T. Kato 1960s: Non-autonomous parabolic evolution equation

\[
\begin{aligned}
\frac{d}{dt}u(t)(x) + A(t)u(t)(x) &= 0 \quad (t > 0, \ x \in \Omega), \\
u(0) &= u_0 \in L^2(\Omega).
\end{aligned}
\]

- \(A(t) \sim -\nabla_x \cdot \mu(t, x) \nabla_x \) via elliptic form \(a(t) : \mathcal{V}(\Omega) \times \mathcal{V}(\Omega) \to \mathbb{C} \).
- \(u(t)(x) = e^{-tA}u_0(x) \) if \(A(t) = A \) for all \(t > 0 \).
T. Kato 1960s: Non-autonomous parabolic evolution equation

\[\begin{aligned}
\frac{d}{dt}u(t)(x) + A(t)u(t)(x) &= 0 \quad (t > 0, \ x \in \Omega), \\
u(0) &= u_0 \in L^2(\Omega).
\end{aligned} \]

- \(A(t) \sim -\nabla_x \cdot \mu(t, x)\nabla_x \) via elliptic form \(a(t) : \mathcal{V}(\Omega) \times \mathcal{V}(\Omega) \to \mathbb{C} \).
- \(u(t)(x) = e^{-tA}u_0(x) \) if \(A(t) = A \) for all \(t > 0 \).
T. Kato 1960s: Non-autonomous parabolic evolution equation

\[
\begin{aligned}
\frac{d}{dt}u(t)(x) + A(t)u(t)(x) &= 0 \quad (t > 0, \ x \in \Omega), \\
u(0) &= u_0 \in L^2(\Omega).
\end{aligned}
\]

- \(A(t) \sim -\nabla_x \cdot \mu(t, x)\nabla_x \) via elliptic form \(\alpha(t) : \mathcal{V}(\Omega) \times \mathcal{V}(\Omega) \to \mathbb{C} \).
- \(u(t)(x) = e^{-tA}u_0(x) \) if \(A(t) = A \) for all \(t > 0 \).

Kato Square Root Problem (1961)

“We do not know whether or not \(\mathcal{D}(A^{1/2}) = \mathcal{D}(A^{*1/2}) \). This is perhaps not true in general. But the question is open even when \(A \) is regularly accretive. In this case it appears reasonable to suppose that both \(\mathcal{D}(A^{1/2}) \) and \(\mathcal{D}(A^{*1/2}) \) coincide with \(\mathcal{D}(\alpha) \), where \(\alpha \) is the regular sesquilinear form which defines \(A \).”
T. Kato 1960s: Non-autonomous parabolic evolution equation

\[
\begin{aligned}
\frac{d}{dt} u(t)(x) + A(t)u(t)(x) &= 0 \quad (t > 0, \ x \in \Omega), \\
u(0) &= u_0 \in L^2(\Omega).
\end{aligned}
\]

- \(A(t) \sim -\nabla_x \cdot \mu(t, x) \nabla_x \) via elliptic form \(\alpha(t) : \mathcal{V}(\Omega) \times \mathcal{V}(\Omega) \to \mathbb{C} \).
- \(u(t)(x) = e^{-tA}u_0(x) \) if \(A(t) = A \) for all \(t > 0 \).

Kato Square Root Problem (1961)

“We do not know whether or not \(\mathcal{D}(A^{1/2}) = \mathcal{D}(A^{*1/2}) \). This is perhaps not true in general. But the question is open even when \(A \) is regularly accretive. In this case it appears reasonable to suppose that both \(\mathcal{D}(A^{1/2}) \) and \(\mathcal{D}(A^{*1/2}) \) coincide with \(\mathcal{D}(\alpha) \), where \(\alpha \) is the regular sesquilinear form which defines \(A \).”

- Counterexamples by Lions 1962, \(m^c \)Intosh 1982
- Specialize to divergence-form operators.
Let

- $\Omega \subseteq \mathbb{R}^d$ domain, $D \subseteq \partial \Omega$ closed, $\mu \in L^\infty(\Omega)$
- $A \sim -\nabla \cdot \mu \nabla$ accretive operator on $L^2(\Omega)$ associated with

$$W^{1,2}_D(\Omega) \times W^{1,2}_D(\Omega) \to \mathbb{C}, \quad (u, v) \mapsto \int_\Omega \mu \nabla u \cdot \nabla v.$$

- $A^{1/2}$ square root of A defined by e.g.

$$A^{1/2} u = \frac{1}{\pi} \int_0^\infty t^{-1/2} A(t + A)^{-1} \, dt.$$

Kato conjecture

It holds $\mathcal{D}(A^{1/2}) = W^{1,2}_D(\Omega)$ with equivalent norms.
Why do we care about the Kato conjecture?

Philosophy

- Elliptic non-regularity results $\mathcal{D}(A) \not\subseteq W^{2,2}(\Omega)$.
- Kato Conjecture \sim optimal Sobolev regularity for $A^{1/2}$.
Why do we care about the Kato conjecture?

Philosophy

- Elliptic non-regularity results $\mathcal{D}(A) \not\subset W^{2,2}(\Omega)$.
- Kato Conjecture \sim optimal Sobolev regularity for $A^{1/2}$.

Ex. 1: Elliptic equations on \mathbb{R}^d

\[
\begin{cases}
\frac{\partial^2}{\partial t^2} u(t)(x) + \nabla \cdot \mu(x) \nabla u(t, x) = 0 & (t > 0, \ x \in \mathbb{R}^d), \\
u(0, x) = u_0(x) \in W^{1,2}(\mathbb{R}^d).
\end{cases}
\]

- Solution $u(t, x) = e^{-tA^{1/2}} u_0(x)$.
- Kato conjecture \sim Rellich inequality $\| \partial_t u \|_{t=0}^2 \sim \| \nabla u_0 \|_2^2$.
Why do we care about the Kato conjecture?

Philosophy

- Elliptic non-regularity results $\mathcal{D}(A) \not\subseteq W^{2,2}(\Omega)$.
- Kato Conjecture \sim optimal Sobolev regularity for $A^{1/2}$.

Ex. 1: Elliptic equations on \mathbb{R}^d

\[
\begin{aligned}
\frac{\partial^2}{\partial t^2} u(t)(x) + \nabla \cdot \mu(x) \nabla u(t, x) &= 0 \quad (t > 0, \ x \in \mathbb{R}^d), \\
u(0, x) &= u_0(x) \in W^{1,2}(\mathbb{R}^d).
\end{aligned}
\]

- Solution $u(t, x) = e^{-t A^{1/2}} u_0(x)$.
- Kato conjecture \sim Rellich inequality $\|\partial_t u\|_{t=0}^2 \sim \|\nabla u_0\|_2^2$.
Ex. 2: Maximal parabolic regularity (e.g. Haller-Dintelmann-Rehberg)

In L^p-setting study parabolic equation

\[
\begin{aligned}
\frac{d}{dt} u(t) + Au(t) &= f \quad (0 < t < T), \\
u(0) &= 0.
\end{aligned}
\]

Goal: Transport Max. Reg. from $L^p(\Omega)$ to $W_D^{-1:p}(\Omega)$. Many further examples, e.g. Cauchy-Integral along Lipschitz curve, hyperbolic wave equations, ...
Ex. 2: Maximal parabolic regularity (e.g. Haller-Dintelmann-Rehberg)

- In L^p-setting study parabolic equation

\[
\begin{cases}
\frac{d}{dt} u(t) + Au(t) = f & (0 < t < T), \\
u(0) = 0.
\end{cases}
\]

- Goal: Transport Max. Reg. from $L^p(\Omega)$ to $W^{-1,p}_{D}(\Omega)$.

- $L^{p'}$-Kato conjecture $\sim (-\nabla \cdot \mu^\top \nabla)^{1/2} : W^{-1,p}_{D}(\Omega) \rightarrow L^{p'}(\Omega)$ isom.
Ex. 2: Maximal parabolic regularity (e.g. Haller-Dintelmann-Rehberg)

- In L^p-setting study parabolic equation

\[
\begin{aligned}
\left\{ \begin{aligned}
\frac{d}{dt} u(t) + Au(t) &= f \\ u(0) &= 0
\end{aligned} \right. \\
(0 < t < T),
\end{aligned}
\]

- Goal: Transport Max. Reg. from $L^p(\Omega)$ to $W^{-1;p}_D(\Omega)$.

- $L^{p'}$-Kato conjecture $\sim (-\nabla \cdot \mu^\top \nabla)^{1/2} : W^{1,p'}_D(\Omega) \to L^{p'}(\Omega)$ isom.

- Adjoint $(-\nabla \cdot \mu \nabla)^{1/2} : L^p(\Omega) \to W^{-1;p}_D(\Omega)$ isomorphism that commutes with parabolic solution operator

\[
\left(\frac{d}{dt} + A \right)^{-1}.
\]
Ex. 2: Maximal parabolic regularity (e.g. Haller-Dintelmann-Rehberg)

- In L^p-setting study parabolic equation
 \[
 \begin{cases}
 \frac{d}{dt} u(t) + Au(t) = f & (0 < t < T), \\
 u(0) = 0.
 \end{cases}
 \]

- Goal: Transport Max. Reg. from $L^p(\Omega)$ to $W_D^{-1,p}(\Omega)$.

- L^p'-Kato conjecture $\sim (−\nabla \cdot \mu^\top \nabla)^{1/2} : W_D^{1,p'}(\Omega) \rightarrow L^{p'}(\Omega)$ isom.

- Adjoint $−\nabla \cdot \mu \nabla)^{1/2} : L^p(\Omega) \rightarrow W_D^{-1,p}(\Omega)$ isomorphism that commutes with parabolic solution operator
 \[
 \left(\frac{d}{dt} + A \right)^{-1}.
 \]

Many further examples, e.g. Cauchy-Integral along Lipschitz curve, hyperbolic wave equations,
Positive answers

Self-adjoint operators
Positive answers

Self-adjoint operators ✓
Positive answers

Self-adjoint operators ✓

Whole space $\Omega = \mathbb{R}^d$

- $d = 1$: Coifman - McIntosh - Meyer ’82.
- $d \geq 2$: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian ’01, Axelsson-Keith-McIntosh ’06.
Positive answers

Self-adjoint operators ✓

Whole space $\Omega = \mathbb{R}^d$ ✓

- $d = 1$: Coifman - McIntosh - Meyer ’82.
- $d \geq 2$: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian ’01, Axelsson-Keith-McIntosh ’06.
Positive answers

Self-adjoint operators ✔

Whole space $\Omega = \mathbb{R}^d$ ✔

- $d = 1$: Coifman - McIntosh - Meyer '82.
- $d \geq 2$: Auscher-Hofmann-Lacey-McIntosh-Tchamitchian '01, Axelsson-Keith-McIntosh '06.

Bounded domains

- Ω Lipschitz, $D \in \{\emptyset, \partial \Omega\}$: Auscher-Tchamitchian '03, '01 ($p \neq 2$).
- Ω smooth, smooth $D \leftrightarrow \partial \Omega \setminus D$ interface: Axelsson-Keith-McIntosh '06.
- Ω Lipschitz around $\overline{\partial \Omega \setminus D}$:
 Auscher-Badr-Haller-Dintelmann-Rehberg ’12 ($p \neq 2$).
Kato for mixed boundary conditions

Theorem (E.-Haller-Dintelmann-Tolksdorf ’14)

Suppose
- $\Omega \subseteq \mathbb{R}^d$ bounded d-Ahlfors regular domain,
- $D \subseteq \partial \Omega$ closed and $(d - 1)$-Ahlfors regular,
- Ω Lipschitz around $\overline{\partial \Omega \setminus D}$.

Then
$$\mathcal{D}(A^{1/2}) = W_{D}^{1,2}(\Omega) \quad \text{with} \quad \|A^{1/2}u\|_2 \sim \|\nabla u\|_2.$$

- First formulated by J.-L. Lions 1962.
- For rough ($= L^\infty$) coefficients new even on Lipschitz domains.
Some ideas of the proof

1. First-order approach via perturbed Dirac operators à la AKM ’06, H^∞-functional calculus.
Some ideas of the proof

1. First-order approach via perturbed Dirac operators à la AKM ’06, H^∞-functional calculus.

2. Getting rid of the coefficients via

Reduction-Theorem (E.-Haller-Dintelmann-Tolksdorf ’14)

In essence, the following holds: If $\mathcal{D} \left((−\Delta_V)^s \right) \hookrightarrow H^{2s,2}(\Omega)$ for some $s > \frac{1}{2}$, then $\mathcal{D}(A^{1/2}) = W_D^{1,2}(\Omega)$.
Some ideas of the proof

1. First-order approach via perturbed Dirac operators à la AKM ‘06, H^∞-functional calculus.

2. Getting rid of the coefficients via

Reduction-Theorem (E.-Haller-Dintelmann-Tolksdorf ’14)

In essence, the following holds: If $\mathcal{D}((−Δ)^s) \hookrightarrow H^{2s,2}(Ω)$ for some $s > \frac{1}{2}$, then $\mathcal{D}(A^{1/2}) = W^{1,2}_D(Ω)$.

Extrapolate Kato for $−Δ \implies$ Kato property for general A.
Some ideas of the proof

1. First-order approach via perturbed Dirac operators à la AKM ’06, H^∞-functional calculus.

2. Getting rid of the coefficients via Reduction-Theorem (E.-Haller-Dintelmann-Tolksdorf ’14)

In essence, the following holds: If $\mathcal{D} \left((\Delta_V)^s \right) \hookrightarrow H^{2s,2}(\Omega)$ for some $s > \frac{1}{2}$, then $\mathcal{D}(A^{1/2}) = W^{1,2}_D(\Omega)$.

Extrapolate Kato for $-\Delta_V \Longrightarrow$ Kato property for general A geometry, potential theory \iff harmonic analysis.
\[\mathcal{D}((−\Delta)_{\nu})^{1/2} = W_{D}^{1,2}(\Omega) \] by self-adjointness. Extrapolate by Snejberg’s stability theorem and the following result.

Theorem (E.-Haller-Dintelmann-Tolksdorf ’14)

Let \(\theta \in (0, 1) \) and \(s_0, s_1 \in (\frac{1}{2}, \frac{3}{2}) \). Put \(s_\theta := (1 − \theta)s_0 + \theta s_1 \). Then,

- \(W_{D}^{1,2}(\Omega) = H_{D}^{1,2}(\Omega) \)
- \([H_{D}^{s_0,2}(\Omega), H_{D}^{s_1,2}(\Omega)]_\theta = H_{D}^{s_\theta,2}(\Omega) \).
- \([L^{2}(\Omega), H_{D}^{1,2}(\Omega)]_\theta = \begin{cases} H_{D}^{\theta,2}(\Omega), & \text{if } \theta > \frac{1}{2}, \\ H_{D}^{\theta,2}(\Omega), & \text{if } \theta < \frac{1}{2}. \end{cases} \)
\(\mathcal{D}((-\Delta_V)^{1/2}) = W^{1,2}_D(\Omega) \) by self-adjointness. Extrapolate by Sneiberg’s stability theorem and the following result.

Theorem (E.-Haller-Dintelmann-Tolksdorf ’14)

Let \(\theta \in (0, 1) \) and \(s_0, s_1 \in (\frac{1}{2}, \frac{3}{2}) \). Put \(s_\theta := (1 - \theta)s_0 + \theta s_1 \). Then,

- \(W^{1,2}_D(\Omega) = H^{1,2}_D(\Omega) \)
- \([H^{s_0,2}_D(\Omega), H^{s_1,2}_D(\Omega)]_\theta = H^{s_\theta,2}_D(\Omega) \).
- \([L^2(\Omega), H^{1,2}_D(\Omega)]_\theta = \begin{cases} H^{\theta,2}_D(\Omega), & \text{if } \theta > \frac{1}{2}, \\ H^{\theta,2}_D(\Omega), & \text{if } \theta < \frac{1}{2}. \end{cases} \)

In fact, \(\mathcal{D}((-\Delta_V)^s) = H^{2s,2}_D(\Omega) \) for \(|\frac{1}{2} - s| < \varepsilon \).
Elliptic BVPs on cylindrical domains

Elliptic mixed BVP

\[-\text{div}_{t,x} \mu(x) \nabla_{t,x} U = 0 \quad (\mathbb{R}^+ \times \Omega)\]

\[U = 0 \quad (\mathbb{R}^+ \times D)\]

\[\partial_{\nu\mu} U = 0 \quad (\mathbb{R}^+ \times N)\]

\[\partial_{\nu\mu} U = f \in L^2 \quad (\{0\} \times \Omega)\]
Elliptic BVPs on cylindrical domains

Elliptic mixed BVP

\[-\text{div}_{t,x\mu}(x)\nabla_{t,x} U = 0 \quad (\mathbb{R}^+ \times \Omega)\]

\[U = 0 \quad (\mathbb{R}^+ \times D)\]

\[\partial_{\nu\mu} U = 0 \quad (\mathbb{R}^+ \times N)\]

\[\partial_{\nu\mu} U = f \in L^2 \quad (\{0\} \times \Omega)\]

\[
\uparrow \quad F \sim \begin{bmatrix}
\partial_{\nu\mu} U \\
\nabla_x U
\end{bmatrix}
\]

First order equation

\[
\partial_t F + \begin{bmatrix}
0 & (-\nabla_{\nu})^* \\
-\nabla_{\nu} & 0
\end{bmatrix} \mathbb{B} F = 0 \quad (t > 0)
\]

\[F(0) \perp = f\]
Elliptic BVPs on cylindrical domains

Elliptic mixed BVP

\(- \text{div}_{t,x} \mu(x) \nabla_{t,x} U = 0 \) \quad \left(\mathbb{R}^+ \times \Omega \right)

\(U = 0 \) \quad \left(\mathbb{R}^+ \times D \right)

\(\partial_{\nu} U = 0 \) \quad \left(\mathbb{R}^+ \times N \right)

\(\partial_{\nu} U = f \in L^2 \) \quad \left(\{0\} \times \Omega \right)

\[F \sim \begin{bmatrix} \partial_{\nu} U \\ \nabla_x U \end{bmatrix} \]

First order equation

\[\partial_t F + \begin{bmatrix} 0 & (-\nabla \nu)^* \\ -\nabla \nu & 0 \end{bmatrix} \mathbb{D} F = 0 \quad (t > 0) \]

\[F(0)_{\perp} = f \]

\(\mathbb{L}^2_{\text{loc}}(\mathbb{R}^+; L^2(\Omega)) \) setting
Semigroup solutions via DB-formalism

DB has bounded H^∞-calculus on $\mathcal{H} = \overline{R(DB)}$ (Kato Technology).

Theorem (Auscher-E. ’14)

1. For every $F(0) \in \mathcal{H}^+ := 1_{C^+}(DB)\mathcal{H}$ a solution to the first-order system is

 $$F(t) = e^{-tDB}F(0) \quad (t \geq 0).$$

 Via $F \sim \begin{bmatrix} \partial_{\nu\mu} U \\ \nabla_x U \end{bmatrix}$ these functions are in one-to-one correspondence with weak solutions U such that

 $$\tilde{N}_*(|\nabla_{t,x} U|) \in L^2(\mathbb{R}^+ \times \Omega).$$

2. If μ is either block-diagonal or Hermitean, then for each $f \in L^2(\Omega)$ there exists a unique such solution u.
Thank you for your attention!

