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2 Laboratoire de Mathématiques, Equipe de Probabilités, Statistique et Modélisation, Bat425,
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Abstract

In this paper, we consider the log-likelihood ratio test (LRT) for testing the number of
components in a mixture of populations in a parametric family. We provide the asymptotic
distribution of the LRT statistic under the null hypothesis as well as under contiguous
alternatives when the parameter set is bounded. Moreover, for the simple contamination
model we prove that, under general assumptions, the asymptotic power under contiguous
hypotheses may be arbitrarily close to the asymptotic level when the set of parameters is
large enough. In the particular problem of normal distributions, we prove that, when the
unknown mean is not a priori bounded, the asymptotic power under contiguous hypotheses
is equal to the asymptotic level.
Keywords: Likelihood ratio test, mixture models, number of components, extreme values,
power, contiguity.
Short title: Asymptotic study of the LRT for mixtures

1 Introduction

Mixtures of populations is a modelling tool widely used in applications and the literature
on the subject is vast. For finite mixtures, the first task is the choice of the number of
components in the mixture. Some estimation or testing procedures have been proposed
for this purpose, see for instance the books of Titterington et al. (1985), Lindsay (1995)
and McLachlan and Peel (2000) or the papers of James et al. (2001), Gassiat (2002) and
references therein. Asymptotic optimality of the likelihood ratio test (LRT) in several
parametric contexts is well known. Using the LRT for testing the number of components
in a mixture appears quite natural. In one way, simulation studies show that the LRT
performs well in various situations (see Goffinet et al., 1992). In another way, the asymptotic
distribution and power of the test have to be evaluated to compare with other known tests.

In this paper, we focus on the asymptotic properties of the LRT for testing that i.i.d.
observations X1, . . . , Xn come from a mixture of p0 populations in a parametric set of den-
sities F (null hypothesis H0) against a mixture of p populations (alternative H1), where the
integers p0 and p satisfy p0 < p.

In Section 2 we apply results of Gassiat (2002) to obtain the asymptotic distribution of
the LRT statistic for testing (H0) against (H1) under the null hypothesis as well as under
contiguous alternatives. Indeed, Gassiat (2002) gives a quite weak assumption under which
the derivation of the asymptotic distribution of the LRT statistic is made in the general sit-
uation when one has to test a small model in a larger one, under the null hypothesis as well
as under contiguous hypotheses. This applies to the number of components in a mixture
of populations in a parametric set with eventually an unknown nuisance parameter. For
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instance, we apply the method to multidimensional Gaussian distributions with unknown
common variance. By this way, we recover known results for mixtures of one or two pop-
ulations but under weaker assumptions, or known results concerning particular parametric
families such as Gaussian or Binomial distributions; see Ghosh and Sen (1985), Dacunha-
Castelle and Gassiat (1997, 1999), Garel (2001), Lemdani and Pons (1997, 1999), Chen and
Chen (2001), Mosler and Seidel (2001) Chernoff and Lander (1995). We also obtain more
general results than previous ones:

• They apply to general sets of parametric families with unknown nuisance parameter.

• Asymptotic distribution under contiguous alternatives is considered.

However, except for smoothness assumptions, the main point is that these asymptotic re-
sults require that the parameter set is bounded.

In Sections 3 and 4 we study what happens when the set of parameters becomes larger
and larger. For simplicity we restrict our attention to the simplest model: the contamina-
tion model for family of distributions indexed by a single real parameter. Indeed, roughly
speaking, the LRT statistic converges in distribution to half the square of the supremum of
some Gaussian process indexed by a compact set of scores. But when this set of scores is
enlarged, the covariance of the Gaussian process is close to 0 for sufficiently distant scores,
so that the supremum of the Gaussian process may become arbitrarily large. Thus one also
knows that for unbounded sets of parameters, the LRT statistic tends to infinity in prob-
ability, as Hartigan first noted for normal mixtures (see Hartigan, 1985). Here, we prove
that under some extreme circumstances the LRT can have less power than moment tests or
goodness-of-fit tests. At the end of the introduction we draw carefully practical conclusions
from this result.

More precisely, let T be [−T, T ] and F = {ft , t ∈ T} be a parametric set of probability
densities on R with respect to the Lebesgue measure. Using i.i.d. observations X1, . . . , Xn,
we consider the testing problem for the density g of the observations.

(H0) : “g = f0” against (H1) : “g = (1− π)f0 + πft, 0 ≤ π ≤ 1, t ∈ T”. (1)

We prove that:

• For general parametric sets F, T = [−T, T ] and T large enough, under contiguous
alternatives, the LRT for (1) has asymptotic power close to the asymptotic level,
under some smoothness assumptions, see Theorem 7.
A set of assumptions is given for which Theorem 7 applies in the case of translation
mixtures, that is when ft(·) = f0(· − t), see Corollary 1. This is done in Section 3.

• When ft is the standard Gaussian with mean t we get the normal mixture problem.
When the set of means is not a priori bounded, that is T = R, Liu and Shao (2004)
obtained the asymptotic distribution of the LRT under the null hypothesis by using
the strong approximation proved in Bickel and Chernoff (1993). We prove in Theorem
8 of Section 4 that the asymptotic power under contiguous alternatives is equal to the
asymptotic level.

The way to obtain these results is to gather together: expansion of the LRT obtained in
Gassiat (2002) to identify contiguity and apply Le Cam’s third Lemma (see van der Vaart,
1998), behaviour of the supremum of a Gaussian process on an interval with bounds tending
to infinity as obtained in Azäıs and Mercadier (2004), and the normal comparison inequality
as refined in Li and Shao (2002). Proof of most results of Sections 3 and 4 are detailed in
Section 5.

Independently of our work, for the Gaussian model with unbounded means, Hall and
Stewart (2004) obtained the speed of separation of alternatives that ensures asymptotic
power to be bigger than asymptotic level. Their result indicates that it should be

√
log ◦ log n/

√
n

contrary to the classical parametric situation, where 1/
√

n is the speed of separation.
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Practical application

Such tests that have power less or equal to level are sometimes called “worthless” (see for
example van der Vaart, 1998) but this word would be dangerous because practical interpre-
tation of our result must take into account the following points:

• It is well known that for mixtures of population in general the convergence to the
asymptotic distribution is very slow. For example for a very simple test, as the skew-
ness test, Boistard (2003) showed that n = 103 observations are needed to meet the
asymptotic distribution.

• For maximum likelihood estimates (MLE) and tests, the problem of the speed of
convergence to the asymptotic distribution is very difficult to address since in practice
MLE are computed through iterative algorithms and are only approximative. The
most famous one is the EM algorithm and its variants. All these algorithms depend
on tuning constants, in particular concerning the stopping rule. It is shown for example
in table 6.3 of McLachlan and Peel (2000) (based on results by Seidel et al., 2000) that
the distribution of the LRT depends heavily on these tuning constants. Simulation
results by Liu and Shao (2004) suggest that their asymptotic distribution is not met
for n = 5.103 observations.

• Nowadays some results and softwares are available to compute the distribution of the
maximum of Gaussian processes. See for example Garel (2001), Delmas (2003) and
Mercadier (2004). In particular these results show that, as soon as the means are
contained in some “not huge” set, the asymptotic power under contiguous alternatives
of the LRT is generally better than that of moment tests or of goodness-of-fit tests.
Nevertheless, the LRT is not uniformly most powerful.

Our result that shows that the LRT is asymptotically less powerful than moment tests
is valid in practice only for very large data sets. For all the reasons above it will be very
difficult to say precisely when. Simulations have proved that in practice LRT based on
Monte-Carlo calculation of threshold or bootstrapping behave well (see Goffinet et al., 1992)
for unbounded parameter.
Our opinion is that the main consequence of our result for large or unbounded parameter
sets is that the study of the LRT for mixtures in the compact case seems to be the more
relevant case.

2 Asymptotic distribution of the LRT for the number

of populations in a mixture under null and contiguous
hypotheses.

A general theorem in Gassiat (2002) allows to find the asymptotic distribution of the LRT
for testing a particular model in a larger one, under the null hypothesis as well as under
contiguous alternatives. Roughly speaking, the asymptotic distribution is some function of
the supremum of the isonormal process on a set of score functions. The theorem holds under
a simple assumption on the bracket entropy of an enlarged set. In many applications, those
sets are parameterized by a finite dimensional parameter. In such cases,

• Lipschitz properties allow to compute easily bracket entropies, as in van der Vaart
(1998, p. 271). We give some examples in the text.

• The covariance structure of the isonormal process may be computed in an explicit way
and identified with the covariance function of a Gaussian field with real parameters.

We shall describe in this section how it applies to mixture models. We first recall the
general result of Gassiat (2002) and its application to a very simple contamination mixture
model: one has to test between a particular known population with some density f0(·) and a
mixture of this known one and another with density ft(·), t a multidimensional parameter.
Then we detail the case of two populations with eventually unknown nuisance parameter. A
typical example will be that of translation mixtures with eventually unknown scale param-
eter. We end the section by giving general considerations on how to deal with parametric
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mixture models, allowing an unknown nuisance parameter and setting a general result in
such situations.

Assume one would like to use the LRT for testing (H0) : “g ∈ M0” against (H1) : “g ∈
M”, where g is the generic density of i.i.d. observations X1, . . . , Xn, M0 ⊂ M are sets of
densities with respect to some measure ν on Rk (or more generally on some Polish space).
Let `n(g) =

∑n
i=1 log g(Xi) be the log-likelihood, and

λn = sup
g∈M

`n(g)− sup
g∈M0

`n(g)

be the LRT statistic. Let also g0 be a density in M0 that will denote the true (unknown)
density of the observations. In the first considered examples, and without loss of generality,
we will assume that g0 coincides with f0.
Throughout the paper we use ‖ · ‖2 to denote the norm in L2(g0 · ν).
When studying `n(g) − `n(g0), functions g−g0

g0
appear naturally. Define the set S as the

subset of the unit sphere in L2(g0 · ν) of such functions when normalized:

S =

{

g − g0

g0
/‖g − g0

g0
‖2, g ∈ M \ {g0}

}

, (2)

and S0 its subset when g ∈ M0:

S0 =

{

g − g0

g0
/‖g − g0

g0
‖2, g ∈ M0 \ {g0}

}

. (3)

A bracket [L, U ] of length ε is the set of functions b such that L ≤ b ≤ U , where L and U are
functions in L2(g0 ·ν) such that ‖U−L‖2 ≤ ε. Define H[],2(S, ε) the entropy with bracketing
of S with respect to the norm ‖ · ‖2, as the logarithm of the number of brackets of length ε
needed to cover S. To apply the theorem in Gassiat (2002), the only needed assumption is:

∫ 1

0

√

H[],2(S, ε)dε < +∞. (4)

This assumption implies in particular that S is Donsker and that its closure is compact. As
said before, when M is parameterized, S is also parameterized and smoothness properties will
allow to verify (4). But in general the parameterization will not be continuous throughout
S. The delicate point may be that one has to find all possible limit points, in L2(g0 · ν), of
sequences gn−g0

g0
/‖ gn−g0

g0
‖2 when ‖ gn−g0

g0
‖2 tends to 0. The set D (resp. D0) of limit points of

sequences gn−g0

g0
/‖ gn−g0

g0
‖2 where ‖ gn−g0

g0
‖2 tends to 0, gn ∈ M \ {g0} (resp. gn ∈ M0 \ {g0})

will be parameterized in such a way that Lipschitz properties can be used on subsets.
Let us for example see how it applies to the simple contamination mixture model (1). In
this case,

M0 = {f0} , M = {gπ,t = (1− π)f0 + πft, 0 ≤ π ≤ 1, t ∈ [−T, T ]}

for a given positive real number T . Since M0 is a singleton, we do not need to define S0 and
D0. One has

gπ,t−g0

g0
= π ft−f0

f0
, so that

S =

{

dt =

ft−f0

f0

‖ ft−f0

f0
‖2

, t ∈ [−T, 0) ∪ (0, T ]

}

.

If ‖ ft−f0

f0
‖2 = 0, which occurs if and only if t = 0, then under smoothness assumptions

‖ gπn,tn−g0

g0
‖2 tends to 0 if and only if πn or tn tends to 0. Then dtn

has two possible limit

points (depending on the sign of tn), and

D =







dt, t ∈ [−T, 0) ∪ (0, T ], d0− =
− f

′

0

f0

‖ f
′
0

f0
‖2

, d0+ =

f
′

0

f0

‖ f
′
0

f0
‖2







.
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Here derivatives are taken with respect to parameter t. Again under smoothness assump-
tions, it will be possible to prove, considering {dt, t ∈ [−T, 0), d0−} and {dt, t ∈ (0, T ], d0+}
that the number of brackets of length ε needed to cover S is of order at most O(1/ε), so
that Assumption (4) holds. (A complete proof is given below for contamination models with
multidimensional parameterization).

In general when M0 contains more than one density, D0 ⊂ D, and if the parameterization
is smooth enough, it will be possible to define a set U in R

k0 ×R
k1 and a set U0 in R

k0 such
that

D = {du,u ∈ U} and D0 = {d(v,0),v ∈ U0}.
Define the covariance function r(·, ·) on U× U by

r(u1,u2) =

∫

du1du2g0dν.

Then, under (4), applying Theorem 3.1 in Gassiat (2002),

2 λn = sup
u∈U

(

max

{

1√
n

n
∑

i=1

du(Xi), 0

})2

− sup
v∈U0

(

max

{

1√
n

n
∑

i=1

d(v,0)(Xi), 0

})2

+ oP0(1),

so that 2 λn converges in distribution to

sup
u∈U

(max {Z(u), 0})2 − sup
v∈U0

(max {Z(v,0), 0})2 (5)

where Z(·) is the Gaussian process on U with covariance r(·, ·) and P0 is the joint distribution
of the observations X1, ..., Xn under the null hypothesis. In the particular case when M0

is reduced to a single element, a direct application of Corollary 3.1 of Gassiat (2002) gives
that 2 λn converges in distribution to

sup
u∈U

(max {Z(u), 0})2 . (6)

It will be seen in the examples below that r(·, ·) is in general not continuous everywhere
on the closure of U × U. Z(·) is not a continuous Gaussian field, though the isonormal
process on D is continuous, so that the suprema involved in (5) are a.s. finite. In general,
r(·, ·) is continuous almost everywhere. In the simple contamination mixture model (1), for
non null s and t,

r(s, t) =

∫

(

ft−f0

f0

‖ ft−f0

f0
‖2

)(

fs−f0

f0

‖ fs−f0

f0
‖2

)

f0dν; (7)

r is continuous for non zero s and t and admits the following limits

r(0+, 0+) = r(0−, 0−) = 1, r(0+, 0−) = −1.

It is also proved in Gassiat (2002) that if the densities gn in M \ M0 are such that
gn−g0

g0
/‖ gn−g0

g0
‖2 converges to some du0 with

√
n‖ gn−g0

g0
‖2 tending to a positive constant c,

then the distributions (g0 · ν)⊗n and (gn · ν)⊗n are mutually contiguous, and 2 λn converges
in distribution under this contiguous alternative to

sup
u∈U

(max {Z(u) + c · r(u,u0), 0})2 − sup
v∈U0

(max {Z(v,0) + c · r((v,0),u0), 0})2 . (8)

In general (5) and (8) reduce to the square of only one supremum, due to the particular
structure of the Gaussian process.
We will see, in the subsequent subsections, examples such as: translation mixtures, expo-
nential families, in particular Bernoulli or Gaussian mixtures.
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2.1 Contamination mixture.

We consider here the contamination mixture model where parameter t may be multidimen-
sional: t ∈ T, T being a compact subset of Rk such that 0 belongs to the interior of T. Let
‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and scalar product in Rk. Again,

M0 = {f0}, M = {gπ,t = (1− π)f0 + πft, 0 ≤ π ≤ 1, t ∈ T} ,

S =

{

dt =

ft−f0

f0

‖ ft−f0

f0

‖2

, t ∈ T

}

.

We shall use the following Assumptions (CM), insuring smoothness and some non degener-
acy:

(CM)

• ft = f0 ν a.e. if and only if t = 0.

• t → ft is twice continuously differentiable ν a.e. at any t ∈ T.

• ∃η > 0, ∀τ ∈ Rk, ∀t ∈ T such that ‖t‖ ≤ η,
∑k

i=1 τi
∂ft

∂ti
= 0 ν a.e. if and only if τ = 0.

• There exists a positive real η and a function B ∈ L2(f0 · ν) that upper bounds all
following functions:

ft

f0

,
1

f0

∣

∣

∣

∣

∂ft

∂ti

∣

∣

∣

∣

, i = 1, . . . , k, t ∈ T,

1

f0

∣

∣

∣

∣

∂2ft

∂ti∂tj

∣

∣

∣

∣

, i, j = 1, . . . , k, t ∈ T, ‖t‖ ≤ η.

Notice that in this assumption the real number η is fixed. We shall prove that the condition
(4) holds true for S by splitting it into two sets

S1 = {dt, t ∈ T, ‖t‖ ≥ η} and S2 = {dt, t ∈ T, ‖t‖ < η}.

Since ‖(gπ,t − f0)/f0‖2 = π‖(ft − f0)/f0‖2 tends to 0 as soon as π or t tends to 0, it is
easy to see that a limit point exists only if either t converges to a limit different of 0 or t

‖t‖

converges to some τ . One obtains easily

D =

{

dt =
ft − f0

f0

/‖ft − f0

f0

‖2, t ∈ T

}

∪
{

d̄τ =
1

f0

k
∑

i=1

τi

∂f0

∂ti
/‖ 1

f0

k
∑

i=1

τi

∂f0

∂ti
‖2, ‖τ‖ = 1

}

.

Set ht = ft−f0

f0

. Then, for i = 1, . . . , k, if (CM) holds,

∂dt

∂ti
=

∂ht

∂ti

‖ht‖2
−
∫

(

∂ht

∂ti

‖ht‖2

)

(

ht

‖ht‖2

)

f0dν · ht

‖ht‖2
.

This proves that, there exists a constant C such that, for all t and s such that ‖t‖ ≥ η and
‖s‖ ≥ η, |dt − ds| ≤ C · B · ‖t − s‖, so that the number of brackets of length ε needed to
cover S1 is of order at most O(1/εk) and that Condition (4) holds true for the set S1.

Now, for any τ ∈ T such that ‖τ‖ = 1, one has letting t = λτ , λ ∈ R,

∂

∂λ
(dλτ ) =

∑k
i=1 τi

∂ht

∂ti

‖ht‖2
−
∫

(
∑k

i=1 τi
∂ht

∂ti

‖ht‖2

)

(

ht

‖ht‖2

)

f0dν · ht

‖ht‖2
.

But using Taylor expansions, there exists λ̂, λ∗ and λ̃ in [0, λ] , such that

ht = λ

k
∑

i=1

τi

∂hλ̂τ

∂ti
= λ

k
∑

i=1

τi

∂h0

∂ti
+

λ2

2

k
∑

i,j=1

τiτj

∂2hλ∗τ

∂ti∂tj
,
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k
∑

i=1

τi

∂ht

∂ti
=

k
∑

i=1

τi

∂h0

∂ti
+ λ

k
∑

i,j=1

τiτj

∂2hλ̃τ

∂ti∂tj
.

All this leads to

∂

∂λ
(dλτ ) =

Ht

‖∑d
i=1 τi

∂h
λ̂τ

∂ti
‖2

−
[

∫

Ht

‖∑d
i=1 τi

∂h
λ̂τ

∂ti
‖2

(

ht

‖ht‖2

)

f0dν

]

· ht

‖ht‖2
.

with

Ht =
1

λ

k
∑

i=1

τi

∂ht

∂ti
− 1

λ2
ht =

k
∑

i,j=1

τiτj

∂2hλ̃τ

∂ti∂tj
− 1

2

k
∑

i,j=1

τiτj

∂2hλ∗τ

∂ti∂tj
.

But using (CM), this implies that for some constant C, ∀λ ∈ (0, η],

∣

∣

∣

∣

∂

∂λ
(dλτ )

∣

∣

∣

∣

≤ C ·B,

and that

lim
λ→0

∂

∂λ
(dλτ ) = ∂dτ

=
1

2

∑k
i,j=1 τiτj

∂2h0

∂ti∂tj

‖∑k
i=1 τi

∂h0

∂ti
‖2

−1

2

∑k
i=1 τi

∂h0

∂ti

‖∑k
i=1 τi

∂h0

∂ti
‖2

∫





∑k
i,j=1 τiτj

∂2h0

∂ti∂tj

‖∑k
i=1 τi

∂h0

∂ti
‖2





(
∑k

i=1 τi
∂h0

∂ti

‖∑k
i=1 τi

∂h0

∂ti
‖2

)

f0dν,

so that λ → dλτ is continuously differentiable on [0, η]. Using the fact that

|dλτ − dλ′τ ′ | ≤
∣

∣dλτ − dτ

∣

∣+
∣

∣dτ − dτ ′
∣

∣+
∣

∣dλ′τ ′ − dτ ′
∣

∣

≤ C · B · (λ + λ′) +
∣

∣dτ − dτ ′
∣

∣

and that, using (CM), there exists a positive constant C̃ such that

inf
‖τ‖=1

‖
k
∑

i=1

τi

∂h0

∂ti
‖2 ≥ C̃,

we obtain that for some constant C∗, and any τ, τ ′ such that ‖τ‖ = 1, ‖τ ′‖ = 1,

∣

∣dτ − dτ ′
∣

∣ ≤ C∗ · B · ‖τ − τ ′‖.

It is straightforward to see that the number of brackets of length ε needed to cover S2 is of
order at most O(1/εk). Thus Assumptions (CM) imply Condition (4).

Define now for all non null s and t in T,

r(s, t) =

∫

dsdtf0dν, (9)

and let Z(·) be the Gaussian field on T\{0} with covariance r. Notice that, on each direction
τ such that ‖t‖ → 0 with t/‖t‖ → τ , one may extend r(·, ·) by continuity, setting

r̄(τ, t) = r̄(t, τ) =

∫

d̄τdtf0dν ; r̃(τ, τ ′) =

∫

d̄τ d̄τ ′f0dν. (10)

Let πn and tn be sequences such that

• limn→+∞
√

nπn‖(ftn
− f0)/f0‖2 = c for some positive c,

• either tn tends to some t0 6= 0 and
√

nπn tends to some positive constant, or tn tends
to 0, and tn/‖tn‖ converges to some limit τ .

Then:
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Theorem 1 Assume (CM). Then (f0 · ν)⊗n and [((1− πn)f0 + πnftn
) · ν]⊗n are mutually

contiguous, 2 λn converges under (f0 · ν)⊗n in distribution to

sup
t∈T

(max{Z(t), 0})2 =
(

sup
t∈T

Z(t)
)2

,

and under [((1− πn)f0 + πnftn
) · ν]⊗n to

sup
t∈T

(

max{Z(t) + µ(t), 0}
)2

=
(

sup
t∈T

(Z(t) + µ(t))
)2

with

µ(t) = c · r(t, t0) if tn → t0 6= 0, and µ(t) = c · r̄(t, τ) if ‖tn‖ → 0 and tn/‖tn‖ → τ. (11)

Remark: Set m ≡ 0 under (f0 ·ν)⊗n and m ≡ µ under [((1−πn)f0 +πnftn
) ·ν]⊗n. Letting

t go to 0 radially in two opposite directions and using covariance properties in the neigh-
bourhood of 0 we see that almost surely supt∈T(Z(t) + m(t)) > 0 what justifies equalities
in preceding theorem.

Let us give applications of this theorem to particular models:

2.1.1 Translation mixtures

We consider the translation mixture model, where ν is the Lebesgue measure and

ft(·) = f0(· − t).

Then, it is easy to see that Theorem 1 applies as soon as the following Assumptions (CTM)
hold:

(CTM)

• f0 is positive on Rk,

• x → f0(x) is twice continuously differentiable ν a.e.

• There exists a function B ∈ L2(f0 · ν) that upper bounds all following functions:

f0(x− t)

f0(x)
,

1

f0(x)

∣

∣

∣

∣

∂f0

∂xi

(x− t)

∣

∣

∣

∣

, i = 1, . . . , k, t ∈ T,

1

f0(x)

∣

∣

∣

∣

∂2f0

∂xi∂xj

(x− t)

∣

∣

∣

∣

, i, j = 1, . . . , k, t ∈ T, ‖t‖ ≤ η.

Indeed, since ∂ft

∂ti
(x) = −∂f0

∂xi
(x − t), if τ is such that

∑k
i=1 τi

∂ft

∂ti
= 0 ν a.e. for all ‖t‖ ≤ η,

then
∑k

i=1 τi
∂f0

∂xi
= 0 ν a.e., so that f0(x + λτ) = f0(x) for all λ ∈ R, which is impossible

unless τ = 0.

Here are some examples of situations in which these assumptions are met : f0 being
the inverse of a polynomial with degree at least 2, among which the Cauchy density, the
Gaussian densities and the normalization of ch(x)−1.

The covariance function r is given for non null s and t by

r(s, t) =

∫

f0(x− s)f0(x− t)

f0(x)
dν(x) − 1

√

∫

f0(x− s)2

f0(x)
dν(x) − 1

√

∫

f0(x− t)2

f0(x)
dν(x) − 1

,
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and if the dimension k = 1, one may define r(0+, 0−) = −1, and for non null t

r(0+, t) = − r(0−, t) =

∫ −f
′

0
(x)f0(x− t)

f0(x)
dν(x)

√

∫

f
′2
0

(x)

f0(x)
dν(x)

√

∫

f0(x − t)2

f0(x)
dν(x) − 1

,

where the derivation is with respect to x.

2.1.2 Gaussian mixtures

Without loss of generality we may assume that f0 is standard normal. Let K be a bound
for ‖t‖, t ∈ T. Then the following bounds show that the function B exists for any η

f0(x− t)

f0(x)
= exp

(

〈x, t〉 − ‖t‖2/2
)

≤ exp
(

K‖x‖
)

,

1

f0(x)

∣

∣

∣

∣

∂f0

∂xi

(x− t)

∣

∣

∣

∣

= |xi − ti|
f0(x− t)

f0(x)
≤ (‖x‖+ K) exp

(

K‖x‖
)

,

1

f0(x)

∣

∣

∣

∣

∂2f0

∂xi∂xj

(x− t)

∣

∣

∣

∣

= |xi − ti||xj − tj |
f0(x− t)

f0(x)
≤ (‖x‖+ K)2 exp

(

K‖x‖
)

, i 6= j,

1

f0(x)

∣

∣

∣

∣

∂2f0

∂x2
i

(x− t)

∣

∣

∣

∣

= |(xi − ti)
2 − 1|f0(x− t)

f0(x)
≤ [1 + (‖x‖+ K)2] exp

(

K‖x‖
)

.

So (CTM) holds, and Theorem 1 applies, as soon as f0 is some Gaussian density on Rk and
T is compact. The covariance of the process Z is:

r(s, t) =
exp(〈t, s〉) − 1

√

exp(‖t‖2)− 1
√

exp(‖s‖2)− 1
.

2.1.3 Binomial mixtures

Here ν is the measure with density k!
x!(k−x)! with respect to the counting measure on the set

{0, 1, . . . , k}. We consider the binomial family Bi(k, θ) with density θx(1 − θ)k−x ; x =
0, 1, ..., k. Let θ0 ∈ (0, 1) and ft be the density of Bi(k, θ0 + t). The most relevant case for
genetic applications is the case θ0 = 1/2, see Problem 1 in Chernoff and Lander (1995). We
have

ft(x) = (t + θ0)
x(1− t− θ0)

k−x,

∂ft

∂t
(x) =

(

x

t + θ0
− k − x

1− t− θ0

)

ft(x),

∂2ft

∂t2
(x) =

[

(

x

t + θ0
− k − x

1− t− θ0

)2

− x

(t + θ0)2
+

k − x

(1− t− θ0)2

]

ft(x).

It is clear that ft(x) and ∂ft

∂t
(x) are uniformly upper bounded and that ∂2ft

∂t2
(x) is upper

bounded for t small enough, proving Assumptions (CM). Direct calculations lead to

ft − f0

f0
(x) = (1 +

t

θ0
)x(1− t

1− θ0
)k−x − 1,

r(s, t) =
Γ(s, t)

√

Γ(s, s)
√

Γ(t, t)
,

with

Γ(s, t) =

k
∑

x=0

[

(1 +
s

θ0
)x(1− s

1− θ0
)k−x − 1

][

(1 +
t

θ0
)x(1− t

1− θ0
)k−x − 1

]

θx
0 (1− θ0)

k−x
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which is equivalent to the result of Chernoff and Lander (1995).

2.1.4 Mixtures in exponential families

This case generalizes the preceding. Let ft be a regular exponential family with exhaustive
statistic T (x) = (T1(x), . . . , Tk(x)):

ft(x) = f0(x) exp

(

k
∑

i=1

tiTi(x)− φ(t)

)

,

and assume T is a compact subset in the interior of the definition set of the exponential

family. Then t → ft is infinitely differentiable on T. Let F (x) = supt∈T exp
(

∑k
i=1 tiTi(x)

)

,

Assumption (CEM) will be:

(CEM)

• There exists B in L2(f0 · ν) that upper bounds all following functions: F , |Ti|F ,
|TiTj |F , i, j = 1, . . . , k.

One can see easily that (CEM) implies (CM), so that Theorem 1 applies to exponential
families as soon as (CEM) holds. Direct calculations again lead to

ft − f0

f0

(x) = exp
(

k
∑

i=1

tiTi(x)− φ(t)
)

− 1,

r(s, t) =
exp

(

φ(s + t)− φ(s)− φ(t)
)

− 1
√

exp
(

φ(2s)− 2φ(s)
)

− 1
√

exp
(

φ(2t)− 2φ(t)
)

− 1
.

2.2 Two populations against a single one

We consider here the case where one wants to test a single population in the family of
densities ft, t ∈ T, T compact subset of Rk against a mixture of two such populations. That
is:

M0 = {ft, t ∈ T},
and

M = {gπ,t1,t2 = (1− π)ft1 + πft2 , 0 ≤ π ≤ 1, t1 ∈ T, t2 ∈ T} .

We suppose moreover that 0 is an interior point of T and that f0 is the unknown distribution
of the observations (with no loss of generality). We shall use Assumptions (TP), insuring
smoothness and some non degeneracy:

(TP)

• (1− π)ft1 + πft2 = f0 ν a.e. if and only if (π = 0 and t1 = 0) or (π = 1 and t2 = 0)
or (t1 = 0 and t2 = 0),

• t → ft is three times continuously differentiable ν a.e. at any t ∈ T,

• ∀τ ∈ Rk, ∀t ∈ T, ∀s ∈ T, ∀ρ ≥ 0, ρ(fs − f0) +
∑k

i=1 τi
∂ft

∂ti
= 0 ν a.e. if and only if

ρs = 0 and τ = 0,

and ∃η > 0, such that ∀τ ∈ Rk, ∀t ∈ T with ‖t‖ ≤ η
∑k

i,j=1 τiτj
∂2ft

∂ti∂tj
= 0 ν a.e. if

and only if τ = 0,

• there exists a function B ∈ L2(f0 · ν) that upper bounds all following functions:

ft

f0

,
1

f0

∣

∣

∣

∣

∂ft

∂ti

∣

∣

∣

∣

,
1

f0

∣

∣

∣

∣

∂2ft

∂ti∂tj

∣

∣

∣

∣

, i, j = 1, . . . , k, t ∈ T,

1

f0

∣

∣

∣

∣

∂3ft

∂ti∂tj∂tl

∣

∣

∣

∣

, i, j, l = 1, . . . , k, t ∈ T, ‖t‖ ≤ η.
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Then S ⊂ D, S0 ⊂ D0, and D can be parameterized as follows:

D =

{

dt,a,τ =
a ft−f0

f0

+
∑k

i=1 τi
1
f0

∂f0

∂ti

‖a ft−f0

f0

+
∑k

i=1 τi
1
f0

∂f0

∂ti
‖2

, t ∈ T \ {0}, τ ∈ R
k, a ≥ 0, a + ‖τ‖ = 1

}

,

D0 = {d0,0,τ , ‖τ‖ = 1} .

Let r(·, ·) be as in Section 2.1:

r(s, t) =

∫ (

hs

‖hs‖2

)(

ht

‖ht‖2

)

f0dν

with ht = (ft − f0)/f0, and Z(·) the associated Gaussian field.
Let W be the k-dimensional centered Gaussian variable with variance Σ with entries :

Σi,j =

∫

(

1
f0

∂f0

∂ti

‖ 1
f0

∂f0

∂ti
‖2

)(

1
f0

∂f0

∂tj

‖ 1
f0

∂f0

∂tj
‖2

)

f0dν, i, j = 1, . . . , k,

and for any t, let C(t) be the k-dimensional vector of covariances of Z(t) and W :

C(t)i =

∫

(

1
f0

∂f0

∂ti

‖ 1
f0

∂f0

∂ti
‖2

)

(

ht

‖ht‖2

)

f0dν, i = 1, . . . , k.

Then D can be reparametrized as follows

D =
{

dt,a,τ ; t ∈ T \ {0}, τ ∈ R
k, a ≥ 0, a2 + τT Στ + 2aτT C(t) = 1

}

.

Using the same tricks as for proving Theorem 1, 2 λn converges under (f0 · ν)⊗n in distri-
bution to













sup
a ≥ 0, t ∈ T, τ ∈ R

k

a2 + τT Στ + 2aτT C(t) = 1

(aZ(t) + 〈τ, W 〉)













2

−
(

sup
τT Στ=1

〈τ, W 〉
)2

. (12)

Remark that:
(

sup
τT Στ=1

〈τ, W 〉
)2

= W T Σ−1W, (13)

and that the supremum is attained for τ colinear to Σ−1W . Then consider the matrix:

Σ̃ =

[

1 C(t)T

C(t) Σ

]

with inverse

(Σ̃)−1 =

[

α uT

u M

]

where M = M(t) =
(

Σ− C(t)C(t)T
)−1

, u = u(t) = −M(t)C(t), α = α(t) = 1 +
C(t)T M(t)C(t). Now consider the maximization problem in a and τ :

(

sup
a≥0,a2+τT Στ+2aτT C(t)=1

(aZ(t) + 〈τ, W 〉)
)2

. (14)

If the maximum is attained for a > 0 , then by (13) its value is

(

Z(t)
W

)T

(Σ̃)−1

(

Z(t)
W

)

,

11



which is equal to

α
(

Z(t) +
uT W

α

)2
+ W T

(

M − uuT

α

)

W = α
(

Z(t) +
uT W

α

)2
+ W T Σ−1W.

This is the case when the first coordinate of

(Σ̃)−1

(

Z(t)
W

)

is non-negative that is αZ(t) + 〈u, W 〉 ≥ 0. In the other case (a = 0) the maximum is
W T Σ−1W by (13). Finally we have proved that the supremum in (14) is equal to

{

max

{

Z(t)− C(t)T M(t)W

1 + C(t)T M(t)C(t)
, 0

}}2
(

1 + C(t)T M(t)C(t)
)

+ W T Σ−1W. (15)

This implies that the limit of 2 λn under (f0 · ν)⊗n is equal in distribution to

(

sup
t∈T

(

Z(t)− C(t)T M(t)W

1 + C(t)T M(t)C(t)

))2
(

1 + C(t)T M(t)C(t)
)

.

Indeed one may see, letting t go to 0 radially in two opposite directions, that the supremum
of the Gaussian process involved in formula (15) is non negative. Let now πn, tn

1 and tn
2

be sequences such that
(1−πn)ftn

1
+πnftn

2
−f0

f0

/‖ (1−πn)ftn
1

+πnftn
2
−f0

f0

‖2 tends to some dt0,a0,τ0 in

D, with limn→+∞
√

n‖ (1−πn)ftn
1

+πnftn
2
−f0

f0

‖2 = c for some positive constant c. Then, using
the same tricks again:

Theorem 2 Assume (TP). Then (f0 · ν)⊗n and [((1− πn)ftn
1

+ πnftn
2
) · ν]⊗n are mutually

contiguous, 2 λn converges under (f0 · ν)⊗n in distribution to

(

sup
t∈T

(

Z(t)− C(t)T M(t)W

1 + C(t)T M(t)C(t)

))2
(

1 + C(t)T M(t)C(t)
)

,

and under [((1− πn)ftn
1

+ πnftn
2
) · ν]⊗n to

[

sup
t∈T

(

aZ(t) + a0cr(t, t0) + cC(t)T τ0 −
C(t)T M(t)(W + cΣτ0 + ca0C(to))

1 + C(t)T M(t)C(t)

)]2
(

1 + C(t)T M(t)C(t)
)

,

where if t0 = 0 then a0 = 0.

Notice that, when t0 = 0, d0,a0,τ0 = d0,0,τ0 , and 〈d0,0,τ0 , dt,a,τ,, 〉 = cC(t)T τ0 + cΣτ0. This is
why one has to take a0 = 0 when t0 = 0 in the last formula of Theorem 2.

2.2.1 Examples.

Results of Section 2.2 apply to the same previous examples.

• Translation mixtures, under (CTM) with moreover x → f0(x) is three times con-
tinuously differentiable ν a.e., and the function B ∈ L2(f0 · ν) is also an upper bound
for

1

f0(x)

∣

∣

∣

∣

∂3f0

∂xi∂xj∂xl

(x− t)

∣

∣

∣

∣

, i, j, l = 1, . . . , k, t ∈ T, ‖t‖ ≤ η.

• Gaussian mixtures, in this case W is a standard normal vector and for all t ∈ T

C(t) = t√
e‖t‖

2−1
.

• Bernoulli mixtures,

• Mixtures in exponential families, under (CEM) with moreover: the function
B ∈ L2(f0 · ν) is also an upper bound for |TiTjTl|F , i, j, l = 1, . . . , k. In this
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case, W is the Gaussian vector with covariance Σ the correlation matrix of the vec-
tor (T1(X), . . . , Tk(X)), when X has density f0. Recall that the variance matrix of
the vector (T1(X), . . . , Tk(X)) when X has density f0 is the matrix D2φ of second
derivatives of the function φ at point 0, and the vector C(t) is given by

C(t)i =

∂φ
∂ti

(t)− ∂φ
∂ti

(0)
√

exp(φ(2t)− 2φ(t)) − 1
√

(D2φ(0))i,i

, i = 1, . . . , k.

2.3 Contamination with unknown nuisance parameter

We consider here the contamination mixture model with some unknown parameter, which is
the same for all populations. A typical example may be that of mixtures of Gaussian distri-
butions with the same unknown variance, or translation mixtures with the same unknown
scale parameter. We shall assume that the nuisance parameter is identifiable, so that its
maximum likelihood estimator is consistent. This will allow to reduce the possible nuisance
parameters in the definition of the set S to be in a neighbourhood of the true unknown one
(recall that S is only a theoretical tool to verify that some theorem apply, and compute the
set of normalized scores, so that this does not restrict the model M, for which the nuisance
parameter is not restricted to be in a neighbourhood of the true one).
Let F = {ft,α, t ∈ T, α ∈ A} be a set of densities with respect to some dominating measure
ν, where T is a compact subset of Rk and A is a compact subset of Rh. We consider here
the case where

M0 = {f0,α, α ∈ A},
and

M = {gπ,t,α = (1− π)f0,α + πft,α, 0 ≤ π ≤ 1, t ∈ T, α ∈ A} .

The unknown true distribution of the observations will be f0,α0 . We suppose that (0, α0)
is an interior point of T × A. We shall use Assumptions (CMN), insuring smoothness and
some non degeneracy:

(CMN)

• (1− π)f0,α + πft,α = f0,α0 ν a.e. if and only if α = α0 and [π = 0 or t = 0],

• (t, α) → ft,α is twice continuously differentiable ν a.e. at any (t, α) ∈ T× A,

• ∃η > 0, such that ∀δ ∈ Rh, ∀t ∈ T, ∀α ∈ A with ‖α− α0‖ ≤ η, ∀ρ ≥ 0:

ρ(ft,α0 − f0,α0) +
∑h

i=1 δi
∂f0,α

∂αi
= 0 ν a.e. if and only if ρt = 0 and δ = 0,

and ∀τ ∈ Rk, ‖t‖ ≤ η, ‖α − α0‖ ≤ η:
∑k

i=1 τi
∂ft,α0

∂ti
+
∑h

i=1 δi
∂f0,α

∂αi
= 0 ν a.e. if and

only if τ = 0 and δ = 0 .

• There exists a function B ∈ L2(f0,α0 · ν) that upper bounds all following functions:

ft,α

f0,α0

,
1

f0,α0

∣

∣

∣

∣

∂ft,α

∂ti

∣

∣

∣

∣

, i = 1, . . . , k,
1

f0,α0

∣

∣

∣

∣

∂ft,α

∂αi

∣

∣

∣

∣

, i = 1, . . . , h, (t, α) ∈ T×A, ‖α−α0‖ ≤ η,

1

f0,α0

∣

∣

∣

∣

∂2ft,α

∂ti∂tj

∣

∣

∣

∣

, i, j = 1, . . . , k,
1

f0,α0

∣

∣

∣

∣

∂2ft,α

∂ti∂αj

∣

∣

∣

∣

, i = 1, . . . , k, j = 1, . . . , h,

1

f0,α0

∣

∣

∣

∣

∂2ft,α

∂αi∂αj

∣

∣

∣

∣

, i, j = 1, . . . , h, (t, α) ∈ T× A, ‖α− α0‖ ≤ η, ‖t‖ ≤ η.

Then, since the maximum likelihood estimator of parameter α is consistent, one only needs
to verify Assumption (4) for

S =

{

(1− π)f0,α + πft,α − f0,α0

f0,α0

/‖ (1− π)f0,α + πft,α − f0,α0

f0,α0

‖2, 0 ≤ π ≤ 1, t ∈ T, α ∈ A, ‖α− α0‖ ≤ η

}

,

where we restrict our definition to π, t and α such that (1−π)f0,α +πft,α differs from f0,α0 .
One has also

S0 =

{

f0,α − f0,α0

f0,α0

/‖f0,α − f0,α0

f0,α0

‖2, 0 ≤ π ≤ 1, α ∈ A, ‖α− α0‖ ≤ η

}

.
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Define, for (t, ρ, δ, τ) ∈ T× R+ × Rh × Rk,

Ht,ρ,δ,τ = ρ(ft,α0 − f0,α0) +

h
∑

i=1

δi

∂f0,α0

∂αi

+

k
∑

i=1

τi

∂f0,α0

∂ti
,

and

dt,ρ,δ,τ =
Ht,ρ,δ,τ/f0,α0

‖Ht,ρ,δ,τ/f0,α0‖2
.

The sets D and D0 can be parameterized as follows:

D =
{

dt,ρ,δ,τ , t ∈ T, ρ ≥ 0, δ ∈ R
h, τ ∈ R

k, ρ2 + ‖δ‖2 + ‖τ‖2 = 1
}

,

D0 =
{

d0,0,δ,0, δ ∈ R
h, ‖δ‖ = 1

}

.

Note that due to the existence of the nuisance parameter which is fixed to α0, now D does
not contain S.

It will be possible to obtain the asymptotic distributions in the same way as in Section
2.2. Let again

r(s, t) =

∫ (

hs

‖hs‖2

)(

ht

‖ht‖2

)

f0,α0dν

with ht = (ft,α0 − f0,α0)/f0,α0 , and Z(·) the associated Gaussian field.
Note that this process is the same as the one of Section 2.1 if we set f0 = f0,α0 . Let also

W , Σ and C(t) be the same as in Section 2.1 replacing ∂f0

∂ti
by

∂f0,α0

∂ti
.

Let V be the h-dimensional centered Gaussian variable with variance Γ:

Γi,j =

∫





1
f0,α0

∂f0,α0

∂αi

‖ 1
f0,α0

∂f0,α0

∂αi
‖2









1
f0,α0

∂f0,α0

∂αj

‖ 1
f0,α0

∂f0,α0

∂αj
‖2



 f0,α0dν, i, j = 1, . . . , h,

and for any t, let G(t) be the h-dimensional vector of covariances of Z(t) and V :

G(t)i =

∫





1
f0,α0

∂f0,α0

∂αi

‖ 1
f0,α0

∂f0,α0

∂αi
‖2





(

ht

‖ht‖2

)

f0,α0dν, i = 1, . . . , h.

Let also S be the convariance matrix of W and V , with entries:

Si,j =

∫





1
f0,α0

∂f0,α0

∂αi

‖ 1
f0,α0

∂f0,α0

∂αi
‖2









1
f0,α0

∂f0,α0

∂tj

‖ 1
f0,α0

∂f0,α0

∂tj
‖2



 f0,α0dν, i = 1, . . . , h, j = 1, . . . , k.

Define the matrices U(t) and N(t) by

U(t) =

(

C(t)T

G(t)

)

,

N(t) =

((

Σ ST

S Γ

)

− U(t)U(t)T

)−1

.

Let πn, tn and αn be sequences such that
(1−πn)f0,αn+πnftn,αn−f0,α0

f0,α0
/‖ (1−πn)f0,αn+πnftn,αn−f0,α0

f0,α0
‖2

tends to some dt0,ρ0,δ0,τ0 in D, with limn→+∞
√

n‖ (1−πn)f0,αn+πnftn,αn−f0,α0

f0,α0
‖2 = c for some

positive constant c. Then, using the same tricks as for proving Theorem 2 :

Theorem 3 Assume (CMN). Then (f0,α0 · ν)⊗n and [((1− πn)f0,αn
+ πnftn,αn

) · ν]⊗n are
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mutually contiguous, 2 λn converges under (f0 · ν)⊗n in distribution to

[

sup
t∈T

(

Z(t)− U(t)T N(t)

1 + U(t)T N(t)U(t)

(

W
V

))]2
(

1 + U(t)T N(t)U(t)
)

+

(

W
V

)T (
Σ ST

S Γ

)−1(
W
V

)

− V T Γ−1V,

and under [((1− πn)f0,αn
+ πnftn,αn

) · ν]⊗n to

[

sup
t∈T

(

Z(t) + cρ0r(t, t0) + cC(t)T τ0 + cG(t)T δ0 −
U(t)T N(t)

1 + U(t)T N(t)U(t)

(

W + cΣτ0 + cρ0C(t0)
V + cΓδ0 + cρ0G(t0)

))]2

.
(

1 + U(t)T N(t)U(t)
)

+

(

W + cΣτ0 + cρ0C(t0)
V + cΓδ0 + cρ0G(t0)

)T (
Σ ST

S Γ

)−1(
W + cΣτ0 + cρ0C(t0)
V + cΓδ0 + cρ0G(t0)

)

− (V + cΓδ0 + cρ0G(t0))
T Γ−1(V + cΓδ0 + cρ0G(t0)),

where ρ0 = 0 when t0 = 0.

2.3.1 Translation mixtures with unknown scale parameter

Here h = 1, ν is the Lebesgue measure and

ft,α(·) = αf0,1(α(· − t)),

with A = [a, A] for some a > 0. Then, it is easy to see that Theorem 3 applies as soon as
the following Assumptions (CTMN) hold:

(CTMN)

• f0,1 is positive on Rk,

• x → f0,1(x) is twice continuously differentiable ν a.e.,

• There exists a function B ∈ L2(f0,1 · ν) that upper bounds all following functions:

f0,1(x− t)

f0,1(x)
,

1

f0,1(x)

∣

∣

∣

∣

(1 + |xi|)
∂f0,1

∂xi

(x− t)

∣

∣

∣

∣

, i = 1, . . . , k, t ∈ T,

1

f0,1(x)

∣

∣

∣

∣

(1 + |xi||xj |)
∂2f0,1

∂xi∂xj

(x − t)

∣

∣

∣

∣

, i, j = 1, . . . , k, t ∈ T, ‖t‖ ≤ η.

These assumptions are met when f0,1 is the inverse of a polynomial with degree at least 2,
among which the Cauchy density, or the Gaussian densities and the normalization of ch(x)−1.

2.3.2 Gaussian mixtures with unknown variance

Here h = k(k + 1)/2 since α is the unknown variance. It is easy to see that Assumptions
(CTMN) hold, and Theorem 3 applies, as soon as the ft,α are the Gaussian distributions
N(t, α) on R

k, T is compact, A is a compact subset of symmetric matrices that are positive
definite.

2.4 General mixtures with unknown nuisance parameter

Let F = {ft,α, t ∈ T, α ∈ A} be a set of densities with respect to some dominating measure
ν, where T is a compact subset of Rk and A is a compact subset of Rh. The parameter
t will characterize the population in the mixture, the parameter α will be the same for
all populations. As a simple example one may think to Gaussian distributions (eventually
multidimensional) with t the mean vector and α the variance matrix. One may define a
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mixture with p populations as

gp,π,T,α =

p
∑

i=1

πifti,α. (16)

Here π = (π1, . . . , πp) is a vector of non negative real numbers that sum to one, T =
(t1, . . . , tp) ∈ Tp and α ∈ A. One would like to use the LRT for testing (H0) : “g is a
mixture of p0 populations” against (H1) : “g is a mixture of p populations”, where g is the
density of i.i.d. observations X1, . . . , Xn, and p0 < p. This is the case when

M0 =

{

gp0,π0,T0,α, π0 ∈ [0, 1]p0 , T0 ∈ T
p0 , α ∈ A,

p0
∑

i=1

πi = 1, i = 1, . . . , p0

}

,

M =

{

gp,π,T,α, π ∈ [0, 1]p, T ∈ T
p, α ∈ A,

p
∑

i=1

πi = 1, i = 1, . . . , p

}

.

To understand what happens and how to do computations, the main point is to understand
how two mixtures with eventually different number of populations may become close.

The main weak identifiability Assumption (WID) will be that gp,π,T,α = gq,π′,T′,α′ if and
only if α = α′ and

∑p
i=1 πiδti =

∑q
i=1 π′iδt′i where δz is the Dirac measure at z.

Then, if the parameterization (t, α) → ft,α is smooth enough, two mixtures become close
if their parameter α becomes close, and their mixing measure becomes close in the weak
topology.
Let now g0 = gp0,π0,T0,α0 be a particular mixture in M0 which has exactly p0 populations
and not fewer, that will denote the true unknown density of the observations. We denote by
t0,i the elements of T0. Since parameter α is identifiable, its maximum likelihood estimator
is consistent under weak smoothness assumptions, so that to define the sets S and S0 by (2)
and (3), one may restrict α by ‖α−α0‖ ≤ η for some small η. Then, as seen in the previous
subsections, the main point is to find D and D0, so as to be able to:

• understand how parameterization and smoothness may be used to compute the order
of the bracketing entropy,

• define the Gaussian process that is used in the limiting distribution.

For these points, smoothness assumptions and bounding with a square integrable function
have to be used together with some non degeneracy of functions that come in the norm
appearing in denominator, when this one goes to zero. In fact, if it may be degenerate, it
means that one has to go further in the order of the Taylor development until non degeneracy.
This, of course, depends on particular examples.
A rather general situation is the following. Let q = p − p0. Denote by Dtft,α the k-
dimensional vector of derivatives of ft,α with respect to t, Dαft,α the h-dimensional vector
of derivatives of ft,α with respect to α, D2

t
ft,α the k × k-dimensional matrix of second

derivatives of ft,α with respect to t. Introduce Assumptions (GM):

(GM)

• (t, α) → ft,α is three times continuously differentiable ν a.e. at any (t, α) ∈ T× A,

• ∃η > 0 such that, for all αi ∈ Rh, t̃i ∈ Rk, τ i ∈ Rk, δi ∈ Rh, πi ∈ R, i = 1, .., p0, for
all ρ1, . . . , ρq ≥ 0 such that ‖αi − α0‖ ≤ η, ‖t̃i − t0,i‖ ≤ η,

∑

i ρi +
∑

j πj = 0 then :
∑q

i=1 ρifti,α0
+
∑p0

i=1 πifti,0,α0
+
∑p0

i=1〈δi, Dαfti,0,αi〉 +
∑p0

i=1〈τ i, Dtft̃i,α0
〉 = 0 ν a.e.

if and only if
∑q

i=1 ρifti,α0
+
∑p0

i=1 πift0,i,α0
= 0, δ1 = 0, . . . , δp0 = 0 and τ1 = 0, . . . , τp0 = 0,

• For any subset J of at most inf{p0, q} points in T such that for each one there is one
of the t0,is at distance at most η, for any (τ j)j∈J of vectors of Rk, for any δ1, . . . , δp0

in Rh:
∑p0

i=1〈δi, Dαft0,i,αi〉+∑j∈J (τ j)T D2
tfj,α0(τ

j) = 0 ν a.e. if and only if δ1 = 0, . . . , δp0 =

0 and τ j = 0, j ∈ J ;
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• There exists a function B ∈ L2(g0 · ν) that upper bounds all following functions:

ft,α

g0
,

1

g0

∣

∣

∣

∣

∂ft,α

∂ti

∣

∣

∣

∣

, i = 1, . . . , k,
1

g0

∣

∣

∣

∣

∂ft,α

∂αi

∣

∣

∣

∣

, i = 1, . . . , h, (t, α) ∈ T× A, ‖α− α0‖ ≤ η

1

g0

∣

∣

∣

∣

∂2ft,α

∂ti∂tj

∣

∣

∣

∣

, i, j = 1, . . . , k, (t, α) ∈ T× A, ‖α− α0‖ ≤ η

1

g0

∣

∣

∣

∣

∂2ft,α

∂ti∂αj

∣

∣

∣

∣

, i = 1, . . . , k, j = 1, . . . , h,
1

g0

∣

∣

∣

∣

∂2ft,α

∂αi∂αj

∣

∣

∣

∣

, i, j = 1, . . . , h,

1

g0

∣

∣

∣

∣

∂3ft,α

∂ti∂tj∂tl

∣

∣

∣

∣

, i, j, l = 1, . . . , k,
1

g0

∣

∣

∣

∣

∂3ft,α

∂ti∂tj∂αl

∣

∣

∣

∣

, i, j = 1, . . . , k, l = 1, . . . , h

(t, α) ∈ T× A, ‖α− α0‖ ≤ η, ‖t− ti‖ ≤ η for some i.

Set ∆ = ((δ1)T , . . . , (δp0)T ), with δi ∈ Rh; Θ = ((τ1)T , . . . , (τp0)T ), with τi ∈ Rd; T =
(t1, . . . , tq) ∈ Tq ; Ξ = (ρ1, . . . , ρq) ∈ Rq ; Π = (π1, . . . , πp0) ∈ [0, 1]p0 ,

HT,Ξ,Π,∆,Θ =

q
∑

i=1

ρifti,α0
+

p0
∑

i=1

πift0,i,α0
+

p0
∑

i=1

〈δi, Dαft0,i,α0
〉+

p0
∑

i=1

〈τ i, Dtft0,i,α0
〉,

and

dT,Ξ,Π,∆,Θ =
HT,Ξ,Π,∆,Θ/g0

‖HT,Ξ,Π,∆,Θ/g0‖2
.

Define now:

K =
{

(T, Ξ, Π, ∆, Θ) : ρ1, . . . , ρq ≥ 0;
∑

i

ρi +
∑

i

πi = 0;

‖δ1‖2 + . . . + ‖δp0‖2 + ‖τ1‖2 + . . . + ‖τp0‖2 +
∑

i

ρ2
i +

∑

i

π2
i = 1; H(T,Ξ,Π,∆,Θ) 6= 0

}

.

Then:
D = {dT,Ξ,Π,∆,Θ, (T, Ξ, Π, ∆, Θ) ∈ K} ,

and
D0 = {d0,0,0,∆,Θ} .

It will be possible to obtain the asymptotic distributions in the same way as in Section 2.2
under Assumptions (WID) and (GM). Define the Gaussian field Z(T, Ξ, Π, ∆, Θ) on K with
covariance

r ((T, Ξ, Π, ∆, Θ), (T′, Ξ′, Π′, ∆′, Θ′)) =

∫

dT,Ξ,Π,∆,Θ dT′,Ξ′,Π′,∆′,Θ′ g0dν.

Notice that, as in previous sections, K is not closed, and r(·, ·) is not continuous on some
limiting points, but may be extended in some sense, as has been done for instance in Section
2.1.
Let also pn, πn,Tn, αn be such that

√
n‖ gpn,πn,Tn,αn−g0

g0

‖2 tends to some positive constant

c, with
gpn,πn,Tn,αn−g0

g0

/‖ gpn,πn,Tn,αn−g0

g0

‖2 tending to d̄ in the closure of D.

Theorem 4 If (WID) and (GM) hold, then (g0 ·ν)⊗n and (gpn,πn,Tn,αn
·ν)⊗n are mutually

contiguous, 2 λn converges under (g0 · ν)⊗n in distribution to

(

sup
(T,Ξ,Π,∆,Θ)∈K

Z(T, Ξ, Π, ∆, Θ)

)2

−
(

sup
(0,0,0,∆,Θ)∈K

Z(0,0,0, ∆, Θ)

)2

,
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and under (gpn,πn,Tn,αn
· ν)⊗n to

(

sup
(T,Ξ,Π,∆,Θ)∈K

Z(T, Ξ, Π, ∆, Θ) + c

∫

dT,Ξ,Π,∆,Θd̄g0dν

)2

−
(

sup
(0,0,0,∆,Θ)∈K

Z(0, 0, 0, ∆, Θ) + c

∫

d0,0,0,∆,Θd̄g0dν

)2

. (17)

It is possible to reduce the formula of the asymptotic distributions in Theorem 4 into only
one supremum, using linear algebra computations as in previous sections. We shall not give
the result for all situations since it involves too long and complicated formula. However, in
case q = 1, the result takes a simpler form that we will give below. For this one needs to
define notations. When q = 1, Ξ is reduced to ρ and T reduces to t so that elements of D

may be written as dt,Π,∆,Θ with

Ht,Π,∆,Θ =

p0
∑

i=1

πi(ft,α0 − ft0,i,α0
) +

p0
∑

i=1

〈δi, Dαft0,i,α0
〉+

p0
∑

i=1

〈τ i, Dtft0,i,α0
〉.

where
∑p0

i=1 πi ≥ 0.
Let W be the p0(h + d)-dimensional centered Gaussian random variable with variance Σ
such that for all ∆ and Θ,

(

∆
Θ

)T

Σ

(

∆
Θ

)

= ‖H0,0,∆,Θ

g0
‖2
2.

Let Z(t) be the (p0)-dimensional centered Gaussian field with covariance the p0×p0 matrix
Γ(·, ·) such that for all t1, t2,

Γ (t1, t2)i,j =

∫





ft,α0−f
t0,i,α0

g0

‖ ft,α0−f
t0,i,α0

g0
‖2









ft,α0−f
t0,j ,α0

g0

‖ ft,α0−f
t0,j ,α0

g0
‖2



 g0dν,

and let
Γ = Γ(t) = Γ(t, t).

Define C = C(t) the p0(h + d)× p0 matrix such that for all (t, Π, ∆, Θ),

(

∆
Θ

)T

C(t)Π =

p0
∑

i=1

πi〈
ft,α0−f

t0,i,α0

g0

‖ ft,α0−f
t0,i,α0

g0
‖2

,
H0,0,∆,Θ

g0
〉2,

and let A = A(t), U = U(t), M = M(t) be matrices such that

M =
(

Σ− CΓ−1CT
)−1

(18)

U = −MCΓ−1 (19)

A = Γ−1 + Γ−1CT MCΓ−1. (20)

Let 1 denote the p0-dimensional vector with all coordinates equal to 1. Then:

Theorem 5 Assume (WID) and (GM), and p = p0 + 1. Then 2 λn converges under (g0 ·
ν)⊗n in distribution to

sup
t

(

AZ + UT W
)T
(

A−1 − 11T

1T A1
1(AZ+UT W )T 1<0

)

(

AZ + UT W
)

The distribution under contiguous alternatives is rather difficult to express in its full gener-
ality so it is omitted for simplicity. The proof of Theorem 5 is given in Section 5.
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In the case of Gaussian mixtures with unknown variance, the assumption “
∑p0

i=1〈δi, Dαft0,i,αi〉+
∑

j∈J (τ j)T D2
tfj,α0(τ

j) = 0 ν a.e. if and only if δ1 = 0, . . . , δp0 = 0 and τ j = 0, j ∈ J”
does not hold. Indeed, second derivatives with respect to t are proportional with derivatives
with respect to α. In this case, it is necessary to go further in the Taylor development:
when taking third derivative with respect to t, the condition of non degeneracy holds. Also,
all derivatives till fourth order may be uniformly upper bounded with some function B as
needed. Since the limiting points of process Z need not to be known at boundary values of
K to define the asymptotic distribution of λn, the following result holds:

Theorem 6 The asymptotic distributions under the null hypothesis and under contiguous
hypotheses given in Theorem 4 and Theorem 5 hold for Gaussian mixtures with the same
unknown variance matrix.

3 The LRT for contamination mixtures when the set of
parameters is large.

As already said in the introduction, the asymptotic distribution of the LRT for compact T

and A can be used in practice for large data sets. The LRT happens in this case to be more
powerful than moment tests as shown in Delmas (2003). Nevertheless it suffers from two
drawbacks:

• the distribution is not free from the location of the null hypothesis inside T,

• for testing one population against two (or p0 against p) the LRT with bounded pa-
rameter is not invariant by translation or change of scale.

Several solutions to the first point exist. Threshold calculation can be conducted under
the “worst” form of the null hypothesis (see Delmas, 2003) or one can use a “Plug-in”, that
is an estimate of f0. It remains that results would be nicer if one would be able to get rid of
the compactness assumption. This section and the next one answer by the negative, showing
that in the simplest case: contamination for translation mixtures on R, the LRT is theoreti-
cally less powerful than moment tests under contiguous alternatives. As already said in the
introduction, the convergence to this result is very slow, so it is not so relevant in practice.
It mainly shows that it is difficult to construct an unbounded asymptotic theory of the LRT.

We consider in this section the contamination mixture model (1) with T = [−T, T ] for
a given positive real number T and ν the Lebesgue measure. We use notations and results
of Section 2.1. Let πn and tn be sequences such that:

• limn→+∞
√

nπn‖(ftn
− f0)/f0‖2 = c for some positive c,

• either tn tends to some t0 6= 0 and
√

nπn tends to some positive constant, or tn tends
to 0, and tn/‖tn‖ converges to some limit τ .

Let Pπn,tn
=
(

gπn,tn
· ν
)⊗n

and P0 =
(

f0 · ν
)⊗n

. To evaluate the asymptotic power and

the asymptotic level for large values of T , one has to investigate the behaviour of suprema
of the Gaussian processes Z(t) and Z(t) + m(t) as defined in Theorem 1. Z is the centered
Gaussian process defined in Section 2.1 with covariance given by (9). For simplicity we
consider this process as defined on the whole real line R. We will use assumptions under
which the supremum of Z(·) over [−T, T ] tends to infinity as T tends to infinity, and is
achieved for some t tending to infinity. So the study of this supremum on [0, T ] for large T
can be replaced by the study of the supremum on [1, T ]. The discontinuity of the covariance
function r at 0 will have for us no consequence on the extreme behaviour of the process Z.
We shall use Azäıs and Mercadier (2004) to derive the asymptotic distribution of suprema
of Gaussian processes. Hence let M(a, b) = supt∈(a,b)(Z(t) + m(t)). Since the asymptotic
distribution of 2 λn, under the null hypothesis or under contiguous alternatives, in Theorem
1 can be written as M(−T, T )2 (taking m(t) = 0 under the null hypothesis and m(t) = µ(t)
as defined by (11) under contiguous alternatives), we want to characterize asymptotic be-
haviours of M(−T, T ) as T → +∞. We thus introduce further notations and assumptions.
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Write rij(s, t) instead of ∂i+j

∂is∂j t
r(s, t) and define R(t) =

∫ t

0

√

r11(s, s) ds.

Let at =
√

2 log ◦R(t), bt = at − log(2π)
at

and b̃t = at − log(π)
at

.

Let V = {V (t) = Z(R−1(t)) + m(R−1(t)), t ∈ R} be the “unit-speed” transformation
of Z + m in the sense that the variance of V

′

(t) equals 1 for all t in R. We denote by rV its
covariance function.

We shall use the following Assumptions (G) on r and µ:

(G)

(G1) ∀ t ∈ R, r11(t, t) > 0 and lim
t→+∞

R(t) = +∞,

(G2) r(s, t) log |R(s)− R(t)| → 0 as |R(s)−R(t)| → +∞,

(G3) ∀ ε > 0 sup
|R(s)−R(t)|> ε

|r(s, t)| < 1,

(G4) ? r is four times continuously differentiable,

? s → r11(s, s) three times continuously differentiable,

? ∀ γ > 0, rY
01 and rY

04 are bounded on {(s, t) ∈ R
2, |s| > γ and |t| > γ},

(G5)
√

log ◦R(t)µ(t) −−−−→
t→+∞

0.

We have:

Theorem 7 Assume (CM) and (G). Then, as T tends to infinity, aT

(

M(−T, T ) − b̃T

)

tends in distribution to the Gumbel distribution when m(t) = 0 as well as when m(t) = µ(t).
In other words, if cT,α is the threshold of the test defined by

lim
n→+∞

P0 (λn > cT,α) = α,

then for any contiguous alternative, the limiting power of the LRT equals its level:

lim
T→+∞

lim
n→+∞

Pπn,tn
(λn > cT,α) = α.

Theorem 7 is proved in Section 5.

The theorem says that for T large enough, asymptotically, the LRT cannot distinguish
the null hypothesis from any contiguous alternatives.

We shall consider the translation mixture model defined in Section 2.1.1. Let f0 be a

density on R satisfying Assumptions (H) where we denote by f
(i)
0 the derivative of f0 of

order i.

(H)

(H1) ∀x ∈ R, f0(x) > 0, f0 four times continuously differentiable,

and ∀ i = 1, . . . , 4, ∃Ki > 0, ∀x ∈ R,
∣

∣

f
(i)
0

f0
(x)
∣

∣ ≤ Ki,

(H2) ∀x ∈ R, limt→+∞
f0(x+t)

f0(t)
= limt→−∞

f0(x+t)
f0(t) = 1,

(H3) ∃M > 0, ∀x, t ∈ R, f0(x)f0(t)
f0(x+t) ≤ M,

(H4) ∃F ∈ L2(λ) : sup|t|≥1 log |t|
√

f0(x + t) ≤ F (x),

(H5) limt→+∞ log(t)
√

f0(t) = 0.

Our result is now:

Corollary 1 Assume (H). Then Theorem 7 applies to the translation mixture model.

Proof of Corollary 1 is given in Section 5.

Remarks:
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• Assumptions (H1) to (H5) are essentially conditions on the tail of f0. (H4) and (H5)
are very weak and hold for all usual distributions. But (H1) to (H3) though rather
weak, are more restrictive. They hold for example if f0(t) = O(t−α) for α > 0 as
t → +∞ and f0(t) = O(t−β) for β > 0 as t → −∞. For instance, they hold for f0

being the inverse of a polynomial and in particular for the Cauchy density.

• The proof relies on the verification of assumptions of Theorem 7. In particular, asymp-
totic behaviours of the covariance r and its derivatives have to be checked. Assump-
tions (H) only express sufficient conditions under which the asymptotic analysis is
done with some generality. However, though (H2) does not hold for the Gaussian
density, we also verified that Theorem 7 holds for other densities such as the Gaussian
and the normalization of ch(x)−1 in spite of different justifications.

LRT has to be compared with other testing procedures such as sample mean or Kolmogorov-
Smirnov testing procedures.

- Denote by µi =
∫

xif0(x)dν(x). Without loss of generality one can assume that µ1 = 0.
If µ2 < +∞ applying Le Cam’s third Lemma, that is Theorem 6.6 of van der Vaart
(1998),

√
n Xn converges in distribution, as n tends to infinity, to the Gaussian N(0, µ2)

under P0 and to the Gaussian N(γ, µ2) under Pπn,tn
, where γ = c/‖ f ′0

f0
‖2 if tn → 0

and γ = ct0/‖ ft0−f0

f0
‖2 if tn → t0 6= 0.

Consequently the asymptotic power is greater than the level.

- Remark that, when no condition of moment is available, other tests can be also pro-
posed. Define Fn the random distribution function and F0 the distribution function
associated to f0. Let I denote the identity function on [0, 1] and let U be a Brownian
bridge on [0, 1]. Let ‖ · ‖∞ denotes the supremum norm. The natural normalization of
Fn leads to the definition of the Kolmogorov-Smirnov statistic Kn and the Cramér-von
Mises statistic W2

n:

Kn =
√

n ‖Fn − F0‖∞ and W
2
n =

∫ +∞

−∞

n [Fn(x) − F0(x)]2 dF0(x).

Set on [0, 1]

∆(x) = γ lim
n→+∞

F0

(

F−1
0 (x)− tn

)

− x

tn
,

where tn is the translation parameter of the alternative. Hence ∆ depends on the
asymptotic behaviour of tn.

? Kn converges in distribution, as n tends to infinity, to ‖U‖∞ under P0 and ‖U +
∆‖∞ under Pπn,tn

.

? W2
n converges in distribution, as n tends to infinity, to

∫ 1

0
U2 dI under P0 and

∫ 1

0
(U + ∆)2 dI under Pπn,tn

.

See Shorack and Wellner (1986) for a version of theses convergences. Simulations show that
in both cases, the distribution under Pπn,tn

is stochastically greater than that under P0.
Consequently the asymptotic power is greater than the level.

4 Asymptotic distribution of the LRT for Gaussian con-
tamination mixtures with unbounded mean under con-

tiguous alternatives.

Consider T = R (no prior upper bound) and the testing problem (1) with

ft(x) =
1√
2π

exp

(

− (x− t)2

2

)

.
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Set
g0 = f0 and gπ,t = (1− π)f0 + πft, 0 ≤ π ≤ 1, t ∈ T.

Let πn and tn be sequences such that limn→+∞
√

nπntn = γ ∈ R and limn→+∞ tn = t0 ∈ R.
Note that t0 can be equal to zero.

λn is now given by:

λn = sup
π∈[0,1], t∈R

n
∑

i=1

log
(

1 + π
(

exp[tXi −
t2

2
]− 1

)

)

.

Then:

Theorem 8 As n tends to infinity,
(

2 λn − log ◦ logn + log(2π2)
)

tends in distribution to
the Gumbel distribution under P0 as well as under Pπn,tn

for any γ and t0. In other words,
let us define as rejection values the region: (λn > cα,n) with

cα,n =
1

2

(

G1−α + log ◦ log n− log(2π2)
)

,

where G1−α is the 1− α fractile of the Gumbel distribution. We have by definition

lim
n→+∞

P0 (λn > cα,n) = α.

Then for any γ and t0, the limit power of the LRT is

lim
n→+∞

Pπn,tn
(λn > cα,n) = α.

The theorem says that asymptotically, the LRT cannot distinguish the null hypothesis from
any contiguous alternative. Indeed, this has to be compared with other testing procedures
such as moment testing procedures. For example, if Xn is the sample mean, applying Le
Cam’s third Lemma,

√
n Xn converges in distribution, under Pπn,tn

as n tends to infinity,
to the Gaussian N(γ, 1). Thus the test based on the statistic

√
n Xn has an asymptotic

power that is strictly greater than the level. As mentioned in the introduction this makes
sense in practice only for very large data sets.

Proof of Theorem 8

The separation of the hypotheses is greater when γ 6= 0. Using Lemma 14.31 of van der
Vaart (1998) it is easy to see that this is the only case to consider. Moreover by symmetry
we can suppose also that γ > 0. Let us introduce Sn the empirical process defined by

Sn(t) =
1√
n

n
∑

i=1

{

exp[tXi − t2]− exp(− t2

2
)
}

.

Liu and Shao (2004, Theorem 1) recall results obtained by Bickel and Chernoff (1993) on
the process Sn:

sup
t∈R

Sn(t) = sup
|t|∈A2,n

Sn(t) + oP0(1) (21)

where A2,n = [αn, βn], αn = 2
√

log ◦ log ◦ logn and βn =
√

log n/2− 2
√

log ◦ log n.
Through the proof of their Theorem 2 Liu and Shao (2004) state that

2 λn = sup
t∈R

Sn(t)2 + oP0(1).
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Combining with (21), the last equality becomes

2 λn = sup
|t|∈A2,n

Sn(t)2 + oP0(1).

Let us denote P̃0 the extension of P0 constructed by Bickel and Chernoff (1993) by Hungarian
construction. According to their formula (39), we get

2 λn = sup
|t|∈A2,n

S0(t)
2 + o

P̃0
(1) (22)

where S0 is the zero mean non-stationary Gaussian process with covariance function

ρ(s, t) = exp[− (s− t)2

2
]− exp[−s2

2
− t2

2
].

In their paper, Bickel and Chernoff remark that this process is very close to a stationary
process namely S̃0. Because we need it later, we will use here an other way. We define the
standardized version of S0

Y0(t) =
S0(t)
√

ρ(t, t)
=

S0(t)√
1− e−t2

,

in order to be able to apply the Normal Comparison Lemma (Li and Shao, 2002, Theorem
2.1). Y0 is a zero mean non-stationary Gaussian process, with unit variance and covariance
function

r(s, t) =
exp

(

st
)

− 1
√

exp
(

s2
)

− 1
√

exp
(

t2
)

− 1
· (23)

We have

0 ≤ sup
|t|∈A2,n

|Y0(t)− S0(t)| ≤ sup
|t|∈A2,n

(1−
√

ρ(t, t)) sup
|t|∈A2,n

|Y0(t)|.

Now the function r satisfies conditions of Corollary 1 of Azäıs and Mercadier (2004). Con-
sequently we know the exact order of the maximum

sup
|t|∈A2,n

|Y0(t)| = O
P̃0

(

(log ◦ log n)
1
2

)

.

This last equation can also be deduced from standard result on the maximum of stationary
Gaussian processes using the process S̃0 introduced by Bickel and Chernoff (1993).
On the other side, the maximum of 1−

√

ρ(t, t) on A2,n is obtained at αn. This permits us
to write

0 ≤ sup
|t|∈A2,n

|Y0(t)− S0(t)| ≤ O
P̃0

(

(log ◦ logn)
1
2−4
)

.

Finally this approximation allows us to replace S0 by Y0 in (22) to get

2 λn = sup
|t|∈A2,n

Y0(t)
2 + o

P̃0
(1). (24)

With the same idea as before, we define

Yn(t) =
Sn(t)√
1− e−t2

.

For all t0 and all γ, using argument close to those that lead to formula (7) in Gassiat (2002)
we have

log
dPπn,tn

dP0
(X1, . . . , Xn) = C(γ, t0)Yn(tn)− C(γ, t0)

2

2
+ oP0(1) (25)
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with C(γ, t0) = γ if t0 = 0 and C(γ, t0) = γ

√
et20−1
t0

if t0 > 0. Since γ can be supposed
positive, t0 is positive. A detailed proof of formula (25) is given in Section 5. Using the
formula (39) of Bickel and Chernoff (1993), we can replace Yn by Y0 to get

log
dPπn,tn

dP0
(X1, . . . , Xn) = C(γ, t0)Y0(tn)− C(γ, t0)

2

2
+ o

P̃0
(1). (26)

We next use the following lemma, its proof is given in Section 5.

Lemma 1 For all t0, 2 λn − log ◦ logn + log(2π2) and log
dPπn,tn

dP0
(X1, . . . , Xn) are asymp-

totically independent under P0.

Then, as soon as one proves Lemma 1 the theorem follows from a generalization of Le Cam’s
third Lemma. The proof of Lemma 1 relies on a suitably chosen discretization, following
ideas in Azäıs and Mercadier (2004), and an application of the normal comparison lemma
as refined in Li and Shao (2002).

5 Proofs

5.1 Proof of Theorem 5

To obtain the supremum in the first limit of Theorem 4, one has to compute the supremum
of:











Π
∆
Θ





T
(

Z
W

)







2

(27)

under the constraints




Π
∆
Θ





T

Σ̃





Π
∆
Θ



 = 1, ΠT 1 ≥ 0, (28)

where

Σ̃ =

(

Γ CT

C Σ

)

.

Consider the sumpremum under the first constraint. Then, similarly to the proof of Theorem
2, the value of the supremum is

(

AZ + UT W
)T

A−1
(

AZ + UT W
)

+ W T Σ−1W

and it is attained on some Π such that ΠT 1 has the same sign as (AZ + UT W )T 1.
If (AZ +UT W )T 1 < 0, then the supremum of (27) under (28) equals the supremum of (27)
under the constraints





Π
∆
Θ





T

Σ̃





Π
∆
Θ



 = 1, ΠT 1 = 0. (29)

Computation of this supremum using Lagrange multipliers leads to the fact that it is equal
to

(

AZ + UT W
)T
(

A−1 − 11T

1T A1

)

(

AZ + UT W
)

+ W T Σ−1W

and the Theorem is proved.

5.2 Proof of Theorem 7

Set uT,x = x
aT

+ b̃T and MV (a, b) = supt∈(a,b) Vt for V the unit-speed transformation of
Z + m.
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? We have
P

(

M(−T, T ) ≤ uT,x

)

= P

(

MV
(

−R(T ), R(T )
)

≤ uT,x

)

.

Now, applying with p = 2, D1 =
(

−R(T ),−
√

R(T )
)

and D2 =
(√

R(T ), R(T )
)

Proposition
4 of Azäıs and Mercadier (2004), we obtain

P
(

MV (D1 ∪D2) ≤ uT,x

)

= P
(

MV (D1) ≤ uT,x

)

P
(

MV (D2) ≤ uT,x

)

+ o(1).

Remark that in Azäıs and Mercadier (2004) sizes of intervals are defined as functions of the
level, here it is the opposite which is made. Furthermore, repeated application of Corollary
1 of Azäıs and Mercadier (2004) enables us to state for τ =

√

R(T ) and τ = R(T ) the
convergence of aτ

(

MV (0, τ) − bτ

)

and aτ

(

MV (−τ, 0)− bτ

)

to the Gumbel. It follows that

MV
(

−
√

R(T ),
√

R(T )
)

is stochastically negligible compared with MV
(

−R(T ), R(T )
)

and

also that M
(

0,
√

R(T )
) (

resp. M
(

−
√

R(T ), 0
))

is stochastically negligible compared with

MV
(

0, R(T )
) (

resp. MV
(

−R(T ), 0
))

. By combining what precedes, we get

P

(

MV
(

−R(T ), R(T )
)

≤ uT,x

)

= P

(

MV
(

0, R(T )
)

≤ uT,x

)

P

(

MV
(

−R(T ), 0
)

≤ uT,x

)

+ o(1),

as T tends to infinity, and which becomes

P

(

M(−T, T ) ≤ uT,x

)

= P

(

M(0, T ) ≤ uT,x

)

P

(

M(−T, 0) ≤ uT,x

)

+ o(1)

when we return to the initial process Z + m.

Let G(x) = exp
(

− exp(−x)
)

denote the distribution function of the Gumbel. Corollary 1
of Azäıs and Mercadier (2004) yields, as T tends to infinity,

P

(

M(0, T ) ≤ uT,x

)

= P

(

aT

(

M(0, T )− b̃T

)

≤ x
)

+ o(1)

= P

(

aT

(

M(0, T )− bT

)

≤ x + log(2)
)

+ o(1)

= G(x + log(2)) + o(1).

Since the same equality holds on (−T, 0), one can conclude that

P

(

M(−T, T ) ≤ uT,x

)

= G(x + log(2))2 + o(1) = G(x) + o(1).

5.3 Proof of Corollary 1

The proof relies on the verification of assumptions of Theorem 7.

Proof of (CM): since f0 is continuous and positive, for any real T ,

inf
t∈[−T,T ]

f0(t) = δT > 0.

Using (H3), for all t ∈ [−T, T ] and x ∈ R,

∣

∣

∣

∣

ft − f0

f0
(x)

∣

∣

∣

∣

≤ sup
x∈R

∣

∣

∣

∣

f0(x − t) f0(t)

f0(x)

∣

∣

∣

∣

1

f0(t)
+ 1 ≤ M

δT

+ 1,

and using (H1) and (H3)

∣

∣

∣

∣

f ′t
f0

(x)

∣

∣

∣

∣

≤ K1
M

δT

,

∣

∣

∣

∣

f ′′t
f0

(x)

∣

∣

∣

∣

≤ K2
M

δT

·
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Let us now prove Assumptions (G). Set

N(s, t) =

∫

f0(x− t)f0(x− s)

f0(x)
dν(x).

Differentiation of r, for s and t in R \ {0}, is a consequence of that of N(s, t). Now, for any
integers i ≤ 4 and j ≤ 4, using (H1) and (H3)

f
(i)
0 (x− t)f

(j)
0 (x− s)

f0(x)
≤ KiKj

f0(x − t)f0(x− s)

f0(x)
≤ KiKjM

2 f0(x)

f0(t)f0(s)

and f0(t)f0(s) is positively lower bounded on the neighbourhood of any (s0, t0), which proves
that N is differentiable at any (s, t) ∈ (R \ {0})2 with

∂i+jN

∂it ∂js
(s, t) = (−1)i+j

∫

f
(i)
0 (x− t)f

(j)
0 (x− s)

f0(x)
dν(x).

Proof of (G1): we thus have for t 6= 0

r11(t, t) =

∫ f
′2
0 (x−t)
f0(x) dν(x)

(

∫ f2
0 (x−t)
f0(x) dν(x) − 1

)

−
(

∫ f0(x−t)f
′

0(x−t)
f0(x) dν(x)

)2

(

∫ f0(x−t)2

f0(x) dν(x) − 1
)2

=
‖ f ′0(·−t)

f0(·) ‖2
2‖ f0(·−t)−f0(·)

f0(·) ‖2
2 −

(

〈 f ′0(·−t)
f0(·)

, f0(·−t)−f0(·)
f0(·) 〉2

)2

‖ f0(·−t)−f0(·)
f0(·) ‖4

2

which is positive by Cauchy-Schwarz inequality. Now,

lim
t→+∞

r11(t, t) =

∫

f
′2
0 dν

∫

f2
0 dν −

(

∫

f0f
′

0 dν
)2

(

∫

f
′2
0 dν

)2 ·

Indeed, define the functions

A(t) =

∫

f2
0 (x)

f0(x + t)
dν(x)

B(t) =

∫

f
′2
0 (x)

f0(x + t)
dν(x)

C(t) =

∫

f0(x)f
′

0(x)

f0(x + t)
dν(x).

Then write the function r11 under the following form:

r11(t, t) =
B(t)f0(t)

(

A(t)f0(t)− f0(t)
)

−
(

C(t)f0(t)
)2

(

A(t)f0(t)− f0(t)
)2 ·

Thanks to (H1) and (H3), integrands of Af0, Bf0 and Cf0 are respectively dominated by

Mf0(x), K2
1Mf0(x), K1Mf0(x).

By application of (H2) and Lebesgue Theorem, we conclude using the following conver-
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gences:

lim
t→+∞

A(t)f0(t) =

∫

f2
0 (x) dν(x)

lim
t→+∞

B(t)f0(t) =

∫

f
′2
0 (x) dν(x)

lim
t→+∞

C(t)f0(t) =

∫

f0(x)f
′

0(x) dν(x).

Thus for a positive constant R
R(t) ∼t→+∞ R t. (30)

Proof of (G2): considering (30), we have to prove that

lim
|s−t|→+∞

r(s, t) log |s− t| = 0. (31)

Using (H3),
f0(t)f

2
0 (x)

f0(x + t)
≤ Mf0(x),

so that using (H2),

lim
t→+∞

∫

f0(t)f
2
0 (x)

f0(x + t)
dν(x) =

∫

f2
0 (x)dν(x),

and there exists a constant C such that for |s− t| large enough,

r(s, t) ≤ C

∫

√

f0(t)
√

f0(s)
f0(x− t)f0(x − s)

f0(x)
dν(x).

Then, using (H3),

r(s, t) ≤
∫

C M
√

f0(x)
√

f0(x + s− t)dν(x).

But according to (H5) for any x ∈ R,

lim
|s−t|→+∞

log |s− t|
√

f0(x + s− t) = 0,

and so, one may apply Lebesgue Theorem using (H4) to obtain (31).

Proof of (G5): (G5) is a consequence of (G2) and formula (11) giving µ(t).

Proof of (G3): Using (30) and the fact that r11 > 0, one just has to prove that for any
ε > 0,

sup
|s−t|>ε

|r(s, t)| < 1. (32)

First of all, r(s, t) is a continuous function of (s, t) and |r(s, t)| < 1 as soon as s 6= t by
Cauchy-Schwarz inequality. Thus for any ε > 0, for any compact set K,

sup
|s−t|>ε, t∈K, s∈K

|r(s, t)| < 1.

On the other hand because of (G2) for |s− t| sufficiently large r(s, t) is bounded away from
1, so we may suppose that |s− t| is bounded. Suppose that there exists sn and tn such that
|sn − tn| is bounded, |sn − tn| > ε and r(sn, tn) → 1. By compactness it would be possible
to choose subsequences sϕ(n) and tϕ(n) such that sϕ(n) − tϕ(n) → c. But using the same
tricks as before (using (H2), (H3) and Lebesgue Theorem),

lim
n→+∞

r(sϕ(n), tϕ(n)) =

∫

f0(x)f0(x + c)dν(x)
∫

f2
0 (x)dν(x)

·

Since |c| ≥ ε > 0 this value differs from 1. Hence we get a contradiction with assumptions
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made on sequences sn and tn and (32) is true.

Proof of (G4): The first part of (G4) has been already proved. We use same arguments to
prove that s 7→ r11(s, s) is three times continuously differentiable. Now, this last regularity
associated to (30) allow us to reduce our study to that of functions r01 and r04.

? The first derivative r01(s, t) can be written as:

−〈 f
′

0(·−t)
f0

, f0(·−s)−f0

f0
〉2

‖ f0(·−s)−f0

f0
‖2‖ f0(·−t)−f0

f0
‖2

+
〈 f0(·−t)−f0

f0
, f0(·−s)−f0

f0
〉f0〈

f
′

0(·−t)
f0

, f0(·−t)−f0

f0
〉f0

‖ f0(·−s)−f0

f0
‖2‖ f0(·−t)−f0

f0
‖3
2

then Cauchy-Schwarz inequality leads to

|r01(s, t)| ≤ 2
‖ f

′

0(·−t)
f0

‖2

‖ f0(·−t)−f0

f0
‖2

·

This upper bound is a continuous function on t. By making appear f0(t), it is easily seen
that it converges, as t tends to infinity, to

2

∫

f
′2
0 dν

∫

f2
0 dν

·

Moreover for any δ > 0, the denominator is lower bounded on Dδ = {(s, t), s ∈ R, |t| > δ}.
Consequently for any δ > 0, (s, t) 7→ r01(s, t) is bounded on R2 \Dδ.

? Using easy but tedious computations and Cauchy-Schwarz inequality once more, we
have:

|r04(s, t)| ≤
∑

i≥1

∑

j≥1

∏4
k=1 ‖

f
(k)
0 (·−t)

f0
‖αijk

2

‖ f0(·−t)−f0

f0
‖i
2

where the sums on i and j are finite and where for any i and j:
∑4

k=1 αijk = i. Previous
arguments run again and permit us to assert that for any δ > 0 the function (s, t) 7→ r04(s, t)
is bounded on R2 \Dδ.

5.4 Proof of formula (25)

Define the functions L and L̃ by log(1+u) = u−u2/2+u2L(u) and L̃(u) = sup|v|<u |L(v)|.
It is clear that L̃(u) → 0 as u → 0 and we have

log
dPπn,tn

dP0
(X1, . . . , Xn) =

n
∑

i=1

log
(

1 + πn(etnXi−
t2n
2 − 1)

)

= πn

n
∑

i=1

(etnXi−
t2n
2 − 1) +

π2
n

2

n
∑

i=1

(etnXi−
t2n
2 − 1)2 + S, (33)

with

|S| ≤ nπ2
nt2n

1

n

n
∑

i=1





etnXi−
t2n
2 − 1

tn





2

L̃



πntn max
i=1,...,n

(

etnXi−
t2n
2 − 1

tn

)



 ·

Now it suffices to remark that the random variables





etnX−
t2n
2 − 1

tn



, n = 1, 2, . . . for X of

distribution N(0, 1) have bounded third moment. Applying the Markov inequality

max
i=1,...,n





etnXi−
t2n
2 − 1

tn



 = oP0(
√

n)·
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Moreover, the class of functions

x →





etnx−
t2n
2 − 1

tn





2

is Glivenko-Cantelli in probability (indeed, it is the square of a Donsker class, as a conse-
quence of Section 2.1), we get S = oP0(1) and

1

n

n
∑

i=1

[(etnXi−
t2n
2 − 1)2 − (et2n − 1)] = oP0(1),

so that

log
dPπn,tn

dP0
(X1, . . . , Xn) =

√
nπn

√

et2n − 1Yn(tn) + n
π2

n

2

1

n

n
∑

i=1

(etnXi−
t2n
2 − 1)2 + oP0(1)

=
√

nπn

√

et2n − 1Yn(tn) + n
π2

n

2
(et2n − 1) + oP0(1). (34)

Now setting C(γ, t0) = γ if t0 = 0 and C(γ, t0) = γ

√
et20−1
t0

we have

√
nπn

√

et2n − 1 = C(γ, t0) + o(1)

and

log
dPπn,tn

dP0
(X1, . . . , Xn) = C(γ, t0)Yn(tn)− C(γ, t0)

2

2
+ oP0(1).

5.5 Proof of Lemma 1

Beforehand we set cn = (log ◦ log n)
1
2 and we recall that A2,n = [αn, βn] with αn =

2
√

log ◦ log ◦ log n and βn =
√

log n/2− 2
√

log ◦ logn.

According to (24) and (26) we need to prove that supt∈A2,n
(Y0(t)−cn) and Y0(t0) are asymp-

totically independent. To this end, we consider the discretized process {Y0(qnk), k ∈ Z}
with a step of discretization qn depending on n in a sense which has to be defined. Let us
gather the discretized points of A2,n in Aqn

2,n = {d1, . . . , dN(n)}.
By triangular inequalities and simplifications we have for any x and y

∣

∣P

(

sup
t∈A2,n

Y0(t)− cn ≤ x; Y0(t0) ≤ y
)

− P( sup
t∈A2,n

Y0(t)− cn ≤ x)P(Y0(t0) ≤ y)
∣

∣

≤ 2 P

(

sup
d∈A

qn
2,n

Y0(d)− cn ≤ x; sup
t∈A2,n

Y0(t)− cn > x
)

+ (35)

∣

∣

∣P

(

sup
d∈A

qn
2,n

Y0(d)− cn ≤ x; Y0(t0) ≤ y
)

− P

(

sup
d∈A

qn
2,n

Y0(d)− cn ≤ x
)

P

(

Y0(t0) ≤ y
)∣

∣

∣

The task is now to prove that for fixed x and y each component of the upper bound con-
verges to 0.

? We define the following modification of the function r

r̃(t0, t) = 0 t ∈ Aqn

2,n, t 6= t0,

r̃(s, t) = r(s, t) s, t ∈ Aqn

2,n.

Note that under the Gaussian distribution defined by r̃ the value of the process at t0 is
independent of the values of the process at other locations whose distribution does not
changes. This proves that r̃ is a covariance function. We define ξ(t) = supu, |u−t0|>t |r(u, t0)|.
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From (23) we have

ξ(t) = O
(

exp
(

− t2

2

)

)

.

We restrict our attention to n’s such that

cn > 2|x| ; ξ(αn) < 1/2 so that
(x + cn)2

2(1 + ξ(αn))
≥ c2

n

12

The Normal Comparison Lemma (Li and Shao, 2002, Theorem 2.1) gives bounds to terms
of the type

P

(

Y1 ≤ u1, ..., Yn ≤ un

)

− P

(

Ỹ1 ≤ u1, ..., Ỹn ≤ un

)

where Y and Ỹ are two centered Gaussian vectors with the same variance and possibly
different covariances ρij and ρ̃ij , i, j = 1, ..., n. It says that

P

(

Y1 ≤ u1, ..., Yn ≤ un

)

− P

(

Ỹ1 ≤ u1, ..., Ỹn ≤ un

)

≤ 1

2π

∑

1≤i<j≤n

(

arcsin(ρij)− arcsin(ρ̃ij)
)+

exp

(

−
u2

i + u2
j

2(1 + ρ̄ij)

)

(36)

where z+ = max {z, 0}, ρ̄ij = max {|ρij |, |ρ̃ij |}. Let (Const) represents a generic positive
constant. Since arcsin(x) ≤ xπ/2 for 0 ≤ x ≤ 1, applying inequality (36) in both directions
to the vector Y0 with covariance r and to the vector Ỹ0 with covariance r̃ corresponding to
the points belonging to {t0} ∪ Aqn

2,n we get:

∣

∣

∣P

(

sup
d∈A

qn
2,n

Y0(d)− cn ≤ x; Y0(t0) ≤ y
)

− P

(

sup
d∈A

qn
2,n

Y0(d)− cn ≤ x
)

P

(

Y0(t0) ≤ y
)∣

∣

∣

≤ (Const)
∑

d∈A
qn
2,n

|r(d, t0)| exp
(

− (x + cn)2 + y2

2
(

1 + |r(d, t0)|
)

)

≤ (Const)
∑

d∈A
qn
2,n

|r(d, t0)| exp
(

− c2
n

12

)

≤ (Const)

qn

exp
(

− c2
n

12

)

∫ +∞

αn−qn

ξ(t)dt =
(Const)

qn

exp

(

− c2
n

12

)

.

which tends to zero if , for example, qn =
(

log ◦ logn
)−θ

as soon as θ > 0.

? To deal with the first term of (35), we denote by Uz and U qn
z the point processes of

up-crossings of level z for Y0 and its qn-polygonal approximation (linear interpolation) re-
spectively. For any subset B of R,

Uz(B) = # {t ∈ B, Y0(t) = z, Y
′

0 (t) > 0},
U qn

z (B) = #
{

l ∈ Z, qn(l − 1) ∈ B, qnl ∈ B, Y0

(

qn(l − 1)
)

< z < Y0

(

qnl
)

}

.

Set Φ the distribution function of the standard Gaussian and Φ = 1− Φ.

P

(

sup
d∈A

qn
2,n

Y0(d)− cn ≤ x; sup
t∈A2,n

Y0(t)− cn > x
)

≤ P

(

Y0(αn) > x + cn

)

+ P

(

Y0(αn) ≤ x + cn, Ux+cn
(A2,n) ≥ 1, U qn

x+cn
(A2,n) = 0

)

≤ Φ(x + cn) + E

(

Ux+cn
(A2,n)− U qn

x+cn
(A2,n)

)

where the last upper bound is due to Markov inequality. The first term above tends trivially

to zero, as for the second if we set qn =
(

log ◦ logn
)−θ

with θ > 1
2 , Condition (U7) of Lemma
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2 of Azäıs and Mercadier (2004) is met. It is easy to check that since E

(

Ux+cn
(A2,n)

)

is

bounded we are in the condition of application of that lemma and

E

(

Ux+cn
(A2,n)− U qn

x+cn
(A2,n)

)

= o(1).
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