Calcul des prédicats - Théorie des modèles

(Notes complémentaires 2)

Résumé des premières définitions et résultats vus en cours.

On ne considère que des langages égalitaires, et on s'autorise à écrire = à la fois pour le symbole du langage $R_{=}$ et pour son interprétation dans une structure.

1 Morphismes - Extensions élémentaires

1.1 Premières définitions et rappels

Soient \mathcal{L} un langage, \mathcal{M} et \mathcal{N} deux \mathcal{L} -structures et h une application de M dans N. L'application h est un \mathcal{L} -homomorphisme de \mathcal{M} dans \mathcal{N} si h vérifie:

- (1) pour tout symbole c de constante de \mathcal{L} , $h(c^{\mathcal{M}}) = c^{\mathcal{N}}$,
- (2) pour tout symbole f de fonction de \mathcal{L} , d'arité k, pour tout $(m_1, \ldots, m_k) \in M^k$, $h(f^{\mathcal{M}}(m_1, \ldots, m_k)) = f^{\mathcal{N}}(h(m_1), \ldots, h(m_k))$.
- (3) pour tout symbole R de relation de \mathcal{L} , d'arité k, pour tout $(m_1, \ldots, m_k) \in M^k$, si $(m_1, \ldots, m_k) \in R^{\mathcal{M}}$, alors $(h(m_1), \ldots, h(m_k)) \in R^{\mathcal{N}}$.

L'application h est un \mathcal{L} -plongement de \mathcal{M} dans \mathcal{N} si h est un \mathcal{L} -homomorphisme et satisfait en plus que pour tout symbole R de relation de \mathcal{L} , d'arité k, pour tout $(m_1, \ldots, m_k) \in M^k$, $(m_1, \ldots, m_k) \in R^{\mathcal{M}}$, si et seulement si $(h(m_1), \ldots, h(m_k)) \in R^{\mathcal{N}}$.

Proposition 1 Soit h un \mathcal{L} -plongement de \mathcal{M} dans \mathcal{N} .

- -(i) h est injectif.
- -(ii) Pour toute formule $\phi(v_0, \ldots, v_n)$ de \mathcal{L} , sans quantificateurs, pour tout $(m_0, \ldots, m_n) \in M^{n+1}$, $\mathcal{M} \models \phi(m_0, \ldots, m_n)$ ssi $\mathcal{N} \models \phi(h(m_0), \ldots, h(m_n))$.

Remarque: un \mathcal{L} -homomorphisme injectif n'est pas forcément un \mathcal{L} -plongement. C'est le cas si le langage \mathcal{L} ne comprend pas de symbole de relation autre que l'égalité, mais si on considère le langage \mathcal{L} d'une relation binaire, et les deux \mathcal{L} -structures $\mathcal{M}_1 = \langle \mathbb{Z}, \equiv_6 \rangle$ et $\mathcal{M}_2 = \langle \mathbb{Z}, \equiv_3 \rangle$, où \equiv_n est la congruence modulo n, alors l'identité est un \mathcal{L} -homomorphisme bijectif de \mathcal{M}_1 dans \mathcal{M}_2 mais n'est pas un \mathcal{L} -plongement.

Définition L'application h est un \mathcal{L} -plongement élémentaire si pour toute formule $\psi(v_0,\ldots,v_n)$ de \mathcal{L} , et pour tout $(m_0,\ldots,m_n)\in M^{n+1}$,

$$\mathcal{M} \models \psi(m_0, \ldots, m_n) \text{ ssi } \mathcal{N} \models \psi(h(m_0), \ldots, h(m_n)).$$

On écrit $\mathcal{M} \leq_{\mathcal{L}} N mod$.

Exemple: Considérons les deux structures $\mathcal{M} = < \mathbb{N} \setminus \{0\}, \le > \text{ et } \mathcal{N} = < \mathbb{N}, \le > \text{ dans}$ le langage \mathcal{L} avec un symbole de relation binaire.

L'identité $i: \mathbb{N} \setminus \{0\} \mapsto \mathbb{N}$ est un \mathcal{L} -plongement mais n'est pas un \mathcal{L} -plongement élémentaire: en effet les conditions de la définition d'un \mathcal{L} -plongement sont satisfaites, il faut et il suffit que i préserve l'égalité et la relation d'ordre. Mais si on considère la formule $\psi(v) = \forall w \ v < w$, on a:

$$\mathcal{M} \models \psi(1) \text{ mais } \mathcal{N} \models \neg \psi(1).$$

En revanche si on considère $h: \mathbb{N} \setminus \{0\} \mapsto \mathbb{N}$, définie par h(n) = n - 1, alors pour la formule $\psi(v)$ donnée au-dessus on a bien que:

$$\mathcal{M} \models \psi(1) \text{ et } \mathcal{N} \models \psi(h(1)).$$

En fait ce deuxième plongement h est, lui, élémentaire, comme le dit la proposition suivante:

Proposition 2 Soit h un \mathcal{L} -plongement de \mathcal{M} dans \mathcal{N} qui est surjectif, alors h est un plongement élémentaire.

Définition: Un \mathcal{L} -plongement surjectif est appelé un \mathcal{L} -isomorphisme. Un \mathcal{L} -isomorphisme de \mathcal{M} dans \mathcal{M} est appelé un \mathcal{L} -automorphisme de \mathcal{M} .

On rappelle que si $M \subset N$, \mathcal{M} est une \mathcal{L} -sous-structure de \mathcal{N} ssi l'inclusion est un \mathcal{L} -plongement, noté $\mathcal{M} \subset_{\mathcal{L}} \mathcal{N}$.

On dit que \mathcal{M} est une sous-structure élémentaire de \mathcal{N} (ou que \mathcal{N} est une extension élémentaire de \mathcal{M}) si l'inclusion est un \mathcal{L} -plongement élémentaire (noté $\mathcal{M} <_{\mathcal{L}} \mathcal{N}$).

1.2 Critère de Tarski-Vaught

Proposition 3 (Critère de Tarski-Vaught) Soit \mathcal{M} une \mathcal{L} -sous-structure de \mathcal{N} . Alors \mathcal{M} est une sous-structure élémentaire de \mathcal{N} si et seulement si, pour tout $n \geq 0$, pour toute formule $\phi(v_0, \ldots, v_{n-1}, v_n)$ de \mathcal{L} , pour tous $a_0, \ldots, a_{n-1} \in \mathcal{M}$,

$$si \mathcal{N} \models \exists v_n \ \phi(a_0, \dots, a_{n-1}, v_n), \ alors \ il \ existe \ b \in M \ tel \ que \ \mathcal{N} \models \phi(a_0, \dots, a_{n-1}, b).$$

On a en fait un petit peu plus fort, et c'est souvent sous cette deuxième forme que l'on va utiliser le critère:

Corollaire 4 (Tarski-Vaught bis) Soit \mathcal{N} une \mathcal{L} -structure et $A \subset N$ tel que pour toute formule $\phi(v_0, \ldots, v_{n-1}, v_n)$ de \mathcal{L} , pour tous $a_0, \ldots, a_{n-1} \in A$,

$$si \mathcal{N} \models \exists v_n \ \phi(a_0, \dots, a_{n-1}, v_n), \ alors \ il \ existe \ b \in A \ tel \ que \ \mathcal{N} \models \phi(a_0, \dots, a_{n-1}, b),$$

alors, A est l'ensemble de base d'une \mathcal{L} -sous-structure élémentaire de \mathcal{N} .

 $D\acute{e}monstration$: Il suffit de vérifier que A est l'ensemble de base d'une \mathcal{L} -sous-structure, c'est-à-dire que A contient les interprétations des constantes dans \mathcal{N} et est clos pour les fonctions de \mathcal{L} .

Soit c un symbole de constante, et $\phi(v_0)$ la formule $v_0 = c$. Alors $\mathcal{N} \models \exists v_0 \phi(v_0)$. Par la propriété de A, on doit donc avoir qu'il existe $a \in A$ tel que $\mathcal{N} \models \phi(a)$, c'est-à-dire, que dans N, on $a = c^{\mathcal{N}}$.

Maintenant si f est un symbole de fonction d'arité k, soient $a_1, \ldots a_k \in A$. Soit $\psi(v_1, \ldots, v_k, w)$ la formule $f(v_1, \ldots, v_k) = w$. Alors $\mathcal{N} \models \exists w \, \psi(a_1, \ldots, a_k, w)$. Par hypothèse il doit donc exister $b \in A$ tel que $\mathcal{N} \models \psi(a_1, \ldots, a_k, b)$, c'est-à-dire $f^{\mathcal{N}}(a_1, \ldots, a_k) = b$. \square

2 Élémentaire équivalence - Théories complètes

Attention: la définitions de "théorie" que j'ai choisie de donner cette année n'est pas la plus communément admise. On peut trouver dans les ouvrages de logique deux variantes: soit une théorie est simplement un ensemble d'énoncés, soit parfois c'est un ensemble d'énoncés qui est clos pour la déduction sémantique.

Définition: 1. Un ensemble d'énoncés de \mathcal{L} (= formules sans variables libres) est consistant ou satisfaisable si il a un modèle. Sinon on dit qu'il est inconsistant.

2. Une théorie de \mathcal{L} est un ensemble d'énoncés consistant.

Si T est une théorie de \mathcal{L} , on note Cons(T), l'ensemble des conséquences de T, l'ensemble des énoncés σ de \mathcal{L} tels que $T \vdash \sigma$.

Définition: Soient \mathcal{L} un langage, \mathcal{M} et \mathcal{N} deux \mathcal{L} -structures. On dit que \mathcal{M} et \mathcal{N} sont **élémentairement équivalents**, noté $\mathcal{M} \equiv_{\mathcal{L}} \mathcal{N}$, si \mathcal{M} et \mathcal{N} satisfont exactement les mêmes énoncés (= formules sans variables libres) de \mathcal{L} , c'est-à-dire si, pour tout énoncé σ de \mathcal{L} ,

$$\mathcal{M} \models \sigma$$
 si et seulement si $\mathcal{N} \models \sigma$.

En particulier, si \mathcal{M} et \mathcal{N} sont \mathcal{L} -isomorphes, alors \mathcal{M} et \mathcal{N} sont élémentairement équivalents. Plus généralement s'il existe un \mathcal{L} -plongement élémentaire de \mathcal{M} dans \mathcal{N} , alors \mathcal{M} et \mathcal{N} sont élémentairement équivalents.

Comme on le verra un peu plus loin, dès que \mathcal{M} est infinie, il existe \mathcal{N} qui lui est élémentairement équivalente mais qui ne lui est pas isomorphe. Ce n'est en revanche pas le cas pour les structures finies :

Proposition 5 (Exercice - voir TD) Soit \mathcal{L} un langage fini, \mathcal{M} et \mathcal{N} deux \mathcal{L} -structures élémentairement équivalentes. Si \mathcal{M} , l'ensemble de base de \mathcal{M} est fini, alors \mathcal{M} et \mathcal{N} sont \mathcal{L} -isomorphes.

Définition: Soient \mathcal{L} un langage et T une théorie de \mathcal{L} . On dit que la théorie T est **complète** si, pour tous modèles \mathcal{M} et \mathcal{N} de T, \mathcal{M} et \mathcal{N} sont élémentairement équivalents.

Proposition 6 (Exercice) Soit T une théorie de \mathcal{L} , alors les conditions suivantes sont équivalentes:

- 1. T est complète,
- 2. pour tout énoncé σ de \mathcal{L} , $T \vdash \sigma$ si et seulement si il existe un modèle de T qui satisfait σ ,
- 3. pour tout énoncé σ de \mathcal{L} , $T \vdash \sigma$ ou bien $T \vdash \neg \sigma$.

Si \mathcal{M} est une \mathcal{L} -structure, alors la théorie suivante, appelée **Théorie de la structure** \mathcal{M} est complète:

$$Th(\mathcal{M}) = \{\sigma; \sigma \text{ énoncé de } \mathcal{L} \text{ tel que } \mathcal{M} \models \sigma\}.$$

3 Premiers théorèmes de Löwenheim-Skolem et applications

On rappelle que la cardinalité d'un langage \mathcal{L} , notée $||\mathcal{L}||$ est la cardinalité de l'ensemble des formules du langage \mathcal{L} , et est donc égale à $sup(\aleph_0, |\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}|)$.

On appellera cardinalité de la \mathcal{L} -structure \mathcal{M} , et on notera $|\mathcal{M}|$, la cardinalité de l'ensemble de base, M, de la structure \mathcal{M} .

Voici une première application directe du critère de Tarski-Vaught:

Proposition 7 (Löwenheim-Skolem descendant) Soient \mathcal{L} un langage, \mathcal{M} une \mathcal{L} -structure infinie et X un sous-ensemble de M. Il existe $\mathcal{N} = \langle N, \rangle$, sous-structure élémentaire de \mathcal{M} , telle que :

- $-X \subseteq N$
- N est de cardinalité inférieure ou égale au sup de la cardinalité de X et de $||\mathcal{L}||$.

Preuve (donnée en cours): on construit \mathcal{N} "à la main" et on utilise le critère de Tarski-Vaught (Corollaire .4) pour montrer que \mathcal{N} est bien une sous-structure élémentaire de \mathcal{M} .

Corollaire 8 (i) Si T est une théorie dans un langage dénombrable, alors T a un modèle dénombrable.

(ii) Soit \mathcal{M} une \mathcal{L} -structure de cardinalité supérieure ou égale à $||\mathcal{L}||$. Alors pour chaque cardinalité β , $||\mathcal{L}|| \leq \beta \leq |\mathcal{M}|$, \mathcal{M} a une \mathcal{L} -sous-structure élémentaire de cardinalité égale à β .

Applications:

Corollaire 9 Soit \mathcal{L} un langage dénombrable et T une théorie de \mathcal{L} dont tous les modèles dénombrables sont infinis et \mathcal{L} -isomorphes. Alors la théorie T est complète.

On a vu qu'on peut ainsi montrer que les théories suivantes sont complètes:

– dans le langage \mathcal{L}_{\emptyset} , réduit à l'égalité, la théorie $T_0 = \{\theta_n; n \geq 1\}$ où

$$\theta_n = \exists v_0 \dots \exists v_n (\bigwedge_{0 \le i < j \le n} v_i \ne v_j.$$

– dans le langage $\mathcal{L}=\{R\}$, où R est un symbole de relation binaire, la théorie des ordres denses sans extrémités.