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3CMAP, École Polytechnique, route de Saclay, 91128 Palaiseau Cedex, France

Abstract

In this paper, we consider nonparametric multidimensional finite mixture mod-
els and we are interested in the semiparametric estimation of the population weights.
Here, the i.i.d. observations are assumed to have at least three components which are
independent given the population. We approximate the semiparametric model by
projecting the conditional distributions on step functions associated to some parti-
tion. Our first main result is that if we refine the partition slowly enough, the asso-
ciated sequence of maximum likelihood estimators of the weights is asymptotically
efficient, and the posterior distribution of the weights, when using a Bayesian pro-
cedure, satisfies a semiparametric Bernstein-von Mises theorem. We then propose a
cross-validation like method to select the partition in a finite horizon. Our second
main result is that the proposed procedure satisfies an oracle inequality. Numerical
experiments on simulated data illustrate our theoretical results.
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1 Introduction

We consider in this paper multidimensional mixture models that describe the probability
distribution of a random vector X with at least three coordinates. The model is a prob-
ability mixture of k populations such that the coordinates of X can be grouped into 3
blocks of random variables which are conditionally independent given the population.
We call emission distributions the conditional distributions of the coordinates and θ the
parameter that contains the probability weights of each population. It has been known
for some time that such a model is identifiable under weak assumptions. When the coor-
dinates of X take finitely many values, Kruskal [23] in 1977 provided an algebraic suffi-
cient condition under which he proved identifiability. See also [28]. Kruskal’s result was
recently used by [1] to obtain identifiability under almost no assumption on the possible
emission distributions: only the fact that, for each coordinate, the k emission distribu-
tions are linearly independent. Spectral methods were proposed by [2], which allowed
[10] to derive estimators of the emission densities having the minimax rate of conver-
gence when the smoothness of the emission densities is known. Moreover, [11] proposes
an estimation procedure in the case of repeated measurements (where the emission dis-
tributions of each coordinate given a population are the same).

Our paper focuses on the semiparametric estimation of the population weights when
nothing is known about the emission distributions. This is a semiparametric model,
where the finite dimensional parameter of interest is θ and the infinite dimensional nui-
sance parameters are the emission distributions. In applications, the populations weights
have direct interpretation. As an example, in [25] the problem is to estimate the propor-
tion of cells of different types for diagnostic purposes, on the basis of flow cytometry
data. Those data give the intensity of several markers responses and may be modelled as
multidimensional mixtures.
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We are in particular interested in constructing optimal procedures for the estimation
of θ. Optimal may be understood as efficient, in Le Cam’s theory point of view which
is about asymptotic distribution and asymptotic (quadratic) loss. See [24], [8], [33], [34].
The first question is: is the parametric rate attainable in the semiparametric setting? We
know here, for instance using spectral estimates, that the parametric rate is indeed at-
tainable. Then, the loss due to the nuisance parameter may be seen in the efficient Fisher
information and efficient estimators are asymptotically equivalent to the empirical pro-
cess on efficient influence functions. The next question is thus: how can we construct
asymptotically efficient estimators? In the parametric setting, maximum likelihood esti-
mators (MLEs) do the job, but the semiparametric situation is more difficult, because one
has to deal with the unknown nuisance parameter, see the theorems in chapter 24 of [33]
where it is necessary to control various bias/approximation terms.

From a Bayesian perspective, the issue is the validity of the Bernstein-Von Mises prop-
erty of the marginal posterior distribution of the parameter of interet θ. In other words:
is the marginal posterior distribution of θ asymptotically Gaussian? Is it asymptotically
centered around an efficient estimator? Is the asymptotic variance of the posterior distri-
bution the inverse of the efficient Fisher information matrix? Semiparametric Bernstein-
Von Mises theorems have been the subject of recent research, see [31], [12], [29], [15], [14],
[9], [17] and [29].

The results of our paper are twofold: first we obtain asymptotically efficient semipara-
metric estimators using a likelihood strategy, then we propose a data driven method to
perform the strategy in a finite horizon with an oracle inequality as theoretical guarantee.

Let us describe our ideas.

For the multidimensional mixture model we consider, we will take advantage of the
fact that, we can construct a parametric mixture model based on an approximation of
the emission densities by piecewise constant functions - i.e histograms - which acts as a
correct model for a coarsened version of the observations (the observations are replaced
by the number of points in each grid of the histograms). So that as far as the parame-
ter of interest is concerned, namely the weights of the mixture, this approximate model
is in fact well specified, in particular the Kullback-Leibler divergence between the true
distribution and the approximate model is minimized at the true value of the parameter
of interest, see Section 2.1 for more details. For each of these finite dimensional mod-
els, the parameter of interest, i.e. the weights of the mixture, may then be efficiently
estimated within the finite dimensional model. Then, under weak assumptions, and us-
ing the fact that one can approximate any density on [0, 1] by such histograms based
on partitions with radius (i.e. the size of the largest bin) going to zero, it is possible
to prove that asymptotically efficient semiparametric estimators may be built using the
sequence of MLEs in a growing (with sample size) sequence of approximation models.
In the same way, using Bayesian posteriors in the growing sequence of approximation
models, one gets a Bernstein-Von Mises result. One of the important implications of the
Bernstein-von Mises property is that credible regions, such as highest posterior density
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regions or credible ellipsoids are also confidence regions. In the particular case of the
semiparametric mixtures, this is of great interest, since the construction of a confidence
region is not necessarily trivial. This is our first main result which is stated in Theorem
1: by considering partitions refined slowly enough when the number of observations in-
creases, we can derive efficient estimation procedures for the parameter of interest θ and
in the Bayesian approach for a marginal posterior distribution on θ which satisfies the
renowned Bernstein-von Mises property.

We still need however in practice to choose a good partition, for a finite sample size.
This can be viewed as a model selection problem. There is now a huge literature on
model selection, both in the frequentist and in the Bayesian literature. Roughly speaking
the methods can be split into two categories: penalized likelihood types of approaches,
which include in particular AIC (Akaike’s Information Criterion), BIC (Bayesian Informa-
tion Criterion), MDL (Minimum Description Length) and marginal likelihood (Bayesian)
criteria or approaches which consist in estimating the risk of the estimator in each model
using for instance bootstrap or cross-validation methods. In all these cases theory and
practice are nowadays well grounded, see for instance [22], [30], [6], [26], [7], [5], [16], [3].
Most of the existing results above cover parametric or nonparametric models. Penalized
likelihoods in particular target models which are best in terms of Kullback-Leibler di-
vergences typically and therefore aim at estimating the whole nonparametric parameter.
Risk estimation via bootstrap or cross-validation methods are more naturally defined in
semiparametric (or more generally set-ups with nuisance parameters) models, however
the theory remains quite limited in cases where the estimation strategy is strongly non
linear as encountered here.

The idea is to estimate the risk of the estimator in each approximation model, and then
select the model with the smallest estimated risk. We propose to use a cross-validation
method similar to the one proposed in [13]. To get theoretical results on such a strategy,
the usual basic tool is to write the cross-validation criterion as a function of the empirical
distribution which is not possible in our semiparametric setting. We thus divide the sam-
ple in non overlapping blocks of size an (n being the the sample size) to define the cross
validation criterion. This enables us to prove our second main result: Theorem 2 which
states an oracle inequality on the quadratic risk associated with a sample of size an obser-
vations, and which also leads to a criterion to select an. Simulations indicate moreover
that the approach behaves well in practice.

In Section 2, we first describe the model, set the notations and our basic assumptions.
We recall the semiparametric tools in Section 2.2, where we define the score functions
and the efficient Fisher information matrices. Using the fact that spectral estimators are
smooth functions of the empirical distribution of the observations, we obtain that, for
large enough approximation model, the efficient Fisher information matrix is full rank,
see Proposition 1. Intuition says that with better approximation spaces, more is known
about all parameters of the distribution, in particular about θ. We prove in Proposition
2 that indeed, when the partition is refined, the Fisher information associated to this
partition increases. This leads to our main general result presented in Theorem 1, Section
2.3: it is possible to let the approximation parametric models grow with the sample size
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so that the sequence of maximum likelihood estimators are asymptotically efficient in
the semiparametric model and so that a semiparametric Bernstein-von Mises Theorem
holds. To prove this result we prove in particular, in Lemma 1, that semiparametric score
functions and semiparametric efficient Fisher information matrix are the limits of the
parametric ones obtained in the approximation parametric models, which has interest
in itself, given the non explicit nature of semi-parametric efficient score functions and
information matrices in such models. This implies in particular that the semiparametric
efficient Fisher information matrix is full rank follows. In Section 3, we propose a model
selection approach to select the number of bins. We first discuss in Section 3.1 the reasons
to perform model selection and the fact that choosing a too large approximation space
does not work, see Proposition 3 and Corollary 1. Then we propose in Section 3.2 our
cross-validation criterion, for which we prove an oracle inequality in Theorem 2 and
Proposition 4. Results of simulations are described in Section 4, where we investigate
several choices of the number and length of blocks for performing cross validation, and
investigate practically also V-fold strategies. In Section 5 we present possible extensions,
open questions and further work. Finally Section 6 is dedicated to proofs of intermediate
propositions and lemmas.

2 Asymptotic efficiency

2.1 Model and notations

Let (Xn)n≥1 be a sequence of independent and identically distributed random variables
taking values in the product of at least three compact subsets of Euclidean spaces which,
for the sake of simplicity, we will set as [0, 1]3. We assume that the possible marginal
distribution of an observation Xn, n ≥ 1, is a population mixture of k distributions such
that, given the population, the coordinates are independent and have some density with
respect to the Lebesgue measure on [0, 1]. The possible densities of Xn, n ≥ 1, are, if
x = (x1, x2, x3) ∈ [0, 1]3:

gθ,f (x) =
k∑
j=1

θj

3∏
c=1

fj,c(xc),
k∑
j=1

θj = 1, θj ≥ 0, ∀j (1)

Here, k is the number of populations, θj is the probability to belong to population j for
j ≤ k and we set θ = (θ1, . . . , θk−1). For each j = 1, . . . , k, fj,c, c = 1, 2, 3, is the density of
the c-th coordinate of the observation, given that the observation comes from population
j, and we set f = ((fj,c)1≤c≤3)1≤j≤k. We denote by P? the true (unknown) distribution of
the sequence (Xn)n≥1, such that P? = P⊗Nθ?,f? , dPθ?,f?(x) = gθ?,f?(x)dx, for some θ? ∈ Θ

and f? ∈ F3k, where Θ is the set of possible parameters θ and F the set of probability
densities on [0, 1].

We approximate the densities by step functions on some partitions of [0, 1]. We assume
that we have a collection of partitions IM , M ∈ M, M ⊂ N, so that for each M ∈ M,
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IM = (Im)1≤m≤M is a partition of [0, 1] by Borel sets. Then Im changes when M changes.
For each M ∈M, we now consider the model of possible densities

gθ,ω;M (x) =
k∑
j=1

θj

3∏
c=1

(
M∑
m=1

ωj,c,m
|Im|

1lIm(xc)

)
. (2)

Here, |I| is the Lebesgue measure of the set I , ω = (ωj,c,m)1≤m≤M−1,1≤c≤3,1≤j≤k, and for
each j = 1, . . . , k, each c = 1, 2, 3, each m = 1, . . . ,M − 1, ωj,c,m ≥ 0,

∑M−1
m=1 ωj,c,m ≤ 1,

and we denote ωj,c,M = 1−
∑M−1

m=1 ωj,c,m.
We denote ΩM the set of possible parameters ω when using model (2) with the partition
IM .

For any partition IM , any ω = (ωm)1≤m≤M−1 such that ωm ≥ 0, m = 1, . . . ,M , with
ωm = 1−

∑M−1
m=1 ωm, denote fω the step function given by

fω(x) =
M∑
m=1

ωm
|Im|

1lIm(x), ωm =

∫ 1

0
fω(u)1lIm(u)du. (3)

When ω ∈ ΩM , let fω = ((fωj,c)1≤c≤3)1≤j≤k.

Possible extensions of our results to model (1) with non compact support, or with more
than three coordinates, or with multivariate coordinates, and to model (2) with different
sequences of partitions for each coordinate are discussed in Section 5.

An interesting feature of step function approximation is that the Kullback-Leibler di-
vergence KL((θ?, f?), (θ, fω)) between the distribution with density g(θ?,f?) and that with
density g(θ,ω;M), when (θ,ω) ∈ Θ× ΩM , is minimised at

θ = θ?, ω = ω?M :=

(∫ 1

0
f?j,c(u)1lIm(u)du

)
1≤m≤M−1,1≤c≤3,1≤j≤k

.

Indeed

KL((θ?, f?), (θ, fω)) := E?
[
log

(
gθ?,f?(X)

gθ,ω;M (X)

)]
= E?

[
log

(
gθ?,f?(X)

gθ?,ω?;M (X)

)]
+ E?

[
log

(
gθ?,ω?;M (X)

gθ,ω;M (X)

)]
= KL((θ?, f?), (θ?, fω?)) + E?

( ∑
1≤m1≤M
1≤m2≤M
1≤m3≤M

3∏
c=1

1lXc∈Imc log

(
gθ?,ω?;M (X)

gθ,ω;M (X)

))

= KL((θ?, f?), (θ?, fω?)) +KL((θ?, fω?), (θ, fω)).

This particularity can also be obtained considering Yi := ((1lIm(Xi,c))1≤m≤M )1≤c≤3 when
the Xi’s have probability density (1). Indeed, the density of the observations Yi is exactly
the probability density (2) with

θ = θ?, ω = ω?M
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This cornerstone property is specific to the chosen approximation, i.e. the step function
approximation.
Let `n(θ,ω;M) be the log-likelihood using model (2), that is

`n(θ,ω;M) =
n∑
i=1

log gθ,ω;M (Xi).

We denote, for each M ∈ M, (θ̂M , ω̂M ) the maximum likelihood estimator (shortened as
MLE), that is a maximizer of `n(θ,ω;M) over Θ× ΩM .

Let ΠM denote a prior distribution on the parameter space Θ×ΩM . The posterior distri-
bution ΠM (·|X1, . . . , Xn) is defined as follows. For any Borel subset A of Θ× ΩM ,

ΠM (A|X1, . . . , Xn) =

∫
A

∏n
i=1 gθ,ω;M (Xi)dΠM (θ,ω)∫

Θ×ΩM

∏n
i=1 gθ,ω;M (Xi)dΠM (θ,ω)

.

The first requirement to get consistency of estimators or posterior distributions is the
identifiability of the model. We use the following assumption.

Assumption (A1).
• For all j = 1, . . . , k, θ?j > 0.
• For all c = 1, 2, 3, for all j = 1, . . . , k, f?j,c is continuous and almost surely positive and

∀j1, j2 ≤ k, 0 < inf
x

f?j1,c(x)

f?j2,c(x)
≤ sup

x

f?j1,c(x)

f?j2,c(x)
< +∞ (4)

• For all c = 1, 2, 3, the measures f?1,cdx, . . . , f
?
k,cdx are linearly independent.

Note that the two first points in Assumption (A1) imply that for all M , (θ?,ω?M ) lies
in the interior of Θ× ΩM .

It is proved in Theorem 8 of [1] that under (A1) identifiability holds up to label switching,
that is, if Tk is the set of permutations of {1, . . . , k},

∀θ ∈ Θ, ∀f ∈ F3k, gθ,f = gθ?,f? =⇒ ∃σ ∈ Tk such that σθ = θ?, σf = f?,

where σθ ∈ Θ (resp. σf ∈ F3k, σθj = θσ(j), σf j,c = fσ(j),c, c ∈ {1, 2, 3}, j ∈ {1, , . . . , k})
denotes the image of θ after permuting the labels using σ. This also implies the iden-
tifiability of model (2) if the partition is refined enough. We also need the following
assumption to ensure that all functions f?j,c;M tend to f?j,c Lebesgue almost everywhere,
where f?j,c;M is the function defined in (3) with ω = (ω?j,c,m)m.

Assumption (A2).
• For all M , the sets Im in IM are intervals with non empty interior.
• As M tends to infinity, max1≤m≤M |Im| tends to 0.
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Then, if (A1) and (A2) hold, for M large enough, we have that for all c = 1, 2, 3, the
measures f?1,c;Mdx, . . . , f

?
k,c;Mdx are linearly independent. We give a formal proof of this

fact in Section 6.1. Thus, using again the identifiability result in [1], under (A1) and (A2),
for M large enough,

∀θ ∈ Θ, ∀ω ∈ ΩM , gθ,ω;M = gθ?,ω?M ;M

=⇒ ∃σ ∈ Tk such that σθ = θ?, σω = ω?M ,

where σω ∈ ΩM and σωj,c,m = ωσ(j),c,m, for all m ∈ {1, . . . ,M}, c ∈ {1, 2, 3}, j ∈
{1, . . . , k}.

2.2 Efficient influence functions and efficient Fisher informations

We now study the estimation of θ in model (1) and in model (2) from the semiparametric
point of view, following Le Cam’s theory. We start with model (2) which is easier to
analyze since it is a parametric model. For any M , gθ,ω;M (x) is a polynomial function of
the parameter (θ,ω) and the model is differentiable in quadratic mean in the interior of
Θ × ΩM . Denote by S?M = (S?θ,M , S

?
ω,M ) the score function for parameter (θ,ω) at point

(θ?,ω?M ) in model (2). We have for j = 1, . . . , k − 1

(
S?θ,M

)
j

=

∏3
c=1 fω?j,c;M −

∏3
c=1 fω?k,c;M

gθ?,ω?M ;M
, (5)

and for j = 1, . . . , k, c = 1, 2, 3, m = 1, . . . ,M − 1

(
S?ω,M

)
j,c,m

=
θ?j

(
1lIm (xc)
|Im| −

1lIM (xc)

|IM |

)∏
c′ 6=c fω?j,c′;M

gθ?,ω?M ;M
. (6)

Denote by JM the Fisher information, that is the variance of S?M (X):

JM = E?
[
S?M (X)S?M (X)T

]
Here, E? denotes expectation under P?, and S?M (X)T is the transpose vector of S?M (X).

When considering the question of efficient estimation of θ in the presence of a nuisance
parameter, the relevant mathematical objects are the efficient influence function and the
efficient Fisher information. Recall that the efficient score function is the projection of
the score function with respect to parameter θ on the orthogonal subspace of the closure
of the linear subspace spanned by the tangent set with respect to the nuisance parame-
ter (that is the set of scores in parametric models regarding the nuisance parameter), see
[33] or [34] for details. The efficient Fisher information is the variance matrix of the effi-
cient score function. For parametric models, a direct computation gives the result. If we
partition the Fisher information JM according to the parameters θ and ω, that is

[JM ]θ,θ = E?
[
S?θ,M (X)S?θ,M (X)T

]
, [JM ]ω,ω = E?

[
S?ω,M (X)S?ω,M (X)T

]
,

8



[JM ]θ,ω = E?
[
S?θ,M (X)S?ω,M (X)T

]
, [JM ]ω,θ = [JM ]Tθ,ω,

we get that, in model (2), if we denote ψ̃M the efficient score function for the estimation
of θ,

ψ̃M = S?θ,M − [JM ]θ,ω([JM ]ω,ω)−1S?ω,M ,

and the efficient Fisher information J̃M is the (k − 1)× (k − 1)-matrix given by

J̃M = [JM ]θ,θ − [JM ]θ,ω([JM ]ω,ω)−1[JM ]Tθ,ω.

To discuss efficiency of estimators, invertibility of the efficient Fisher information is needed.
Spectral methods have been proposed recently to get estimators in model (2), see [2]. It is
possible to obtain upper bounds of their local maximum quadratic risk with rate n−1/2,
which as a consequence excludes the possibility that the efficient Fisher information be
singular. This is stated in Proposition 1 below and proved in Section 6.1.

Proposition 1. Assume (A1) and (A2). Then, for large enough M , J̃M is non singular.

In the context of mixture models, all asymptotic results are given up to label switch-
ing. We define here formally what we mean by ‘up to label switching’ for frequentist
efficiency results with Equation (8) and Bayesian efficiency results with Equation (10).

By Proposition 1, if (A1) and (A2) hold, for large enough M , J̃M is non singular, and
an estimator θ̂ is asymptotically a regular efficient estimator of θ? if and only if

√
n
(
θ̂ − θ?

)
=
J̃−1
M√
n

n∑
i=1

ψ̃M (Xi) + oP?(1), up to label switching, (7)

which formally means that there exists a sequence (σn)n belonging to Tk such that

√
n
(
σn
θ̂ − θ?

)
=
J̃−1
M√
n

n∑
i=1

ψ̃M (Xi) + oP?(1). (8)

To get an asymptotically regular efficient estimator, one may for instance use the MLE
θ̂M (see the beginning of the proof of Theorem 1). One may also apply a one step im-
provement (see Section 5.7 in [33]) of a preliminary spectral estimator, such as the one
described in [2].
In the Bayesian context, Bernstein-von Mises Theorem holds for large enough M if the
prior has a positive density in the neighborhood of (θ?,ω?M ), see Theorem 10.1 in [33].
That is, if ‖ · ‖TV denotes the total variation distance, with ΠM,θ the marginal distribution
on the parameter θ,∥∥∥∥∥ΠM,θ (·|X1, . . . , Xn)−N

(
θ̂;
J̃−1
M

n

)∥∥∥∥∥
TV

= oP?(1), up to label switching, (9)

where θ̂ verifies Equation (7), which formally means that

sup
A⊂Θ

∣∣∣∣∣ΠM,θ

(
∃σ ∈ Tk : σθ ∈ A

∣∣X1, . . . , Xn

)
−N

(
σn
θ̂;
J̃−1
M

n

)
(A)

∣∣∣∣∣ = oP?(1), (10)
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where (σn) and θ̂ satisfy Equation (8).
A naive heuristic idea is that, when using the Yi’s as summaries of the Xi’s, one has less
information, but more and more if the partition IM is refined. Thus, the efficient Fisher
information should grow when partitions IM are refined. The following proposition is
proved in Section 6.2.

Proposition 2. Let IM1 be a coarser partition than IM2 , that is such that for any I ∈ IM1 , there
exists A ⊂ IM2 such that I = ∪I′∈AI ′. Then

J̃M2 ≥ J̃M1

in which“ ≥” denotes the partial order between symmetric matrices.

Thus, it is of interest to let the partitions grow so that one reaches the largest efficient
Fisher information.

Let us now come back to model (1). Let, for j = 1, . . . , k, c = 1, 2, 3, Hj,c be the subset
of functions h in L2(f?j,cdx) such that

∫
hf?j,cdx = 0. Then the tangent set for f at point

(θ?, f?) is the subspace Ṗ of L2(gθ?,f?(x)dx) spanned by the functions

x 7→
h(xc)

∏3
c′=1 f

?
j,c′(xc′)

gθ?,f?(x)
, h ∈ Hj,c, j = 1, . . . , k, c = 1, 2, 3.

Notice that for each j = 1, . . . , k and c = 1, 2, 3,Hj,c is a closed linear subset of L2(f?j,cdx)

and that Ṗ is a closed linear subset of L2(gθ?,f?(x)dx). The efficient score function ψ̃ for
the estimation of θ in the semiparametric model (1) is given, for j = 1, . . . , k − 1, by

ψ̃j = (S?θ )j − A (S?θ )j , (S?θ )j =

∏3
c=1 f

?
j,c −

∏3
c=1 f

?
k,c

gθ?,f?
, (11)

with A the orthogonal projection onto Ṗ in L2(gθ?,f?(x)dx). Then, the efficient Fisher
information J̃ is the variance matrix of ψ̃.
If J̃ is non singular, an estimator θ̂ is asymptotically a regular efficient estimator of θ? if
and only if

√
n
(
θ̂ − θ?

)
=
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) + oP?(1), up to label switching (12)

and a Bayesian method using a nonparametric prior Π satisfies a semiparametric Bernstein-
von Mises theorem if, with Πθ the marginal distribution on the parameter θ,∥∥∥∥∥Πθ (·|X1, . . . , Xn)−N

(
θ̂;
J̃−1

n

)∥∥∥∥∥
TV

= oP?(1), up to label switching (13)

for a θ̂ satisfying (12).

10



2.3 General result

When the size of the bins in the partition decreases, we expect that the efficient score
functions in (2) are good approximations of the efficient score functions in (1) so that
asymptotically efficient estimators in model (2) become efficient estimators in model (1).
This is what Theorem 1 below states, under the following additional assumption :

Assumption (A3). For all M large enough, IM is a coarser partition than IM+1

We first obtain:

Lemma 1. Under Assumptions (A1), (A2) and (A3), the sequence of score functions (ψ̃M )M
converges inL2(gθ?,f?dx) to the score function ψ̃, and the sequence of efficient Fisher informations
(J̃M )M converges to the efficient Fisher information matrix J̃ , which is non singular.

The invertibility of J̃ is a consequence of Proposition 1, Proposition 2, and the con-
vergence of J̃M to J̃ .

We are now ready to state Theorem 1.

Theorem 1. Under Assumptions (A1), (A2), and (A3), there exists a sequence Mn tending to
infinity sufficiently slowly such that the MLE θ̂Mn is asymptotically a regular efficient estimator
of θ? and satisfies

√
n
(
θ̂Mn − θ?

)
=
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) + oP?(1), up to label switching. (14)

Moreover, under the same assumptions and if for all M , the prior ΠM has a positive and contin-
uous density at (θ?,ω?M ), then there exists a sequence Ln tending to infinity sufficiently slowly
such that∥∥∥∥∥ΠLn,θ (·|X1, . . . , Xn)−N

(
θ? +

J̃−1

n

n∑
i=1

ψ̃ (Xi) ;
J̃−1

n

)∥∥∥∥∥
TV

= oP?(1),

up to label switching. (15)

Note that, in Theorem 1, any sequence M ′n ≤ Mn going to infinity also satisfies (14)
and similarly (15) holds for any sequence L′n ≤ Ln going to infinity.

Proof. As explained in Section 2.1, model (2) is the correct model associated with the ob-
servations made of the counts per bins and under Assumption (A1) it is a regular model
in the neighborhood of the true parameter. Also, using the identifiability of the model
and the trick given in [33] p. 63, we get consistency of the MLE. Thus, it is possible to ap-
ply Theorem 5.39 in [33] to get that for eachM , the MLE θ̂M is regular and asymptotically
efficient, that is

√
n
(
σn,M

θ̂M − θ?
)

=
J̃−1
M√
n

n∑
i=1

ψ̃M (Xi) +Rn(M),

11



where for each M , σn,M is a sequence of permutations in Tk, and (Rn(M))n≥1 is a se-
quence of random vectors converging to 0 in P?-probability as n tends to infinity. There-
fore, there exists a sequence Mn tending to infinity sufficiently slowly so that, as n tends
to infinity, Rn(Mn) tends to 0 in P?-probability. Now,

J̃−1
Mn√
n

n∑
i=1

ψ̃Mn (Xi) =
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) +
J̃−1
Mn
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi)

+
J̃−1
Mn√
n

n∑
i=1

(ψ̃Mn − ψ̃) (Xi)

=
J̃−1

√
n

n∑
i=1

ψ̃ (Xi) + oP?(1)

since, by Lemma 1, E?‖ 1√
n

∑n
i=1(ψ̃Mn − ψ̃) (Xi) ‖2 = ‖ψ̃Mn − ψ̃‖2L2(gθ?,f? (x)dx) tends to 0 as

n tends to infinity and (J̃Mn)−1 converges to (J̃)−1 as n tends to infinity, so that the first
part of the theorem is proved.
On the Bayesian side, for all M , there exists a sequence Vn(M) of random vectors con-
verging to 0 in P?-probability as n tends to infinity such that

sup
A⊂Θ

∣∣∣∣∣ΠM,θ

(
∃σ ∈ Tk : σθ ∈ A

∣∣X1, . . . , Xn

)
−N

(
σn,M

θ̂M ;
J̃−1
M

n

)
(A)

∣∣∣∣∣ = Vn(M).

Arguing as previously, there exists a sequence Ln tending to infinity sufficiently slowly
so that, as n tends to infinity, both Vn(Ln) and Rn(Ln) tend to 0 in P?-probability. Using
the fact that the total variation distance is invariant through one-to-one transformations
we get∥∥∥∥∥N

(
σn,M

θ̂M ;
J̃−1
M

n

)
−N

(
θ? +

J̃−1

n

n∑
i=1

ψ̃ (Xi) ;
J̃−1

n

)∥∥∥∥∥
TV

=

∥∥∥∥∥N
(
√
n
(
σn,M

θ̂M − θ?
)
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi) ; J̃−1
M

)
−N

(
0; J̃−1

)∥∥∥∥∥
TV

=

∥∥∥∥∥N
(
J̃

1/2
M [
√
n
(
σn,M

θ̂M − θ?
)
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi)]; Id

)
−N

(
0; J̃M J̃

−1
)∥∥∥∥∥

TV

≤

∥∥∥∥∥N
(
J̃

1/2
M [
√
n
(
σn,M

θ̂M − θ?
)
− J̃−1

√
n

n∑
i=1

ψ̃ (Xi)]; Id

)
−N (0; Id)

∥∥∥∥∥
TV

+
∥∥∥N (0, Id)−N

(
0; J̃M J̃

−1
)∥∥∥

TV
.

But for vectors in m ∈ Rk−1 and symmetric positive (k− 1)× (k− 1) matrices Σ we have

‖N (m, Id)−N (0; Id)‖TV ≤ ‖m‖

12



and

‖N (0, Id)−N (0; Σ)‖TV ≤ P
(
‖Σ1/2U‖2 − ‖U‖2 ≥ log[det(Σ)]

)
− P

(
‖U‖2 − ‖Σ−1/2U‖2 ≥ log[det(Σ)]

)
where U ∼ N (0, Id). Thus the last part of the theorem follows from the triangular in-
equality and the fact that using Lemma 1, as n tends to infinity, J̃Ln J̃−1 tends to Id, the
identity matrix, and Vn(Ln) and Rn(Ln) tend to 0 in P?-probability.

3 Model selection

In Theorem 1, we prove the existence of some increasing partition leading to efficiency.
In this section, we propose a practical method to choose a partition when the number of
observations n is fixed. In Section 3.1 we prove that one has to take care to choose not
too large Mn’s since sequences (Mn)n tending too quickly to infinity lead to inconsistent
estimators. In Section 3.2, we propose a cross-validation method to estimate the oracle
value M?

n minimizing the unknown risk as a function of M : M 7→ E?
[
‖θ̂M − θ?‖2

]
(up

to label switching).

3.1 Behaviour of the MLE as M increases

We first explain why the choice of the model is important. We have seen in Proposition 2
that for a sequence of increasing partitions, the efficient matrix is non decreasing. The
question is then: can we take any sequence tending to infinity wih n? Or, for a fixed n,
can we take any M arbitrarily large? As is illustrated in Figure 2, we see that if M is too
large (or equivalently if Mn goes to infinity too fast) the MLE (or the Bayesian procedure)
is biased.

In Proposition 3, we give the limit of the MLE when the number n of observations is
fixed but M tends to infinity.

Proposition 3. Under Assumptions (A1) and (A2). For almost all observations X1, . . . , Xn,
θ̂M (X1, . . . , Xn) tends to

θn = (bn/kc/n, . . . , bn/kc/n︸ ︷︷ ︸
r:=n−kbn/kc

, dn/ke/n, . . . , dn/ke/n︸ ︷︷ ︸
k−r

)

up to label switching, when M tends to infinity.

Proposition 3 is proved in Section 6.4.
Using Proposition 3, we can deduce a constraint on sequences Mn leading to con-

sistent estimation of θ?, depending on the considered sequence of partitions (IM )M∈M,
which may give an upper bound on sequences Mn leading to efficiency. We believe that
this constraint is very conservative and leads to very conservative bounds. Corollary 1
below is proved in Section 6.5.
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Corollary 1. Assume that (A1), (A2) and (A3) hold. If θ̂Mn tends to θ? in probability and if θ?

is different from (1/k, . . . , 1/k), then there exists N > 0 and a constant C > 0 such that for all
n ≥ N ,

n2

(
max
m≤Mn

|Im|
)2

Mn ≥ C.

In particular, if there exists 0 < C1 ≤ C2 such that for all n ∈ N and 1 ≤ m ≤Mn,

C1

Mn
≤ |Im| ≤

C2

Mn
(16)

then there exists a constant C > 0 such that,

Mn ≤ Cn2.

Note that Assumption (16) holds as soon as the partition is regular, and in particular
for the dyadic regular partitions which forms an embedded sequence of partitions where
M = {2p, p ∈ N?} and for all M ∈ M Im = [(m − 1)/M,m/M) for all m < M , IM =
[(M − 1)/M, 1].

3.2 Criterion for model selection

In this section, we propose a criterion to choose the partition when n is fixed. This crite-
rion can be used to choose the size M of a family of partitions but also to choose between
two families of partition. For each dataset, we can compute the MLE or the posterior
mean or other Bayesian estimators under model (2) with partition I. We thus shall index
all our estimators by I. Note that the results of this section are valid for any family of
estimators (θ̃I) and not only for the MLE (θ̂I). But we illustrate our results using the
MLE.

Proposition 3 and Corollary 1 show the necessity to choose an appropriate partition
among a collection of partitions IM , M ∈M. To choose the partition we need a criterion.
Since the aim is to get efficient estimators, we choose the quadratic risk as the criterion to
minimize. We thus want to minimize over all possible partitions

Rn(I) = E?
[
‖θ̃I(X1:n)− θ?‖2Tk

]
, (17)

where X1:n = (Xi)i≤n and for all θ, θ̃ ∈ Θ,

‖θ − θ̃‖Tk = min
σ∈Tk
‖σθ − θ̃‖2. (18)

As usual, this criterion cannot be computed in practice (since we do not know θ?) and we
need for each partition I some estimator C(I) of Rn(I).

We want to emphasize here that the choice of the criterion for this problem is not easy.
Indeed, the quadratic riskRn(I) cannot be written as the expectation of an excess loss ex-
pressed thanks to a contrast function, i.e. in the form E?

[
E?
[
γ(θ̃(X1:n), X)− γ(θ?, X)|X1:n

]]
,
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where γ : Θ × X → [0,+∞). Yet, the latter is the framework of most theoretical results
in model selection, see [5] or [26] for instance. Moreover decomposing the quadratic risk
as an approximation error plus an estimation error as explained in [5]:

Rn(I) = inf
θ∈ΘI

‖θ − θ?‖2Tk︸ ︷︷ ︸
approximation error

+ Rn(I)− inf
θ∈ΘI

‖θ − θ?‖2Tk︸ ︷︷ ︸
estimation error

, where ΘI = Θ,

we see that the approximation error is always zero in our model (and not decreasing as
often when the complexity of the models increases). Hence

Rn(IM ) = V ar?
[
θ̃IM (X1:n)

]
︸ ︷︷ ︸

variance

+
∥∥∥E? [θ̃IM (X1:n)

]
− θ?

∥∥∥2

Tk︸ ︷︷ ︸
bias

(19)

where V ar?(.) is to be understood as the trace of the variance matrix. Here the bias is
only an estimation bias and not a model mispecification bias.

In the case of the MLE, using Theorem 1, for all fixedM (large enough), the regularity
of the mixture of these multivariate distributions implies that the bias is O(1/n) and the
variance converges to the inverse Fisher information matrix so that

Rn(IM ) = V ar?
[
θ̂IM (X1:n)

]
+O(1/n) = tr

(
J̃−1
M

)
+O(1/n)

and if M ≥Mε so that ‖J̃−1
Mε
− J̃−1‖ ≤ ε we obtain that for n large enough

tr
(
J̃−1

)
− 2ε ≤ Rn(IM ) ≤ tr

(
J̃−1

)
+ 2ε.

Minimizing Rn(IM ) therefore corresponds to choosing M such that J̃M is close enough
to J̃ (i.e. M large enough) while not deteriorating too much the approximation ofRn(IM )
by tr(J̃−1

M ) (i.e. M not too large).
Because the approximation error is always zero we cannot apply the usual methods

and we use instead a variant of the cross-validation technique.
Consider a partition of {1, · · · , n} in the form (Bb, B−b, b ≤ bn), in other words the

partition is made of 2 × bn subsets of {1, · · · , n}. By definition Bb1 ∩ B−b2 = ∅ for all
b1, b2 ≤ bn. Because an arbitrary estimator, e.g. the MLE, based on any finite sample size
is not unbiased, the following naive estimator of the risk is not appropriate:

CCV 1(I) =
1

2bn

bn∑
b=1

‖θ̃I(XBb)− θ̃I(XB−b)‖
2
Tk .

This can be seen by decomposing the risk Rn(I) as in Equation (19) and by computing
the expectation of CCV 1(I) in the case where the sizes of Bb, B−b, b ≤ bn, are all equal,

E? [CCV 1(I)] = V ar?
[
θ̃I(XBb)

]
.
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Then, the criterion CCV 1(I) do not capture the bias of the estimator θ̃I .
In the case of the MLE, using Proposition 3, CCV 1(I) is tending to 0 when maxm |Im|

tends to 0. So that minimizing this criterion leads to choosing a partition În ∈ arg minI CCV 1(I)

which has a large number of sets and so θ̂În(X1:n) may be close to (1/k, . . . , 1/k) and then

may not even be consistent. As an illustration, see Figure 2 whereRn(I), V ar?
[
θ̂I(X1:n)

]
and

∥∥∥E? [θ̂I(X1:n)
]
− θ?

∥∥∥2

Tk
are plotted as a function of M , for three simulation sets and

various values of the sample size n, see Section 4 for more details. It is quite clear from
these plots that the variances remain either almost constant with M or tend to decrease,
while the bias increases with M and becomes dominant as M becomes larger. As a result
Rn(I) tends to first decrease and then increase as M increases.

To address the bad behaviour of CCV 1(I), we use an idea of [13]. Choose a fixed base
partition I0 with a small number of bins (although large enough to allow for identifiabil-
ity). Then compute

CCV (I) =
1

bn

bn∑
b=1

‖θ̃I(XBb)− θ̃I0(XB−b)‖
2
Tk .

Ideally we would like to use a perfectly unbiased estimator θ̃ in the place of θ̃I0(XB−b),
see Assumption (A5.2) used in Theorem 2 and Proposition 4. We discuss the choice of
θ̃I0(XB−b) at the end of the section.

Figure 3 gives an idea of the behaviour ofCCV (·) andCCV 1(·) using the MLE. It shows
in particular that in our simulation study CCV (·) follows the same behaviour as Rn(·),
contrarywise to CCV 1(·). More details are given in Section 4.

We now provide some theoretical results on the behaviour of the minimizer of CCV (·)
over a finite family of candidate partitionsMn compared to the minimizer of Ran(·) over
the same family. Let mn = #Mn be the number of candidate partitions. We consider the
following set of assumptions:

Assumption (A5).

(A5.1) Bb, B−b, b ≤ bn are disjoint sets of equal size

#Bb = #B−b = an, for all b ≤ bn

(A5.2) θ̃I0(XB−b) is not biased i.e. E?[θ̃I0(XB−b)] = θ?.

We obtain the following oracle inequality.

Theorem 2. Suppose Assumption (A5). For any sequences 0 < εn, δn < 1, with probability
greater than

1− 2mn exp

(
−2bn

(
εn inf
I∈Mn

Ran(I) + δn

)2
)
,

we have
Ran(În) ≤ 1 + εn

1− εn
inf
I∈Mn

Ran(I) +
2δn

1− εn
, (20)
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where În ∈ arg minI∈Mn
CCV (I).

As a consequence of Theorem 2, the following Proposition holds. Recall that n =
2bnan.

Proposition 4. Assume (A5). If bn & n2/3 log2(n), an . n1/3/(log2(n)), and mn ≤ Cαnα, for
some Cα > 0 and α ≥ 0, then

E?
[
anRan(În)

]
≤ inf
I∈Mn

anRan(I) + o(1),

where În ∈ arg minI∈Mn
CCV (I).

Note that for each I,Ran(I) is of order of magnitude 1/an so that the main term in the
upper bound of Proposition 4 is infI∈Mn anRan(I). Note also that this is an exact oracle
inequality (with constant 1).

In Theorem 2 and Proposition 4, În is built on n observations while the risk is asso-
ciated with an < n observations. This leads to a conservative choice of În, i.e. we may
choose a sequence În (optimal with an observations) increasing more slowly than the op-
timal one (with n observation). We think however that this conservative choice should
not change the good behaviour of θ̂În , since Theorem 1 implies that any sequence of par-
titions which grows slowly enough to infinity leads to an efficient estimator. Hence, once
the sequence Mn growing to infinity is chosen, then any other sequence growing to infin-
ity more slowly also leads to an efficient estimator.

In Proposition 4 and Theorem 2, the reference point estimate θ̃I0(XB−b) is assumed
to be unbiased. This is a strong assumption, which is not exactly satisfied in our simula-
tion study. To consider a reasonable approximation of it, θ̃I0(XB−b) is chosen as the MLE
associated with a partition with a small number of bins. Recall that the maximum likeli-
hood estimator is asymptotically unbiased and for a fixed M , the bias of the MLE for the
whole parameter θ, ω is of order 1/n. The heuristic is that a small number of bins implies
a smaller number of parameters to estimate, so that the asymptotic regime is attained
faster. Our simulations confirm this heuristic, see Section 4.

To take a small number of bins but large enough to get identifiability, we observe
in Section 4.2 a great heterogeneity among different estimators and also that some esti-
mators have null components or cannot be computed, when the number of bins is too
small.

4 Simulation study

4.1 On the estimation of the risk and the selection of M

In this section, we illustrate the results obtained in Sections 3.1 and 3.2 with simulations.
We compare six criteria for the model selection based on CCV with different choices of
size of training and testing sets. We choose the regular embedded dyadic partitions,
i.e. when M = {2p, p ∈ N∗} and for all M ∈ M, Im = [(m − 1)/M,m/M) for all
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m < M , IM = [(M − 1)/M, 1]. Following Corollary 1, when n is fixed, we only consider
M = 2P ≤ Mn = n3 (i.e. P ≤ Pn := b3/2 log(n)c). In this part, we only consider MLE
estimators with ordered components and approximated thanks to the EM algorithm.

For n fixed, the choice of the model, through P , is done using the criterion CCV based
on two types of choice for (Bb), (B−b). First, we use the framework under which we were
able to prove something, i.e. Assumption (A5.1) where all the training and testing sets
are disjoints. In this context we use different sizes an and bn:

• bn = dn2/3log(n)/(20)e and an = bn/(2bn)c (Assumption of Proposition 4, up to
log(n)), leading to the criterionCD,1CV and the choice ofP noted P̂D,1n ∈ arg minP≤Pn C

D,1
CV (I2P ),

• bn = dn1/3e, an = bn/(2bn)c, leading to the criterion CD,2CV and the choice of P noted
P̂D,2n ∈ arg minP≤Pn C

D,2
CV (I2P ),

• an = bn/10c, bn = bn/(2an)c, leading to the criterionCD,3CV and the choice of P noted
P̂D,3n ∈ arg minP≤Pn C

D,3
CV (I2P )

We also consider the famous V-fold, where the dataset is cut into bn disjoint sets B̃b of
size an, leading to training sets Bb = B̃b and testing sets B−b = {1, . . . n} \ B̃b. We also
use different sizes an and bn:

• an = bn1/3c, bn = bn/anc, leading to the criterion CV,1CV and the choice of P noted
P̂ V,1n ∈ arg minP≤Pn C

V,1
CV (I2P ),

• an = bn2/3/2c, bn = bn/anc, leading to the criterion CV,2CV and the choice of P noted
P̂ V,2n ∈ arg minP≤Pn C

V,2
CV (I2P ),

• an = bn/10c, bn = bn/anc, leading to the criterion CV,3CV and the choice of P noted
P̂ V,3n ∈ arg minP≤Pn C

V,3
CV (I2P ) .

Note that for criteria

• Cj,1CV , j ∈ {D,V }, an is proportional to n1/3 up to a logarithm term,

• Cj,2CV , j ∈ {D,V }, an is proportional to n2/3,

• Cj,3CV , j ∈ {D,V }, an is proportional to n.

We now explain how we choose I0. As explained earlierM0 has to be taken small, but
not too small since otherwise the model would not be identifiable. We propose to choose
the smallest M0 = 2P0 such that M0 ≥ k + 2 (equivalently P0 ≥ log(k + 2)/ log(2)). This
lower bound ensures that generically on I0 the model (2) is identifiable.

We consider three different simulation settings. In each one of them we consider the
conditionally repeated sampling model, i.e. fj,1 = fj,2 = fj,3, both for the true distribu-
tion and for the model. In the three cases, k = 2 and the other parameters are given in
Table 1. So that, we work with P0 = 2 and M0 = 22 = 4.
The different emission distributions are represented in Figure 1.
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Simu. k θ? f?1,1dx = f?1,2dx = f?1,3dx f?2,1dx = f?2,2dx = f?2,3dx

1 2 (0.3, 0.7) N (4/5, 0.072) truncated to [0, 1] N (1/3, 0.12) truncated to [0, 1]

2 2 (0.2, 0.8) U((0, 1)) N (2/3, 0.052) truncated to [0, 1]

3 2 (0.3, 0.7) β(1, 2) β(5, 3)

Table 1: Values of the true parameters for simulation 1 to 3

(a) Simulation 1 (b) Simulation 2

(c) Simulation 3

Figure 1: Representation of the true emission distributions for simulations 1, 2 and 3.

In Figure 2 we display the evolution of the riskRn(I2P ), the variance V ar?
[
θ̂2P (X1:n)

]
and the squared bias

∥∥∥E? [θ̂2P (X1:n)
]
− θ?

∥∥∥2

Tk
defined in Equation (19) as the number of

bins 2P increases, for different values of n and for each of the three true distributions.
The risks, bias and variances are estimated by Monte Carlo, based on 1000 repeated sam-
ples and for each of them we compute the MLE using the EM algorithm. We notice that
typically the bias first is either constant or slightly decreasing as P increases and then
increases rapidly for larger values of P until it stabilizes to the value ‖θn − θ?‖Tk , which
is what was proved in Proposition 3. On the other hand the variance is monotone non
increasing as P increases until P becomes quite large and then it decreases to zero (which
also is a consequence of Proposition 3) when P gets large. As a result the risk, which is
the sum of the squared bias and the variance, is typically constant or decreasing for small
increasing values of P and then increasing to ‖θn − θ?‖2Tk when P gets large.

In real situationsRn(I2P ) is unknown, we now illustrate the behaviour of the different
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(a) Simulation 1, n = 100 (b) Simulation 3, n = 50

(c) Simulation 2, n = 50 (d) Simulation 3, n = 100

(e) Simulation 2, n = 500 (f) Simulation 3, n = 500

Figure 2: Patterns of the risk (with black squares), the squared bias (with blue dots) and
variance (with magenta triangles) with respect to P = log(M)/ log(2) for simulations 1, 2
and 3 and different values of n.

criteria CCV and CCV 1 and see how close to Rn(I2P ) they are. For the sake of conciseness
we only display results for simulated data 1 and 2 and for n = 100, 500 since they are
very typical of all other simulation studies we have conducted. The results are presented
in Figure 3, where the criteria CCV , CCV 1 are computed based on a single data X1:n. We
see in figure 3 that contrarywise to CCV , the basic cross-validated criterion CCV 1 does
not recover the behaviour of Rn(I2P ) correctly as it fails to estimate the bias. Note that
we do not compare the values but the behaviour. Indeed, the criteria are used to choose
the best P by taking the minimum of the criterion so that the values are not important by
themselves. Besides, we know that the criterion CCV is biased by a constant depending
on I0. As theoretically explained in Section 3 and as a consequence of Proposition 3,
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we can see that the criteria CCV 1 are tending to 0 when P increases while it is not the
case for the criteria CCV . It is interesting to note that from Figure 3, the minimizer in P
of CCV corresponds to values of the risk that are close to the minimum, we precise this
impression with table 2.

(a) Simulation 1, n = 100, CD,1CV (1) (b) Simulation 1, n = 100, CV,3CV (1)

(c) Simulation 2, n = 500, CD,1CV (1) (d) Simulation 2, n = 500, CV,3CV (1)

Figure 3: behaviour of CCV 1 vs CCV as a function of P

Finally we compare the six criteria Cj,cCV , j ∈ {D,V }, c ∈ {1, 2, 3}, by estimating
the squared risk of the associated estimator θ̂

2P̂
j,c
n

, presented in Table 2 across different
sample sizes n and the three simulation set-ups (simulated data 1, 2 and 3) described
above. We can compare the six squared risk to

√
minP≤Pn Rn(2P ) and

√
Rn(2P0). The

different risks are estimated by Monte Carlo by repeating 100 times the estimation. The
differences of performance between the different criteria are not obvious. Besides, the
performances of all the criteria are satisfactory, compared to

√
minP≤Pn Rn(2P ). Yet, we

suggest not to use criterion CV,1CV because it is computationally more intensive than the
others, particularly when n is large (because of large bn). In our simulation study CD,1CV

and CV,2CV seem to behave slightly better than the others.
These results confirm that by using M0 small, the criterion behaves correctly. More-

over, the fact that the choice of În corresponds to a risk associated with an < n obser-
vations does not seem to be a conservative choice even in a finite horizon (i.e. when n
is fixed). We were expecting this behaviour asymptotically but not necessarily in a finite
horizon.
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Simulation 1 1 1 1 1 2 2 2 3 3 3
n 50 100 500 1000 2000 50 100 500 50 100 500√

minP≤Pn Rn(2P ) 0.062 0.043 0.020 0.014 0.010 0.058 0.046 0.020 0.096 0.078 0.036√
Rn(2P0) 0.063 0.046 0.021 0.015 0.010 0.067 0.046 0.022 0.10 0.082 0.042√
E?
[
‖θ̂

2P̂
D,1
n

(X1:n)− θ?‖2
]

0.069 0.047 0.019 0.014 0.011 0.075 0.056 0.019 0.12 0.087 0.037√
E?
[
‖θ̂

2P̂
D,2
n

(X1:n)− θ?‖2
]

0.073 0.046 0.022 0.015 0.010 0.065 0.056 0.025 0.10 0.087 0.046√
E?
[
‖θ̂

2P̂
D,3
n

(X1:n)− θ?‖2
]

0.086 0.047 0.021 0.014 0.010 0.087 0.056 0.026 0.11 0.087 0.041√
E?
[
‖θ̂

2P̂
V,1
n

(X1:n)− θ?‖2
]

0.091 0.046 0.021 0.013 0.009 0.104 0.055 0.022 0.11 0.087 0.053√
E?
[
‖θ̂

2P̂
V,2
n

(X1:n)− θ?‖2
]

0.069 0.046 0.019 0.013 0.010 0.070 0.049 0.022 0.12 0.084 0.036√
E?
[
‖θ̂

2P̂
V,3
n

(X1:n)− θ?‖2
]

0.103 0.046 0.019 0.014 0.009 0.10 0.049 0.022 0.14 0.083 0.035

Table 2: Comparison of the squared risk of estimators associated to different criteria

4.2 On the choice of M0

To compute the different criteriaCj,iCV , j ∈ {D,V }, i ∈ {1, 2, 3}, we proposed to chooseM0

as small as possible but for which the model is identifiable up to label switching. Given
min1≤j≤k θ

?
j > 0, the model associated to the parameter space is identifiable as soon as

the k vectors (ω?1,c,·)M0 , . . . , (ω?k,c,·)M0 in ∆M0 are linearly independent for all c ∈ {1, 2, 3}.
Considering the dimension of linear spaces, we may chooseM0 = k+1 or k+2. Then we
should generically avoid issues with identifiability. We chose such a M0 in the previous
simulations. We now study the impact of a choice of M0 that would be too small .

To do so we have simulated data from f?2,1(y) = f?2,2(y) = f?2,3(y) = 1 and f?1,1(y) =
f?1,2(y) = f?1,3(y) = 1 + cos(2π(y + ε)), for ε = 0.25, 0.3, 0.4 and 0.5 and n = 500, 1000 and
2000. In this case the smallest possible value for M0 based on the regular grid on [0, 1] is
M0 = 2 for ε 6= 0.5 whereas if ε = 0.5 the model is non identifiable atM0 = 2 but becomes
identifiable when M0 = 4. For each of these simulation data we have computed various
estimators: MLEs based on the EM algorithm initiated at different values, the posterior
mean and the MAP estimator computed from a Gibbs sample algorithm with a Dirichlet
prior distribution on θ and independently a Dirichlet prior distribution on each ωj,1, for
1 ≤ j ≤ k. We noticed that the EM algorithm with different initializations were very
heterogeneous. Moreover, the MAP estimator, posterior mean and spectral estimators
often had one of the θ̂j null or close to 0. Sometimes, the spectral estimator could not be
computed.

The explanation for such behaviour is that when the model is not identifiable, one θ?j
may be null or the vectors (ω?1,c,·)M0 , . . . ,(ω?k,c,·)M0 may be linearly dependent for some
c ∈ {1, 2, 3}. In this case, the likelihood will have multiple modes (apart from those
arising because of label switching). Hence a way to check that M0 is not too small is to
compute multiple initialisation of the EM algorithm if the MLE is estimated or to look for
very small values of θ̂j in the case of Bayesian estimators (possibly also running multiple
MCMC chains with different initial values). In practice we suggest that this analysis be
conducted for a few number of values M0 and then to select the value that leads to the
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most stable results.
To illustrate this, we present a simulation study where the number of estimators is

S = 14. The 10 first estimators were obtained using the EM algorithm with different
random initializations, we also considered the spectral estimator proposed in [2] and an
estimator obtained with the EM algorithm with the spectral estimator as initialization.
The last two estimators were the MAP estimator and the posterior mean. We considered
regular partitions with M0 = 2, 4 and 6 bins. To present the results in a concise way we
have summarized them in Figure 4, using the indicator

ID(M0) =
S 1∀s≤S, j≤2, θ̂sM0,j

>1/
√
n∑S

s=1

(
minj=1,2 θ̂sM0,j

− 1
S

∑S
t=1 minj=1,2 θ̂tM0,j

)2

with k = 2 and θ? = (0.7, 0.3). Thus when ID(M0) = 0, there is a suspicion that the
associated model is not identifiable and another partition should be chosen. It appears
that for all n, when ε = 0.5 M0 = 2 always appears as having a pathological behaviour
and for the other values of ε this value is accepted for large values of n.

ε = 0.25 ε = 0.3 ε = 0.4 ε = 0.5

M0 = 2 0 0 0 0
M0 = 4 24 0 58 0
M0 = 6 24 10 0 28

(a) n = 500

ε = 0.25 ε = 0.3 ε = 0.4 ε = 0.5

M0 = 2 0 0 0 0
M0 = 4 26 28 25 63
M0 = 6 0 26 16 10

(b) n = 1000

ε = 0.25 ε = 0.3 ε = 0.4 ε = 0.5

M0 = 2 113 116 0 0
M0 = 4 31 38 38 47
M0 = 6 18 40 14 19

(c) n = 2000

Figure 4: The identifiability criterion ID(M0) for different M0, n and ε.

5 Conclusion and discussion

To sum up our results, we propose semiparametric estimators of the mixing weights in
a mixture with a finite number of components and unspecified emission distributions.
These estimators are constructed using an approximate model for the mixture where the
emission densities are modelled as piecewise constant functions on fixed partitions of the
sampling space. This approximate model is thus parametric and regular and more im-
portantly well specified as far as the weight parameters θ are concerned. From Theorem

23



1 we have that for all M ≥ M0 ,
√
n
(
θ̂M̃,n − θ

?
)
 N

(
θ?, J̃−1

M̃

)
as n goes to infinity

and that J̃−1
M̃
→ J̃−1 as M goes to infinity (and similarly from a Bayesian point of view).

Moreover we have proved in Section 3.1 that for all n, as M goes to infinity, θ̂M,n → θ̄n
and that as n → +∞, θ̄n → (1/k, · · · , 1/k) whatever the true value θ∗ of the parame-
ter. These two results show that we can find a sequence Mn going to infinity such that
√
n
(
θ̂M̃n,n

− θ?
)
 N

(
θ?, J̃−1

)
but also that we cannot choose Mn going to infinity

arbitrarily fast. It is thus important to determine a procedure to select M , for finite n.
To choose Mn in practice, for finite n, we propose in Section 3.2 an approach which

consists in minimizing an estimate of the quadratic risk Rn(I) in the partition I, as a
way to ensure that the asymptotic variance of

√
n(θ̂ − θ) is close to J̃−1 and that the

quantity
√
n(θ̂ − θ) is asymptotically stable. The construction of an estimator of Rn(I) is

not trivial due to the strong non linearity of the maximum likelihood estimator in mixture
models and we use a reference model with a small number of bins M0 as a proxy for an
unbiased estimator θ, together with a cross validation approach to approximate Ran(I
for all partition I with an = o(n). This leads at best to a minimization of the riskRan(IM )
instead of Rn(IM ), however this is it not per se problematic since a major concern is to
ensure that Mn is not too large.

In the construction of our estimation procedure (either by MLE or based on the poste-
rior distribution) we have considered the same partitionning of [0, 1] for each coordinate
c ∈ {1, 2, 3}. This can be relaxed easily by using different partitions accross coordinates,
if one wishes to do so to adapt to different smoothness of emission densities for instance.
However, this would require choices of M for each coordinate. We believe that our theo-
retical results would stay true. We did more simulations in this setting and we observed
that, when the emission distributions are distinct in each direction, choosing different M
for each coordinates is time consuming and does not really improve the estimations of θ,
at least in our examples.

We have also presented our results under some seemingly restrictive assumptions,
which we now discuss.

5.1 On the structural assumptions on the model

In model (1), it is assumed that each individual has three conditionally independent ob-
servations in [0, 1] each. Obviously this assumptions can be relaxed to any number p of
conditionally independent observations with p ≥ 3 without modifying the conclusions
of our results.

Also, the method of estimation relies heavily on the fact that the Xi,c’s belong to [0, 1].
This is not such a restrictive assumption since one can transform any random variable on
R into [0, 1], writing Xi,c = Gc(X̃i,c) , where Gc is a given cumulative distribution on R
and X̃i,c is the original observation. Then the conditional densities are obtained as

f?j,c(xc) = fX̃;j,c(G
−1
c (xc))/gc(G

−1
c (xc)), j ≤ k, c ∈ {1, · · · , 3}
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and Assumption (4) becomes that for all c ∈ {1, · · · , 3},

0 < liminfxc
fX̃;j1,c

(G−1
c (xc))

fX̃;j2,c
(G−1

c (xc))
≤ limsupxc

fX̃;j1,c
(G−1

c (xc))

fX̃;j2,c
(G−1

c (xc))
< +∞, (21)

which means that the densities of the observations within each group have all the same
tail behaviour. Note that a common assumption found in the literature for estimation
of densities on [0, 1] is that the densities are bounded from above and below, which in
the above framework of transformations Gc amounts to saying that fX̃;j1,c

’s have all the
same tail behaviours as g(·). This is a much stronger assumption because it would mean
that the tail behaviour of the densities fX̃;j1,c

is known a priori, whereas (21) only means
that the tails are the same between the components of the mixtures but they not need to
be the same as those of g.

Finally we have considered univariate conditional observations Xi,c ∈ R, again this
can be relaxed easily by considering partitions of [0, 1]d with d ≥ 1 if Xi,c ∈ [0, 1]d. In this
case the first part of Assumption (A2) needs to be replaced by :
• There exists a > 0 such that for all M , for all Im in IM , there exists an open ball I such
that Im ⊂ I and |Im| ≥ a|I|.

5.2 Extensions to Hidden Markov models

Finite mixture models all have the property that, when the approximation space for the
emission distributions is that of step functions (histograms), then the model stays true for
the observation process, but associated to the summary of the observations made of the
counts in each bins. This leads to a proper and well specified likelihood for the parame-
ter θ, w and there is no problem of model misspecification as fgar as θ is concerned even
when the number of bins is fixed and small. We expect the results obtained in this paper
to remain valid for nonparametric hidden Markov models with translated emission dis-
tributions studied in [21] or for general nonparametric finite state space hidden Markov
models studied in [18], [35] and [19]. In the latter, the parameter describing the prob-
ability distribution of the latent variable is the transition matrix of the hidden Markov
chain. However, semiparametric asymptotic theory for dependent observations is much
more involved, see [27] for the ground principles. It seems difficult to identify the score
functions and the efficient Fisher information matrices for hidden Markov models even
in the parametric approximation model, so that to get results such as Theorem 1 could be
quite challenging, nevertheless we think that the results obtained here pave the way to
obtaining semi-parametric efficient estimation of the transition matrix in nonparametric
hidden Markov models.

6 Proofs

6.1 Proof of Proposition 1

Let us first prove that for large enoughM , the measures f?1,c;Mdx, . . . , f
?
k,c;Mdx are linearly

independent. Indeed, if it is not the case, there exists a subsequenceMp tending to infinity
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as p tends to infinity and a sequence (α(p))p≥1 in the unit ball of Rk such that for all p ≥ 1,

k∑
j=1

α
(p)
j f?j,c;Mp

(x) = 0

Lebesgue a.e. Let α = (α1, . . . , αk) be a limit point of (α(p))p≥1 in the unit ball of Rk.
Using Assumption (A.2) and Corollary 1.7 in Chapter 3 of [32], we have that as p tends to
infinity, f?j,c;Mp

(x) converges to f?j,c(x) Lebesgue a.e. so that we obtain
∑k

j=1 αjf
?
j,c(x) = 0

Lebesgue a.e., contradicting Assumption (A1).
Fix now M large enough so that the measures f?1,c;Mdx, . . . , f

?
k,c;Mdx are linearly inde-

pendent. Then, one may use the spectral method described in [2] to get estimators θ̂sp
and ω̂M ;sp of the parameters θ and ωM from a sample of the multinomial distribution
associated to density gθ,ω;M . The estimator uses eigenvalues and eigenvectors computed
from the empirical estimator of the multinomial distribution. But in a neighborhood of
θ? and ω?, this is a continuously derivative procedure, and since on this neighborhood,
classical deviation probabilities on empirical means hold uniformly, we get easily that for
any vector V ∈ Rk, there exists K > 0 such that for all c > 0, for large enough n (the size
of the sample):

sup
‖θ−θ?‖≤ c√

n

Eθ
[(√

n〈θ̂sp − θ, V 〉
)2
]
≤ K.

Now, the multinomial model is differentiable in quadratic mean, and following the proof
of Theorem 4 in [20] one gets that, if V T J̃MV = 0, then

lim
c→+∞

lim
n→+∞

sup
‖θ−θ?‖≤ c√

n

Eθ
[(√

n〈θ̂sp − θ, V 〉
)2
]

= +∞.

Thus for all V ∈ Rk, V T J̃MV 6= 0, so that J̃M is not singular.

6.2 Proof of Proposition 2

We prove the proposition when M1 = M , M2 = M + 1, IM = {I1, . . . , IM} and IM+1 =
{I1, . . . , IM,0, IM,1} with IM = IM,0 ∪ IM,1, which is sufficient by induction. We denote
(ω

(M)
j,c,m)j,c,m the parameter ω in the model with partition IM and (ω

(M+1)
j,c,m )j,c,m the param-

eter ω in the model with partition IM+1. Define b ∈ (0, 1), αj,c ∈ (0, 1), j = 1, . . . , k,
c = 1, 2, 3 so that

|IM,0| = (1− b)|IM |, |IM,1| = b|IM |, ω(M+1)
j,c,M = (1− αj,c)ω(M)

j,c,M ,

ω
(M+1)
j,c,M+1 = αj,cω

(M)
j,c,M .

Then, we may write

gθ,ω;M (x) =
k∑
j=1

θj

3∏
c=1

M∏
m=1

(
ω

(M)
j,c,m

|Im|

)1lIm (xc)
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and

gθ,ω;M+1(x)

=
k∑
j=1

θj

3∏
c=1

M−1∏
m=1

(
ω

(M+1)
j,c,m

|Im|

)1lIm (xc)

ω(M+1)

j,c,M

|IM,0|

1lIM,0 (xc)ω(M+1)
j,c,M+1

|IM,1|

1lIM,1 (xc)


=

k∑
j=1

θj

3∏
c=1

M∏
m=1

(
ω

(M)
j,c,m

|Im|

)1lIm (xc) [(αj,c
b

)1lIM,1 (xc)
(

1− αj,c
1− b

)1lIM,0 (xc)
]
.

Thus, when xc /∈ IM for c = 1, 2, 3, gθ,ω;M+1(x) = gθ,ω;M (x) and computations have
to take care of x’s such that for some c, xc ∈ IM . If we parametrize the model with
partition IM+1 using the parameter

(
θ, (ω

(M)
j,c,m), (αj,c)

)
we get the same efficient Fisher

information for θ as when parametrizing with
(
θ, (ω

(M+1)
j,c,m )

)
. Define the function D as

the difference between the gradient of log gθ,ω;M+1 and that of log gθ,ω;M (x) with respect

to the parameter
(
θ, (ω

(M)
j,c,m), (αj,c)

)
:

D(x) := ∇ log gθ,ω;M+1(x)−∇ log gθ,ω;M (x),

in particular the last coordinates of∇ log gθ,ω;M (x) corresponding to the derivatives with
respect to (αj,c) are zero. Let us denote K(M+1) the Fisher information obtained for this
new parametrization, that is

K(M+1) = E?[(∇ log gθ,ω;M+1(X))(∇ log gθ,ω;M+1(X))T ].

Easy but tedious computations give

E?[(∇ log gθ,ω;M (X))(D(X))T ] =

 0 · · · 0
...

...
...

0 · · · 0

 ,

so that

K(M+1) =

(
JM 0
0 0

)
+ ∆

where ∆ = E?[D(X)D(X)T ] is positive semi-definite. As said before, J̃M+1 is obtained
from K(M+1) using the similar formula as from JM+1. Then usual algebra gives that
J̃M+1 ≥ J̃M since ∆ is positive semi-definite.

6.3 Proof of Lemma 1

Under (A1), the functions f?j,c are upper bounded. Let, for any M , AM be the orthogonal
projection in L2(gθ?,f?dx) onto ṖM , the set of step functions spanned by the functions(
S?ω,M

)
j,c,m

, j = 1, . . . , k, c = 1, 2, 3, m = 1, . . . ,M − 1. Then for all j = 1, . . . , k − 1,

(ψ̃M )j =
(
S?θ,M

)
j
− AM

(
S?θ,M

)
j
,
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so that

(ψ̃)j − (ψ̃M )j = (S?θ )j −
(
S?θ,M

)
j
− AM

[
(S?θ )j −

(
S?θ,M

)
j

]
+ (AM − A) (S?θ )j . (22)

Using Assumption (A2) and Corollary 1.7 in Chapter 3 of [32], we have that as M tends
to infinity,

(
S?θ,M

)
j

converges to (S?θ )j Lebesgue a.e. Both functions are uniformly upper

bounded by the finite constant 1/θ?j using Assumption (A.1), so that
(
S?θ,M

)
j

converges

to (S?θ )j in L2(gθ?,f?(x)dx) asM tends to +∞ and
∥∥∥∥(S?θ )j −

(
S?θ,M

)
j

∥∥∥∥
L2(gθ?,f?dx)

converges

to 0 as M tends to +∞. Thus to prove that (ψ̃)j − (ψ̃M )j converges to 0 in L2(gθ?,f?dx)
when M tends to +∞, we need only to prove that ‖ (AM − A) (S?θ )j ‖L2(gθ?,f? ) converges
to 0. So we now prove that, for all S ∈ L2(gθ?,f?), ‖AMS − AS‖L2(gθ?,f? ) converges to 0
when M tends to +∞.
First we prove that AMS converges in L2(gθ?,f?). Let L ≥M and set ψS(M,L) = ‖AMS−
ALS‖L2(gθ?,f? ). For large enough M , we have ψS(M,L) = ‖AM (ALS) − ALS‖L2(gθ?,f? ),
since using (A3), ṖM ⊂ ṖL. It is easy to see that, for all M , ψS(M,L) is a monotone
sequence, non decreasing in L, and bounded, so that it converges to some ψ?S(M) ≥ 0.
Moreover, since for all L, ψS(M + 1, L) ≤ ψS(M,L), at the limit ψ?S(M) is monotone non
increasing in M and non-negative so that it converges. Let ψ?S be its limit. Because

ALS = AM (ALS) + (I − AM )(ALS) = AMS + (I − AM )(ALS),

AMS ⊥ (I − AM )(ALS),

we get that

‖ALS‖2 = ‖AMS‖2 + ‖(I − AM )(ALS)‖2 = ‖AMS‖2 + ψS(M,L)2.

Let M be fixed. Then we get that

lim
L→+∞

‖ALS‖2 = ‖AMS‖2 + ψ?S(M)2

and if we write ` the limit on the lefthandside of the equation, by letting now M tend
to infinity we get that ` = ` + ψ?S . This in turns implies that ψ?S = 0. Now let Lp,Mp

converge to infinity as p goes to infinity in such a way that for all p Lp ≥ Mp (which we
can always assume by symmetry). Then

ψS(Mp, Lp) ≤ ψ?S(Mp)
p→+∞→ 0

so that the sequence AMS is Cauchy in L2(gθ?,f?) and converges. Denote AS its limit. Let
us prove that AS ∈ Ṗ . Any function in ṖM is a finite linear combination of functions
Sj,c,M of form

Sj,c,M (x) =
hj,c,M (xc)

∏
c′ fω?j,c′;M

(xc′)

gθ?,ω?M ;M (x)
(23)
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with hj,c,M ∈ Hj,c is such that hj,c,Mfω?j,c;M is a linear combination of indicator functions.
It is thus enough to prove that the limit of any converging sequence of such functions
is in Ṗ . Consider a sequence Sj,c,M converging to some variables S? in L2(gθ?,f?) as M
tends to infinity. Note that

hj,c,M (xc) =
k∑
`=1

θ?`Sj,c,M (x)×
∏
c′

fω?
`,c′;M

(xc′)

fω?
j,c′;M

(xc′)

so that condition (4) together with the almost sure convergence of fω?
`,c′;M

(xc′)/fω?
j,c′;M

(xc′)

towards f?`,c′(xc′)/f
?
j,c′(xc′) implies that

Sj,c,M (x)×
∏
c′

fω?
`,c′;M

(xc′)

fω?
j,c′;M

(xc′)

L2(gθ?,f? )
→ S?

∏
c′

f?`,c′(xc′)

f?j,c′(xc′)
:= h,

which in turns implies that hj,c,M converges in L2(f?j,c) to h. Since hj,c,M ∈ Hj,c for all M ,
h ∈ Hj,c and S? ∈ Ṗ .
We now prove that all function in Ṗ is a limit in L2(gθ?,f?) of functions in ṖM . As before,
it is enough to prove it for functions Sj,c of form

Sj,c(x) =
h(xc)

∏
c′ f

?
j,c′(xc′)

gθ?,f?(x)

with h ∈ Hj,c. We are thus looking for a sequence of functions hM ∈ Hj,c such that
hMfω?j,c;M is a linear combination of indicator functions and such that Sj,c,M as defined by
(23) converges to Sj,c in L2(gθ?,f?). Using Lemma 1.2 in [32], h may be approximated by a
continuous function, which in turns may be approximated by a (centred) linear combina-
tion of indicator functions and the result follows using again that

∏
c′ fω?j,c′;M

/gθ?,ω?M ;M

and
∏
c′ f

?
j,c′/gθ?,f? are bounded (by 1/minj θ

?
j ). Thus, we easily get that for all S in

L2(gθ?,f?), AMAS − AS converges to 0 in L2(gθ?,f?), so that AA = A.
Now, one easily deduces that A = A. Indeed: if S is in Ṗ , one has AS = S, and then AS =
S. If now S is in the orthogonal of Ṗ , then for any S̃ ∈ Ṗ , one has 〈AMS, S̃〉 = 〈S,AM S̃〉
which leads to 〈AS, S̃〉 = 〈S,AS̃〉 = 0, so that AS is in the orthogonal of Ṗ and in Ṗ so
that AS=0.

6.4 Proof of Proposition 3

Proposition 3 is easily implied by Lemma 2 which formalizes the following. When the
sequence of observationsX1, . . . , Xn and n are fixed, then almost surely there exists a suf-
ficiently fine partition IM such that there exists at most one component of an observation
in each set Im, m ≤ M . Then we can reorder the sets Im so that Xi,c ∈ Ii+n(c−1), for all
c ∈ {1, 2, 3} and i ≤ n. In this case, the likelihood `n(·, ·;M) is maximised at each param-
eter (θ,ω) belonging to the set SM ⊂ ∆k× (∆M )3k that we explain now (and formalise in
Lemma 2). Each element of SM corresponds to one clustering of the observations in k sets
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(represented by the (A?j )j≤k in Lemma 2) of size as equal as possible. For each clustering,
for all j ≤ k,
• θj = #A?j/n is the proportion of observations associated to A?j (then the θj are almost
equal to 1/k),
• for all c ∈ {1, 2, 3} and for all l ≤M ,

ωj,c,l =


1/#A?j if l − n(c− 1) ∈ A?j (i.e. Xl−n(c−1) ∈ Il is associated to

the hidden state j),
0 if l − n(c− 1) ∈ {1, . . . n} \A?j (i.e. Xl−n(c−1) ∈ Il is not

associated to j),
0 otherwise (i.e. there is no observation in Il).

Lemma 2. LetX1, . . . , Xn be fixed observations, as soon as for all i ≤ n and c ∈ {1, 2, 3},Xi,c ∈
Ii+n(c−1) then the likelihood `n(·, ·;M) is maximised at (θ̂M , ω̂M ) if and only if (θ̂M , ω̂M ) ∈ SM
where

SM =
{

(θ,ω) : θj = #A?j/n, ωj,c,l = 1l−n(c−1)∈A?j /#A
?
j ,

(J1, J2) partition of {1, . . . , k}, #J2 = n− kbn/kc =: r

(A?j )j≤k partition of {1, . . . , n},#A?j1 = bn/kc =: q, for j1 ∈ J1,

#A?j2 = bn/kc+ 1 =: q + 1, for j2 ∈ J2

}
,

and n = kq + r, 0 ≤ r ≤ k − 1.

Proof. Since the set of parameters is compact and the likelihood is a continuous function
of the parameters then the maximum is attained.

If (θ,ω) maximises the likelihood `n(·, ·;M),

(P1) then, for all 1 ≤ i ≤ n, there exists 1 ≤ j ≤ k such that ωj,c,i+n(c−1) > 0 for all
c ∈ {1, 2, 3}.
Indeed, if there exists 1 ≤ i ≤ n such that for all 1 ≤ j ≤ k, ωj,c,i+n(c−1) = 0 for
some c ∈ {1, 2, 3}, then

`n(θ, ω;M) =
n∑
i=1

log

 k∑
j=1

θj

3∏
c=1

ωj,c,i+n(c−1)


+

n∑
i=1

log (1/(|Ii||Ii+n||Ii+2n|))︸ ︷︷ ︸
constant

= −∞.

(P2) and if there exists j, c, i such that ωj,c,i+n(c−1) = 0 and θj > 0 then ωj,d,i+n(d−1) = 0
for all d.
Indeed otherwise you can give the weight ωj,d,i+n(d−1), to one of the other ωj,d,s+n(d−1)

for which ωj,e,s+n(e−1) > 0, for all e 6= d (which exist otherwise take θj = 0 which
would increase the likelihood) and this increases the likelihood.
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(P3) and if θj > 0, then ωj,c,l = 0 if l − n(c− 1) /∈ {1, . . . , n}.
Indeed, in this case, there is no observation in Il so that ωj,c,l does not appear in the
likelihood and we conclude similarly as the previous point.

Combining all the previous remarks, we know that the maximum can only be attained
(and is at least once) in one of the following sets, indexed by J ⊂ {1, . . . , k} which deter-
mines the zeros of θ and Aj ⊂ {1, . . . , n}, j ≤ k, which determine the zeros of ω:

SJ,A1,...,Ak ={θ ∈ ∆k : θj > 0, j ∈ J, θj = 0, j ∈ Jc}

×
∏
j≤k

{
(ωj,1,·, ωj,2,·, ωj,3,·) ∈ (∆M )3 :

if j ∈ J, ωj,c,i+n(c−1) > 0
� using (P2) � using (P3)

, if i ∈ Aj , c ∈ {1, 2, 3}

and ωj,c,l = 0, if l ∈ {1, . . . ,M} \ {i+ n(c− 1), i ∈ Aj}
}
.

Note that we do not assume that (Aj)j∈J is a partition of {1, . . . , n}.
We fix J ⊂ {1, . . . , k} and Aj ⊂ {1, . . . , n}, j ∈ J . Now we search for parameters

(θ̄, ω̄) in SJ,A1,...,Ak which maximize the likelihood. They are zeros of the derivative of

(θ,ω, λ, µ) 7→ `n(θ,ω;M) + λ

 k∑
j=1

θj − 1

+

3∑
c=1

µj,c

(∑
i

ωj,c,i − 1

)
, (24)

with respect to non zero components (θj , ωj,c,i+n(c−1), λ and µj,c, for j ∈ J , i ∈ Aj ,
1 ≤ c ≤ 3). Annulling the partial derivatives give∑

i∈Aj

ω̄j,1,iω̄j,2,i+nω̄j,3,i+2n∑
s∈J(i) θ̄sω̄s,1,iω̄s,2,i+nω̄s,3,i+2n

= −λ, ∀j ∈ J (25)

θ̄j
∏
d 6=c ω̄j,d,i+n(d−1)∑

s∈J(i) θ̄sω̄s,1,iω̄s,2,i+nω̄s,3,i+2n
= −µj,c, ∀j ∈ J, i ∈ Aj , c ∈ {1, 2, 3} (26)∑

j∈J
θ̄j = 1, (27)

∑
i∈Aj

ω̄j,c,i+n(c−1) = 1, ∀j ∈ J, c ∈ {1, 2, 3}, (28)

where J(i) = {s ∈ J : i ∈ As}.
Multiplying Equation (26) by ω̄j,c,i+n(c−1) and then summing the result over i ∈ Aj

and using Equation (28), we obtain that µj,c does not depend on c. Then using Equations
(26) for c = 1, c = 2 and c = 3, we obtain

θ̄jω̄j,1,iω̄j,2,i+n = θ̄jω̄j,1,iω̄j,3,i+2n = θ̄jω̄j,2,i+nω̄j,3,i+2n,

so that
ω̄j,1,i = ω̄j,2,i+n = ω̄j,3,i+2n. (29)
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Furthermore, multiplying Equation (25) by θ̄j and summing the result over j ∈ J
and using Equation (27), we obtain λ = −n. Moreover by multiplying Equation (26)
by ω̄j,c,i+n(c−1), and then summing the result over i ∈ Aj and finally subtracting (25)
multiplied by θ̄j to the result (ie making

∑
i∈Aj (−θ̄j)(25) + ω̄j,c,i+n(c−1)(26)), we get

0 = −µj,c − nθ̄j . (30)

Then using again Equations (26), (29) and (30), we get

ω̄2
j,c,i+n(c−1) = n

∑
s∈J(i)

θ̄sω̄
3
s,1,i, ∀j ∈ J(i), ∀c ∈ {1, 2, 3},

so that ω̄j,c,i+n(c−1) does not depend on j ∈ J(i) and

ω̄j,c,i+n(c−1) = 1i∈Aj/

n ∑
s∈J(i)

θ̄s

 , ∀j ∈ J(i). (31)

For each SJ,A1,...,Ak =: S, we have obtained the zeros of the derivative of the log-
likelihood, that we now denote (S θ̄,Sω̄), to emphasize the dependence with the consid-
ered set S. We now want to know which of these zeros (S θ̄,Sω̄) are local maxima thanks
to the second partial derivatives.

We consider sets SJ,A1,...,Ak for which there exists i ≤ n such that there exist j and l
are in J(i) and j 6= i. We consider a second partial derivative of

˜̀
n(θ, ω̃;M) =

n∑
i=1

log

 k∑
j=1

θj(ω̃j,1,i)
3


that is the log-likelihood (up to an additive constant) associated to the model where for
all 1 ≤ m ≤ k, 1 ≤ s ≤ n, ωm,1,s = ωm,2,s+n = ωm,3,s+2n. Assume without loss of
generality that θl ≥ θj , then (using that θk = 1−

∑
m<k θm and ωj,1,n = 1−

∑
s<n ωj,1,s),

∂2 ˜̀
n

∂ω̃2
j,1,i

(S θ̄,Sω̄;M) = C

6 S θ̄j
∑

m∈J(i)\{j}

S θ̄m − 3 S θ̄2
j

 ≥ C (6 S θ̄j S θ̄l − 3 S θ̄2
j

)
> 0,

where C > 0. This implies that for all sets SJ,A1,...,Ak := S where there exists i ≤ n such
that #J(i) > 1, every zeros (S θ̄,Sω̄) is not a local maximum. So that the only possible
local maxima of `n(θ,ω;M) are the zeros (SJ,A1,...,Ak θ̄,SJ,A1,...,Ak ω̄) where #J(i) = 1 for all
i ≤ n, i.e. when (Aj)j∈J forms a partition of {1, . . . , n}.

So we now only consider sets Aj , j ∈ J which form a partition of {1, . . . , n} and
ω̄j,c,i+n(c−1) = 1i∈Aj/(nθ̄j) for i ∈ Aj , using Equation (31). As

∑
i∈Aj ω̄j,1,i = 1, we then

obtain that θ̄j = #Aj/n = 1/(nω̄j,1,i), for all i ∈ Aj . So that we now only have to choose
the best partition (Aj)j∈J of {1, . . . , n} and J . Let Nj = #Aj , we know that

∑
j Nj = n

and the log-likelihood at the local maximum (S θ̄,S ω̄) associated to SJ,A1,...,Ak =: S is

`n(S θ̄,S ω̄;M) =
∑
s∈J

Ns log(N−2
s ) + constant.
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So that we want to minimize∑
s∈J

Ns log(Ns) under the constraint
∑
s∈J

Ns = n (32)

over J ⊂ {1, . . . k} and Nj ∈ N, j ∈ J . This minimization is equivalent to the minimiza-
tion of ∑

s≤k
Ns log(Ns) under the constraint

∑
s≤k

Ns = n (33)

over Nj ∈ N, j ≤ k (since then the problem (33) is less constrained than for the minimiza-
tion of (32) when J is fixed).

And, when k divides n, the minimum of (33) is attained at Ns = n/k. Otherwise,
when k does not divide n, consider only two indices s1, s2 in {1, . . . , k} and assume that
Ns, s /∈ {s1, s2} are fixed such that Ns1 + Ns2 = SN is also fixed. Then we want to
minimise−Ns1 log(Ns1)− (SN −Ns1) log(SN −Ns1). Studying the function x ∈ (0, SN ) 7→
−x log(SN ) − (SN − x) log(SN − x), we obtain that the minimum is attained when Ns1

and Ns2 = SN − Ns1 are the closest of NS/2. Then in both cases, the MLE is attained at
every (θ,ω) ∈ SM .

6.5 Proof of Corollary 1

Suppose that for all N > 0 and all C > 0, there exists n ≥ N such that

n2

(
max
m≤Mn

|Im|
)2

Mn ≤ C.

So that there exists a subsequence (φ(n))n∈N of (n)n∈N such that

(φ(n))2

(
max

m≤Mφ(n)

|Im|
)2

Mφ(n) −→
n→∞

0. (34)

Set ε > 0, by Proposition 3, there exists N1 > 0 such that for all n ≥ N1,

P
(∣∣∣θ̂Mn(X1:φ(n))− (1/k, . . . , 1/k)

∣∣∣ ≤ ε)
≥ P

({
∃ 1 ≤ i1, i2 ≤ φ(n), 1 ≤ c, d ≤ 3, m ≤Mφ(n) : Xi1,c ∈ Im, Xi2,d ∈ Im

}c)
≥ 1−

φ(n)∑
i1=1

φ(n)∑
i2=1

Mφ(n)∑
m=1

P (Xi1,c ∈ Im, Xi2,d ∈ Im)

≥ 1− (φ(n))2Mφ(n) max
(
sup g, (sup g)2

)(
max

m≤Mφ(n)

|Im|
)2

. (35)

Using Equations (34) and (35) and Assumption (A3), then θ̂Mn(X1:φ(n)) tends in probabil-
ity to (1/k, . . . , 1/k) which contradicts the convergence in law of θ̂Mn to θ?. This concludes
the proof.
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6.6 Proof of Theorem 2

We first recall Lemma 2.1 in [4]:

Lemma 3 (Sylvain Arlot). Let A,B,C,R :M→ R. If for all m,m′ ∈M,

(C(m)−R(m))− (C(m′)−R(m′)) ≤ A(m) +B(m′),

then for all m̂ ∈M such that C(m̂) ≤ infm∈MC(m) + ρ, ρ > 0,

R(m̂)−B(m̂) ≤ inf
m∈M

{R(m) +A(m)}+ ρ.

We are going to use this lemma with R(I) = Ran(I), C(I) = CCV (I) and

A(I) = B(I) = εnR(I) + δn.

Using Hoeffding’s inequality,

P
(
{−B(I) ≤ CCV (I)−Ran(I)−E?

[
‖θ̃I0(XB−b)− θ

?‖2Tk
]
≤ A(I)}c

)
≤ 2 exp

(
−2bnA(I)2

)
,

since ‖θ̃I(XBb)− θ̃I0(XB−b)‖2 ≤ 1, for all b. We introduce the sets

SI =
{
−B(I) ≤ CCV (I)−Ran(I)−E?

[
‖θ̃I0(XB−b)− θ

?‖2Tk
]
≤ A(I)

}
(36)

for all I ∈ Mn. Using Lemma 3, on the set ∩I∈MnSI , Equation (20) holds and using
Equation (36), we obtain

P (∩I∈MnSI) ≥ 1− 2mn exp

(
−2bn

(
εn inf
I∈Mn

Ran(I) + δn

)2
)
.

6.7 Proof of Proposition 4

Using Theorem 2,

E?
[
anRan(În)

]
≤ an

(
1 + εn
1− εn

inf
I∈Mn

Ran(I) +
2δn

1− εn

)
+ 2anmn exp

(
−2bn

(
εn inf
I∈Mn

Ran(I) + δn

)2
)

we can conclude by taking εn = δn = 1/(log(n)an).

Acknowledgements

This work was partly supported by the grants ANR Banhdits and Calibration. We want
to thank the reviewers and the associate editor for their helpful comments.

34



References

[1] E. S. Allman, C. Matias, and J. A. Rhodes. Identifiability of parameters in latent
structure models with many observed variables. Ann. Statist., 37(6A):3099–3132, 12
2009.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompo-
sitions for learning latent variable models. JMLR, 15:2773–2832, 2014.

[3] T. Ando. Bayesian model selection and statistical modeling. Statistics: Textbooks and
Monographs. CRC Press, Boca Raton, FL, 2010.

[4] S. Arlot. Contributions to statistical learning theory: estimator selection and change-point
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