) + O(
1

N2
)

and used Lemma 2.1 to get the formulae

Y N (P ) =
∑

i

1

N
Tr(DiV Pi) + (

1

N
Tr) ⊗ (

1

N
Tr)(∂iPi)
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and

CN (P ) =
∑

ij

1

N
Tr(∂2

ijV.(Pi, Pj)) −
1

N2
Tr ⊗ Tr(∂iPj∂jPi)

+
1

N2

∑

i

Tr ⊗ Tr(∂iPiPi + Pi∂iPi).

Note that CN (P ) is uniformly bounded and so we have proved that
∫

eNY N (P )dµN
V (dU) = O(1).

Borel-Cantelli’s lemma thus insures that

lim sup
N→∞

Y N (P ) ≤ 0 a.s.

and the converse inequality holds by changing P into −P . This proves the first
statment of Theorem 2.1. The last result is simply based on the compactness of M
and the fact that any limit point must then satisfy the same asymptotic equations
than τ̂N .

Another consequence of this convergence is simply the existence of solution to (7)
for any Hermitian potential V (since any limit point of τ̂N in the compact metric
space M will satisfy it). Moreover, since these solutions are limit points of τ̂N , they
belong to M and in particular |µ(q)| ≤ 1 for any monomial q. �

3. Study of Schwinger-Dyson’s equation

Let V ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉h. V will be of the form

V =

n
∑

i=1

tiqi(Uj , U
−1
j , Aj , 1 ≤ j ≤ m)

with monomial functions qi and complex numbers ti. We let D be the maximal
degree of the monomials qi.

The goal of this section is to prove that, if the ti’s are small enough, (7) admits
a unique solution, see Theorem 3.1. From this and Theorem 2.1 we deduce the
following

Corollary 3.1. Assume that V is Hermitian. Let D ∈ N and τ ∈ M|(Ai)1≤i≤m
be

given. There exists ε = ε(D,m) > 0 such that if |ti| ≤ ε, τ̂N converges almost surely
to the unique solution of (7). τN

V = µN
V (τ̂N ) converges as well to this solution as N

goes to infinity.

This result is obvious since Theorems 2.1 and 3.1 shows that τ̂N has a unique
limit point, and thus converges almost surely. The convergence of τN

V is then a direct
consequence of bounded convergence theorem since τ̂N ∈ M.



UNITARY MATRIX INTEGRALS 9

3.1. SD-equation - definition and properties.

Definition 3.1. Let τ ∈ M|(Ai)1≤i≤m
. A tracial state µ ∈ M is said to satisfy

Schwynger-Dyson equation SD[V,τ ] iff for all P ∈ C〈(Ai)1≤i≤m〉,

µ(P ) = τ(P )

and for all P ∈ C〈(Ui, U
−1
i , Ai)1≤i≤m〉, all i ∈ {1, · · · ,m},

µ ⊗ µ(∂iP ) = −µ(DiV P ).

Here we prove that τ is uniquely defined provided V is small enough.

Theorem 3.1. Let D ∈ N and τ ∈ M|(Ai)1≤i≤m
be given. There exists ε =

ε(D,m) > 0 such that if |ti| ≤ ε, there exists at most one solution µ to SD[V,τ ].

Proof. Let µ be a solution to SD[V,τ ]. Note that if we take q a monomial in
C〈(Ui, U

−1
i , Ai)1≤i≤m〉, either q does not depend on Uj , U

−1
j , 1 ≤ j ≤ m and then

µ(q) = τ(q) is uniquely defined, or q can be written as q = q1U
n
i q2 for some i and

n ∈ {−1, +1}. Then, by the traciality assumption, µ(q) = µ(q2q1U
n
i ) = µ(Un

i q′)
with q′ = q2q1. Remark that we can assume without loss of generality that the last
letter of q′ is not U−n

i . We next use SD[V,τ ] to compute µ(Un
i q) for some monomial

q. We assume first n = −1. Then, by (3),

∂i

(

U−1
i q

)

= −1 ⊗ (U−1
i q) + U−1

i ⊗ 1 × ∂iq.

Taking the expectation, we thus find that by (4) that

µ(U−1
i q) = µ ⊗ µ(U−1

i ⊗ 1∂iq) + µ(DiV q)

=
∑

q=q1Uiq2

µ(U−1
i q1Ui)µ(q2) −

∑

q=q1U−1
i q2

µ(U−1
i q1)µ(Uiq2)

+
∑

j

tijµ(qijq)(8)

where DiV =
∑

j tijqij. Note that the sum runs at most on Dn terms and that

all the tij are bounded by max |ti|. A similar formula is found when n = +1 by
differentiating qUi.

We next show that (8) characterizes uniquely µ ∈ M when the tij are small
enough. It will be crucial here that µ(q) is bounded independently of the ti’s (here
by the constant 1).

Now, let µ, µ′ ∈ M be two solutions to SD[V,τ ] and set

∆(l) = sup
deg(q)≤l

|µ(q) − µ′(q)|

where the supremum holds over monomials of C〈(Ui, U
−1
i , Ai)1≤i≤m〉 with total de-

gree in the Uj and U−1
j less than l. Namely, if the monomial (or word) q contains
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Uj n+
j times and U−1

j n−
j times, we assume

∑m
j=1(n+

j + n−
j ) ≤ l. Note that

∆(ℓ) = max
1≤i≤m

n∈{+1,−1}

sup
degq≤ℓ−1

|µ(Un
i q) − µ′(Un

i q)|(9)

and that by (8), we find that, for q with degree less than ℓ − 1,

|µ(Uiq) − µ′(Uiq)| ≤
∑

q=q1Uiq2

|(µ − µ′)(q1)| +
∑

q=q1Uiq2

|(µ − µ′)(q2)|

+
∑

q=q1U−1
i q2

|(µ − µ′)(U−1
i q1)| +

∑

q=q1U−1
i q2

|(µ − µ′)(Uiq2)|

+
∑

j

tij |(µ − µ′)(qijq)|

≤ 2
ℓ−2
∑

p=1

∆(p) + 2
ℓ−1
∑

p=1

∆(p) + nDε∆(ℓ + D − 1)

where we used that deg(q1) ∈ {0, · · · , ℓ−2}, deg(q2) ∈ {0, · · · , ℓ−2} (but ∆(0) = 0)
and deg(qij) ≤ D and assumed |ti| ≤ ε. Hence, we have proved that

∆(ℓ) ≤ 4
ℓ−1
∑

p=1

∆(p) + nDε∆(ℓ + D).

Multiplying these inequalities by γℓ we get, since
∑

ℓ≥1 γℓ∆(ℓ) < ∞ for γ < 1,

H(γ) ≤
γ

1 − γ
H(γ) +

nDε

γD
H(γ)

resulting with H(γ) = 0 for γ so that 1 > γ
1−γ

+ nDε
γD . Such a γ > 0 exists when ε is

small enough. This proves the uniqueness.
�

As a corollary, we characterize asymptotic freeness by a Schwinger-Dyson equa-
tion, a result which was already obtained in [20], Proposition 5.17.

Corollary 3.2. A tracial state µ satisfy SD[0,τ ] if and only if , under µ, the algebra
generated by {Ai, 1 ≤ i ≤ m} and {Ui, U

−1
i , 1 ≤ i ≤ m} are free and the Ui’s are

two by two free and satisfy

µ(Un
i ) = 0 ∀n ∈ Z\{0}.

Proof. By the previous theorem, it is enough to verify that the law µ of free variable
(Ai, Ui, U

−1
i ) verifies SD[0,τ ]. So take P = Un1

i1
B1 · · ·U

np

ip
Bp with some Bk’s in the

algebra generated by (Ai, 1 ≤ i ≤ m). We wish to show that for all i ∈ {1, · · · ,m},

µ ⊗ µ(∂iP ) = 0.
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Note that by linearity, it is enough to prove this equality when µ(Bj) = 0 for all j.
Now, by definition

∂iP =
∑

k:ik=i,nk>0

nk
∑

l=1

Un1
i1

B1 · · ·Bk−1U
l
i ⊗ Unk−l

i Bk · · ·U
np

ip
Bp

−
∑

k:ik=i,nk<0

nk−1
∑

l=0

Un1
i1

B1 · · ·Bk−1U
−l
i ⊗ Unk+l

i Bk · · ·U
np

ip
Bp

Taking the expectation on both sides, since µ(U i
j) = 0 and µ(Bj) = 0 for all i 6= 0

and j, we see that freeness implies that the right hand side is null (recall here that
in the definition of freeness, two consecutive elements have to be in free algebras but
the first and the last element can be in the same algebra). Thus, µ ⊗ µ(∂iP ) = 0
which proves the claim. �

We next show that the solution µ of SD[Vt, τ ] depends analytically on the pa-
rameters (ti)1≤i≤n.

Theorem 3.2. There exists ǫ > 0 such that for t ∈ C
n, max1≤i≤n |ti| ≤ ε, SD[Vt, τ ]

has a solution µt. Moreover, for all polynomials P , t −→ µt(P ) is analytic. In other
words, there exists a family µk,k = (k1, · · · , kn) ∈ N

n in C〈(Ui, U
−1
i , Ai)1≤i≤m〉∗

such that

µt(P ) =
∑

k∈Nn

n
∏

i=1

tki

i

ki!
µk(P )

converges absolutely for max1≤i≤n |ti| ≤ ε.

Proof. The idea is to define inductively the µk, based on the intuition of which
relation they should satisfy if they were the derivatives of the solution µ to SD[Vt, τ ].
To make sure that the µk exists, we shall only construct them so that they satisfy
a subset of the Schwinger Dyson’s equation. Moreover, we need to check that the
coefficients µk(P ) are well bounded to define an absolutely convergent series. Letting
then νt be this series, it is uniquely characterized by this set of equations (which is
the subset of the Schwinger-Dyson’s equations that we used to prove uniqueness).
In particular, for ti’s small enough and such V =

∑

tiqi is Hermitian, ν has to be
equal to the solution of the whole set of Schwinger-Dyson’s equations coming from
matrix models (see Corollary 3.1). We then conclude that νt satisfies the full set of
Schwinger-Dyson’s equations in the domain where it depends analytically on t.

If k = (k1, · · · , kn), k′ = (k′
1, · · · , k′

n), let us denote

k! =
∏

i

ki!, (
k

k′
) =

∏

i

(
ki

k′
i

), Ak = A
∑

i ki

(1) If P is in C〈(Ai)1≤i≤m〉, set µk(P ) = 1k=0τ(P ).
(2) If P = RUiS with S in C〈(Ai)1≤i≤m〉, µk(P ) = µk(SRUi).
(3) If P = RU∗

i S with R in C〈(Ai)1≤i≤m〉 and S does not contain any Uj (but

may contain the U∗
j ), µk(P ) = µk(U∗

i SR).
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(4) If q does not contain any Uj , we define

µk(U∗
i q) = −

∑

q=q1U∗
i

q2
k′+k′′=k

(
k′

k′′
)µk′

(U∗
i q1)µk′′

(U∗
i q2) +

∑

j

µk−1j (Diqjq)

which corresponds to the equation for the solution (when exists) of SD[Vt, τ ]

µ(U∗
i q) = −

∑

q=q1U∗
i q2

µ(U∗
i q1)µ(U∗

i q2) +
∑

j

tiµ(qiq)

(5) Finally, we set

µk(qUi) = −
∑

q=q1Uiq2
k′+k′′=k

(
k′

k′′
)µk

′
(q1Ui)µ

k
′′
(q2Ui)

+
∑

q=q1U∗
i

q2
k′+k′′=k

(
k′

k′′
)µk′

(q1)µk′′
(q2) +

∑

kj 6=0

kjµ
k−1j (Diqjq)

which is a differential way to write

µ(qUi) = −
∑

q=q1Uiq2

µ(q1Ui)µ(q2Ui) +
∑

q=q1U∗
i q2

µ(q1)µ(q2) +
∑

j

tiµ(qiq)

One can check that this defines uniquely the µk. Note also that it does not imply a
priori that they are tracial. We must now check that the µk do not grow too fast,
otherwise they would not define a convergent series. To find a bound we will use
the Catalan’s numbers:

C0 = 1, Ck+1 =
∑

06p6k

CpCk−p

and we will use the fact that they do not explode too fast: Ck+1 6 4Ck. We will
use the notation Ck =

∏

i Cki
. Let us introduce another closely related sequence,

for a well chosen A we define D0 = 1 and for k > 1, Dk = Ak−1Ck−1. The two
key properties of this sequence is first that it is sub-geometric (Dk 6 (4A)k) and
secondly it satisfies:

Dk = A
∑

0<p<k

DpDk−p.

Now our induction hypothesis will be that there exists A,B > 0 such that for all k,
for all monomial P of degree p,

(10)
|µk(P )|

k!
6 CkBkDp.

We will prove this bound by induction using the definition of the µk. We will only
show how it works for a polynomial of the form qUi since it is the most complicated
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case.

|µk(qUi)|

k!
6

∑

q=q1Uiq2
k′+k′′=k

|µk
′
(q1Ui)|

k′!

|µk
′′
(q2Ui)|

k′′!

+
∑

q=q1U∗
i

q2
k′+k′′=k

|µk′
(q1)|

k′!

|µk′′
(q2)|

k′′!
+
∑

kj 6=0

|µk−1j (Diqjq)|

(k − 1j)!

Now we use the induction hypothesis. Let r = r1 + · · · + rm with rm the number of
monomials of DjV and let D be the degree of V , If q is of degree p − 1,

|µk(qUi)|

k!CkBkDp
6 2

∑

0<q<p

k′+k′′=k

Ck′Bk′
DqCk′′Bk′′

Dp−q

CkBkDp

+ r
Ck−1j

Bk−1Dp+D

CkBkDp

6 2
∏

i

Cki+1

Cki

1

A
+ r

(4A)D

B
.

The point is that we can choose A,B > 0 such that this last quantity is lesser than
1. For example take A > 4n+1 and then B > 2r(4A)D.

Thus, for ‖t‖ := maxi |ti| < 1/4B, we can define a linear form on C〈(Ui, U
−1
i , Ai)1≤i≤m〉

by

νt(P ) =
∑

k

∏

i

tki

i

ki!
µk(P )

as an absolutely convergent serie. Moreover, for a monomial q with degree p, (10)
insures that

|νt(q)| ≤ [1 − 4B‖t‖]−nDp ≤ [1 − 4B‖t‖]−n(4A)p.

Besides by definition of the µk, for all t inside the radius of convergence of this
serie, νt satisfies:

(1) If P is in C〈(Ai)1≤i≤m〉, νt(P ) = τ(P ),
(2) If P = RUiS with S in C〈(Ai)1≤i≤m〉, νt(P ) = νt(SRUi),
(3) If P = RU∗

i S with R in C〈(Ai)1≤i≤m〉 and S does not contain any Uj (but
may contain the U∗

j ), νt(P ) = νt(U
∗
i SR),

(4) If q does not contain any Uj ,

νt(U
∗
i q) = −

∑

q=q1U∗
i q2

νt(U
∗
i q1)νt(U

∗
i q2) +

∑

j

tiνt(qiq).

(5) And for all q,

νt(qUi) = −
∑

q=q1Uiq2

νt(q1Ui)νt(q2Ui) +
∑

q=q1U∗
i q2

νt(q1)νt(q2) +
∑

j

tiνt(qiq).



14 BENOÎT COLLINS, ALICE GUIONNET, AND EDOUARD MAUREL-SEGALA

Coming back to the proof of Theorem 3.1, one sees that these equalities and the
above control are sufficient to prescribe uniquely νt provided |t| ≤ ε for some ε > 0
small enough.

Up to adding some null parameters, we can always assume that t = (r, s) with V
of the form V =

∑n
i=1(tiqi + siq

∗
i ).

Let us consider the case where si = t̄i. Then, V is Hermitian and therefore
we know that there exists a solution µt to the Schwinger-Dyson’s equation (see
Theorem 2.1). In particular, it satisfies the same equations than νt and therefore,
for |t| ≤ ε, we must have νt = µt. As a consequence, νt satisfies the whole set of
Schwinger-Dyson’s equations.

Recall that an analytic function of two variables x, y ∈ C which vanishes on the
set Λ = {x = ȳ, x ∈ C} is null everywhere (since Λ is totally real). For all P ,
fP (r, s) = νr,s ⊗ νr,s(∂iP ) + νr,s(DiVtP ) is an analytic function of (r, s) in the ball
B(0, ε) which vanishes on r = s̄ according to the previous paragraph. Hence, fP

is null on B(0, ε). We thus can conclude that νt satisfies the full set of Schwinger-
Dyson’s equations. The same arguments applies to show that νt is tracial.

�

4. Models invariant under the action of the unitary group.

It is a well known fact that if we are given a familly of free variables, X1, · · · ,Xn,
any non commutative moments of this family can be expressed as function of the
moments of the Xi’s. In this section we try to generalize this fact to much more
general potentials for which the distribution of the matrices is invariant under the
action of the unitary group. We shall in fact specify the law µt of theorem 3.2 in
the case where V (Ui, U

−1
i , Ai, 1 ≤ i ≤ m) = V (U∗

i AiUi, 1 ≤ i ≤ m).
We look at the special case where we have m self-adjoint matrices Ai, m self-

adjoint matrices Ui distributed according to the Haar measure and we only look at
polynomials which depends only on the Xi = U∗

i AiUi. We thus study m matrices
with fixed spectral measure and in generic positions. Note that this case encompasses
the Harich-Chandra-Itzykson-Zuber integral. We define directly our derivatives on
the Xi’s:

∂iXj = 1i=j(Xi ⊗ 1 − 1 ⊗ Xi).

Now, let V be in C〈(Xi)1≤i≤m〉h, and let µ be the solution of SD[V, τ ] given in
Corollary 3.1. Note that since C〈(Xi)1≤i≤m〉 is stable under the non-commutative
derivatives, we can look at µ as an element of C〈(Xi)1≤i≤m〉∗ and the Property of
regularity and uniqueness still hold. Near the origin, by Theorem 3.2 we have the
expansion of the solution:

µ =
∑

k

tk

k!
µk
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where t
k

k! denotes
∏

i

t
ki
i

ki!
. Now we define the space C〈(Ai)1≤i≤m〉sym as the C vectorial

space generated by the primitive elements

A
λ1
1

1 ⊙ · · · ⊙ A
λ1

i1
1 ⊙ · · · ⊙ A

λm
1

m ⊙ · · · ⊙ A
λm

im
m

where ⊙ is the symmetric tensor product. The degree of an element is the maximal
degree of one of its primitive elements and the degree of the primitive element

A
λ1
1

1 ⊙ · · · ⊙ A
λ1

i1
1 ⊙ · · · ⊙ A

λm
1

m ⊙ · · · ⊙ A
λm

im
m is

∑

k,16j6ik
λk

i . We will denote

τsym(A
λ1
1

1 ⊙ · · · ⊙ A
λ1

i1
1 ⊙ · · · ⊙ A

λm
1

m ⊙ · · · ⊙ A
λm

im
m ) =

∏

k,16j6ik

τ(A
λk

j

k ).

And we extend τsym on C〈(Ai)1≤i≤m〉sym by linearity. Thus C〈(Ai)1≤i≤m〉sym can
be seen as product of commutative moments.

We prove in this section that for any P in C〈(Xi)1≤i≤m〉, µk(P ) can be expressed
with universal coefficients (depending only on V ) as a finite linear combination
of the τsym(Q) for Q in C〈(Ai)1≤i≤m〉sym. Our aim is to control this decomposi-
tion. If P can be decomposed into P =

∑

q γP (q)q in the basis of monomials of

C〈(Ai)1≤i≤m〉sym, we let

‖P‖M :=
∑

q

|γP (q)|Mdeg(q).

Proposition 4.1. For all k, all polynomial P , there exists a unique Pk ∈ C〈(Ai)1≤i≤m〉sym

independent of the distribution of the Ai’s such that

µk(P )

k!
= τsym(Pk).

Besides, deg Pk 6 deg P + |k|deg V with |k| =
∑

i ki and there exists A,M0 > 0
such that for all k, M > M0,

‖Pk‖M 6 A|k|‖P‖M .

In particular, this gives an explicit bound on the coefficient of Pk, for example
if P is a monomial of degree p then the coefficent of a primitive element of degree
deg P + |k|deg V − d in the decomposition of Pk has an absolute value bounded by

A|k|Md. Moreover this statement could certainly become more precise since we can
certainly control the constants by |t|.

Proof. We prove the Proposition by induction. For P of degree 0 and k = 0, there
is nothing to prove. Take now (P,k) and suppose that the Proposition has already
been proved for any (Q,k′) with k′ < k (i.e. for all i, k′

i 6 ki and the inequality is
strict in at least one case) and for any (Q,k) with deg Q < deg P . We can suppose
without loss of generality that P is a monomial. Besides we will also suppose that
P = QUi and Q does not begin with U∗

i . It is not always possible to assume this
but the other cases are similar.
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τk(QUi)

k!
= −

∑

Q=Q1UiQ2
k′+k′′=k

τk′
(Q1Ui)

k′!

τk′′
(Q2Ui)

k′′!

+
∑

Q=Q1U∗
i

Q2
k′+k′′=k

τk′
(Q1)

k′!

τk′′
(Q2)

k′′!
−
∑

kj 6=0

τk−1j (DiqjQ)

(k − 1j)!

This suggests to take

Pk =
∑

Q=Q1UiQ2
k′+k′′=k

(Q1Ui)k′ .(Q2Ui)k′′ +
∑

Q=Q1U∗
i

Q2
k′+k′′=k

(Q1)k′ ⊙ (Q2)k′′ −
∑

kj 6=0

(DiqjQ)k−1j
.

By the induction property this defines a sequence of elements Pk which satisfy
the property

τk(P )

k!
= τ(Pk).

The bound on the degree is also immediate by induction since on the right hand
side either the degree decrease or k decrease and we multiply by a monomial of V .
Thus the only non trivial part is to prove the continuity. The induction hypothesis
is that for a monomial of degree p,

‖Pk‖ 6 A|k|
∏

i

Cki
Dp.

Then we can conclude by induction exactly as in the proof of Theorem 3.2 when we
have proved that the growth of the µk was not too fast (since in fact the decompo-
sition relation are nearly the same). �

5. Application to the asymptotics of IN (V,AN
i )

Let (q1, · · · , qn) be fixed monomials in C〈(Ui, U
−1
i , Ai)1≤i≤m〉. Let T (q1, · · · , qn)

be set of t ∈ C
n so that Vt :=

∑n
i=1 tiqi is Hermitian.

Theorem 5.1. There exists η = η(q1, · · · , qn) so that for any t ∈ C
n ∩ B(0, η) we

have

lim
N→∞

1

N2
log IN (Vt, A

N
i ) =

∑

k∈Nn\(0,..,0)

∏

1≤i≤n

(−ti)
ki

ki!
Ik(q1, · · · , qn, τ).

Moreover, for any j such that kj 6= 0

Ik(q1, · · · , qn, τ) =
1

∑

1kj>0

n
∑

j=1

µk−1j (qj)

where 1j is the n dimensional vector with null entries except at position j where it

has the value one and if kj = 0, µk−1j (qj) = 0.
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Proof. Let

FN
t =

1

N2
log IN (Vt, A

N
i ).

Denote γ : [0, 1] → C
n a smooth path in T (q1, · · · , qn) ∩ Bη such that γ(0) = 0 and

γ(1) = t. Note that since Vγ(α) is Hermitian for all α, we can write at each time

Vγ(α) =

n
∑

i=1

ℜ(γ(α)i)
qi + q∗i

2
+

n
∑

i=1

ℑ(γ(α)i)
qi − q∗i

2i

so that

∂αTr(Vγ(α)(A)) =
n
∑

i=1

∂αℜ(γ(α)i)Tr(
qi + q∗i

2
) +

n
∑

i=1

∂αℑ(γ(α)i)Tr(
qi − q∗i

2i
)

= ℜ

(

n
∑

i=1

∂αγ(α)iTr(qi)

)

Therefore

(11) ∂αFN
γ(α) = ℜ

(

n
∑

i=1

∂αγ(α)iµ
N
Vγ(α)

(

τ̂N (qi)
)

dα

)

.

By Corollary 3.1, we know that for all α (since γ(α) ∈ T (q1, · · · , qn) ∩ B(0, η))

lim
N→∞

µN
Vγ(α)

(

τ̂N (qi)
)

= τγ(α)(qi)

whereas since τ̂N ∈ M, we know that µN
Vγ(α)

(

τ̂N (qi)
)

stays uniformly bounded.

Therefore, a simple use of dominated convergence theorem shows that

(12) Ft = lim
N→∞

FN
t = ℜ

(

n
∑

i=1

∫ 1

0
∂αγ(α)iµγ(α)(qi)

)

.

A simple computation shows, with Theorem 3.2, that

Ft =

n
∑

i=1

∑

k1,··· ,kn

n
∏

j=1

(tj)
kj+1i

(kj + 1i)!
µk(qi).

�

6. Application to Voiculescu free entropy

Voiculescu’s microstates free entropy is given as the asymptotic the volume of
matrices whose empirical distribution approximate sufficiently well a given tracial
state. Up to a Gaussian factor, it is more explicitly given by

χ(µ) = lim sup
ε↓0

k↑∞,R↑∞

lim sup
N→∞

1

N2
log µ⊗m

N (ΓR(µ, ε, k))
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with µN the Gaussian measure on HN and ΓR(µ, ε, k) the microstates

ΓR(µ, ε, k) = {X1, · · · ,Xm ∈ HN : ‖Xi‖∞ ≤ R|
1

N
Tr(Xi1 · · ·Xip)−µ(Xi1 · · ·Xip)| < ε

p ≤ k, iℓ ∈ {1, · · · ,m}}.

When m = 1, it is well known [19] that µ ∈ P(R) and

χ(µ) = I(µ) =

∫ ∫

log |x − y|dµ(x)dµ(y) −
1

2

∫

x2dµ(x) + const.

Moreover, one can replace the lim sup by a lim inf in the definition of χ. Such
answers (convergence and formulae for χ) are still open in general when m ≥ 2 (see
[4] for bounds). However, if µ is the law of m free variables with respective laws µi,
then these questions are settled and

χ(µ) =
m
∑

i=1

I(µi).

We here want to emphasize that our result provide a small step towards dependent
variables by showing convergence and giving a formula for the type of laws µ solutions
of Schwinger-Dyson’s equations. Indeed, let us consider V = V (UiAiU

∗
i , 1 ≤ i ≤ m)

with V a Hermitian polynomial and µ the unique solution of SD[V, τ ] with τ the
law of the Ai, 1 ≤ i ≤ m which is now chosen to be the law of m free variables with
marginals distribution µi, 1 ≤ i ≤ m. Under the law µ⊗N

N , we can diagonalize the
matrices Xi = UiDiU

∗
i with Ui following the Haar measure on U(N), and find

 LN := µ⊗m
N

(

τ̂N
X1,··· ,Xm

∈ ΓR(µ, ε, k)
)

= µ⊗m
N

(

d(τ̂N
Di

, µi) < ε; τ̂N
UiDiU

∗
i ,1≤i≤m ∈ ΓR(µ, ε, k)

)

= Z−m
N

∫

d(τ̂N
Di

,µi)<ε,‖Di‖∞≤R

(
∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)dU1 · · · dUm

)

∏

∆(λi
j)e

−N
2

∑

(λj
i )

2
dλj

i

where we denoted ∆(λj) =
∏

k 6=j |λk − λj| and

ZN =

∫

∏

∆(λj)e
−N

2

∑N
j=1(λj )2dλj

i .

In these notations, Di = diag(λi
1, · · · , λi

N ).
As a consequence, applying the large deviations result of [3] to the diagonal ma-

trices Di

 LN ≤ eN2
∑m

i=1 I(µi)+N2o(ε) sup
d(τ̂N

Di
,µi)<ε,‖Di‖∞≤R

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)dU1 · · · dUm

:= eN2
∑m

i=1 I(µi)+N2o(ε) L1
N
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with

 L1
N = sup

d(τ̂N
Di

,µi)<ε,‖Di‖∞≤R

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)e
NTr(V )−NTr(V )dU1 · · · dUm

= e−N2µ(V )+N2o(ε) sup
d(τ̂N

Di
,µi)<ε,‖Di‖∞≤R

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)e
NTr(V )dU1 · · · dUm

≤ e−N2µ(V )+N2o(ε) sup
d(τ̂N

Di
,µi)<ε,‖Di‖∞≤R

∫

eNTr(V )dU1 · · · dUm

= e−N2µ(V )+N2o(ε) sup
d(τ̂N

Di
,µi)<ε,‖Di‖∞≤R

IN (V,Di)

Now, for fixed R, any Di,D
′
i in d(τ̂N

Di
, µi) < ε, ‖Di‖∞ ≤ R

∣

∣

∣

∣

1

N2
log IN (V,Di) −

1

N2
log IN (V,D′

i)

∣

∣

∣

∣

≤ η(ε,R)

with η(ε,R) going to zero as ε goes to zero for any fixed R. Hence,

lim sup
N→∞

1

N2
log IN (V,Di) ≤ F (V, µi) + η(ε,R)

with F (V, µi) the limit of N−2 log IN (V,Ai) given in Theorem 5.1 when the distri-
bution of the Ai converges to free variables with marginal distribution µi. We thus
have proved, letting ε going to zero and then R, k to infinity, that

χ(µ) ≤
m
∑

i=1

I(µAi
) − µ(V ) + F (V, µi).

Conversely,

 LN ≥ eN2
∑m

i=1 I(µi)+N2o(ε)  L2
N

with

 L2
N := inf

d(τ̂N
Di

,µi)<ε,‖Di‖∞≤R

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)dU1 · · · dUm

= e−N2µ(V )+N2o(ε) inf
d(τ̂N

Di
,µi)<ε,‖Di‖∞≤R

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)e
NTr(V )dU1 · · · dUm

≥ e−N2µ(V )+N2o(ε) inf
d(τ̂N

Di
,µi)<δ,‖Di‖∞≤R

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)e
NTr(V )dU1 · · · dUm
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for any δ < ε. Now, choosing δ and using the continuity of τ̂N
UiDiU

∗
i ,1≤i≤m in the

distribution of the uniformly bounded variables Di, we find by Corollary 3.1 that

lim inf
N→∞

∫

1τ̂N
UiDiU∗

i
,1≤i≤m

∈ΓR(µ,ε,k)e
NTr(V )dU1 · · · dUm

∫

eNTr(V )dU1 · · · dUm

= 1

which insures that

χ(µ) ≥

m
∑

i=1

I(µAi
) − µ(V ) + F (V, µi).

Thus we have proved that

χ(µ) =

m
∑

i=1

I(µAi
) − µ(V ) + F (V, µi).

Note that µ(V ) and F (V, µi) can be written in terms of the µk of Theorem 3.2 by
Theorem 5.1.

Hence, we have proved that

Theorem 6.1. Let V =
∑n

i=1 tiqi be an Hermitian polynomial and assume that the
ti’s are small enough so that Corollary 3.1 holds. Assume also that the hypotheses
of Theorem 5.1 hold. Then,

χ(τ) = lim inf
ε↓0

k↑∞

lim inf
N→∞

1

N2
log µ⊗m

N (ΓR(µ, ε, k))

and a formula of χ(τ) can be given in terms of the µk of Theorem 3.2.
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