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In the background: the groundbreaking proof, in 1993, by Hrushovski
of the Mordell-Lang conjecture, which remained, in Char. p the only
known proof until 2013.
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In the present: Talk partly inspired by a series of papers joint work
with Franck Benoist and Anand Pillay on the model theory of
semiabelian varieties although this won’t be completley visible here.
Aims : to find alternate Model theoretic proof of Mordell-Lang,
avoiding Zariski geometries and the trichotomy principle.

WHY?

Success? Better undersatnding? Yes and no.
Around 2013 /2014 both a geometric proof (Rossler) and a model
theoretic proof (BBP) for the case of abelian varieties ; other
geometric proofs since.
Finally (BBP 2017) for semiabelian varieties.

Elisabet Bouscaren (CNRS Paris-Sud) A stroll through Model Theory August 2017 2 / 30



The notions of model theory

- induced structure
- enriched structure
- orthogonality
- groups of finite Morley Rank

– Characterizing classical algebraic structures abstractly
or reconstructing algebraic structures (groups, fields) from abstract or
combinatorial data .
In the spirit of the very old classical theorem in geometry which says
that a Desarguesian projective geometry of dimension at least 3 is the
projective geometry over a division ring.

– Zariski Geometries
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Mordell-Lang?

Theorem Function field Mordell-Lang
k ⊂ K two algebraically closed fields, G semiabelian variety over K
(= a divisible commutative algebraic group), X irreducible subvariety
of G (= an irreducible zariski closed subset of G ) and Γ ⊂ G (K )
finitely generated subgroup.
Then,
– either X ∩ Γ = a1 + Γ0 ∪ . . . ∪ an + Γn), where, for each i , Γi is a
subgroup of Γ
– or H = Γ (the zariski closure of Γ in G ) is isomorphic to a group
defined over k .

Don’t Panic!!!
(from “The Hitchhiker’s Guide to Galaxy”)

This is NOT how we begin
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Algebraically closed fields

Use the case of algebraically closed fields to guide us through a brief
and very biased history of some basic notions of model theory and

algebra
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Recall :
Definition A field K is algebraically closed if every polynomial P(X )
in one variable in K [X ], of degree ≥ 1, has a solution in K

Ex: C the complex numbers, but not the reals R.

K as a first-order model theory structure the language Lring :

(K ,+, .,−, 0, 1)

There is a theory Tacf (a set of sentences) such that a field is
algebraically closed iff it is a model of Tacf :
– K is a field and
– for every n > 1

∀y0 . . . ∀yn−1∃x (xn + Σn−1
i=0 yi .x

i ) = 0.
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Model theory of algebraically closed fields

For p = 0 or p prime, the theory ACFp of algebraic closed fields of
characteristic p is complete.

Theorem(Tarski, Chevalley) Algebraically closed fields admit
quantifier elimination.

Theorem (Macintyre, 1971) If an infinite field K has quantifier
elimination, then K is algebraically closed.

Modern model theory : Get algebraic information from abstract data.
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Definable sets in TACF

A set D ⊂ K n is definable if there is a formula φ(x) such that
D = {a ∈ K n;K |= φ(a)}. Then we write D = φ(K ) .

– Zariski closed sets: solutions of polynomial equations
{a ∈ K n; f1(a) = . . . = fs(a) = 0} for f1, . . . , fs in K [X1, . . . ,Xn].

– quantifier free formulas −→ finite boolean combinations of closed
sets = constructible sets

– Quantifier elimination −→ definable = constructible
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Algebraic groups

Recall a group (G , .) is definable in K if
– G is a definable subset of some K n

– the multiplication and inverse maps are definable (ie their graphs
are definable sets in K n × K n × K n and K n × K n.)

Obvious definable groups in K : the additive group, the multiplicative
group, the affine groups = closed subgroups of GLn(K ) (definable in
K nxK n).

Less obvious but true : any algebraic group G is definable or rather
the K -rational points of G (G (K )) form a definable group in K .
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Further properties

The theory TACFp is ℵ1-categorical (= categorical in every
uncountable cardinality, Morley, 65).

More: The theory TACFp is strongly minimal

A definable subset D in K n is strongly minimal if for any definable
E ∈ K n, D ∩ E is finite or its complement in D is finite .

The algebraically closed field K itself is strongly minimal: any
definable set in one variable = boolean combination of sets which are
the solution set of a polynomial equation in one variable .
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Strongly minimal structures

Examples of strongly minimal structures
1. Infinite set with no structure (only equality in the language)

2. An infinite vector spaces over a fixed division ring. It has the
property that any definable subset is a ( finite boolean combination
of translates of subgroups

3. Algebraically closed fields

or “avatars“ of these.
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Zilber trichotomy principle

Conjecture proposed by Boris Zilber in the 1980’s : every strongly
minimal theory “is” of one of these forms.

Disproved by Hrushovski in 90’S.

But proved (Hrushovski-Zilber, 93) to hold for a class of strongly
minimal sets with extra properties, the Zariski structures.
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Zariski Structures and Trichotomy

A Zariski structure is a strongly minimal set D where the atomic sets
form the closed sets of a noetherian topology on each Dn,
the definable sets are the constructible sets and the dimension (given
by the noetherian topology) satisfies some particular “good”
properties (the dimension theorem)
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Trichotomy

Then Dichotomy for groups :
G a strongly minimal group which is a zariski structure
1. D “is an abelian group’‘ and the structure on D is of linear (vector
space) type: for every n every definable X ⊂ Dn is a Boolean
combiantion of translates of definable subgroups of Dn.
D is one-based, locally modular
or

2. in D there is an algebraically closed field K which is definable in
some Dn , and D is homeomorphic to a projective curve over K , or
“nearly” so.
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The dichotomy

The function field Mordell Lang is also a dichotomy about certain
algebraic groups
BUT in K algebraically closed, no infinite definable group is
one-based..... so not directly such a dichotomy.
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Mordell-Lang. A special case

Theorem Function field Mordell-Lang
k ⊂ K two algebraically closed fields, G semiabelian variety over K ,
X irreducible subvariety of G and Γ ⊂ G (K ) finitely generated
subgroup.
Then,
– either X ∩ Γ = a1 + Γ0 ∪ . . . ∪ an + Γn, where, for each i , Γi is a
subgroup of Γ
– or H = Γ (the zariski closure of Γ in G ) is isomorphic to a group
defined over k .

Elisabet Bouscaren (CNRS Paris-Sud) A stroll through Model Theory August 2017 16 / 30



Mordell-Lang continued, the definable objects

G is a semiabelian variety:
Commutative algebraic groups (definable)
– divisible, finite n-torsion for all n, but torsion is infinite.
Built from two extreme cases:
1. Abelian varieties: Complete connected algebraic group.
Ex: Elliptic curves, Jacobians of curves, never affine
No non trivial group homomorphism to any affine group.
2. (affine) tori T = Gn

m

G is a semiabelian variety : G ∈ Ext(A,T ) i.e.
0→ T → G → A→ 0,
with T = Gr

m torus and A abelian variety .

Examples : T × A , or semi-split (G isogenous to T × A)
But also non split complicated examples.

Remark: in char.p, exactly the divisible commutative algebraic
groups.
Elisabet Bouscaren (CNRS Paris-Sud) A stroll through Model Theory August 2017 17 / 30



Mordell-Lang. A special case

Theorem Function field Mordell-Lang
k ⊂ K two algebraically closed fields, G semiabelian variety over K ,
X irreducible subvariety of G and Γ ⊂ G (K ) finitely generated
subgroup.
Then,
– either X ∩ Γ = a1 + Γ0 ∪ . . . ∪ an + Γn, where, for each i , Γi is a
subgroup of Γ
– or H = Γ (the zariski closure of Γ in G ) is isomorphic to a group
defined over k .
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X irreducible subvariety of G?

G as an algebraic group has an induced topology, its Zariski topology.
And X is a closed irreducible subset of G in this sense. In particular
X is definable.

H = Γ is a closed subgroup of G so also definable, so defined with
parameters in K , but isomorphic to a group defined over k .
Say that H descends to k

Γ is not definable or algebraic !
Γ is just a finitely generated subgroup of G (K ). Even if Γ is
generated by one element g0 ,x ∈ Γ iff
x = g0 ∨ x = g0 + g0 ∨ x = g0 + g0 + g0 . . .
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The Dichotomy

The dichotomy :
in the first case: note that the conclusion talks about the topology
induced on Γ by the topology of G , it is induced by the closed
subgroups only:
the closed subsets of Γ are the sets of the form X ∩ Γ for X closed in
G , and it says they are just given by translates of subgroups. OR :

Γ descends to k .
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Adding new definable sets

Adding Γ to the language?
Then ML becomes indeed:
Either Γ is a one-based group or Γ descends to k .
But
– not easier than the original statement
– k is not definable .....
MUST do it differently
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Adding a derivation

Add more definable sets by adding a derivation on the field K ,
a map δ from K to K such that
- δ(x + y) = δ(x) + δ(y)
- δ(x .y) = x .δ(y) + y .δ(y)
in characteristic 0 .

A little more complicated in Char. p, must add a family of strange
derivations (Hasse derivations).
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DCF0

Can do this so that k becomes the field of constants of δ so definable
as {a ∈ K ; δ(a) = 0}. we can suppose that K is differentally closed

(=existentally closed) and k is the field of constants in K .

The theory of differentially closed fields of char. 0, DCF0 is richer
than ACF0 but still good from model theoretic point of view.
It is ω-stable : Every definable set has Morley Rank
We know a lot about definable groups, and the strongly minimal
subsets are Zariski structures !
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Working in DCF0

Replace Γ by : G ] which is the smallest definable subgroup of G
which is zariski dense in G or also the smallest δ-definable subgroup
containing the torsion of G . (Infinitely definable in characteristic p)
G ] is nice, it is a group with finite Morley rank, but it is not strongly
minimal.
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The remaining model theory tools

Orthogonality :
Definition Let D,E ⊂ K n be δ-definable. They are orthogonal
(D ⊥ E ) if any infinite δ-definable subset Y ⊂ D r × Em is a
rectangle : Y = YD × YE , YD ⊂ D r ,YE ⊂ Em both δ-definable.

In K as a pure algebraically closed field, by ℵ1-categoricity, any two
definable subsets are non orthogonal.

In DCF0 : Then for any H δ-definable group in K , strongly minimal,
the Zariski structure Dichotomy says:
Either H is one based or H is non orthogonal to k , the field of
constants
and then H descends to k .
But G ] is not always strongly minimal?

Elisabet Bouscaren (CNRS Paris-Sud) A stroll through Model Theory August 2017 25 / 30



Saved!!

Any abelian variety A is a sum of simple abelian varieties pairwise not
homomorphic, it follows that A] = J1 + . . . + Jn a sum of
(almost)strongly minimal groups which are pairwise orthogonal.

And the Torus T = Gm
n is already defined over k .

so for G = T × A, G ] = T ] × A] = T ] + J1 + . . . + Jn , we manage.
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Semiabelian varieties and model theory

But what about the general case ? 0→ T → G → A→ 0 when it is
not split?

Have examples where the induced sequence 0→ T ] → G ] → A] → 0
is not exact.
So one cannot deduce good properties for G ] from the same
properties for A] and T ].
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Saved by the Socle theorem

G is no longer a sum of “simple” subgroups .

But model theory of finite rank groups shows that there is a maximal
δ-definable subgroup of G ], its socle, S(G ]) which is a finite sum of
pairwise orthogonal strongly minimal groups

The Socle theorem: for any X definable irreducible zariski closed in
G ], then a translate of X is contained in S(G ]).
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So can replace G ] by its socle, sum of pairwise orthogonal strongly
minimal groups

and reduce the question to the good cases, when G = TxA.
The reduction uses the socle but not zariski geometries .
So Mordell-Lang for abelian varieties implies Mordell Lang for
semiabelian varieties, via the theorem of the socle.
New “algebraic object ? the zariski closure of the socle of G ] ....
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THANK YOU !
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