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In this paper, we consider nonparametric finite translation hidden Markov models, or more generally fi-
nite translation mixtures with dependent latent variables. We prove that all the parameters of the model
are identifiable as soon as the matrix that defines the joint distribution of two consecutive latent variables
is non-singular and the translation parameters are distinct. Under this assumption, we provide a consistent
estimator of the number of populations, of the translation parameters and of the distribution of two con-
secutive latent variables, which we prove to be asymptotically normally distributed under mild dependency
assumptions. We propose a nonparametric estimator of the unknown translated density. In case the latent
variables form a Markov chain, we prove that this estimator is minimax adaptive over regularity classes of
densities.

Keywords: dependent latent variable models; hidden Markov models; nonparametric estimation;
translation mixtures

1. Introduction

Finite state space hidden Markov models (shortened as HMMs throughout the paper) were intro-
duced to model data coming from heterogeneous populations when the observed phenomenon is
driven by a latent Markov chain. They may also be seen as a dynamic extension of finite mix-
ture models. Such models may be described as follows. Consider a sequence (Si)i∈N of latent
(unobserved) random variables with finite state space {1, . . . , k}, and a sequence (Yi)i∈N of ran-
dom variables (the observations) such that, conditionally to (Si)i∈N, the Yi ’s are independently
distributed, and for each i, the distribution of Yi depends only on the current latent variable Si .
The latent variables may be interpreted as the labelling of the population the observation comes
from. Such a model may also be phrased as a mixture model with dependent regime, and in case
the sequence (Si)i∈N forms a Markov chain, this defines a HMM.

To be able to infer about the population structures, one usually states parametric models, since
in general, it is not possible to recover individual distributions from a convex combination of them
without additional information. See, for instance, McLachlan and Peel [24] or Marin et al. [20]
for a review of mixture models’ methods, and Cappé et al. [9] for a recent state of the art con-
cerning HMMs. But parametric modeling may lead to poor results in particular applications (see,
for instance, the discussion on the Old faithfull dataset in Azzaline and Bowman [3]), and some
nonparametric procedures have been considered in applied papers, for example, in climate state
identification in Lambert et al. [19] or for copy number variants identification in DNA analysis,
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for which a nonparametric hidden Markov model has been proposed in Yau et al. [30]. However,
no theoretical result has been proved until now to validate those nonparametric procedures.

The aim of this paper is to provide a full theoretical justification of the use of nonparamet-
ric methods in the case of finite translation HMMs (which is used in Yau et al. [30]) or more
generally finite translated mixtures with dependent latent variables. We consider location models

Yi = mSi
+ εi, i ∈N, (1)

where (εi)i∈N is a sequence of independent identically distributed random variables taking val-
ues in R, and mj ∈ R, j = 1, . . . , k. The aim is to estimate the parameters k, m1, . . . ,mk , the
distribution of the latent variables (Si)i∈N and the distribution F of the εi ’s. As usual for finite
mixtures, one may recover the parameters only up to relabelling, and obviously, F may only be
estimated up to a translation (that would be reversely reported to the mj ’s).

Our most important result here is that in case the latent variables are not independent;
model (1) is identifiable without any assumption on F . To be precise, if Q is the k × k-matrix
such that Qi,j is the probability that S1 = i and S2 = j , we prove that the knowledge of the
distribution of (Y1, Y2) allows the identification of k, m1, . . . ,mk , Q and F as soon as Q is a
non-singular matrix, whatever F may be; see Theorem 1.

This identifiability result may seem surprising, since it is obvious that for independent vari-
ables, such a result does not hold. Indeed, with independent observations one has only access to
the marginal distribution of Y1 which is given by

Pμ,F (·) =
k∑

j=1

μ(j)F (· − mj). (2)

Here, μ(j) = P(S1 = j), j = 1, . . . , k. An equivalent representation of (2) corresponds, for in-
stance, to k = 1, m1 = 0 and F = Pμ,F the marginal distribution. Thus, to be able to infer about
the mixture model in case of independent observations, one needs further restrictive assump-
tions. Hunter et al. [17] have considered model (2) with the additional assumption that F is
symmetrical; see also Bordes et al. [7] and Butucea and Vandekerkhove [8].

To obtain our identifiability result, we take advantage of the joint distribution of (Y1, Y2) under
model (1), which is given by

Pθ,F (A × B) =
k∑

i=1

k∑
i=1

Qi,jF (A − mi)F (B − mj), ∀A,B ∈ BR, (3)

where BR denotes the Borel σ field of R and θ = (m, (Qi,j )1≤i,j≤k,(i,j)�=(k,k)), with m =
(m1, . . . ,mk) ∈ R

k . Notice that here, one cannot use recent results about mixtures with repeated
measurements. Indeed, one could interpret (3) as a mixture with k2 components in two dimen-
sions, but the linear independence required for identifiability in Allman et al. [1] never holds.
Independent mixtures with repeated measurements (or multivariate) have received recent interest
since they were proved to be nonparametrically identifiable under some structural assumptions.
See Hall and Zhou [15], Kasahara and Shimotsu [18], Allman et al. [1], Bonhomme et al. [5]
and references therein; see also Henry et al. [16]. An extension of our identifiability Theorem 1
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has recently been obtained by one of the authors in Gassiat et al. [13], in the restricted context of
hidden Markov models with known number of states.

Building upon our identifiability result, we propose an estimator of k, and of the parametric
part of the distribution, namely Q and m1, . . . ,mk . Moreover, we prove that our estimator is√

n-consistent, with asymptotic Gaussian distribution, under mild dependency assumptions; see
Theorem 2. When the number of populations is known and if the translation parameters mj ,
j ≤ k are known to be bounded by a given constant, we prove that the estimator (centered and at√

n-scale) has a sub-Gaussian distribution; see Theorem 3.
As soon as Q and m1, . . . ,mk are consistently estimated, one may imagine various nonpara-

metric estimation methods for F . In the context of hidden Markov models as considered in Yau
et al. [30], we propose an estimator of the nonparametric part of the distribution, namely F ,
assuming that it is absolutely continuous with respect to Lebesgue measure. This estimator uses
the model selection approach developed in Massart [21], with the penalized estimated pseudo
likelihood contrast based on marginal densities

∑k
j=1 μ̂(j)f (y − m̂j ). We prove that our non-

parametric estimator is adaptive over regular classes of densities; see Theorem 4 and Corol-
lary 1.

The paper is organized as follows. In Section 2, we present and prove our general identifiability
theorem. In Section 3, we define an estimator of the order and of the parametric part, and state the
convergence results: asymptotic Gaussian distribution and deviation inequalities. In Section 4, we
explain our nonparametric estimator of the density of F using model selection methods, and state
an oracle inequality and adaptive convergence results. Most of the proofs are postponed either to
the Appendix, for the first 3 sections or to the supplementary material Gassiat and Rousseau [14]
for the last section.

2. General identifiability result

Let Qk be the set of probability mass functions on {1, . . . , k}2, that is the set of k × k matri-
ces Q = (Qi,j )1≤i,j≤k such that for all (i, j) ∈ {1, . . . , k}2, Qi,j ≥ 0, and

∑k
i=1

∑k
j=1 Qi,j = 1.

With θ = (m, (Qi,j )1≤i,j≤k,(i,j)�=(k,k)), m = (m1, . . . ,mk) ∈ R
k , recall that Pθ,F is the joint dis-

tribution of (Y1, Y2) under model (1). In this case, ordering the coefficients m1 ≤ m2 ≤ · · · ≤ mk

and replacing F by F(· − m1) leads to the same model so that without loss of generality we fix
0 = m1 ≤ m2 ≤ · · · ≤ mk . Let �k be the set of parameters θ such that m1 = 0 ≤ m2 ≤ · · · ≤ mk

and Q ∈Qk , where Q = (Qi,j )1≤i,j≤k , Qk,k = 1 − ∑
(i,j)�=(k,k) Qi,j .

Let also �0
k be the set of parameters θ = (m, (Qi,j )1≤i,j≤k,(i,j)�=(k,k)) ∈ �k such that m1 =

0 < m2 < · · · < mk and det(Q) �= 0. We then have the following result on the identification of F

and θ from Pθ,F .

Theorem 1. Let F and F̃ be any probability distributions on R. Let k and k̃ be positive integers.
If θ ∈ �0

k and θ̃ ∈ �0
k̃
, then

Pθ,F = P
θ̃,F̃

�⇒ k = k̃, θ = θ̃ and F = F̃ .
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Remark 1. In the same way, it is possible to identify �-marginals, for any � ≥ 2, that is the
distribution of (S1, . . . , S�), m and F on the basis of the distribution of (Y1, . . . , Y�).

Remark 2. An important class of models is that of hidden Markov models. In that case, if Q is
the stationary distribution of two consecutive variables of the hidden Markov chain, det(Q) �= 0
if and only if the transition matrix is non-singular and the stationary distribution gives positive
weights to each point. When k = 2, we thus have det(Q) �= 0 if and only if S1 and S2 are not
independent.

Remark 3. The independent case is a special case where det(Q) = 0. In the independent case, to
get identifiable models, further assumptions are needed; see Hunter et al. [17], Bordes et al. [7],
Butucea and Vandekerkhove [8] where symmetry of F is required.

Proof of Theorem 1. Denote by φF the characteristic function of F , φ
F̃

the characteristic func-

tion of F̃ , φθ,1 (respectively, φθ̃,1) the characteristic function of the distribution of mS1 under
Pθ,F (respectively, under P

θ̃,F̃
), φθ,2 (respectively, φθ̃,2) the characteristic function of the distri-

bution of mS2 under Pθ,F (respectively, under P
θ̃,F̃

), and �θ (respectively, �θ̃ ) the characteristic
function of the distribution of (mS1 ,mS2) under Pθ,F (respectively, under P

θ̃,F̃
). Then since the

distribution of Y1 is the same under Pθ,F and P
θ̃,F̃

, one gets that for any t ∈ R,

φF (t)φθ,1(t) = φ
F̃
(t)φθ̃,1(t). (4)

Similarly, for any t ∈ R,

φF (t)φθ,2(t) = φ
F̃
(t)φθ̃,2(t). (5)

Since the distribution of (Y1, Y2) is the same under Pθ,F and P
θ̃,F̃

, one gets that for any t =
(t1, t2) ∈ R

2,

φF (t1)φF (t2)�θ (t) = φ
F̃
(t1)φF̃

(t2)�θ̃ (t). (6)

There exists a neighborhood V of 0 such that for all t ∈ V , φF (t) �= 0, so that (4), (5) and (6)
imply that for any t = (t1, t2) ∈ V 2,

�θ(t)φθ̃,1(t1)φθ̃,2(t2) = �θ̃(t)φθ,1(t1)φθ,2(t2). (7)

Let t1 be a fixed real number in V . �θ(t1, t2), φθ̃,2(t2), �θ̃(t1, t2), φθ,2(t2) have analytic con-
tinuations for all complex numbers z2, �θ(t1, z2), φθ̃ (z2), �θ̃(t1, z2), φθ (z2) which are entire
functions so that (7) holds with z2 in place of t2 for all z2 in the complex plane C and any t1 ∈ V .
Again, let z2 be a fixed complex number in C. �θ(t1, z2), φθ̃,1(t1), �θ̃ (t1, z2), φθ,1(t1) have an-
alytic continuations �θ(z1, z2), φθ̃ (z1), �θ̃(z1, z2), φθ (z1) which are entire functions so that (7)
holds with z1 in place of t1 and z2 in place of t2 for all (z1, z2) ∈C

2.
Let now Z be the set of zeros of φθ,1, Z̃ be the set of zeros of φθ̃,1 and fix z1 ∈ Z . Then, for

any z2 ∈C,

�θ(z1, z2)φθ̃,1(z1)φθ̃,2(z2) = 0. (8)
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We now prove that z2 → �θ(z1, ·) is not the null function. For any z ∈ C,

�θ(z1, z) =
k∑

�=1

[
k∑

j=1

Q�,j eimj z1

]
eim�z.

Since 0 = m1 < m2 < · · · < mk , if �θ(z1, ·) was the null function, we would have for all � =
1, . . . , k

k∑
j=1

Q�,j eimj z1 = 0,

which is impossible since det(Q) �= 0. Thus, �θ(z1, ·) is an entire function which has isolated
zeros, φθ̃,2(·) also, and it is possible to choose z2 in C such that �θ(z1, z2) �= 0 and φθ̃,2(z2) �= 0.

Then (8) leads to φθ̃,1(z1) = 0, so that Z ⊂ Z̃ . A symmetric argument gives Z̃ ⊂ Z so that

Z = Z̃ . Moreover, φθ,1 and φθ̃,1 have growth order 1, so that using Hadamard’s factorization
theorem (see [27], Theorem 5.1), one gets that there exists a polynomial R of degree ≤ 1 such
that for all z ∈C,

φθ,1(z) = eR(z)φθ̃,1(z).

But using φθ,1(0) = φθ̃,1(0) = 1, we get that there exists a complex number a such that φθ̃,1(z) =
eazφθ,1(z). Since for all z ∈ R, φθ ′,1(−z) = φ̄θ ′,1(z), there exists r ∈ R such that a = ir , and
k = k̃. Using m1 < m2 < · · · < mk and m̃1 < m̃2 < · · · < m̃

k̃
, we get m̃j = mj + r , j = 1, . . . , k.

Using now 0 = m1 = m̃1, we get r = 0 so that φθ,1 = φθ̃,1. Similar arguments lead to φθ,2 = φθ̃,2.

Combining this with (7), we obtain �θ = �θ̃ which in turns implies θ = θ̃ . Thus, using (4), for
all t ∈ R such that φθ,1(t) �= 0, φF (t) = φ

F̃
(t). Since φθ,1 has isolated zeros and φF , φ

F̃
are

continuous functions, one gets φF = φ
F̃

so that F = F̃ . �

3. Estimation of the parametric part

3.1. Assumptions on the model

Hereafter, we are given a stationary sequence (Yi)i∈N of real random variables with distribu-
tion P	. We assume that (1) holds, with (Si)i∈N a stationary sequence of non-observed random
variables taking values in {1, . . . , k	}. We denote by F	 the common probability distribution of
the εi ’s, and m	 ∈ R

k	
the possible values of the mSi

’s. Let Q	 ∈ Qk	 be the distribution of
(S1, S2), and θ	 = (m	, (Q	

i,j )(i,j)�=(k	,k	)). We assume:

(A1) θ	 ∈ �0
k	 , and all differences m	

j − m	
i , i, j = 1, . . . , k	, i �= j , are distinct.

We do not assume that k	 is known, so that the aim is to estimate θ	 and k	 altogether. Stationarity
implies that the marginal distributions in Q	 are identical so that we write from now on φθ	 =
φθ	,1 = φθ	,2.
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The idea to estimate θ	 and k∗ is to use equation (7) which holds if and only if the parameters
are equal. Consider w any probability density on R

2 with compact support S , positive on S and
with 0 belonging to the interior of S ; typically S = [−a, a]2 for some positive a. Define, for any
integer k and θ ∈ �k ,

M(k, θ) =
∫
R2

∣∣�θ	(t1, t2)φθ,1(t1)φθ,2(t2) − �θ(t1, t2)φθ	(t1)φθ	(t2)
∣∣2

(9)
× ∣∣φF	(t1)φF	(t2)

∣∣2
w(t1, t2)dt1 dt2.

We shall use M(k, θ) as a contrast function. Indeed, thanks to Theorem 1, θ ∈ �0
k is such that

M(k, θ) = 0 if and only if k = k	 and θ = θ	.
We estimate M(k, ·) by

Mn(k, θ) =
∫
R2

∣∣�̂n(t1, t2)φθ,1(t1)φθ,2(t2) − �θ(t1, t2)φ̂n,1(t1)φ̂n,2(t2)
∣∣2

w(t1, t2)dt1 dt2, (10)

where

�̂n(t1, t2) = 1

n

n−1∑
j=1

exp i(t1Yj + t2Yj+1), (11)

φ̂n,1(t) = �̂n(t,0) and φ̂n,2(t) = �̂n(0, t). Define, for any t = (t1, t2) ∈ R
2

Zn(t) = √
n
(
�̂n(t) − �θ	(t)φF	(t1)φF	(t2)

)
.

Our main assumptions on the model are the following.

(A2) The process (Zn(t))t∈S converges weakly to a Gaussian process (Z(t))t∈S in the set of
complex continuous functions on S endowed with the uniform norm and with covariance
kernel 
(·, ·).

(A3) There exist positive real numbers E and c (depending on θ	) such that for all x ≥ 0 and
n ≥ 1,

P
	
(

sup
t∈S

∣∣Zn(t)
∣∣ ≥ E + x

)
≤ exp

(−cx2).
(A2) will be used to obtain the asymptotic distribution of the estimator, and (A3) to obtain non-

asymptotic deviation inequalities. Note that (A2) and (A3) are, for instance, verified under mixing
conditions on the Yj ’s. This follows applying results of Doukhan et al. [11,12] and Rio [26]. In
particular, in the HMM situation, if (Si)i≥1 is an ergodic Markov chain, then (A2) and (A3) hold.

3.2. Definition of the estimator

In case k	 is known, one may build a
√

n-consistent M-estimator in the usual way. Let K be a
compact subset of �0

k	 , and assume that θ	 lies in the interior of K. Denote by θn(K) a min-
imizer of Mn(k

	, ·) over K. Then, as soon as Mn(k
	, ·) converges uniformly in probability to
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M(k	, ·), using the identifiability result Theorem 1, one gets the consistency of θn(K). If more-
over

√
n∇Mn(k

	, θ	) converges in distribution (∇Mn(k, θ) denotes the gradient of Mn(k, ·) at
point θ ), and if D2Mn(k

	, ·) (the Hessian of Mn(k
	, ·)) converges in probability to a non-singular

matrix, uniformly in a neighborhood of θ	, then
√

n(θn(K) − θ	) converges in distribution. This
is stated below and proved in the Appendix.

But this requires the prior knowledge of k	 and of some compact set included in �0
k	 with θ	

in its interior. To obtain an estimator using no prior information and having the same asymp-
totic properties as θn(K), we use a preliminary consistent estimator (kn, θ̃n) of (k	, θ	), and then
minimize Mn(kn, ·) over a compact subset of �0

kn
such that θ̃n lies in its interior to get the esti-

mator θ̂n. Consistency of θ̂n follows from that of (kn, θ̃n) and Theorem 1, and once consistency
is obtained, since the derivation of the asymptotic properties requires only local analysis, the
asymptotic distribution of

√
n(θ̂n − θ	) is the same as that of

√
n(θn(K) − θ	) (which does not

depend on K). This is stated in Theorem 2 below and proved in the Appendix.
We now explain the construction of the preliminary estimator (kn, θ̃n) and of the estimator θ̂n.

Define J :N→ R+ an increasing function tending to infinity at infinity, and for any integer k, Ik

a positive continuous function on �0
k and tending to +∞ on the boundary of �0

k or whenever
‖m‖ tends to infinity. For instance, one may take

Ik

(
m,(Qi,j )(i,j)�=(k,k)

) = − log detQ −
k∑

i=2

log
|mi − mi−1|
(1 + ‖m‖∞)2

.

Let (kn, θ̃n) be a minimizer over {(k, θ) :k ∈ N, θ ∈ �k} of

Cn(k, θ) = Mn(k, θ) + λn

[
J (k) + Ik(θ)

]
,

where (λn)n∈N is a decreasing sequence of real numbers tending to 0 at infinity such that

lim
n→+∞

√
nλn = +∞. (12)

We now define θ̂n as a minimizer of Mn(kn, ·) over the compact subset of �0
kn

(and such that

θ̃n lies in its interior) {
θ ∈ �kn : Ikn(θ) ≤ 2Ikn(θ̃n)

}
.

3.3. Asymptotic results

Our first result gives the asymptotic distribution of θ̂n. Let V be the variance of the Gaussian
random variable∫ {

C(t)
[
Z(−t)φθ	(−t1)φθ	(−t2) − �θ	(−t)

(
Z(−t1,0)φθ	(−t2) + Z(0,−t2)φθ	(−t1)

)]
+ C(−t)

[
Z(t)φθ	(t1)φθ	(t2) − �θ	(t)

(
Z(t1,0)φθ	(t2) + Z(0, t2)φθ	(t1)

)]}
w(t)dt,
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where

C(t) = �θ	(t)∇(
φθ	(t1)φθ	(t2)

) − ∇�θ	(t)φθ	(t1)φθ	(t2).

Denote also D2H the second derivative with respect to θ of any function H , whenever it makes
sense and by ∇H its gradient (with respect to H ).

Theorem 2. Assume (A1), (A2) and (12). Then D2M(k	, θ	) is non-singular, and
√

n(θ̂n − θ∗)
converges in distribution to the centered Gaussian with variance

� = [
D2M

(
k	, θ	

)]−1
V

[
D2M

(
k	, θ	

)]−1
.

Moreover, for any compact subset K of �0
k	 such that θ	 lies in the interior of K,

√
n(θn(K)−θ∗)

converges in distribution to the centered Gaussian with variance �.

Theorem 2 is proved in Appendix A.
If one wants to use Theorem 2 to build confidence sets, one needs to have a consistent estimator

of �. Since D2M(k	, ·) is a continuous functions of θ , D2M(kn, θ̂n) is a consistent estimator of
D2M(k	, θ	). Also, V may be viewed as a continuous function of 
(·, ·) and θ , as easy but
tedious computations show. One may use empirical estimators of 
(·, ·) which are uniformly
consistent under stationarity and mixing conditions, to get a consistent estimator of V . This
leads to a plug-in consistent estimator of �.

Another possible way to estimate � is to use a boostrap method, following, for instance,
Clemencon et al. [10] when the hidden variables form a Markov chain.

When we have deviation inequalities for the process Zn, we are able to provide deviation
inequalities for

√
n(θn(K)− θ∗). Such inequalities have interest by themselves, they will also be

used for proving adaptivity of our nonparametric estimator in Section 4.

Theorem 3. Assume (A1) and (A3). Let K be a compact subset of �0
k	 such that θ	 lies in the

interior of K. Then there exist positive real numbers c	, M	, and an integer n	 such that for all
n ≥ n	 and M ≥ M	,

P
	
(√

n
∥∥θn(K) − θ	

∥∥ ≥ M
) ≤ 2 exp

(−c	M2).
In particular, for any integer p,

sup
n≥1

EP	

[(√
n
∥∥θn(K) − θ	

∥∥)p]
< +∞.

Theorem 3 is proved in Appendix B.

4. Estimation of the nonparametric part

In this section, we assume that P	 is the distribution of a stationary ergodic HMM, that is, the
sequence (St )t∈N is a stationary ergodic Markov chain. Recall that in this case, (A2) and (A3)
are verified and Theorems 2 and 3 hold.
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We also assume that the unknown distribution F	 has density f 	 with respect to Lebesgue
measure. Thus, the density s	 of Y1 writes

s	(y) =
k	∑

j=1

μ	(j)f 	
(
y − m	

j

)
,

where μ	(j) = ∑k	

i=1 Q	
i,j , 1 ≤ j ≤ k	. Our aim in this section is to show that good estimation

of f ∗ and s∗ are also possible in such models.

4.1. General ideas

On the one hand, many methods for nonparametric estimation of the density s	 of a sequence of
weakly dependent random variables are known. On the other hand, we now have estimators of
the parameters μ	(j) and m	

j , j = 1, . . . , k	, with good properties thanks to Theorems 2 and 3.
Thus, one may propose various ideas to obtain nonparametric estimators of f 	. For instance:

• Given an estimator ŝ of s	, minimize with respect to f , D(̂sn,
∑k	

j=1 μ̂(j)f (· − m̂	
j )) for

some distance (or pseudo-distance) D(·, ·) between probability densities.
• Estimate the Fourier transform of s	, then divide by the estimator φθ̂ of φθ	 , and get an

estimator of f 	 by Fourier inversion.
• Use model selection methods to get a nonparametric estimator of f 	.

Our aim in this section is to show that nonparametric estimation using such ideas leads to esti-
mators of f 	 having classical nonparametric estimation properties. We choose to study model
selection using penalized marginal likelihood and Gaussian mixtures as sieves. This allows to ob-
tain direct computation of the estimator using the EM algorithm, to get oracle inequalities which
lead to asymptotic adaptive estimation over regular classes of densities, and to be confident that
the slope heuristics to choose the penalty term (see below) should lead to good practical results.

Of course, further work is needed to make precise in which situation one should use one
method or the other.

4.2. A model selection method: Adaptive estimation

Our nonparametric procedure to estimate s∗ and f ∗ is based on a penalized composite maximum
likelihood estimator. More precisely, let μ̂(j) = ∑k	

i=1 Q̂i,j , m̂j , be estimators of μ	(j), m	
j ,

j = 1, . . . , k	. Define for any density function f on R

�n(f ) = 1

n

n∑
i=1

log

[
k	∑

j=1

μ̂(j)f (Yi − m̂j )

]
.
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Let F be the set of probability densities on R. We use the model collection (Fp)p≥2 of Gaussian
mixtures with p components as approximation of F defined by, if p ∈ N,

Fp =
{

p∑
i=1

πiϕui
(x − αi),αi ∈ [−Ap,Ap],

(13)

ui ∈ [bp,B],πi ≥ 0, i = 1, . . . , p,

p∑
i=1

πi = 1

}
,

where B and Ap,bp , p ≥ 2, are positive real numbers, and where ϕβ is the Gaussian density with
variance β2 given by ϕβ(x) = exp(−x2/2β2)/β

√
2π. For any p ≥ 2, let f̂p be the maximizer of

�n(f ) over Fp . Define

Dn(p) = −�n(f̂p) + pen(p,n),

where pen(p,n) is some penalty term that has to be chosen. Then the estimator is defined by
f̂ = f̂p̂ , with p̂ any minimizer of Dn. In the context of independent and identically distributed
observations, this estimator has been considered by Maugis-Rabusseau and Michel [23].

Before giving our main theoretical results about the nonparametric estimator, let us say a
few words about the practical use of such methods. First of all, the computation of f̂p may be
performed using the EM-algorithm, which is particularly simple for Gaussian mixtures. Then
the choice of the penalty term pen(p,n) could be chosen using the slope heuristics as proposed
in [2,4] for Gaussian regression models and further experimented in various other frameworks;
see [6,22,28,29].

We consider θ̂ = θn(K). We prove that ŝp̂ is an adaptive estimator of s	, and that, if
maxj μ	(j) > 1

2 , f̂p̂ is an adaptive estimator of f 	. Adaptivity will be proved on the follow-
ing classes of regular densities.

Let y0 > 0, c > 0, M1,M2 > 0, τ > 0, λ > 0 and L a positive polynomial function on R.
Let also β > 0 and γ > (3/2 − β)+. If we denote P = (y0, c0,M1, τ,M2, λ,L), we define
Hloc(β, γ,P) as the set of probability densities f on R satisfying:

• f is monotone on (−∞,−y0) and on (y0,+∞), and inf|y|≤y0 f (y) ≥ c0 > 0.
•

∀y ∈ R, f (y) ≤ M1e−τ |y|. (14)

• logf is �β� times continuously differentiable with derivatives �j , j ≤ β satisfying for all
x ∈ R and all |y − x| ≤ λ,∣∣��β�(y) − ��β�(x)

∣∣ ≤ �β�!L(x)|y − x|β−�β�

and ∫
R

∣∣�j (y)
∣∣(2β+γ )/j

f (y)dy ≤ M2.
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We set Ap = a0 logp, bp = b0(logp)2/p in the definition of Fp and we consider ŝp̂ where the
penalty is set to

pen(p,n) = 3κ

n

(
k	p

)
logn.

Here, κ is chosen large enough. We denote h(·, ·) the Hellinger distance between probability
densities.

Theorem 4. Assume (A1) and (A3). Then for any P , β ≥ 1/2 and γ > (3/2 − β)+, there exists
C(β,γ,P) > 0, such that

lim sup
n→+∞

(
n

(logn)3

)(2β)/(2β+1)

sup
f 	∈Hloc(β,γ,P)

EP	

[
h2(s	, ŝp̂

)] ≤ C(β,γ,P).

Thus, ŝp̂ is adaptive on the regularity β of the density classes up to (logn)3β/(2β+1), see
Maugis-Rabusseau and Michel [23] for a lower bound of the asymptotic minimax risk in the
case of independent and identically distributed random variables. The proof is based on an oracle
inequality which is given in the supplementary material Gassiat and Rousseau [14].

Using Theorem 4, we can also derive adaptive asymptotic rates for the minimax L1-risk for
the estimation of f ∗.

Corollary 1. Assume (A1) and (A3) and that maxj μ	(j) > 1
2 . Then for any P , β ≥ 1/2 and

γ > (3/2 − β)+,

lim sup
n→+∞

(
n

(logn)3

)β/(2β+1)

sup
f 	∈Hloc(β,γ,P)

EP	

[∥∥f̂p̂ − f 	
∥∥

1

] ≤ 2
√

C(β,γ,P)

(2 maxj μ	(j) − 1)
.

It is possible that the constraint, maxj μ	(j) > 1/2 is not sharp, however, note that the Fourier

transform of s	 is expressed as φθ	φf 	 with φθ	(t) = ∑k
j=1 μ	(j)eitm	

j and φf 	 the Fourier
transform of f 	, and that |φθ	(t)| > 0 for all t ∈ R if and only if maxj μ	(j) > 1/2, applying the
main theorem of Moreno [25].

Proof of Corollary 1. We shall use∥∥s	 − ŝp̂
∥∥

1 ≤ 2h
(
s	, ŝp̂

)
,

together with

∥∥s	 − ŝp̂
∥∥

1 =
∥∥∥∥∥

k	∑
j=1

μ	(j)f 	
(· − m	

j

) −
k	∑

j=1

μ̂(j)f̂p̂(· − m̂j )

∥∥∥∥∥
1

≥
∥∥∥∥∥

k	∑
j=1

μ	(j)
(
f̂p̂ − f 	

)
(· − m̂j )

∥∥∥∥∥
1

− ∥∥θ̂n − θ	
∥∥
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−
∥∥∥∥∥

k	∑
j=1

μ	(j)
(
f 	

(· − m	
j

) − f 	(· − m̂j )
)∥∥∥∥∥

1

≥
(

2 max
j

μ	(j) − 1
)∥∥f̂p̂ − f 	

∥∥
1 − ∥∥θ̂n − θ	

∥∥
− ∥∥f 	

(· − m	
j

) − f 	(· − m̂j )
∥∥

1

which follows by using iteratively the triangle inequality. Using β ≥ 1/2, Theorems 3 and 4, we
thus get that

lim sup
n→+∞

(
n

(logn)3

)β/(2β+1)

sup
f 	∈Hloc(β,γ,P)

EP	

[∥∥f̂p̂ − f 	
∥∥

1

] ≤ 2
√

C(β,γ,P)

(2 maxj μ	(j) − 1)

as soon as

lim
n→+∞

(
n

(logn)3

)β/(2β+1)

sup
f 	∈Hloc(β,γ,P)

EP	

[∥∥f 	
(· − m	

j

) − f 	(· − m̂j )
∥∥

1

] = 0. (15)

Now, since f 	 ∈ Hloc(β, γ,P) with β ≥ 1/2, if |m̂j − m	
j | ≤ λ,∣∣logf 	(y − m̂j ) − logf 	

(
y − m	

j

)∣∣ ≤ L
(
y − m	

j

)∣∣m̂j − m	
j

∣∣β∧1
.

Set M ≥ 1
2c	 , and a > 0 such that, if |y| ≤ na , then L(y)|m̂j − m	

j |β∧1 ≤ 1. Observe also that

since θ̂n stays in a compact set, for large enough n, if |y| ≥ na , then for any j , |y − m̂j | ≥ na/2
and |y − m	

j | ≥ na/2. We obtain, using |eu − 1| ≤ 2u for 0 ≤ u ≤ 1:

∥∥f 	
(· − m	

j

) − f 	(· − m̂j )
∥∥

1 ≤ 2

(
M logn

n

)−(β∧1)/2 ∫
L

(
y − m	

j

)
f 	

(
y − m	

j

)
dy

+ 2
∫

|y|≥na/2
f 	(y)dy + 1‖θ	−θ̂n‖>√

M logn/
√

n,

and (15) follows from Theorem 3, β ≥ 1/2 and the fact that f 	 ∈ Hloc(β, γ,P) has exponentially
decreasing tails. �

Appendix A: Proof of Theorem 2

First of all, we prove a lemma we shall use several times.

Lemma 1. If (kn, θn)n, θn ∈ �kn , is a random sequence such that there exists an integer K ≥ k∗,
and a compact subset T of

⋃
k≤K �0

k such that

P
∗(kn ≤ K and θn ∈ T ) → 1 and Mn(kn, θn) = oP	 (1),
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then

P
∗(kn = k	

) → 1 and θn = θ	 + oP	 (1).

Proof. Using ||A|2 − |B|2| ≤ |A − B|||A| + |B|| and the fact that characteristic functions are
uniformly upper bounded by 1, we get that for any integer k and any θ ∈ �k :∣∣Mn(k, θ) − M(k, θ)

∣∣
≤ 4

∫ {∣∣�̂n(t1, t2) − �θ	(t1, t2)φF	(t1)φF	(t2)
∣∣

+ ∣∣φ̂n,1(t1)φ̂n,2(t2) − φθ	(t1)φθ	(t2)φF	(t1)φF	(t2)
∣∣}w(t1, t2)dt1 dt2.

The upper bound does not depend on k and θ , �̂n is uniformly upper bounded, and we get

sup
k≥2,θ∈�k

∣∣Mn(k, θ) − M(k, θ)
∣∣ = O

(
sup
t∈S

∣∣∣∣Zn(t)√
n

∣∣∣∣) = OP	 (1/
√

n) (A.1)

which together with Theorem 1, which implies that (k∗, θ∗) is the only solution to M(k, θ) = 0,
terminates the proof. �

We now proceed to the proof of Theorem 2. Recall that (kn, θ̃n) is defined at the beginning of
Section 3.2. Since Cn(kn, θ̃n) ≤ Cn(k

∗, θ∗) and Mn is a non-negative function, we get

[
J (kn) + Ikn(θ̃n)

] ≤ [
J
(
k	

) + Ik	

(
θ	

)] + Mn(k
	, θ	) − M(k	, θ	)

λn

,

so that using (A.1), assumption (A2) and (12) we get[
J (kn) + Ikn(θ̃n)

] ≤ [
J
(
k	

) + Ik	

(
θ	

)] + oP	 (1). (A.2)

Also,

Mn(kn, θ̃n) ≤ Mn

(
k	, θ	

) + λn

[
J
(
k	

) + Ik	

(
θ	

)]
,

so that

Mn(kn, θ̃n) = oP	 (1).

Thus, using (A.2) and Lemma 1

P
∗(kn = k	

) → 1 and θ̃n = θ	 + oP	 (1). (A.3)

Set now K = {θ ∈ �k	 : Ik	(θ) ≤ 4Ik	(θ	)}. K is a compact subset of �0
k	 . Let En be the event

(kn = k	 and θ̂n = θn(K)). Using Lemma 1, we get that θn(K) is a consistent estimator of θ	,
and using (A.3) and Lemma 1, we get also that θ̂n is a consistent estimator of θ	, so Mn has
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the same minimizer on K and on {Ikn(θ) ≤ 2Ikn(θ̃n)}, with probability tending to 1, since they
contain a neighbourhood of θ∗. Thus, P	(En) → 1. Now, since

θ̂n = θn(K)1En + θ̂n1Ec
n
,

Theorem 2 follows as soon as we prove that
√

n(θn(K) − θ	) converges in distribution to the
centered Gaussian with variance �. But this is a straightforward consequence of

D2Mn

(
k	, θn

)(
θn(K) − θ	

) = ∇Mn

(
k	, θ	

)
,

for some θn ∈ �k	 such that ‖θn − θ	‖ ≤ ‖θn(K) − θ	‖, the consistency of θn(K) and the fol-
lowing lemma.

Lemma 2. Assume (A1) and (A2). Then

• √
n∇Mn(k

	, θ	) converges in distribution to a centered Gaussian with variance V .
• D2M(k	, θ	) is non-singular, and for any random variable θn ∈ �k	 converging in

P
	-probability to θ	, one has

D2Mn

(
k	, θn

) = D2M
(
k	, θ	

) + oP	 (1).

Proof. First notice that, in every formula, taking the conjugate of any involved function at point t
is the same as taking the function at point −t. This is also verified for derivatives. Write now for
any θ ∈ �k	 and any t = (t1, t2)

Gn(θ, t) = �̂n(t)φθ,1(t1)φθ,2(t2) − �θ(t)φ̂n,1(t1)φ̂n,2(t2)

so that, if ∇Gn(θ, t) denotes the gradient of Gn with respect to θ at point (θ, t), one has

∇Mn

(
k	, θ	

) =
∫ [∇Gn

(
θ	, t

)
Gn

(
θ	,−t

) + ∇Gn

(
θ	,−t

)
Gn

(
θ	, t

)]
w(t)dt.

Now, writing �̂n(t) = Zn(t)√
n

+ �θ	(t)φF	(t1)φF	(t2) and using (A2) one gets easily

√
n∇Mn

(
k	, θ	

)
=

∫ {
φF	(t1)φF	(t2)

[
�θ	(t)∇(

φθ	(t1)φθ	(t2)
) − ∇�θ	(t)φθ	(t1)φθ	(t2)

]
× [

Zn(−t)φθ	(−t1)φθ	(−t2) − �θ	(−t)
(
Zn(−t1,0)φθ	(−t2) + Zn(0,−t2)φθ	(−t1)

)]
+ φF	(−t1)φF	(−t2)

[
�θ	(−t)∇(

φθ	(−t1)φθ	(−t2)
) − ∇�θ	(−t)φθ	(−t1)φθ	(−t2)

]
× [

Zn(t)φθ	(t1)φθ	(t2) − �θ	(t)
(
Zn(t1,0)φθ	(t2) + Zn(0, t2)φθ	(t1)

)]}
w(t)dt

+ OP	

(
1√
n

)
,
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where the term OP	( 1√
n
) comes from the quadratic terms in Zn. The convergence in distribution

of
√

n∇Mn(k
	, θ	) to a centered Gaussian with variance V follows.

Similar computation gives that for any θ ∈ �k	

D2Mn

(
k	, θ

) − D2Mn

(
k	, θ	

)
=

∫ ∣∣�̂n(t)
∣∣2[

A1(t, θ) − A1
(
t, θ	

)]
w(t)dt

+
∫ ∣∣�̂n(t1,0)

∣∣2∣∣�̂n(0, t2)
∣∣2[

A2(t, θ) − A2
(
t, θ	

)]
w(t)dt

+ Re

{∫
�̂n(−t)�̂n(t1,0)�̂n(0, t2)

[
A3(t, θ) − A3

(
t, θ	

)]
w(t)dt

}
for matrix-valued functions A1(t, θ), A2(t, θ), A3(t, θ) that are, in a neighbourhood of θ	,
continuous in the variable θ for all t and uniformly upper bounded. Thus, D2Mn(k

	, θn) −
D2Mn(k

	, θ	) converges in P
	-probability to 0 whenever θn is a random variable converging

in P
	-probability to θ	.

Finally, note that at point θ	 the Hessian of M simplifies into

D2M
(
k	, θ	

) = 2
∫

H(t)H(−t)T
∣∣φF	(t1)φF	(t2)

∣∣2
w(t)dt,

with

H(t) = �θ	(t)
(
φθ	(t1)∇φθ	(t2) + ∇φθ	(t1)φθ	(t2)

) − ∇�θ	(t)φθ	(t1)φθ	(t2).

Denote by Hmj
(t), j = 2, . . . , k	, HQj1,j2

(t), j1, j2 = 1, . . . , k	, (j1, j2) �= (k	, k	) the compo-
nents of the vector H(t). Positive definiteness of D2M(k	, θ	) can thus be established by proving
that, if for all t ∈ S ,

k∑
j=2

Umj
Hmj

(t) +
∑

(j1,j2)�=(k,k)

Uj1,j2HQj1,j2
(t) = 0 (A.4)

then

Umj
= 0, j = 2, . . . , k	, Uj1,j2 = 0, j1, j2 = 1, . . . , k	, (j1, j2) �= (

k	, k	
)
.

By linear independence of the functions eita and teitb, this implies in particular that for all t =
(t1, t2),

k	∑
j1,...,j4=1

Umj1
μ	(j1)μ

	(j2)Q
	
j3,j4

e
it1(m	

j1
+m	

j3
)+it2(m	

j2
+m	

j4
)

(A.5)

=
k	∑

j1,...,j4=1

Umj1
μ	(j2)μ

	(j3)Q
	
j1,j4

e
it1(m	

j1
+m	

j3
)+it2(m	

j2
+m	

j4
)
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with Um1 = 0. The smallest possible term m	
j1

+ m	
j3

with j1 > 1 is equal to m	
2 = m	

2 + m	
1

setting j1 = 2 and j3 = 1 only. Thus, (A.5) implies that

Um2μ
	(2)

k	∑
j2,j4=1

μ	(j2)Q
	
1,j4

e
it2(m	

j2
+m	

j4
)

= Um2μ
	(1)

k	∑
j2,j4=1

μ	(j2)Q
	
2,j4

e
it2(m	

j2
+m	

j4
)

for all t2, that is,

Um2μ
	(2)φθ	(t2)

k	∑
j4=1

Q	
1,j4

e
it2m	

j4 = Um2μ
	(1)φθ	(t2)

k	∑
j4=1

Q	
2,j4

e
it2m	

j4 .

Since φθ	 has only isolated zeros, this is satisfied if and only if

Um2μ
	(2)

k	∑
j4=1

Q	
1,j4

e
it2m	

j4 = Um2μ
	(1)

k	∑
j4=1

Q	
2,j4

e
it2m	

j4 .

Thus, (A.5) is satisfied only if either Um2 = 0 or μ	(2)Q	
1,j = μ	(1)Q	

2,j for all j . The latter is

impossible since Q	 is non-singular, thus Um2 = 0 and (A.5) becomes

k	∑
j1=3,j2,...,j4=1

Umj1
μ	(j1)μ

	(j2)Q
	
j3,j4

e
it1(m	

j1
+m	

j3
)+it2(m	

j2
+m	

j4
)

=
k	∑

j1=3,j2,...,j4=1

Umj1
μ	(j2)μ

	(j3)Q
	
j1,j4

e
it1(m	

j1
+m	

j3
)+it2(m	

j2
+m	

j4
)
.

The smallest possible value for m	
j1

+ m	
j3

is then m	
3 which is obtained with the only con-

figuration j1 = 3, j3 = 1. The same argument as before leads to Um3 = 0. Iteration of the
argument leads to Umj

= 0 for all j = 1, . . . , k	. We now study the derivatives associated
to Q. We write U the k	 × k	-matrix whose components are Uj1,j2 for (j1, j2) �= (k	, k	) and
Uk	,k	 = −∑

(j1,j2)�=(k	,k	) Uj1,j2 . Then∑
(j1,j2)�=(k	,k	)

Uj1,j2∇Qj1,j2
�θ	(t) = V (t1)

T UV (t2),

where for any t ∈ R, V (t) = ((eitm	
j )j=1,...,k	 )T , and∑

(j1,j2)�=(k	,k	)

Uj1,j2∇Qj1,j2
φθ	(t1) = V (t1)

T U1
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with 1 = (1, . . . ,1)T ∈ R
k	

, since φθ	(t1) = V (t1)
T Q	1 and �θ	(t) = V (t1)

T Q	V (t2). We can
then express (A.4) as

V (t1)
T
[
Q	V (t2)V (t2)

T U11T
(
Q	

)T + Q	V (t2)V (t2)
T Q	11T UT

(A.6)
− UV (t2)V (t2)

T Q11T
(
Q	

)T ]
V (t1) = 0.

Note also that since all differences m	
j1

− m	
j2

, j1 �= j2, are distinct, if A is a k	 × k	-matrix and
I is an open subset of R, [∀t ∈ I,V (t)T AV (t) = 0

] �⇒ A + AT = 0. (A.7)

Then (A.6) implies

Q	V (t2)V (t2)
T U11T

(
Q	

)T + Q	11T UT V (t2)V (t2)
T
(
Q	

)T

+ Q	V (t2)V (t2)
T Q	11T UT + U11T

(
Q	

)T
V (t2)V (t2)

T
(
Q	

)T (A.8)

− UV (t2)V (t2)
T Q	11T

(
Q	

)T − Q	11T
(
Q	

)T
V (t2)V (t2)

T UT = 0.

Recall also that 1T U1 = 0 and that Q	1 = μ	. Note that U1 = αμ	 with α ∈ R if and only if
α = 0 since 1T U1 = 0 while 1T μ	 = 1. Therefore, if U1 �= 0 there exists w ∈ Rk	

such that
wT (U1) �= 0 while (μ	)T w = 0. Multiplying the above equality on the left by wT and on the
right by w leads to

wT Q	V (t2)V (t2)
T
(
μ	

)
(U1)T w = 0

for all t2 in an open set. Using (A.7) again and since (U1)T w �= 0, we get that

μ	
[(

Q	
)T

w
]T + [(

Q	
)T

w
](

μ	
)T = 0.

Since μ	(j) > 0 for all j , this implies that (Q	)T w = 0 which is impossible since Q	 has full
rank. Therefore, U1 = 0 and (A.8) becomes V (t2)

T μ	[UV (t2)(μ
	)T + μ	V (t2)

T UT ] = 0, that
is UV (t2)(μ

	)T +μ	V (t2)
T UT = 0 for all t2 in an open set. Multiplying on the left by 1 implies

that UV (t2) = 0 for all t2 in an open set so that U = 0. �

Appendix B: Proof of Theorem 3

Define for any θ ∈ �k	 , Ln(θ) = Mn(k
	, θ) − M(k	, θ). Then, since Mn(k

	, θn(K)) ≤
Mn(k

	, θ	), one easily gets

M
(
k	, θn(K)

) − M
(
k	, θ	

) ≤ ∣∣Ln

(
θn(K)

) − Ln

(
θ	

)∣∣.
Define for any t = (t1, t2) and any θ

G(θ, t) = {
�θ	(t)φθ,1(t1)φθ,2(t2) − �θ(t)φθ	,1(t1)φθ	,2(t2)

}
φF	(t1)φF	(t2)
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and

Bn(θ, t) = φF	(t1)φF	(t2)

×
{

Zn(t)√
n

φθ,1(t1)φθ,2(t2)

− �θ(t)
[

Zn(t1,0)√
n

φθ,2(t2) + Zn(0, t2)√
n

φθ,1(t1) + Zn(t1,0)Zn(0, t2)

n

]}
.

Writing �̂n(t) = Zn(t)√
n

+ �θ	(t)φF	(t1)φF	(t2), one gets

Ln(θ) =
∫ ([

Bn(θ, t) + G(θ, t)
][

Bn(θ,−t) + G(θ,−t)
] − ∣∣G(θ, t)

∣∣2)
w(t)dt.

Since G(θ	, t) = 0 for all t, we obtain

Ln(θ) − Ln

(
θ	

) =
∫ {∣∣Bn(θ, t)

∣∣2 − ∣∣Bn

(
θ	, t

)∣∣2 + Bn(θ, t)G(θ,−t)

+ Bn(θ,−t)G(θ, t)
}
w(t)dt

which gives ∣∣Ln(θ) − Ln

(
θ	

)∣∣ ≤
∫ {∣∣Bn(θ, t) − Bn

(
θ	, t

)∣∣∣∣Bn(θ, t) + Bn

(
θ	, t

)∣∣
+ 2

∣∣Bn(θ, t)
∣∣∣∣G(θ, t) − G

(
θ	, t

)∣∣}w(t)dt

which leads to

M
(
k	, θn(K)

) − M
(
k	, θ	

) ≤ CWn

∥∥θn(K) − θ	
∥∥ (B.1)

for some constant C and any integer n, and with

Wn =
{

Vn√
n

+ V 2
n

n
+ V 3

n

n3/2
+ V 4

n

n2

}
, Vn = sup

t∈S

∣∣Zn(t)
∣∣.

Observe now that, since D2M(k	, ·) is continuous and D2M(k	, θ	) is non-singular, there exists
λ > 0 and α > 0 such that, if ‖θ −θ	‖ ≤ α, then M(k	, θ)−M(k	, θ	) ≥ λ

2 ‖θ −θ	‖2. Moreover,
there exists δ > 0 such that, if θ ∈ K is such that ‖θ − θ	‖ ≥ α, then M(k	, θ) − M(k	, θ	) ≥ δ.
Using (B.1), we obtain that for any real number M large enough,

P
	
(√

n
∥∥θn(K) − θ	

∥∥ ≥ M
) ≤ P

	

(
Wn ≥ δ

2CM(K)

)
+ P

	

(√
nWn ≥ Mλ

2C

)
,

where M(K) = supθ∈K ‖θ‖. Since, for n large enough

P
	

(
Wn ≥ δ

2CM(K)

)
≤ P

	

(
Vn ≥ E + δ

√
n

8CM(K)

)
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and

P
	

(√
nWn ≥ Mλ

2C

)
≤ P

	

(
Vn ≥ Mλ

8C

)
,

using assumption (A3), this terminates the proof of Theorem 3.

Supplementary Material

Supplement to “Nonparametric finite translation hidden Markov models and extensions”
(DOI: 10.3150/14-BEJ631SUPP; .pdf). In the supplementary material, we provide an oracle in-
equality which is used to prove Theorem 4, together with the proofs of the oracle inequality and
of Theorem 4. We also give a concentration inequality which is used in various parts of these
proofs.
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