MODEL THEORY AND GEOMETRY
(TUTORIAL)

ELISABETH BOUSCAREN

This paper is based on a series of three lectures that I gave during the
LC’2000, in the context of the “tutorials” which have now become a tradition
at the European meetings of the ASL. I have kept fairly close to the actual
format and style of the talks.

It is always difficult to identify precisely the audience such a tutorial should
address. A fair number of broad and ambitious surveys have already been
published on the subject of the applications of model theory to algebraic ge-
ometry (see section 4.4). I did not, during this tutorial, choose to address the
specialists of the subject. The audience I had in mind consisted of both young
“inexperienced” researchers in model theory and more “mature” logicians from
other parts of logic. Rather than attempting one more broad survey, I tried to
present some of the main concerns of “geometrical model theory” by looking
at concrete examples and this is what I will try to do also in the present paper.

We will discuss three algebraic examples, algebraically closed fields, differ-
entially closed fields and difference fields (fields with automorphisms). The
geometric application we will take up as illustration is Hrushovski’s approach
to the Manin-Mumford conjecture. This is based on a fine study of the model
theory of difference fields and is quite emblematic of the method. Perhaps the
key technical notion is that of “local modularity” (or “one-basedness”), which
arises in a purely model theoretic setting. We will see that the Diophantine
conjectures of the Manin-Mumford type can be rephrased in terms of this no-
tion. Furthermore, as one thinks through the rephrasing process, one realizes
the need for the introduction of auxiliary algebraic theories such as the theory
of difference fields.

I would like to thank the anonymous referee, despite my temporary shock
at the initial suggestion that the paper be totally rewritten and turned into
a survey of a completely different type. Fortunately, he/she also provided a
long list of detailed comments and less draconian suggestions, in case I did not
choose to follow this first drastic piece of advice. I have found these comments
very helpful and have followed most of these suggestions.

§1. “Geometric” model theory. Until ten years ago, the most striking
applications of model theory to algebra or number theory had typically been
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obtained using only the most basic tools of model theory, notably the compact-
ness theorem and the technique of quantifier elimination, though the algebraic
and analytic ingredients had been considerably deeper and more varied. This
applies for example to the work of Ax-Kochen-Ershov on valued fields (1965),
with later applications by Denef to the computation of p-adic integrals, to Ax’s
work on the elementary theory of finite fields (1968), to work of Denef, van den
Dries and Macintyre on the p-adics (1970’s and 1980’s). It applies also to some
of the more recent work on o-minimal structures, such as Wilkie’s results on
the theory of the reals with exponentiation and it’s subsequent generalization
to broad classes of analytic functions (see [10]).

In parallel pure model theory flourished at the same period, beginning with
Morley’s characterization of uncountably categorical theories (1965) and then
with Shelah’s monumental work on classification theory. Applications to al-
gebra of these more sophisticated notions and results were at first rather few:
let us mention the existence and uniqueness of the differential closure of a dif-
ferential field of characteristic zero (Blum 1977), and the applications to the
theory of modules (started by Garavaglia around 1978). It was soon apparent
that the tools of the theory of stability were particularly well suited to the
model theoretic analysis of groups and fields. Around 1980, Poizat introduced
the notion of generic of a stable group which was directly inspired by the corre-
sponding notion for algebraic groups and which became one of the main tools
in the subject.

Then in the mid-eighties, under the influence of Zilber first and then of
Hrushovski, stability theory started evolving and focusing on the study of the
fine local behavior of structures of finite dimension. This was the beginning of
what has been for some years known as “geometric stability” or more generally
“geometric model theory”.

Stability theory a la Shelah, developed a theory of abstract independence
and dimension. Although this generalized the classical algebraic notions of in-
dependence (linear independence, algebraic independence), the methods used
were often those of infinite combinatorics. One of the main aspects of the the-
ory for example is the classification of structures according to which infinite
combinatorial objects they interpret: orderings, trees...

Geometric stability, as its name indicates, took much of its inspiration from
geometry, both in the sense of combinatorial geometries (or matroids) and
of algebraic geometry. This relationship turned out to go both ways: the
abstract notions developed in model theory were applied to the disciplines
of their origins in order to give new proofs or new results there. We will
not discuss here combinatorial geometries nor any of the results that were
proved in this domain by applying model theoretic tools or ideas (results of
Zilber on homogeneous finite geometries for example [46] or results of Evans
and Hrushovski about “algebraic matroids”[7], [8]), but we will focus on the
relationship with algebraic geometry.
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Geometric stability investigates the geometric properties of the abstract in-
dependence relation introduced by Shelah. One of the main focus points is the
study of the algebraic structures coded via this relation (groups, fields). These
questions and the results obtained can be considered to be, at a higher level
of generality, in the direct line of two “classical” and well-known theorems:

— the old theorem of geometry which says that a Desarguesian projective
geometry of dimension at least 3 is the projective geometry over some division
ring;

— the theorem of Weil which constructs an algebraic group from a generically
rational associative operation on an algebraic variety.

One of the central notions in the subject is that of “one-basedness” or local
modularity, which was introduced into the subject independently from several
different points of view. For sets of “dimension one”, local modularity corre-
sponds exactly to the cases where the combinatorial geometry associated to
the dependence relation is affine, projective or trivial. The Zilber Trichotomy
principle states that if D is a set of dimension one, there are only three possi-
bilities:

— either the geometry is trivial and there is no group definable in D (the
geometry associated to D is then the infinite set with no structure, example
(1) in section 3.3);

— or the geometry is affine or projective and every group definable in D is
of linear type (see the precise definition in section 2.2). The structure D then
behaves very similarly to a vector space (example (2) in section 3.3);

— or there is an algebraically closed field definable in D.

This principle was shown to be false in general by Hrushovski [12]. But it holds
with extra assumptions, namely in the context of abstract Zariski geometries,
defined by Hrushovski and Zilber [20, 21]. This trichotomy, or more precisely
this dichotomy in the case of a group of dimension one plays an essential role
in the applications to the Manin-Mumford type of conjectures.

The general “abstract” framework in which this material was originally de-
veloped, namely stability theory, was eventually seen as part of a broader one,
“simplicity theory”, which has now become a very active aera in model the-
ory. This is the point of view we will adopt for the presentation of the abstract
notions involved.

This ends our introductory sketch of geometric stability theory. In the next
section (2) we will discuss the theory of algebraically closed fields, which is the
model theoretic context for classical algebraic geometry, and explain how the
Manin-Mumford type of conjectures fit within the model theoretic framework.

In the third section, we will give the abstract definition of independence and
state the definition and main results about local modularity. These notions will
be illustrated by four basic examples, presented at the end of the section (3.3).
In the fourth and last section, we present two of the theories of fields which
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are used in Hrushovski’s proofs of the algebraic geometry results and finish in
4.3 with a brief sketch of the actual strategy for the proof of Manin-Mumford.
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§2. Algebraically closed fields and the Mordell-Lang conjecture.

2.1. The theory of algebraically closed fields. We consider fields K
as first-order structures in the usual language of rings: Lg = {0,1,+, —,.}.

The theory of algebraically closed fields ACF is axiomatized by axioms which
say:

(i) K is a field

(ii) K is algebraically closed, that is, every polynomial in one variable with
coefficients in K has a solution in K. This can be axiomatized by the following
scheme: for every n > 1

Yy, ... Yy, 3z z" + yrz™ 1 + ... +y, = 0.

Every field L embeds into an algebraically closed field; there is a smallest
such algebraically closed field containing L, the algebraic closure of L, which
we denote by L9 and which is unique up to isomorphism over L. The theory
ACF is not complete but it suffices to specify the characteristic of the field
to obtain a complete theory. For p > 0, we let ACF,, denote the (complete)
theory of algebraically closed fields of characteristic p. In fact the theory ACF,
is categorical in every uncountable cardinality, that is, has a unique model up
to isomorphism in every uncountable cardinality. Indeed if K, K’ are two
models of ACFy, then K and K' are isomorphic if and only if they have the
same transcendence degree over the prime field of characteristic p.

From now on, for the sake of simplification, we consider only the theory
ACFy of algebraically closed fields of characteristic zero.

2.1.1. DEFINABLE SUBSETS. Let K be a model of ACFy of infinite tran-
scendence degree over Q.

In first-order logic, we study the subsets defined by first-order formulas. We
start with the basic or atomic subsets, defined using the basic operations and
relations in the language. In this particular context, our basic sets will be:

e THE ZARISKI CLOSED SETS: E C K" is Zariski closed if E is the zero-
set of a finite number of polynomials over K, that is, if E = {(a1,...,a,) €
K”;fl(al,... ,an) = ...= fr(al,... ,an) = 0},f01'f1,... afr € K[Xl, 7Xn]

The Zariski closed sets define a Noetherian topology on J,, K™, the classical
ZARISKI TOPOLOGY.

e THE ZARISKI CONSTRUCTIBLE SETS: the finite boolean combinations (clo-
sure under finite intersection, finite union and complement) of the Zariski
closed sets. They are exactly the sets definable by quantifier-free formulas in
the language Lp.

e QUANTIFIER ELIMINATION: the theory ACFy has quantifier elimination,
which means exactly that the projection of a constructible set is also con-
structible and hence that THE DEFINABLE SETS ARE EXACTLY THE CON-
STRUCTIBLE SETS.

REMARK: The model theoretic notion of algebraic closure (see section 3.2)
coincides with the usual field notion of algebraic closure.
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The theory ACF( does not only eliminate quantifiers but it also ELIMINATES
IMAGINARIES: for every definable equivalence relation ' on K™ x K", there
is a definable map fr from K™ to some K™ such that for all a,b in K"
fe(a) = fe(b) if and only if a and b are E-equivalent.

2.1.2. VARIETIES AND ALGEBRAIC GROUPS ARE DEFINABLE. For those
who already know their way around algebraic varieties and algebraic groups,
the aim of this section is to explain how these objects can be considered as
definable objects in the theory of algebraically closed fields. Those unfamiliar
with the subject can consider them directly as definable subsets and definable
groups with some specific properties and this should be sufficient for them to
understand the statement of the Mordell-Lang conjecture in the next section.

For a more complete and elaborate introduction to the model theoretic ap-
proach to algebraic varieties see [35]. For basic definitions and results in alge-
braic geometry, see for example [25] and [26].

AN AFFINE VARIETY over K is a Zariski closed subset of K", for some
n > 1, endowed with the induced Zariski topology from K™. A QUASI-AFFINE
VARIETY is a Zariski open subset of an affine variety, also endowed with the
induced topology. Quasi-affine sets are special cases of Zariski constructible
sets.

Let V. C K™ and W C K™ be two quasi-affine varieties, a MORPHISM from
V to W is a map f from V to W which is locally rational (or regular): for
every a € V, there is an open subset U of V containing a and polynomials
Pi,...,Pn,Q1,...,Qpn in K[X] such that on U, the @;’s are non zero and

f(@) = (P/Qi(2), .-, P /Qm(z))-

By the compactness theorem, f is a definable map from V to W, i.e. the graph
of f is definable: there are open subsets Uy,..., U of V such that on each U;
f is given by a fixed tuple of rational fractions.

An ISOMORPHISM is a bijective morphism whose inverse is also a morphism.

So far, we can see directly that we are dealing with definable sets and maps.
It is a little more difficult in the case of an abstract variety which is obtained
by gluing together a finite number of affine varieties.

A VARIETY V over K is a set V covered by a finite number of subsets
Vi,..., Vi together with some maps fi,..., fi, where each f; is a bijection
between V; and some affine variety U;, such that:

(i) for each i, j the set U;; := f;(V; N'V;) is open in U;

(ii) the map f;; := fio f;l is an isomorphism from Uj; into Uj;.

The U;’s are called the affine charts of V.

The Zariski topology on V is defined by declaring that S C V is open if
and only if for each i, f;(S N V;) is open in U;. A morphism from a variety
V = (Vi, fi,Us) to a variety W = (W;, g, Z;) is a map h from V to W which
is a morphism when read in the charts, i.e. h is continuous and for any i, 7,
the map g; o ho f; ' restricted to (the quasi-affine variety) f;(h=*(W;) N V;))
is a morphism.
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There are different possible ways to identify a variety V', given by a fixed
system of affine charts, (V;, fi;, U;), to a definable set. One way is to consider V
to be the disjoint union of its affine charts Uy, ... , U, modded out by the de-
finable equivalence relation which identifies U;; and Uj; via the definable maps
fij. By elimination of imaginaries this will indeed be (definably isomorphic
to) a definable subset and the morphisms will be definable maps.

Notation: If V is a variety defined over K, we denote by V(K) the set of
K-rational points of V, or equivalently, if V' is seen as a definable set in K™,
the subset of tuples in K™ which belong to the definable subset V.

We need two more definitions: An ALGEBRAIC GROUP (F is a variety G
equipped with a group multiplication . : G x G — G and an inverse ! : G —
G which are morphisms for the variety structures on G and G X G. So in
particular, an algebraic group is a definable group, that is, a group which lives
on a definable set and such that the group multiplication is a definable map.

The additive and multiplicative groups of the field K, (K™, +) and ((K*)",.)
are affine algebraic groups (algebraic groups which are isomorphic to affine
varieties). So are all the linear groups, i.e. all the closed subgroups of GL,(K).

We will be interested in very different groups, the ones which have no affine
subgroup at all. An ABELIAN VARIETY is an algebraic group G which is a
complete irreducible variety, where complete means that, for any variety Y,
the projection map 7 : G X Y — Y is closed (i.e. takes closed sets to closed
sets).

The Abelian varieties of dimension one are exactly the elliptic curves, in fact
the fundamental examples of Abelian varieties are the Jacobians of curves.
Over C the Abelian varieties are complex tori, that is they are of the form
C" /A where A is a discrete subgroup of rank 2n (but not every complex torus
is an Abelian variety).

Abelian varieties are commutative divisible groups. They have a certain
number of other rather strong properties of which I will only mention one: in
an Abelian variety G, for every n > 0, the number of torsion elements of order
n is finite but the torsion subgroup of G, Tor(G) is infinite and Zariski dense
in G.

So we can consider Abelian varieties over K as a specific class of commu-
tative divisible definable groups with a certain number of additional “nice”
properties.

2.2. The Mordell-Lang conjecture. Recall that a commutative group
I is said to be of finite rank if there is a finitely generated subgroup I'g such
that for every v € I, for some integer n > 1, ny € I'y. In any commutative
group G, the group of torsion elements T'or(G) is of course of finite rank.

We now have all the necessary elements in order to give the statement of
the Mordell-Lang conjecture for Abelian varieties over a field of characteristic
Zero.
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THE MORDELL-LANG CONJECTURE. Let K be an algebraically closed field
of characteristic zero, let A be an Abelian variety over K, X a closed irreducible
subset of A and T a finite rank subgroup of A(K). Then X NT is a finite union
of translates of subgroups of I', that is, there are m > 1, Hy,... , H,, subgroups
of I and elements by, ..., b, in T, such that

xXnr=Jb+H.
i=1
There are two different cases, “the number field case” when K is the alge-
braic closure of (, that is when A is in fact defined over a number field (a
finite algebraic extension of ), and “the function field case” when A is not
defined over Q9.

The Mordell conjecture follows from the case when X is a curve defined
over a number field &, A is the Jacobian of X and T is the (finitely generated)
group of k-rational points of A.

The Manin-Mumford conjecture is the particular case when K is the alge-
braic closure of Q and the group I is the group Tor(A). By taking Zariski
closures, one can give the equivalent statement:

THE MANIN-MUMFORD CONJECTURE. Let K be an algebraically closed field
of characteristic zero, let A be an Abelian variety over Q®9 and X a closed
irreducible subset of A. Then for some integer m > 0,

XNTor(A) = U b; + Tor(B;)
i=1
where for each i, B; is an Abelian sub-variety of A (an irreducible closed
subgroup of A) and b; + B; is contained in X.

The Manin-Mumford conjecture was first proved by Raynaud in 1983, and
the full Mordell-Lang conjecture was finally proved by Faltings in 1993. For
more history and annotated bibliographies, one can look at [11] or [33].
Hrushovski gave a new proof of the function field case of the Mordell-Lang
conjecture in 1994 [15], inspired by a previous proof of Buium’s [3]. At the
same time he also gave the first full proof of the characteristic p > 0 version
of the Mordell-Lang conjecture. Then, in 1995, he gave a new proof of Manin-
Mumford. One of the interesting aspects of these proofs is that they all fit in
a common framework which was developed a priori in model theory, as I hope
will become apparent very soon. Another interesting aspect of his Manin-
Mumford proof is that it yields rather easily some effective bounds for the
number m of translates involved. In fact I believe that at the time, in 1995,
this was the first proof giving effective bounds which did not depend on the
field of definition of the variety X.

Now let us consider again the statement of the Mordell-Lang conjecture and
try to understand its meaning.
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The first thing to remark is that it deals with two different kinds of objects:
we have on one hand A and X, which are algebraic or from our point of view,
definable objects, and the group I" on the other hand, which is not definable. In
algebraic geometry, one has tools to deal with algebraic or geometric objects,
like varieties; similarly in model theory we have tools to deal with definable
objects. So the first basic idea in the proof is going to be to replace the group
I" by a definable group.

The second remark is that the Mordell-Lang conjecture is usually considered
as saying something about curves, or about closed subsets of A, but one can
also consider that it is in fact a statement about the group I' and the topology
induced on it by the closed subsets of A. It says that this induced topology is
determined by the subgroups and their translates. This is not the case for the
topology on A itself: consider for example a curve X of genus strictly bigger
than one, and A its Jacobian. It is classical that a curve of genus strictly
bigger than one cannot be a group (or the coset of a group). In fact more
generally, the topology on an algebraic group is never determined by its closed
subgroups (see section 3.2)). In model theory we are familiar with this type
of questions about the “induced structure” on a subset. If M is a first-order
structure and if £ C M" is a definable subset, the induced structure on E is
the new first-order structure consisting of the set F/, together with all relatively
definable subsets of M: (E, DN E™;m > 1, D definable subset of M"™™).

In the case of definable groups the following notion is crucial. A definable
group is of linear type if the induced structure on it is similar to a module,
precisely:

DEFINITION. Let M be a first-order structure, and G C M™ be a definable
group. We say that G is of linear type if for every integer m > 1 and every
definable D C M™™, DNG™ is equal to a finite boolean combination of cosets
of definable subgroups of G™.

The Mordell-Lang conjecture fits into this framework. There is a formal
equivalence between the Mordell-Lang conjecture and the following statement:

THE MODEL THEORETIC VERSION OF MORDELL-LANG. Let K be an alge-
braically closed field of characteristic zero, let A be an Abelian variety over K
and T' a finite rank subgroup of A(K). Let Lx = {+,.,5,{ca : a € K}} be
the usual language for rings with an extra unary predicate S (and also con-
stants for each element of K, for technical reasons). Then in the theory of
the Lk -structure (K,+,.,I';a),cx, where the new predicate S is interpreted
by the group T, the definable group T is of linear type.

To see that the above statement implies Mordell-Lang, one only needs to
check that if X is a Zariski irreducible closed subset of A and if X N T is a
finite boolean combination of translates of subgroups of I', then in fact it is a
finite union of translates of subgroups. This is fairly straightforward, using the
properties of the Zariski topology on groups. For the other direction, note first
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that Mordell-Lang says something not only about A but also about Cartesian
products of A: just consider A™ which is also an Abelian variety hence also
satisfies the conclusion of Mordell-Lang. Then there remains only to pass from
information about the intersections with I'” of all closed irreducible subsets of
A" to the intersections with I'" of all definable subsets of K™, in the new
language.

Model theory has developed abstract criteria in terms of independence which
characterize, among the definable groups, those which are of linear type. We
will see this in the next section with the definitions of stable and one-based.
But the problem is that, with this very brutal way of making the group I
definable, by just adding a name for it, it is not easier to show that I" is now of
linear type than it was to show the original statement. So the strategy is going
to be to add some new structure to the field K, in order to add new definable
subsets but in a way we can control, for example in such a way that yields a
good dichotomy between groups of linear type and the others. This is what
will be achieved, for the group T'or(A), by adding a field automorphism, as we
will explain in the last part of this paper. We will not be able to actually make
Tor(A) itself definable but will find a new definable subgroup of A, containing
Tor(A), and which we will be able to show is of linear type - and this will
suffice.

This extension process, in which the original theory of algebraically closed
fields is replaced by an enriched theory, is characteristic of the model theoretic
approach to such questions. It should be noted that this was also the approach
taken by Buium in [3]. As Hrushovski did after him, in the function field case,
Buium added a derivation, denoted §, and confined the group I' within a §-
closed subgroup of finite rank. He then proceeded to use the tools of differential
algebra and jetspaces in order to reach the desired result.

In the case of the model theoretic approach, there are two good reasons that
make this extension necessary. This approach is based on the powerful abstract
tools that were previously developed around the dichotomy linear type/non
linear type for definable (or infinitely definable) groups. In the original theory
of algebraically closed fields, the smallest definable group containing T'or(A)
is the Zariski closure of Tor(A4) in A, that is A itself. Even more relevant
is the fact, already mentioned above, that no infinite group definable in an
algebraically closed field (in the pure language of fields) is of linear type.

2.3. Independence and rank. We have just seen how to fit the Mordell-
Lang conjecture into the model theoretic framework of the theory of alge-
braically closed fields. But algebraically closed fields, together with vector
spaces, are also the main examples which motivated many of the definitions
essential to stability theory. Before giving the actual abstract definitions of
forking, independence and rank, we will consider them in this concrete context.

We keep the same conventions and K is still an algebraically closed field of
characteristic zero and of infinite transcendence degree over the rationals.
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The abstract notion of independence from model theory coincides with the
classical notion of algebraic independence. Recall that if Ky < K; < K and
Ky < K2 < K, we say that K; and K, are algebraically independent over K
if any finite set of elements of K, algebraically independent over K remains
independent over K;. When K|, is algebraically closed, this is equivalent to K3
and K being linearly disjoint over Ky, i.e. such that every finite set of elements
of Ky which is linearly independent over K remains linearly independent over
Kl .

DEFINITION. Let A, B,C be subsets of K; we say that A and B are in-
dependent over C if the two fields (Q(AC))*9) and (Q(BC))*9) are alge-
braically independent over (Q(C))*.

There are many different notions of rank that one uses in model theory.
In the case of algebraically closed fields, they all coincide with the classical
algebraic notion of dimension.

DEFINITION. Let £ C K" be a definable subset of K. Let Ky < K be
an algebraically closed subfield containing the parameters necessary to define
E. We define the rank or dimension of E over Ky, Dim(FE/Kj), to be the
maximum of the transcendence degrees of the fields Ky(e) over Ky, when e
varies in E.

For E C K", the dimension of F is at most equal to n, which is the dimension
of K" itself.

Note that for a finite tuple e € K™, if Ko < K; < K, then e is independent
from K; over Ky if and only if the transcendence degree of K;(e) over K3
remains equal to the transcendence degree of Ky(e) over K.

The next two properties will tell us that the theory of algebraically closed

fields is stable and is not one-based:
Properties: 1. Let Ky < K; < K, be algebraically closed subfields of K.
Suppose that a,b finite tuples in K are such that (Ky(a))®9 and (K(b))*9
are Ky-isomorphic and that K; is linearly disjoint from each of (K (a))%9 and
(Ko(b))® over K. Tt is then classical algebra that (K;(a))*9 and (K, (b))*9
are isomorphic over K;. This is the uniqueness of “independent extensions”
over models.

2. There exist K, K5, algebraically closed subfields of K, which are not
independent over their intersection. Take a, b, c three transcendental indepen-
dent elements in K. We claim that Q(a,b)*9 and Q(c, ac + b)*9 are not alge-
braically independent over L := Q(a, b)*9 NQ(c, ac+b)*9. First we check that
L = Q9. Indeed, suppose there is some d € L\ Q*9; then ac+b € Q(d,c)™9.
Let P(X,Y) be an irreducible polynomial with coefficients in Q(d)**¢9 such that
P(c,ac+b) = 0. The polynomial P(X,Y) remains irreducible over Q(a, b)*9,
hence up to multiplication by an element of Q(a,b)?9 it must be equal to
(Y —aX — b). But this implies that both a and b are in Q(d)*¢ which is im-
possible. It is now clear that Q(a, b)*9 and Q(c, ac+b)?9 are not algebraically
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independent over Q%9 as Q(a, b, ¢, ac + b)*9 = Q(a, b,c)*9 has transcendence
degree three over Q%9 and each of Q(a,b) and Q(c, ac + b) has transcendence
degree two.

§3. Independence, simplicity, stability, modularity. We are first go-
ing to define what we mean when we talk about an abstract relation of in-
dependence. In model theory, or more precisely in stability or in geometric
model theory, we often explain that we are working in structures where one
can define a “good” notion of independence and then proceed directly to classi-
cal examples which are particular instances of such an abstract independence,
without actually giving the precise abstract definition. I will give here a precise
axiomatic definition because I find it quite remarkable that there is a fairly
“simple” axiomatic way to define what a relation of independence should be.
On the other hand one should be aware that this definition is not a good
practical tool: in practice when given a structure, if one wants to see if there
is a good relation of independence, one will use other definitions such as the
original definition of “forking” of Shelah. One should also be aware that I will
present here as definitions (of simplicity and of stability in particular) prop-
erties which were in fact theorems established a posteriori from the original
definitions.

In section 3.3, I present four easy examples of independence relations which
illustrate the various definitions and properties given in sections 3.1 and 3.2.
Conventions: We have a complete theory T in a countable first-order language
L. In order to avoid heavy notation, we suppose that we are working inside
a monster model 9t of T: this means that all sets of parameters we consider,
usually denoted A, B,C ... are subsets of 9, of cardinality strictly smaller
than the cardinality of 91, and all models of 7', usually denoted M, N ... are
elementary sub-models of 91, also of cardinality strictly smaller than the car-
dinality of 90t. Definable sets will be usually denoted D, E, F ..., for example,
F is a definable set in 9t with parameters from A, will mean that £ C 9" for
some n and that F is the set of n-tuples in M satisfying a particular formula
(in n free variables) with parameters from the set A. We do not make any
difference in notation between elements and finite tuples.

Furthermore we suppose that this monster model 91 is saturated, which has
the following consequences:

- any infinite conjunction of formulas of cardinality strictly smaller than |90t]
which is finitely consistent is realized in 9.

- any two n-tuples a and b satisfy exactly the same formulas over some set
C if and only if there is an automorphism of 9t which takes a to b and fixes C
point-wise. In that case we write that a =¢ b and say that a and b have the
same type over C.

One brutal way to do this is to suppose that the cardinality of 9 is an
inaccessible cardinal. But one should not worry about this, everything that is
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done using using these properties of 91, could be done otherwise, with much
more cumbersome notation, by constantly changing the model we are working
with to an ad hoc sufficiently big one.

3.1. Abstract independence. An independence relation in 9 is a rela-
tion (or a collection of triples) J(c, B, A) where ¢ ranges over finite tuples of
M and A, B over subsets of 9, with A C B C 9, which satisfies the following
conditions:

1. (invariance) J is invariant under automorphisms of 90t
2. (local character) for any c, B there is some countable A C B such that
J(c, B, A)
3. (finite character) J(c, B, A) if and only if for every finite tuple b from B,
J(c, AU {b}, A)
4. (extension) for any ¢, A and B D A, there is some d such that ¢ = d over
A and 3(d, B, A)
5. (symmetry) for any b,c, A J(c, AU {b}, A) if and only if J(b, AU {c}, A)
also
6. (transitivity) suppose that A C B C C, then J(e, C, B) and J(e, B, A) if
and only if J(e, C, A).
These properties make it legitimate to say, for any B,C and A subsets of
M, that B and C are J-independent over A if for every finite subset ¢ of C,
J(c,BUA,A).

There is a first trivial example, where one puts in J all possible triples
(¢,B,A), A C B . In a (monster) algebraically closed field K, if one sets
J to be the set of triples (e, K2, K1) where K; < K are algebraically closed
subfields of K and e and K5 are independent over K in the sense of section 2.3,
then J is an abstract independence relation. We give four more examples in
section 3.3. In addition, we will see the two theories of enriched fields presented
in section 4, differentially closed fields of characteristic zero and algebraically
closed fields with automorphisms.

The independence relations in these different examples do not all behave
similarly. For many years, the crucial dividing line was between stable theories
and unstable theories. In the past few years, this line has shifted to include a
much larger class of theories in which the tools of “geometric stability” apply,
the simple theories.

Simple theories were originally introduced by Shelah in 1980, but it was only
after work of Hrushovski on specific examples and then of Kim, and Kim and
Pillay, that the following property and its consequences was isolated:

THE INDEPENDENCE THEOREM: We say that the independence relation J
satisfies the independence theorem (over models) if,

For any model M, and any a, b, ¢, d finite tuples such that

- a and b are J-independent over M,

- cand a (resp. d and b) are J-independent over M,
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-c=dover M,
there is some e such that e and {a,b} are J-independent over M, e = ¢ over
M U{a} and e = d over M U {b}.

The independence theorem says that one can “amalgamate” types in an
independent way.

DEFINITION. We say that T is simple if there is a notion of independence
J in T which satisfies the independence theorem over models.

We can already remark (which is rather reassuring) that the first trivial
example, that is the relation J consisting of all triples, does not satisfy the
independence theorem (take a # b,a = ¢ and b = d).

The independence theorem is in fact a very strong condition, as it forces the
independence relation to be uniquely determined:

ProposITION 3.1. IfT is simple then the relation J for which T satisfies the
independence theorem is uniquely determined (and is the notion of non-forking

as originally defined by S. Shelah).

DEFINITION. We say that T is stable if there is a notion of independence J
in T' which satisfies the following property (stationarity over models): for
any model M of T, for any a, b finite tuples such that b = a over M, and for
any C D M, if a and C (resp. b and C) are J-independent over M, then a = b
over C.

Stability means that, if M C C, there is (up to isomorphism) only one way

C and a can be independent over M.
IFr T 1S STABLE, THEN T IS SIMPLE: given a,b,c,d and M as in the indepen-
dence theorem, by the extension property, we know that there is some ¢’ (resp.
some d') which looks like ¢ (resp. like d) over M U a and is independent from
{a,b} over M. By stability, as ¢ = d over M , then ¢’ = d' over M U {a, b}, so
we also have ¢’ = d over b.

One of the main consequences of stability, which is used in an essential way
for example in the group configurations type of constructions, is that certain
subsets turn out to be definable: given a model M, a formula ¢(z,y) and some
tuple b in 9 (the monster model), the set of tuples a in M such that ¢(a,b)
holds is a definable subset of M, definable with parameters from M.

Examples (1) and (2) from section 3.3 are stable, (3) is simple but not sta-
ble and (4) is not simple. Algebraically closed fields (ACF,) are stable, as
shown by Property 1 in 2.3. Differentially closed fields of characteristic zero
(DCFy, section 4.1) are stable, algebraically closed fields with an automor-
phism (ACFA, section 4.2) are simple but not stable.

Finally, we will need an essential notion which was originally introduced by
Shelah in the context of stable theories, namely orthogonality:

DEFINITION. Let T be a simple theory, M < 91, and E and F' two definable
subsets in 91. We say that E and F' are orthogonal over M if for every finite
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sequence of elements e from FE, and for every finite sequence of elements f
from F, e and f are independent over M.

3.2. Modularity. First we are going to need a local version of stability;
there may be stable definable subsets inside a model whose theory is not stable,
as we will see in the next section when looking at algebraically closed fields
with an automorphism.

From now on we suppose that T is a simple theory, hence that there is a
(unique) notion of independence which satisfies the independence theorem.

We also suppose that T' has elimination of imaginaries (this is relevant for
the definition we give here of modularity). Recall that T has elimination of
imaginaries if for every definable equivalence relation £ on 9" x 9", there
is a definable map fr from 9M" to some M* such that, for all a,b in IM”,
fe(a) = fr(b) if and only if a and b are E-equivalent. We mentioned in the
previous section that algebraically closed fields had elimination of imaginaries.

DEFINITION. Let FF C 91" be a definable subset with parameters from A.
We say that F' is stable if, for all model M < 9, A C M, for all a,b tuples
from F and all C' O M, if a = b over M, a and C' are independent over M and
b and C are independent over M, then a = b over M U {C'}.

Keeping in mind that we wish to study the induced structure on some de-
finable subsets, we are also going to need:

DEFINITION. Let F' C 9" be a definable subset with parameters from A.
We say that F' is stably embedded in 9 if for every k& and every definable
subset D C 9t"*, there is some definable D' C 9" definable with parameters
from F, such that D N F* = D' N F*. In a stable theory, any definable set is
both stable and stably embedded. In an unstable theory, a set can be stably
embedded without being stable (it will be the case for example of the fixed
field in a model of ACFAy, see section 4.2.1) or stable without being stably
embedded.

THE MODEL THEORETIC ALGEBRAIC CLOSURE: Recall that we say that a
is algebraic over A (a € acl(A)) if there is a finite set F', definable with
parameters from A, such that a € F; equivalently if a has a finite number of
conjugates by the automorphisms of 9t which fix A point-wise.

DEFINITION. Let F' be a definable subset of 9t". We say that F' is locally
modular or one-based if for all C, all a, b finite tuples of elements from F,
a and b are independent over acl(C U {a}) N acl(C U {b}). We say that the
theory T is one-based if the formula "z = z” (i.e. F =90) is one-based.

The notion of modularity, in presence of stability, gives information of an
algebraic type about the structure. We will not use this result here but in
particular, any non trivial relation between three elements has to come from
the action of an Abelian group. If we have a stable theory 7" and a definable
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group (G,.) C 9™, then there are a, b independent elements of G such that a, b
and a.b are pairwise independent but not independent (a.b is not independent
from {a,b}). I am not going to prove this here but it is easy to check that
this is true for example in algebraically closed fields for both addition and
multiplication (take a, b two algebraically independent transcendental elements
over Q). So the existence of three such elements is necessary for the existence
of a stable definable group. Local modularity implies that it is also a sufficient
condition.

PROPOSITION ([2]). Suppose that T is stable and one-based and that there
are a, b, c finite tuples in 9N which are pairwise independent but not indepen-
dent, i.e. a and b,c are not independent. Then there is an infinite Abelian
group definable in 9.

In fact one can draw much stronger conclusions from the existence of such
a, b, c; the above is just a very weak version of the existing results. We will not
be using this “group construction” here anyways but in contrast the following
proposition is fundamental for what we are going to do. It is interesting to note
that it was proved in 1985, hence long before the relation with Diophantine
questions of the Manin-Mumford or Mordell-Lang type was realized.

PROPOSITION ([17]). Let G be a definable group in 9™ which is stable, sta-
bly embedded and one-based. Then for any m and for any definable set in
mrem o X NG™ is a finite boolean combination of cosets of definable subgroups

of G™.

It follows that G has a definable Abelian subgroup of finite index. In any
theory of modules, by the quantifier elimination to positive primitive formu-
las, it is true that any definable subset is a boolean combination of cosets
of (positive primitive) definable subgroups. What the above says is that if
G is one-based, then the structure induced by 9t on G reduces to that of a
“generalized module”, that is a module with predicates for some subgroups.

Property 2, in section 2.3, shows that algebraically closed fields are not one-
based. The same argument will be used later in section 4 to show that the two
theories of enriched fields we consider there are not one-based either. In fact,
more generally, one-basedness rules out the existence of a definable field. But,
as we will see, some of the definable subsets inside an enriched field can be
one-based and this is at the heart of the applications to algebraic geometry. As
we have mentioned earlier, in the theory of (non enriched) algebraically closed
fields, this cannot happen, and no definable set can be one-based. This comes
from the fact that this theory is “unidimensional”, that is, any two definable
subsets are not orthogonal.

The three stable examples from section 3.3, are one-based. In order to
check this more easily, we will now introduce the notion of strongly minimal
sets. This notion and its link to combinatorial geometries was essential to the
development of geometrical stability theory.
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STRONGLY MINIMAL SETS: As we have mentioned above, the use of imagi-
nary elements in the definition of local modularity is crucial. There is a context
though in which one can avoid using imaginaries in the definition (or avoid
assuming that the theory eliminates imaginaries) namely that of strongly min-
imal sets.

We say that a definable set D C 91" is strongly minimal if for any other
definable F' C 9", FND is finite or D\ (F'ND) is finite. We say that the theory
T is strongly minimal if the formula "z = z” is strongly minimal. The theory
ACF of algebraically closed fields of characteristic 0 is strongly minimal: a
Zariski closed subset of K is the zero set of a finite number of polynomial
equations in one variable, and, by quantifier elimination, any definable subset
K is a boolean combination of Zariski closed sets. Our first three examples
below in 3.3 are also strongly minimal.

In a strongly minimal theory, (model-theoretic) algebraic closure gives rise
to the unique independence relation satisfying the independence theorem,
which is also stable: e and C are independent over B if e does not belong
to acl(C) \ acl(B). Moreover, considered as a closure operator, algebraic clo-
sure in a strongly minimal set satisfies the exchange principle and gives rise to a
pregeometry in the classical sense (see for example [30]). Then one-basedness,
or local modularity, corresponds to the local modularity of the associated pre-
geometry in the usual combinatorial use of the word and can be expressed in
the following way:

Let T be a strongly minimal theory (with or without elimination of imag-
inaries). Then T is locally modular, or one-based, if and only if for all a,b
finite tuples of elements from 9 such that acl(a) Nacl(b) # acl(), a and b are
independent over acl(a) N acl(b).

3.3. Some basic examples. We present here four basic examples. In
these four examples, as well as in algebraically closed fields, the relation of
independence is given by the relation of (model theoretic) algebraic closure.
This means that we define A to be independent from B over C if and only
if for no a € A, a € [acl((A \ {a}) UB UC)]\ [acl((A\ {a}) UC)]. There
are two important remarks to be made about this: first, this is a special sit-
uation, there are many examples where independence is not given directly by
the algebraic closure, in particular the two examples of fields we will see in
the next section. Secondly, it is not always the case that (model theoretic)
algebraic closure gives rise to an independence relation in our sense. In par-
ticular the symmetry axiom is not always true (it corresponds to the fact that
model-theoretic algebraic closure, considered as a closure operator, satisfies
the exchange property, which is not always the case).

(1) Equality. Let L be the language consisting only of equality, and consider
the theory in L which says that there are infinitely many distinct elements.
This is a totally categorical theory, that is, it has exactly one model (up to
isomorphism) in every (infinite) cardinality. It is clearly strongly minimal.
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Let E be an infinite set, hence a model. For A C B C FE, and for € € E",
say that € = (e1,... ,e,) is independent from B over A if for every i, 1 < n,
e; € B iff e; € A. This is an abstract relation of independence which is
stable and one-based (use the characterization of one-basedness in the case of
strongly minimal sets at the end of the preceding section as this theory does
not strictly speaking have elimination of imaginaries: one cannot eliminate for
example the equivalence relation on n-tuples which define the same n element
set).

Note that any set of pairwise independent elements is independent, hence
(as one might expect) there is no definable group in any model.
(2) Vector spaces. Take a countable division ring S (finite or infinite) and
V an infinite dimensional vector space over S. Consider V as an Lg-structure,
where Lg is the language with addition, zero, and a unary function f, for each
element s of S, interpreted as scalar multiplication by s in V. The theory
of infinite S-vector spaces, which we denote by T, is complete and admits
quantifier elimination. If S is finite, Ts has one model up to isomorphism
in every infinite cardinality; if S is infinite, Ts has countably many countable
models and one model in each uncountable cardinality. This theory is strongly
minimal. For C C B C V, and for A C V, say that A is independent from B
over C if A and B are linearly independent over C: for every a € A, a is in
the subspace spanned by BU (A \ {a}) iff a is already in the subspace spanned
by CUU(A\{a}). Then again this is a stable one-based theory. The fact that
it is one-based corresponds exactly to the fact that vector spaces satisfy the
classical dimension equality: for any finitely generated subspaces X,Y of V,

dim(X) + dim(Y) = dim(X UY) — dim(X NY).

There is a group of course in V' and if v and w are independent, then the
set {v,w,v 4+ w} is an example of a set which is pairwise independent but not
independent.

(3) The random graph. Take the language L = {R} with one binary rela-
tion R and consider the theory of the random graph Er which is axiomatized
by the following infinite scheme of axioms:

- R is symmetric irreflexive

- for every distinct ay,...,a, and by,...,b,, , there exists z such that for
all i,1 <1i <mn, R(z,a;) and for all j,1 < j < m, (not R(z,b;)).

The theory of EFr admits quantifier elimination, has only one countable
model (but has 2* non isomorphic models of power k for every uncountable
cardinal k). Define independence as in example (1) above, i.e. for AC B C E,
and for € € E™, say that € = (ey, ... ,e,) is independent from B over A if for
every i, 1 <mn, e; € Biffe; € A.

With this notion of independence, this theory is simple, as is easily checked.
It follows that this is the unique possible way to obtain a relation of inde-
pendence satisfying the independence theorem. But the theory is not stable;
consider two models M < N and two elements a and b such that a is not in
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relation via R to any element of N and b is related to exactly one element
which is in N \ M. Then a =a b, a and b are each independent from N over
M, but it is not the case that a =n b.

(4) Real closed fields. Consider the theory of the reals R in the language
Lora = {0,1,4, —,.,<} of ordered rings. The theory of R, the theory of
real closed fields, admits quantifier elimination and is o-minimal (i.e. every
definable subset of R is a finite union of singletons and open intervals, allowing
endpoints from R U {co, —o0})). Take the relation of independence given by
real closure (= algebraic closure in the model theoretic sense):

For AC B C E, and for € € E™, say that € = (e1,...,e,) is independent
from B over A if for every i, 1 < n, e; is in the real closure of the field generated
by BU{e1,...,e;_1} if and only if e; is already in the real closure of the field
generated by AU {e1,...,e;_1}. This defines an independence relation which
does not satisfy the independence theorem: in a big non standard model take
a,b,c,d, such that R € ¢ € a € b € d, (where z < y means that y is
infinitely bigger than z), everything being independent over R. No e can
satisfy both e = c over RU {a} and e = d over RU {b}.

The same kind of argument shows more generally that in the presence of a
definable total ordering no independence relation can be simple.

3.4. Some references. Simple theories were first introduced by Shelah in
1980 in [42] as a class strictly containing stable theories. It was not known
at the time if in simple theories, as defined there, forking was a symmetric
relation. The interest for this class of theories was revived in the past few years
for two reasons. First, it was realized by Hrushovski that many very interesting
classes of algebraic structures were simple and that in these structures forking
seemed to have very good properties (the independence theorem, symmetry
etc). This was in particular the case of smoothly approximated structures
([16], for surveys see for example [6], [28] ), pseudo-finite fields (see [18]) and
of course a little later of algebraically closed fields with an automorphism which
we describe in the next section. At around the same time, Kim proved that
in simple theories forking was symmetric [22]. This changed the perspective
on simple theories and also on what having a good relation of independence
should mean. The definitions of independence, simplicity etc. which I gave
in the preceding sections come from further work on the subject by Kim and
Pillay [23]. For a survey on simple theories with the main results and open
questions, there is [24]. A book by F. Wagner has recently appeared on this
subject [44]

Concerning geometric stability, the main reference is A. Pillay’s book “Geo-
metric Stability” ([34]). More specifically on stable groups, see the books by
B. Poizat(the original [37] or the recent english version [38]) and by F. Wagner
[43].
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§4. Fields with extra structure and the applications. All the present
applications of model theory to classical Diophantine geometry questions fit
into a common general framework. FEach time, one uses a field with more
definable sets than just the classical constructible ones and where a good di-
chotomy theorem is available which enables one to recognize when a group is
one-based. Three theories have been used so far:

(1) separably closed fields of characteristic p > 0 for the function field Mordell-
Lang conjecture in characteristic p [15];

(2) differentially closed fields of characteristic zero for the function field Mordell-
Lang conjecture in characteristic 0 [15];

(3) algebraically closed fields with an automorphism, in characteristic zero for
the Manin-Mumford conjecture [13] and the Tate-Voloch conjecture [39], as
well as in characteristic p for the case of Drinfeld modules [40].

We will present the two theories of fields used in the characteristic zero cases,
differentially closed fields and algebraically closed fields with an automorphism,
and then finish with a short sketch showing how to apply the model theoretic
results in the case of a field with an automorphism in order to obtain the
Manin-Mumford conjecture. At the end (section 4.4) we give a selection of
references for surveys or introductory papers to all of these applications.

Both the theories we are going to discuss are expansions of algebraically
closed fields by a unary function.

4.1. Differentially closed fields of characteristic zero. (see [32] or
1)),

The language is the usual language of rings Lg, which we already used for
algebraically closed fields, together with a map 6.
The theory (DCFy) consists of the following scheme of axioms (i) to (iii):

(i) K is a field of characteristic zero

(ii) (K,¢) is a differential field, that is, 0 is a derivation :
0 : K — K, such that, for all z,y in K, §(z + y) = é(z) + 6(y) and §(zy) =
z6(y) + yo(y).

Before stating the third set of axioms, we need some definitions. Given a
differential field (K, ), we define the ring K;[X] of differential polynomials (in
one variable) over K to be the ring of polynomials in infinitely many variables
K[X,§(X),6%(X),...,6"(X)...].

The order of the differential polynomial f(X) in Ks5[X]is —1if f € K and oth-
erwise the largest n such that 6”(X) occurs in f(X) with non zero coefficient.
For example the differential polynomial equation 6(X) = 0 which defines the
constants for the derivations ¢ has order 1.

(iii) K is existentially closed. In this context, this can be axiomatized by
saying (an infinite scheme): for any non-constant differential polynomials f(X)
and g(X), where the order of g(X) is strictly less than the order of f(X), there
is a z such that f(z) =0 and g(z) # 0.



MODEL THEORY AND GEOMETRY 21

Basic REsurTs: DCFy is a complete theory which admits quantifier elimi-
nation and elimination of imaginaries. We call the models of DCF the differen-
tially closed fields. It is the model completion of the theory of differential fields
of characteristic zero, so, in particular, any differential field (K, §) embeds into
a differentially closed field (L,d). Differentially closed fields are algebraically
closed fields and one can show that they have infinite transcendence degree
over Q.

From now on (K, §) is a monster model of DCFy.

4.1.1. DEFINABLE SETS IN DCF,. We saw earlier that in a “pure” alge-

braically closed field, the basic definable sets are the zero sets of polynomials.
Here we start with the zero sets of differential polynomials. For any n let
Kﬁ[le ) XTI] = K[le ) Xna 6(X1)a ) 6(Xn)a 52 (Xl)v ) 52 (Xﬂ)v ]
We say that F' C K" is a 0-closed set if there are f1,... , f,. € Ks[X1,...,X,)]
such that F' = {(a1,...,a,) € K™ fi(a1,... ,an) = ... = fr(a1,...,a,) =
0}. The ring Ks[X1,...,X,] is of course not Noetherian but the d-closed
sets (which correspond to radical differential ideals) form the closed sets of a
Noetherian topology on K, the §-topology.

We now consider the d-constructible sets, that is, the finite boolean combi-
nations of §-closed sets. The elimination of quantifiers for DCFy means that
this class is closed under projection hence that all definable sets (we call them
0-definable sets) are d-constructible.

Examples: First, if D C K™ is a set definable in the language L, without
using 6§, as K is algebraically closed, D is constructible. This is a particular
case of a d-constructible set. Fxactly as in the case of algebraically closed
fields, if V' is a variety defined over K, we can consider V as a d-definable set.

The field of constants of K, Cons(K) = {a € K;4(z) = 0} is a d-closed
set which is not constructible; it is an algebraically closed subfield of K.

The induced structure on Cons(K) is that of a pure algebraically closed
field: if D is a §-definable subset of K™, D N Cons(K)™ is a constructible
subset (in the language of rings Lg) of Cons(K)", definable with parameters
from Cons(K).

We define the §-algebraic closure of A, acls(A), to be equal to the alge-
braic closure (in the usual sense of fields) of the differential field generated by
A, i.e. the algebraic closure of the field (A)s := Q(6*(a);a € A,i > 0) (this is
exactly the algebraic closure of A in the usual model theoretic sense).

4.1.2. INDEPENDENCE AND RANK. If C C A,B C K, we say that A and
B are §-independent over C' if acls(A) and acls(B) are algebraically inde-
pendent (or equivalently linearly disjoint) over acls(C'). This §-independence
is a notion of independence in the sense of section 3.1 and DCFy is stable.
One can check the stability easily thanks to the quantifier elimination: let
Ky < K be a sub-model and let a and b be such that a = b over Ky. So in
particular, the ideal I(a/Ky) of the differential polynomials f in Kq5[X] van-
ishing on a is equal to the corresponding ideal for b, I(b/ K). By definition of
d-independence, if Ky < K; < K and if a (resp. b) and K; are §-independent
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over Ky, then the ideal I(a/K;) is generated by I(a/Kj), and similarly for b,
I(b/K,) is the ideal generated by I(b/Kj). It follows that I(a/K;) = I(b/k1),
and by quantifier elimination this implies that a = b over K.

In fact the theory DCF( is more than stable, it is what is called w-stable,
which means that it is possible to assign a rank (taking possibly infinite ordinal
value) to each definable set. We are only going to consider definable sets with
finite rank and give the definition of one rank, which will be sufficient for our
purpose. The reader should be aware though that there are many different
notions of rank available in model theory and that it is now known that no
two of them coincide everywhere in DCF(, (the Lascar rank, the Morley rank,
the §-degree we are going to define below...).

If F is a differential subfield of K and if a is a finite sequence of elements
of K, we define the §-degree of a over E, ds(a/K), to be the transcendence
degree of the field (F(a))s, the differential field generated by E and a, over E.
If D C K™ is a é-definable set, we define the §-degree of D to be the maximum
of the §-degrees of the elements of D.

The field Cons(K) has §-degree equal to one: for any differential subfield
E, for any a element of Cons(K), the differential field generated by F and a is
equal to the field E(a). Moreover, and this is fundamental for the application
to Diophantine geometry, up to definable isomorphism, Cons(K) is the unique
d-definable field with finite §-degree .

In contrast, if V is any variety (of positive dimension) defined over K, as
a d0-definable set, V' has infinite §-degree; this is in particular the case of K
itself. When it is finite the d-degree is a good notion of rank, in particular, if
ds(a/E) is finite, then a and B D E are §-independent over E if and only if
ds(a/E) = ds(a/B).

4.1.3. MODULARITY AND THE DICHOTOMY THEOREM. The results below
come from [19] and [15].

The field (K, §) is not one-based, but neither is the definable subfield Cons(K),
by exactly the same argument as for the theory ACFA(: consider a, b, ¢ in the
field Cons(K) which are transcendental over Q and algebraically independent.
In order to be able to do this, we have to suppose that Cons(K) has big enough
transcendence degree over (§, but we can always suppose that by going to some
big model K' extending K. Then acls(a,b) = Q(a,b)?? (the field algebraic
closure) and acls(c, ac+b) = Q(c, ac + b)?9 intersect in Q%9 but they are not
algebraically independent over Q9.

For our purpose, the interesting feature of differentially closed fields of char-
acteristic zero, is that really, the constant field is the “unique” definable set of
d-degree one which is not one-based. Let us make this statement more precise.
Let D be a definable set, we have defined in 3.1 the notion of orthogonal-
ity. In this particular context, D and Cons(K) are orthogonal if, for every
finite sequence of elements d from D, for every finite sequence of elements b
from Cons(K), and for every subfield E = acls(E), acls(Ea) and acls (Eb) are
algebraically independent over E.
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Recall that a é-definable set D C K™ is strongly minimal if, for any 6-
definable FF C K™, FN D is finite or cofinite in D. A strongly minimal set has
finite 6-degree. The constant field is strongly minimal.

THE DICHOTOMY THEOREM FOR DCF(. Let D C K™ be a strongly mini-
mal §-definable subset. Then D is one-based if and only if D and the field of
constants, Cons(K), are orthogonal.

Non-orthogonality between two strongly minimal sets is a very strong rela-
tion. In particular, if D is a §-definable group which is non-orthogonal to the
field Cons(K), then D will be §-definably isomorphic to G(Cons(K)), where
G is an algebraic group defined over the field Con(K). The dichotomy theorem
then means that the only strongly minimal groups which are not one-based
are exactly the ones arising from algebraic groups over the constants.

Hrushovski’s proof of the dichotomy theorem in [15] uses the fact that
strongly minimal sets in DCF( are abstract Zariski geometries in the sense
of Hrushovski-Zilber ([21]). One can then apply their abstract dichotomy the-
orem which says that if a strongly minimal set D is a non locally modular
Zariski geometry, there is a strongly minimal field definable in D. Then one
uses the fact that the field Cons(K) is, up to definable isomorphism, the
unique strongly minimal field §-definable in K. For introductory surveys to
Zariski geometries, see [20] or [31]. A direct proof of the dichotomy theorem
for DCF, was given very recently (two years after this tutorial actually took
place) in [36].

4.2. Algebraically closed fields with an automorphism. An exposi-
tion of the basic properties (axiomatizability, decidability etc.) of ACFA, can
be found in Macintyre’s introductory paper [27]. The in-depth model theo-
retic analysis was carried out first by Chatzidakis and Hrushovski in [4], and
continued in [5].

The way we are going to present this theory will make it seem very similar
to the previous one, differentially closed fields. But although the results are
very similar, the actual proofs need not be. One should note though that again
in [36], a new proof of the dichotomy theorem for ACFA in characteristic zero
is given, along similar lines as the one for the differential case.

A difference field is a field K together with an automorphism o, which
we consider as an Ly U {o}-structure.

The class of existentially closed models for difference fields turns out to be
axiomatizable (this fact needs a proof of course). Here we restrict ourselves to
the case of characteristic zero.

The axioms (ACFA,) say that:

(i) K is a an algebraically closed field of characteristic zero

(ii) (K, o) is a difference field, i.e. o is an automorphism of K.

(iii) K is existentially closed : every difference equation which has a solution
in some extension of K has a solution in K.
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ACFA, is not a complete theory and in order to make it complete one
needs to describe the action of the automorphism o on the algebraic closure
of Q. This theory does not have elimination of quantifiers, but it does have
elimination of imaginaries. Every difference field of characteristic zero embeds
into a model of ACFAy.

Let us mention a striking recent result about ACFA [14] answering the long
open question: what is the theory of a nonstandard Frobenius automorphism
or more precisely, what is the theory of an ultraproduct of the difference fields
(IFZ’Q, o : z + zP) for all p prime numbers ? The answer is that ACFA is
exactly the theory of all nonprincipal ultraproducts of (IFZ’-", og 1 T — z9),
when ¢ varies on the set of powers of prime numbers.

From now on (K, o) is a monster model of ACFAy.

4.2.1. DEFINABLE SETS IN ACFAg,. Here the basic sets are the zero sets

of difference polynomials: for any n let
K (X1, ., Xy = K[X1,.., Xp,0(X1), .., 0(Xp),02(X1), ., 02(Xy), -]
We say that F C K™ is a o-closed set if there are f1,..., f, € K,[X1,...,X,)
such that F' = {(a1,...,an) € K™ fi(a1,... ,an) = ... = fr(a1,...,a,) =
0}. The o-closed sets form the closed sets of a Noetherian topology on K, the
o-topology. Consider now the o-constructible sets. It is not true that every
o-definable set is o-constructible (the theory does not eliminate quantifiers).
Here is one example of a o-definable set which is not o-constructible: pick a
in some extension of K, and extend o to the field K(a) by setting o(a) = a.
In order to extend o to the algebraic closure of K(a), there are choices to
be made, in particular one can either choose to have o fix point-wise the two
square roots of a , or to have o exchange them. This means that the set
{z;0(x) =2 A Tt (t* =z A o(t) #1)} is not o-constructible.

The class of o-definable sets is the closure under finite boolean operations
and projections of the o-closed sets.

The field Fiz(K) = {a € K;o(a) = a}, the fixed field of ¢ in K, is o-
closed. Tt is not algebraically closed but it is pseudo-finite, i.e. it is an infinite
model of the theory of all finite fields. It is also a “pure” field : if D is any
o-definable subset of K™, D N Fiz(K)™ is a definable subset (in the language
Lg) of Fiz(K)™ definable with parameters from Fiz(K).

We define the o-algebraic closure of A, acl,(A), to be equal to the alge-
braic closure (in the usual sense of fields) of the difference field generated by
A, i.e. the algebraic closure of the field (4), := Q(¢i(a);a € A,i € 7).

4.2.2. INDEPENDENCE, STABILITY AND MODULARITY. If C' C A C K and
C C B C K, we say that A and B are o-independent over C if acl,(A) and
acl,(B) are algebraically independent (or equivalently linearly disjoint) over
acly (C). We define the o-degree of a definable set exactly like the §-degree;
if D C K" is a o-definable set, the o-degree of D is the maximum of the
transcendence degrees of the difference fields generated by elements of D. The
fixed field of o, Fiz(K) has o-degree one.
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This gives a notion of independence which satisfies the independence theo-
rem over models, which we will not prove here. Hence the theory is simple.
But it is not stable, because the field Fiz(K) is not stable: one can find
E = ac,(E) C K and a,b,c € Fiz(K) \ E, such that a and ¢ on the one
hand, b and ¢ on the other hand, are o-independent over F, but such that
Va—c € Fiz(K) and /b — ¢ ¢ Fiz(K) (note that this is the same example
which shows that quantifier elimination does not hold). This contradicts the
uniqueness of independent extensions.

Exactly as in the case of the field of constants in DCFy, the field Fiz(K) is
not one-based and there is also a very powerful dichotomy theorem.

THE DICHOTOMY THEOREM FOR ACFA,. Let D C K" be a o-definable
subset of finite o-degree. Then D is stable, stably embedded and one-based if
and only if D and the fized field, Fix(K), are orthogonal.

4.3. Application to the Manin-Mumford conjecture. Recall the state-
ment of the conjecture from section 2.2. Let A be an Abelian variety defined
over Q"9 and let X be a sub-variety of A; then T'or(A) N X is a finite union
of translates of subgroups of T'or(A).

We have explained already that this is the same as showing that T'or(A) is
of linear type (section 2.2), and hence, by section 3.2 “stable, stably embedded
and one-based”, except that T'or(A) is not definable in the algebraically closed
field K. Indeed, as we remarked earlier, there are no definable one-based
subsets in a “pure” algebraically closed field , so to make this approach work
one must put additional structure on the field.

So the strategy is going to be: go to some bigger algebraically closed field L
and add new structure on L, hence getting new definable sets, in such a way
that there is some new definable subgroup of A, denoted H, which contains
Tor(A), and which we can prove is stable, stably embedded and one-based.

It is not immediately obvious that this is enough: this would say that
Tor(A) N X is contained in H N X, which itself is a boolean combination
of translates of subgroups of H (definable in the bigger field with the extra
structure). But it is then fairly straightforward to check, using the fact that
X is Zariski closed, that this does imply that X N Tor(A) is a finite union of
translates of subgroups of T'or(A).

Let & < Q"9 be a finite extension of Q such that A is defined over k.

We want to find an algebraically closed field L and an automorphism o of L
such that (L, o) is a model of ACFA and such that there is some o-definable
subgroup of A(L) (the group of L-rational points of the Abelian variety A)
containing T'or(A) and which is stable, stably embedded and one-based.

What kind of group H are we looking for in (L,0)? How can we be sure
that this H will indeed be stable, stably embedded and one-based, i.e. by
the dichotomy theorem, will be orthogonal to Fiiz(c)? Let us consider groups
defined by rather simple difference equations. First H; = {a € A(L);0(a)—a =
0}. This is A(Fiz(0)), so of course H; is not orthogonal to Fiz(o) and hence
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is not stable one-based. Similarly if H,, = {a € A(L);0"(a) —a = 0}, this is
A(Fiz(o™)). The field Fiz(o™) is a finite extension of Fiz(o) and it follows
that there is a o-definable map (with finite fibers) from (Fiz(0))" (for some
r > 0) onto H,, which is hence also not orthogonal to Fiz(o).

Now these groups are particular cases of groups defined by polynomial equa-
tions. Let P(T) = m,T™ + ...+ m1;T + mg, where the m;’s are in Z. Then
define

Hp ={a € A(L);mno"™(a) + ...+ myo(a) + moa = 0}
where + denotes addition in A, and for a € A(L) and m € N, ma denotes as
usual a + ... + a, m times.

Then Hp is a o-definable subgroup of A(L) of finite o-degree. If, for some
n > 1, the polynomial P[T'] is not prime to X" —1, i.e. if P[T] has a root which
is also a root of unity, then Hp is contained in Ker(c™ — 1) and the argument
given just above implies that Hp is not stable one-based. The remarkable
result at the heart of Hrushovski’s proof of the Manin-Mumford conjecture for
number fields is that the converse is true:

PROPOSITION 4.1. The group Hp is orthogonal to the field Fiz(o) if and
only if P[T] has no root which is also a root of unity.

The proof of this result goes through an analysis of the ring of o-definable
endomorphisms of A(L) when A is a simple Abelian variety and then various
reductions to minimal cases, using in particular the following fact: if 0 —
A; — Ay — Az — 0 is an exact sequence of o-definable homomorphisms,
where the A;’s are o-definable groups, then A, is one-based if and only if both
A; and Az are one-based.

So from the dichotomy theorem for ACFAy one now knows that if P[T] has
no root which is also a root of unity, then Hp is stable, stably embedded and
one-based.

Now in order to apply this, one needs to show that there is an automorphism
o of Q%9 fixing the number field k, and a polynomial P[T| with integer
coefficients such that no root of P[T] is a root of unity and Hp contains
Tor(A). This part of the proof involves no model theory and consists of two
steps. First, one fixes a prime p (of good reduction for A) and one considers
only the p'-torsion of A, denoted Tor, (A), that is, the torsion elements of
order prime p. By applying a classical result of Weil ([45]) one gets such
an automorphism o; and a polynomial P;(T") with Hp, containing Torp (A).
Then using two different primes p and ¢, and a result of Serre ([41], pages 33-34
and 56-59), one gets the required automorphism working for the full torsion
subgroup.

Fix such an automorphism o, and extend the difference field (Q*9,0) to
a model (L,0) of ACFAy. In (L,0), the group Hp is of linear type, hence
X NHp is a finite boolean combination of translates of (o-definable) subgroups
of Hp. And we can conclude that X NTor(A) is a finite union of translates
of subgroups of Tor(A).



MODEL THEORY AND GEOMETRY 27

An important remark: this sketch of the proof is correct but does not yield
effective bounds for the number of translates involved in the representation of
X NTor(A) as a finite union. In fact Hrushovski shows that one can bound the
number of translates involved by a function of the degree of the polynomial
P[T] and of the size of its coefficients. But if one is not careful, one looses
track of any effective bounds on the degree and coefficients of the polynomial
P[T] during the passage from the p'-torsion to the full torsion via the Serre
result.

So Hrushovski in fact, in order to deal with the full torsion group, gives
a more complicated proof, which uses model theory and yields sharper infor-
mation. What I have described above is exactly his proof for the case of the
elements of p'-torsion , Tor;,(A). In that case, the classical result of Weil men-
tioned above, (a result about the characteristic polynomial of the Frobenius
in an Abelian variety defined over [, ), provides directly a polynomial P(T')
such that its degree and the size of its coefficients are bounded by a function
of p, and of invariants of A (dimension, degree). In order to deal with the full
torsion and keep effective bounds, one needs to work simultaneously with two
different automorphisms, o and 7, hence two distinct models of ACFA,, and
two different polynomials, P[T] and Q[T], such that in (Q*9,0), Hp contains
the torsion elements of order prime to p, and in (Q?9,7), Hg contains the
torsion elements of order a power of p.

One last remark: in fact Hrushovski’s result in [13] is more general than the
one I quoted. He proves the result for all commutative algebraic groups, and
not only Abelian varieties.

4.4. A selection of references on the model theory of fields and the
applications to Algebraic Geometry. Some general surveys on geometric
model theory and applications:

e A. Pillay, Model Theory, Differential Algebra and Number Theory, in
Proceedings of the ICM 94, Zurich, Birkhauser 1996.

A. Pillay, Model Theory and Diophantine geometry, Bull. Am. Math.
Soc. 34 (1997), 405-422.

e D. Marker, Strongly minimal sets and geometries, Tutorial, LC ’95, in
[29].

E. Hrushovski, Geometric model theory, in Proceedings of the ICM 98,
Berlin, Vol. I,, Doc. Math., 281-302, 1998.

A. Pillay, Geometric Model Theory, Tutorial, LC ’99, preprint.

T. Scanlon, Diophantine geometry from model theory, o Bulletin of Sym-
bolic Logic 7 (2001), 37-57.

For surveys on algebraically closed fields with an automorphism (ACFA)
and the Manin-Mumford conjecture or on the Mordell-Lang conjecture:

e J.B. Goode (B. Poizat) H.L.M. (Hrushouvski-Lang-Mordell), Séminaire
Bourbaki, exposé 811, Février 1996.
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e 7. Chatzidakis A survey on the model theory of difference fields, in Model
Theory, Algebra and Geometry, D. Haskell and C. Steinhorn ed., MSRI
Publications 2000, 65-96 ([10]).

e E. Bouscaren Théorie des Modéles et Conjecture de Manin-Mumford
[d’aprés E. Hrushovski], Séminaire Bourbaki, Exposé 870, Mars 2000.

Booxks:

- One can find an introduction to the model theory of fields with special
emphasis on differentially closed fields of characteristic zero and a survey on
separably closed fields in Model theory of fields, D. Marker, M. Messmer and
A. Pillay, Lecture Notes in Logic 5, Springer 1996 ([32]). (The Lecture Notes
in Logic are now published by the ASL; a new edition of this book is planned).

- For a reasonably self-contained introduction to Hrushovski’s proof of the
Mordell-Lang conjecture, based on the lectures given at a summerschool held
in Manchester in 1994, see Model Theory and Algebraic Geometry, Lecture
Notes in Mathematics 1696, E. Bouscaren Ed., Springer, 1998 ([1]).

- In Algebraic Model Theory, B. Hart, A. Lachlan and M. Valeriote eds.,
NATO ASI Series, Kluwer Academic Publishers 1997 ([9]), one can find intro-
ductory lectures with proofs (by Z. Chatzidakis and A. Pillay) to Hrushovski’s
proof of the Manin-Mumford Conjecture .[9]

- In Model Theory, Algebra and Geometry, D. Haskell, A. Pillay and C. Stein-
horn Eds., MSRI Publications 2000, one can find the proceedings of the intro-
ductory workshop of the MSRI semester on “Model theory of fields” (January
98 - June 98) ([10]).
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