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Abstract

In this paper, we consider variational autoencoders (VAE) for general state space models.
We consider a backward factorization of the variational distributions to analyze the excess risk
associated with VAE. Such backward factorizations were recently proposed to perform online
variational learning [Campbell et al., 2021] and to obtain upper bounds on the variational esti-
mation error [Chagneux et al., 2022]. When independent trajectories of sequences are observed
and under strong mixing assumptions on the state space model and on the variational distribu-
tion, we provide an oracle inequality explicit in the number of samples and in the length of the
observation sequences. We then derive consequences of this theoretical result. In particular,
when the data distribution is given by a state space model, we provide an upper bound for
the Kullback-Leibler divergence between the data distribution and its estimator and between
the variational posterior and the estimated state space posterior distributions. Under classical
assumptions, we prove that our results can be applied to Gaussian backward kernels built with
dense and recurrent neural networks.

1 Introduction

Deep generative models have been increasingly used and analyzed for the past few years. In this
setting, Variational autoencoders (VAEs) offer the possibility to simultaneously model and train
(i) the conditional distribution of the observation given latent variables referred to as the decoder,
and (ii) a variational approximation of the conditional distribution of the latent variable given
the observation referred to as the encoder. They have been successfully applied in many contexts
such as image generation [Vahdat and Kautz, 2020], text generation [Bowman et al., 2015], state
estimation and image reconstruction [Cohen et al., 2022].

Variational inference has been widely and satisfactorily used for many practical applications but
its theoretical properties has been analyzed only very recently. Theoretical guarantees have been
mostly proposed for variational inference procedures in settings where datasets are based on inde-
pendent data and for mean-field approximations. In [Huggins et al., 2020], the authors provided
variational error bounds, in particular for the estimation of the posterior mean and covariance.
In [Chérief-Abdellatif and Alquier, 2018], the authors established the concentration of variational
approximations of posterior distributions for mixtures of general laws using PAC-Bayesian theory.
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The PAC-Bayesian theory has also been used in [Mbacke et al., 2023] where the authors controlled
in particular the L2 reconstruction loss under the true data distribution for VAEs. In addition,
[Tang and Yang, 2021] provided a theoretical analysis of the excess risk for Empirical Bayes Varia-
tional Autoencoders for both parametric and nonparametric settings. They derived a set of generic
assumptions to obtain an oracle inequality explicit in the number of samples and proposed an up-
per bound for the total variation distance between the true distribution of the observations and
a variational approximation combining the empirical distribution of the dataset and the proposed
VAE architecture.

In this paper, we aim at extending the theoretical results on variational inference procedures
in two directions. First, we set the focus on the use of VAEs for general state space models,
i.e. settings where the decoding distribution PYθ of the observations depends on an unobserved
Markov chain. In addition, instead of using mean-field approximations, we consider variational
encoding distributions Qφ satisfying a backward factorization as proposed in [Campbell et al., 2021,
Chagneux et al., 2022]. In [Chagneux et al., 2022], the authors derived the first theoretical results
providing upper bounds on the state decoding estimation error when using variational inference
with backward factorization and no such results were proposed for state space models using a
mean-field approximations. This factorization was used in [Campbell et al., 2021] to define new
online variational estimation algorithms, where observations are processed on-the-fly.

In this paper, we provide the first (up to our knowledge) theoretical guarantees on the trained
variational approximation in the setting of independent copies of sequences with distribution PD
when using a backward variational factorization.

• We provide assumptions on the decoding and variational encoding kernels under which we
prove an oracle inequality for the risk explicit in particular in the number of samples and
in the length of the observation sequences, see Theorem 3.1. This result is established using
an alternative formulation of [Tang and Yang, 2021, Theorem 3] in our state space setting
and with an explicit dependency on some constants to track all terms depending on the
number of observations. This allows to understand when the procedure leads to a decoding
distribution that approximates well the data distribution together with a coding distribution
which approximates well the decoding state distribution.

• In particular, when data are generated from a general state space model, and when PD belongs
to the decoding family of distributions, we give an upper bound also explicit in the way the
backward coding kernels approximate the backward decoding kernels, see Corollary 3.2.

• We analyse settings in which our results hold, in particular settings with Gaussian backward
kernels based on Multi-Layer Perceptrons (MLPs) and on Recurrent Neural Networks (RNNs).

The paper is organised as follows. The general setting and notations for state space models and
variational learning are given in Section 2. Assumptions and theoretical results are proposed in
Section 3 along with discussions on specific deep architectures used in practice. A discussion with
insights for future works is given in Section 4. Detailed proofs of theoretical results are given in
Appendices B and C. Additional proofs to highlight that when the state and observation spaces are
compact our main results hold are given in Appendix D.
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2 State space model and variational estimation

Let Θ ⊂ Rdθ be a parameter space. In this paper, we consider a state-space model depending on
θ ∈ Θ, i.e. a bivariate discrete-time process {(Xt, Yt)}t≥0 where {Xt}t≥0 is a hidden Markov chain
in a measurable space (X,X ) with initial distribution χ with density ζ with respect to a reference
measure µ and for all t ⩾ 0, the conditional distribution of Xt+1 given X0:t is written Mθ(Xt, ·)
and has density mθ(Xt, ·), where au:v is a short-hand notation for (au, . . . , av) for 0 ⩽ u ⩽ v and
any sequence (aℓ)ℓ⩾0. The observations {Yt}0⩽t⩽T take values in a measurable space (Y,Y) and
they are assumed to be independent conditionally on X0:T and, for all 0 ⩽ t ⩽ T , the distribution
of Yt given X0:T depends on Xt only, is written Gθ(Xt, ·), and has density y 7→ gyθ (Xt) with respect
to a reference measure ν.

In this context, the joint probability distribution Pθ of (X0:T , Y0:T ) has density with respect to
µ⊗(T+1) ⊗ ν⊗(T+1) given, for all θ ∈ Θ, x0:T ∈ XT+1 and all y0:T ∈ YT+1, by

pθ,0:T (x0:T , y0:T ) = ζ(x0)g
y0
θ (x0)

T∏
t=1

mθ(xt−1, xt)g
yt
θ (xt) ,

and the joint smoothing distribution, i.e. the conditional distribution of X0:T given Y0:T , is given
for all measurable function h by

Φy0:Tθ,0:T |T (h) =

∫
χ(dx0)g

y0
θ (x0)

∏T
t=1Mθ(xt−1,dxt)g

yt
θ (xt)h(x0:T )∫

χ(dx0)g
y0
θ (x0)

∏T
t=1Mθ(xt−1,dxt)g

yt
θ (xt)

.

The probability density of Φy0:Tθ,0:T |T is denoted by ϕy0:Tθ,0:T |T . In the following, we use the notation

Φy0:tθ,t = Φy0:tθ,0:t|t to denote the the filtering distribution at time t, i.e. the conditional distribution

of Xt given Y0:t, with a similar convention for the probability densities. The joint smoothing
distribution can also be written

Φy0:Tθ,0:T |T (dx0:T ) = Φy0:Tθ,T (dxT )

T−1∏
t=0

B
y0:T−t−1

θ,T−t−1|T−t(xT−t,dxT−t−1) ,

whereB
y0:T−t−1

θ,T−t−1|T−t(xT−t,dxT−t−1) is the backward kernel at time T−t defined byB
y0:T−t−1

θ,T−t−1|t(xT−t,dxT−t−1) ∝
Φ
y0:T−t−1

θ,T−t−1(dxT−t−1)mθ(xT−t−1, xT−t) with a probability density with respect to µ denoted by

b
y0:T−t−1

θ,T−t−1|T−t(xT−t, ·). For all T , θ, y0:T ∈ YT+1, the loglikelihood of the observations is:

ℓy0:TT (θ) = logLy0:TT (θ) ,

where

Ly0:TT (θ) =

∫
pθ,0:T (x0:T , y0:T )µ(dx0:T ) .

The joint smoothing distribution is usually intractable and we focus in this paper on vari-
ational learning to perform approximate maximum likelihood. Following [Campbell et al., 2021,
Chagneux et al., 2022], we propose a backward variational formulation:

Qy0:Tφ,0:T (dx0:T ) = Qy0:Tφ,T (dxT )

T−1∏
t=0

Qy0:Tφ,T−t−1|T−t(xT−t,dxT−t−1) ,
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where φ ∈ Φ ⊂ Rdφ , and where Qy0:Tφ,T−t−1|T−t(xT−t, ·) (resp. Qy0:Tφ,T ) has probability density

qy0:Tφ,T−t−1|T−t(xT−t, ·) (resp. qy0:Tφ,T ) with respect to the reference measure µ. In this setting, the

ELBO writes, for all θ ∈ Θ, φ ∈ Φ, and for a sequence of observations Y0:T ,

ELBOY0:T

T (θ, φ) = ℓY0:T

T (θ)−KL
(
QY0:T

φ,0:T

∥∥∥ΦY0:T

θ,0:T |T

)
.

Let (Y i0:T )1≤i≤n be i.i.d. sequences with distribution PD with density pD. Maximizing the ELBO∑n
i=1 ELBO

Y i
0:T

T (θ, φ) is equivalent to minimizing the following loss function

Ln,T (θ, φ) =
1

n

n∑
i=1

m(θ, φ, Y i0:T ) ,

where

m(θ, φ, Y i0:T ) = log
pD(Y

i
0:T )

L
Y i
0:T

T (θ)
+ KL

(
Q
Y i
0:T

φ,0:T

∥∥∥ΦY i
0:T

θ,0:T |T

)
.

Define
(θ̂n,T , φ̂n,T ) ∈ argminθ∈Θ,φ∈Φ Ln,T (θ, φ) .

Such a procedure is a so-called M -estimation method in the statistical literature. The intuition
is that with large data sets, that is when n is large, the ELBO is closed to the expected (under the
unknown distribution of the data) value of m, and the estimated decoding and coding parameters
are close to minimize this expected value. An important body of work in the statistical community
has been devoted to develop very general settings in which non asymptotic bounds on the risk
of M -estimators, referred to as oracle inequalities, can be given, see [van de Geer, 2000] as early
reference, or [Wainwright, 2019] and the references therein for more recent results. Moreover,
oracle inequalities are obviously the only property one can hope for such estimators, the other
properties being consequences of the oracle inequality. In the following section, we thus first provide
assumptions under which we obtain an oracle inequality and then discuss consequences.

3 Main results

3.1 Notations.

In the following, for all measures λ and η on (X,X ) and all transition kernels K we consider the
following notations. For all measurable sets A ⊂ X×X, λ⊗ η(A) =

∫
1A(x, x

′)λ(dx)η(dx′) and λ⊗
K(A) =

∫
1A(x, x

′)λ(dx)K(x,dx′), for all measurable setsB ⊂ X, λK(B) =
∫
λ(dx)1B(x

′)K(x, dx′),
and for all real-valued measurable functions h on (X,X ), λ(h) =

∫
λ(dx)h(x). For all measurable

functions h1, h2, we write h1 ⊗ h2 : (x, x′) 7→ h1(x)h2(x
′).

For all α > 0, define on R+ the function ψα : x 7→ exp(xα)− 1.
For all real-valued random variables X, define the Orlicz norm of order α by

∥X∥ψα
= infλ>0 {E [ψα(|X|/λ)] ≤ 1} .

For all probability measures P and Q defined on the same probability space, ∥P −Q∥tv will denote
the total variation norm between P and Q, and KL (Q∥P ) their Kullback-Leibler divergence, that
is KL (Q∥P ) = EQ[log(dQ/dP )].
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3.2 Assumptions

In this section, we propose a set of assumptions on the kernel densitiesmθ and q
y0:T
φ,t|t+1, 0 ≤ t ≤ T−1,

and on the conditional densities gyθ , under which we are able to prove an oracle inequality. In the
state space model literature, Assumption H1 is usual to control smoothing expectations and H2
for the study of asymptotic properties of maximum likelihood estimators. More assumptions are
needed to manage the complexity of the models and to get a nonasymptotic control of the risk of
the estimators. These controls are obtained with Assumptions H3-6. We discuss in Section 3.4
how they can be applied to specific architectures used in practice. Additional discussions on the
assumptions are provided in Appendix D where we prove that usual compact state space models
are covered by our theory.

H1 There exist probability measures η− and η+ on (X,X ) and constants 0 < σ− < σ+ <∞ such
that for all θ ∈ Θ, x ∈ X, all measurable set A,

σ−η−(A) ≤ χ(A) ≤ σ+η+(A)

and
σ−η−(A) ≤Mθ(x,A) ≤ σ+η+(A) .

There exist probability measures λ− and λ+ on (X,X ) such that for all y0:T ∈ YT+1, there
exist ϑy0:T− > 0 and ϑy0:T+ > 0 such that for all φ ∈ Φ, t ≥ 0, x ∈ X, all measurable set A,

ϑy0:T− λ−(A) ≤ Qy0:Tφ,t|t+1(x,A) ≤ ϑy0:T+ λ+(A) .

In addition, for all φ ∈ Φ, all y0:T ∈ YT+1, and all measurable set A,

ϑy0:T− λ−(A) ≤ Qy0:Tφ,T (A) ≤ ϑy0:T+ λ+(A).

H2 For all y ∈ Y, infθ∈Θ

∫
gyθ (x)η−(dx) = c−(y) > 0 and supθ∈Θ

∫
gyθ (x)η+(dx) = c+(y) <∞.

We consider also the following notation supθ∈Θg
yt
θ = ḡyt and infθ∈Θg

yt
θ = gyt .

We constrain the kernels and the conditional densities to be Lipschitz in the parameters with a
Lipschitz coefficient depending on the variables.

H3 There exists M such that for all θ, θ′ ∈ Θ and x, x′ ∈ X,

|mθ(x, x
′)−mθ′(x, x

′)| ≤M(x, x′)∥θ − θ′∥2 .

For all 1 ≤ t ≤ T , y0:T , there exists Ky0:T
t−1|t such that for all φ,φ′ ∈ Φ and x, x′ ∈ X,∣∣∣qy0:Tφ,t−1|t(x, x

′)− qy0:Tφ′,t−1|t(x, x
′)
∣∣∣ ≤ Ky0:T

t−1|t(x
′, x)∥φ− φ′∥2 .

In addition, there exists Ky0:T
T such that for all φ,φ′ ∈ Φ and x ∈ X,∣∣∣qy0:Tφ,T (x)− qy0:Tφ′,T (x)

∣∣∣ ≤ Ky0:T
T (x)∥φ− φ′∥2 .

For all y ∈ Y, there exists Gy such that for all θ, θ′ ∈ Θ and x ∈ X,

|gyθ (x)− gyθ′(x)| ≤ Gy(x)∥θ − θ′∥2 .
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Define, for 1 ≤ t ≤ T − 1,

hy0:Tt,θ,φ(xt−1, xt) = log qy0:Tφ,t−1|t(xt, xt−1)− log b
y0:t−1

θ,t−1|t(xt, xt−1) (1)

and, by convention, hy0:TT,θ,φ(xT−1, xT ) = log qy0:Tφ,T−1|T (xT , xT−1)−log b
y0:T−1

θ,T−1|T (xT , xT−1)+log qy0:Tφ,T (xT )−
log ϕy0:Tθ,T (xT ).

H4 For all y0:T ∈ YT+1 and all 0 ≤ t ≤ T ,

sup
θ∈Θ,φ∈Φ

∥∥∥∥∫ λ+(dx)
∣∣∣hy0:Tt,θ,φ(x, ·)

∣∣∣∥∥∥∥
∞

= υy0:Tt <∞ ,

and for all θ, θ′ ∈ Θ, φ,φ′ ∈ Φ, 1 ≤ t ≤ T ,∫
λ+ ⊗ λ+(dxdx

′)
∣∣∣log qy0:Tφ,t−1|t(x, x

′)− log qy0:Tφ′,t−1|t(x, x
′)
∣∣∣ ≤ cy0:T1,t ∥φ− φ′∥2 ,∫

λ+ ⊗ λ+(dxdx
′)
∣∣∣log by0:t−1

θ,t−1|t(x, x
′)− log b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ≤ c

y0:t−1

2,t ∥θ − θ′∥2 ,∫
λ+(dx)

∣∣∣log qy0:Tφ,T (x)− log qy0:Tφ′,T (x)
∣∣∣ ≤ cy0:T3,T ∥φ− φ′∥2 ,∫

λ+(dx)
∣∣∣log ϕy0:Tθ,T (x)− log ϕy0:Tθ′,T (x)

∣∣∣ ≤ cy0:T4,T ∥θ − θ′∥2 ,

where λ+ is defined in H1.

Our upper bounds require to prove that m is a Lipschitz function of the parameters, and we need
an upper bound on the L2-norm of the Lipschitz coefficient. For this, we consider the following
moment assumptions.

H5 There exists A such that the following inequalities are satisfied.

E
[(
ϑY0:T
+ cY0:T

3,T

)2]
≤ A , E

[(
ϑY0:T
+ cY0:T

4,T

)2]
≤ A ,

for all 0 ≤ t ≤ T ,

E
[
µ(GYt)2

c−(Yt)2

]
≤ A , E

[(
(ϑY0:T

+ )2cY0:T
1,t

)2]
≤ A ,

for all 1 ≤ t ≤ T ,

E
[(

(ϑY0:T
+ )2c

Y0:t−1

2,t

)2]
≤ A , E

[
η+ ⊗ µ(M ⊗ ḡYt−1 ḡYt)2

c−(Yt−1)2c−(Yt)2

]
≤ A ,

E

(ϑY0:T
+

T∑
s=t−1

λ+ ⊗ λ+(K
y0:T
s|s+1)ρ(Y0:T )

s−t

)2
 ≤ A ,

where for all y0:T , ρ(y0:T ) = 1− ϑy0:T− , for all 0 ≤ s, t ≤ T ,

E
[
c+(Yt)

2µ(GYs)2

c−(Yt)2c−(Ys)2

]
≤ A ,
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and for all 0 ≤ t ≤ T , all 1 ≤ s ≤ T ,

E

[(
c+(Yt)η+ ⊗ µ(M ⊗ ḡYs−1 ḡYs)

c−(Ys−1)c−(Ys)c−(Yt)

)2
]
≤ A .

The following assumption is used to have concentration properties, as usual in the statistical
literature to get theoretical guarantees with finite samples.

H6 There exists α∗ and B > 0 such that for all T ≥ 1,

∥log pD(Y0:T )∥ψα∗
≤ BT and

∥∥∥∥∥(ϑY0:T
+ )2 · supθ,φ,χ

T∑
t=1

λ+ ⊗ λ+

(∣∣∣hy0:Tt,θ,φ

∣∣∣)∥∥∥∥∥
ψα∗

≤ BT ,

and for all 0 ≤ t ≤ T ,
∥| log c+(Yt)| ∨ | log c−(Yt)|∥ψα∗

≤ B .

3.3 Oracle inequalities and consequences

Our main result is an oracle inequality for the risk. The so-called variance term has the usual rate
1/n up to log n terms in the sample size n. It is proved to grow as much as T 3 in the length T
of the sample sequences. We assume that Θ and Φ are compact spaces, and that the sum of their
diameters is bounded by d0.

Theorem 3.1. Assume that H1-H6 hold. Then, there exist constants c0, c1, c2, D̃ which depend
on σ+, σ−, α∗, A, B and d0 only, such that with probability at least 1− c0exp(−c1{d∗ log n}1∧α∗),∫
m(θ̂n,T , φ̂n,T , y0:T )pD(y0:T )dµ(y0:T ) ≤ infγ>0

{
(1 + γ)ET + c2(1 + γ−1)

D̃d∗T
3

n
log(d∗n)(log n)

1/α∗

}
,

where ET = minθ∈Θ,φ∈Φ

∫
m(θ, φ, y0:T )pD(y0:T )dµ(y0:T ) and d∗ = dθ + dφ.

Proof. To prove Theorem 3.1, we use Theorem A.1, which is an alternative formulation of [Tang and Yang, 2021,
Theorem 3], proved in Appendix A. First, Assumption A of Theorem 3.1 holds with D = D̃T for
some positive constant D̃ depending on B. This is a consequence of the first point in H6, Proposi-
tion B.4 and Proposition B.5.

We now prove that Condition A of Theorem 3.1 holds with a1 ≤ CT 2 for some C > 0. Write,
for all θ, φ1, φ2, y0:T ,

Ey0:T (θ, φ1, φ2) = Eqy0:Tφ1,0:T

[
log

qy0:Tφ2,0:T
(X0:T )

ϕy0:Tθ,0:T |T (X0:T )

]
.

Note that

∆(θ, θ′, φ, φ′, y0:T ) ≤ |ℓy0:TT (θ)− ℓy0:TT (θ′)|+ |Ey0:T (θ, φ, φ)− Ey0:T (θ′, φ′, φ′)| .

Write
|Ey0:T (θ, φ)− Ey0:T (θ′, φ′)| ≤ ∆1(θ, φ, φ

′, y0:T ) + ∆2(θ, θ
′, φ, φ′, y0:T ) ,
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where

∆1(θ, φ, φ
′, y0:T ) = |Ey0:T (θ, φ, φ)− Ey0:T (θ, φ′, φ)| ,

∆2(θ, θ
′, φ, φ′, y0:T ) = |Ey0:T (θ, φ′, φ)− Ey0:T (θ′, φ′, φ′)| .

Therefore,

∆(θ, θ′, φ, φ′, y0:T ) ≤ |ℓy0:TT (θ)− ℓy0:TT (θ′)|+∆1(θ, φ, φ
′, y0:T ) + ∆2(θ, θ

′, φ, φ′, y0:T ) .

By Proposition B.1, Proposition B.2 and Proposition B.3, we get that for all θ, θ′, φ, φ′, and all
y0:T ,

∆(θ, θ′, φ, φ′, y0:T ) ≤ (κ1(y0:T ) + κ4(y0:T )) ∥θ − θ′∥2 + (κ2(y0:T ) + κ3(y0:T )) ∥φ− φ′∥2,

where

κ1(y0:T ) =
σ+η+(G

y0)

σ−c−(y0)
+

T∑
t=1

σ+
σ−c−(yt)

{
c+(yt)Lt−1(y0:t−1) +

η+ ⊗ µ(M · ḡyt−1⊗̄gyt)
σ−c−(yt−1)

+ η+(G
yt)

}
,

(2)
with M · ḡyt−1 ⊗ ḡyt(x, x′) =M(x, x′)ḡyt−1(x)ḡyt(x′), and for all t,

Lt(y0:t) =
4σ2

+

σ2
−

t∑
s=0

εt−s
1

c−(ys)

{
1

σ−c−(ys−1)
η+ ⊗ µ (M · ḡys−1 ⊗ ḡys) + µ(Gys)

}
, (3)

with ε = 1− σ−/σ+,

κ2(y0:T ) = (ϑy0:T+ )3
T∑
t=1

υy0:Tt

T∑
s=t−1

λ+ ⊗ λ+(K
y0:T
s|s+1)ρ(y0:T )

s−t , (4)

κ3(y0:T ) = ϑy0:T+

(
ϑy0:T+

T∑
t=1

cy0:T1,t + cy0:T3,T

)
, (5)

and

κ4(y0:T ) = ϑy0:T+

(
ϑy0:T+

T∑
t=1

c
y0:t−1

2,t + cy0:T4,t

)
, (6)

in which υy0:Tt , cy0:T1,t , c
y0:t−1

2,t , cy0:T3,T and cy0:T4,t are defined in H4. Using H5, it is easy to prove that

E[κ1(y0:T )2], E[κ2(y0:T )2], E[κ3(y0:T )2], and E[κ4(y0:T )2] are upper bounded by cT 2 for a constant
c that depends only on σ+, σ− and A, and Theorem 3.1 follows.

Note that∫
m(θ̂n,T , φ̂n,T , y0:T )pD(y0:T )dµ(y0:T ) = KL

(
PD

∥∥∥PY
θ̂n,T

)
+ EPDKL

(
Q
Y 1
0:T

φ̂n,T ,0:T

∥∥∥ΦY 1
0:T

θ̂n,T ,0:T |T

)
.

If the upper bound in Theorem 3.1 is small, then the distribution PD of the observations is well
approximated by the decoding observational distribution PY

θ̂n,T
, and the decoding distribution of the
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latent state distribution given data Φ
Y 1
0:T

θ̂n,T ,0:T |T
is also in average well approximated by the coding

distribution Q
Y 1
0:T

φ̂n,T ,0:T
.

In the same way,

ET = minθ∈Θ,φ∈Φ

{
KL
(
PD
∥∥PYθ )+ EPDKL

(
Q
Y 1
0:T

φ,0:T

∥∥∥ΦY 1
0:T

θ,0:T |T

)}
.

In case the data follows a state space distribution given by some decoding distribution, that is if
there exists θ∗ ∈ Θ such that PD = PYθ∗ , the oracle inequality in Theorem 3.1 becomes, by taking
θ = θ∗ to upper bound ET ,

KL
(
PYθ∗
∥∥∥PY

θ̂n,T

)
+EPY

θ∗
KL
(
Q
Y 1
0:T

φ̂n,T ,0:T

∥∥∥ΦY 1
0:T

θ̂n,T ,0:T |T

)
≤ (1+ γ)minφ∈ΦEPY

θ∗
KL
(
Q
Y 1
0:T

φ,0:T

∥∥∥ΦY 1
0:T

θ∗,0:T |T

)
+ c2(1 + γ−1)

Dd∗T
3

n
log(d∗n)(log n)

1/α∗ (7)

for any γ > 0. In the following corollary, we assume that the coding backward kernels are chosen
such that they are good approximations of the backward decoding kernels in Kullback-Leibler
divergence.

H7 There exists ϵ > 0, such that for all θ ∈ Θ there exists φ ∈ Φ such that for all y0:T ∈ YT+1,

KL
(
Qy0:Tφ,T

∥∥∥Φy0:Tθ∗,T

)
≤ ϵ

and for all 1 ≤ t ≤ T ,

KL
(
Qy0:Tφ,t−1|t

∥∥∥By0:t−1

θ,t−1|t

)
≤ ϵ .

Corollary 3.2. Assume there exists θ∗ ∈ Θ such that PD = PYθ∗ . Assume moreover H7. Then
under the same assumptions as in Theorem 3.1, for the constants c0, c1, c2, D in Theorem 3.1,
with probability at least 1− c0exp(−c1{d∗ log n}1∧α∗), for any γ > 0,

KL
(
PYθ∗
∥∥∥PY

θ̂n,T

)
+EPY

θ∗
KL
(
Q
Y 1
0:T

φ̂n,T ,0:T

∥∥∥ΦY 1
0:T

θ̂n,T ,0:T |T

)
≤ (1+γ)(T+1)ϵ+c2(1+γ

−1)
Dd∗T

3

n
log(d∗n)(log n)

1/α∗ .

When the data distribution is given by a state space model, Corollary 3.2 provides an upper bound
for the Kullback-Leibler divergence between the data distribution and its estimator and between
the variational posterior and the estimated state space posterior distributions. This result sheds
additional light on the quality of variational reconstruction in state space models with respect
to [Chagneux et al., 2022, Proposition 3]. In [Chagneux et al., 2022, Proposition 3], the authors
provided upper bounds on the error between conditional expectations of state functionals under
the true posterior distribution and under its variational approximation. In both settings, designing
coding backward kernels that are good approximations of the true backward decoding kernels is
enough to obtain quantitative controls on the reconstruction error.

Proof. The result follows from equation 7, H7 and the fact that for any θ ∈ Θ and φ ∈ Φ, for any
y0:T ,

KL
(
Qy0:Tφ,0:T

∥∥∥Φy0:Tθ∗,0:T |T

)
=

T∑
t=1

KL
(
Qy0:Tφ,t−1|t

∥∥∥By0:t−1

θ,t−1|t

)
+KL

(
Qy0:Tφ,T

∥∥∥Φy0:Tθ∗,T

)
.
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3.4 Applications

In this section, we consider generative models where the transition kernels and emission distributions
are Gaussian in various classical settings. We show that under weak assumptions on these models,
some assumptions of our main results hold. Establishing that all assumptions are satisfied in general
settings, i.e. without very specific assumptions on the architectures, is a more challenging problem.

We prove in Appendix D that H1 holds in particular for compact state spaces. We also prove
that the functions hy0:Tt,θ,φ are upper-bounded explicitly, and that ϕy0:tθ,t and b

y0:t−1

θ,t−1|t are lower and

upper-bounded explicitly. This allows to obtain explicit constants in H4. Providing additional
comments on the assumptions requires assumptions on the observation space or on the dependency
of the variational distributions on the observations. When the observation space is compact we
can also obtain a uniform control with respect to the observations of these upper bounds which is
crucial to check H5 and H6.

Gaussian backward kernels with dense networks. We consider a generative model where
the transition kernels and emission distributions are Gaussian and parameterized by dense networks.

• For all x ∈ X, x′ 7→ mθ(x, x
′) is the Gaussian probability density function with mean µθ(x),

and variance Σθ(x) where (µθ(x),Σθ(x)) = MLPθ(x) with MLPθ a dense Multi-layer network
with input x and weights given by θ. In this case, if the output layer of MLPθ is such that µθ
is bounded and Σ ≤ Σ−1

θ (x) ≤ Σ (i.e. Σ−1
θ (x)− Σ and Σ− Σ−1

θ (x) are positive semi-definite
matrices) for all x ∈ X, then there exist constants c, c such that for all x, x′ ∈ X,

c exp
(
−λx⊤x

)
≤ mθ(x

′, x) ≤ c exp (−λα(x)) ,

where λ is the smallest eigenvalue of Σ and λ is the largest eigenvalue of Σ and where

α(x) =
1

2

(
(∥x∥ −M)21∥x∥≥M + (∥x∥ −m)21∥x∥≤m + (M −m)21m≤∥x∥≤M

)
,

with m = infx∈X,θ∈Θ ∥µθ(x)∥ and M = supx∈X,θ∈Θ ∥µθ(x)∥. This implies that H1 holds.

In order to check H3, if we assume also that for all x ∈ X, θ 7→ µθ(x) and θ 7→ Σ−1
θ (x)

are continuously differentiable and that Θ is compact then there exists M such that for all
θ, θ′ ∈ Θ and x, x′ ∈ X,

|mθ(x, x
′)−mθ′(x, x

′)| ≤M(x, x′)∥θ − θ′∥2 .

We can check H4 for log b
y0:t−1

θ,t−1|t, as other items can be verified following the same steps. As-

suming that b
y0:t−1

θ,t−1|t(x, ·) is a Gaussian probability density with mean µ
y0:t−1

θ,t−1|t(x) and variance

Σ
y0:t−1

θ,t−1|t(x). Under similar regularity assumptions on the networks providing µ
y0:t−1

θ,t−1|t(x) and

Σ
y0:t−1

θ,t−1|t(x), when Θ is compact, H4 holds.

• For all 1 ≤ t ≤ T , x ∈ X, x′ 7→ qy0:Tφ,t−1|t(x, x
′) is the Gaussian probability density function with

mean µy0:Tφ,t−1|t(x), and variance Σy0:Tφ,t−1|t(x) where (µy0:Tφ,t−1|t(x),Σ
y0:T
φ,t−1|t(x)) = MLPy0:T ,φt−1|t (x)

with MLPy0:T ,φt−1|t a dense Multi-layer network with input x and weights depending on φ. In

this case, is the output layer of MLPy0:T ,φt−1|t is such that µy0:Tφ,t−1|t is bounded and Σy0:Tt−1|t ≤
(Σy0:Tφ,t−1|t(x))

−1 ≤ Σ
y0:T
t−1|t (i.e. (Σ

y0:T
φ,t−1|t(x))

−1−Σy0:Tt−1|t and Σ
y0:T
t−1|t−(Σy0:Tφ,t−1|t(x))

−1 are positive

10



semi-definite matrices) for all x ∈ X, then there exist constants cy0:Tt−1|t, c
y0:T
t−1|t such that for all

x, x′ ∈ X,

cy0:Tt−1|t exp
(
−λy0:Tt−1|tx

⊤x
)
≤ qy0:Tφ,t−1|t(x

′, x) ≤ cy0:Tt−1|t exp
(
−λy0:Tt−1|tβ(x)

)
,

where λy0:Tt−1|t is the smallest eigenvalue of Σy0:Tt−1|t and λ
y0:T
t−1|t is the largest eigenvalue of Σ

y0:T
t−1|t

and where

β(x) =
1

2

(
(∥x∥ −My0:T

t−1|t)
21∥x∥≥My0:T

t−1|t
+ (∥x∥ −my0:T

t−1|t)
21∥x∥≤my0:T

t−1|t

+(My0:T
t−1|t −my0:T

t−1|t)
21my0:T

t−1|t≤∥x∥≤My0:T
t−1|t

)
,

with my0:T
t−1|t = infx∈X ∥µy0:Tt−1|t(x)∥ and My0:T

t−1|t = supx∈X ∥µ
y0:T
t−1|t(x)∥. Similar assumptions can

be used for qy0:Tφ,T using dense neural networks with bounded output. Under similar regularity

assumptions on µy0:Tφ,t−1|t, and Σy0:Tφ,t−1|t than for µθ, and variance Σθ, we may prove that H3

holds when Φ is compact.

Gaussian backward kernels with recurrent networks. A natural parameterization is also
to use a recurrent neural network which updates an internal state (st)t≥0 from which the backward
variational kernels and filtering density are built. For all t ≥ 0, define st = RNNφ(st−1, yt) where
RNNφ is a recurrent neural network, and let x′ 7→ qy0:Tφ,t−1|t(x, x

′) be the Gaussian probability density

function with mean µy0:Tt−1|t, and variance Σy0:Tt−1|t where (µt,Σt) = MLPφ(st). If the network MLPφ

is bounded similarly as in the dense neural network case, then the backward variational kernels
satisfy H1.

Functional autoregressive models. The discussion on neural networks also indicates that
the assumptions can be verified for some classical statistical models. Assume for instance that
X = R and that for all θ ∈ Θ, x ∈ X, x′ 7→ mθ(x, x

′) is the Gaussian probability density function
with mean fθ(x), and variance σ2

θ(x). Then, H1 holds for mθ when −∞ < infx∈X,θ∈Θ fθ(x) ≤
supx∈X,θ∈Θ fθ(x) <∞ and −∞ < infx∈X,θ∈Θ σθ(x) ≤ supx∈X,θ∈Θ σθ(x) <∞.

Gaussian emission densities. Assume that at each time t ≥ 0, Yt = hθ(Xt) + εt, where
{εt}t≥0 are independent Gaussian random variables. Assume also that hθ(Xt) = MLPθ(Xt) where

MLPθ is a dense neural network with bounded output layer, then H2 holds. Assume that for all
x ∈ X, θ 7→ hθ(x) is continuously differentiable and that Θ is compact, for all y ∈ Y, there exists
Gy such that for all θ, θ′ ∈ Θ and x ∈ X,

|gyθ (x)− gyθ′(x)| ≤ Gy(x)∥θ − θ′∥2 ,

which means that H3 holds for the emission distributions.

4 Discussion

In this paper, we used a backward decomposition of variational posterior distributions to propose
the first theoretical results for variational autoencoders (VAE) applied to general state space models.
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Under strong mixing assumptions on the state space model and on the variational distribution, we
provide in particular an oracle inequality and an upper bound for the Kullback-Leibler divergence
between the data distribution and its estimator.

Although these results are the first theoretical guarantees for VAE in the context of state space
models, we believe that this is the first step to solve challenging open problems. First, in order to
cover a wider variety of applications, weakening the strong mixing assumptions, for instance using
local Doeblin assumptions, would be very interesting although it is a challenge when analyzing the
stability of smoothing distributions. Another research direction is to understand how our results
can be extended in settings where the observations are processed online, i.e. in cases where the
parameters are updated when new observations are received but never stored. To the best of our
knowledge, online variational estimation has recently been explored with new methodologies but
without any theoretical guarantees.

References

[Bowman et al., 2015] Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Ben-
gio, S. (2015). Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

[Campbell et al., 2021] Campbell, A., Shi, Y., Rainforth, T., and Doucet, A. (2021). Online vari-
ational filtering and parameter learning. Advances in Neural Information Processing Systems,
34.

[Cappé et al., 2005] Cappé, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden Markov
Models (Springer Series in Statistics). Springer-Verlag, Berlin, Heidelberg.

[Chagneux et al., 2022] Chagneux, M., Gassiat, E., Gloaguen, P., and Le Corff, S. (2022). Additive
smoothing error in backward variational inference for general state-space models. arXiv preprint
arXiv:2206.00319.
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A An oracle inequality adapted from [Tang and Yang, 2021]

We propose an alternative formulation of Theorem 3 in [Tang and Yang, 2021] in which we provide
the precise behavior of the constant in the variance term. To avoid introducing too many new
notations, we formulate the results of [Tang and Yang, 2021] choosing the observation to be Y0:T ,
the latent variables to be X0:T in our setting.

Condition A. There exist a1 > 0 and a function b such that for all θ ∈ Θ, θ′ ∈ Θ, φ ∈ Φ,
φ′ ∈ Φ, y0:T ∈ YT+1,

|m(θ, φ, y0:T )−m(θ′, φ′, y0:T )| ≤ b(y0:T )∥(θ, φ)− (θ′, φ′)∥2 ,

with E[b2(Y0:T )] ≤ a1.

Assumption A. There exist α∗ > 0 and D > 0 such that∥∥∥∥∥supθ,φ
{∣∣∣∣∣log LY0:T

T (θ)

pD(Y0:T )

∣∣∣∣∣+KL
(
QY0:T

φ,0:T

∥∥∥ϕY0:T

θ,T

)}∥∥∥∥∥
ψα∗

≤ D . (8)

Theorem A.1. Assume that Θ and Φ are compact spaces and that the sum of their diameter is
upper bounded by d0. Assume moreover that Condition A and Assumption A hold. Then, there
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exist constants c0, c1, which depend on d0, a1 and α∗, and a universal constant c2, such that with
probability at least 1− c0exp(−c1{d∗ log n}1∧α∗),∫
m(θ̂n,T , φ̂n,T , y0:T )pD(y0:T )dµ(y0:T ) ≤ infγ>0

{
(1 + γ)ET + c2(1 + γ−1)

a1Dd∗
n

log(d∗n)(log n)
1/α∗

}
,

where ET = minθ∈Θ,φ∈Φ

∫
m(θ, φ, y0:T )pD(y0:T )dµ(y0:T ) and d∗ = dθ + dφ.

Proof. We follow the proof of [Tang and Yang, 2021, Theorem 3], in which we track the depen-
dencies of the constants with respect to a1. In [Tang and Yang, 2021, Lemma 14], a multiplicative
term

√
a1 is required on the r.h.s. of the inequality. Then on page 24 third line the inequality needs

again
√
a1 on the r.h.s., and the end of the proof follows by multiplying δn by

√
a1. We obtain that

in [Tang and Yang, 2021, Theorem 3], their constant c2 is proportional to a1.

B Additional proofs

Proposition B.1. Assume that H1-3 hold. For all θ, θ′ ∈ Θ, and all y0:T ∈ YT+1,

|ℓy0:TT (θ)− ℓy0:TT (θ′)| ≤ κ1(y0:T )∥θ − θ′∥2 ,

where

κ1(y0:T ) =
σ+η+(G

y0)

σ−c−(y0)
+

T∑
t=1

σ+
σ−c−(yt)

{
c+(yt)Lt−1(y0:t−1) +

η+ ⊗ µ(M · ḡyt−1⊗̄gyt)
σ−c−(yt−1)

+ η+(G
yt)

}
,

with M · ḡyt−1 ⊗ ḡyt(x, x′) =M(x, x′)ḡyt−1(x)ḡyt(x′), where Lt−1 is defined in Lemma C.2.

Proof. For all θ, θ′ ∈ Θ, and all y0:T ∈ YT+1, with the convention pθ(y0|y−1) = pθ(y0),

ℓy0:TT (θ)− ℓy0:TT (θ′) =

T∑
t=0

(log pθ(yt|y0:t−1)− log pθ′(yt|y0:t−1)) .

For all t > 0,

pθ(yt|y0:t−1) =

∫
Φ
y0:t−1

θ,t−1 (dxt−1)Mθ(xt−1,dxt)g
yt
θ (xt) .

Note first that
pθ(yt|y0:t−1) ≥ σ−c−(yt) ,

so that

|ℓy0:TT (θ)− ℓy0:TT (θ′)| ≤ |pθ(y0)− pθ′(y0)|
σ−c−(y0)

+

T∑
t=0

|pθ(yt|y0:t−1)− pθ′(yt|y0:t−1)|
σ−c−(yt)

.

For t = 0, using that pθ(y0) =
∫
χ(dx0)g

y0
θ (x0), Assumptions H1 and H3 yield

|pθ(y0)− pθ′(y0)| ≤ σ+η+(G
y0)∥θ − θ′∥2 .
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In addition,

pθ(yt|y0:t−1)− pθ′(yt|y0:t−1) =

∫ (
Φ
y0:t−1

θ,t−1 (dxt−1)− Φ
y0:t−1

θ′,t−1(dxt−1)
)
Mθ(xt−1,dxt)g

yt
θ (xt)

+

∫
Φ
y0:t−1

θ′,t−1(dxt−1) (Mθ(xt−1,dxt)−Mθ′(xt−1,dxt)) g
yt
θ (xt)+

∫
Φ
y0:t−1

θ′,t−1(dxt−1)Mθ′(xt−1,dxt) (g
yt
θ (xt)− gytθ′ (xt)) .

Using Lemma C.1, Assumptions H1 and H3, we get

|pθ(yt|y0:t−1)− pθ′(yt|y0:t−1)| ≤
{
σ+c+(yt)

∥∥∥Φy0:t−1

θ,t−1 − Φ
y0:t−1

θ′,t−1

∥∥∥
tv
+

σ+
σ−c−(yt−1)

∫
η+ ⊗ µ(dxdx′)(M(x, x′)ḡyt−1(x)ḡyt(x′)) + σ+η+(G

yt)

}
∥θ − θ′∥2 .

The proof is completed by using Lemma C.2.

Proposition B.2. Assume that H1-4 hold. Then,

∆1(θ, φ, φ
′, y0:T ) ≤ κ2(y0:T )∥φ− φ′∥2 ,

where

∆1(θ, φ, φ
′, y0:T ) =

∣∣∣∣∣Eqy0:Tφ,0:T

[
log

qy0:Tφ,0:T (X0:T )

ϕy0:Tθ,0:T |T (X0:T )

]
− Eqy0:T

φ′,0:T

[
log

qy0:Tφ,0:T (X0:T )

ϕy0:Tθ,0:T |T (X0:T )

]∣∣∣∣∣ ,
with ρ(y0:T ) = 1− ϑy0:T− and

κ2(y0:T ) = (ϑy0:T+ )3
T∑
t=1

υy0:Tt

T∑
s=t−1

λ+ ⊗ λ+(K
y0:T
s|s+1)ρ(y0:T )

s−t .

Proof. For all φ,φ′ ∈ Φ, 0 ≤ t ≤ T − 1, define

q̃y0:Tφ,φ′,t|T (x0:T ) = qy0:Tφ,T (xT )

t+1∏
u=T

qy0:Tφ,u−1|u(xu, xu−1)

1∏
u=t

qy0:Tφ′,u−1|u(xu, xu−1)

− qy0:Tφ,T (xT )

t+2∏
u=T

qy0:Tφ,u−1|u(xu, xu−1)

1∏
u=t+1

qy0:Tφ′,u−1|u(xu, xu−1)

with the convention
∏T+1
u=T q

y0:T
φ,u−1|u(xu, xu−1) = 1 and

∏1
u=0 q

y0:T
φ′,u−1|u(xu, xu−1) = 1, and for t = T ,

q̃y0:Tφ,φ′,T |T (x0:T ) = qy0:Tφ,T (xT )
1∏

u=T

qy0:Tφ′,u−1|u(xu, xu−1)− qy0:Tφ′,T (xT )

1∏
u=T

qy0:Tφ′,u−1|u(xu, xu−1) .

Therefore,

∆1(θ, φ, φ
′, y0:T ) =

∣∣∣∣∣
T∑
t=1

Eqy0:Tφ,0:T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]
− Eqy0:T

φ′,0:T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]∣∣∣∣∣ ,
=

∣∣∣∣∣
T∑
t=1

T∑
s=0

Eq̃y0:T
φ,φ′,s|T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]∣∣∣∣∣ ,
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where hy0:Tt,θ,φ, 1 ≤ t ≤ T , are defined in equation 1. Note first that if t > s+1, then Eq̃y0:T
φ,φ′,s|T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]
=

0 so that

∆1(θ, φ, φ
′, y0:T ) =

∣∣∣∣∣
T∑
t=1

T∑
s=t−1

Eq̃y0:T
φ,φ′,s|T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]∣∣∣∣∣ .
For all t ≤ s+ 1, write for all measurable set A,

µy0:Tφ,s (A) =

∫
1A(xs)q

y0:T
φ,T (xT )µ(dxT )

s+1∏
u=T

qy0:Tφ,u−1|u(xu, xu−1)µ(dxu−1) ,

µ̃y0:Tφ,φ′,s(A) =

∫
1A(xs)q

y0:T
φ,T (xT )µ(dxT )

s+2∏
u=T

qy0:Tφ,u−1|u(xu, xu−1)µ(dxu−1)q
y0:T
φ′,s|s+1(xs+1, xs)µ(dxs) .

Therefore,

Eq̃y0:T
φ,φ′,s|T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]
=
(
µy0:Tφ,s − µ̃y0:Tφ,φ′,s

){t+1∏
u=s

Qy0:Tφ′,u−1|u

}
Qy0:Tφ′,t−1|th

y0:T
t,θ,φ .

Using H1, the backward variational kernels satisfy a Doeblin condition, see [Douc et al., 2014,
Section 6.1.3], so that

Eq̃y0:T
φ,φ′,s|T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]
≤ 1

2
∥µy0:Tφ,s − µ̃y0:Tφ,φ′,s∥tvρ(y0:T )

s−tosc
(
Qy0:Tφ′,t−1|th

y0:T
t,θ,φ

)
,

where for all measurable functions f , osc(f) = supx,x′∈X |f(x)− f(x′)|. By H1 and H4,

osc
(
Qy0:Tφ′,t−1|th

y0:T
t,θ,φ

)
≤ 2

∥∥∥∥∫ qy0:Tφ′,t−1|t(·, xt−1)h
y0:T
t,θ,φ(xt−1, ·)µ(dxt−1)

∥∥∥∥
∞
,

≤ 2ϑy0:T+

∥∥∥∥∫ ∣∣∣hy0:Tt,θ,φ(xt−1, ·)
∣∣∣λ+(dxt−1)

∥∥∥∥
∞
,

≤ 2ϑy0:T+ υy0:Tt .

Noting that by H3,

∥µy0:Tφ,s − µ̃y0:Tφ,φ′,s∥tv ≤ Qy0:Tφ,T

t+1∏
s=T

Qy0:Tφ,s−1|sK
y0:T
s|s+1∥φ− φ′∥2 ≤ (ϑy0:T+ )2λ+ ⊗ λ+(K

y0:T
s|s+1)∥φ− φ′∥2 ,

concludes the proof.

Proposition B.3. Assume that H1-4 hold. Then,

∆2(θ, θ
′, φ, φ′, y0:T ) ≤ κ3(y0:T ) ∥φ− φ′∥2 + κ4(y0:T ) ∥θ − θ′∥2 ,

where

∆2(θ, θ
′, φ, φ′, y0:T ) =

∣∣∣∣∣Eqy0:Tφ′,0:T

[
log

qy0:Tφ,0:T (X0:T )

ϕy0:Tθ,0:T |T (X0:T )

]
− Eqy0:T

φ′,0:T

[
log

qy0:Tφ′,0:T (X0:T )

ϕy0:Tθ′,0:T |T (X0:T )

]∣∣∣∣∣ ,
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with

κ3(y0:T ) = ϑy0:T+

(
ϑy0:T+

T∑
t=1

cy0:T1,t + cy0:T3,T

)
and κ4(y0:T ) = ϑy0:T+

(
ϑy0:T+

T∑
t=1

c
y0:t−1

2,t + cy0:T4,t

)
,

and where cy0:T1,t , c
y0:t−1

2,t , cy0:T3,T and cy0:T4,t are defined in H4.

Proof. By definition,

∆2(θ, θ
′, φ, φ′, y0:T ) =

∣∣∣∣∣Eqy0:Tφ′,0:T

[
log

qy0:Tφ,0:T (X0:T )

ϕy0:Tθ,0:T |T (X0:T )

]
− Eqy0:T

φ′,0:T

[
log

qy0:Tφ′,0:T (X0:T )

ϕy0:Tθ′,0:T |T (X0:T )

]∣∣∣∣∣ ,
≤ Eqy0:T

φ′,0:T

[∣∣∣∣∣log qy0:Tφ,0:T (X0:T )

ϕy0:Tθ,0:T |T (X0:T )
− log

qy0:Tφ′,0:T (X0:T )

ϕy0:Tθ′,0:T |T (X0:T )

∣∣∣∣∣
]
,

≤
T∑
t=1

Eqy0:T
φ′,0:T

[∣∣∣hy0:Tt,θ,φ(Xt−1, Xt)− hy0:Tt,θ′,φ′(Xt−1, Xt)
∣∣∣] ,

where hy0:Tt,θ,φ, 1 ≤ t ≤ T , are defined in equation 1. For t < T and all xt−1, xt ∈ X,∣∣∣hy0:Tt,θ,φ(xt−1, xt)− hy0:Tt,θ′,φ′(xt−1, xt)
∣∣∣ ≤ ∣∣∣log qy0:Tφ,t−1|t(xt, xt−1)− log qy0:Tφ′,t−1|t(xt, xt−1)

∣∣∣
+
∣∣∣log by0:t−1

θ,t−1|t(xt, xt−1)− log b
y0:t−1

θ′,t−1|t(xt, xt−1)
∣∣∣ .

Using H1 and H4,

Eqy0:T
φ′,0:T

[∣∣∣log qy0:Tφ,t−1|t(xt, xt−1)− log qy0:Tφ′,t−1|t(xt, xt−1)
∣∣∣]

≤ (ϑy0:T+ )2
∫
λ+ ⊗ λ+(dxdx

′)
∣∣∣log qy0:Tφ,t−1|t(x, x

′)− log qy0:Tφ′,t−1|t(x, x
′)
∣∣∣ ,

≤ (ϑy0:T+ )2cy0:T1,t ∥φ− φ′∥2 .

Similarly,

Eqy0:T
φ′,0:T

[∣∣∣log by0:t−1

θ,t−1|t(xt, xt−1)− log b
y0:t−1

θ′,t−1|t(xt, xt−1)
∣∣∣]

≤ (ϑy0:T+ )2
∫
λ+ ⊗ λ+(dxdx

′)
∣∣∣log by0:t−1

θ,t−1|t(x, x
′)− log b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ,

≤ (ϑy0:T+ )2c
y0:t−1

2,t ∥θ − θ′∥2 .

For t = T , it remains to bound Eqy0:T
φ′,0:T

[| log qy0:Tφ,T (XT )−log qy0:Tφ′,T (XT )|+| log ϕy0:Tθ,T (XT )−log ϕy0:Tθ′,T (XT )|],
which is straightforward by using H1 and H4.

Proposition B.4. Assume that H1-2 and H6 hold. Then, there exists c > 0 such that ,∥∥∥∥sup
θ∈Θ

∣∣∣logLY0:T

T (θ)
∣∣∣∥∥∥∥
ψα∗

≤ cT .
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Proof. For all θ ∈ Θ, and all y0:T ∈ YT+1, with the convention pθ(y0|y−1) = pθ(y0),

logLy0:TT (θ) = ℓy0:TT (θ) =

T∑
t=0

log pθ(yt|y0:t−1) .

As pθ(y0) =
∫
χ(dx0)g

y0
θ (x0), by H1-2, σ−c−(y0) ≤ pθ(y0) ≤ σ+c+(y0). For all t > 0,

pθ(yt|y0:t−1) =

∫
Φ
y0:t−1

θ,t−1 (dxt−1)Mθ(xt−1,dxt)g
yt
θ (xt) ,

so that by H1-2 σ−c−(yt) ≤ pθ(yt|y0:t−1) ≤ σ+c+(yt). Using the second point in H6 and the
triangular inequality concludes the proof.

Proposition B.5. Assume that H1 and H6 hold. Then, there exists B > 0 such that∥∥∥supθ∈Θ,φ∈Φ,χ

∣∣∣KL
(
QY0:T

φ,0:T

∥∥∥ϕY0:T

θ,T

)∣∣∣∥∥∥
ψα∗

≤ BT ,

Proof. For all θ ∈ Θ, φ ∈ Φ, y0:T ∈ YT+1,

KL
(
Qy0:Tφ,0:T

∥∥∥ϕy0:Tθ,T

)
= Eqy0:Tφ,0:T

[
log

qy0:Tφ,0:T (X0:T )

ϕy0:Tθ,0:T |T (X0:T )

]
=

T∑
t=1

Eqy0:Tφ,0:T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]
,

where hy0:Tt,θ,φ, 1 ≤ t ≤ T , are defined in equation 1. By H1, for all 1 ≤ t ≤ T ,∣∣∣Eqy0:Tφ,0:T

[
hy0:Tt,θ,φ(Xt−1, Xt)

]∣∣∣ ≤ (ϑy0:T+ )2λ+ ⊗ λ+

(∣∣∣hy0:Tt,θ,φ

∣∣∣) ,

which concludes the proof by H6.

C Technical results

Lemma C.1. Assume that H1 and H2 hold. For all θ ∈ Θ, all t ≥ 0, all y0:t ∈ YT+1, positive
measurable function h,

σ−η−(g
yt
θ h)

σ+c+(yt)
≤ Φy0:tθ,t (h) ≤

σ+η+(g
yt
θ h)

σ−c−(yt)
.

Proof. At time 0, we have Φy0θ,0(dx0) ∝ χ(dx0)g
y0
θ (x0) so that by H1-2,

σ−η−(g
y0
θ h)

σ+c+(y0)
≤ Φy0θ,0(h) ≤

σ+η+(g
y0
θ h)

σ−c−(y0)
.

Similarly,

Φy0:tθ,t (dxt) ∝ gytθ (xt)

∫
Φ
y0:t−1

θ,t−1 (dxt−1)Mθ(xt−1,dxt) ,

so that by H1 and H2,
σ−η−(g

yt
θ h)

σ+c+(yt)
≤ Φy0:tθ,t (h) ≤

σ+η+(g
yt
θ h)

σ−c−(yt)
.

18



Lemma C.2. Assume that H1, H2 and H3 hold. Then, for all θ, θ′ ∈ Θ, t ≥ 1,∥∥∥Φy0:tθ,t − Φy0:tθ′,t

∥∥∥
tv

≤ Lt(y0:t)∥θ − θ′∥2 ,

where

Lt(y0:t) =
4σ2

+

σ2
−

t∑
s=0

εt−s
1

c−(ys)

{
1

σ−c−(ys−1)
η+ ⊗ µ (ḡys−1 ⊗ ḡys ·M) + η+(G

ys)

}
,

with ε = 1− σ−/σ+.

Proof. The proof follows the same lines as the proof of [De Castro et al., 2017, Proposition 2.1],
which was in the setting of a discrete state space. For t > 0, note that Φy0:tθ,t (dxt) = gytθ (xt)

∫
Φ
y0:t−1

θ,t−1 (dxt−1)Mθ(xt−1,dxt)/cθ,t(y0:t)

where cθ,t(y0:t) =
∫
gytθ (xt)Φ

y0:t−1

θ,t−1 (dxt−1)Mθ(xt−1,dxt). Consider the forward kernel at time t de-

fined, for all θ ∈ Θ, all yt ∈ Y, x ∈ Rd, and probability measure γ by

F ytθ,tγ(x) =

∫
mθ(x

′, x)gytθ (x)γ(dx′)∫
mθ(x′, x′′)g

yt
θ (x′′)γ(dx′)µ(dx′′)

.

Therefore, Φy0:tθ,t = F ytθ,tΦ
y0:t−1

θ,t−1 and for all θ, θ′ ∈ Θ,

Φy0:tθ,t − Φy0:tθ′,t = F ytθ,tΦ
y0:t−1

θ,t−1 − F ytθ′,tΦ
y0:t−1

θ′,t−1 ,

=

t−1∑
s=0

∆t,s(ys:t) + F ytθ,tΦ
y0:t−1

θ′,t−1 − F ytθ′,tΦ
y0:t−1

θ′,t−1 ,

where
∆t,s(ys:t) = F ytθ,t · · ·F

ys+1

θ,s+1F
ys
θ,sΦ

y0:s−1

θ′,s−1 − F ytθ,t · · ·F
ys+1

θ,s+1Φ
y0:s
θ′,s

with the convention F y0θ,0Φ
y−1

θ′,−1 = Φy0θ,0. Consider also the backward function β
ys+1:t

s|t and the forward

smoothing kernel F ys:ts|t,θ defined by

β
ys+1:t

θ,s|t (xs) =

∫
Mθ(xs,dxs+1)g

ys+1

θ (xs+1) · · ·Mθ(xt−1,dxt)g
yt
θ (xt) ,

F ys:tθ,s|t(xs−1, xs) =
β
ys+1:t

s|t (xs)mθ(xs−1, xs)g
ys
θ (xs)∫

β
ys+1:t

s|t (x)Mθ(xs−1,dx)g
ys
θ (x)

.

Following for instance [Cappé et al., 2005, Chapter 4], we can write for all probability measure γ,

F ytθ,t · · ·F
ys+1

θ,s+1γ = γθ,s|tF
ys+1:t

θ,s+1|t · · ·F
yt
θ,t|t ,

where γθ,s|t ∝ β
ys+1:t

θ,s|t γ. Therefore,

Φy0:tθ,t −Φy0:tθ′,t =

t−1∑
s=0

(
γθ,θ′,s|tF

yt
θ,s+1|t · · ·F

ys+1

θ,t|t − γ̃θ,θ′,s|tF
yt
θ,s+1|t · · ·F

ys+1

θ,t|t

)
+F ytθ,tΦ

y0:t−1

θ′,t−1−F
yt
θ′,tΦ

y0:t−1

θ′,t−1 ,
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where γθ,θ′,s|t ∝ β
ys+1:t

θ,s|t F ysθ,sΦ
y0:s−1

θ′,s−1 and γ̃θ,θ′,s|t ∝ β
ys+1:t

θ,s|t Φy0:sθ′,s . Note that by H1, for all measurable
sets A,

F ys:tθ,s|t(xs−1, A) ≥
σ−
σ+

∫
η−(dxs)1A(x)β

ys+1:t

s|t (x)gysθ (x)∫
η+(dx)β

ys+1:t

s|t (x)gysθ (x)
,

so that∥∥∥γθ,θ′,s|tF ytθ,s+1|t · · ·F
ys+1

θ,t|t − γ̃θ,θ′,s|tF
yt
θ,s+1|t · · ·F

ys+1

θ,t|t

∥∥∥
tv

≤ ϵt−s
∥∥γθ,θ′,s|t − γ̃θ,θ′,s|t

∥∥
tv
,

with ϵ = 1− σ−/σ+. This yields∥∥∥Φy0:tθ,t − Φy0:tθ′,t

∥∥∥
tv

≤
t−1∑
s=0

ϵt−s
∥∥γθ,θ′,s|t − γ̃θ,θ′,s|t

∥∥
tv

+
∥∥∥F ytθ,tΦy0:t−1

θ′,t−1 − F ytθ′,tΦ
y0:t−1

θ′,t−1

∥∥∥
tv
.

For all bounded measurable functions h,

∣∣γθ,θ′,s|t(h)− γ̃θ,θ′,s|t(h)
∣∣ = ∣∣∣∣∣

∫
β
ys+1:t

θ,s|t (xs)F
ys
θ,sΦ

y0:s−1

θ′,s−1(xs)h(xs)µ(dxs)∫
β
ys+1:t

θ,s|t (xs)F
ys
θ,sΦ

y0:s−1

θ′,s−1(xs)µ(dxs)
−

∫
β
ys+1:t

θ,s|t (xs)Φ
y0:s
θ′,s(xs)h(xs)µ(dxs)∫

β
ys+1:t

θ,s|t (xs)Φ
y0:s
θ′,s(xs)µ(dxs)

∣∣∣∣∣ ,
≤ δy0:tθ,θ′,1(h) + δy0:tθ,θ′,2(h) ,

where

δy0:tθ,θ′,1(h) =

∫
β
ys+1:t

θ,s|t (xs)
∣∣∣F ysθ,sΦy0:s−1

θ′,s−1(xs)− F ysθ′,sΦ
y0:s−1

θ′,s−1(xs)
∣∣∣h(xs)µ(dxs)∫

β
ys+1:t

θ,s|t (xs)F
ys
θ,sΦ

y0:s−1

θ′,s−1(xs)µ(dxs)
,

δy0:tθ,θ′,2(h) =

∫
β
ys+1:t

θ,s|t (xs)Φ
y0:s
θ′,s(xs)h(xs)µ(dxs)∫

β
ys+1:t

θ,s|t (xs)Φ
y0:s
θ′,s(xs)µ(dxs)

∫
β
ys+1:t

θ,s|t (xs)
∣∣∣F ysθ,sΦy0:s−1

θ′,s−1(xs)− F ysθ′,sϕ
y0:s−1

θ′,s−1(xs)
∣∣∣µ(dxs)∫

β
ys+1:t

θ,s|t (xs)F
ys
θ,sΦ

y0:s−1

θ′,s−1(xs)µ(dxs)
.

Note that for all xs ∈ X, by H1,

σ−

∫
η−(dxs+1)g

ys+1

θ (xs+1) · · ·mθ(xt−1, xt)g
yt
θ (xt)µ(dxs+2:t) ≤ β

ys+1:t

θ,s|t (xs)

≤ σ+

∫
η+(dxs+1)g

ys+1

θ (xs+1) · · ·mθ(xt−1, xt)g
yt
θ (xt)µ(dxs+2:t) ,

so that

δy0:tθ,θ′,1(h) + δy0:tθ,θ′,2(h) ≤ 2∥h∥∞∥F ysθ,sΦ
y0:s−1

θ′,s−1 − F ysθ′,sΦ
y0:s−1

θ′,s−1∥tv
∥βys+1:t

θ,s|t ∥∞
infx∈X β

ys+1:t

θ,s|t (xs)

≤ 2
σ+
σ−

∥h∥∞∥F ysθ,sΦ
y0:s−1

θ′,s−1 − F ysθ′,sΦ
y0:s−1

θ′,s−1∥tv .

For all bounded measurable function h,∣∣∣F ysθ,sΦy0:s−1

θ′,s−1h− F ysθ′,sΦ
y0:s−1

θ′,s−1h
∣∣∣ ≤ R1 +R2 ,
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where

R1 =

∣∣∣∣∣
∫
(mθ(x

′, x)gysθ (x)−mθ′(x
′, x)gysθ′ (x)) Φ

y0:s−1

θ′,s−1(dx
′)h(x)µ(dx)∫

mθ(x′, x′′)g
ys
θ (x′′)Φ

y0:s−1

θ′,s−1(dx
′)µ(dx′′)

∣∣∣∣∣ ,
R2 =

∣∣∣∣∣
∫
mθ′(x

′, x′′)gysθ′ (x
′′)Φ

y0:s−1

θ′,s−1(dx
′)h(x′′)µ(dx′′)∫

mθ′(x′, x′′)g
ys
θ′ (x

′′)Φ
y0:s−1

θ′,s−1(dx
′)µ(dx′′)

∣∣∣∣∣ ·
∣∣∣∣∣
∫
(mθ(x

′, x′′)gysθ (x′′)−mθ′(x
′, x′′)gysθ′ (x

′′)) Φ
y0:s−1

θ′,s−1(dx
′)µ(dx′′)∫

mθ(x′, x′′)g
ys
θ (x′′)Φ

y0:s−1

θ′,s−1(dx
′)µ(dx′′)

∣∣∣∣∣ .
By H1-3 and Lemma C.1,

R1 ≤ σ+
σ−c−(ys)

{
1

σ−c−(ys−1)
η+ ⊗ µ (ḡys−1 ⊗ ḡys ·M) + η+(G

ys)

}
∥θ − θ′∥2∥h∥∞

The same upper bound can be obtained for R2 as∣∣∣∣∣
∫
mθ′(x

′, x′′)gysθ′ (x
′′)Φ

y0:s−1

θ′,s−1(dx
′)h(x′′)µ(dx′′)∫

mθ′(x′, x′′)g
ys
θ′ (x

′′)Φ
y0:s−1

θ′,s−1(dx
′)µ(dx′′)

∣∣∣∣∣ ≤ ∥h∥∞ .

This yields

∥F ysθ,sΦ
y0:s−1

θ′,s−1−F
ys
θ′,sΦ

y0:s−1

θ′,s−1∥tv ≤ 2σ+
σ−c−(ys)

{
1

σ−c−(ys−1)
η+ ⊗ µ (ḡys−1 ⊗ ḡys ·M) + η+(G

ys)

}
∥θ−θ′∥2 ,

which concludes the proof.

D Checking assumptions

In this section, we provide additional assumptions on the state space model and on the variational
family to support that our assumptions can be verified.

A1 There exist constants 0 < σ− < σ+ <∞ such that for all x ∈ X,

σ− ≤ ζ(x) ≤ σ+

and for all θ ∈ Θ, x, x′ ∈ X,
σ− ≤ mθ(x, x

′) ≤ σ+ .

For all y0:T ∈ YT+1, there exist ϑy0:T− > 0 and ϑy0:T+ > 0 such that for all φ ∈ Φ, t ≥ 0, all
x, x′ ∈ X,

ϑy0:T− ≤ qy0:Tφ,t|t+1(x, x
′) ≤ ϑy0:T+ .

In addition, for all φ ∈ Φ, all y0:T ∈ YT+1, and all x ∈ X,

ϑy0:T− ≤ qy0:Tφ,T (x) ≤ ϑy0:T+ .

Assumption A1 is known as a strong-mixing assumption and allows to verify H1. It is classical
to obtain quantitative bounds on approximation of joint smoothing distributions, see for instance
[Olsson et al., 2008, Gloaguen et al., 2022]. It typically requires the state space X to be compact.
In settings where the bacwkard variartional kernels are Gaussian and obtained with neural networks
which are uniformly bounded with respect to the time index and the observations, ϑy0:T+ and ϑy0:T−
do not depend on the observations.
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A2 For all y ∈ Y, infθ∈Θ

∫
gyθ (x)µ(dx) = c−(y) > 0 and supθ∈Θ

∫
gyθ (x)µ(dx) = c+(y) <∞.

Lemma D.1, Lemma D.2 and Proposition D.3 allow to obtain explicit constants in H4. We
prove that the functions hy0:Tt,θ,φ are upper-bounded explicitly, and that ϕy0:tθ,t and b

y0:t−1

θ,t−1|t are lower

and upper-bounded explicitly, in particular with respect to the observation sequence.
When the observation space is compact we can also obtain a uniform control with respect to

the observations of these quantities which is crucial to check H5 and H6.

Lemma D.1. Assume that A1 and A2 hold. For all θ ∈ Θ, all t ≥ 0, all y0:t, xt,

σ−g
yt
θ (xt)

σ+c+(yt)
≤ ϕy0:tθ,t (xt) ≤

σ+g
yt
θ (xt)

σ−c−(yt)
.

Proof. At time 0, we have ϕy0θ,0(x0) ∝ ζ(x0)g
y0
θ (x0) so that by A1-2,

σ−g
y0
θ (x0)

σ+c+(y0)
≤ ϕy0θ,0(x0) ≤

σ+g
y0
θ (x0)

σ−c−(y0)
.

Similarly,

ϕy0:tθ,t (xt) ∝ gytθ (xt)

∫
Φ
y0:t−1

θ,t−1 (dxt−1)mθ(xt−1, xt)µ(dxt) ,

so that by A1 and A2,
σ−g

yt
θ (xt)

σ+c+(yt)
≤ ϕy0:tθ,t (xt) ≤

σ+ηg
yt
θ (xt)

σ−c−(yt)
.

Lemma D.2. Assume that A1 and A2 hold. For all θ, all 1 ≤ t ≤ T , all y0:T , xt−1, xt,

σ2
−g

yt−1

θ (xt−1)

σ2
+c+(yt−1)

≤ b
y0:t−1

θ,t−1|t(xt, xt−1) ≤
σ2
+g

yt−1

θ (xt−1)

σ2
−c−(yt−1)

and for 1 ≤ t ≤ T − 1,

∥hy0:Tt,θ,φ∥∞ ≤ | log ϑ−(y0:T )| ∨ | log ϑ+(y0:T )|

+ sup
xt−1∈X

∣∣∣∣∣log σ2
−c−(yt−1)g

yt−1(xt−1)

σ2
+c+(yt−1)

∣∣∣∣∣ ∨
∣∣∣∣log σ2

+c+(yt−1)ḡ
yt−1(xt−1)

σ2
−c−(yt−1)

∣∣∣∣
and

∥hy0:TT,θ,φ∥∞ ≤ | log 2ϑy0:T− | ∨ | log 2ϑy0:T+ |+ sup
xT∈X

∣∣∣∣log σ−gyT (xT )σ+c+(yT )

∣∣∣∣ ∨ ∣∣∣∣log σ+ḡyT (xT )σ−c−(yT )

∣∣∣∣
+ sup
xT−1∈X

∣∣∣∣∣log σ2
−c−(yT−1)g

yT−1(xT−1)

σ2
+c+(yT−1)

∣∣∣∣∣ ∨
∣∣∣∣log σ2

+c+(yT−1)ḡ
yT−1(xT−1)

σ2
−c−(yT−1)

∣∣∣∣ ,
where ht,θ,φ, 1 ≤ t ≤ T , are defined in equation 1.
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Proof. By Lemma C.1,

σ2
−g

yt−1

θ (xt−1)

σ+c+(yt−1)
≤ ϕ

y0:t−1

θ,t−1 (xt−1)mθ(xt−1, xt) ≤
σ2
+g

yt−1

θ (xt−1)

σ−c−(yt−1)
.

Since

b
y0:t−1

θ,t−1|t(xt, xt−1) =
ϕ
y0:t−1

θ,t−1 (xt−1)mθ(xt−1, xt)∫
ϕ
y0:t−1

θ,t−1 (xt−1)mθ(xt−1, xt)µ(dxt−1)

we get
σ2
−c−(yt−1)g

yt−1

θ (xt−1)

σ2
+c+(yt−1)

≤ b
y0:t−1

θ,t−1|t(xt, xt−1) ≤
σ2
+c+(yt−1)g

yt−1

θ (xt−1)

σ2
−c−(yt−1)

.

Now by equation 1, for 1 ≤ t ≤ T − 1, hy0:Tt,θ,φ(xt−1, xt) = log qy0:Tφ,t−1|t(xt, xt−1)− log b
y0:t−1

θ,t−1|t(xt, xt−1)

so that∣∣∣hy0:Tt,θ,φ(xt−1, xt)
∣∣∣ ≤ | log ϑ−(y0:T )| ∨ | log ϑ+(y0:T )|

+

∣∣∣∣log σ2
−c−(yt−1)g

yt−1

θ (xt−1)

σ2
+c+(yt−1)

∣∣∣∣ ∨ ∣∣∣∣log σ2
+c+(yt−1)g

yt−1

θ (xt−1)

σ2
−c−(yt−1)

∣∣∣∣ ,
which concludes the proof. In addition, using that

hy0:TT,θ,φ(xT−1, xT ) = log qy0:Tφ,T−1|T (xT , xT−1)− log b
y0:T−1

θ,T−1|T (xT , xT−1) + log qy0:Tφ,T (xT )− log ϕy0:Tθ,T (xT )

yields∣∣∣hy0:TT,θ,φ(xT−1, xt)
∣∣∣ ≤ | log 2ϑ−(y0:T )| ∨ | log 2ϑ+(y0:T )|+

∣∣∣∣log σ−gyTθ (xT )

σ+c+(yT )

∣∣∣∣ ∨ ∣∣∣∣log σ+gyTθ (xT )

σ−c−(yT )

∣∣∣∣
+

∣∣∣∣log σ2
−c−(yT−1)g

yT−1

θ (xT−1)

σ2
+c+(yT−1)

∣∣∣∣ ∨ ∣∣∣∣log σ2
+c+(yT−1)g

yT−1

θ (xT−1)

σ2
−c−(yT−1)

∣∣∣∣ .
Proposition D.3. Assume that A1, A2 and H3 hold. Then H4 holds. More precisely, for all
y0:T ∈ YT+1 and all 0 ≤ t ≤ T ,

sup
θ∈Θ,φ∈Φ

∥∥∥∥∫ λ(dx)
∣∣∣hy0:Tt,θ,φ(x, ·)

∣∣∣∥∥∥∥
∞

= υy0:Tt <∞ ,

where υy0:Tt = supθ∈Θ,φ∈Φ ∥hy0:Tt,θ,φ∥∞ is given in Lemma D.2. For all θ, θ′ ∈ Θ, φ,φ′ ∈ Φ, 1 ≤ t ≤ T ,∫
λ⊗ λ(dxdx′)

∣∣∣log qy0:Tφ,t−1|t(x, x
′)− log qy0:Tφ′,t−1|t(x, x

′)
∣∣∣ ≤ cy0:T1,t ∥φ− φ′∥2 ,∫

λ⊗ λ(dxdx′)
∣∣∣log by0:t−1

θ,t−1|t(x, x
′)− log b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ≤ c

y0:t−1

2,t ∥θ − θ′∥2 ,∫
λ(dx)

∣∣∣log qy0:Tφ,T (x)− log qy0:Tφ′,T (x)
∣∣∣ ≤ cy0:T3,T ∥φ− φ′∥2 ,∫

λ(dx)
∣∣∣log ϕy0:Tθ,T (x)− log ϕy0:Tθ′,T (x)

∣∣∣ ≤ cy0:T4,T ∥θ − θ′∥2 ,
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where cy0:T1,t = (ϑy0:T− )−1λ ⊗ λ(Ky0:T
t−1|t), c

y0:t−1

2,t = 2σ+Lt−1(y0:t−1)/(σ− infx∈X g
yt−1(x)), cy0:T3,t =

(ϑy0:T− )−1λ(Ky0:T
T ), and cy0:T4,T = 2σ+c+(yT )LT (y0:T )/(σ− infx∈X g

yT (x)).

Proof. For all φ,φ′ ∈ Φ, 1 ≤ t ≤ T ,

∣∣∣log qy0:Tφ,t−1|t(x, x
′)− log qy0:Tφ′,t−1|t(x, x

′)
∣∣∣ ≤

∣∣∣qy0:Tφ,t−1|t(x, x
′)− qy0:Tφ′,t−1|t(x, x

′)
∣∣∣∣∣∣qy0:Tφ,t−1|t(x, x

′) ∧ qy0:Tφ′,t−1|t(x, x
′)
∣∣∣ ,

so that by A1 and H3,∣∣∣log qy0:Tφ,t−1|t(x, x
′)− log qy0:Tφ′,t−1|t(x, x

′)
∣∣∣ ≤ (ϑy0:T− )−1Ky0:T

t−1|t(x
′, x)∥φ− φ′∥ ,

an we can choose cy0:T1,t = (ϑy0:T− )−1λ⊗ λ(Ky0:T
t−1|t). Similarly, for all φ,φ′ ∈ Φ,

∣∣∣log qy0:Tφ,T (x)− log qy0:Tφ′,T (x)
∣∣∣ ≤

∣∣∣qy0:Tφ,T (x)− qy0:Tφ′,T (x)
∣∣∣∣∣∣qy0:Tφ,T (x) ∧ qy0:Tφ′,T (x)
∣∣∣ ,

so that by A1 and H3,∣∣∣log qy0:Tφ,T (x)− log qy0:Tφ′,T (x)
∣∣∣ ≤ (ϑy0:T− )−1Ky0:T

T (x)∥φ− φ′∥ ,

and we can choose cy0:T3,t = (ϑy0:T− )−1λ(Ky0:T
T ). For all θ, θ′ ∈ Θ, 1 ≤ t ≤ T ,

∣∣∣log by0:t−1

θ,t−1|t(x, x
′)− log b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ≤

∣∣∣by0:t−1

θ,t−1|t(x, x
′)− b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣∣∣∣by0:t−1

θ,t−1|t(x, x
′) ∧ by0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ .

By Lemma D.2,∣∣∣log by0:t−1

θ,t−1|t(x, x
′)− log b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ≤ σ2

+c+(yt−1)

σ2
−g

yt−1(xt−1)

∣∣∣by0:t−1

θ,t−1|t(x, x
′)− b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ .

Then, noting that b
y0:t−1

θ,t−1|t(x, x
′) = ϕ

y0:t−1

θ,t−1 (x
′)mθ(x

′, x)/cθ(x) where cθ(x) =
∫
ϕ
y0:t−1

θ,t−1 (x
′)mθ(x

′, x)µ(dx′),
write

∣∣∣by0:t−1

θ,t−1|t(x, x
′)− b

y0:t−1

θ′,t−1|t(x, x
′)
∣∣∣ ≤ ∣∣∣∣∣ (ϕ

y0:t−1

θ,t−1 (x
′)− ϕ

y0:t−1

θ′,t−1(x
′))mθ(x

′, x)

cθ(x)

∣∣∣∣∣
+

∣∣∣∣∣ϕ
y0:t−1

θ′,t−1(x
′)(mθ(x

′, x)−mθ′(x
′, x))

cθ(x)

∣∣∣∣∣+
∣∣∣∣∣ϕ
y0:t−1

θ′,t−1(x
′)mθ′(x

′, x)

cθ′(x)

∣∣∣∣∣
∣∣∣∣cθ′(x)− cθ(x)

cθ(x)

∣∣∣∣
By A1,∫
λ⊗ λ(dxdx′)

∣∣∣∣∣ (ϕ
y0:t−1

θ,t−1 (x
′)− ϕ

y0:t−1

θ′,t−1(x
′))mθ(x

′, x)

gyt−1(x′)cθ(x)

∣∣∣∣∣ ≤ 2
σ+

σ− infx∈X gyt−1(x)

∥∥∥Φy0:t−1

θ,t−1 − Φ
y0:t−1

θ′,t−1

∥∥∥
tv
,
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and by Lemma D.2, we can choose c
y0:t−1

2,t = 2σ+Lt−1(y0:t−1)/(σ− infx∈X g
yt−1(x)). For all θ, θ′ ∈ Θ,

∣∣∣log ϕy0:Tθ,T (x)− log ϕy0:Tθ′,T (x)
∣∣∣ ≤

∣∣∣ϕy0:Tθ,T (x)− ϕy0:Tθ′,T (x)
∣∣∣∣∣∣ϕy0:Tθ,T (x) ∧ ϕy0:Tθ′,T (x)
∣∣∣ ,

By Lemma D.1, ∣∣∣log ϕy0:Tθ,T (x)− log ϕy0:Tθ′,T (x)
∣∣∣ ≤ σ+c+(yT )

σ−gyT (x)

∣∣∣ϕy0:Tθ,T (x)− ϕy0:Tθ′,T (x)
∣∣∣ .

Therefore, ∫
λ(dx)

∣∣∣log ϕy0:Tθ,T (x)− log ϕy0:Tθ′,T (x)
∣∣∣ ≤ 2

σ+c+(yT )

σ− infx∈X gyT (x)

∥∥∥Φy0:Tθ,T − Φy0:Tθ′,T

∥∥∥
tv
,

and by Lemma D.2, we can choose cy0:T4,T = 2σ+c+(yT )LT (y0:T )/(σ− infx∈X g
yT (x)).

If the observation space is compact, under standard regularity assumptions, all upper bounds
can be obtained uniformly with respect to the observations. Therefore, H5 holds as soon as the
integrals under µ, η+ ⊗ µ and λ+ ⊗ λ+ are finite.
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