
MODEL THEORY AND GEOMETRY(TUTORIAL)ELISABETH BOUSCARENThis paper is based on a series of three le
tures that I gave during theLC'2000, in the 
ontext of the \tutorials" whi
h have now be
ome a traditionat the European meetings of the ASL. I have kept fairly 
lose to the a
tualformat and style of the talks.It is always diÆ
ult to identify pre
isely the audien
e su
h a tutorial shouldaddress. A fair number of broad and ambitious surveys have already beenpublished on the subje
t of the appli
ations of model theory to algebrai
 ge-ometry (see se
tion 4.4). I did not, during this tutorial, 
hoose to address thespe
ialists of the subje
t. The audien
e I had in mind 
onsisted of both young\inexperien
ed" resear
hers in model theory and more \mature" logi
ians fromother parts of logi
. Rather than attempting one more broad survey, I tried topresent some of the main 
on
erns of \geometri
al model theory" by lookingat 
on
rete examples and this is what I will try to do also in the present paper.We will dis
uss three algebrai
 examples, algebrai
ally 
losed �elds, di�er-entially 
losed �elds and di�eren
e �elds (�elds with automorphisms). Thegeometri
 appli
ation we will take up as illustration is Hrushovski's approa
hto the Manin-Mumford 
onje
ture. This is based on a �ne study of the modeltheory of di�eren
e �elds and is quite emblemati
 of the method. Perhaps thekey te
hni
al notion is that of \lo
al modularity"(or \one-basedness"), whi
harises in a purely model theoreti
 setting. We will see that the Diophantine
onje
tures of the Manin-Mumford type 
an be rephrased in terms of this no-tion. Furthermore, as one thinks through the rephrasing pro
ess, one realizesthe need for the introdu
tion of auxiliary algebrai
 theories su
h as the theoryof di�eren
e �elds.I would like to thank the anonymous referee, despite my temporary sho
kat the initial suggestion that the paper be totally rewritten and turned intoa survey of a 
ompletely di�erent type. Fortunately, he/she also provided along list of detailed 
omments and less dra
onian suggestions, in 
ase I did not
hoose to follow this �rst drasti
 pie
e of advi
e. I have found these 
ommentsvery helpful and have followed most of these suggestions.x1. \Geometri
" model theory. Until ten years ago, the most strikingappli
ations of model theory to algebra or number theory had typi
ally beenMeeting
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2 ELISABETH BOUSCARENobtained using only the most basi
 tools of model theory, notably the 
ompa
t-ness theorem and the te
hnique of quanti�er elimination, though the algebrai
and analyti
 ingredients had been 
onsiderably deeper and more varied. Thisapplies for example to the work of Ax-Ko
hen-Ershov on valued �elds (1965),with later appli
ations by Denef to the 
omputation of p-adi
 integrals, to Ax'swork on the elementary theory of �nite �elds (1968), to work of Denef, van denDries and Ma
intyre on the p-adi
s (1970's and 1980's). It applies also to someof the more re
ent work on o-minimal stru
tures, su
h as Wilkie's results onthe theory of the reals with exponentiation and it's subsequent generalizationto broad 
lasses of analyti
 fun
tions (see [10℄).In parallel pure model theory 
ourished at the same period, beginning withMorley's 
hara
terization of un
ountably 
ategori
al theories (1965) and thenwith Shelah's monumental work on 
lassi�
ation theory. Appli
ations to al-gebra of these more sophisti
ated notions and results were at �rst rather few:let us mention the existen
e and uniqueness of the di�erential 
losure of a dif-ferential �eld of 
hara
teristi
 zero (Blum 1977), and the appli
ations to thetheory of modules (started by Garavaglia around 1978). It was soon apparentthat the tools of the theory of stability were parti
ularly well suited to themodel theoreti
 analysis of groups and �elds. Around 1980, Poizat introdu
edthe notion of generi
 of a stable group whi
h was dire
tly inspired by the 
orre-sponding notion for algebrai
 groups and whi
h be
ame one of the main toolsin the subje
t.Then in the mid-eighties, under the in
uen
e of Zilber �rst and then ofHrushovski, stability theory started evolving and fo
using on the study of the�ne lo
al behavior of stru
tures of �nite dimension. This was the beginning ofwhat has been for some years known as \geometri
 stability" or more generally\geometri
 model theory".Stability theory �a la Shelah, developed a theory of abstra
t independen
eand dimension. Although this generalized the 
lassi
al algebrai
 notions of in-dependen
e (linear independen
e, algebrai
 independen
e), the methods usedwere often those of in�nite 
ombinatori
s. One of the main aspe
ts of the the-ory for example is the 
lassi�
ation of stru
tures a

ording to whi
h in�nite
ombinatorial obje
ts they interpret: orderings, trees...Geometri
 stability, as its name indi
ates, took mu
h of its inspiration fromgeometry, both in the sense of 
ombinatorial geometries (or matroids) andof algebrai
 geometry. This relationship turned out to go both ways: theabstra
t notions developed in model theory were applied to the dis
iplinesof their origins in order to give new proofs or new results there. We willnot dis
uss here 
ombinatorial geometries nor any of the results that wereproved in this domain by applying model theoreti
 tools or ideas (results ofZilber on homogeneous �nite geometries for example [46℄ or results of Evansand Hrushovski about \algebrai
 matroids"[7℄, [8℄), but we will fo
us on therelationship with algebrai
 geometry.



MODEL THEORY AND GEOMETRY 3Geometri
 stability investigates the geometri
 properties of the abstra
t in-dependen
e relation introdu
ed by Shelah. One of the main fo
us points is thestudy of the algebrai
 stru
tures 
oded via this relation (groups, �elds). Thesequestions and the results obtained 
an be 
onsidered to be, at a higher levelof generality, in the dire
t line of two \
lassi
al" and well-known theorems:{ the old theorem of geometry whi
h says that a Desarguesian proje
tivegeometry of dimension at least 3 is the proje
tive geometry over some divisionring;{ the theorem of Weil whi
h 
onstru
ts an algebrai
 group from a generi
allyrational asso
iative operation on an algebrai
 variety.One of the 
entral notions in the subje
t is that of \one-basedness" or lo
almodularity, whi
h was introdu
ed into the subje
t independently from severaldi�erent points of view. For sets of \dimension one", lo
al modularity 
orre-sponds exa
tly to the 
ases where the 
ombinatorial geometry asso
iated tothe dependen
e relation is aÆne, proje
tive or trivial. The Zilber Tri
hotomyprin
iple states that if D is a set of dimension one, there are only three possi-bilities:{ either the geometry is trivial and there is no group de�nable in D (thegeometry asso
iated to D is then the in�nite set with no stru
ture, example(1) in se
tion 3.3);{ or the geometry is aÆne or proje
tive and every group de�nable in D isof linear type (see the pre
ise de�nition in se
tion 2.2). The stru
ture D thenbehaves very similarly to a ve
tor spa
e (example (2) in se
tion 3.3);{ or there is an algebrai
ally 
losed �eld de�nable in D.This prin
iple was shown to be false in general by Hrushovski [12℄. But it holdswith extra assumptions, namely in the 
ontext of abstra
t Zariski geometries,de�ned by Hrushovski and Zilber [20, 21℄. This tri
hotomy, or more pre
iselythis di
hotomy in the 
ase of a group of dimension one plays an essential rolein the appli
ations to the Manin-Mumford type of 
onje
tures.The general \abstra
t" framework in whi
h this material was originally de-veloped, namely stability theory, was eventually seen as part of a broader one,\simpli
ity theory", whi
h has now be
ome a very a
tive aera in model the-ory. This is the point of view we will adopt for the presentation of the abstra
tnotions involved.This ends our introdu
tory sket
h of geometri
 stability theory. In the nextse
tion (2) we will dis
uss the theory of algebrai
ally 
losed �elds, whi
h is themodel theoreti
 
ontext for 
lassi
al algebrai
 geometry, and explain how theManin-Mumford type of 
onje
tures �t within the model theoreti
 framework.In the third se
tion, we will give the abstra
t de�nition of independen
e andstate the de�nition and main results about lo
al modularity. These notions willbe illustrated by four basi
 examples, presented at the end of the se
tion (3.3).In the fourth and last se
tion, we present two of the theories of �elds whi
h



4 ELISABETH BOUSCARENare used in Hrushovski's proofs of the algebrai
 geometry results and �nish in4.3 with a brief sket
h of the a
tual strategy for the proof of Manin-Mumford.



MODEL THEORY AND GEOMETRY 5x2. Algebrai
ally 
losed �elds and the Mordell-Lang 
onje
ture.2.1. The theory of algebrai
ally 
losed �elds. We 
onsider �elds Kas �rst-order stru
tures in the usual language of rings: LR = f0; 1;+;�; :g.The theory of algebrai
ally 
losed �elds ACF is axiomatized by axioms whi
hsay:(i) K is a �eld(ii) K is algebrai
ally 
losed, that is, every polynomial in one variable with
oeÆ
ients inK has a solution inK. This 
an be axiomatized by the followings
heme: for every n > 18y1; : : :8yn 9x xn + y1xn�1 + : : :+ yn = 0:Every �eld L embeds into an algebrai
ally 
losed �eld; there is a smallestsu
h algebrai
ally 
losed �eld 
ontaining L, the algebrai
 
losure of L, whi
hwe denote by Lalg and whi
h is unique up to isomorphism over L. The theoryACF is not 
omplete but it suÆ
es to spe
ify the 
hara
teristi
 of the �eldto obtain a 
omplete theory. For p � 0, we let ACFp denote the (
omplete)theory of algebrai
ally 
losed �elds of 
hara
teristi
 p. In fa
t the theory ACFpis 
ategori
al in every un
ountable 
ardinality, that is, has a unique model upto isomorphism in every un
ountable 
ardinality. Indeed if K;K 0 are twomodels of ACFp, then K and K 0 are isomorphi
 if and only if they have thesame trans
enden
e degree over the prime �eld of 
hara
teristi
 p.From now on, for the sake of simpli�
ation, we 
onsider only the theoryACF0 of algebrai
ally 
losed �elds of 
hara
teristi
 zero.2.1.1. Definable subsets. Let K be a model of ACF0 of in�nite tran-s
enden
e degree over Q.In �rst-order logi
, we study the subsets de�ned by �rst-order formulas. Westart with the basi
 or atomi
 subsets, de�ned using the basi
 operations andrelations in the language. In this parti
ular 
ontext, our basi
 sets will be:� the Zariski 
losed sets: E � Kn is Zariski 
losed if E is the zero-set of a �nite number of polynomials over K, that is, if E = f(a1; : : : ; an) 2Kn; f1(a1; : : : ; an) = : : : = fr(a1; : : : ; an) = 0g, for f1; : : : ; fr 2 K[X1; : : : ; Xn℄.The Zariski 
losed sets de�ne a Noetherian topology on SnKn, the 
lassi
alZariski topology.� The Zariski 
onstru
tible sets: the �nite boolean 
ombinations (
lo-sure under �nite interse
tion, �nite union and 
omplement) of the Zariski
losed sets. They are exa
tly the sets de�nable by quanti�er-free formulas inthe language LR.� Quantifier elimination: the theory ACF0 has quanti�er elimination,whi
h means exa
tly that the proje
tion of a 
onstru
tible set is also 
on-stru
tible and hen
e that the definable sets are exa
tly the 
on-stru
tible sets.Remark: The model theoreti
 notion of algebrai
 
losure (see se
tion 3.2)
oin
ides with the usual �eld notion of algebrai
 
losure.



6 ELISABETH BOUSCARENThe theory ACF0 does not only eliminate quanti�ers but it also eliminatesimaginaries: for every de�nable equivalen
e relation E on Kn �Kn, thereis a de�nable map fE from Kn to some Km su
h that for all a; b in KnfE(a) = fE(b) if and only if a and b are E-equivalent.2.1.2. Varieties and algebrai
 groups are definable. For thosewho already know their way around algebrai
 varieties and algebrai
 groups,the aim of this se
tion is to explain how these obje
ts 
an be 
onsidered asde�nable obje
ts in the theory of algebrai
ally 
losed �elds. Those unfamiliarwith the subje
t 
an 
onsider them dire
tly as de�nable subsets and de�nablegroups with some spe
i�
 properties and this should be suÆ
ient for them tounderstand the statement of the Mordell-Lang 
onje
ture in the next se
tion.For a more 
omplete and elaborate introdu
tion to the model theoreti
 ap-proa
h to algebrai
 varieties see [35℄. For basi
 de�nitions and results in alge-brai
 geometry, see for example [25℄ and [26℄.An affine variety over K is a Zariski 
losed subset of Kn, for somen � 1, endowed with the indu
ed Zariski topology from Kn. A quasi-affinevariety is a Zariski open subset of an aÆne variety, also endowed with theindu
ed topology. Quasi-aÆne sets are spe
ial 
ases of Zariski 
onstru
tiblesets.Let V � Kn and W � Km be two quasi-aÆne varieties, a morphism fromV to W is a map f from V to W whi
h is lo
ally rational (or regular): forevery a 2 V , there is an open subset U of V 
ontaining a and polynomialsP1; : : : ; Pm; Q1; : : : ; Qm in K[X ℄ su
h that on U , the Qi's are non zero andf(x) = (P1=Q1(x); : : : ; Pm=Qm(x)):By the 
ompa
tness theorem, f is a de�nable map from V toW , i.e. the graphof f is de�nable: there are open subsets U1; : : : ; Uk of V su
h that on ea
h Uif is given by a �xed tuple of rational fra
tions.An isomorphism is a bije
tive morphism whose inverse is also a morphism.So far, we 
an see dire
tly that we are dealing with de�nable sets and maps.It is a little more diÆ
ult in the 
ase of an abstra
t variety whi
h is obtainedby gluing together a �nite number of aÆne varieties.A variety V over K is a set V 
overed by a �nite number of subsetsV1; : : : ; Vk together with some maps f1; : : : ; fk, where ea
h fi is a bije
tionbetween Vi and some aÆne variety Ui, su
h that:(i) for ea
h i; j the set Uij := fi(Vi \ Vj) is open in Ui(ii) the map fij := fi Æ f�1j is an isomorphism from Uji into Uij .The Ui's are 
alled the aÆne 
harts of V .The Zariski topology on V is de�ned by de
laring that S � V is open ifand only if for ea
h i, fi(S \ Vi) is open in Ui. A morphism from a varietyV = (Vi; fi; Ui) to a variety W = (Wj ; gj ; Zj) is a map h from V to W whi
his a morphism when read in the 
harts, i.e. h is 
ontinuous and for any i; j,the map gj Æ h Æ f�1i restri
ted to (the quasi-aÆne variety) fi(h�1(Wj) \ Vi))is a morphism.



MODEL THEORY AND GEOMETRY 7There are di�erent possible ways to identify a variety V , given by a �xedsystem of aÆne 
harts, (Vi; fi; Ui), to a de�nable set. One way is to 
onsider Vto be the disjoint union of its aÆne 
harts U1; : : : ; Uk, modded out by the de-�nable equivalen
e relation whi
h identi�es Uij and Uji via the de�nable mapsfij . By elimination of imaginaries this will indeed be (de�nably isomorphi
to) a de�nable subset and the morphisms will be de�nable maps.Notation: If V is a variety de�ned over K, we denote by V (K) the set ofK-rational points of V , or equivalently, if V is seen as a de�nable set in Kn,the subset of tuples in Kn whi
h belong to the de�nable subset V .We need two more de�nitions: An algebrai
 group G is a variety Gequipped with a group multipli
ation : : G�G 7! G and an inverse �1 : G 7!G whi
h are morphisms for the variety stru
tures on G and G � G. So inparti
ular, an algebrai
 group is a de�nable group, that is, a group whi
h liveson a de�nable set and su
h that the group multipli
ation is a de�nable map.The additive and multipli
ative groups of the �eldK, (Kn;+) and ((K�)n; :)are aÆne algebrai
 groups (algebrai
 groups whi
h are isomorphi
 to aÆnevarieties). So are all the linear groups, i.e. all the 
losed subgroups of GLn(K).We will be interested in very di�erent groups, the ones whi
h have no aÆnesubgroup at all. An Abelian variety is an algebrai
 group G whi
h is a
omplete irredu
ible variety, where 
omplete means that, for any variety Y ,the proje
tion map � : G � Y 7! Y is 
losed (i.e. takes 
losed sets to 
losedsets).The Abelian varieties of dimension one are exa
tly the ellipti
 
urves, in fa
tthe fundamental examples of Abelian varieties are the Ja
obians of 
urves.Over C the Abelian varieties are 
omplex tori, that is they are of the formC n=� where � is a dis
rete subgroup of rank 2n (but not every 
omplex torusis an Abelian variety).Abelian varieties are 
ommutative divisible groups. They have a 
ertainnumber of other rather strong properties of whi
h I will only mention one: inan Abelian variety G, for every n > 0, the number of torsion elements of ordern is �nite but the torsion subgroup of G, Tor(G) is in�nite and Zariski densein G.So we 
an 
onsider Abelian varieties over K as a spe
i�
 
lass of 
ommu-tative divisible de�nable groups with a 
ertain number of additional \ni
e"properties.2.2. The Mordell-Lang 
onje
ture. Re
all that a 
ommutative group� is said to be of �nite rank if there is a �nitely generated subgroup �0 su
hthat for every 
 2 �, for some integer n � 1, n
 2 �0. In any 
ommutativegroup G, the group of torsion elements Tor(G) is of 
ourse of �nite rank.We now have all the ne
essary elements in order to give the statement ofthe Mordell-Lang 
onje
ture for Abelian varieties over a �eld of 
hara
teristi
zero.



8 ELISABETH BOUSCARENThe Mordell-Lang 
onje
ture. Let K be an algebrai
ally 
losed �eldof 
hara
teristi
 zero, let A be an Abelian variety over K, X a 
losed irredu
iblesubset of A and � a �nite rank subgroup of A(K). Then X\� is a �nite unionof translates of subgroups of �, that is, there are m � 1, H1; : : : ; Hm subgroupsof � and elements b1; : : : ; bm in �, su
h thatX \ � = m[i=1 bi +Hi:There are two di�erent 
ases, \the number �eld 
ase" when K is the alge-brai
 
losure of Q, that is when A is in fa
t de�ned over a number �eld (a�nite algebrai
 extension of Q), and \the fun
tion �eld 
ase" when A is notde�ned over Qalg .The Mordell 
onje
ture follows from the 
ase when X is a 
urve de�nedover a number �eld k, A is the Ja
obian of X and � is the (�nitely generated)group of k-rational points of A.The Manin-Mumford 
onje
ture is the parti
ular 
ase when K is the alge-brai
 
losure of Q and the group � is the group Tor(A). By taking Zariski
losures, one 
an give the equivalent statement:The Manin-Mumford 
onje
ture. LetK be an algebrai
ally 
losed �eldof 
hara
teristi
 zero, let A be an Abelian variety over Qalg and X a 
losedirredu
ible subset of A. Then for some integer m � 0,X \ Tor(A) = m[i=1 bi + Tor(Bi)where for ea
h i, Bi is an Abelian sub-variety of A (an irredu
ible 
losedsubgroup of A) and bi +Bi is 
ontained in X.The Manin-Mumford 
onje
ture was �rst proved by Raynaud in 1983, andthe full Mordell-Lang 
onje
ture was �nally proved by Faltings in 1993. Formore history and annotated bibliographies, one 
an look at [11℄ or [33℄.Hrushovski gave a new proof of the fun
tion �eld 
ase of the Mordell-Lang
onje
ture in 1994 [15℄, inspired by a previous proof of Buium's [3℄. At thesame time he also gave the �rst full proof of the 
hara
teristi
 p > 0 versionof the Mordell-Lang 
onje
ture. Then, in 1995, he gave a new proof of Manin-Mumford. One of the interesting aspe
ts of these proofs is that they all �t ina 
ommon framework whi
h was developed a priori in model theory, as I hopewill be
ome apparent very soon. Another interesting aspe
t of his Manin-Mumford proof is that it yields rather easily some e�e
tive bounds for thenumber m of translates involved. In fa
t I believe that at the time, in 1995,this was the �rst proof giving e�e
tive bounds whi
h did not depend on the�eld of de�nition of the variety X .Now let us 
onsider again the statement of the Mordell-Lang 
onje
ture andtry to understand its meaning.



MODEL THEORY AND GEOMETRY 9The �rst thing to remark is that it deals with two di�erent kinds of obje
ts:we have on one hand A and X , whi
h are algebrai
 or from our point of view,de�nable obje
ts, and the group � on the other hand, whi
h is not de�nable. Inalgebrai
 geometry, one has tools to deal with algebrai
 or geometri
 obje
ts,like varieties; similarly in model theory we have tools to deal with de�nableobje
ts. So the �rst basi
 idea in the proof is going to be to repla
e the group� by a de�nable group.The se
ond remark is that the Mordell-Lang 
onje
ture is usually 
onsideredas saying something about 
urves, or about 
losed subsets of A, but one 
analso 
onsider that it is in fa
t a statement about the group � and the topologyindu
ed on it by the 
losed subsets of A. It says that this indu
ed topology isdetermined by the subgroups and their translates. This is not the 
ase for thetopology on A itself: 
onsider for example a 
urve X of genus stri
tly biggerthan one, and A its Ja
obian. It is 
lassi
al that a 
urve of genus stri
tlybigger than one 
annot be a group (or the 
oset of a group). In fa
t moregenerally, the topology on an algebrai
 group is never determined by its 
losedsubgroups (see se
tion 3.2)). In model theory we are familiar with this typeof questions about the \indu
ed stru
ture" on a subset. If M is a �rst-orderstru
ture and if E � Mn is a de�nable subset, the indu
ed stru
ture on E isthe new �rst-order stru
ture 
onsisting of the set E, together with all relativelyde�nable subsets of M : (E;D \ Em;m � 1; D de�nable subset of Mnm).In the 
ase of de�nable groups the following notion is 
ru
ial. A de�nablegroup is of linear type if the indu
ed stru
ture on it is similar to a module,pre
isely:Definition. Let M be a �rst-order stru
ture, and G �Mn be a de�nablegroup. We say that G is of linear type if for every integer m � 1 and everyde�nable D �Mnm, D\Gm is equal to a �nite boolean 
ombination of 
osetsof de�nable subgroups of Gm.The Mordell-Lang 
onje
ture �ts into this framework. There is a formalequivalen
e between the Mordell-Lang 
onje
ture and the following statement:The model theoreti
 version of Mordell-Lang. Let K be an alge-brai
ally 
losed �eld of 
hara
teristi
 zero, let A be an Abelian variety over Kand � a �nite rank subgroup of A(K). Let LK = f+; :; S; f
a : a 2 Kgg bethe usual language for rings with an extra unary predi
ate S (and also 
on-stants for ea
h element of K, for te
hni
al reasons). Then in the theory ofthe LK-stru
ture (K;+; :;�; a)a2K, where the new predi
ate S is interpretedby the group �, the de�nable group � is of linear type.To see that the above statement implies Mordell-Lang, one only needs to
he
k that if X is a Zariski irredu
ible 
losed subset of A and if X \ � is a�nite boolean 
ombination of translates of subgroups of �, then in fa
t it is a�nite union of translates of subgroups. This is fairly straightforward, using theproperties of the Zariski topology on groups. For the other dire
tion, note �rst



10 ELISABETH BOUSCARENthat Mordell-Lang says something not only about A but also about Cartesianprodu
ts of A: just 
onsider An whi
h is also an Abelian variety hen
e alsosatis�es the 
on
lusion of Mordell-Lang. Then there remains only to pass frominformation about the interse
tions with �n of all 
losed irredu
ible subsets ofAn to the interse
tions with �n of all de�nable subsets of Kn, in the newlanguage.Model theory has developed abstra
t 
riteria in terms of independen
e whi
h
hara
terize, among the de�nable groups, those whi
h are of linear type. Wewill see this in the next se
tion with the de�nitions of stable and one-based.But the problem is that, with this very brutal way of making the group �de�nable, by just adding a name for it, it is not easier to show that � is now oflinear type than it was to show the original statement. So the strategy is goingto be to add some new stru
ture to the �eld K, in order to add new de�nablesubsets but in a way we 
an 
ontrol, for example in su
h a way that yields agood di
hotomy between groups of linear type and the others. This is whatwill be a
hieved, for the group Tor(A), by adding a �eld automorphism, as wewill explain in the last part of this paper. We will not be able to a
tually makeTor(A) itself de�nable but will �nd a new de�nable subgroup of A, 
ontainingTor(A), and whi
h we will be able to show is of linear type - and this willsuÆ
e.This extension pro
ess, in whi
h the original theory of algebrai
ally 
losed�elds is repla
ed by an enri
hed theory, is 
hara
teristi
 of the model theoreti
approa
h to su
h questions. It should be noted that this was also the approa
htaken by Buium in [3℄. As Hrushovski did after him, in the fun
tion �eld 
ase,Buium added a derivation, denoted Æ, and 
on�ned the group � within a Æ-
losed subgroup of �nite rank. He then pro
eeded to use the tools of di�erentialalgebra and jetspa
es in order to rea
h the desired result.In the 
ase of the model theoreti
 approa
h, there are two good reasons thatmake this extension ne
essary. This approa
h is based on the powerful abstra
ttools that were previously developed around the di
hotomy linear type/nonlinear type for de�nable (or in�nitely de�nable) groups. In the original theoryof algebrai
ally 
losed �elds, the smallest de�nable group 
ontaining Tor(A)is the Zariski 
losure of Tor(A) in A, that is A itself. Even more relevantis the fa
t, already mentioned above, that no in�nite group de�nable in analgebrai
ally 
losed �eld (in the pure language of �elds) is of linear type.2.3. Independen
e and rank. We have just seen how to �t the Mordell-Lang 
onje
ture into the model theoreti
 framework of the theory of alge-brai
ally 
losed �elds. But algebrai
ally 
losed �elds, together with ve
torspa
es, are also the main examples whi
h motivated many of the de�nitionsessential to stability theory. Before giving the a
tual abstra
t de�nitions offorking, independen
e and rank, we will 
onsider them in this 
on
rete 
ontext.We keep the same 
onventions and K is still an algebrai
ally 
losed �eld of
hara
teristi
 zero and of in�nite trans
enden
e degree over the rationals.



MODEL THEORY AND GEOMETRY 11The abstra
t notion of independen
e from model theory 
oin
ides with the
lassi
al notion of algebrai
 independen
e. Re
all that if K0 � K1 � K andK0 � K2 � K, we say that K1 and K2 are algebrai
ally independent over K0if any �nite set of elements of K2 algebrai
ally independent over K0 remainsindependent overK1. When K0 is algebrai
ally 
losed, this is equivalent to K1andK2 being linearly disjoint overK0, i.e. su
h that every �nite set of elementsof K2 whi
h is linearly independent overK0 remains linearly independent overK1.Definition. Let A;B;C be subsets of K; we say that A and B are in-dependent over C if the two �elds (Q(AC))alg ) and (Q(BC))alg ) are alge-brai
ally independent over (Q(C))alg .There are many di�erent notions of rank that one uses in model theory.In the 
ase of algebrai
ally 
losed �elds, they all 
oin
ide with the 
lassi
alalgebrai
 notion of dimension.Definition. Let E � Kn be a de�nable subset of K. Let K0 � K bean algebrai
ally 
losed sub�eld 
ontaining the parameters ne
essary to de�neE. We de�ne the rank or dimension of E over K0, Dim(E=K0), to be themaximum of the trans
enden
e degrees of the �elds K0(e) over K0, when evaries in E.ForE � Kn, the dimension ofE is at most equal to n, whi
h is the dimensionof Kn itself.Note that for a �nite tuple e 2 Kn, if K0 � K1 � K, then e is independentfrom K1 over K0 if and only if the trans
enden
e degree of K1(e) over K1remains equal to the trans
enden
e degree of K0(e) over K0.The next two properties will tell us that the theory of algebrai
ally 
losed�elds is stable and is not one-based:Properties: 1. Let K0 � K1 � K, be algebrai
ally 
losed sub�elds of K.Suppose that a; b �nite tuples in K are su
h that (K0(a))alg and (K0(b))algare K0-isomorphi
 and that K1 is linearly disjoint from ea
h of (K0(a))alg and(K0(b))alg over K0. It is then 
lassi
al algebra that (K1(a))alg and (K1(b))algare isomorphi
 over K1. This is the uniqueness of \independent extensions"over models.2. There exist K1;K2, algebrai
ally 
losed sub�elds of K, whi
h are notindependent over their interse
tion. Take a; b; 
 three trans
endental indepen-dent elements in K. We 
laim that Q(a; b)alg and Q(
; a
 + b)alg are not alge-brai
ally independent over L := Q(a; b)alg \Q(
; a
+b)alg . First we 
he
k thatL = Qalg . Indeed, suppose there is some d 2 LnQalg ; then a
+ b 2 Q(d; 
)alg .Let P (X;Y ) be an irredu
ible polynomial with 
oeÆ
ients in Q(d)alg su
h thatP (
; a
+ b) = 0. The polynomial P (X;Y ) remains irredu
ible over Q(a; b)alg ,hen
e up to multipli
ation by an element of Q(a; b)alg it must be equal to(Y � aX � b). But this implies that both a and b are in Q(d)alg whi
h is im-possible. It is now 
lear that Q(a; b)alg and Q(
; a
+b)alg are not algebrai
ally



12 ELISABETH BOUSCARENindependent over Qalg as Q(a; b; 
; a
 + b)alg = Q(a; b; 
)alg has trans
enden
edegree three over Qalg and ea
h of Q(a; b) and Q(
; a
 + b) has trans
enden
edegree two.x3. Independen
e, simpli
ity, stability, modularity. We are �rst go-ing to de�ne what we mean when we talk about an abstra
t relation of in-dependen
e. In model theory, or more pre
isely in stability or in geometri
model theory, we often explain that we are working in stru
tures where one
an de�ne a \good" notion of independen
e and then pro
eed dire
tly to 
lassi-
al examples whi
h are parti
ular instan
es of su
h an abstra
t independen
e,without a
tually giving the pre
ise abstra
t de�nition. I will give here a pre
iseaxiomati
 de�nition be
ause I �nd it quite remarkable that there is a fairly\simple" axiomati
 way to de�ne what a relation of independen
e should be.On the other hand one should be aware that this de�nition is not a goodpra
ti
al tool: in pra
ti
e when given a stru
ture, if one wants to see if thereis a good relation of independen
e, one will use other de�nitions su
h as theoriginal de�nition of \forking" of Shelah. One should also be aware that I willpresent here as de�nitions (of simpli
ity and of stability in parti
ular) prop-erties whi
h were in fa
t theorems established a posteriori from the originalde�nitions.In se
tion 3.3, I present four easy examples of independen
e relations whi
hillustrate the various de�nitions and properties given in se
tions 3.1 and 3.2.Conventions: We have a 
omplete theory T in a 
ountable �rst-order languageL. In order to avoid heavy notation, we suppose that we are working insidea monster model M of T : this means that all sets of parameters we 
onsider,usually denoted A;B;C : : : are subsets of M, of 
ardinality stri
tly smallerthan the 
ardinality of M, and all models of T , usually denoted M;N : : : areelementary sub-models of M, also of 
ardinality stri
tly smaller than the 
ar-dinality ofM. De�nable sets will be usually denoted D;E; F : : : , for example,E is a de�nable set inM with parameters from A, will mean that E �Mn forsome n and that E is the set of n-tuples in M satisfying a parti
ular formula(in n free variables) with parameters from the set A. We do not make anydi�eren
e in notation between elements and �nite tuples.Furthermore we suppose that this monster modelM is saturated, whi
h hasthe following 
onsequen
es:- any in�nite 
onjun
tion of formulas of 
ardinality stri
tly smaller than jMjwhi
h is �nitely 
onsistent is realized in M.- any two n-tuples a and b satisfy exa
tly the same formulas over some setC if and only if there is an automorphism ofM whi
h takes a to b and �xes Cpoint-wise. In that 
ase we write that a �C b and say that a and b have thesame type over C.One brutal way to do this is to suppose that the 
ardinality of M is anina

essible 
ardinal. But one should not worry about this, everything that is



MODEL THEORY AND GEOMETRY 13done using using these properties of M, 
ould be done otherwise, with mu
hmore 
umbersome notation, by 
onstantly 
hanging the model we are workingwith to an ad ho
 suÆ
iently big one.3.1. Abstra
t independen
e. An independen
e relation in M is a rela-tion (or a 
olle
tion of triples) I(
; B;A) where 
 ranges over �nite tuples ofM and A;B over subsets ofM, with A � B �M, whi
h satis�es the following
onditions:1. (invarian
e) I is invariant under automorphisms of M2. (lo
al 
hara
ter) for any 
; B there is some 
ountable A � B su
h thatI(
; B;A)3. (�nite 
hara
ter) I(
; B;A) if and only if for every �nite tuple b from B,I(
; A [ fbg; A)4. (extension) for any 
; A and B � A, there is some d su
h that 
 � d overA and I(d;B;A)5. (symmetry) for any b; 
; A I(
; A [ fbg; A) if and only if I(b; A [ f
g; A)also6. (transitivity) suppose that A � B � C, then I(e; C;B) and I(e;B;A) ifand only if I(e; C;A).These properties make it legitimate to say, for any B,C and A subsets ofM, that B and C are I-independent over A if for every �nite subset 
 of C,I(
; B [ A;A).There is a �rst trivial example, where one puts in I all possible triples(
; B;A), A � B . In a (monster) algebrai
ally 
losed �eld K, if one setsI to be the set of triples (e;K2;K1) where K1 < K2 are algebrai
ally 
losedsub�elds ofK and e andK2 are independent overK1 in the sense of se
tion 2.3,then I is an abstra
t independen
e relation. We give four more examples inse
tion 3.3. In addition, we will see the two theories of enri
hed �elds presentedin se
tion 4, di�erentially 
losed �elds of 
hara
teristi
 zero and algebrai
ally
losed �elds with automorphisms.The independen
e relations in these di�erent examples do not all behavesimilarly. For many years, the 
ru
ial dividing line was between stable theoriesand unstable theories. In the past few years, this line has shifted to in
lude amu
h larger 
lass of theories in whi
h the tools of \geometri
 stability" apply,the simple theories.Simple theories were originally introdu
ed by Shelah in 1980, but it was onlyafter work of Hrushovski on spe
i�
 examples and then of Kim, and Kim andPillay, that the following property and its 
onsequen
es was isolated:The independen
e theorem: We say that the independen
e relation Isatis�es the independen
e theorem (over models) if,For any model M , and any a; b; 
; d �nite tuples su
h that- a and b are I-independent over M ,- 
 and a (resp. d and b) are I-independent over M ,
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 � d over M ,there is some e su
h that e and fa; bg are I-independent over M , e � 
 overM [ fag and e � d over M [ fbg.The independen
e theorem says that one 
an \amalgamate" types in anindependent way.Definition. We say that T is simple if there is a notion of independen
eI in T whi
h satis�es the independen
e theorem over models.We 
an already remark (whi
h is rather reassuring) that the �rst trivialexample, that is the relation I 
onsisting of all triples, does not satisfy theindependen
e theorem (take a 6= b; a = 
 and b = d).The independen
e theorem is in fa
t a very strong 
ondition, as it for
es theindependen
e relation to be uniquely determined:Proposition 3.1. If T is simple then the relation I for whi
h T satis�es theindependen
e theorem is uniquely determined (and is the notion of non-forkingas originally de�ned by S. Shelah).Definition. We say that T is stable if there is a notion of independen
e Iin T whi
h satis�es the following property (stationarity over models): forany model M of T , for any a; b �nite tuples su
h that b � a over M , and forany C �M , if a and C (resp. b and C) are I-independent overM , then a � bover C.Stability means that, if M � C, there is (up to isomorphism) only one wayC and a 
an be independent over M .If T is stable, then T is simple: given a; b; 
; d and M as in the indepen-den
e theorem, by the extension property, we know that there is some 
0 (resp.some d0) whi
h looks like 
 (resp. like d) over M [ a and is independent fromfa; bg over M . By stability, as 
 � d over M , then 
0 � d0 over M [ fa; bg, sowe also have 
0 � d over b.One of the main 
onsequen
es of stability, whi
h is used in an essential wayfor example in the group 
on�gurations type of 
onstru
tions, is that 
ertainsubsets turn out to be de�nable: given a modelM , a formula �(x; y) and sometuple b in M (the monster model), the set of tuples a in M su
h that �(a; b)holds is a de�nable subset of M , de�nable with parameters from M .Examples (1) and (2) from se
tion 3.3 are stable, (3) is simple but not sta-ble and (4) is not simple. Algebrai
ally 
losed �elds (ACFp) are stable, asshown by Property 1 in 2.3. Di�erentially 
losed �elds of 
hara
teristi
 zero(DCF0, se
tion 4.1) are stable, algebrai
ally 
losed �elds with an automor-phism (ACFA, se
tion 4.2) are simple but not stable.Finally, we will need an essential notion whi
h was originally introdu
ed byShelah in the 
ontext of stable theories, namely orthogonality:Definition. Let T be a simple theory,M �M, and E and F two de�nablesubsets inM. We say that E and F are orthogonal overM if for every �nite
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e of elements e from E, and for every �nite sequen
e of elements ffrom F , e and f are independent over M .3.2. Modularity. First we are going to need a lo
al version of stability;there may be stable de�nable subsets inside a model whose theory is not stable,as we will see in the next se
tion when looking at algebrai
ally 
losed �eldswith an automorphism.From now on we suppose that T is a simple theory, hen
e that there is a(unique) notion of independen
e whi
h satis�es the independen
e theorem.We also suppose that T has elimination of imaginaries (this is relevant forthe de�nition we give here of modularity). Re
all that T has elimination ofimaginaries if for every de�nable equivalen
e relation E onMn �Mn, thereis a de�nable map fE from Mn to some Mk su
h that, for all a; b in Mn,fE(a) = fE(b) if and only if a and b are E-equivalent. We mentioned in theprevious se
tion that algebrai
ally 
losed �elds had elimination of imaginaries.Definition. Let F � Mn be a de�nable subset with parameters from A.We say that F is stable if, for all model M � M, A � M , for all a; b tuplesfrom F and all C �M , if a � b overM , a and C are independent overM andb and C are independent over M , then a � b over M [ fCg.Keeping in mind that we wish to study the indu
ed stru
ture on some de-�nable subsets, we are also going to need:Definition. Let F � Mn be a de�nable subset with parameters from A.We say that F is stably embedded in M if for every k and every de�nablesubset D �Mnk, there is some de�nable D0 �Mnk, de�nable with parametersfrom F , su
h that D \ F k = D0 \ F k. In a stable theory, any de�nable set isboth stable and stably embedded. In an unstable theory, a set 
an be stablyembedded without being stable (it will be the 
ase for example of the �xed�eld in a model of ACFA0, see se
tion 4.2.1) or stable without being stablyembedded.The model theoreti
 algebrai
 
losure: Re
all that we say that ais algebrai
 over A (a 2 a
l(A)) if there is a �nite set F , de�nable withparameters from A, su
h that a 2 F ; equivalently if a has a �nite number of
onjugates by the automorphisms of M whi
h �x A point-wise.Definition. Let F be a de�nable subset of Mn. We say that F is lo
allymodular or one-based if for all C, all a; b �nite tuples of elements from F ,a and b are independent over a
l(C [ fag) \ a
l(C [ fbg). We say that thetheory T is one-based if the formula "x = x" (i.e. F =M) is one-based.The notion of modularity, in presen
e of stability, gives information of analgebrai
 type about the stru
ture. We will not use this result here but inparti
ular, any non trivial relation between three elements has to 
ome fromthe a
tion of an Abelian group. If we have a stable theory T and a de�nable



16 ELISABETH BOUSCARENgroup (G; :) �Mn, then there are a; b independent elements of G su
h that a; band a:b are pairwise independent but not independent (a:b is not independentfrom fa; bg). I am not going to prove this here but it is easy to 
he
k thatthis is true for example in algebrai
ally 
losed �elds for both addition andmultipli
ation (take a; b two algebrai
ally independent trans
endental elementsover Q). So the existen
e of three su
h elements is ne
essary for the existen
eof a stable de�nable group. Lo
al modularity implies that it is also a suÆ
ient
ondition.Proposition ([2℄). Suppose that T is stable and one-based and that thereare a; b; 
 �nite tuples in M whi
h are pairwise independent but not indepen-dent, i.e. a and b; 
 are not independent. Then there is an in�nite Abeliangroup de�nable in M.In fa
t one 
an draw mu
h stronger 
on
lusions from the existen
e of su
ha; b; 
; the above is just a very weak version of the existing results. We will notbe using this \group 
onstru
tion" here anyways but in 
ontrast the followingproposition is fundamental for what we are going to do. It is interesting to notethat it was proved in 1985, hen
e long before the relation with Diophantinequestions of the Manin-Mumford or Mordell-Lang type was realized.Proposition ([17℄). Let G be a de�nable group in Mn whi
h is stable, sta-bly embedded and one-based. Then for any m and for any de�nable set inMnm, X \Gm is a �nite boolean 
ombination of 
osets of de�nable subgroupsof Gm.It follows that G has a de�nable Abelian subgroup of �nite index. In anytheory of modules, by the quanti�er elimination to positive primitive formu-las, it is true that any de�nable subset is a boolean 
ombination of 
osetsof (positive primitive) de�nable subgroups. What the above says is that ifG is one-based, then the stru
ture indu
ed by M on G redu
es to that of a\generalized module", that is a module with predi
ates for some subgroups.Property 2, in se
tion 2.3, shows that algebrai
ally 
losed �elds are not one-based. The same argument will be used later in se
tion 4 to show that the twotheories of enri
hed �elds we 
onsider there are not one-based either. In fa
t,more generally, one-basedness rules out the existen
e of a de�nable �eld. But,as we will see, some of the de�nable subsets inside an enri
hed �eld 
an beone-based and this is at the heart of the appli
ations to algebrai
 geometry. Aswe have mentioned earlier, in the theory of (non enri
hed) algebrai
ally 
losed�elds, this 
annot happen, and no de�nable set 
an be one-based. This 
omesfrom the fa
t that this theory is \unidimensional", that is, any two de�nablesubsets are not orthogonal.The three stable examples from se
tion 3.3, are one-based. In order to
he
k this more easily, we will now introdu
e the notion of strongly minimalsets. This notion and its link to 
ombinatorial geometries was essential to thedevelopment of geometri
al stability theory.



MODEL THEORY AND GEOMETRY 17Strongly minimal sets: As we have mentioned above, the use of imagi-nary elements in the de�nition of lo
al modularity is 
ru
ial. There is a 
ontextthough in whi
h one 
an avoid using imaginaries in the de�nition (or avoidassuming that the theory eliminates imaginaries) namely that of strongly min-imal sets.We say that a de�nable set D �Mn is strongly minimal if for any otherde�nable F �Mn, F\D is �nite orDn(F\D) is �nite. We say that the theoryT is strongly minimal if the formula "x = x" is strongly minimal. The theoryACF0 of algebrai
ally 
losed �elds of 
hara
teristi
 0 is strongly minimal: aZariski 
losed subset of K is the zero set of a �nite number of polynomialequations in one variable, and, by quanti�er elimination, any de�nable subsetK is a boolean 
ombination of Zariski 
losed sets. Our �rst three examplesbelow in 3.3 are also strongly minimal.In a strongly minimal theory, (model-theoreti
) algebrai
 
losure gives riseto the unique independen
e relation satisfying the independen
e theorem,whi
h is also stable: e and C are independent over B if e does not belongto a
l(C) n a
l(B). Moreover, 
onsidered as a 
losure operator, algebrai
 
lo-sure in a strongly minimal set satis�es the ex
hange prin
iple and gives rise to apregeometry in the 
lassi
al sense (see for example [30℄). Then one-basedness,or lo
al modularity, 
orresponds to the lo
al modularity of the asso
iated pre-geometry in the usual 
ombinatorial use of the word and 
an be expressed inthe following way:Let T be a strongly minimal theory (with or without elimination of imag-inaries). Then T is lo
ally modular, or one-based, if and only if for all a; b�nite tuples of elements fromM su
h that a
l(a)\a
l(b) 6= a
l(;), a and b areindependent over a
l(a) \ a
l(b).3.3. Some basi
 examples. We present here four basi
 examples. Inthese four examples, as well as in algebrai
ally 
losed �elds, the relation ofindependen
e is given by the relation of (model theoreti
) algebrai
 
losure.This means that we de�ne A to be independent from B over C if and onlyif for no a 2 A, a 2 [a
l((A n fag) [ B [ C)℄ n [a
l((A n fag) [ C)℄. Thereare two important remarks to be made about this: �rst, this is a spe
ial sit-uation, there are many examples where independen
e is not given dire
tly bythe algebrai
 
losure, in parti
ular the two examples of �elds we will see inthe next se
tion. Se
ondly, it is not always the 
ase that (model theoreti
)algebrai
 
losure gives rise to an independen
e relation in our sense. In par-ti
ular the symmetry axiom is not always true (it 
orresponds to the fa
t thatmodel-theoreti
 algebrai
 
losure, 
onsidered as a 
losure operator, satis�esthe ex
hange property, whi
h is not always the 
ase).(1) Equality. Let L be the language 
onsisting only of equality, and 
onsiderthe theory in L whi
h says that there are in�nitely many distin
t elements.This is a totally 
ategori
al theory, that is, it has exa
tly one model (up toisomorphism) in every (in�nite) 
ardinality. It is 
learly strongly minimal.



18 ELISABETH BOUSCARENLet E be an in�nite set, hen
e a model. For A � B � E, and for �e 2 En,say that �e = (e1; : : : ; en) is independent from B over A if for every i, 1 � n,ei 2 B i� ei 2 A. This is an abstra
t relation of independen
e whi
h isstable and one-based (use the 
hara
terization of one-basedness in the 
ase ofstrongly minimal sets at the end of the pre
eding se
tion as this theory doesnot stri
tly speaking have elimination of imaginaries: one 
annot eliminate forexample the equivalen
e relation on n-tuples whi
h de�ne the same n elementset).Note that any set of pairwise independent elements is independent, hen
e(as one might expe
t) there is no de�nable group in any model.(2) Ve
tor spa
es. Take a 
ountable division ring S (�nite or in�nite) andV an in�nite dimensional ve
tor spa
e over S. Consider V as an LS-stru
ture,where LS is the language with addition, zero, and a unary fun
tion fs for ea
helement s of S, interpreted as s
alar multipli
ation by s in V . The theoryof in�nite S-ve
tor spa
es, whi
h we denote by TS, is 
omplete and admitsquanti�er elimination. If S is �nite, TS has one model up to isomorphismin every in�nite 
ardinality; if S is in�nite, TS has 
ountably many 
ountablemodels and one model in ea
h un
ountable 
ardinality. This theory is stronglyminimal. For C � B � V , and for A � V , say that A is independent from Bover C if A and B are linearly independent over C: for every a 2 A, a is inthe subspa
e spanned by B[ (Anfag) i� a is already in the subspa
e spannedby C [[(Anfag). Then again this is a stable one-based theory. The fa
t thatit is one-based 
orresponds exa
tly to the fa
t that ve
tor spa
es satisfy the
lassi
al dimension equality: for any �nitely generated subspa
es X;Y of V ,dim(X) + dim(Y ) = dim(X [ Y )� dim(X \ Y ):There is a group of 
ourse in V and if v and w are independent, then theset fv; w; v +wg is an example of a set whi
h is pairwise independent but notindependent.(3) The random graph. Take the language L = fRg with one binary rela-tion R and 
onsider the theory of the random graph ER whi
h is axiomatizedby the following in�nite s
heme of axioms:- R is symmetri
 irre
exive- for every distin
t a1; : : : ; an and b1; : : : ; bm , there exists x su
h that forall i; 1 � i � n, R(x; ai) and for all j; 1 � j � m, (not R(x; bj)).The theory of ER admits quanti�er elimination, has only one 
ountablemodel (but has 2� non isomorphi
 models of power � for every un
ountable
ardinal �). De�ne independen
e as in example (1) above, i.e. for A � B � E,and for �e 2 En, say that �e = (e1; : : : ; en) is independent from B over A if forevery i, 1 � n, ei 2 B i� ei 2 A.With this notion of independen
e, this theory is simple, as is easily 
he
ked.It follows that this is the unique possible way to obtain a relation of inde-penden
e satisfying the independen
e theorem. But the theory is not stable;
onsider two models M � N and two elements a and b su
h that a is not in



MODEL THEORY AND GEOMETRY 19relation via R to any element of N and b is related to exa
tly one elementwhi
h is in N nM . Then a �M b, a and b are ea
h independent from N overM , but it is not the 
ase that a �N b.(4) Real 
losed �elds. Consider the theory of the reals R in the languageLord = f0; 1;+;�; :; <g of ordered rings. The theory of R, the theory ofreal 
losed �elds, admits quanti�er elimination and is o-minimal (i.e. everyde�nable subset of R is a �nite union of singletons and open intervals, allowingendpoints from R [ f1;�1g)). Take the relation of independen
e given byreal 
losure (= algebrai
 
losure in the model theoreti
 sense):For A � B � E, and for �e 2 En, say that �e = (e1; : : : ; en) is independentfrom B over A if for every i, 1 � n, ei is in the real 
losure of the �eld generatedby B [ fe1; : : : ; ei�1g if and only if ei is already in the real 
losure of the �eldgenerated by A [ fe1; : : : ; ei�1g. This de�nes an independen
e relation whi
hdoes not satisfy the independen
e theorem: in a big non standard model takea; b; 
; d; su
h that R � 
 � a � b � d, (where x � y means that y isin�nitely bigger than x), everything being independent over R. No e 
ansatisfy both e � 
 over R [ fag and e � d over R [ fbg.The same kind of argument shows more generally that in the presen
e of ade�nable total ordering no independen
e relation 
an be simple.3.4. Some referen
es. Simple theories were �rst introdu
ed by Shelah in1980 in [42℄ as a 
lass stri
tly 
ontaining stable theories. It was not knownat the time if in simple theories, as de�ned there, forking was a symmetri
relation. The interest for this 
lass of theories was revived in the past few yearsfor two reasons. First, it was realized by Hrushovski that many very interesting
lasses of algebrai
 stru
tures were simple and that in these stru
tures forkingseemed to have very good properties (the independen
e theorem, symmetryet
). This was in parti
ular the 
ase of smoothly approximated stru
tures([16℄, for surveys see for example [6℄, [28℄ ), pseudo-�nite �elds (see [18℄) andof 
ourse a little later of algebrai
ally 
losed �elds with an automorphismwhi
hwe des
ribe in the next se
tion. At around the same time, Kim proved thatin simple theories forking was symmetri
 [22℄. This 
hanged the perspe
tiveon simple theories and also on what having a good relation of independen
eshould mean. The de�nitions of independen
e, simpli
ity et
. whi
h I gavein the pre
eding se
tions 
ome from further work on the subje
t by Kim andPillay [23℄. For a survey on simple theories with the main results and openquestions, there is [24℄. A book by F. Wagner has re
ently appeared on thissubje
t [44℄Con
erning geometri
 stability, the main referen
e is A. Pillay's book \Geo-metri
 Stability" ([34℄). More spe
i�
ally on stable groups, see the books byB. Poizat(the original [37℄ or the re
ent english version [38℄) and by F. Wagner[43℄.



20 ELISABETH BOUSCARENx4. Fields with extra stru
ture and the appli
ations. All the presentappli
ations of model theory to 
lassi
al Diophantine geometry questions �tinto a 
ommon general framework. Ea
h time, one uses a �eld with morede�nable sets than just the 
lassi
al 
onstru
tible ones and where a good di-
hotomy theorem is available whi
h enables one to re
ognize when a group isone-based. Three theories have been used so far:(1) separably 
losed �elds of 
hara
teristi
 p > 0 for the fun
tion �eld Mordell-Lang 
onje
ture in 
hara
teristi
 p [15℄;(2) di�erentially 
losed �elds of 
hara
teristi
 zero for the fun
tion �eldMordell-Lang 
onje
ture in 
hara
teristi
 0 [15℄;(3) algebrai
ally 
losed �elds with an automorphism, in 
hara
teristi
 zero forthe Manin-Mumford 
onje
ture [13℄ and the Tate-Volo
h 
onje
ture [39℄, aswell as in 
hara
teristi
 p for the 
ase of Drinfeld modules [40℄.We will present the two theories of �elds used in the 
hara
teristi
 zero 
ases,di�erentially 
losed �elds and algebrai
ally 
losed �elds with an automorphism,and then �nish with a short sket
h showing how to apply the model theoreti
results in the 
ase of a �eld with an automorphism in order to obtain theManin-Mumford 
onje
ture. At the end (se
tion 4.4) we give a sele
tion ofreferen
es for surveys or introdu
tory papers to all of these appli
ations.Both the theories we are going to dis
uss are expansions of algebrai
ally
losed �elds by a unary fun
tion.4.1. Di�erentially 
losed �elds of 
hara
teristi
 zero. (see [32℄ or[1℄).The language is the usual language of rings LR, whi
h we already used foralgebrai
ally 
losed �elds, together with a map Æ.The theory (DCF0) 
onsists of the following s
heme of axioms (i) to (iii):(i) K is a �eld of 
hara
teristi
 zero(ii) (K; Æ) is a di�erential �eld, that is, Æ is a derivation :Æ : K 7! K, su
h that, for all x; y in K, Æ(x + y) = Æ(x) + Æ(y) and Æ(xy) =xÆ(y) + yÆ(y).Before stating the third set of axioms, we need some de�nitions. Given adi�erential �eld (K; Æ), we de�ne the ringKÆ[X ℄ of di�erential polynomials (inone variable) over K to be the ring of polynomials in in�nitely many variablesK[X; Æ(X); Æ2(X); : : : ; Æn(X) : : : ℄.The order of the di�erential polynomial f(X) inKÆ[X ℄ is �1 if f 2 K and oth-erwise the largest n su
h that Æn(X) o

urs in f(X) with non zero 
oeÆ
ient.For example the di�erential polynomial equation Æ(X) = 0 whi
h de�nes the
onstants for the derivations Æ has order 1.(iii) K is existentially 
losed. In this 
ontext, this 
an be axiomatized bysaying (an in�nite s
heme): for any non-
onstant di�erential polynomials f(X)and g(X), where the order of g(X) is stri
tly less than the order of f(X), thereis a z su
h that f(z) = 0 and g(z) 6= 0.
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 Results: DCF0 is a 
omplete theory whi
h admits quanti�er elimi-nation and elimination of imaginaries. We 
all the models of DCF0 the di�eren-tially 
losed �elds. It is the model 
ompletion of the theory of di�erential �eldsof 
hara
teristi
 zero, so, in parti
ular, any di�erential �eld (K; Æ) embeds intoa di�erentially 
losed �eld (L; Æ). Di�erentially 
losed �elds are algebrai
ally
losed �elds and one 
an show that they have in�nite trans
enden
e degreeover Q.From now on (K; Æ) is a monster model of DCF0.4.1.1. Definable sets in DCF0. We saw earlier that in a \pure" alge-brai
ally 
losed �eld, the basi
 de�nable sets are the zero sets of polynomials.Here we start with the zero sets of di�erential polynomials. For any n letKÆ[X1; ::; Xn℄ = K[X1; ::; Xn; Æ(X1); ::; Æ(Xn); Æ2(X1); ::; Æ2(Xn); ::℄:We say that F � Kn is a Æ-
losed set if there are f1; : : : ; fr 2 KÆ[X1; : : : ; Xn℄su
h that F = f(a1; : : : ; an) 2 Kn; f1(a1; : : : ; an) = : : : = fr(a1; : : : ; an) =0g. The ring KÆ[X1; : : : ; Xn℄ is of 
ourse not Noetherian but the Æ-
losedsets (whi
h 
orrespond to radi
al di�erential ideals) form the 
losed sets of aNoetherian topology on K, the Æ-topology.We now 
onsider the Æ-
onstru
tible sets, that is, the �nite boolean 
ombi-nations of Æ-
losed sets. The elimination of quanti�ers for DCF0 means thatthis 
lass is 
losed under proje
tion hen
e that all de�nable sets (we 
all themÆ-de�nable sets) are Æ-
onstru
tible.Examples: First, if D � Km is a set de�nable in the language LR, withoutusing Æ, as K is algebrai
ally 
losed, D is 
onstru
tible. This is a parti
ular
ase of a Æ-
onstru
tible set. Exa
tly as in the 
ase of algebrai
ally 
losed�elds, if V is a variety de�ned over K, we 
an 
onsider V as a Æ-de�nable set.The �eld of 
onstants of K, Cons(K) = fa 2 K; Æ(x) = 0g is a Æ-
losedset whi
h is not 
onstru
tible; it is an algebrai
ally 
losed sub�eld of K.The indu
ed stru
ture on Cons(K) is that of a pure algebrai
ally 
losed�eld: if D is a Æ-de�nable subset of Kn, D \ Cons(K)n is a 
onstru
tiblesubset (in the language of rings LR) of Cons(K)n, de�nable with parametersfrom Cons(K).We de�ne the Æ-algebrai
 
losure of A, a
lÆ(A), to be equal to the alge-brai
 
losure (in the usual sense of �elds) of the di�erential �eld generated byA, i.e. the algebrai
 
losure of the �eld (A)Æ := Q(Æi (a); a 2 A; i � 0) (this isexa
tly the algebrai
 
losure of A in the usual model theoreti
 sense).4.1.2. Independen
e and rank. If C � A;B � K, we say that A andB are Æ-independent over C if a
lÆ(A) and a
lÆ(B) are algebrai
ally inde-pendent (or equivalently linearly disjoint) over a
lÆ(C). This Æ-independen
eis a notion of independen
e in the sense of se
tion 3.1 and DCF0 is stable.One 
an 
he
k the stability easily thanks to the quanti�er elimination: letK0 < K be a sub-model and let a and b be su
h that a � b over K0. So inparti
ular, the ideal I(a=K0) of the di�erential polynomials f in K0Æ [X ℄ van-ishing on a is equal to the 
orresponding ideal for b, I(b=K0). By de�nition ofÆ-independen
e, if K0 < K1 < K and if a (resp. b) and K1 are Æ-independent



22 ELISABETH BOUSCARENover K0, then the ideal I(a=K1) is generated by I(a=K0), and similarly for b,I(b=K1) is the ideal generated by I(b=K0). It follows that I(a=K1) = I(b=k1),and by quanti�er elimination this implies that a � b over K1.In fa
t the theory DCF0 is more than stable, it is what is 
alled !-stable,whi
h means that it is possible to assign a rank (taking possibly in�nite ordinalvalue) to ea
h de�nable set. We are only going to 
onsider de�nable sets with�nite rank and give the de�nition of one rank, whi
h will be suÆ
ient for ourpurpose. The reader should be aware though that there are many di�erentnotions of rank available in model theory and that it is now known that notwo of them 
oin
ide everywhere in DCF0 (the Las
ar rank, the Morley rank,the Æ-degree we are going to de�ne below...).If E is a di�erential sub�eld of K and if a is a �nite sequen
e of elementsof K, we de�ne the Æ-degree of a over E, dÆ(a=K), to be the trans
enden
edegree of the �eld (E(a))Æ , the di�erential �eld generated by E and a, over E.If D � Kn is a Æ-de�nable set, we de�ne the Æ-degree of D to be the maximumof the Æ-degrees of the elements of D.The �eld Cons(K) has Æ-degree equal to one: for any di�erential sub�eldE, for any a element of Cons(K), the di�erential �eld generated by E and a isequal to the �eld E(a). Moreover, and this is fundamental for the appli
ationto Diophantine geometry, up to de�nable isomorphism, Cons(K) is the uniqueÆ-de�nable �eld with �nite Æ-degree .In 
ontrast, if V is any variety (of positive dimension) de�ned over K, asa Æ-de�nable set, V has in�nite Æ-degree; this is in parti
ular the 
ase of Kitself. When it is �nite the Æ-degree is a good notion of rank, in parti
ular, ifdÆ(a=E) is �nite, then a and B � E are Æ-independent over E if and only ifdÆ(a=E) = dÆ(a=B).4.1.3. Modularity and the di
hotomy theorem. The results below
ome from [19℄ and [15℄.The �eld (K; Æ) is not one-based, but neither is the de�nable sub�eldCons(K),by exa
tly the same argument as for the theory ACFA0: 
onsider a; b; 
 in the�eld Cons(K) whi
h are trans
endental over Q and algebrai
ally independent.In order to be able to do this, we have to suppose that Cons(K) has big enoughtrans
enden
e degree over Q, but we 
an always suppose that by going to somebig model K 0 extending K. Then a
lÆ(a; b) = Q(a; b)alg (the �eld algebrai

losure) and a
lÆ(
; a
+ b) = Q(
; a
+ b)alg interse
t in Qalg , but they are notalgebrai
ally independent over Qalg .For our purpose, the interesting feature of di�erentially 
losed �elds of 
har-a
teristi
 zero, is that really, the 
onstant �eld is the \unique" de�nable set ofÆ-degree one whi
h is not one-based. Let us make this statement more pre
ise.Let D be a de�nable set, we have de�ned in 3.1 the notion of orthogonal-ity. In this parti
ular 
ontext, D and Cons(K) are orthogonal if, for every�nite sequen
e of elements d from D, for every �nite sequen
e of elements bfrom Cons(K), and for every sub�eld E = a
lÆ(E), a
lÆ(Ea) and a
lÆ(Eb) arealgebrai
ally independent over E.
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all that a Æ-de�nable set D � Kn is strongly minimal if, for any Æ-de�nable F � Kn, F \D is �nite or 
o�nite in D. A strongly minimal set has�nite Æ-degree. The 
onstant �eld is strongly minimal.The di
hotomy theorem for DCF0. Let D � Kn be a strongly mini-mal Æ-de�nable subset. Then D is one-based if and only if D and the �eld of
onstants, Cons(K), are orthogonal.Non-orthogonality between two strongly minimal sets is a very strong rela-tion. In parti
ular, if D is a Æ-de�nable group whi
h is non-orthogonal to the�eld Cons(K), then D will be Æ-de�nably isomorphi
 to G(Cons(K)), whereG is an algebrai
 group de�ned over the �eld Con(K). The di
hotomy theoremthen means that the only strongly minimal groups whi
h are not one-basedare exa
tly the ones arising from algebrai
 groups over the 
onstants.Hrushovski's proof of the di
hotomy theorem in [15℄ uses the fa
t thatstrongly minimal sets in DCF0 are abstra
t Zariski geometries in the senseof Hrushovski-Zilber ([21℄). One 
an then apply their abstra
t di
hotomy the-orem whi
h says that if a strongly minimal set D is a non lo
ally modularZariski geometry, there is a strongly minimal �eld de�nable in D. Then oneuses the fa
t that the �eld Cons(K) is, up to de�nable isomorphism, theunique strongly minimal �eld Æ-de�nable in K. For introdu
tory surveys toZariski geometries, see [20℄ or [31℄. A dire
t proof of the di
hotomy theoremfor DCF0 was given very re
ently (two years after this tutorial a
tually tookpla
e) in [36℄.4.2. Algebrai
ally 
losed �elds with an automorphism. An exposi-tion of the basi
 properties (axiomatizability, de
idability et
.) of ACFA, 
anbe found in Ma
intyre's introdu
tory paper [27℄. The in-depth model theo-reti
 analysis was 
arried out �rst by Chatzidakis and Hrushovski in [4℄, and
ontinued in [5℄.The way we are going to present this theory will make it seem very similarto the previous one, di�erentially 
losed �elds. But although the results arevery similar, the a
tual proofs need not be. One should note though that againin [36℄, a new proof of the di
hotomy theorem for ACFA in 
hara
teristi
 zerois given, along similar lines as the one for the di�erential 
ase.A di�eren
e �eld is a �eld K together with an automorphism �, whi
hwe 
onsider as an LR [ f�g-stru
ture.The 
lass of existentially 
losed models for di�eren
e �elds turns out to beaxiomatizable (this fa
t needs a proof of 
ourse). Here we restri
t ourselves tothe 
ase of 
hara
teristi
 zero.The axioms (ACFA0) say that:(i) K is a an algebrai
ally 
losed �eld of 
hara
teristi
 zero(ii) (K;�) is a di�eren
e �eld, i.e. � is an automorphism of K.(iii)K is existentially 
losed : every di�eren
e equation whi
h has a solutionin some extension of K has a solution in K.



24 ELISABETH BOUSCARENACFA0 is not a 
omplete theory and in order to make it 
omplete oneneeds to des
ribe the a
tion of the automorphism � on the algebrai
 
losureof Q. This theory does not have elimination of quanti�ers, but it does haveelimination of imaginaries. Every di�eren
e �eld of 
hara
teristi
 zero embedsinto a model of ACFA0.Let us mention a striking re
ent result about ACFA [14℄ answering the longopen question: what is the theory of a nonstandard Frobenius automorphismor more pre
isely, what is the theory of an ultraprodu
t of the di�eren
e �elds(Falgp ; � : x 7! xp) for all p prime numbers ? The answer is that ACFA isexa
tly the theory of all nonprin
ipal ultraprodu
ts of (Falgp ; �q : x 7! xq),when q varies on the set of powers of prime numbers.From now on (K;�) is a monster model of ACFA0.4.2.1. Definable sets in ACFA0. Here the basi
 sets are the zero setsof di�eren
e polynomials: for any n letK� [X1; ::; Xn℄ = K[X1; ::; Xn; �(X1); ::; �(Xn); �2(X1); ::; �2(Xn); ::℄:We say that F � Kn is a �-
losed set if there are f1; : : : ; fr 2 K�[X1; : : : ; Xn℄su
h that F = f(a1; : : : ; an) 2 Kn; f1(a1; : : : ; an) = : : : = fr(a1; : : : ; an) =0g. The �-
losed sets form the 
losed sets of a Noetherian topology on K, the�-topology. Consider now the �-
onstru
tible sets. It is not true that every�-de�nable set is �-
onstru
tible (the theory does not eliminate quanti�ers).Here is one example of a �-de�nable set whi
h is not �-
onstru
tible: pi
k ain some extension of K, and extend � to the �eld K(a) by setting �(a) = a.In order to extend � to the algebrai
 
losure of K(a), there are 
hoi
es tobe made, in parti
ular one 
an either 
hoose to have � �x point-wise the twosquare roots of a , or to have � ex
hange them. This means that the setfx;�(x) = x ^ 9t (t2 = x ^ �(t) 6= t)g is not �-
onstru
tible.The 
lass of �-de�nable sets is the 
losure under �nite boolean operationsand proje
tions of the �-
losed sets.The �eld Fix(K) = fa 2 K;�(a) = ag, the �xed �eld of � in K, is �-
losed. It is not algebrai
ally 
losed but it is pseudo-�nite, i.e. it is an in�nitemodel of the theory of all �nite �elds. It is also a \pure" �eld : if D is any�-de�nable subset of Kn, D \ Fix(K)n is a de�nable subset (in the languageLR) of Fix(K)n de�nable with parameters from Fix(K).We de�ne the �-algebrai
 
losure of A, a
l�(A), to be equal to the alge-brai
 
losure (in the usual sense of �elds) of the di�eren
e �eld generated byA, i.e. the algebrai
 
losure of the �eld (A)� := Q(�i (a); a 2 A; i 2 Z).4.2.2. Independen
e, stability and modularity. If C � A � K andC � B � K, we say that A and B are �-independent over C if a
l�(A) anda
l�(B) are algebrai
ally independent (or equivalently linearly disjoint) overa
l�(C). We de�ne the �-degree of a de�nable set exa
tly like the Æ-degree;if D � Kn is a �-de�nable set, the �-degree of D is the maximum of thetrans
enden
e degrees of the di�eren
e �elds generated by elements of D. The�xed �eld of �, Fix(K) has �-degree one.



MODEL THEORY AND GEOMETRY 25This gives a notion of independen
e whi
h satis�es the independen
e theo-rem over models, whi
h we will not prove here. Hen
e the theory is simple.But it is not stable, be
ause the �eld Fix(K) is not stable: one 
an �ndE = a
l�(E) � K and a; b; 
 2 Fix(K) n E, su
h that a and 
 on the onehand, b and 
 on the other hand, are �-independent over E, but su
h thatpa� 
 2 Fix(K) and pb� 
 =2 Fix(K) (note that this is the same examplewhi
h shows that quanti�er elimination does not hold). This 
ontradi
ts theuniqueness of independent extensions.Exa
tly as in the 
ase of the �eld of 
onstants in DCF0, the �eld Fix(K) isnot one-based and there is also a very powerful di
hotomy theorem.The di
hotomy theorem for ACFA0. Let D � Kn be a �-de�nablesubset of �nite �-degree. Then D is stable, stably embedded and one-based ifand only if D and the �xed �eld, Fix(K), are orthogonal.4.3. Appli
ation to the Manin-Mumford 
onje
ture. Re
all the state-ment of the 
onje
ture from se
tion 2.2. Let A be an Abelian variety de�nedover Qalg and let X be a sub-variety of A; then Tor(A) \X is a �nite unionof translates of subgroups of Tor(A).We have explained already that this is the same as showing that Tor(A) isof linear type (se
tion 2.2), and hen
e, by se
tion 3.2 \stable, stably embeddedand one-based", ex
ept that Tor(A) is not de�nable in the algebrai
ally 
losed�eld K. Indeed, as we remarked earlier, there are no de�nable one-basedsubsets in a \pure" algebrai
ally 
losed �eld , so to make this approa
h workone must put additional stru
ture on the �eld.So the strategy is going to be: go to some bigger algebrai
ally 
losed �eld Land add new stru
ture on L, hen
e getting new de�nable sets, in su
h a waythat there is some new de�nable subgroup of A, denoted H , whi
h 
ontainsTor(A), and whi
h we 
an prove is stable, stably embedded and one-based.It is not immediately obvious that this is enough: this would say thatTor(A) \ X is 
ontained in H \ X , whi
h itself is a boolean 
ombinationof translates of subgroups of H (de�nable in the bigger �eld with the extrastru
ture). But it is then fairly straightforward to 
he
k, using the fa
t thatX is Zariski 
losed, that this does imply that X \ Tor(A) is a �nite union oftranslates of subgroups of Tor(A).Let k < Qalg be a �nite extension of Q su
h that A is de�ned over k.We want to �nd an algebrai
ally 
losed �eld L and an automorphism � of Lsu
h that (L; �) is a model of ACFA0 and su
h that there is some �-de�nablesubgroup of A(L) (the group of L-rational points of the Abelian variety A)
ontaining Tor(A) and whi
h is stable, stably embedded and one-based.What kind of group H are we looking for in (L; �)? How 
an we be surethat this H will indeed be stable, stably embedded and one-based, i.e. bythe di
hotomy theorem, will be orthogonal to Fix(�)? Let us 
onsider groupsde�ned by rather simple di�eren
e equations. FirstH1 = fa 2 A(L);�(a)�a =0g. This is A(Fix(�)), so of 
ourse H1 is not orthogonal to Fix(�) and hen
e



26 ELISABETH BOUSCARENis not stable one-based. Similarly if Hn = fa 2 A(L);�n(a) � a = 0g, this isA(Fix(�n)). The �eld Fix(�n) is a �nite extension of Fix(�) and it followsthat there is a �-de�nable map (with �nite �bers) from (Fix(�))r (for somer > 0) onto Hn whi
h is hen
e also not orthogonal to Fix(�).Now these groups are parti
ular 
ases of groups de�ned by polynomial equa-tions. Let P (T ) = mnTn + : : : +m1T +m0, where the mi's are in Z. Thende�ne HP = fa 2 A(L);mn�n(a) + : : :+m1�(a) +m0a = 0gwhere + denotes addition in A, and for a 2 A(L) and m 2 N, ma denotes asusual a+ :::+ a, m times.Then HP is a �-de�nable subgroup of A(L) of �nite �-degree. If, for somen � 1, the polynomial P [T ℄ is not prime to Xn�1, i.e. if P [T ℄ has a root whi
his also a root of unity, then HP is 
ontained in Ker(�n� 1) and the argumentgiven just above implies that HP is not stable one-based. The remarkableresult at the heart of Hrushovski's proof of the Manin-Mumford 
onje
ture fornumber �elds is that the 
onverse is true:Proposition 4.1. The group HP is orthogonal to the �eld Fix(�) if andonly if P [T ℄ has no root whi
h is also a root of unity.The proof of this result goes through an analysis of the ring of �-de�nableendomorphisms of A(L) when A is a simple Abelian variety and then variousredu
tions to minimal 
ases, using in parti
ular the following fa
t: if 0 7!A1 7! A2 7! A3 7! 0 is an exa
t sequen
e of �-de�nable homomorphisms,where the Ai's are �-de�nable groups, then A2 is one-based if and only if bothA1 and A3 are one-based.So from the di
hotomy theorem for ACFA0 one now knows that if P [T ℄ hasno root whi
h is also a root of unity, then HP is stable, stably embedded andone-based.Now in order to apply this, one needs to show that there is an automorphism� of Qalg , �xing the number �eld k, and a polynomial P [T ℄ with integer
oeÆ
ients su
h that no root of P [T ℄ is a root of unity and HP 
ontainsTor(A). This part of the proof involves no model theory and 
onsists of twosteps. First, one �xes a prime p (of good redu
tion for A) and one 
onsidersonly the p0-torsion of A, denoted Torp0(A), that is, the torsion elements oforder prime p. By applying a 
lassi
al result of Weil ([45℄) one gets su
han automorphism �1 and a polynomial P1(T ) with HP1 
ontaining Torp0(A).Then using two di�erent primes p and q, and a result of Serre ([41℄, pages 33-34and 56-59), one gets the required automorphism working for the full torsionsubgroup.Fix su
h an automorphism �, and extend the di�eren
e �eld (Qalg ; �) toa model (L; �) of ACFA0. In (L; �), the group HP is of linear type, hen
eX\HP is a �nite boolean 
ombination of translates of (�-de�nable) subgroupsof HP . And we 
an 
on
lude that X \ Tor(A) is a �nite union of translatesof subgroups of Tor(A).



MODEL THEORY AND GEOMETRY 27An important remark: this sket
h of the proof is 
orre
t but does not yielde�e
tive bounds for the number of translates involved in the representation ofX\Tor(A) as a �nite union. In fa
t Hrushovski shows that one 
an bound thenumber of translates involved by a fun
tion of the degree of the polynomialP [T ℄ and of the size of its 
oeÆ
ients. But if one is not 
areful, one loosestra
k of any e�e
tive bounds on the degree and 
oeÆ
ients of the polynomialP [T ℄ during the passage from the p0-torsion to the full torsion via the Serreresult.So Hrushovski in fa
t, in order to deal with the full torsion group, givesa more 
ompli
ated proof, whi
h uses model theory and yields sharper infor-mation. What I have des
ribed above is exa
tly his proof for the 
ase of theelements of p0-torsion , Tor0p(A). In that 
ase, the 
lassi
al result of Weil men-tioned above, (a result about the 
hara
teristi
 polynomial of the Frobeniusin an Abelian variety de�ned over Fp ), provides dire
tly a polynomial P (T )su
h that its degree and the size of its 
oeÆ
ients are bounded by a fun
tionof p, and of invariants of A (dimension, degree). In order to deal with the fulltorsion and keep e�e
tive bounds, one needs to work simultaneously with twodi�erent automorphisms, � and � , hen
e two distin
t models of ACFA0, andtwo di�erent polynomials, P [T ℄ and Q[T ℄, su
h that in (Qalg ; �), HP 
ontainsthe torsion elements of order prime to p, and in (Qalg ; �), HQ 
ontains thetorsion elements of order a power of p.One last remark: in fa
t Hrushovski's result in [13℄ is more general than theone I quoted. He proves the result for all 
ommutative algebrai
 groups, andnot only Abelian varieties.4.4. A sele
tion of referen
es on the model theory of �elds and theappli
ations to Algebrai
 Geometry. Some general surveys on geometri
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 Logi
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ally 
losed �elds with an automorphism (ACFA)and the Manin-Mumford 
onje
ture or on the Mordell-Lang 
onje
ture:� J.B. Goode (B. Poizat) H.L.M. (Hrushovski-Lang-Mordell), S�eminaireBourbaki, expos�e 811, F�evrier 1996.
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