
Algebraic dynamics, function �elds and descent

Antoine Chambert-Loir

Algebraic dynamics is the study of dynamical systems de�ned by rational maps on
algebraic varieties. One of its themes consists in interpreting questions and (sometimes)
theorems from classical Diophantine geometry as instances of questions for general algebraic
dynamical systems. In the �rst part of these notes, we give a rapid introduction to this circle
of ideas. We then focus on the determination of “limited orbits” for algebraic dynamical
systems over function �elds. In the last part we explain the statement of the proof of a
general theorem due to Chatzidakis &Hrushovski (2008a,b).

Contents

Part I. Algebraic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. De�nition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Part II. Algebraic dynamics over function �elds . . . . . . . . . . . . . . . . . . . . . 12
4. Abelian varieties over function �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. Points of height zero in polarized algebraic dynamics . . . . . . . . . . . . . . . . 14

Part III. Di�erence �eld and descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6. Algebraic dynamics and algebraically closed �eldswith an automorphism 16
7. Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8. Limited orbits and descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



2 ANTOINE CHAMBERT-LOIR

PART I. ALGEBRAIC DYNAMICS

1. De�nition and examples

De�nition 1.1. — Let k be a �eld. An algebraic dynamical system over k consists in a pair
(V , f ), where V is an algebraic variety over k and f ∶V → V is an endomorphism.

For us, variety over k really means separated k-scheme of �nite type. �e reader may
think of the locus in a�ne (resp. projective) space de�ned by a family of polynomials
(resp. homogeneous polynomials) with coe�cients in k. In all interesting cases, V will be
irreducible, and even geometrically irreducible. Topological notions will be relative to the
Zariski topology.
�e endomorphism f is assumed to be de�ned and regular everywhere. From a point

x ∈ V , one may compute its image f (x). Dynamics appear when one iterates this process
and computes the image f ( f (x)) = f (2)(x) of its image, etc. One then gets the orbit of x,
de�ned as the set {x , f (x), f (2)(x), . . .}.
However, there are some natural generalizations to consider.

1.2. Rational maps. — First, it is totally legitimate to study rational maps f ∶V ⇢ V .�is
means that there exists a dense open subsetU of V and f is a morphism fromU to V . Since
V is separated, there is a largest open subset of de�nition; its complementary subset E is
called the indetermination locus.
If x ∈ V ∖ E, one can compute f (x); if f (x) /∈ E, one can iterate the construction, unless

at some point, an iterate belongs to E, in which case the process stops.
Already in the de�nition when f is regular everywhere, an implicit assumption is that its

image f (U) be dense in V — one then says that f is dominant. Otherwise, the study of the
dynamics of f reduces to the dynamics of its restriction to a smaller variety.

1.3. Correspondences. — Another possible generalization considers “probabilistic dynam-
ics” or “multivalued rational maps” — the technical term is correspondences: that is, a
subvariety T ⊂ V × V .�en, a point x ∈ V has a set of images, consisting of all points y
such that (x , y) ∈ T . A (�nite, or in�nite) orbit is a sequence (x0, x1, . . . , xn , . . . ) such that
(xi , xi+1) ∈ T for all i.
One assumes that T maps dominantly to V under the two natural projections; the �rst

one being dominant, almost every point has at least an image, using the second one we
see that their images are not contained in a strict subvariety. Moreover, it is reasonable
to assume that these maps are generically quasi-�nite, so that almost all points have only
�nitely many images. If V is irreducible, this means that dim(T) = dim(V).
If f is a rational map from V to itself, de�ned on the dense open set U , one may consider

the closure Tf in V ×V of its graph {(x , f (x) ; x ∈ U}. Except for considerations related to
the exceptional locus, the dynamics of f and of Tf are basically the same things.
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1.4. Periodic, preperiodic points. — Let (V , f ) be an algebraic dynamical system. One
says that a point x ∈ V is periodic if it is equal to one of its iterates, that is, if there ex-
ists p > 0 such that f (p)(x) = x; the period of x is the smallest such integer p. �e
dynamics of x under f is then extremely easy to understand: it goes from x, to f (x),
then f ( f (x)), . . . , f (p−1)(x), and then cycles back to x = f (p)(x), etc.
One says that a point x is preperiodic if its orbit is �nite.�en, there exist integers n ≥ 0

and p > 0 such that f (n+p)(x) = f (n)(x). If p and n are minimal, the dynamics of x will run
through x , . . . , f (n)(x), . . . , f (n+p−1)(x), and then go back to f (n)(x) and cycle inde�nitely.
Hence, preperiodic are points some iterate of which is periodic.

1.5. Curves. — Let us assume that V is a (geometrically integral) curve. �en, an open
subset U of V is smooth over k; let X be the smooth compacti�cation of U . Any rational
map f ∶V ⇢ V comes from an endomorphism F ∶X → X and both dynamics basically
correspond.
If X has genus g ≥ 2, it follows from the Riemann-Hurwitz formula that F is an automor-

phism; moreover, it has �nite order, so that the full dynamics is periodic. Consequently, the
only interesting examples are in genus 0 and 1, corresponding to the projective line and to
elliptic curves.
�e projective line P1k carries a lot of dynamical systems. Any endomorphism of P

1
k (even

any rational map) is given by a rational function f ∈ k(t), and conversely.�e poles of f
are mapped to the point at in�nity.

1.6. Elliptic curves. — Let us detail the case of genus 1. Since one is interested in the
iteration of rational points, one may assume that X(k) is non-empty: �xing any of them,
say o, as an origin, X becomes an elliptic curve: it automatically inherits a commutative
group structure for which the origin o is the neutral element.
�en, any endomorphism of X is of the form x ↦ φ(x)+a, where φ is an endomorphism

of X mapping o to itself, and a ∈ X(k) is a point.�e endomorphism φ is compatible with
the group law: it is an endomorphism of the elliptic curve.
If φ = idX , then the dynamics is a translation: one has f (n)(x) = x + na for any x ∈ X(k)

and any n ∈ N. All orbits have the same shape, �nite or periodic, depending on whether
there exists an integer n > 0 such that na = o, or not.
Otherwise, if φ ≠ idX , then idX −φ is surjective and there exists a point o′, possibly de�ned

in an extension of k, such that o′ = φ(o′) + a. �e point o′ is �xed under f and up to a
conjugation, one assumes that o′ = o, that is, f is an endomorphism of the elliptic curve.
For most of the elliptic curves, endomorphisms are just self-multiplication a certain

number of times. �e case f = [1] = idX is trivial; the case f = [−1] isn’t much more
interesting since then f (2) = idX . Let us assume that f = [m] for some integer m ∈ Z such
that ∣m∣ ≥ 2; since all automorphisms of an elliptic curve have �nite order, the discussion
also applies to the complex-multiplication case provided one assumes that deg( f ) > 1.
�en, preperiodic points precisely coincide with the torsion points of X. Indeed, if

f (n+p)(x) = f (n)(x), then x is mapped to 0 by the endomorphism ( f n+p − f n) of X. For
f = [m], one gets mn(mp − 1)x = 0, so x is a torsion point; this holds in general when
deg( f ) > 1. Conversely, if x is a torsion point and, say, [N]x = 0, for some integer N > 1,
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then all iterates f (n)x are torsion points and they all satisfy [N] f (n)(x) = 0. Since they are
�nite in number, there must exist integers n ≥ 0 and p > 0 such that f (n+p)(x) = f (n)(x),
hence the claim.
For any mathematician versed in xxth century number theory, this prompts at once a

number of questions: what are the analogues for algebraic dynamical systems of all those
theorems in Diophantine geometry concerning torsion points of elliptic curves?

1.7. Multiplicative group. — Actually, the case of the multiplicative group already gives
rise to interesting analogues.�ose are themaps fN(x) = xN , for some non-zero integer N ∈
Z.�e cases N = ±1 are rather uninteresting, but for ∣N ∣ ≥ 2, one gets a dynamical system
which is both easy to describe ( f (n)(x) = xNn can be computed explicitly) but which features
the rich arithmetic properties of cyclotomic �elds, and of Kummer theory. Indeed, the
preperiodic points are 0,∞, and the roots of unity.

1.8. Lattès maps. —We can view an elliptic curve X as a double covering of the projective
line rami�ed in 4 points.�is is explicit when the elliptic curve is written inWeierstrass form,
with (a�ne) equation y2 = x3 + ax + b, say. In fact, a point P = (x , y) and its opposite −P
have the same x-coordinate, namely x; if f is an endomorphism of X, f (−P) = − f (P) also
share the same x-coordinate.�is implies that f takes the form f (x , y) = (φ(x),ψ(x , y)),
where φ and ψ are rational function, the important point being that φ depends only on x.
One has deg(φ) = deg( f ).
Such a dynamical system is called a Lattès map. From the point of view of complex

dynamics, they are very speci�c (for example, their measure of minimal entropy is absolutely
continuous with respect to the Lebesgue measure.)
Similarly, if one divides the multiplicative group by the action of x ↦ 1/x, one gets the

family of Chebyshev maps on P1k. �ey are associated to the Chebyshev polynomials TN
such that TN(2 cos(x)) = 2 cos(Nx), or TN(x + 1/x) = xN + 1/xN .�e degree of TN is N .
�eir dynamical properties are also very particular.

1.9. Higher dimensional varieties. — In higher dimensions, it is much more di�cult to
classify algebraic dynamical systems, although the picture for surfaces is almost complete.
Projective spaces and, more generally, rational varieties carry many dynamical systems.

For example, let F0, . . . , Fn be homogeneous polynomials in n + 1 variables, of the same
degree d, and without common zeros over the algebraic closure.�en, there is an endo-
morphism f of Pnk which maps a point x with homogeneous coordinates [x0 ∶ . . . ∶ xn] to
the point with homogeneous coordinates [F0(x) ∶ . . . ∶ Fn(x)]. Conversely, any (possibly
rational) algebraic dynamical system on Pnk takes this form.�e indetermination locus of f
is the common locus of the polynomials F0, . . . , Fn.
For example, taking Fi(x) = xdi ; one gets a dynamical system which is a compacti�cation

of the dth-power map on of the torus (Gm)n.
Endomorphisms of Abelian varieties (connected projective algebraic groups) give rise to

dynamical systems whose arithmetic is very rich, and now quite well understood. As for
elliptic curves, preperiodic points are torsion points.
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Lattès maps have analogues in higher dimensions. Indeed, if one quotients an Abelian
variety by the inversemap [−1], identifying a point x and its opposite −x, one gets a Kummer
variety. Such a variety inherits dynamical systems whose behavior is close to the ones of the
original Abelian variety.

1.10. K3-surfaces. —�e study of those examples from a Diophantine point of view has
been initiated by Silverman (1991); we describe here later examples due to Wang (1995).
Let us consider a smooth irreducible hypersurface X in P1k ×P1k ×P1k . If, for i ∈ {1, 2, 3}, one
denotes by (Ti ,Ui) the homogeneous coordinates on P1k , the surface X can be de�ned by a
polynomial F ∈ k[T1,U1, T2,U2, T3,U3] which is homogeneous of some degree di in each
of the pairs of variables (Ti ,Ui). Let us assume that d1 = d2 = d3; then, the canonical class
of X is trivial, as well as its �rst cohomology group H1(X ,OX). Such a surface is called a
K3-surface.
Let P1 and P2 ∈ P1k. Since F has degree 2 with respect to (T3,U3), there are exactly two

points (possibly equal) P3 and P′3 onP1k such that (P1, P2, P3) and (P1, P2, P′3) both belong to X.
�is induces an involution σ3 of X exchanging (P1, P2, P3) and (P1, P2, P′3). One similarly
de�nes σ1 and σ2.�ese three involutions do not satisfy any non trivial relations and the
subgroup of Aut(S) they generate is the free product (Z/2) ∗ (Z/2) ∗ (Z/2), see (Cantat,
2011, §2.4.6).
For i ∈ {1, 2, 3}, letLi be the inverse image ofO(1) by the projection of index i to P1k . By

Lefschetz’s�eorem, they form a basis of the Picard group Pic(X).�e action of σ∗j on the
line bundlesLi is given by:

σ∗i Li ≃ L −1
i ⊗L 2

j ⊗L 2
k

when {i , j, k} = {1, 2, 3}, and
σ∗i L j ≃ L j

when i ≠ j, see Wang (1995) for the proof. (1)

1.11. Polarizeddynamical systems. — Let (V , f ) be an algebraic dynamical system, where
V is assumed to be projective and (for simplicity) integral. A polarization of (V , f ) is an
ample line bundleL on V such that f ∗L is isomorphic to some powerL q ofL , with
q > 1.
�is condition implies that f is a �nite morphism of degree qdim(V). If V is smooth, then

its Kodaira dimension is ≤ 0.
�e simplest example is given by endomorphisms of the projective space Pnk ; then, one

may take L = O(1), and q is the common degree of the polynomials which de�ne f .
(Unless f is an automorphism, one has q ≥ 2.)

1. One has σ∗i L j = σ∗i p∗jO(1) = (p j ○ σi)∗(1). For i ≠ j, p j ○ σi = p j , hence σ∗i L j ≃ L j . Let us observe
the following relations in intersection theory: one has c1(Li) ⋅ c1(L j) = 2 for i ≠ j, while c1(Li)

2
= 0.�en,

for i ≠ j, c1(σ∗i Li) ⋅ c1(L j) = c1(Li) ⋅ σ∗i c1(L j) = 2. Moreover, let q1 = (p2 , p3) be the projection from X
to P1k × P1k and π1 , π2 the two projections from P1k × P1k to P

1
k .

�en, q1,∗c1(L1) ⋅ π∗1 O(1) = c1(L1) ⋅ c1(L2) = 2 and q1,∗c1(L1) ⋅ π∗2O(1) = c1(L1) ⋅ c1(L2) = 2, so
that q∗1 q1,∗c1(L1) = 2c1(L1) + 2c1(L3). For any point P, one has q∗1 q1,∗P = P + σ1(P), as a zero-cycle hence
(understand/explain) q∗1 q1,∗c1(L1) = c1(L1)+ c1(σ∗1 L1). Finally, σ∗1 c1(L1) = −c1(L1)+2c1(L2)+2c1(L3).
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In fact, the following proposition shows that at least when k is in�nite, any polarized
dynamical system is induced by some endomorphism of a projective space.

Proposition (Fakhruddin, 2003). — Assume that k is in�nite. Let (V , f ,L ) be a polar-
ized dynamical system, with V proper.�en, there exist positive integers n and p, a closed
embedding i∶V ↪ Pnk such that i∗O(1) = L p, and an endomorphism g of Pnk such that
g ○ i = i ○ f .

Say that (V , f ) is expanding if there exists an ample line bundle L on V such that
f ∗L ⊗L −1 is ample. Of course, because of the condition q > 1 on the weight, a polarizable
dynamics is expanding, but to be expanding is a weaker notion and there are more examples.

2. Questions

In this section, we recall results for Abelian varieties and discuss their possible extensions
to an algebraic dynamical system (V , f ) where f ∶V ⇢ V is a dominant rational map.

2.1. Existence of non-preperiodic points. —�e �rst Diophantine question is whether
the dynamics of (V , f ) is already re�ected at the level of rational points, maybe a�er some
�nite extension of the ground �eld.
If A is an Abelian variety over an in�nite �eld k, it is known that there exists a �nite ex-

tension k′ ⊃ k such that A(k′) is Zariski dense in A. More precisely, at least in characteristic
zero, there exists a point a ∈ A(k′) whose multiples are already dense in A, see Hassett &
Tschinkel (2000); Hassett (2003).�is last result is not less general under the assumption
that k is algebraically closed.
�is suggests the following question ofMedvedev & Scanlon (2009): If k is algebraically

closed, does there exist a point x ∈ V(k) whose orbit is dense for the Zariski topology? An
obvious necessary condition is that f do not preserve any rational �bration, namely there
does not exist a rational map g∶V ⇢W , with 0 < dim(W) < dim(W)0, such that g ○ f = g
generically. According to Conjecture 5.3 of that paper, this condition should be su�cient.
Amerik & Campana (2008) proved that it is indeed the case when k is an uncountable
algebraically closed �eld of characteristic zero (e.g., if k = C).
In general, Amerik (2011) shows that provided f is not of �nite order, there exists a point

x ∈ V(k) whose orbit is in�nite. �e proof is based on reduction to �nite �elds where it
relies crucially on the results by Hrushovski (2004) on acfa and Frobenius. In the case of
polarized dynamical systems (they cannot preserve any rational �bration), the result can
be proved easily using height functions. Indeed, any point of non-zero canonical height
satis�es the required property (see below, §3.4).

2.2. Density of periodic points. — In some sense, the theory of dynamical systems aims
at classifying invariant (possibly reducible) subvarieties and periodic points give rise to the
simplest ones.
Of course, a translation dynamics, as f (z) = z + a on C, does not admit a lot of periodic

points, so that some hypothesis is necessary if one wants to show that periodic points are
dense.
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Over the complex numbers, using tools from complex analysis among which plurisub-
harmonic functions and currents one may show that this holds in the case of polarized
dynamics. In that case, the “repelling” periodic points of order n are �nite in number, and
equidistribute, when n goes to in�nity, to some canonical probability measure on V(C)
whose support is Zariski dense. In particular, periodic points are Zariski dense. Such a
property holds, more generally, for dominant rational maps f of a projective variety V
whose “last dynamical degree” is the largest — one could say that f is “cohomologically
expanding”.
�e story began with Ljubich (1983) who treated the case of a rational function of

degree > 2 acting on the Riemann sphere; extensions to higher dimensions have been
given by Briend & Duval (2001); Guedj (2005); Dinh & Sibony (2010), the last reference
providing an extensive and useful survey of the �eld.
In the case of polarized dynamics over an algebraically closed �eld, an algebraic proof that

periodic points are Zariski dense has been given by Fakhruddin (2003), using reduction
to �nite �elds and Hrushovski (2004). Moreover, the same proof establishes the weaker
result that preperiodic points are Zariski dense, without needing to appeal to the results
of Hrushovski (2004).�is proof is also valid for expanding algebraic dynamical systems.

2.3. Uniformboundedness. —Wenow turn to the question of understanding preperiodic
points over an arithmetic ground �eld, a number �eld, say.
For an elliptic curve, we have seen that preperiodic points correspond to torsion points.

Moreover, a celebrated theorem of Merel (1996) claims that for any number �eld k, the
order of the torsion subgroup of any elliptic curve over k is bounded uniquely in terms
of [k ∶ Q].
�e analogous result for Abelian varieties is still wide open.
Morton & Silverman (1994) conjecture a vast generalization: there should exist a

constant κ(D, n, d) bounding the number of preperiodic points of any endomorphism of
degree D ≥ 2 of Pnk de�ned over a number �eld k such that [k ∶ Q] ≤ d.
Indeed, using Prop. 1.11 and basic properties of ample line bundles on Abelian varieties,

one can prove that this conjecture implies that the order of the torsion subgroup of Abelian
varieties over a number �eld is bounded in terms of the dimension and the degree of the
�eld, see Fakhruddin (2003) for details.

2.4. Manin–Mumford. — Assume here that (V , f ) is a polarized dynamical system over
an algebraically closed �eld k, V being projective. We have seen that the periodic points
of V(k) are dense. Consequently, any closed integral subvarietyW ⊂ V which is invariant
under f will also contain a dense set of periodic points; it su�ces to apply the above result
to the induced dynamical system (W , f ∣W).
More genarally, any subvarietyW which is preperiodic, meaning that there exist inte-

gers m > n ≥ 0 such that f (m)(W) = f (n)(W), will contain a dense subset of preperiodic
points.
In the case of Abelian varieties over an algebraically closed �eld of characteristic zero,

Manin and Mumford asked, and Raynaud (1983) proved that conversely, if an integral
subvarietyW of an Abelian variety V contains a dense set of torsion points, there exists an
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Abelian subvarietyW0 of V and a torsion point a ∈W(k) such thatW = a +W0.�ere is a
similar theorem over �elds of positive characteristic, but it is more subtle, see Hrushovski
(2001).
However, as shown by Ghioca et al (2011), this picture does not generalize easily to

general polarized algebraic dynamics. Indeed, let E be an elliptic curve with complex
multiplication by Z[i], let V = E × E and let f = ([3 + 4i], [5]). Since ∣3 + 4i∣2 = 32 + 42 = 52,
this is a polarized endomorphism; preperiodic points are torsion points, and the diagonal ∆
contains a dense set of preperiodic points. However, since (3 + 4i)/5 is not a root of unity
(it is even not an algebraic integer), ∆ is not preperiodic.

2.5. Mordell–Lang. —�e last question I would like to mention here is related to the
Mordell–Lang conjecture. Indeed, combining the Mordell–Weil theorem and Mordell
conjecture, Lang suggested the following conjecture, now a theorem.

�eorem (Faltings, 1994). — Let A be an Abelian variety over an algebraically closed
�eld k of characteristic zero, let Γ ⊂ A(k) be a �nitely generated subgroup and let V be an
integral subvariety of A. If V ∩ Γ is dense in V, then there exists an Abelian subvariety V0 and
a point a ∈ A(k) such that V = V0 + a.

Let now (V , f ) be an algebraic dynamical system over an algebraically closed �eld k.
LetW ⊂ V be an integral subscheme and let x ∈ V(k). In that context, the Mordell–Lang
problem aims at understanding the intersection of the orbit of x withW , equivalently, the
setNW of integers n such that f (n)(x) ∈W .
Let us observe what happens when V is an Abelian variety and f the translation by a

point a ∈ V(k). If a has �nite order, then the sequence ( f (n)(x)) = (x+na) is periodic and
the result holds trivially, so assume that a has in�nite order. Let us consider an irreducible
componentW ′ of the Zariski closure ofW ∩ (x +Na). By assumption,W ′ ∩ (x +Na) is
dense inW ′; by Faltings’s�eorem,W ′ = x′ +W ′

0 is a translate of an Abelian subvarietyW ′
0

by a point x′ ∈W ′(k). IfW ′
0 ≠ 0, there are in�nitely many integers n such that x + na ∈W ′,

hence in�nitely many integers n such that na ∈W ′
0. Let p be their least common divisor;

one has pa ∈W ′
0 and the set of integers n such that x + na ∈W ′ is a union of arithmetic

progressions modulo p.�erefore, the setNW is a �nite union of arithmetic progressions
(possibly of step 0).
One expects, see for example Ghioca & Tucker (2009), that this property holds in

general. �ere are indeed a lot of results in that direction, due to Benedetto, Ghioca,
Kurlberg, Scanlon, Tucker, Zieve, and probably others. In most of them, p-adic
techniques play an important rôle, close in spirit to the approach of Chabauty (1941) to
the Mordell conjecture, or to the proof of the Skolem-Mahler-Lech theorem.

3. Heights

We shall sometimes be brief; more details can be found in many places, notably the
excellent textbooks by Hindry & Silverman (2000) or Bombieri & Gubler (2006).
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3.1. Fields and the product formula. —We now assume that k is a �eld of one of the
following types:

– a number �eld;
– a function �eld in one variable over a �nite �eld;
– a function �eld over an algebraically closed �eld.

In these three cases, one can de�ne a set M(k) of pairwise inequivalent absolute values
of k such that the product formula holds: for any a ∈ k×, only �nitely many ∣a∣v are distinct
from 1, and∏v∈M(k) ∣a∣v = 1
For k = Q, one takes for M(k) the set of all p-adic absolute values ∣⋅∣p (normalized

for any prime number p by ∣p∣p = 1/p), as well as the usual archimedean value ∣a∣∞.�e
product formula follows from factorization into prime powers: for a ∈ Q×, one can write
a = ±∏p prime pap , then ∣a∣p = p−ap for each prime number p, while ∣a∣∞ =∏p pap .
A function �eld in one variable over a �nite �eld can be viewed as the �eld of functions

of a smooth, projective, geometrically irreducible curve C over a �nite �eld κ.�e setM(k)
is indexed by closed points of the curve C.�e local ring at for any closed point x ∈ C is a
discrete valuation ring; let vx be the corresponding normalized valuation (with image Z):
for a ∈ k×, vx(a) is the order of the zero of a, or minus the order of the pole.�e absolute
value ∣⋅∣x is then de�ned by the formula ∣a∣x = ∣κ(x)∣−vx(a), where κ(x) is the residue �eld
of C at x.�e product formula corresponds to the fact that a nonzero rational function on
a curve possesses as many zeros as poles, counted with appropriate multiplicities.
General function �elds over an algebraically closed �eld κ can be treated similarly, but

there is no canonical choice in general. Let k be such a �eld, and view it as the �eld of
functions of a projective integral scheme S over κ.�e setM(k) is now indexed by the set
of prime divisors of S (meaning, integral subschemes of codimension 1 in S); any prime
divisor D gives rise to a normalized valuation vD∶ κ(S)× → Z. Let us also �x an ample line
bundleL on S; it allows to de�ne the degree of any integral subscheme of S, more generally,
of any linear combination of them. �en, for any prime divisor D, one de�nes ∣a∣D =
e−degL (D)vD(a).�e product formula is equivalent to the relation∑D degL (D)vD(a) = 0,
which follows from the fact that the divisor of a, de�ned as the cycle ∑D vD(a)[D], has
degree 0.
We shall say that k is a M-�eld. In all of these three cases, it is possible to de�ne naturally

a M-�eld structure on any �nite extension k′ of k, which is compatible with that ofM(k):
there is a surjective map with �nite �bers, π∶M(k′)→ M(k), such that ∣a∣v =∏π(v′)=v ∣a∣v′
for any a ∈ k× and any v ∈ M(k).

3.2. Height functions and their functoriality properties. — Let k be a M-�eld.�e (ex-
ponential) Height function on the rational points of the projective space Pn is de�ned by
the formula:

H([x0 ∶ . . . ∶ xn]) = ∏
v∈M(k)

max(∣x0∣v , . . . , ∣xn∣v).

�e product formula assures that this is well de�ned, independently of the choice of the
homogeneous coordinates. Let us give an example, assuming that k = Q: any point x
of Pn(Q) has a system of homogeneous coordinates [x0 ∶ . . . ∶ xn] consisting of coprime
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integers, unique up to multiplication by ±1; then, H(x) =max(∣x0∣ , . . . , ∣xn∣). Indeed, for
any prime number p, one of the x j is not divisible by p, hence max(∣x0∣p , . . . , ∣xn∣v) = 1;
there only remains the factor corresponding to the archimedean absolute value, whence the
result.
In fact, the Height function extends naturally to a function, still denoted H, on Pn(k′),

for any �nite extension k′ of k, and then to Pn(k̄), where k̄ is an algebraic closure of k.
In some applications, and in the following propositions, it is convenient to introduce the

height function h on Pn(k̄) de�ned as the logarithm of the Height function.

Proposition. — Let f ∶Pnk ⇢ Pmk be a rational map de�ned by homogeneous polynomials
f0, . . . , fm of degree d, without common factors. Let E = V( f0, . . . , fm) be the locus they
de�ne in Pnk ; this is the locus of indetermination of f .

(1) �ere exists a positive real number c such that H( f (x)) ≤ cH(x)d for any point
x ∈ Pn(k̄) such that x /∈ E.
(2) For any closed subscheme V of Pnk such that V ∩ E = ∅, there exists a positive real

number cV such that H( f (x)) ≥ cVH(x)d for any x ∈ V(k̄).

3.3. �e Height machine. — From this Proposition and basic properties of line bundles
on projective varieties, one constructs the height machine.

Proposition. — Let V be a projective variety over k. LetF (V) be the real vector space of
real-valued functions on V(k̄) and letFb(V) be its subspace of bounded functions.�ere is
a unique linear map

h∶Pic(V)⊗R→F (V)/Fb(V), L ↦ hL

such that hL = h ○ φ (mod Fb(V)) for any closed embedding φ∶V ↪ Pnk andL = φ∗O(1).
Moreover, this formula holds for any morphism φ∶V → Pnk , without assuming that it is an

embedding.

Corollary. — Let V and W be projective varieties over k, let f ∶V →W be a morphism. For
anyL ∈ Pic(W)⊗R, one has h f ∗L = hL ○ f .

In practice, one chooses representatives of the height function, still denoted hL . �e
preceding equalities then become formulae up to a bounded function.

Remark. — By a�eorem of Néron (see Serre (1997), §2.9 and 3.11 (2)), the morphism
Pic(V)⊗R→F (V)/Fb(V) is injective.

2. �is reference only treats the case when k is a number �eld, but the proof seems to establish the result
in general, up to some minor modi�cations.
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3.4. Polarized dynamics, canonical heights. — Let (V , f ,L ) be a polarized dynamical
system, let q be its weight, and let hL be a height function forL . One has hL ( f (x)) =
qhL (x) +O(1).

Proposition (Tate, Call & Silverman (1993)). — �ere exists a unique height function
ĥL forL such that ĥL ( f (x)) = qĥL (x) for any x ∈ V(k̄).

Proof. — �e space of height functions forL is a real a�ne space directed by the space
Fb(V). Let us endow that space with the supremum norm. For any height function h
for L , one has h( f (x)) = qh(x) +O(1), so that 1qh ○ f is still a height function for L .
Moreover, the map h ↦ 1

qh ○ f is contracting, so it has a unique �xed point ĥ.
In fact, the proof of the �xed point theorem shows that ĥ can be de�ned by the explicit

limit formula:
ĥ(x) = lim

n→∞
q−nh( f (n)(x)), x ∈ V(k̄).

�is last formula shows that ĥ is nonnegative. �e existence of the canonical height
has beautiful consequences. For example, the functional equation implies at once that
preperiodic points have canonical height zero. Actually, it was already the main point
of Northcott (1950) to prove that the set of preperiodic points in V(k̄) has bounded
height, a property which does not depend on the actual choice of a representative.

3.5. Northcott �niteness and height zero. — From the explicit computation of the height
of a point in Pn(Q), it is obvious that given any bound B, there are only �nitely many points
x ∈ Pn(Q) such that H(x) ≤ B.�is observation generalizes as follows.

Proposition (Northcott, 1950). — Assume that k is either a number �eld, or a function
�eld in one variable over a �nite �eld.�en, for any real number B and any positive integer d,
there are only �nitely many points x ∈ Pn(k̄) such that [k(x) ∶ k] ≤ d and H(x) ≤ B.

Proof. — For d = 1 and k a number �eld, the proof is the above observation; still when
d = 1 and k = κ(T), for κ a �nite �eld, a similar computation can be done. From the
de�nition of the Height, we see that we may assume that n = 1. Finally, one passes from
d = 1 to arbitrary d by consideration of symmetric products and the fact that Symd(P1k) is
isomorphic to Pdk — this is basically nothing more than the theory of elementary symmetric
functions.

We will call N-�eld a M-�eld in which the preceding �niteness result holds.�ere are
interesting ongoing investigations in number theory to enlarge the class of known N-�elds.
Observe however that the �eld of functions k = κ(S) of a projective integral variety S over
an algebraically closed �eld κ is not a N-�eld: the points of Pn(κ) ⊂ Pn(k) all have height 0.

Corollary. — Let (V , f ,L ) be a polarized dynamical system over a N-�eld. Any point
x ∈ V(k̄) such that ĥ(x) = 0 is preperiodic.

Proof. — Let x be such a point; any point y in its orbit satis�es ĥ(y) = 0 and [k(y) ∶ k] ≤
[k(x) ∶ k]. Since k is a N-�eld, the orbit of x is �nite, whichmeans that x is preperiodic.
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Describing what happens when k is a function �eld over an algebraically closed �eld will
be the subject of the second part of this paper.

PART II. ALGEBRAIC DYNAMICS OVER FUNCTION FIELDS

�e second part of this text is about algebraic dynamics over a function �eld. Speci�cally,
in presence of a polarized dynamical system, we want to characterize the points of height
zero. But �rst, we need to return once again to Abelian varieties.

4. Abelian varieties over function �elds

4.1. �e Néron–Tate height. — Let A be an Abelian variety over a M-�eld k and letL
be an ample symmetric line bundle on A (symmetric means that [−1]∗L ≃ L ). Basic
properties of line bundles on Abelian varieties (the�eorem of the cube, see Mumford
(1974)) imply that for any integer n ≥ 2, [n]∗L ≃ L n2 . In other words, the algebraic
dynamical system (A, [2]) is polarized byL . Let ĥL be a canonical height forL . �e
�eorem of the cube implies that ĥL is a quadratic form on the Abelian group A(k̄); it is
nonnegative.
Assume that k is a N-�eld. �en, we have seen how Northcott’s theorem implies that

ĥL is positive on non-torsion points of A(k̄), so that ĥL is a positive de�nite quadratic
form on A(k̄)⊗Q. In fact, using the full strength of Northcott’s theorem, one can show,
see (Serre, 1997, Lemma 2, p. 42), that ĥL is a positive de�nite quadratic form on A(k̄)⊗R.
�is �niteness property is also an important step in the proof of the Mordell-Weil theorem
that asserts A(k) is �nitely generated.

4.2. �e �eorem of Lang-Néron. —We now leave the world of N-�elds. Let S be a
projective integral variety over an algebraically closed �eld κ and let k = κ(S) be its function
�eld. As in §3.1, we endow it with the structure of a M-�eld.
We want to describe the set of points x ∈ A(k) such that ĥL (x) = 0.
Let d be any positive integer such thatL d is very ample and let φ∶A↪ PNk be a closed

embedding of A into a projective space such that φ∗O(1) is isomorphic toL d . Let B a real
number such that ∣ĥL (x) − h(φ(x))∣ ≤ B for all x ∈ A(k̄).
Let x ∈ A(k) be a point such that ĥL (x) = 0; assume that x is not a torsion point. Any of

its multiples [n]x satis�es ĥL ([n]x) = 0, so that the points xn = φ([n]x) ∈ PN(k) furnish
an in�nite sequence of rational points whose heights are uniformly bounded.

4.3. Limited families. —�e following lemma shows that points of bounded height
in PN(k) can be parameterized by a �nite dimensional variety over κ.
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Lemma. — Let B be a positive integer. Let η be the generic point of S.�ere exists a κ-scheme
of �nite type T and a rational map ξ∶ S × T ⇢ PNκ such that, for any point x ∈ PN(k) such
that h(x) ≤ B, there exists a point t ∈ T(κ) satisfying ξ(η, t) = x.

Proof. — We assume that S is a curve (3) Let x = [x0 ∶ . . . ∶ xN] ∈ PN(k) be a point such that
h(x) ≤ B. Without loss of generality, we assume that x0 = 1.�en, for each j ∈ {1, . . . ,N},
the degree of the rational functions x j is at most B. For any j, the function x j is determined
by its polar divisor D j, itself an element of some symmetric product Symb S, with 0 ≤ b ≤ B,
up to the �nite dimensional ambiguity corresponding to the Riemann-Roch spaceL (D j).
�e lemma follows from that; to be honest, it should follow from that.

Let us now explain the title of this Section. Let S is a Noetherian scheme and X a S-
scheme of �nite type, Exposé XIII of Grothendieck et al (1971) de�nes and studies the
notion of limited families of coherent sheaves on the �bers of X/S. A family of coherent
sheaves is the datum, for any point s ∈ S and any extension K of κ(s), of a setF (K) of
coherent sheaves on the K-variety XK . One says that such a family is limited if there exists a
S-scheme of �nite type T and a coherent sheaf E on X ×S T such that, for any s ∈ S, and
any extension K of κ(s), and any sheaf F ∈ FK , there exists a point t ∈ Tκ(s), a common
extension K′ of κ(s) and K such that FK′ ≃ Et,K′ .
Here is the crucial criterion proved in (Grothendieck et al, 1971, Exposé XIII,

�éorème 1.13): a family of coherent sheaves is bounded if and only if 1) all of the sheaves in
the family can be presented as a quotient of one �xed coherent sheaf on X, and 2) the set
formed by their Hilbert polynomials is �nite.
�e most important case is given by S = Spec κ and X = PN . Associating to any closed

integral subscheme V ⊂ X its structure sheaf OV allows to talk about a families, especially
limited families, of closed integral subschemes of PN . From the preceding criterion, one
can deduce the theorem of Chow: the family of all closed integral subschemes of PN with
given degree is limited.

4.4. �e�eorem of Lang–Néron (conclusion of the proof). — Let us apply Lemma 4.3
on limited sets to the points xn = φ([n]x).�e scheme T has only �nitely many irreducible
components, so we may choose two distinct integers m and n such that tm and tn belong to
the same irreducible component of T . Let C be an smooth irreducible curve over κ and
π∶C → T a morphism such that π(C) contains tm and tn. From the morphism π and the
rational map ξ, one constructs a morphism α∶Ck → A, given by α(c) = ξ(η, π(c)). Fix
a point c0 ∈ C. Necessarily, α factors through the Albanese map Ck → Alb(C)k which
is the universal morphism to an Abelian variety mapping c0 to 0. �erefore, we obtain
a morphism of Abelian varieties, α∶Alb(C)k → A, whose image, up to some translation,
contains xm and xn. In particular, xm − xn belongs to α(Alb(C)k).
In other words, the di�erence between the points xm and xn, while not zero, is explained

by an Abelian subvariety of A the modulus of which belongs to κ. �e theory of the
trace asserts the existence of a largest Abelian variety A0 over κ together with an injective

3. I have to think whether the following proof can be adapted to treat the general case or not.
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morphism τ∶ (A0)k → A.�e variety A0 is called the k/κ-trace of A. What precedes shows
that [m − n]x ∈ τ(A0(κ))
�is concludes the proof of the following�eorem:

�eorem (Lang & Néron, 1959). — Let k be the function �eld of a projective smooth
integral curve over an algebraically closed �eld κ. let A be an Abelian variety over k, let A0 be
its k/κ-trace and let τ∶ (A0)k → A be the canonical morphism. LetL be an ample symmetric
line bundle on A and let ĥL be the associated canonical height.
For any point x ∈ A(k) such that ĥL (x) = 0, there exists a positive integer n such that

[n]x ∈ τ(A0(κ)).

Let us consider the particular case where A is a simple k-variety; then, there are only two
possibilities concerning the k/κ-trace: either A0 = 0, or A0 = A and A = (A0)k is de�ned
over κ. In the �rst case, points of canonical height zero are torsion points; in the second
one, they are the “constant points”, that is, the points of A0(κ) seen within A(k).

5. Points of height zero in polarized algebraic dynamics

Let κ be an algebraically closed �eld, let S be a projective integral variety over κ and let
k = κ(S). We endow it with the structure of a M-�eld.

5.1. Dynamics on the projective line. — Let f ∈ k(T) be a rational function of degree d ≥
2. It de�nes an endomorphism of P1k , hence an algebraic dynamical system. Since f ∗O(1) ≃
O(d), this system is polarized. Let ĥ be the corresponding canonical height.

�eorem (Baker, 2009). — If there exists a non-preperiodic point x ∈ P1(k̄) such that
ĥ(x) = 0, then there is an homography u ∈ PGL(2, k̄) such that u(x) ∈ P1(κ) and u○ f ○u−1 ∈
κ(T).

Baker’s proof belongs toDiophantine geometry and relies on a careful study of “canonical
Green functions” on the projective line in the sense of Berkovich (1990), as developed
by Baker & Rumely (2010); see also Thuillier (2005). However, and unfortunately, the
analysis of Green functions is insensitive to extensions of the ground �eld. Consequently,
the proof does not show that one can one �nd an adequate homography in PGL(2, k) when
there exists a k-rational which has height 0 but is not preperiodic.
As an example, taking for f a Lattès map, one recovers the theorem of Lang–Néron, up

to this minor discrepancy between being constant over k, or becoming constant a�er base
change to k̄.

5.2. Height zero, vs. limited families. — As we have already seen in the proof of the
theorem of Lang–Néron, heights over function �elds are but a way of measuring that
families of geometric objects are limited.
Any point x ∈ PN(k) de�nes a rational map εx ∶ S ⇢ PN (which is in fact regular every-

where if S is a smooth curve). Let Sx be the closure of its image. One says that a subset Σ
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of rational points in PN(k) is limited if the set of corresponding subvarieties Sx ⊂ PN , for
x ∈ Σ, is limited.
As a consequence of Lemma 4.3, one has the following lemma.

Lemma. — Let (V , f ,L ) be a polarized dynamical system over k. Let ĥ be the corresponding
canonical height. Let x be a any point in V(k).�e following properties are equivalent:
(1) the point x has canonical height zero: ĥ(x) = 0;
(2) for any choice of a height function on V, its orbit {x , f (x), . . .} has bounded height;
(3) its orbit {x , f (x), . . .} is limited.

5.3. Small points vs. limited families. — In fact, the proof of�eorem 5.1 yields a �ner
result: the conclusion holds under the assumption that there exists a sequence (xn) of distinct
points in P1(k) such that ĥ(xn)→ 0. �is hypothesis translates as follows into the language
of limited families:

Lemma. — Let (V , f ,L ) be a polarized dynamical system over k. Let ĥ be the corresponding
canonical height. Let (xn) be a sequence of distinct points in P1(k).�e following properties
are equivalent
(1) one has ĥ(xn)→ 0;
(2) for a given choice of a height function on V and any integer n, de�ne Nn as the smallest

positive integer m such that h( f (m)(xn)) ≥ 1.�en, the sequence (Nn) tends to∞.
(3) �ere exists a limited set Σ, and a sequence (Nn) of integers converging to∞ such that

f (m)(xn) ∈ Σ for any n and any m ≤ Nn.

Remark. — �e last assumption implies that there exists an algebraically closed exten-
sion κ∗ of κ a point x ∈ V(κ∗k) the orbit of which is limited. If κ is uncountable, one may
even take κ∗ = κ.
By assumption, there exists a κ-scheme T of �nite type and a morphism σ ∶Tk → V such

that Σ ⊂ σ(T(κ)). Let Γ be the closure in T × T of the set of points (t, t′) ∈ T(κ)2 such
that f (σ(t)) = t′. For any integer N , the set of points t ∈ T(κ) for which there exists points
t = t0, t1, . . . , tN ∈ T(κ) such that (ti−1, ti) ∈ Γ for i ∈ {1, . . . ,N} is the set of κ-points of a
constructible algebraic subset ON of T . By assumption, ON(κ) ≠ ∅. By compactness of the
constructible topology, (Grothendieck, 1961, Chap. 0, (9.2.4)), their intersection O∞ is
non-empty and there exists an extension κ∗ of κ such that O∞(κ∗) ≠ ∅. If κ is uncountable,
the κ-points of a countable union of strict subvarieties cannot exhaust the whole space, so
one may even take κ∗ = κ.
When κ is the �eld of complex numbers, this last property is o�en proved by invoking the

theorem of Baire. But here is an algebraic proof, given to me by J.-L. Colliot-�élène some
years ago: it is su�cient to show that, given a sequence ( fn) of non-zero polynomials in N
variables, there exists x ∈ κN such that fn(κ) ≠ 0 for each integer n. Let us prove the result
by induction on N . If N = 1, then the equation fn(T) = 0 has only �nitely many solutions
in κ, and the countable union of these �nite sets does not exhaust κ. Let N ≥ 2; for any
integer n, let gn ∈ κ[T1, . . . , TN−1] be the leading coe�cient of fn, viewed as a polynomial
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in TN . By induction, there exists (t1, . . . , tN−1) ∈ κN−1 such that for all n, fn(t1, . . . , tN−1, TN)
is a non-zero polynomial in the variable TN . By induction again, there exists tN ∈ κ such
that fn(t1, . . . , tN) ≠ 0 for all n.
In model theoretic language, within the theory acf of algebraically closed �elds, O∞ is

described by the countable list of formulae de�ning theON . It follows from the compactness
theorem that it is satis�able, hence de�nes a (partial) type p.�is shows that it is realized
in some algebraically closed extension κ∗ of κ. If κ is uncountable, then κ is saturated, see
Exercise 4.5.17 of Marker (2002), so that p is realized in κ.

PART III. DIFFERENCE FIELD AND DESCENT

From now on, essentially all results are taken from the two papers of Chatzidakis &
Hrushovski (2008a,b). Inaccurracies, misunderstandings and mistakes are mine.

6. Algebraic dynamics and algebraically closed �elds with an automorphism

6.1. Di�erence �elds. —We recall that a di�erence �eld (K , σ) is a �eld K equipped with
an endomorphism σ .�e di�erence �eld is called inversive when σ is an automorphism.
We shall work in the language of rings, enlarged by a symbol σ for an endomorphism. In

that language, the theory of algebraically closed �elds with an automorphism, in short, acfa,
has for structures pairs (K , σ), where σ is a function from K to K subject to the following
families of axioms:
(1) axioms that say that K is an algebraically closed �eld;
(2) axioms that say that σ is an automorphism of K;
(3) for any irreducible K-variety V and any irreducible subvariety S ⊂ V ×V σ such that

both projections from S to V , and from S to V σ , are generically surjective, there exists
a ∈ V such that (a, σ(a)) ∈ V .
�ese axioms are expressible by an in�nite set of formulae in �rst order logic.

�eorem (Macintyre (1997); Chatzidakis &Hrushovski (1999)).
�e theory acfa is model-complete; it is the model companion of the theory of di�erence

�elds.

In the sequel, we shall work within some “large” modelM of acfa.

6.2. Di�erence �elds and algebraic dynamical systems. — Let (V , S) be an algebraic
dynamical system over some given ground �eld F, S being a correspondence inV , dominant
over each factor. If one prefers, one may assume that S is the graph of an endomorphism f
of V ; then, (V , f ) is an algebraic dynamical system.



ALGEBRAIC DYNAMICS, FUNCTION FIELDS AND DESCENT 17

View F as a di�erence �eld by imposing σF = idF . For any extension (K , σ) of F as a
di�erence �eld, one may consider the set

S♯(K) = {(x , y) ∈ S(K) ⊂ V(K) × V(K) ; y = σ(x)}
together with its two projections to V(K). We shall see below that if K is a model of acfa,
then S♯(K) is Zariski dense in S.
If one is ready to adopt the language and techniques from model theory of di�erence

�elds, it is more natural not to assume that the dynamics is trivial on the ground �eld; this
is in fact an unnatural hypothesis, for it forbids to consider the “�bers” of a morphism
(V , S)→ (W , T) of dynamical systems.
So let (F , σ) be a di�erence �eld. A dynamical system is a pair (V , S), where V and

S ⊂ V × V σ are algebraic varieties over F such that the images of S by the two projections
to V and V σ are dominant. Here, V σ is the algebraic variety obtained from V by applying
σ to all coe�cients of the equations of V ; in particular, for any extension (K , σ) of (F , σ)
as a di�erence �elds, the morphism σ ∶K → K induces a map σ ∶V(K)→ V σ(K). As above,
one de�nes

S♯(K) = {(x , y) ∈ S(K) ⊂ V(K) × V σ(K) ; y = σ(x)}.

Lemma. — Assume that K is a model of acfa.�en, S♯(K) is Zariski dense in S.

Proof. — One may assume that V and S are irreducible. Let T be a non-empty open subset
of S; then, T maps dominantly to V and V σ . �e third series of axioms of acfa then
guarantees that T♯(K) ≠ ∅.

6.3. Some classi�cation. — A dynamical system (V , f ) is said to have constant dynamics
if f = idV , periodic dynamics if there exists a positive integer n such that f (n) = idV . If V is
de�ned over a �nite �eld, one says that (V , f ) has twisted-periodic dynamics if there exists
a positive integer n such that f (n) is a power of the Frobenius morphism.
Let (U , g) be a dynamical system and p∶ (V , f )→ (U , g) be a morphism.
One says that (V , f ) is constant, or periodic, or twisted periodic, over (U , g) if there

exists a dynamical system (W , h) with constant (resp. periodic, twisted periodic) dynamics
such that V is a subsystem ofW ×U .
One says that (V , f ) is �xed-�eld internal (resp. twisted-�eld internal) if there exists a

dynamical system (W , h) over (U , g) such that some irreducible component V ×U W is
periodic (resp. twisted-periodic).
One says �nally that (V , f ) is �xed-�eld-free (resp. �eld-free) over U . if for any factor-

ization V →W → U ′ → U such thatW is �xed-�eld internal (resp. �eld internal) over U ′,
thenW → U has generically �nite �bers.
When (U , g) is a point, one simply says �xed-�eld-free (or �eld-free).
Finally, one says that the dynamical system (V , f ) is primitive if there is no morphism

(V , f )→ (U , g) with dim(U) > 0.
Field-free and �eld-internal dynamics are orthogonal: no non-trivial dynamics can be

de�ned in the product of two orthogonal dynamics. Precisely, one has the following result.

Proposition (Chatzidakis &Hrushovski, 2008a, Proposition 1.3).
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Let (V , f ) and (U , g) be dynamical systems de�ned over K. Assume that (V , f ) is �eld-free
and (U , g) is �eld-internal.
(1) Any irreducible di�erence variety R ⊂ U × V which is dominant over U and V is a

component of U × V.
(2) Let L = K(U), let W be a �nite cover of VL. �ere exists a �nite cover V ′ of V such

that V ′
L is a �nite cover of W.

Proof. — (1) Let b be a generic point of V . Since V is �eld free, K(b) ∩ Fix(σ) ⊂ Kalg.
(Any element c ∈ K(b) ∩ Fix(σ) which is not algebraic over K would yield a positive-
dimensional quotient of (V , f ) with constant dynamics.)
(2)

6.4. Modularity. — In Chatzidakis &Hrushovski (2008b),modularity is de�ned under
the name of one-basedness: a dynamical system (V , f ) over a di�erence �eld K is said to be
one-based if for any extension L of K as a di�erence �eld, any �nite family a in V(L) and
any �nite family b in L, the �elds K(a)alg and K(b)alg are linearly independent over their
intersections. According to the fundamental dichotomy, see Chatzidakis &Hrushovski
(1999); Chatzidakis et al (2002), �eld-free dynamics are modular. As a consequence, one
has the following inequality.

Proposition (Chatzidakis &Hrushovski, 2008a,�eorem 1.4).
Let (V , f ) be a �eld-free dynamical system, let (U , g) be a dynamical system and let

W ⊂ U × V be a m-dimensional irreducible family of n-dimensional irreducible di�erence
subvarieties of V.�en, m + n ≤ dim(V).
Proposition 6.5 (Chatzidakis &Hrushovski, 2008a, Proposition 1.5).
Let (V , f ) be a primitive dynamical system. If f has separable degree > 1, then (V , f ) is

modular.

For the proof, we need to recall the following algebraic notions from di�erence algebra,
see §5.16 of Cohn (1965), Let a be a �nite family of elements inM such that σ(a) ∈ K(a)alg.
When n →∞, the degrees of the extensions

[K(a, σ(a), . . . , σn+1(a)) ∶ K(a, . . . , σn(a))]
are non-increasing, since

[K(a, σ(a), . . . , σ(n+1)(a)) ∶ K(a, . . . , σn(a))]
= [Kσ(σ(a), . . . , σ(n+2)(a)) ∶ Kσ(σ(a), . . . , σn+1(a))]
≥ [K(a, σ(a), . . . , σ(n+2)(a)) ∶ K(a, . . . , σn+1(a))].

Consequently, these degrees have a limit, when n →∞, denoted ldeg(a/K) and called the
limit degree of a over K. Similarly, the degrees

[K(a, σ−1(a), . . . , σ(−n−1)(a)) ∶ K(a, . . . , σ−n(a))]
have a limit when n → ∞, denoted ildeg(a/K) and called the inverse limit degreeof a
over K. Both degrees depend only on the extension K(a)σ ,σ−1/K. We de�ne accordingly
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the limit degree ldeg(L/K) and inverse limit degree ildeg(L/K) of an extension L/K of
di�erence �elds.�ey multiply in towers: ifM/L and L/K are extensions of di�erence �elds,
then ldeg(M/K) = ldeg(M/L) ldeg(L/K) and ildeg(M/K) = ildeg(M/L) ildeg(L/K),
see (Cohn, 1965, §5.19).

Lemma (Chatzidakis &Hrushovski, 2008b, Lemma 1.11).
Assume that K is an inversive di�erence �eld. Let a and b be �nite families of elements

inM such that σ(a) ∈ K(a)alg and b ∈ K(a)alg. (4)

(1) If b ∈ K(a)σ ,σ−1 , then ldeg(b/K) ≤ ldeg(a/K) and ildeg(b/K) ≤ ildeg(a/K).
(2) If a ∈ Kalg, then ldeg(a/K) = ildeg(a/K).
(3) If ldeg(b/K) = 1, then K(a, b)σ ,σ−1 is a �nite extension of K(a)σ ,σ−1 .
(4) Assume that some analysis of the type tp(a/K) only involves types non-orthogonal

to Fix(σ), then ldeg(a/K) = ildeg(a/K).

Proof. — (1) By the above properties of limit degrees, one has

ldeg(a/K) = ldeg(K(a)σ/K) = ldeg(K(a, b)σ/K)
= ldeg(K(a, b)σ/K(b)σ) ldeg(K(b)σ/K)
≥ ldeg(b/K).

�e other formula is proved similarly.
(2) Replacing a by (a, σ(a), . . . , σn(a)) for some large enough integer n, wemay assume

that ldeg(a/K) = [K(a, σ(a)) ∶ K(a)].�erefore,
ldeg(a/K)[K(a) ∶ K] = [K(a, σ(a) ∶ K] = [K(a, σ(a)) ∶ K(σ(a)][K(σ(a) ∶ K].

�e �eld K being inversive, one has

[K(a, σ(a)) ∶ K(σ(a)) = [Kσ(a, σ(a) ∶ Kσ(σ(a))] = [K(σ−1(a), a) ∶ K(a)]
= ildeg(a/K).

�is shows that ,

ldeg(a/K)[K(a) ∶ K] = [K(a, σ(a) ∶ K] = ildeg(a/K)[K(σ(a) ∶ K].
�e result follows since [K(a) ∶ K] = [K(σ(a)) ∶ K].
(3)
(4) �e hypothesis means that there exists a �nite sequence (a1, . . . , an) such that for

all i, tp(ai/ acl(K , a1, . . . , ai−1)) is almost-internal to a type of SU-rank 1 which is non-
orthogonal to Fix(σ). By the multiplicative properties of limit and inverse limit degrees, we
reduce to the case where n = 1.
�erefore, there exists a closed di�erence �eld L, independent from a over K, and a �nite

family b ∈ Fix(σ) such that acl(La) = acl(Lb).�is implies that a ∈ L(b)alg and b ∈ L(a)algσ .

4. Hence σ(b) ∈ K(b)alg...
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Moreover, just by de�nition, one has ldeg(L(b)/L) = ildeg(L(b)/L) = 1. Since b ∈ L(a)algσ ,
ldeg(b/L(a)algσ ) = ildeg(b/L(a)algσ . Consequently, the relations

ldeg(a, b/L) = ldeg(b/L(a)) ldeg(L(a)/L)
and

ildeg(a, b/L) = ildeg(b/L(a)) ildeg(L(a)/L)
imply that

ldeg(a, b/L)
ildeg(a, b/L) = ldeg(a/L)

ildeg(a/L) = ldeg(a/K)
ildeg(a/K)

where we used that a and L were independent. Moreover,
ldeg(a, b/L)
ildeg(a, b/L) = ldeg(a, b/Lb) ldeg(b/L)

ildeg(a, b/Lb) ildeg(Lb/L) = ldeg(a, b/Lb)
ildeg(a, b/Lb) = 1

since a ∈ L(b)alg.
We now prove Proposition 6.5. So let (V , f ) be a primitive dynamical systemwhich is not

�eld free. Let a be a generic point ofV . SinceV is primitive, it satis�es the assumption of the
Lemma, (4). Consequently, ldeg(a/K) = ildeg(a/K). Since f is amorphism, ldeg(a/K) = 1.
Moreover, ildeg(a/K) = deg( f ), so that deg( f ) = 1.
�is impliesmodularity in characteristic zero, but in characteristic p, one needs to exclude

non-�eld-free dynamics which however would be �xed-�eld free
In fact, simply replacing degrees by separable degrees, one may de�ne the reduced

limit degree and reduced inverse limit degree of an extension of di�erence �elds, in a
similar manner to the de�nition of the limit and inverse limit degrees. Entirely analogous
to the previous lemma, on can then state an prove a lemma for reduced degrees; in (4),
non-orthogonality to Fix(σ) is replaced by non-orthogonality to a �eld Fix(τ), with τ =
σm Frobn. For a generic point a of a dynamical system (V , f ), one has rldeg(a/K) = 1 and
rildeg(a/K) = degs( f ), hence the proposition.

7. Descent

7.1. Notions of isotriviality. — Let k ↪ K be an extension of di�erence �elds, and let
(V , S) be an algebraic dynamical system over K.�ere are various notions for (V , S) to
“come from k”. In all cases, this demands that there exists a dynamical system (W , T) over k
whose base-change to K “recovers” our original (V , f ).
�e di�erence lies in the strength of the identi�cation between (W , T)K and (V , f ).
�e strongest one demands that (V , S) be isomorphic to (W , T)K : here we require

an isomorphism,WK ≃ V , of algebraic varieties over K, that maps TK ⊂ (W ×Wσ)K to
S ⊂ V × V σ . Although the more desirable to obtain, it seems to lie (slightly) beyond the
scope of the model theoretic techniques which are based on �elds.
�erefore, we shall say that (V , S) descends to k if there is a birational isomorphism ofWK

to V which maps TK to S. Anyway, if V is a smooth projective curve, e.g., the projective
line, then such a birational isomorphism extends to a true isomorphism and this notion
would imply the previous one.
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A weaker notion consists in requiring that there is a constructible isomorphism ofWK
to V which, again, maps TK to S. (In characteristic zero, this is of course equivalent to
birational isomorphy.)
A still weaker notion asks for the existence of of an isogeny between (V , S) and (W , T)K ,

namely, a dynamical system (V ′, S′) over K which is a �nite cover of both (V , S) and
(W , T)K . We then say that (V , S) is isogeny-isotrivial.
Finally, the weakest notion which we shall use here is that of domination: (V , S) is domi-

nated by (W , T) if there exists a morphism (W , T)K → (V , S) consisting of a dominant
rational map fromWK to V that maps TK to S.
�e following propositions show that these notions are closely related.

Proposition 7.2 (Chatzidakis &Hrushovski, 2008a, Proposition 1.9).
Let k ↪ K be an extension of di�erence �elds, k being algebraically closed. Let (U , f ) be

a dynamical system over k, and let (W , h) be dynamical system over U. Assume that W is
�eld-free and is dominated by a dynamical system over k.�en, W is isogeny-isotrivial.

Proof. — �e assumptions give a dynamical system (V , g) over k as well as a dominant
morphism p∶U × V →W over U .
Firstly, using elimination of imaginaries in acf, we quotientV by the equivalence relation

according to which v ∼ v′ if p(u, v) = p(u, v′) for any generic point u of U . Observe that
then, h(p(u, v)) = p( f (u), g(v)) = p( f (u), g(v′)) = h(p(u, v′)), so that this equivalence
relation is compatible with the dynamics.�is allows to assume that assume that for v ≠ v′,
and for generic u ∈ U , p(u, v) ≠ p(u, v′).
Let us then de�ne pm∶Um × V → Wm by pm(u1, . . . , um , v) = (p(u1, v), . . . , p(um , v)).

By compactness, pm is generically injective form large enough. Let q∶U×V →Wm be given
by q(u, v) = pm(u, . . . , u, v) = (p(u, v), . . . , p(u, v)).�is embeds U × V as a dynamical
subsystem ofW ×U ⋅ ⋅ ⋅ ×U W . SinceW is �eld-free, so is V .
Proposition 6.5 then implies that V is modular.
Let us view the variety V as parameterizing functions U → W . �eir graphs are irre-

ducible subvarieties of U ×W of dimension dim(U), distinct for distinct v. Consequently,
Proposition 6.4 implies that dim(V) + dim(U) ≤ dim(U ×W), i.e., dim(V) ≤ dim(W).
Since p∶U ×V →W is dominant, it is a �nite cover ofW , so thatW is isogeny-isotrivial, as
claimed.

Corollary. — With the notation and hypothesis of Proposition 7.2, let us moreover assume
that U has trivial dynamics.�en, W descends constructibly to k.

Proof. — We begin with a dominant morphism p∶U × V →W as at the end of the proof
of Proposition 7.2. Moreover, V is �eld-free. For any u ∈ U , let Ru be the equivalence
relation on V de�ned by x Ru y if p(u, x) = p(u, y). Observe that this equality implies
that p(u, g(x)) = h(p(u, x)) = h(p(u, y)) = p(u, g(y)) so that g(x) Ru g(y); in other
words, the morphism g is compatible with the relationRu. When u varies, the graph of the
relationR gives a de�nable subsetR of U ×V ×V . Since U is �xed-�eld internal and V is
�xed �eld-free, this subsetR must be essentially trivial.�is implies that, for generic u ∈ U ,
the relationRu does not depend on u. By elimination of imaginaries in acf, we may thus
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assume that the relationR is trivial.�en, p is a constructible isomorphism onto its image,
hence the corollary.

8. Limited orbits and descent

�eorem 8.1. — Let k ↪ K be a regular extension of �elds, let (X , φ) be a dynamical system
over K which is �eld-free. Assume that there exists a limited set Σ ⊂ X(K) which contains a
dense orbit {x , φ(x), φ(2)(x), . . .}.�en, (X , φ) descends constructibly to k.
Observe that the theorem applies when (X , φ) is primitive and degs(φ) > 1.

Proof. — We may assume that K is �nitely generated. Let U be an irreducible k-variety
whose function �eld is isomorphic to K; let also (V , f ) → U be a model of (X , φ). By
de�nition, a limited set Σ is given by a (possibly reducible) k-variety V and a morphism
p∶U × V → W . For each integer n, let vn ∈ V(k) be a point such that p(⋅, vn) corre-
sponds to φ(n)(x). We may replace V by an irreducible component of the closure of the
set {v0, v1, . . .}, and φ by some iterate φ(d), so that vdn ∈ V for all integers n ≥ 1. We also
replace f (d) by the morphism whose graph is the closure of the set of pairs (vdn , vd(n+1))
in V × V . All these reductions may require to replace U by a dense open subset of it.
Since the orbit {x , φ(d)(x), . . .} is dense in X, the morphism p∶U ×V →W is dominant.

�is implies that (W , f (d)) is dominated by a dynamical system over k. By Proposition 7.2
and its corollary, (W , f (d)) is isogeny isotrivial, and descends constructibly to k.
Corollary. — Let (X , φ) be a primitive dynamical system over K which does not descend
constructibly to k. For any limited subset Σ of X(K), there exist an integer n, a dense open sub-
set U of X de�ned over K, such that there is no point x ∈ U(K) such that x , φ(x), . . . , φ(n)(x)
be contained in Σ.

Proof. — �e �nite bounds follow from the compactness theorem.

8.2. A counterexample. — Let A be an Abelian variety over a �eld k and let H be an
extension of A by a vector group V ; in other words, there is an exact sequence of algebraic
groups

0→ V → H → A→ 0
and V is a power of the additive groupGa. We assume that dim(V) = 2 and Hom(H,Ga) =
0.�is can be achieved, e.g., by choosing A such that dim(A) = 2 and considering its univer-
sal vector extension or, more generally. (Any Abelian variety A possesses a universal vector
extension, and the corresponding vector group, isomorphic to ωA∨ has dimension dim(A).
If one pushes it out by a surjective morphism of ωA∨ onto a 2-dimensional vector group,
the resulting extension satis�es the required assumptions.)
Let us nowmake a base-change from k to the projective space P(V). We get an extension

of group-schemes
0→ VP(V) → HP(V) → AP(V) → 0.

Now, the group-scheme VP(V) possesses a tautological subschemeW : any t ∈ P(V) corre-
sponds to a one-dimensional quotient of V , andWt is its kernel. Let E be the generic �ber
of the P(V)-group scheme HP(V)/W . Let K ≃ k(t) be the function �eld of P(V).�en, E
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is an algebraic group over K, extension of AK by Ga. By construction, this extension is not
de�ned over k.
Let x ∈ E be any point which generates E: for that, it su�ces that its image a in A

generates A. If A is geometrically simple, it su�ces to ensure that a is not a torsion point,
and this can be achieved a�er some �nite extension K′ of K
Finally, let τx be the translation by x in E. Let y ∈ H be any point mapping to E by the

natural projection H → E.�e diagram H × P(V)→ E shows that the dynamical system
(E , τx) is dominated by the constant dynamical system (H, τy), where y is the translation
by y in H.

References

E. Amerik (2011), “Existence of non-preperiodic algebraic points for a rational self-map of
in�nite order”.Math. Res. Lett., 18 (2), pp. 251–256.

E. Amerik & F. Campana (2008), “Fibrations méromorphes sur certaines variétés à �bré
canonique trivial”. Pure Appl. Math. Q., 4 (2, part 1), pp. 509–545.

M. Baker (2009), “A �niteness theorem for canonical heights attached to rational maps
over function �elds”. J. reine angew. Math., 626, pp. 205–233. arXiv:math.NT/0601046.

M. Baker & R. Rumely (2010), Potential�eory on the Berkovich Projective Line, Mathe-
matical Surveys and Monographs 159, Amer. Math. Soc.

V. G. Berkovich (1990), Spectral theory and analytic geometry over non-Archimedean
�elds, Mathematical Surveys and Monographs 33, American Mathematical Society,
Providence, RI.

E. Bombieri &W. Gubler (2006), Heights in Diophantine geometry, New Mathematical
Monographs 4, Cambridge University Press, Cambridge.

J.-Y. Briend & J. Duval (2001), “Deux caractérisations de la mesure d’équilibre d’un
endomorphisme de Pk(C)”. Publ. Math. Inst. Hautes Études Sci., 93, pp. 145–159. URL
http://dx.doi.org/10.1007/s10240-001-8190-4.

G. Call & J. Silverman (1993), “Canonical heights on varieties with morphisms”. Compo-
sitio Math., 89, pp. 163–205.

S. Cantat (2011), “Dynamics of automorphisms of compact complex surfaces (a survey)”.
http://perso.univ-rennes1.fr/serge.cantat/Articles/dyn-aut.pdf .

C. Chabauty (1941), “Sur les points rationnels des courbes algébriques de genre supérieur
à l’unité”. C. R. Acad. Sci. Paris, 212, pp. 882–885.

Z. Chatzidakis & E. Hrushovski (1999), “Model theory of di�erence �elds”.
Trans. Amer. Math. Soc., 351 (8), pp. 2997–3071. URL http://dx.doi.org/10.1090/
S0002-9947-99-02498-8.

Z. Chatzidakis & E. Hrushovski (2008a), “Di�erence �elds and descent in algebraic
dynamics. I”. J. Inst. Math. Jussieu, 7 (4), pp. 653–686. URL http://dx.doi.org/10.1017/
S1474748008000273.

Z. Chatzidakis & E. Hrushovski (2008b), “Di�erence �elds and descent in algebraic
dynamics. II”. J. Inst. Math. Jussieu, 7 (4), pp. 687–704.



24 ANTOINE CHAMBERT-LOIR

Z. Chatzidakis, E. Hrushovski & Y. Peterzil (2002), “Model theory of di�erence �elds.
II. Periodic ideals and the trichotomy in all characteristics”. Proc. London Math. Soc.
(3), 85 (2), pp. 257–311. URL http://dx.doi.org/10.1112/S0024611502013576.

R. M. Cohn (1965), Di�erence algebra, Interscience Publishers John Wiley & Sons, New
York-London-Sydeny.

T.-C. Dinh & N. Sibony (2010), “Dynamics in several complex variables: endomorphisms
of projective spaces and polynomial-like mappings”. Holomorphic dynamical systems,
Lecture Notes in Math. 1998, pp. 165–294, Springer, Berlin. URL http://dx.doi.org/10.
1007/978-3-642-13171-4_4.

N. Fakhruddin (2003), “Questions on self-maps of algebraic varieties”. J. Ramanujan
Math. Soc., 18 (2), pp. 109–122.

G. Faltings (1994), “�e general case of S. Lang’s conjecture”. Barsotti Symposium in
Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, pp. 175–182, Academic
Press, San Diego, CA.

D. Ghioca & T. J. Tucker (2009), “Periodic points, linearizing maps, and the dynamical
Mordell-Lang problem”. J. Number�eory, 129 (6), pp. 1392–1403. URL http://dx.doi.
org/10.1016/j.jnt.2008.09.014.

D. Ghioca, T. J. Tucker & S. Zhang (2011), “Towards a dynamical Manin-Mumford
conjecture”. Internat. Math. Res. Notices, 22, pp. 5109–5122.

A. Grothendieck (1961), “Éléments de géométrie algébrique. III. Étude cohomologique
des faisceaux cohérents. I”. Publ. Math. Inst. Hautes Études Sci., 11, pp. 5–167.

A. Grothendieck, P. Berthelot& L. Illusie (1971),�éorie des intersections et théorème
de Riemann–Roch, Lecture Notes in Math. 225, Springer-Verlag. SGA 6.

V. Guedj (2005), “Ergodic properties of rational mappings with large topological degree”.
Ann. of Math. (2), 161 (3), pp. 1589–1607. URL http://dx.doi.org/10.4007/annals.2005.161.
1589.

B. Hassett (2003), “Potential density of rational points on algebraic varieties”. Higher
dimensional varieties and rational points (Budapest, 2001), Bolyai Soc. Math. Stud. 12,
pp. 223–282, Springer, Berlin.

B. Hassett & Y. Tschinkel (2000), “Abelian �brations and rational points on symmet-
ric products”. Internat. J. Math., 11 (9), pp. 1163–1176. URL http://dx.doi.org/10.1142/
S0129167X00000544.

M. Hindry & J. H. Silverman (2000), Diophantine geometry, Graduate Texts in Mathe-
matics 201, Springer-Verlag, New York. An introduction.

E. Hrushovski (2001), “�e Manin-Mumford conjecture and the model theory of di�er-
ence �elds”. Ann. Pure Appl. Logic, 112 (1), pp. 43–115.

E. Hrushovski (2004), “�e Elementary�eory of the Frobenius Automorphisms”. arXiv:
math.LO/0406514.

S. Lang & A. Néron (1959), “Rational points of abelian varieties over function �elds”.
Amer. J. Math., 81 (1), pp. 95–118.

M. J. Ljubich (1983), “Entropy properties of rational endomorphisms of the Riemann
sphere”. Ergodic�eory Dynam. Systems, 3 (3), pp. 351–385. URL http://dx.doi.org/10.
1017/S0143385700002030.



ALGEBRAIC DYNAMICS, FUNCTION FIELDS AND DESCENT 25

A. Macintyre (1997), “Generic automorphisms of �elds”. Ann. Pure Appl. Logic, 88 (2-3),
pp. 165–180. URL http://dx.doi.org/10.1016/S0168-0072(97)00020-1, joint AILA-KGS
Model�eory Meeting (Florence, 1995).

D. Marker (2002),Model�eory: An Introduction, Graduate Texts in Mathematics 217,
Springer-Verlag, New York.

A. Medvedev & T. Scanlon (2009), “Polynomial dynamics”. arXiv:0901.2352.
L. Merel (1996), “Bornes pour la torsion des courbes elliptiques sur les corps de nombres”.
Invent. Math., 124 (1-3), pp. 437–449.

P. Morton & J. H. Silverman (1994), “Rational periodic points of rational functions”.
Internat. Math. Res. Notices, 2, pp. 97–109.

D. Mumford (1974), Abelian Varieties, Oxford Univ. Press.
D. G. Northcott (1950), “Periodic points on an algebraic variety”. Ann. of Math., 51, pp.
167–177.

M. Raynaud (1983), “Sous-variétés d’une variété abélienne et points de torsion”. Arithmetic
and Geometry. Papers dedicated to I.R. Shafarevich, edited by M. Artin & J. Tate,
Progr. Math. 35, pp. 327–352, Birkhäuser.

J.-P. Serre (1997), Lectures on the Mordell-Weil theorem, Aspects of Mathematics, Friedr.
Vieweg & Sohn, Braunschweig, third edition. Translated from the French and edited
by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and
Serre.

J. H. Silverman (1991), “Rational points on K3 surfaces: a new canonical height”. Invent.
Math., 105 (2), pp. 347–373.

A. Thuillier (2005),�éorie du potentiel sur les courbes en géométrie non archimédienne.
Applications à la théorie d’Arakelov. Ph.D. thesis, Université de Rennes 1. http://tel.
archives-ouvertes.fr/tel-00010990/.

L.Wang (1995), “Rational points and canonical heights onK3-surfaces inP1×P1×P1”.Recent
developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math. 186,
pp. 273–289, Amer. Math. Soc., Providence, RI.


