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Abstract

In this paper, we consider variational autoencoders (VAE) for general state space models.
We consider a backward factorization of the variational distributions to analyze the excess risk
associated with VAE. Such backward factorizations were recently proposed to perform online
variational learning [Campbell et al., 2021] and to obtain upper bounds on the variational esti-
mation error [Chagneux et al., 2022]. When independent trajectories of sequences are observed
and under strong mixing assumptions on the state space model and on the variational distribu-
tion, we provide an oracle inequality explicit in the number of samples and in the length of the
observation sequences. We then derive consequences of this theoretical result. In particular,
when the data distribution is given by a state space model, we provide an upper bound for
the Kullback-Leibler divergence between the data distribution and its estimator and between
the variational posterior and the estimated state space posterior distributions. Under classical
assumptions, we prove that our results can be applied to Gaussian backward kernels built with
dense and recurrent neural networks.

1 Introduction

Deep generative models have been increasingly used and analyzed for the past few years. In this
setting, Variational autoencoders (VAEs) offer the possibility to simultaneously model and train
(i) the conditional distribution of the observation given latent variables referred to as the decoder,
and (ii) a variational approximation of the conditional distribution of the latent variable given
the observation referred to as the encoder. They have been successfully applied in many contexts
such as image generation [Vahdat and Kautz, 2020], text generation [Bowman et al., 2015], state
estimation and image reconstruction |Cohen et al., 2022].

Variational inference has been widely and satisfactorily used for many practical applications but
its theoretical properties has been analyzed only very recently. Theoretical guarantees have been
mostly proposed for variational inference procedures in settings where datasets are based on inde-
pendent data and for mean-field approximations. In [Huggins et al., 2020], the authors provided
variational error bounds, in particular for the estimation of the posterior mean and covariance.
In [Chérief-Abdellatif and Alquier, 2018|, the authors established the concentration of variational
approximations of posterior distributions for mixtures of general laws using PAC-Bayesian theory.



The PAC-Bayesian theory has also been used in [Mbacke et al., 2023] where the authors controlled
in particular the L? reconstruction loss under the true data distribution for VAEs. In addition,
[Tang and Yang, 2021] provided a theoretical analysis of the excess risk for Empirical Bayes Varia-
tional Autoencoders for both parametric and nonparametric settings. They derived a set of generic
assumptions to obtain an oracle inequality explicit in the number of samples and proposed an up-
per bound for the total variation distance between the true distribution of the observations and
a variational approximation combining the empirical distribution of the dataset and the proposed
VAE architecture.

In this paper, we aim at extending the theoretical results on variational inference procedures
in two directions. First, we set the focus on the use of VAEs for general state space models,
i.e. settings where the decoding distribution PQY of the observations depends on an unobserved
Markov chain. In addition, instead of using mean-field approximations, we consider variational
encoding distributions @, satisfying a backward factorization as proposed in [Campbell et al., 2021}
Chagneux et al., 2022]. In [Chagneux et al., 2022, the authors derived the first theoretical results
providing upper bounds on the state decoding estimation error when using variational inference
with backward factorization and no such results were proposed for state space models using a
mean-field approximations. This factorization was used in [Campbell et al., 2021] to define new
online variational estimation algorithms, where observations are processed on-the-fly.

In this paper, we provide the first (up to our knowledge) theoretical guarantees on the trained
variational approximation in the setting of independent copies of sequences with distribution Pp
when using a backward variational factorization.

e We provide assumptions on the decoding and variational encoding kernels under which we
prove an oracle inequality for the risk explicit in particular in the number of samples and
in the length of the observation sequences, see Theorem [3.1] This result is established using
an alternative formulation of [Tang and Yang, 2021, Theorem 3] in our state space setting
and with an explicit dependency on some constants to track all terms depending on the
number of observations. This allows to understand when the procedure leads to a decoding
distribution that approximates well the data distribution together with a coding distribution
which approximates well the decoding state distribution.

e In particular, when data are generated from a general state space model, and when Pp belongs
to the decoding family of distributions, we give an upper bound also explicit in the way the
backward coding kernels approximate the backward decoding kernels, see Corollary [3.2]

e We analyse settings in which our results hold, in particular settings with Gaussian backward
kernels based on Multi-Layer Perceptrons (MLPs) and on Recurrent Neural Networks (RNNs).

The paper is organised as follows. The general setting and notations for state space models and
variational learning are given in Section Assumptions and theoretical results are proposed in
Section [3| along with discussions on specific deep architectures used in practice. A discussion with
insights for future works is given in Section [ Detailed proofs of theoretical results are given in
Appendices [Bland [C] Additional proofs to highlight that when the state and observation spaces are
compact our main results hold are given in Appendix [D]



2 State space model and variational estimation

Let © C R% be a parameter space. In this paper, we consider a state-space model depending on
0 € ©, i.e. a bivariate discrete-time process {(X;,Y;)}41>0 where {X,}1>0 is a hidden Markov chain
in a measurable space (X, X) with initial distribution x with density ¢ with respect to a reference
measure y and for all ¢ > 0, the conditional distribution of X1 given X is written My(Xy,-)
and has density mg(Xy,-), where a,., is a short-hand notation for (a,,...,a,) for 0 < u < v and
any sequence (ag)eso. The observations {Y;}o<i<r take values in a measurable space (Y,Y) and
they are assumed to be independent conditionally on Xg.r and, for all 0 < t < T, the distribution
of Y; given Xo.7 depends on X, only, is written Go(X, ), and has density y — gj (X;) with respect
to a reference measure v.

In this context, the joint probability distribution Py of (Xo.7, Yo.7) has density with respect to
p®T+D) @ p®(T+1) given, for all @ € O, zo.r € XTT! and all yo.r € YT, by

T
p@,O:T(xO:TvyO:T) .I‘Q gG H It 173?,5 g@ ( ) )

and the joint smoothing distribution, i.e. the conditional distribution of Xy.r given Yy.7, is given
for all measurable function h by

J x(dzo)g (mO)Ht L Mo (w41, day) gy" (24 )h(%:T)_
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The probability density of <I>9 oT|T is denoted by ¢, 0| T In the following, we use the notation
@z?t’ @z"o’ o 1O denote the the filtering distribution at time ¢, i.e. the conditional distribution
of X; given Yy, with a similar convention for the probability densities. The joint smoothing

distribution can also be written

o.0rr(h) =

T-1

5! o (dzo.r) = ®po7 (dar) H Bey?fT:tt:ll|T_t(l'T—t7deT—t—l)7
=0

where B;’OTT o 11|T J(@r_¢,drr_y_1) is the backward kernel at time T'—¢ defined by BgOTT oo i‘t(acT,t, der_s1) x

<I>7;’°TT ~ 1 (dzp_¢—1)me(xr—s—1,27—¢) with a probability density with respect to p denoted by

szTT - iIT J(@r_¢,-). Forall T, 0, yo.r € YT, the loglikelihood of the observations is:
207 (0) = log L™ (0)
where
L7 () = /pe,o:T($0:T7yO:T)M(dﬂCo:T) .
The joint smoothing distribution is usually intractable and we focus in this paper on vari-

ational learning to perform approximate maximum likelihood. Following [Campbell et al., 2021
Chagneux et al., 2022], we propose a backward variational formulation:

Q?;OTT(deT) de H QWT t—1|T— t(xT—tade—t—l)y
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where ¢ € ® C R%, and where Qyosztfllet(xT,tg) (resp. %T) has probability density

@,
qi%?ftfl‘Tit(xT,t, -) (resp. qiojf) with respect to the reference measure u. In this setting, the

ELBO writes, for all 8 € ©, ¢ € ®, and for a sequence of observations Yy.r,

’(DYO:T ) )

ELBOY (6, ) = (07 (9) — KL (Qty | @)%

Let (Yoi;T)lgig_n be i.i.d. sequences with distribution Pp with density pp. Maximizing the ELBO
S ELBO?‘T (0, ) is equivalent to minimizing the following loss function

n

1 .
= — E Yy
En,T(97 30) n P m(97 22 O.T) B}
where

i po(Yy g,
m(0, ¢, Yo.r) = log M +KL (Qw?OT:T
LTO:T (9)

Yo.r
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Define

(O, Pn,T) € argmingeg yeo Ln1(0,90) .

Such a procedure is a so-called M-estimation method in the statistical literature. The intuition
is that with large data sets, that is when n is large, the ELBO is closed to the expected (under the
unknown distribution of the data) value of m, and the estimated decoding and coding parameters
are close to minimize this expected value. An important body of work in the statistical community
has been devoted to develop very general settings in which non asymptotic bounds on the risk
of M-estimators, referred to as oracle inequalities, can be given, see |[van de Geer, 2000] as early
reference, or [Wainwright, 2019] and the references therein for more recent results. Moreover,
oracle inequalities are obviously the only property one can hope for such estimators, the other
properties being consequences of the oracle inequality. In the following section, we thus first provide
assumptions under which we obtain an oracle inequality and then discuss consequences.

3 Main results

3.1 Notations.

In the following, for all measures A and 1 on (X, X) and all transition kernels K we consider the
following notations. For all measurable sets A C X x X, A@n(4) = [1a(z,2")A(dz)n(dz’") and A®
K(A) = [14(z,2")\(dz)K (z,dz’), for all measurable sets B C X, AK(B) = [ A(dz)1p(2')K (z,d’),
and for all real-valued measurable functions h on (X, X), A(h) = [ A(dz)h(z). For all measurable
functions hy, he, we write hy ® hso : (x,2") — hy(x)hs(z').

For all a > 0, define on R the function 1, : x — exp(z®) — 1.

For all real-valued random variables X, define the Orlicz norm of order « by

[ X|[w, = nfrso{E [Ya(|X|/A)] <1}

For all probability measures P and () defined on the same probability space, || P — Q||+ will denote
the total variation norm between P and @, and KL (Q||P) their Kullback-Leibler divergence, that
is KL (Q||P) = Eqllog(dQ/dP)].



3.2 Assumptions

In this section, we propose a set of assumptions on the kernel densities mg and qZﬁ’ﬂTt 41,058 <T-1,
and on the conditional densities gj, under which we are able to prove an oracle inequality. In the
state space model literature, Assumption HI] is usual to control smoothing expectations and HZ|
for the study of asymptotic properties of maximum likelihood estimators. More assumptions are
needed to manage the complexity of the models and to get a nonasymptotic control of the risk of
the estimators. These controls are obtained with Assumptions We discuss in Section
how they can be applied to specific architectures used in practice. Additional discussions on the
assumptions are provided in Appendix [D| where we prove that usual compact state space models
are covered by our theory.

H1 There exist probability measures n_ and n4 on (X, X) and constants 0 < o_ < o4 < oo such
that for all € ©, x € X, all measurable set A,

o-1-(A) < x(4) <oy (A)

and
o-n-(A) < My(z, A) < oy (A).

There exist probability measures A_ and Ay on (X, X) such that for all yo.r € YT*! there
exist 9" > 0 and """ > 0 such that for all ¢ € ®, ¢t >0, z € X, all measurable set A,

ILTA(A) S QU (2, A) SOPTAL(A).

In addition, for all ¢ € ®, all yo.r € YT+, and all measurable set A,

IOTA_(A) < QU (A) < D TAL(A).

H2 For all y €Y, infgeo [ g5 (z)n-(dz) = c_(y) > 0 and supgeg [ g (2)n4(dz) = c4(y) < .

We consider also the following notation supycegy’ = g¥* and infgcogy’ = gt
We constrain the kernels and the conditional densities to be Lipschitz in the parameters with a
Lipschitz coefficient depending on the variables.

H3 There exists M such that for all 8,6’ € © and z, 2’ € X,
Ime(,2") —me(z,2")| < M(z,2")[|0 — 0|2 .

For all 1 <t < T, yo.T, there exists Kffflt such that for all p,¢’ € ® and z, 2’ € X,

U 2) = Ty 2)| S KRG )l — @l

In addition, there exists K¥”" such that for all ¢, ¢’ € ® and z € X,

QF (2) = W5 (@) < KR @)l = ¢l
For all y € Y, there exists GY such that for all 6,6’ € © and z € X,

|95 (x) — gy (x)] < G¥(2)]|0 = 0|2 -



Define, for 1 <¢ < T — 1,

h{ (w1, m) = log g7 || (e, mp—1) — log by (e, 1) (1)
and, by convention, hT@ga(xT 1L,ITT) = loqu‘?:qT_l‘T(xT,xT_l) logbGT 1‘T(IT,IT 1)+logqy°T(xT)—

log ¢p’; T(l’T)-

H4 For all yo.r € YTt and all 0 <t < T,
/ A+ (dz) Yy, (o, (H VT < oo,

and for all 6,0’ € ©, o, € ®, 1 <t < T,

sup
0€0,pcd

/)\+®)\+(d(£d.’£ ‘long tT1|t( ) logqy()? 1|t($,$/) SC??tT H@7901||2 )

bp i) (2, 2) = log by 17y (2, 2") | < ey T 10 =0l

/)\+ ® )\+(d$d$/)

[t \mgq””( )~ log ()] < 4 o — &1, -

/)\Jr dx ‘log yoT 1og¢y°T( ) <CyOTH9 9/”2 ,

where A is defined in

Our upper bounds require to prove that m is a Lipschitz function of the parameters, and we need
an upper bound on the L2-norm of the Lipschitz coefficient. For this, we consider the following

moment assumptions.

H5 There exists A such that the following inequalities are satisfied.
2 2
E |:<1910 TC:};OTT) :| <A,E |:(19§o TCZOTT> :| <A,

forall0 <t < T,

o P o

forall1<t<T,

L @ u(M @ g¥i-1g"")?
E Yo.r\2,.Yo:t—1 < A.E UESNa <4
{((19+ ) cay ) } = [ c_(Yi_1)?c_(Y3)? T

" 2
E (’ﬁm > A @A (KT )p (Y():T)S_t> <A,

s=t—1

where for all yo.1, p(yo.r) = 1 — 977, for all 0 < 5, < T,

e (Y)2u(GY+)?
B [cfm)%_(m?] =4,



and forall 0 <t<T,all1<s<T,

E <A.

(cm@)m ® (M @ gYs-lg“))Q
c—(Yso1)e—(Y)e—(Yy)

The following assumption is used to have concentration properties, as usual in the statistical
literature to get theoretical guarantees with finite samples.

H6 There exists a, and B > 0 such that for all T > 1,

< BT,
Yo

T
ogpo(Yor)l,, < BT and ||(007)% - supy,, S As @A, ([,
t=1

)

and forall 0 <t < T,
[[log et (Ye)[ V [log c— (Yo)l[ly., < B .

3.3 Oracle inequalities and consequences

Our main result is an oracle inequality for the risk. The so-called variance term has the usual rate
1/n up to logn terms in the sample size n. It is proved to grow as much as 7° in the length T
of the sample sequences. We assume that © and ® are compact spaces, and that the sum of their
diameters is bounded by dj.

Theorem 3.1. Assume that Ij@ hold. Then, there exist constants co, ¢1, c2, D which depend
onoy,o_, a., A, B and dy only, such that with probability at least 1 — coexp(—c1{ds logn}1/e=),

~ . _,.Dd. T3
/m(0n¢T7 &n, 75 Yo.1)Pp (Yor)dp(yo.r) < infysg {(1 +Y)Er +e2(14+~71)

log(d.n)(log n)"/*- } ’

where Er = mingeo yea [ m(0, ¢, yo.7)po (Yo.r)di(yo.r) and d. = dg + d,.

Proof. To prove Theorem3.1] we use Theorem|[A.1] which is an alternative formulation of [Tang and Yang, 2021,
Theorem 3], proved in Appendix [A] First, Assumption A of Theorem holds with D = DT for
some positive constant D depending on B. This is a consequence of the first point in Proposi-

tion [B-4] and Proposition
We now prove that Condition A of Theorem holds with a; < CT? for some C > 0. Write,

for all 8, 1, w2, Yo.7,

Yo:T
q [):T(XO:T)
gyo:r 0’ , =E wo. log%—
(0,1, 92) a6 [ Z?@TT|T(X0=T)

Note that
A9,0, 0, ¢ yor) < [T (0) — E7(0)] + [EYT (0, 0, 0) — EVT (0, ¢, )] .

Write
|5y0:T (0, <)0) —&vor (0,7 <P/)| < Al(ga ' <p/a yO:T) + AQ(ev 0/7 2 @lv yO:T) ’



where

AL(0, 0,9 yo.r) = [EYT (0,0, 0) — EVT (0,4, )] ,
Ny (0,8, 0, ¢ yor) = [EVT (0,0, ) — EVT (0, ¢, )] .

Therefore,
A(aa 0/7 2 90/7 yO:T) < M%O:T (0) - Zg’oT(e/” + Al(e’ 2 ‘)0/7 yO:T) + AQ (03 0/7 2 30/7 yO:T) .

By Proposition Proposition and Proposition we get that for all 6, ¢/, ¢, ©’, and all
Yo:T

A0,0', 0,9, yor) < (k1(Yorr) + Ka(yor)) 10 — 0'll2 + (k2 (yo:r) + K3(yor)) lle — &' l2,

where

Gyo T ® M - —yt_1® Yt
k1 (Yo:r) = a+77+( )+Z — {C+(yt)Lt—1(y0:t—1)+ e @ 1M - g g )+n+(Gyf)} ,

c—(yo) —1 o_c—(yt) —c—(yt-1)
(2)
with M - g¥— ® g¥%t (z,2') = M(x,z")g¥—*(x)g¥ (z'), and for all ¢,
L(y-):ﬁzt:eH ! N+ @p (M- g%t @ g%) + u(G*) 3)
o) =2 25 e ™ |
withe=1—-0_/o4,
T T
K2 (yo.r) = (V) Z T A @A (KT ) plyor)Th (4)
t=1 s=t—1

HS(ZJO:T) ﬁyo T (1990 T Z Cyo T 4 Yo T) 7 (5)
and

im0z (s Eti ) o

in which v/, ¢{%", 35", s’ and ¢’ are defined in Using it is easy to prove that

Elk1(yo.1)?], Elk2(vo.7)?], E[x3(vo.T)?], and E[k4(yo.7)?] are upper bounded by ¢T? for a constant
c that depends only on o, o_ and A, and Theorem [3.1] follows. O

Note that

/m(é\n,T7 @n, 1, Yo:1)Pp (Yo7 ) dp(yo.r) = KL (PD‘

Y YOT Yo.r
P@%T) 4 Ep KL ( Yor TH%” " T|T>

If the upper bound in Theorem is small, then the distribution Pp of the observations is well
approximated by the decoding observational distribution ng , and the decoding distribution of the
n,T



latent state distribution given data & 00 T 0T|T is also in average well approximated by the coding
n,T»

distribution Q$ 0T
In the same way,

ET = min9€@7¢€<p {KL (PDHP;) + EPDKL < ©, O T

i) |

In case the data follows a state space distribution given by some decoding distribution, that is if
there exists 6* € © such that Pp = P(}i , the oracle inequality in Theorem becomes, by taking
0 = 0* to upper bound Er,

YOT

KL (Pgi PY >+EPyKL( AnTOTH‘I)eﬂTom) §(1+~y)min¢e¢]EP9y*KL( Yor

"I’e* OT\T)

Dd.T?
+e(l+97h) log(d.n)(logn)'/**  (7)

for any v > 0. In the following corollary, we assume that the coding backward kernels are chosen
such that they are good approximations of the backward decoding kernels in Kullback-Leibler
divergence.

H7 There exists € > 0, such that for all € © there exists ¢ € ® such that for all yo. € Y7+,

KL (@7

L) <e
and for all 1 <t <T,

Yo: Yo:t—1
KL (Q;(jtillt”Be?tt—l\t> Se€.

Corollary 3.2. Assume there exists 0* € © such that Pp = P).. Assume moreover Tﬂ Then
under the same assumptions as in Theorem [3.1], for the constants co, c1, ca, D in Theorem
with probability at least 1 — coexp(—ci{d,logn}"*), for any v > 0,

log(d,n)(logn)'/= .

Dd, T
PY )+Epy KL (QF TOTH‘I’Y” ) < AN (T+D)eter(1497)

Y
KL (Pg* o

When the data distribution is given by a state space model, Corollary [3.2] provides an upper bound
for the Kullback-Leibler divergence between the data distribution and its estimator and between
the variational posterior and the estimated state space posterior distributions. This result sheds
additional light on the quality of variational reconstruction in state space models with respect
to [Chagneux et al., 2022, Proposition 3]. In [Chagneux et al., 2022 Proposition 3|, the authors
provided upper bounds on the error between conditional expectations of state functionals under
the true posterior distribution and under its variational approximation. In both settings, designing
coding backward kernels that are good approximations of the true backward decoding kernels is
enough to obtain quantitative controls on the reconstruction error.

Proof. The result follows from equation [7], H7] and the fact that for any 6 € © and ¢ € @, for any
Yo.T,

KL (QUWir

T
@ hr) = DKL (QUWy,|[Bi,) + KL (Qur o).
t=1



3.4 Applications

In this section, we consider generative models where the transition kernels and emission distributions
are Gaussian in various classical settings. We show that under weak assumptions on these models,
some assumptions of our main results hold. Establishing that all assumptions are satisfied in general
settings, i.e. without very specific assumptions on the architectures, is a more challenging problem.

We prove in Appendix [D] that holds in particular for compact state spaces. We also prove
that the functions h%:a are upper-bounded explicitly, and that g?t’t and bg‘;t_’f‘ , are lower and
upper-bounded explicitly. This allows to obtain explicit constants in Providing additional
comments on the assumptions requires assumptions on the observation space or on the dependency
of the variational distributions on the observations. When the observation space is compact we
can also obtain a uniform control with respect to the observations of these upper bounds which is
crucial to check HE and Hel

Gaussian backward kernels with dense networks. = We consider a generative model where
the transition kernels and emission distributions are Gaussian and parameterized by dense networks.

e For all z € X, 2’ — myg(x,2’) is the Gaussian probability density function with mean pg(x),
and variance Yg(z) where (pg(z), Z(z)) = MLP?(2) with MLP? a dense Multi-layer network
with input z and weights given by 6. In this case, if the output layer of MLP? is such that )
is bounded and £ < 5, (z) < ¥ (ie. 8y (z) — X and & — £, ' (z) are positive semi-definite
matrices) for all z € X, then there exist constants ¢, ¢ such that for all z,z’ € X,

cexp (—Az"z) < mp(2,x) < Cexp (—Aa(2)) ,

where ) is the smallest eigenvalue of ¥ and X is the largest eigenvalue of 3 and where

(Ul = MY Lyeyzar + (lzll = m)* Lo <m + (M = m)* Loz jaj<nr)

NN

a(z) =

with m = infiex oco [|[1o(7)]| and M = sup,cx pee ll1o(z)]]. This implies that holds.
In order to check if we assume also that for all z € X, § — pp(z) and 0 — X, (2)
are continuously differentiable and that © is compact then there exists M such that for all
0,0/ € © and z,z’ € X,

Imo(z, 2') — mg: (z, )| < M(z,2")]|0 - 6" -

We can check I for log bgotit:ll‘ ;» as other items can be verified following the same steps. As-
bzot‘flll ;(z,-) is a Gaussian probability density with mean uZ“;i‘ﬂ .
Eg(’t’fll' ,(x). Under similar regularity assumptions on the networks providing yz";ffl ,(z) and

Y01 ((E), when O is compact, holds.

0,t—1|t

suming that () and variance

e Forall1 <t < T,z eX, z'+— ¢ (x,2') is the Gaussian probability density function with

@, t—1|t
mean p’",(x), and variance X" | (z) where (ui‘fﬁl‘t(x),Eifﬁllt(m)) = MLPi’flT‘f(a?)

A—1|t o, t—1]t

with MLPZt’E’lTl’f a dense Multi-layer network with input x and weights depending on ¢. In

this case, is the output layer of MLPfﬂ‘lT"f is such that “ZO,ZT—H . is bounded and ZtyflT‘ , <

. _ wYo: . . _ . wYo: . _ oy s
(EZTZT—W(@")) '< Ztg{\t (ie. (ZZS%T—W(QU)) 1_233'1175 and Etng\t—(EZ?f_Ht(x)) ! are positive

10



semi-definite matrices) for all z € X, then there exist constants gtyff‘ » éi’ffl . such that for all
z,x € X,

Yo: NYor T Yo: / —=Yo0: Yo:
@ texp (X2 Tw) < g7, e) < @07 exp (<A1, B() )

where YT is the smallest eigenvalue of 37°7, and Xﬁ:lﬂt is the largest eigenvalue of ffi:at

A1)t Syt
and where
1 T N2 : 2
Blz) =5 ((”x” = M) s arro, + (el = m® 1) Loy <mvor,
: T \2
HMP, = g, <poieaner,)
with m’t”ﬂ‘lﬂt = infyex Hﬂgfflt(x)ﬂ and Mtyf’lTlt = SUp,ex ||ui’21T‘t(x)H Similar assumptions can

be used for qZ“’TT using dense neural networks with bounded output. Under similar regularity

assumptions on “Z(::tT—l\ ;> and EZ‘:%T_” , than for ug, and variance Xy, we may prove that

holds when ® is compact.

Gaussian backward kernels with recurrent networks. A natural parameterization is also
to use a recurrent neural network which updates an internal state (s;);>0 from which the backward
variational kernels and filtering density are built. For all ¢ > 0, define s; = RNN?(s;_1,y;) where

RNN¥ is a recurrent neural network, and let 2’ — qi‘?f_ll ,(z,2") be the Gaussian probability density

?ﬂf‘t, and variance Ei’fflt where (u¢, 3) = MLP#(s;). If the network MLPY

is bounded similarly as in the dense neural network case, then the backward variational kernels

satisfy

function with mean p

Functional autoregressive models. The discussion on neural networks also indicates that
the assumptions can be verified for some classical statistical models. Assume for instance that
X =R and that for all § € O, z € X, 2’ — my(z,z’) is the Gaussian probability density function
with mean fy(x), and variance ag(x). Then, holds for my when —oo < infzex peo fo(z) <
SUP,ex pco fo(z) < 0o and —oo < infiex peo 0o(z) < SUP,ex pco op(x) < 00.

(Gaussian emission densities. Assume that at each time ¢t > 0, Y; = hg(X;) + ¢, where
{e:}+>0 are independent Gaussian random variables. Assume also that hg(X;) = MLP?(X;) where
MLP? is a dense neural network with bounded output layer, then holds. Assume that for all
x € X, 0 — hg(z) is continuously differentiable and that © is compact, for all y € Y, there exists
GY such that for all 6,6’ € © and z € X,

195 () — g, (@) < GY ()]0 — 0|2,

which means that H3] holds for the emission distributions.

4 Discussion

In this paper, we used a backward decomposition of variational posterior distributions to propose
the first theoretical results for variational autoencoders (VAE) applied to general state space models.
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Under strong mixing assumptions on the state space model and on the variational distribution, we
provide in particular an oracle inequality and an upper bound for the Kullback-Leibler divergence
between the data distribution and its estimator.

Although these results are the first theoretical guarantees for VAE in the context of state space
models, we believe that this is the first step to solve challenging open problems. First, in order to
cover a wider variety of applications, weakening the strong mixing assumptions, for instance using
local Doeblin assumptions, would be very interesting although it is a challenge when analyzing the
stability of smoothing distributions. Another research direction is to understand how our results
can be extended in settings where the observations are processed online, i.e. in cases where the
parameters are updated when new observations are received but never stored. To the best of our
knowledge, online variational estimation has recently been explored with new methodologies but
without any theoretical guarantees.
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A An oracle inequality adapted from [Tang and Yang, 2021]

We propose an alternative formulation of Theorem 3 in [Tang and Yang, 2021] in which we provide
the precise behavior of the constant in the variance term. To avoid introducing too many new
notations, we formulate the results of [Tang and Yang, 2021] choosing the observation to be Yp.p,
the latent variables to be Xg.7 in our setting.

Condition A. There exist a; > 0 and a function b such that for all 6 € ©, 8" € O, p € ®,
50/ € (I)a Yo:r € YTJrlv

Im(0, ¢, yo.T) — m(ala <P/,y0:T)| < b(yo.r) (0, ) — (9/, <,0/)||2,

with E[b2<Y0;T)] S ai.

Assumption A. There exist a, > 0 and D > 0 such that

Yo.
R ) e .
¢ pp(Yo.r) 0,07 ||Po,T <D.
: .

Theorem A.1l. Assume that © and ® are compact spaces and that the sum of their diameter is
upper bounded by dy. Assume moreover that Condition A and Assumption A hold. Then, there
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exist constants cg, c1, which depend on dy, a1 and oy, and a universal constant cs, such that with
probability at least 1 — coexp(—ci{d.logn}t o),

alDd*
n

/m(é\n,Ta @n, 15 Yo:1)Pp (Yo )dp(yo.r) < infisg {(1 +NEr +c2(1+47h) log(d.n)(log n)l/a*} ,

where Ep = mingeo pea [ m(0, ¢, yo.r)pp (Yor)dp(yo.r) and dy = dg + d,,.

Proof. We follow the proof of [Tang and Yang, 2021, Theorem 3], in which we track the depen-
dencies of the constants with respect to a;. In [Tang and Yang, 2021, Lemma 14|, a multiplicative
term y/a; is required on the r.h.s. of the inequality. Then on page 24 third line the inequality needs
again ,/a; on the r.h.s., and the end of the proof follows by multiplying d,, by \/a;. We obtain that
in [Tang and Yang, 2021, Theorem 3], their constant cq is proportional to a;. O

B Additional proofs
Proposition B.1. Assume that hold. For all 6, 6’ € ©, and all yo.7 € YT 11,

|47 (0) — €597 (0")] < k1 (yor)||0 — €2,

where

Yo T o . gYt—-1 Yt
K1(Yo:r) = U+77+_((C;0))+Z o_c_Jr(yt) {C+(yt)Lt1(yO:t1) + I ®M(_J\c/[_(zt_1)®g ) +7I+(Gyt)} ;

with M - g¥*= @ g¥ (z, ') = M (z,2")g¥ " (x)g¥* (¢'), where Ly_y is defined in Lemma[C.4

Proof. For all §, 0’ € ©, and all yo.r € YIH!, with the convention pg(yo|ly—1) = pe(yo),

T
T (0) — 7 (0') =~ (log o (yelyot—1) — log per (yelyo:e—1)) -
t=0

For all t > 0,
Po(Ytlyo:t—1) = /sz?t’i‘f (dwp—1) Mo (wr—1,dxe) gy’ (24) -
Note first that
pe(ﬁl/t|y0:t71) > Ufcf(yt) )
so that

PYOT () _ gYoT (91| < |P0(Zl/0) pf)’ |P9 yt|y0t 1) pe’(yt|yOt 1)| '
|T ( ) T ( )| e —(yO) Z o _c_ (yt)

For t = 0, using that pg(yo) = [ x(dzo)gs°(z0), Assumptions H[1|and }I 3| yield

1pe(y0) — por (yo)| < o1 (G¥)[0 —0'|2 .
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In addition,
Do (Yt|Yo:—1) — Por (Ye|yo:t—1) = / (@5?;1‘11 (dzi—q) — ‘1’39;;:11(d$t—1)) My(z¢—1,dzy) gyt (z¢)

+/ q’Z?;z:ﬁ(dmt—l) (Mo(z¢—1,dzy) — Mo (x4-1,dxe)) g5 (zt)+/ <I>§?;§:11(dxt_1)Me/ (@1, dzy) (95" (z0) — gt (z4)) -

Using Lemma [C.1] Assumptions HI] and H3] we get

Yo:t—1 Yo:t—1
’q)Q,t—l - (I)G/,t—l

Do (Ye|yo:t—1) — Por (Ye|yo:e—1)] < {0+C+(yt) tv+

o
2 [ & e )M ) ()5 () + (@) 0 - O

The proof is completed by using Lemma O
Proposition B.2. Assume that hold. Then,

A1(0, 0,9 yo.r) < Ka(yor)|lp — &'|2

where
Yo:T Yyo:T
a2 5 (Xo.r) a0 (Xo:r)
A1(9’907S0,7y0:T) E yOT 1 i 2L —E Yo:T 1 ekl o S s
¢500:TT\T(X0¢T) fer0r o.0.7 7 (Xo:T)
with p(yo.7) = 1 — %7 and
T T
k2 (yor) = (99°7) Z T AL @ ALK Dplyor) "

s=t—1
Proof. For all p,’ € ®,0<t<T — 1, define

t+1
~Yo:T | I Yo:T Yo:T
qLP,Wst\T('TOT - thT xT Qo u—1lu l’u,{L‘u 1 | I o u—1|u !’Eu,‘Tu,l)

t+2 1
yOT Yo:T Yo:T
_q<pT xT H qwu 1|u xuaxufl) H qw/’u71|u(xuvxufl)
u=t+1

with the convention Hu - qZOHT 1‘u(xu, Ty_1) = 1 and Hi:o q(’yp‘f:z_llu(xu, Zy—1)=1,and fort =T,

Yo: yOT Yo:T
qu 0, T‘T('TOT - q SCT H q<p u— 1|u l’u7l'u 1 q<p/T :I/.T H q@ u— 1|u xuvxufl) .

Therefore,

A1(95 (2 <P/7 yO:T) =

)

. |: te@(Xt 17Xt)j| _qu()ﬁT [h?%’I;O(Xt_l,Xt)}

T T
> ey, [0

t=1 s=0
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where h%Tw’ 1 <t < T,aredefined in equation Note first that if ¢ > s+1, then Evo.r [hf"éTw(Xt,l, Xt)} =
0, o 0!, s|T 0,
0 so that

Al(e,%@',yoq“

S By [t x0)

t=1 s=t—1

For all t < s+ 1, write for all measurable set A,

s+1

M?O(::ST (A) = /1A(.Z‘5) p(dzr) H QZOUT 1)u (T, Tu—1)p(dTu—1) ,
5+2
/120; S(A) /]IA(*TS) p(der) H qZOuT 1lu (s Zm1) (A l)qso S|S+1(xs+1’$s) pldas) -

Therefore,

t+1
Yo:T — Yyo:T ~Yo:T Yo:T Yo:T Yo:T
quo:q; ) [ht 0 <P(Xt71’ Xt)i| - (’U'SP»? p’tp @’ s) {H Lp’,ulu} @’ t— 1|tht 0,p *

w,0’,s|T
u=s

Using the backward variational kernels satisfy a Doeblin condition, see [Douc et al., 2014]
Section 6.1.3], so that

1 ~ . —
Byog W (X0, X0] < Sy = R lwplonar)*osc (QUIT_y hE5T,)

e’

where for all measurable functions f, osc(f) = sup, , ex |f(z) — f(z')[. By Hlfand

)

osc (nyif m ty“’gz, < 2H/ ,I e S a1 b (w1, ) p(dwe—1)

‘ oo

i

S 2193_0:T

/’htOQG Ti1, )‘A+(dﬂft—1)

Yo.T ,,Y0:T
< 20970/

‘ o

Noting that by

t+1
g = gep e < Q2 T Q2T Kl = & < O A © XKLl = ¢l

concludes the proof. O
Proposition B.3. Assume that hold. Then,
AQ(Q, 9/3 ®, 90/3 yO:T) S ﬂ3(y0:T) ”90 - 90/”2 + 54(y0:T) HQ - 01”2 P

where

A2(97 9/a ®, 90,7 yO:T) =

Yo:T Xo. y(l):T. X :
]qu9 . ll a0 0. (Xo:r) ] _E o llog 4, 0.7 (Xo:r) H ’

? ¢ZOO:TT|T(X0¢T) e’ g?:gzﬂT(XO:T)

16



with

K3(yO:T) 1990 T (19110 T Z Cyo T yo T) and KJ4(?J0:T) ﬂyo T (193/0 T Z Cyo t—1 y() T) ’

and where ¢{%", 3%, %7 and ¢§%" are defined in .

Proof. By definition,

AQ (97 9/7 2 410/; yO:T)

vor (X, VOT (X,
or [log W”))] —Epr [bg %OT(OT)H ,
/,0:T o 0T

. ZOOTT|T(X0:T 39;(§T\T(X0:T)
Yo T Yyo:T
4 X : q.: 0. X .
S qu"iT log M — log M ’
o o.0:r (Xor) o/ 07 (Xor)

)
T
< S By [T 00 X0 — BT (0, X0)

where hi’fg:p, 1 <t <T, are defined in equation |1} For ¢t < T and all x;_1, x; € X,

o (-1, @) = Bl o (we1, )

S )log qZ?:tqlllt(mhxtfl) - IOg quo(?:,?f”t(xt’xt*l)’
+ [log by (e, wi-1) = log b~ (o, waa)

Using H[I] and H4]

Eppr [[loga%r (o) ~log a7y, (en,e )|

/OT

)

S (19—y‘,-01T)2‘/)‘+ & )\+(d£17d"17/) ’10g qz(ffil‘t(‘rax ) logq t— 1‘t($,$,)
< @2 e — ¢l -

Similarly,
By [[log b3 (onse-1) — log B34 (o )|
< (92 / A+ @ Aq(dzda’) llogbgot’ Sl al) —logbyy 7y, (z,2)]
< ()2l IO = 6l -

For ¢t = T, it remains to bound E aT H log ¢’ (X7)—log ¢y (X7) |+ log ¢’ (X1)—log ¢pr - (X7) ],
which is straightforward by using 1 ) and HA O

Proposition B.4. Assume that and HG hold. Then, there exists ¢ > 0 such that ,

sup |log L%‘”(Q)’
[dSC)

<c.
Yoy
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Proof. For all § € ©, and all yo.r € YT+, with the convention pg(yo|ly—1) = pe(¥0),

T

log LY () = €477 (0) = > log po(ye|yo:t—1) -
t=0

As po(yo) = [ x(dzo)gy° (z0), by o—c—(y0) < po(yo) < oycq(yo). For all ¢ > 0,
polunluni1) = [ 43 (o) Mol o)l (a1).

so that by o_c—(yt) < po(yelyo.t—1) < oycy(yr). Using the second point in H@ and the
triangular inequality concludes the proof. O

Proposition B.5. Assume that and HO hold. Then, there exists B > 0 such that

il

Yo.T
HSUPQEG,Lpe'ib,X ‘KL (QLP,OZT

< BT,
wa*

Proof. Forall § € ©, p € ®, yg.p € YL,

q<p0T (Xo.7) ]

Yyo:r | _ —
‘d) ) = EQZ%TT log Yo:T (X
6,0: T|T 0:1)

ZEyOT {taw(Xt 17Xt)} ;

t=1

KL (QWiir
where h¥%” |1 <t < T, are defined in equation (1l By forall1<¢t<T,

t,0,p°
).

which concludes the proof by Hf} O

hyo T

e ) R

C Technical results

Lemma C.1. Assume that and b@ hold. For all 0 € ©, all t > 0, all yo.; € Y'F, positive
measurable function h,
U—Uf(ggth) < (I)Zéofit, (h) < 0’+’l7+<ggth) )
oycq(Ye) ’ ,c,(yt)

Proof. At time 0, we have ®} (dzo) oc x(dzo)gy°(20) so that by
n_ yoh yoh
a_n (99 ) < (I)zoo(h) < U+77+(96 ) )
o1ct(Yo) —c—(¥o)

Similarly,

B (o) o g (ar) [ O3 (i) Maon1, ),
so that by HI] and HZ]

Yt Yt
o-n-(gy'h) < o (h) < o+1+(95')
o+ (Ye) o—c—(yt)
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Lemma C.2. Assume that H3 and H3 hold. Then, for all, 0’ € ©, t > 1,

Yo:t Yo:t
H(I)e,t - ‘I)ef,t

. < Lt(yO:t)Ha - 9/”2 l

where

s 1 1 _ ~
Li(yos) = Tg 25t p {O_C(y51)77+ ®p(g” " ®@ g% - M) +n+(GyS)} ,

withe=1—0_/o4.

Proof. The proof follows the same lines as the proof of [De Castro et al., 2017, Proposition 2.1],

which was in the setting of a discrete state space. For ¢ > 0, note that @g?f (dzy) = g5 (@) [ q)g?tsz (dzi—1)My(xs—1,dzy)/
where cg(yo.t) = [ 95" (xﬁ@é’?t:ff (dzy_1)My(xs_1,dxs). Consider the forward kernel at time ¢ de-

fined, for all § € ©, all y, € Y, z € R%, and probability measure v by

e )l (@) (da)
T oo a)gg (@ (e (")

Therefore, ®3%" = Fey’;q)g?;‘:f and for all 6,0’ € ©,

Ffivy(x)

Yo:t Yot _ Yt HYo:it—1 _ ¥t FYo:t—1
q’at - (I)G’,t - Fe7tq)9,t71 FG’,t(I)HQtfl )
t—1
_ Yt FY0:t—1 Yt Yo:t—1
= E :At»s(ysi) +Fy @y 1 — Fo ®p s
s=0

where
_ Yt Ys+1 Ys FY0:s—1 Yt Ys+1 Yo:s
Aps(yst) = Fe,t T Fe,s+1F9,s‘I)9/,s—1 - Fe,t T Fe,s+1@9/,s
with the convention Fj%®4 " | = ®4. Consider also the backward function ﬁglst“:t and the forward
smoothing kernel F¥:* defined by
s|t,0

Bgf;”“ (l's) = /MG(xsa d$s+l)ggs+l ($s+1) T Mé'(xtflv dxt)ggt (xt) ;

(s )me (251, m5) 95" (25)

B @) M(ws 1, d2)gg (x)

ng‘tt(xs—lvxs)

Following for instance [Cappé et al., 2005, Chapter 4], we can write for all probability measure =,

Yt .. pYs+1 _ Ys+1:t | Yt
Fo,t Fe,s+1’Y = 70,s|tF9,5+1\t Fe,t|t )

where v 5 ﬁgssjt”fy. Therefore,
t—1
Yo:t _ FYo:t __ Yt L EYstL & Yt L EYs+1 Yt HY0:t—1 _ 1Yt Yo:t—1
q’a,t (I)G’,t - E : (7979'73|tF0,s+1\t Fe,t|t ’7979’7s|tF9,s+1|t Fe,t|t )+F9,tq>9’,t—1 FG/,tq)G',t—l )
s=0
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where g g/ 5|1 ﬁ;’b;tl "F, <I>y0 2% and g gr g X ﬁg;; "®y;. Note that by }' for all measurable
sets A,

1) Ua @B (g (2)

Ys+1:t

Fosiren A) 2 e A g @)

0,s|t

so that

Ys+ Ys+1 t—s ~
HW o st F G 9+1|t Fe,t\f = Yo,00 st 5 9+1|t - Fy ]y <e ||79,9’,8\t - 7970’7S\t||tv )

with e =1 — o_/o4. This yields

H@yo t @g?:t

Yt HY0:t—1 Yt Yo:t—1
< E ~*||ve,00 51t — Vo,0 s’|thV+HF9t(I)0’t 1~ Fol i ®pi Ty

For all bounded measurable functions h,

J By o) B @ T (wa) o) uldas) [ By (ws) @473 (s h(as) pldas)
[ Byt (o) @y 7 (@) p(das) I By (@)@ (ws)u(dzs)

< Sgupr 1 (1) + 0y o(R)

V0,00 51t () — Fo,07, 51t (R)| =

)

where

F@pri ) () — FYe @) (ws) | h(zs) p(das)

[ By (ws) Fyy @ 2 (ws) p(ds) ’

S By @) 8 (wo) () u(das) [ Byl () | F @) 73 () — Fgr 617 (ws) | pldas)
S Bo i (@)@ (a )u(dxs) By ) By () pldry)

Note that for all z € X, by H]]

Ys+1:
f’BGSs\t t .’L‘s

3.0 1 (h) =

S0 2(h) =

7= /777 (dzss1)gp ™ (@s1) - - mg(2—1, 20) g5 () u(dws2:e) < By'yf ()
<op /n+(dws+1)gg”l(:vs+1) ceme(w—1, ) gy (@) p(dzsga)
so that

1885

nf rzeX 53;7? (xs)

< 2 (|lloo | @572 = Fr @572 e -

Oisr 1 (1) + 0557 5 (h) < 2[hlloo | FF @57 7 — Fyir (@577 v

For all bounded measurable function h,

FY @y h— F @00 h| < Ry + Re
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where

_ | (e’ 2)g5" () — mar (', @) gy () @ " (da’)h(z)p(d)
Jmo(a’, 2" gy (@) g 7 (da') p(da”)

)

[ B QR () || om0 = s (g ) B (Al
2| e o) (g (A () [ o 2 )gf ) (A ()
By H}j3] and Lemma [C.1}
0+ 1 . ’
R, < gle1 Ys . M GYs 0 — 0 ||2]|hll o
v T e e g M) (6 - el

The same upper bound can be obtained for Ry as

S me (2!, 2" ggr (2") @2 (da) h(z" ) u(da’)
S mer (2!, 2" ggr (2 @27 (da) p(da”)

< 1Al -

This yields

20
Fys (I)y():s—l _Fys (Dy?:s,l < +
” 0,50 ,5—1 0,50 ’S,1||tv = U,C,(ys) 7€7(y871)

which concludes the proof. O

ne @ u (G © g M>+n+<Gys>} 10-0']1 .

D Checking assumptions

In this section, we provide additional assumptions on the state space model and on the variational
family to support that our assumptions can be verified.

A1 There exist constants 0 < o_ < 04 < oo such that for all x € X,
o <((z) <oy

and for all 0 € ©, z,2' € X,
o_ <mg(x,2') <o, .

For all yo.r € YTT1, there exist 97 > 0 and 94" > 0 such that for all p € @, t > 0, all
z, 2’ € X,

191/0T < (] 3?/) S leio;T .

T
got\t+1( ’
In addition, for all ¢ € ®, all yo.r € YT+, and all z € X,

19y0T <qy0T( )Sﬁiiom .

Assumption Al]is known as a strong-mixing assumption and allows to verify HI] It is classical
to obtain quantitative bounds on approximation of joint smoothing distributions, see for instance
[Olsson et al., 2008, [Gloaguen et al., 2022]. Tt typically requires the state space X to be compact.
In settings where the bacwkard variartional kernels are Gaussian and obtained with neural networks
which are uniformly bounded with respect to the time index and the observations, ﬁ%’;’:T and 9Yo:T
do not depend on the observations.
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A2 For all y €Y, infpco [ gj(z)p(dz) = c—(y) > 0 and supyce [ g4 (x)p(dz) = cy(y) < oo.

Lemma [D.I] Lemma and Proposition [D.3] allow to obtain explicit constants in Hdl We

prove that the functions hyO T are upper-bounded explicitly, and that (bgott and be i 11| , are lower

and upper-bounded expllcltly, in particular with respect to the observation sequence.
When the observation space is compact we can also obtain a uniform control with respect to
the observations of these quantities which is crucial to check H| and H}

Lemma D.1. Assume that and AZ hold. For all § € ©, all t >0, all yo.t, x4,
o—*ggt( ) < ¢y0t( ) 0-+ggt (xt) ]
oycq(ye) o_c_(yt)

Proof. At time 0, we have ¢’ (o) o< ((x0)gg° (o) so that by AI-I

0—930 (w0)

) < 0195 (o)
o4+ (Yo)

= ) = )

Similarly,
oo (1) o< gy (x4) /<I>Z°; T (dae1)me(ze—1, w¢) p(day)

so that by All]and AP]
095 (1) _ gt (2y) < o4ngy' (1)
044 (Yt) . —e—(y)

Lemma D.2. Assume that and A hold. For all 0, all 1 <t <T, all yo.r, Ti—1, T,

02 ggt 1(xt—1) b?JOf 1 ( )< O'-Qi-ggt 1(3:15—1)
9,6—1|t\Tt> Tt—1 o2
0+C+(yt71) c—(yi-1)

and for 1 <t<T—1,

17575 oo < [log¥—(yo.7)| V [log ¥+ (yo.7)]

c—(Yt—1)g¥" " (w4-1) olc(yi1)g¥ " (z11)
+ sup |log 5 lo 5
zi—1EX U+C+(yt71) 707(%71)
and
YT (o0 qg9T
[h75 ol < [log 2077 |V |log 29%""| + sup log < (wr) Vllogw
’ zr€eX O4+Ct (yT) O’,C,(yT)
o2c_(yr-1)g¥"*(ar-1) o%er(yr—1)g¥" " (wr_1)
+ sup |log 5 1 5 ,
er_1€X oicy(yr-1) oZc_(yr-1)

where hyg,,, 1 <t <T, are defined in equation .
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Proof. By Lemma

2 Yt—1 2 Yi—1
ag Tt— a Tt
9299 (w-1) Yot (1 Yme (o1, 14) < Jrgf)—(tl)
o+t (Ye—1) ’ c—(yt—1)
Since
Yo:t—1
byot 1 (xt Ti 1) Gtt 1 (xt_l)m9($t_1,zt)
Gt [ oo (wer)mo (@1, @) p(dwe 1)
we get

C—(yt—l)ggH(fUt—l) Yo:t—1 Uic+(yt—1)93“1($t—1)
2 bet 1|t(xt’xt_1) < 2 :
oict (Y1) Ze(ye-1)
Now by equation for1<t<T-— hf%Tw(xt_l,xt) = logqi(”’tillt(xt,mt_l) —log bg i 1|t($t,£L't 1)
so that

hilooTw(xt—l,ﬂﬁt)‘ < [log U—(yo.r)| V [log ¥+ (yo.1)|

2e (yi-1)gy (1)
ofes(ye-1)

ot e (ye-1)gp " (xe-1)

+ |log Z
o8 207(%71)

\Y ’log

which concludes the proof. In addition, using that

hyly o (@r—1,a7) =log ¢)’7_ p(ar, ar—1) — log b7~ (T, r-1) +1og ¢ (xr) — log ¢ (1)

yields

yr yr

o-gy" () o+9y" (rT)

2T (zp_1,2¢)| < |log29_(yo.7)| V | log 204 (yo.7)| + [log —=2—"= \/’10 —_—

T9<p( T-1 t) | ( 0T)| | +( 0T)| 0_+C+(yT) 7C7(yT)
2 Yr—1 2 Yyr—1

+ [log 70—(y271)99 (xr-1) v log 0+0+(y€fl)99 (r7-1)
oicy(yr-1) oc(yr-1)

O

Proposition D.3. Assume that A9 and H3 hold. Then HJ| holds. More precisely, for all
vor € YTt and all0 <t < T,
/)\(dx

where v{*T = supPgcg yea |11, oo is given in Lemma. Forall,0/ €O, 0,0 € ®,1<t<T,

sup

t,0 <p =y )
0cO,pcd

hyOT ‘H Yo:T

/)\ ® Mdeda') ‘IOg G, 2') —log gy, (,2")| < 3T [l = ¢y

/ A ® A(dzdz’)

) —og b )| < e 0 =0,

/ (dz) )logqy”( ) —log g2 ()| < 8% o — ¢lly

/)\ (dz) ‘log¢y°T x) — log yOT( ) <Cy0T||9 | P
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where <57 = (9"1) I\ @ (KT, 5 = 204 Lioa(you) /(o infrex g (), 457

t—1t)
(O TINEFT), and ' = 20y 0y (yr) L (yorr) /(0 infex 9" (x)).

Proof. For all p,p' € @, 1<t < T,

) — )|

<
027 (2 A gT (o, 0)

)

)log a2’ (@, 2) —log gy} (2,2")

so that by All]and

llog q20;% (2, 2') —1og g%, (w,0)| < (907) K, (@ @)lle = ']

an we can choose cf%j" = (92°7)7TA @ A(K}*7),). Similarly, for all ¢, " € @,

a7 (@) — g% (@)

Qo7 (%) N qgrp(x)

)

[log 207 (x) — log g5 ()| <

so that by Al]and
log 2% (&) — log a2 5(2)| < (927) ' K" (@) — '

and we can choose ¢§%" = (9*°7)IA(KY*7). For all 6,60/ € ©,1 <t < T,

’bym 1 ) byot 1 (.T Z‘/)‘
Y - o1t (% 07,t—1)t\Ts
‘10g bz?tt—llﬁ(m’xl) - 1Og bz?,;—lﬂt(x’x/) Yo:t—1 Nl
) A B ()|
By Lemma [D.2]
2
y ’ y / o cy(Yi-1) Y Y /
’logbe(’tt ez, ') —log by 7y (2, 2)| < Z gt (@) ‘beott Tl a’) =gy (@, 27)
Then, noting that bg?t”‘__f't(:r,x’) = z?t”‘__f (z"Ymeg(x',x)/co(x) where cy(x f(bgot' (@ )ymg (2, x)p(da’),
write
(35 @) — S @) mo(a’, )
byotl T. T by?t 1 (E,lL'/ < > >
By a) = b ()| < i
i (@) (me(a',z) —me (2, ) o1 (@ )me (@', 2) | | co () — co(x)
7163 cor () co(x)
By
o Ao | @) — G o) T TN
® ( x ac) b—1 (! : 1 0,t—1 — Tot—1 )
g¥=1(a)co(x) _infyex g¥e-1(x) t
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and by Lemma we can choose cg?f’l =201 Li_1(yo:—1)/(0— infrex g¥*~*(z)). Forall 0,6’ € ©,

_ obr @ - o)

llog 641 (x) — log 644 (a)] <
045 (@) A 04 ()

)

By Lemma [D1]

. . a1 (YT) | Ly .
log 63 (a) ~ log i) < TEES ot (@) — @)

Therefore,

. . orci(yr) . .
st s < 2 o],
and by Lemma we can choose c{% = 204cy (yr)Lr(yo.r)/(0- infrex g¥7 (). O

If the observation space is compact, under standard regularity assumptions, all upper bounds
can be obtained uniformly with respect to the observations. Therefore, Hf| holds as soon as the
integrals under p, ny ® p and AL ® AL are finite.

25



	Introduction
	State space model and variational estimation
	Main results
	Notations. 
	Assumptions
	Oracle inequalities and consequences
	Applications

	Discussion
	An oracle inequality adapted from tang21a
	Additional proofs
	Technical results
	Checking assumptions

