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Abstract: We investigate the asymptotic normality of the posterior distri-
bution in the discrete setting, when model dimension increases with sample
size. We consider a probability mass function θ0 on N \ {0} and a sequence

of truncation levels (kn)n satisfying k3
n ≤ n infi≤kn θ0(i). Let θ̂ denote the

maximum likelihood estimate of (θ0(i))i≤kn and let ∆n(θ0) denote the kn-

dimensional vector which i-th coordinate is defined by
√

n
(
θ̂n(i)− θ0(i)

)
for 1 ≤ i ≤ kn. We check that under mild conditions on θ0 and on the se-
quence of prior probabilities on the kn-dimensional simplices, after center-
ing and rescaling, the variation distance between the posterior distribution
recentered around θ̂n and rescaled by

√
n and the kn-dimensional Gaussian

distribution N (∆n(θ0), I−1(θ0)) converges in probability to 0. This theo-
rem can be used to prove the asymptotic normality of Bayesian estimators
of Shannon and Rényi entropies.

The proofs are based on concentration inequalities for centered and non-
centered Chi-square (Pearson) statistics. The latter allow to establish pos-
terior concentration rates with respect to Fisher distance rather than with
respect to the Hellinger distance as it is commonplace in non-parametric
Bayesian statistics.
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1. Introduction

The classical Bernstein-Von Mises Theorem asserts that for regular (Hellinger
differentiable) parametric models, under mild smoothness conditions on the
prior distribution, after centering around the maximum likelihood estimate and
rescaling, the posterior distribution of the parameter is asymptotically Gaus-
sian and that the limiting covariance matrix coincides with the inverse of the
Fisher information matrix. This theorem provides a frequentist perspective on
the Bayesian methodology and elements for reconciliation of the two approaches.
In regular parametric models, Bernstein-von Mises theorems motivate the inter-
change of Bayesian credible sets and frequentist confidence regions. Refinements
of the Bernstein-von Mises theorem have also proved helpful when analyzing the
redundancy of universal coding for smoothly parametrized classes of sources over
finite alphabets.

The proof of the classical Bernstein-Von Mises theorem relies on rather so-
phisticated arguments. Some of them seem to be tied up with the finite dimen-
sionality of the considered models. Hence, extensions of Bernstein-von Mises
theorems to non-parametric and semi-parametric settings have both received
deserved attention and shown moderate progress during the last four decades.
Soon after Bayesian inference was put on firm frequentist foundations by Doob
[1949], Schwartz [1965] and others, Freedman [1963] [see also Freedman, 1965]
pointed out that even when dealing with the simplest possible case, that of in-
dependent, identically distributed, discrete observations, there is no such thing
as a general posterior consistency result let alone a general Bernstein-Von Mises
Theorem. Moreover, according to the evidence presented by Freedman [1965],
it is mandatory to focus moderately large classes of distributions. Despite such
early negative results, non-parametric Bayesian theory has been progressing at a
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steady pace. The framework of empirical process theory has enabled to provide
sufficient conditions for posterior consistency and to relate posterior concentra-
tion rates to model complexity [Ghosal and van der Vaart, 2007b, 2001, Ghosal
et al., 2000].

Among the different approaches to non-parametric inference, using simple
models with increasing dimensions has attracted attention in the context of
maximum likelihood inference [Portnoy, 1988, Fan and Truong, 1993, Fan et al.,
2001, Fan, 1993] and in the context of Bayesian inference [Ghosal, 2000]. The
last reference is especially relevant to this paper. Therein, S. Ghosal consid-
ers nested sequences of exponential models satisfying a number of assumptions
involving the growth rate of models with sample size, the growth rate of the
determinant of the Fisher information matrix with respect to model dimension
(and thus sample size), prior smoothness, and moment bounds for score func-
tions in small Kullback-Leibler balls located around the sampling probability
(those conditions will be explained and compared with our own conditions in
Section 3.1). S. Ghosal proves a Bernstein-Von Mises Theorem [Ghosal, 2000,
Theorem 2.3] for the log-odds parametrization, partially building on previous
results from Portnoy [1988] concerning maximum likelihood estimates. However
our objectives significantly differ from those of S. Ghosal. In [Ghosal, 2000], the
main application of non-parametric Bernstein-Von Mises Theorems for multino-
mial models seems to be non-parametric density estimation using histograms.
This framework justifies special attention to multinomial distributions which are
almost uniform. Our ultimate goal is quite different. In information-theoretical
language, we are interested in investigating memoryless sources over infinite al-
phabets as in [See Kieffer, 1978, Gyorfi et al., 1993, Boucheron et al., 2009, and
references therein]. In Information Theory, refinements of Bernstein-Von Mises
Theorems allow to investigate the so-called maximin redundancy of universal
coding over parametric classes of sources [Clarke and Barron, 1994]. In Informa-
tion Theory, a source over a (countable alphabet) is a probability distribution
over the set of infinite sequences of symbols from the alphabet. The redun-
dancy of a (coding) probability distribution with respect to a source on a given
(finite) sequence of symbols is the logarithm of the ratio between the prob-
ability of the sequence under the source and under the coding probability. In
universal coding theory, average redundancy with respect to a prior distribution
over sources can be written as the difference between the (differential) Shan-
non entropy of the prior distribution and the average value of the (differential)
entropy of the conditional posterior distribution. Thanks to non-trivial refine-
ments of the Bernstein-Von Mises Theorem, the latter conditional entropy can
be approximated by the (differential) entropy of a Gaussian distribution which
covariance matrix is the inverse of the Fisher information matrix defined by
the source under consideration. This elegant approach provides sharp asymp-
totic and non-asymptotic results when dealing with classes of sources which are
soundly parameterized by subsets of finite-dimensional spaces [See Clarke and
Barron, 1990, for precise definitions]. When turning to larger classes of sources,
for example toward memoryless sources over countable alphabets [Boucheron
et al., 2009], this approach to the characterization of maximin redundancy has
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not (yet) been carried out. A major impediment is the current unavailability of
adequate non-parametric Bernstein-Von Mises Theorems.

This paper is a first step in developing the Bayesian tools that are use-
ful to precisely quantify the minimax redundancy of universal coding of non-
parametric classes of sources over infinite alphabets. Because of our ultimate
goals, we cannot focus on almost uniform multinomial models. We are specif-
ically interested in situations where the sampling probability mass functions
decay at a prescribed rate (say algebraic or exponential) as in [Boucheron et al.,
2009].

As pointed out by Ghosal, in models with an increasing number of param-
eters, justifying the asymptotic normality of the posterior distribution is more
involved, and precisely characterizing under which conditions on prior and sam-
pling distribution this asymptotic normality holds remains an open-ended ques-
tion. For example, in the context of discrete distributions, several ways of defin-
ing the divergence between distributions look reasonable. Most of the recent
work on non-parametric Bayesian statistics dealt with posterior concentration
rates and has been developed using Hellinger distance [Ghosal et al., 2000,
Ghosal and van der Vaart, 2007b, 2001]. One may wonder whether some pos-
terior concentration rate results obtained using Hellinger metrization can be
strengthened. It is not clear how to tackle this issue in full generality. In this
paper, taking advantage of the peculiarities of our models, we use another,
demonstrably stronger, information divergence, the Fisher (χ2) “distance” and
establish posterior concentration rates with respect to Fisher balls (see 3.6).
The proof relies on known concentration inequalities for centered χ2 (Pear-
son) statistics and (apparently) new concentration inequalities for non-centered
χ2 statistics.

Paraphrasing van der Vaart [1998], as the notion of convergence in the Bernstein-
Von Mises Theorem is a rather complicated one, the expected reward, once such
a Theorem has been proved, is that ”nice” functionals applied to the posterior
laws should converge in distribution in the usual sense. An obvious candidate
for deriving that kind of method is a Bayesian variation on the Delta method.
However, we are facing here two kinds of obstacles. On the one hand, we can-
not rely on the availability of a Bernstein-Von Mises Theorem when considering
the infinite-dimensional model [Freedman, 1963, 1965]. This precludes using the
traditional functional Delta method as described for example in [van der Vaart
and Wellner, 1996, van der Vaart, 1998]. On the other hand, when considering
models of increasing dimensions, a variant of the Delta method has to be de-
rived in an ad hoc manner. This is what we do. We assess this rule of thumb
by examining plug-in estimates of Shannon and Rényi entropies. Such function-
als characterize the compressibility of a given probability distribution [Csiszár
and Körner, 1981, Cover and Thomas, 1991, Gallager, 1968]. The problem of
estimating such functionals has been investigated by Antos and Kontoyiannis
[2001] and Paninski [2004]. It has been checked there that plug-in estimates
of the Shannon and Rényi entropies are consistent and some lower and upper
bounds on the rate of convergence have been proposed. Up to our knowledge,
classes of distributions for which plug-in estimates satisfy a central limit theorem
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have not been systematically characterized. Here, the Bernstein-Von Mises The-
orem allows to derive central limit theorems for Bayesian entropy estimators (see
Theorem 3.12) and provides the basis for constructing Bayesian credible sets.
In the present context, those credible sets are known to coincide asymptotically
with Bayesian bootstrap confidence regions [Rubin, 1981].

The paper is organized as follows. In Section 2, the framework and notation
of the paper are introduced. A few technical conditions warranting local asymp-
totic normality when handling models of increasing dimensions are also stated.
The main results of the paper are presented in Section 3. The non-parametric
Bernstein-Von Mises Theorem (3.7) is described in Subsection 3.1. It is comple-
mented by a posterior concentration lemma (3.6) that might be interesting in its
own right. A roadmap of the proof of the Bernstein-Von Mises Theorem is stated
thereafter. In Paragraph 3.2, the asymptotic normality of Bayesian estimators
of various entropies is derived using the non-parametric Bernstein-Von Mises
Theorem and various tail bounds for quadratic forms that are also useful in
the derivation of the Bernstein-Von Mises theorem. In Paragraph 3.3, sequences
of Dirichlet priors are checked to satisfy the conditions of the Bernstein-Von
Mises Theorem. The main results of the paper are illustrated on the envelope
classes investigated by Boucheron et al. [2009]. In Subsection 3.5, the setting
of Theorem 3.7 is compared with the framework described in [Ghosal, 2000].
In Subsection 3.6, the posterior concentration lemma is compared with related
recent results in non-parametric Bayesian statistics. The Proof of the Bernstein-
Von Mises Theorem is given in Section 4. It adapts Le Cam’s proof [Le Cam and
Yang, 2000, van der Vaart, 2002] to the non-parametric setting using a collection
of old and new non-asymptotic tail bounds for chi-square statistics. The proof of
the asymptotic normality of Bayesian entropy estimators is given in Section 5.
It relies on the Bernstein-Von Mises Theorem and on the aforementioned tail
bounds for chi-square statistics.

2. Notation and background

This section describes the statistical framework we will work with, as well as
the behavior of likelihood ratios in this framework. At the end of the section, a
useful contiguity result is stated.

Throughout the paper, θ = (θ(i))i∈N∗ denotes a probability mass function
over N∗ = N \ {0} and Θ denotes the set of probability mass functions over
N∗. If the sequence x = x1, . . . , xn denotes a sample of n elements from N∗,
let Ni denote the number of occurrences of i in x: Ni(x) =

∑n
j=1 1xj=i . The

log-likelihood function maps Θ×Nn
∗ toward R:

`n(θ,x) =
∑
i≥1

Ni log θ(i) .

When the sample x is clear from context, `n(θ,x) is abbreviated into `n(θ).
Throughout the paper, θ0 denotes the (unknown) probability mass function

under which samples are collected. Let Ω = N
N

∗ , let X1, . . . , Xn, . . . denote the
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coordinate projections. Then P0 denotes the probability distribution over Ω
(equipped with the cylinder σ-algebra F), satisfying

P0{∧n
i=1Xi = xi} =

n∏
i=1

θ0(xi) .

Recall that the maximum likelihood estimator θ̂ of θ0 on a sample x is given by
the empirical probability mass function: θ̂(i) = Ni/n .

Let k denote a positive integer that may and should depend on the sample
size n. We will be interested in the estimation of the θ0(i) for i = 1, . . . , k. In this
respect, all the useful information is conveyed by the counts Ni, i = 1, . . . , k,
or equivalently in what will be called the truncated version of the sample. The
truncated version of sample x is denoted by x̃ and constructed as follows

x̃i =
{

xi if xi ≤ k
0 otherwise.

The counter N0 is defined as the number of occurrences of 0 in x̃: N0(x) =∑
i>k Ni(x) . The image of θ ∈ Θ by truncation is a p.m.f. over {0, . . . , k}, it is

still denoted by θ with θ(0) =
∑

i>k θ(i). Let Θk denote the set of p.m.f. over
{0, . . . , k}. In the sequel, depending on context, θ0 may denote either the p.m.f.
on N∗ from which the sample is drawn or its image by truncation at level k.

Henceforth, θ ∈ Θkn may denote either (θ(i))0≤i≤kn or its projection on
the kn last coordinates (θ(i))1≤i≤kn ; in the same way, if h denotes a vector
(h(i))0≤i≤kn in Rkn+1 such that

∑kn

i=0 h(i) = 0, h may also denote its projection
on the kn last coordinates (h(i))1≤i≤kn

depending on the context.
For a given sample x, the score function is the gradient of the log-likelihood at

θ ∈ Θk, for i ∈ {1, ..., k}:
(

˙̀
n(θ)

)
i
= Ni/θ(i)−N0/θ(0) . Assume all components

of θ ∈ Θk are positive, then the information matrix I(θ) is defined as

I(θ) =
1
n
Eθ

[
˙̀
n(θ) ˙̀T

n (θ)
]

= Diag
(

1
θ(i)

)
1≤i≤k

+ 1
θ(0)11T

and its inverse is

I−1(θ) = Diag (θ(i))1≤i≤k −

θ(1)
...

θ(k)

(θ(1) . . . θ(k)
)

.

It can be checked that det(I(θ)) =
∏k

i=0 θ−1(i). The pseudo-sufficient statistic
∆n(θ) is defined as

∆n(θ) =
1√
n

I−1(θ) ˙̀
n(θ) =

√
n
(
θ̂ − θ

)
.

Note that
√

n
(
θ̂−θ0

)
= ∆n(θ0) and that this k-dimensional random vector has

covariance matrix I−1(θ0). Moreover for each positive θ ∈ Θk, ∆T
n (θ)I(θ)∆n(θ)
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coincides with the Pearson χ2 statistics.

∆T
n (θ)I(θ)∆n(θ) =

k∑
i=0

(Ni − nθ(i))2

nθ(i)
.

Let kn denote a truncation level. If h belongs to Rkn+1 and satisfies
∑kn

i=0 h(i) =
0, let σn(h) be defined by

σ2
n(h) =

kn∑
i=0

h2(i)
θ0(i)

= hT I(θ0)h,

where we agree on the following convention: if θ0(i) = 0 and h(i) = 0, then
h2(i)/θ0(i) = 0. The set Eθ0,kn(M) is the intersection of a kn-dimensional sub-
space with an ellipsoid in Rkn+1 .

Eθ0,kn
(M) =

{
h : σ2

n(h) ≤ M,

kn∑
i=0

h(i) = 0, h(i) ≥ −
√

nθ0(i), i = 0, . . . , kn

}
.

In the parametric setting, that is when kn remains fixed, Le Cam’s proof of the
Bernstein-Von Mises Theorem [van der Vaart, 1998, van der Vaart, 2002] is made
significantly more transparent by resorting to a contiguity argument. In order
to adapt this argument to our setting, we need to formulate two conditions.

In the sequel (kn)n∈N denotes a non-decreasing sequence of truncation levels.

Condition 2.1. The p.m.f. θ0 and the sequence (kn)n∈N satisfy

n inf
i≤kn

θ0(i) → +∞ .

Let (hn)n∈N denote a sequence of elements from R
kn+1 such that for each n,∑kn

i=0 hn(i) = 0. The sequence (hn)n∈N is said to be tangent at the p.m.f. θ0 if
the following condition is satisfied.

Condition 2.2. There exists a positive real σ such that the sequence σ2
n(hn)

tends toward σ2 > 0.

The probability distribution Pn,h over {0, . . . , kn}n is the product distribu-
tion defined by the perturbed p.m.f. θ0(i) + h(i)/

√
n if 0 < θ0(i) + h(i)√

n
< 1

for all i in {0, . . . , kn}. We are now equipped to state the building block of the
contiguity argument: the proof is given in the appendix (A).

Lemma 2.3. Let θ0 denote a probability mass function over N∗. If the sequence
of truncation levels (kn)n∈N satisfy Condition 2.1 and if the sequence (hn)n∈N
satisfies the tangency Condition 2.2 then the sequences (Pn,h)n and (Pn,0)n are
mutually contiguous, that is, for any sequence (Bn) of events where for each n,
Bn ⊆ {0, . . . , kn}n, the following holds:

lim
n
Pn,h{Bn} = 0 ⇔ lim

n
Pn,0{Bn} = 0 .
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Note that throughout the paper, we use De Finetti’s convention: if (Ω,F , P )
denotes a probability space, Z a random variables on Ω,F , then P Z = P [Z] =
P (Z) denotes the expected value of Z (provided it is well-defined, that is PZ+

and PZ− are not both infinite. If A denotes an event, then P{A} = P 1A.

3. Main results

In a Bayesian setting, the set of parameters is endowed with a prior distribution.
In this paper, we consider a sequence of prior distributions (Wn)n∈N matching
the non-decreasing sequence of truncation levels we use. Let Wn be a prior prob-
ability distribution for (θ(i))1≤i≤kn

such that θ = (θ(i))0≤i≤kn
∈ Θkn

. Hence-
forth, we assume that Wn has a density wn with respect to Lebesgue measure
on Rkn . Let T = (τ(i))0≤i≤kn

be a random variable such that (τ(i))1≤i≤kn
is

distributed according to Wn and τ(0) = 1−
∑kn

i=1 τ(i). Conditionally on T = θ,
(Xn)n∈N is a sequence of independent random variables distributed according
to the p.m.f. θ.

3.1. Non parametric Bernstein-Von Mises Theorem

Let Hn be the random variable Hn =
√

n (τ(i)− θ0(i))1≤i≤kn
, and PHn|X1:n its

posterior distribution, that is its distribution conditionally to the observations
X1:n = (X1, . . . , Xn). If the truncation level kn = k (that is the dimension of the
parameter space Θkn) is a constant integer, the classical parametric Bernstein-
Von Mises Theorem asserts that the sequence of posterior distributions is asymp-
totically Gaussian with centerings ∆n(θ0) =

√
n(θ̂− θ0) and variance I−1(θ0) if

the observations X1:n are independently distributed according to θ0.
Theorem 3.7 below asserts that under adequate conditions on the sequence of

priors Wn and on the tail behavior of θ0, the Bernstein-Von Mises Theorem still
holds provided the truncation levels kn do not increase too fast toward infinity.

For any sequence of prior distributions (Wn)n , for a sequence Mn of real
numbers increasing to +∞, and a sequence (kn)n of truncation levels that satisfy
Condition 2.1, we will use the following three conditions in order to establish
the three propositions the Bernstein-Von Mises Theorem depends on.

Condition 3.1. The sequence of truncation levels (kn)n and radii Mn satisfies

Mn = o

((
n inf

i≤kn

θ0(i)
)1/3

)
, (3.2)

kn = o(Mn) . (3.3)

Requiring a prior smoothness condition is commonplace when establishing
asymptotic normality of posterior distribution in parametric settings.
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Condition 3.4. (prior smoothness)

sup
h,g∈Eθ0,kn (Mn)

wn

(
θ0 + h√

n

)
wn

(
θ0 + g√

n

) → 1,

Requiring a prior concentration condition, sometimes called a small ball prob-
ability conditions is usual in non-parametric Bayesian statistics.

Condition 3.5. (prior concentration)

kn

2
log (n) ∨ log (det(I(θ0))) ∨ − log (wn(θ0)) = o(Mn)

where det(I(θ0)) =
∏kn

i=0 θ−1
0 (i) .

Note that the prior concentration condition entails the second condition in
Condition 3.1.

The next lemma which is proved in Section 4.3 asserts that under mild con-
ditions, the posterior distribution concentrates on χ2 (Fisher) balls centered
around maximum likelihood estimates.

Lemma 3.6. (Posterior concentration) If the p.m.f. θ0 and the sequence
of truncation levels (kn)n both satisfy Conditions (2.1, 3.4, 3.5) and if Mn =
o (n infi≤kn

θ0(i)) then under Pn,0

Pn,0PHn|X1:n

(
HT

n I(θ0)Hn ≥ Mn

)
= Pn,0PHn|X1:n (Hn 6∈ E0,kn

(Mn)) → 0 .

This posterior concentration lemma allows to recover the parametric posterior
concentration phenomenon if truncation levels remain fixed and strengthens
the generic non-parametric posterior concentration theorem from Ghosal et al.
[2000].

Theorem 3.7. (A non-parametric Bernstein-Von Mises Theorem) If
the sequence of truncation levels (kn)n∈N, kn → +∞, and the p.m.f. over N∗,
θ0 satisfy Condition 2.1, and if there is an increasing sequence (Mn)n tending
to infinity such that 3.1, 3.4 and 3.5 hold, then

Pn,0

∥∥Nkn(∆n(θ0), I−1(θ0))− PHn|X1:n

∥∥→ 0

where ‖ · ‖ denotes the total variation norm.

A comparison of the Theorem with respect to previous results available in
the literature [Ghosal and van der Vaart, 2007b,a, Ghosal et al., 2000, Ghosal,
2000] is given at the end of the Section.

Remark 3.8. A corollary of the Bernstein-Von Mises Theorem is that

Pn,0

(
PHn|X1:n

{
HT

n I(θ0)Hn ≥ un

})
→ 0

if and only if un/kn →∞.
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The proof of Theorem 3.7 is organized along the lines of Le Cam’s proof of
the parametric Bernstein-Von Mises Theorem as exposed by A. van der Vaart
in [van der Vaart, 1998] (see also van der Vaart [2002]).

Roadmap of the proof of the Bernstein Von-Mises theorem. If P is any proba-
bility distribution on Rkn and M > 0 is any positive real, let PM be the condi-
tional probability distribution on the ellipsoid {u ∈ Rkn : uT I(θ0)u = σ2

n(u) ≤
M}. For any measurable set B,

PM (B) =
P
{
B ∩ {u : uT I(θ0)u ≤ M}

}
P{u : uT I(θ0)u ≤ M}

.

To alleviate notations, we will use the shorthands Nkn
and NMn

kn
to denote

the (random) distributions Nkn(∆n(θ0), I−1(θ0)) and NMn

kn
(∆n(θ0), I−1(θ0)).

From the triangle inequality, if follows that:∥∥Nkn
(∆n(θ0), I−1(θ0))− PHn|X1:n

∥∥
≤

∥∥∥Nkn −N
Mn

kn

∥∥∥+
∥∥∥NMn

kn
− PMn

Hn|X1:n

∥∥∥+
∥∥∥PMn

Hn|X1:n
− PHn|X1:n

∥∥∥ .

The proof of Theorem 3.7 boils down to checking that each of the three terms
on the right-hand side tends to 0 in Pn,0 probability.

The first term avers to be the easiest to control thanks to the well-known con-
centration properties of the Gaussian distribution. Upper bounding the middle
term is arguably the most delicate part of the proof. The posterior concentration
Lemma allows to deal with the third term.

Let us call nv(Mn) the middle term∥∥∥NMn

kn
− PMn

Hn|X1:n

∥∥∥ .

The posterior density is proportional to the product of the prior density and of
the likelihood function. Hence, controlling the variation distance between NMn

kn

and PMn

Hn|X1:n
requires a good understanding of log-likelihood ratios. A quadratic

Taylor expansion of the log-likelihood ratio leads to:

log
Pn,h

Pn,0
(x) =

kn∑
i=0

Ni log
(

1 +
h(i)√
nθ0(i)

)

= Zn(h)− 1
2n

kn∑
i=0

Ni
h2(i)
θ2
0(i)

+
1
n

kn∑
i=0

Ni
h2(i)
θ2
0(i)

R
(

h(i)√
nθ0(i)

)
= Zn(h)− σ2

n(h)
2

+
An(h)

2
+ Cn(h)

where R(u) = 1
u2 (log(1 + u)− u− u2

2 ) satisfies R(u) = O(u) as u tends toward
0 and

Zn(h) =
1√
n

kn∑
i=0

Ni
h(i)
θ0(i)

,
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An(h) = σ2
n(h)− 1

n

kn∑
i=1

Ni
h(i)2

θ0(i)2

and

Cn(h) =
1
n

kn∑
i=1

Ni
h(i)2

θ0(i)2
R

(
h(i)√
nθ0(i)

)
.

Performing algebra along the lines described in [van der Vaart, 2002, P. 142]
(computational details are given in the Appendix, see Section C), leads to

nv(Mn) ≤∫∫ (
1−

wn(θ0 + g√
n
)

wn(θ0 + h√
n
)
e

An(g)−An(h)
2 +Cn(g)−Cn(h)

)+

dNMn

kn
(g)dPMn

Hn|X1:n
(h) .

(3.9)

We prove in Section 4.1 that the decay of nv(Mn) depends on prior smoothness
around θ0 and on the ratio between Mn and (n infi≤kn θ0(i))1/3:

Proposition 3.10.

Pn,0 (nv(Mn)) = O

√ M3
n

n infi≤kn θ0(i)
+ 1−

infh∈Eθ0,kn (Mn) wn

(
θ0 + h√

n

)
suph∈Eθ0,kn (Mn) wn

(
θ0 + h√

n

)
 .

If the sequence of truncation levels (kn)n and radii (Mn)n satisfies Condi-
tions (3.1) and (3.4) then

Pn,0 (nv(Mn)) = o(1) .

The third term
∥∥∥PMn

Hn|X1:n
− PHn|X1:n

∥∥∥ is handled thanks to the posterior
concentration lemma, since by Lemma B.1 in the appendix∥∥∥PMn

Hn|X1:n
− PHn|X1:n

∥∥∥ = 2PHn|X1:n

(
HT

n I(θ0)Hn ≥ Mn

)
.

The proof of the Theorem is concluded by upper-bounding ‖Nkn
− NMn

kn
‖.

The latter quantity is a matter of concern because we are facing increasing
dimensions (kn)n∈N. It is checked in Section 4.4 that

Proposition 3.11. There exists a universal constant C such that if
lim infn (n infi≤kn

θ0(i)) ≥ c0 > 0 and lim inf Mn/kn ≥ 64, then for large
enough n

Pn,0

∥∥∥Nkn
−NMn

kn

∥∥∥ ≤ C exp
(
−Mn ∧ c0M

2
n

C

)
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3.2. Estimating functionals

The Bernstein-von Mises Theorem provides a handy tool to check the asymptotic
normality of estimators of Rényi and Shannon entropies. Antos and Kontoyian-
nis [2001] established that plug-in estimators of Shannon and Rényi entropies are
consistent whatever the sampling probability is. They also proved that entropy
estimation may be arbitrarily slow, and that on a large class of sampling distri-
butions, the mean squared error is O

(
log n/n

)
. In the parametric setting, that

is with fixed finite alphabets, analogues of the delta-method and the classical
Bernstein-Von Mises Theorem can be used to check the asymptotic normality
of both frequentist and Bayesian entropy estimators. Our purpose is to show
that the non-parametric Bernstein-Von Mises Theorem can be used as well.

For any α > 0, let gα be the real function defined for non negative real
numbers by gα(u) = uα for α 6= 1, and g1(u) = u log u (with the convention
g1(0) = 0). The additive functional Gα is defined by

Gα (θ) =
+∞∑
i=1

gα(θ(i)).

The Shannon entropy of the probability mass function θ is −G1 (θ) and for
α 6= 1, −1

α−1 log Gα (θ) denotes the Rényi entropy of order α [Cover and Thomas,
1991].

Let T = (τ(i))0≤i≤kn be distributed according to the posterior distribution,
a Bayesian estimator of Gα (θ) may be constructed using the posterior distribu-
tion of

Gn,α (T ) =
kn∑
i=1

gα(τ(i)).

The Bernstein-Von Mises Theorem asserts that under Pn,0, for large enough n,
the posterior distribution of (τ(i))1≤i≤kn

is approximately Gaussian, centered
around the maximum likelihood estimator θ̂n = (θ̂(i))1≤i≤kn

, with variance
1
nI(θ0)−1. Theorem 3.12 below makes a similar assertion concerning Gn,α (T ).

Let Gn,α(θ̂n) be the truncated plug-in maximum likelihood estimator:

Gn,α

(
θ̂n

)
=

kn∑
i=1

gα

(
θ̂n(i)

)
.

The variance parameter γn,α is defined by

γ2
n,α =

kn∑
i=1

θ0(i) (g′α(θ0(i)))
2 −

(
kn∑
i=1

θ0(i)g′α(θ0(i))

)2

.

Notice that

g′α(u) =
{

αuα−1 α 6= 1
log u + 1 α = 1
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so that γ2
n,1 has limit γ2

1 =
∑∞

i=1 θ0(i)(log θ0(i) + 1)2 − (
∑∞

i=1 θ0(i)(log θ0(i) +
1))2 as soon as this is finite, and γ2

n,α has limit γ2
α = α2[

∑∞
i=1 θ0(i)2α−1 −

(
∑∞

i=1 θ0(i)α)2] = α2[G2α−1(θ0) − (Gα(θ0))2] as soon as this is finite, which
requires at least that α > 1

2 .
Now, let I be the collection of all intervals in R, and for any I ∈ I, let

Φ(I) =
∫

I
φ(x)dx where φ is the density of N (0, 1). The following Theorem

asserts that the Levy-Prokhorov distance between the posterior distribution
of
√

n
(
Gn,α (T ) − Gn,α(θ̂n)

)
and N (0, γ2

α) tends to 0 in Pn,0 probability. The
Levy-Prokhorov distance metrizes convergence in distribution.

Theorem 3.12. (Estimating functionals) If limn γ2
n,α = γ2

α is finite, then
under the assumptions of the Bernstein-von Mises Theorem (Theorem 3.7),

sup
I∈I

∣∣∣∣∣PHn|X1:n

(√
n(Gn,α (T )−Gn,α(θ̂n))

γn,α
∈ I

)
− Φ (I)

∣∣∣∣∣→ 0

in Pn,0 probability.

The proof of this theorem is given in Section 5.
Let us define the symmetric Bayesian credible set with would-be coverage

probability 1− δ as the smallest interval which has posterior probability larger
than 1 − α. This credible set is an empirical interval since it is defined thanks
to an empirical quantity, the posterior distribution. In order to construct such
a region, it is enough to sample from the posterior distribution using mcmc
sampling methods. Note that this symmetric Bayesian credible set is not the
(non fully empirical) interval[

Gn,α(θ̂n)− uδγn,α√
n

;Gn,α(θ̂n) +
uδγn,α√

n

]
where uδ is the 1−δ/2 quantile ofN (0, 1). Theorem 3.12 just asserts that asymp-
totically, the symmetric Bayesian credible set has length uδγn,α/

√
n. and is cen-

tered around Gn,α(θ̂n). Hence Theorem 3.12 asserts that, in Pn,0-probability,
Bayesian credible sets for Gα (θ0) and frequentist confidence intervals based on
truncated plug-in maximum likelihood estimators are asymptotically equivalent.

The next theorem provides sufficient conditions for the plug-in truncated
maximum likelihood estimators to satisfy a central limit theorem with limiting
variance γ2

α.

Theorem 3.13. (MLE functional estimation) Assume that limn γ2
n,α = γ2

α

is finite. If the truncation parameter kn satisfies:

(n infi≤kn
θ0(i))

−1/2
kn = o (1)

kn∑
i=1

θ0(i)|g′α (θ0(i)) |3 = o
(√

n
)

∞∑
kn+1

θ0(i)gα (θ0(i)) = o

(
1√
n

)
,
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then
√

n
(
Gn,α(θ̂n)−Gα (θ0)

)
converges in distribution to N (0, γ2

α).

3.3. Dirichlet prior distributions

We may now check that when using Dirichlet distributions as prior distributions,
there exist truncation levels (kn)n and radii (Mn)n such that Conditions 3.4
(prior smoothness) and 3.5 (prior concentration) hold.

Let β = (β0, β1, . . . , βkn
) be a (kn + 1)-tuple of positive real numbers. The

Dirichlet distribution with parameter (β0, β1, . . . , βkn) on the probability mass
functions on {0, 1, . . . , kn} has density

wn,β(θ(1), . . . , θ(kn)) =
Γ
(∑kn

i=0 βi

)
∏kn

i=0 Γ (βi)

kn∏
i=0

θ (i)βi−1
.

In the absence of prior knowledge concerning the sampling distribution θ0, we
refrain from assigning different masses on the coordinate components: we con-
sider Dirichlet priors Wn,β with constant parameter β = (β, . . . , β) for some
positive β.

Note that for β = 1 (the so-called Laplace prior), the Prior Smoothness
Condition (3.4) trivially holds.

Proposition 3.14. Let the sequence of prior distributions consist of the Dirich-
let priors with parameter β > 0. The non-parametric Bernstein-Von Mises The-
orem (3.7) holds if the sequence of truncation levels (kn)n∈N, kn → +∞, and
the p.m.f. over N∗, θ0 satisfy Condition 2.1, and if

kn log n ∨ log (det(I(θ0))) = o

((
n inf

i≤kn

θ0(i)
)1/3

)
.

Using such Dirichlet priors, checking the conditions of Theorem 3.7 boils
down to checking the Prior Smoothness Condition.
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Proof. For any h and g in Eθ0,kn(Mn), for large enough n,

sup
h,g∈Eθ0,kn (Mn)

wn,β

(
θ0 + h√

n

)
wn,β

(
θ0 + g√

n

)
≤ sup

h,g∈Eθ0,kn (Mn)

kn∏
i=0

θ0(i) + th(i)√
n

θ0(i) + g(i)√
n

β−1

≤ sup
h,g∈Eθ0,kn (Mn)

exp

[
|β − 1|

kn∑
i=0

{
log
(

1 +
|h(i)|√
nθ0(i)

)
− log

(
1− |g(i)|√

nθ0(i)

)}]

≤ sup
h,g∈Eθ0,kn (Mn)

exp

[
|β − 1|

kn∑
i=0

{
|h(i)|√
nθ0(i)

+ 2 |g(i)|√
nθ0(i)

}]

≤ exp 3

[√
Mn(kn+1)(β−1)2

n infi≤kn θ0(i)

]
,

as for each g ∈ Eθ0,kn
(Mn), |g(i)|/

√
nθ0(i) ≤

√
Mn/(n infi≤kn

θ0(i)) so that
as soon as Condition 3.1 holds, for large enough n, |g(i)|/

√
nθ0(i) ≤ 1

2 and
log (1− |g(i)|/

√
nθ0(i)) ≥ −2|g(i)|/

√
nθ0(i). Thus, the Prior Smoothness Con-

dition holds as soon as
Mnkn

(n infi≤kn θ0(i))
→ 0,

which is a consequence of Condition 3.1. On the other hand

− log wn(θ0) = O (log(det(I(θ0))) + kn log(kn)) .

Thus, using Dirichlet prior with parameter β, the Prior Smoothness and
Prior Concentration Conditions hold for θ0 with truncation levels kn as soon as
Condition 3.1 and

kn log n + log(det(I(θ0))) = o (Mn) .

But the existence of a sequence of radii (Mn) tending to infinity such that both
the last condition and Condition 3.1 hold, is a straightforward consequence of
Condition 2.1 and of the condition in Proposition 3.14.

Note that if the prior distribution is Dirichlet with parameter β then the
posterior distribution is Dirichlet with parameters β + (N0, N1, . . . , Nkn

) . Let
ni =

∑
j<i Nj for i ≤ kn, agreeing on n0 = 0. Sampling from the posterior

distribution is equivalent to picking an independent sample of n exponentially
distributed random variables, Y1, . . . , Yn, picking another independent sample
Z0, . . . , Zkn

of kn + 1 independent Γ(β, 1)-distributed random variable, and let-
ting θ∗(i) =

(
Zi +

∑
ni<j≤ni+1

Yj

)
/(
∑n

j=1 Yj +
∑kn

j=0 Zj). The latter procedure
is very close to the Bayesian Bootstrap [Rubin, 1981], indeed, we obtain the lat-
ter procedure if we omit to add the Zi in the weights. This procedure which
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has been extensively investigated [See Lo, 1988, 1987, Weng, 1989, among other
references] is now considered as a special case of exchangeable bootstrap [See
van der Vaart and Wellner, 1996, and references therein]. Theorems from the
preceding section tell us that the Bayesian bootstrap of (non-linear) functionals
of the sampling distribution approximate the asymptotic distribution of maxi-
mum likelihood estimates. We leave the analysis of the second-order properties
of the posterior distribution to further investigations.

3.4. Examples

Previous results may now be applied to two examples of envelope classes already
investigated by Boucheron et al. [2009]:

1. The sampling probability θ0 is said to have exponential(η) decay if there
exists η > 0, and a positive constant C such that

∀i ∈ N∗,
1
C

exp(−ηi) ≤ θ0(i) ≤ C exp(−ηi).

Using truncation level kn,

exp(−η)
C(1−exp(−η)) exp(−ηkn) ≤ θ0(0) ≤ C exp(−η)

1−exp(−η) exp(−ηkn).

2. The sampling probability θ0 is said to have polynomial(η) decay if there
exists η > 1, and a positive constant C such that

∀i ∈ N∗,
1

C iη
≤ θ0(i) ≤

C

iη
.

Using truncation level kn, c
(kn+1)η−1 ≤ θ0(0) ≤ C

kη−1
n

.

Let us first assume that θ0 has exponential(η) decay. Then with c̃ = 1
C ∧

exp(−η)
C(1−exp(−η)) ,

inf
i≤kn

θ0(i) ≥ c̃ exp(−ηkn),

−
kn∑
i=0

log θ0(i) ≤
(

η
kn(kn + 3)

2
− (kn + 1) log C − log

exp(−η)
1− exp(−η)

)
.

Invoking Proposition 3.14, the non-parametric Bernstein-Von Mises Theorem
holds for θ0 with exponential(η) decay using the Dirichlet prior with parameter
β > 0 with truncation levels

kn =
1
η
(log n− a log log n), a > 6.

Theorems 3.12 and 3.13 apply as soon as α > 1
2 , so that the Bayesian estimates

of entropy and of Rényi-entropy of order α > 1
2 satisfy a Bernstein-von-Mises

theorem with
√

n-rate.
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When θ0 has polynomial(η) decay, infi≤kn θ0(i) ≥ 1/(C kη
n), and

−
kn∑
i=0

log θ0(i) ≤ (ηkn log kn − (kn + 1) log C) .

Invoking Proposition 3.14, the non-parametric Bernstein-Von Mises Theorem
holds using the Dirichlet prior with parameter β > 0 with truncation levels

kn =
(

n

un

) 1
η+3

,
un

(log n)3
→ +∞.

Theorems 3.12 and 3.13 concerning estimations of functionals hold as soon
as 2α > 1+1/η, so that the Bayesian estimates of entropy and of Rényi-entropy
of order α > 1/2 + 1/(2η) satisfy a Bernstein-von-Mises theorem with rate

√
n.

3.5. Comparison with Ghosal’s conditions

Now, we aim at comparing the set of conditions used by Ghosal [2000] to estab-
lish a Bernstein-Von Mises Theorem for sequences of multinomial models us-
ing log-odds parametrization. An exhaustive comparison of the two approaches
(that is, comparing the merits of combining Le Cam’s proof and concentra-
tion inequalities for some quadratic forms with the merits of Ghosal’s proof
which refines Portnoy’s arguments) should first be based on a general purpose
result characterizing the impact of re-parametrization on asymptotic normal-
ity of posterior distributions. This would exceed the ambitions of this paper.
Then a thorough comparison between conditions (P) (Prior Smoothness and
Concentration) and (R) (Prior concentration and behavior of likelihood ratios
in the vicinity of the target θ0) and the conditions used in this paper would be
in order. As a matter of fact, provided re-parametrization is taken into account,
the prior smoothness conditions in the two papers are not essentially different.
On the other hand the conditions on the integrability of likelihood ratios seem
somewhat different. Looking for general exponential families, Ghosal [2000] im-
poses upper-bounds on the fourth and the third moment of linear forms of√

I(θ)∆1(θ) for θ close to θ0 (this is the meaning of conditions on the growth
of B1,n(c) and B2,n(c).) In this paper, we take advantage of the fact that ∆n(θ)
is a multinomial vector.

Keep in mind that we refrain from assuming that all θ0(i), i ≤ kn are of or-
der 1/kn as in [Ghosal, 2000, page 60]. Indeed, we consider situations where
kn infi≤kn θ0(i) = o(1) as in Section 3.4. The trace of the information ma-
trix I(θ0) (which coincides with F−1 using Ghosal’s notations) is equal to∑kn

i=1 1/θ0(i) + kn/θ0(0) ≤ 2kn/ infi≤kn
θ0(i), and it may not be O(k2

n), as in
[Ghosal, 2000, page 60]. For example, using the notations from Section 3.4, if
θ0 has polynomial-(η) decay,

∑kn

i=1 1/θ0(i) + kn/θ0(0) ≥ 1
C

∑kn

i=1 iη + 1
C kη−1

n ≥
ckη+1

n

η+1 + kη−1
n

C .
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In this setting, we may even look at the growth of B2,n(0) (as defined
in [Ghosal, 2000]) as n tends to infinity

B2,n(c) = sup
{
Pθ

[∣∣∣aT I
1
2 (θ)∆n(θ)

∣∣∣4] ; ‖a‖ = 1, Varθ0

(
log

θ(i)
θ0(i)

)
≤ ckn

n

}
.

Choosing a as 1√
kn

1 and carefully performing straightforward computations, it is
possible to check that if θ0 has polynomial-(η) decay (according to the framework
of Section 3.4), B2,n(0) ≥ Ck2η

n , so that the clause B2,n(c log kn)k2
n(log kn)/n →

0 for all c > 0 in Condition (R), implies k2+2η
n log kn/n → 0. This condition is

more demanding that the conditions we obtained at the end of Section 3.4.

3.6. Classical non-parametric approach to posterior concentration

We compare the posterior concentration lemma (Lemma 3.6) and the classical
results on posterior concentration obtained in non-parametric statistics (See
Ghosal and van der Vaart [2007a],Ghosal et al. [2000],
Ghosal and van der Vaart [2007b],Ghosal and van der Vaart [2001]).

Let Θkn
denote the set of probability distributions over {0, . . . , kn}. Let ε2n

satisfy nε2 = Mn.
Let Vn(εn) be the set:

Vn (εn) =

{
θ :

kn∑
i=0

θ0(i) log
θ0(i)
θ(i)

≤ ε2n and
kn∑
i=0

θ0(i)
(

log
θ0(i)
θ(i)

)2

≤ ε2n

}
.

Let d denote the Hellinger distance between probability mass functions:

d (θ1, θ2) =

[
kn∑
i=0

(√
θ1(i)−

√
θ2(i)

)2
]1/2

Let D(ε,Θkn
, d) denote the ε-packing number of Θkn

, that is the maximum
number of points in Θkn

such that the Hellinger distance between every pair is
at least ε.

Theorem 2.1 in Ghosal et al. [2000] asserts that, if for some C > 0, we
have Wn {Vn (εn)} ≥ exp

(
−Cnε2n

)
and if log D(εn,Θkn

, d) ≤ nε2n, then for large
enough A,

P·|X1:n {d (θ, θ0) ≥ Aεn} → 0

in P0,n probability.
In this paper, the prior Wn is supported by Θkn

, and a careful reading shows
that the proof in Ghosal et al. [2000] can be adapted to situations where the
sampling probability changes with n.

Now, Θkn endowed with the Hellinger distance is isometric to the intersection
of the positive quadrant and the unit ball of Rkn+1 endowed with the Euclidean
metric, so that there exists a universal constant C

1
C
·
(

1
2ε

)kn

≤ D(ε,Θkn
, d) ≤ C ·

(
1
2ε

)kn
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and log D(εn,Θkn , d) ≤ nε2n if and only if kn log n
Mn

≤ CMn.

If hT I(θ0)h ≤ Mn, then supi≤kn

∣∣∣ h(i)√
nθ0(i)

∣∣∣ ≤√ Mn

n infi≤kn θ0(i)
. Hence, for i ≤ kn

log
(

1 +
h(i)√
nθ0(i)

)
=

h(i)√
nθ0(i)

− h(i)2

2nθ0(i)2
+ o

(
h(i)2

nθ0(i)2

)
So that, letting θ(i) = θ0(i) + h(i)√

n
,

kn∑
i=0

θ0(i) log
θ0(i)
θ(i)

=
σ2

n(h)
2n

+ o

(
σ2

n(h)
n

)
and

kn∑
i=0

θ0(i)
(

log
θ0(i)
θ(i)

)2

=
σ2

n(h)
n

+ o

(
σ2

n(h)
n

)
Hence, as soon as Mn

n infi≤kn θ0(i)
= o(1), if for some δ > 0 and some c > 0,

Wn

{
h : hT I(θ0)h ≤ δMn

}
≥ e−cMn

then for some constant C > 0,

Wn {Vn (εn)} ≥ e−CMn .

Under our assumptions, the non-parametric Bayesian theorem implies that for
large enough A, P·|X1:n {d (θ, θ0) ≥ Aεn} → 0 in P0,n probability.

However, Lemma 3.6 posterior concentration with respect to the Fisher dis-
tance:

P·|X1:n

{
(θ − θ0)

T
I (θ0) (θ − θ0) ≥ ε2n

}
→ 0

in P0,n probability.
As the Fisher distance upper-bounds the squared Hellinger distance [See Tsy-

bakov, 2004], Lemma 3.6 implies the generic posterior concentration lemma. But
Lemma 3.6 could not be deduced from generic posterior concentration lemma
since the Fisher distance cannot be upper-bounded by a linear function of the
Hellinger distance. As a matter of fact,

(θ − θ0)
T

I (θ0) (θ − θ0) ≤ d (θ, θ0)
(

1 +
1

inf0≤i≤kn
θ0(i)

)
.

Hence, if d (θ, θ0) = o(inf0≤i≤kn θ0(i)), Hellinger and Fisher metrics are com-
parable, but this does not hold in full generality. For instance, for θ such that
θ(kn) = θ0(kn) +

√
θ0(kn), θ(1) = θ0(kn)−

√
θ0(kn), and θ(i) = 0 for i 6= 1 and

i 6= kn, then d(θ, θ0) → 0, but (θ − θ0)
T

I (θ0) (θ − θ0) ∼ 1.
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4. Proof of the Bernstein-Von Mises Theorem

In this section, we establish the building blocks of the proof of the Bernstein-Von
Mises Theorem that is Proposition 3.10, the posterior concentration Lemma and
Proposition 3.11.

4.1. Truncated distributions

In order to prove Proposition 3.10, it is enough to upper bound NV(Mn):

∫∫ (
1−

wn(θ0 + g√
n
)

wn(θ0 + h√
n
)
e

{
An(g)−An(h)

2 +Cn(g)−Cn(h)

})+

dNMn

kn
(g)dPMn

Hn|X1:n
(h) ,

where An and Cn are defined in Section 3.1.
We take advantage of the fact that integration is performed on Eθ0,kn

(Mn),
in order to uniformly upper-bound the integrand.

Using the duality between `1kn
and `∞kn

, for all h ∈ Eθ0,kn(Mn)

An(h) ≤ sup
h∈`1

kn
‖h‖1≤Mn

kn∑
i=0

h(i)
(

Ni

nθ0(i)
− 1
)

= Mn sup
i=0,...,kn

∣∣∣∣ Ni

nθ0(i)
− 1
∣∣∣∣

and

|Cn(h)| ≤ Mn sup
i=0,...,kn

∣∣∣∣ Ni

nθ0(i)

∣∣∣∣
∣∣∣∣∣R
( √

Mn√
n infi≤kn

θ0(i)

)∣∣∣∣∣ .
Then as (1− (1− x)e−y)+ ≤ x + y for x, y ≥ 0,

NV(Mn)

≤ Mn ×
(

sup
i≤kn

∣∣∣ Ni

nθ0(i)
− 1
∣∣∣+ 2 sup

i≤kn

∣∣∣ Ni

nθ0(i)

∣∣∣R( √
Mn√

n infi≤kn θ0(i)

))
+

(
1−

infh∈Eθ0,kn
(Mn) wn

(
θ0+

h√
n

)
suph∈Eθ0,kn

(Mn) wn

(
θ0+

h√
n

)) .

The second term can be upper-bounded assuming the prior smoothness condi-
tion. The first term is a sum of two random suprema.

The expected value of the maximum of random variables with uniformly con-
trolled logarithmic moment generating functions can be handily upper-bounded
thanks to an argument due to Pisier [Massart, 2003]: if (Wi)1≤i≤k are real ran-
dom variables, then

P

[
sup
i≤k

Wi

]
≤ inf

λ>0

1
λ

{
log k + sup

i≤k
logP [expλWi]

}
. (4.1)
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For each i, the random variable Ni is binomially distributed with parameters n

and θ0(i), log(1 + u) ≤ u, and for all u ≥ 0, eu−1
u − 1 ≥ e−u−1

u + 1, so that (4.1)
leads to

Pθ0

[
sup
i≤kn

∣∣∣∣ Ni

nθ0(i)
− 1
∣∣∣∣] ≤ inf

λ>0

 log 2(kn + 1)
λ

− 1 + sup
i≤kn

exp
(

λ
nθ0(i)

)
− 1

λ
nθ0(i)

 ,

so that choosing λ =
√

log(2(kn + 1))n infi≤kn
θ0(i), as the function u → eu−1

u −
1 is increasing on R+, letting δn =

√
log(2(kn+1))

n infi≤kn θ0(i)
,

Pθ0

[
sup
i≤kn

Ni

nθ0(i)

]
− 1 ≤ Pθ0

[
sup
i≤kn

∣∣∣ Ni

nθ0(i)
− 1
∣∣∣] ≤ δn +

exp(δn)− 1
δn

− 1.

Thus,

Pn,0nv(Mn)

≤ Mn

((
δn + exp(δn)−1

δn

)(
1 + R

( √
Mn√

n infi≤kn θ0(i)

))
− 1
)

+1−
infh∈Eθ0,kn (Mn) wn

(
θ0 + h√

n

)
suph∈Eθ0,kn (Mn) wn

(
θ0 + h√

n

)
and the proposition follows using Assumptions (3.1) and (3.4) and the fact that
R(u) = O(u) as u tends toward 0.

4.2. Tail bounds for quadratic forms

In this section, we gather a few results concerning tail bounds for quadratic
forms or square-roots of quadratic forms in Gaussian and empirical settings.
All those bounds are obtained by resorting to concentration inequalities for
Gaussian distributions or for suprema of empirical processes.

Let us first start by a first bound concerning chi-square distributions. Let ξ2
n

be distributed according to χ2
kn

(chi-square distribution with kn degrees of free-
dom), the following inequality is a direct consequence of Cirelson’s inequal-
ity [Massart, 2003]:

P

{
ξn ≥

√
kn +

√
2x
}
≤ exp(−x) . (4.2)

The following handy inequality provides non-asymptotic tail-bounds for Pear-
son statistics. For any θ ∈ Θkn

let Vn(θ) denote the square root of the Pearson
statistic

Vn(θ) =
( kn∑

i=0

(Ni−nθ(i))2

nθ(i)

)1/2

=
(
∆T

n (θ)I(θ)∆n(θ)
)1/2

.
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The following follows from Talagrand’s inequality for suprema of empirical pro-
cesses [Massart, 2003, p. 170]: for all x > 0,

Pn,0

(
Vn(θ0) ≥ 2

√
kn +

√
2x + 3 x√

n infi≤kn θ0(i)

)
≤ exp(−x) . (4.3)

Non-centered Pearson statistics also show up while proving the posterior
concentration lemma. Let θ = θ0 + h√

n
with σn(h) ≥

√
Mn. Note that from the

definition of Vn(θ0), it follows that

Vn(θ0) = sup
a:‖a‖=1

kn∑
i=0

ai
Ni − nθ0(i)√

nθ0(i)

= sup
a:‖a‖=1

kn∑
i=0

ai

(
Ni − nθ(i)√

nθ0(i)
+
√

n
θ(i)− θ0(i)√

θ0(i)

)

≥
kn∑
i=0

a∗i
Ni − nθ(i)√

nθ0(i)
+ σn(h) ,

where a∗i = h(i)√
θ0(i)σ2(h)

for all i ≤ kn. So that

Pn,h (Vn(θ0) ≤ sn) ≤ Pn,h

(
kn∑
i=0

a∗i
Ni−nθ(i)√

nθ0(i)
≤ −σn(h) + sn

)
.

Computations carried out in the Appendix allow to establish that if σ2
n(h) ≥ Mn,

and if Mn = o(n infi≤kn
θ0(i)),

Pn,h

{
Vn(θ0) < 2

√
kn +

√
Mn

2 + 3Mn

4
√

n infi≤kn θ0(i)

}
≤ 2 exp

(
−Mn

96

)
. (4.4)

4.3. Proof of the posterior concentration lemma

Proof. We need to check that PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
is small in Pn,0

probability. For any θ ∈ Θkn , let Vn(θ) denote the square root of the Pearson
statistic

Vn(θ) =
( kn∑

i=0

(Ni−nθ(i))2

nθ(i)

)1/2

=
(
∆T

n (θ)I(θ)∆n(θ)
)1/2

.

A sequence of tests (φn)n∈N is defined by φn = 1Vn(θ0)≥sn
where each threshold

sn is defined by sn = 2
√

kn +
√

2xn +3xn/
√

n infi≤kn θ0(i) with xn = Mn

4 . The
tests φn aim at separating θ0 from the complements of Fisher balls centered at
θ0, that is from

{
θ0 + h

√
n : σ2

n(h) ≥ Mn

}
.
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Hence, we need to check that

PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
= PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
φn

+PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
(1− φn)

≤ φn + PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
(1− φn) .

is small in Pn,0 probability. As, in order to upper-bound Pn,0φn, it is enough
to bound the tail of Pearson’s statistics under Pn,0, we focus on the expected
value of the second term. Note that the latter is null as soon as the maximum
likelihood estimator errs too far away from θ0.

In order to control Pn,0PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
(1− φn) , we resort to

the same contiguity trick as in [van der Vaart, 1998]. Let A be a fixed positive
real, define the probability distribution Pn,A onNn as the mixture of Pn,h when
the prior is conditioned on the ellipsoid θ0 + 1√

n
Eθ0,kn

(A):

Pn,A(B) =

∫
Eθ0,kn (A)

Pn,h(B)wn(θ0 + h√
n
)dh

Wn(θ0 + 1√
n
Eθ0,kn(A))

.

Arguing as in [van der Vaart, 2002], thanks to Lemma 2.3, one can check that
the sequences (Pn,0)n and (Pn,A)n are mutually contiguous (for the sake of self-
reference, a proof is given in the Appendix, see Section A). Hence, it is enough
to upper-bound

Pn,A

[
PHn|X1:n

{
HT

n I(θ0)Hn ≥ Mn

}
(1− φn)

]
≤ 1

Wn{θ0 + E0,kn
(A)/

√
n}

∫
h6∈E0,kn (Mn)

Pn,h (1− φn)wn

(
θ0 + h√

n

)
dh

≤
suphT I(θ0)h≥Mn

Pn,h (1− φn)
Wn{θ0 + Eθ0,kn(A)/

√
n}

.

We will handle Pn,0φn and Pn,h (1− φn) using non-asymptotic upper bounds
for centered and non-centered Pearson statistics while the prior mass around θ0

(Wn{θ0 + Eθ0,kn
(A)/

√
n}) can be lower-bounded by assuming Conditions 3.4

and 3.5.
A direct application of Inequality (4.3) gives Pn,0φn = Pn,0 {Vn(θ0) ≥ sn} ≤

exp(−xn) = exp (−Mn/4).
Non-centered Pearson statistics show up while handling Pn,h (1− φn) . In-

deed Pn,h(1− φn) = Pn,h (Vn(θ0) ≤ sn) . Let θ = θ0 + h√
n

with σn(h) ≥
√

Mn.

Then, using the definition of φn, Inequality (4.4) entails

Pn,h(1− φn) ≤ 2 exp
(
−Mn

96

)
.

Let us now lower bound Wn{θ0 + Eθ0,kn
(A)/

√
n}. Performing a change of vari-
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ables (agreeing on the convention that h(0) = −
∑kn

i=1 h(i)) leads to

Wn,α{n(θ − θ0)T I(θ0)(θ − θ0) ≤ A}

=
∫

h∈Eθ0,kn (A)

wn

(
θ0 + h√

n

)(
1√
n

)kn
kn∏
i=1

dh(i)

≥

 suph∈Eθ0,kn (A) wn

(
θ0 + h√

n

)
infh∈Eθ0,kn (A) wn

(
θ0 + h√

n

)
−1

wn (θ0)
( 1

n

) kn
2
∫

h∈Eθ0,kn (A)

kn∏
i=1

dh(i) .

But the volume of the ellipsoid in Rkn induced by Eθ0,kn
(A) is the inverse of the

square root of the determinant of I(θ0) (that is
∏kn

i=0 θ0(i)1/2) times the volume

of the sphere with radius
√

A in Rkn , that is Akn/2 2Γ( 1
2 )kn

knΓ( kn
2 )

so that

Wn,α{n(θ − θ0)T I(θ0)(θ − θ0) ≤ A}

≥

 suph∈Eθ0,kn (A) wn

(
θ0 + h√

n

)
infh∈Eθ0,kn (A) wn

(
θ0 + h√

n

)
−1

wn (θ0)
kn∏
i=0

θ0(i)1/2

(
A

n

) kn
2 2Γ( 1

2 )kn

knΓ(kn

2 )
.

Thus, assuming conditions 3.4 and 3.5:

suphT I(θ0)h≥Mn
Pn,h (1− φn)

Wn{θ0 + Eθ0,kn
(A)/

√
n}

≤ C exp
(
−Mn

96

)
(1 + o(1)) .

4.4. Posterior Gaussian concentration

Proving Proposition 3.11 amounts to checking that the growth rate of the se-
quence of radii Mn is large enough so as to balance the growth rate of dimen-
sion kn. By Lemma B.1:∥∥∥NMn

kn
−Nkn

∥∥∥ = 2
∫

σn(h)≥Mn

dNkn
(∆n,θ0 , I

−1(θ0))(h).

The right-hand-side can be upper-bounded:∫
σn(h)≥Mn

dNkn
(∆n,θ0 , I

−1(θ0))(h)

=
∫

1(h+∆n,θ0 )T I(θ0)(h+∆n,θ0 )≥Mn
dNkn

(0, I−1(θ0))(h)

≤
∫

12hT I(θ0)h+2∆T
n,θ0

I(θ0)∆n,θ0≥Mn
dNkn(0, I−1(θ0))(h)

≤
∫

1hT I(θ0)h≥Mn/4dNkn
(0, I−1(θ0))(h) + 1∆T

n,θ0
I(θ0)∆n,θ0≥Mn/4

=
∫

1‖h‖2≥
√

Mn/2dNkn(0, Idkn)(h) + 1∆T
n,θ0

I(θ0)∆n,θ0≥Mn/4 .
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so that

Pn,0

∥∥∥NMn

kn
−Nkn

∥∥∥ ≤ P

{
ξn ≥

√
Mn

4

}
+Pn,0

(
∆T

n,θ0
I(θ0)∆n,θ0 ≥

Mn

4

)
where ξ2

n is distributed according to χ2
kn

(chi-square distribution with kn degrees
of freedom). Then, invoking (4.2),

P

{
ξn ≥

√
Mn

4

}
≤ exp

(
−Mn

32

)
.

The second term in the upper bound is handled using (4.3) and choosing x =
inf
(

Mn

128 ,
c0M2

n

512

)
.

5. Proof of Theorem 3.12

In frequentist statistics, once asymptotic normality has been proved for an esti-
mator, the so-called delta-method allows to extend this result to smooth func-
tionals of this estimator. In this section, we develop an ad hoc approach that
parallels the classical derivation of the delta-method. Taylor expansions allow to
write

√
n(Gn,α(T )−Gα(θ0)) as the sum of a linear function of Hn−∆n(θ0) and

of two (random) quadratic forms. Checking the theorem amounts to establish
that under Pn,0 those two quadratic forms converge to 0 in distribution.

Recall that Hn =
√

n(τ(i)−θ0(i))kn
i=1 and ∆n(θ0) =

√
n(θ̂(i)−θ0(i))kn

i=1. If n is

non-ambiguous, let∇Gα(θ) = (g′α(θ(i)))kn
i=1 and let∇2G(θ) = diag

(
g′′α(θ(i)))kn

i=1

)
.

Then for some (random) vectors τ̃ and θ̃ with τ̃(i) (resp. θ̃(i)) between τ(i) and
θ0(i) (resp. between θ̂n(i) and θ0(i)) for all i = 1, . . . , kn:

√
n(Gn,α(T )−Gα(θ̂)) = (Hn −∆n(θ0))T∇Gα(θ0)

+
1

2
√

n
HT

n∇2Gα(τ̃)Hn

− 1
2
√

n
∆T

n (θ0)∇2Gα

(
θ̃
)

∆n(θ0) .

This follows from
√

n (Gn,α (T )−Gα (θ0))

= −
√

n
+∞∑

i=kn+1

gα(θ0(i)) +
√

n

kn∑
i=1

(gα(τ(i))− gα(θ0(i)))

= −
√

n
+∞∑

i=kn+1

gα(θ0(i)) + HT
n∇Gα(θ0) + Rn

with
Rn =

1
2
√

n
HT

n∇2Gα (τ̃)Hn .
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Meanwhile
√

n
(
Gn,α

(
θ̂n

)
−Gα (θ0)

)
= −

√
n

+∞∑
i=kn+1

gα(θ0(i)) +
√

n

kn∑
i=1

(
gα(θ̂n(i))− gα(θ0(i))

)

= −
√

n
+∞∑

i=kn+1

gα(θ0(i)) + ∆T
n (θ0)∇Gα(θ0) + R̃n

with
R̃n =

1
2
√

n
∆T

n (θ0)∇2Gα(θ̃)∆n(θ0)

Now recall that γn,α = Var
(
(Hn −∆n(θ0))T∇gα(θ0)

)
. Let (εn)n be a sequence

tending to 0 as n tends to infinity.
For any interval I of R, let Iεn be the εn-blowup of I: Iεn = {x : ∃y ∈ I, |x−y| ≤
εn}. Then, for some positive constant C

sup
I∈I

∣∣∣∣∣PHn|X1:n

(√
n(Gn,α (T )−Gn,α(θ̂n))

γn,α
∈ I

)
− Φ (I)

∣∣∣∣∣
≤ sup

I∈I

∣∣∣∣PHn|X1:n

(
(Hn −∆n(θ0))T∇gα(θ0)

γn,α
∈ Iεn

)
− Φ (I)

∣∣∣∣
+PHn|X1:n

(
|Rn − R̃n| ≥ εnC

)
The first summand on the right-hand-side is easily dealt with by applying the
Bernstein-Von Mises Theorem:

sup
I∈I

∣∣∣∣PHn|X1:n

(
(Hn −∆n(θ0))T∇gα(θ0)

γn,α
∈ Iεn

)
− Φ (I)

∣∣∣∣
≤ sup

I∈I
|Φ (Iεn

)− Φ (I)|+
∥∥PHn|X1:n −N (∆n(θ0), I−1(θ0))

∥∥
≤ εn√

2π
+
∥∥PHn|X1:n −N (∆n(θ0), I−1(θ0))

∥∥ .

Now,

PHn|X1:n

(
|Rn − R̃n| ≥ Cεn

)
≤ PHn|X1:n

(
Rn ≥

Cεn

2

)
+ 1R̃n≥Cεn

2
,

as R̃n is X1:n-measurable. Theorem 3.12 follows if it is possible to choose a
sequence (εn)n such that both terms in the upper bound tend to 0 in Pn,0

probability.
Let us focus for the moment on the first term. We aim at proving that the
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following upper-bound holds for large enough n and some positive constant D:

PHn|X1:n

(
|Rn| ≥

Cεn

2

)
≤ 5 PHn|X1:n

(
HT

n I(θ0)Hn ≥ Dεn

√
n inf

j≤kn

θ0(j)

)
. (5.1)

As g′′α is monotone, the following inequalities hold:

|g′′α(τ̃(i))| ≤ max {|g′′α(τ(i))|; |g′′α(θ0(i))|} ≤ |g′′α(τ(i))|+ |g′′α(θ0(i))|

This entails √
nRn ≤ HT

n∇2Gα(θ0)Hn + HT
n∇2Gα (τ̃) Hn .

PHn|X1:n (Rn ≥ Cεn) ≤ PHn|X1:n

(
HT

n∇2Gα(θ0)Hn ≥ Cεn
√

n
2

)
+PHn|X1:n

(
HT

n∇2Gα (τ̃) Hn ≥ Cεn
√

n
2

)
.

Henceforth, let Cα = 1
α(α−1) for α 6= 1 and C1 = 1. Note that for all positive x,

Cα g′′α(x) = xα−2 and CαHT
n∇2Gα(θ0)Hn =

∑kn

i=1
H2

n(i)
θ0(i)

θ0(i)α−1 .

For α ≥ 1,

PHn|X1:n

(
HT

n∇2Gα(θ0)Hn ≥ Cεn
√

n
2

)
≤ PHn|X1:n

(
HT

n I(θ0)Hn ≥ CαCεn
√

n
2

)
.

Meanwhile, for 1
2 ≤ α < 1, the obvious fact supi(θ0(i))α−1 ≤ (infj≤kn θ0(j))−1/2 ,

implies
kn∑
i=1

H2
n(i)θ0(i)α−2 ≤ HT

n I(θ0)Hn√
n infj≤kn θ0(j)

,

so, we get

PHn|X1:n

(
kn∑
i=1

H2
n(i)θ0(i)α−2 ≥ CαCεn

√
n/2

)

≤ PHn|X1:n

(
HT

n I(θ0)Hn ≥
CαCεn

2

√
n inf

j≤kn

θ0(j)

)
.
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On the other hand,

kn∑
i=1

H2
n(i)τ(i)α−2

≤
kn∑
i=1

H2
n(i)

θ0(i)
θ0(i)α−2

1 +
√

n
supi≤kn

|Hn(i)|√
θ0(i)√

n infj≤kn θ0(j)


α−2

≤
kn∑
i=1

H2
n(i)

θ0(i)
θ0(i)α−2

1 +

(∑
i≤kn

H2
n(i)

θ0(i)

)1/2

√
n infj≤kn

θ0(j)


α−2

.

Hence,

PHn|X1:n

(
kn∑
i=1

(Hn(i))2 τ(i)α−2 ≥ CαCεn

2
√

n

)

≤ PHn|X1:n

(
kn∑
i=1

H2
n(i)

θ0(i)
θ0(i)α−2 ≥ 2α−3CαCεn

√
n

)

+PHn|X1:n

∑
i≤kn

H2
n(i)

θ0(i)
≥ n inf

j≤kn

θ0(j)

 .

We may now sum up those inequalities:

PHn|X1:n

(
|Rn| ≥ Cεn

2

)
≤

5∑
i=1

PHn|X1:n

(
HT

n I(θ0)Hn ≥ Ai,n

)
with

A1,n =
CαC

2
εn

√
n

A2,n =
CαC

2

√
n inf

j≤kn

θ0(j)εn

A3,n = 2α−2A1,n

A4,n = 2α−2A2,n

A5,n = n inf
j≤kn

θ0(j) .

This is enough to prove Inequality (5.1). Up to ‖PHn|X1:n −Nkn
‖, the posterior

probability of the event HT
n I(θ0)Hn ≥ un equals Nkn

{
HT

n I(θ0)Hn ≥ un

}
, that

is the probability that a non-central χ2
kn

-distributed random variable with non-
centrality parameter ∆T

n (θ0)In(θ0)∆n(θ0) = Vn (θ0)
2 exceeds un. The latter

probability is upper-bounded by

1V 2
n (θ0)≥un

4
+ P

(
ξ2
n ≥ un

4

)
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where ξ2
n follows a χ2

kn
distribution. The probability that ξ2

n is larger than un/4
may be upper bounded using Cirelson’s inequality. As soon as (εn)n satisfies

εn

√
n infj≤kn θ0(j)

kn
→ +∞,

this probability tends to 0.
The Pn,0-probability that the non-centrality parameter V 2

n (θ0) is large may
be upper bounded using Inequality (4.3), and invoking the Bernstein-Von Mises
Theorem to handle ‖PHn|X1:n −N (∆n(θ0), I−1(θ0))‖,

PHn|X1:n

(
|Rn| ≥ Cεn

2

)
→ 0

in Pn,0-probability.
Using the same approach as before, one establishes that for large enough n

and some positive constant D:

Pn,0

(
|R̃n| ≥ Cεn

2

)
≤ 5Pn,0

(
V 2

n (θ0) ≥ Dεn

√
n inf

j≤kn

θ0(j)

)
.

The right-hand-side may be upper-bounded using again (4.3). It tends to 0 as
soon as εn

√
n infj≤kn

θ0(j)/kn → +∞.

6. Proof of Theorem 3.13

We have already proved that R̃n = oPn,0(1), so that under the assumptions of
Theorem 3.13, equation (5.1) translates into

√
n
(
Gn,α

(
θ̂n

)
−Gα (θ0)

)
= o(1) + ∆T

n (θ0)∇Gα(θ0) + oPn,0(1)

and the result follows from Berry-Essen Theorem.
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Appendix A: Contiguity

We first prove Lemma 2.3.

Proof. Let us first notice that if σ2
n(hn) tends toward σ2 > 0, there exists some

M > 0 such that hn ∈ E(M). The contiguity proof follows from a straight-
forward analysis of the log-likelihood ratio and an invocation of Le Cam’s first
Lemma [van der Vaart, 2002].

A Taylor expansion of the logarithm leads to

log
Pn,hn

Pn,0
(x)

=
kn∑
i=0

Ni log
(

1 +
h(i)√
nθ0(i)

)

=
1√
n

kn∑
i=0

Ni
h(i)
θ0(i)

− 1
2n

kn∑
i=0

Ni
hn(i)2

θ0(i)2
+

1
n

kn∑
i=0

Ni
hn(i)2

θ0(i)2
R

(
hn(i)√
nθ0(i)

)
.

The proof consists in checking the three following points:

1. the remainder term converges in probability toward 0.
2. the first summand converges in distribution toward N (0, σ2).
3. the middle term converges in probability toward −σ2/2.

Let us check the first point. As a matter of fact:

Pn,θ0

(
1
n

kn∑
i=0

Ni
hn(i)2

θ0(i)2
R

(
hn(i)√
nθ0(i)

))
≤ M · sup

i≤kn

∣∣∣∣R( hn(i)√
nθ0(i)

)∣∣∣∣
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But

sup
i≤kn

|hn(i)|√
nθ0(i)

≤ σn(hn)√
n infi≤kn

θ0(i)
= o(1).

In order to check the the second point, note that the random variable Zn(hn) =
1√
n

∑kn

i=0 Ni
h(i)
θ0(i)

can be rewritten as a sum of i.i.d. random variables:

Zn(hn) =
1√
n

n∑
j=1

Yj

with

Yj =
kn∑
i=0

(
1Xj=i − θ0(i)

θ0(i)

)
hn(i);

Under Pn,0, each random variable Yj is equal to hn(i)
θ0(i)

with probability θ0(i), so
that

P|Yj |3 =
kn∑
i=0

|hn(i)|3

θ0(i)2
.

kn∑
i=0

|hn(i)|3

θ0(i)2
≤
(

sup
i≤kn

hn(i)√
nθ0(i)

)√
nσ2

n(hn),

that is
kn∑
i=0

|h(i)|3

θ0(i)2
= o

[√
nσ3

n(hn)
]

as σ2
n(hn) is bounded and bounded away from 0. The Berry-Essen Theorem [Dud-

ley, 2002] entails that as n tends to infinity, Zn(hn) converges in distribution
toward N (0, σ2).

Finally, the middle term 1
2n

∑kn

i=0 Ni
hn(i)2

θ0(i)2
converges in probability toward

1
2σn(hn)2. Indeed, let

Un(hn) =
1
n

kn∑
i=0

Ni
hn(i)2

θ0(i)2
− σ2

n(hn) =
1
n

n∑
j=1

(ξj(hn)− E0(ξj(hn)))

with

ξj(hn) =
kn∑
i=0

1Xj=i
hn(i)2

θ0(i)2
.

Then

Var (Un(hn)) =
1
n

Var (ξ1(hn))

≤ 1
n

kn∑
i=0

hn(i)4

θ0(i)3

≤ M2

n infi≤kn θ0(i)
.

imsart-ejs ver. 2007/12/10 file: bvm-revised.tex date: December 15, 2008



S. Boucheron and E. Gassiat/A Bernstein-Von Mises Theorem 33

Hence, the sequence of distributions of likelihood ratios Pn,h

Pn,0
(X1:n) converges

weakly toward a log-normal distribution with parameters −σ2/2 and σ2. The
Lemma follows directly from Le Cam’s first Lemma [van der Vaart, 1998].

Lemma A.1. Let θ0 denote a probability mass function over N∗. If the sequence
of truncation levels (kn)n∈N satisfy Condition 2.1, the sequences (Pn,0)n and
(Pn,A)n are mutually contiguous.

Proof. Let (Bn) be a sequence of events where for each n, Bn ⊆ {0, . . . , kn}n.
Then

Pn,A (Bn) ≤ sup
σn(h)2≤A

Pn,h (Bn)

so that for some sequence (hn)n such that for all n, σ2
n(hn) ≤ A,

lim sup
n→+∞

Pn,A (Bn) ≤ lim sup
n→+∞

Pn,hn
(Bn) .

But as (θ0(i)) decreases to 0 at infinity, Eθ0,kn
(A) is a finite dimensional closed

subset of a compact set in `2(N∗), so that one may extract a subsequence (hnp)p

such that σ2
np

(hnp) → σ2 for some σ2 as p → +∞, and such that

lim sup
n→+∞

Pn,A (Bn) ≤ lim
p→+∞

Pnp,hnp

(
Bnp

)
.

Applying Lemma 2.3 gives that Pn,0(Bn) → 0 implies Pn,A(Bn) → 0.
The reverse implication may be proved with the same reasoning using that

inf
σ2

n(h)≤A
Pn,h (Bn) ≤ Pn,A (Bn) .

Appendix B: Distance in variation and conditioning

The obvious proof of the following folklore lemma is omitted.

Lemma B.1. Let P denote a probability distribution on some space (Ω,F).
Let A denote an event with non-null P -probability and let PA the conditional
probability given A, that is PA(B) = P (A ∩B)/P (A) then

‖PA − P‖ = P (Ac) .
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Appendix C: Proof of inequality (3.9)

Proof.∥∥∥NMn

kn
− PMn

Hn|X1:n

∥∥∥
=

∫ (
1−

dNMn

kn
(h)

dPMn

Hn|X1:n
(h)

)
+

dPMn

Hn|X1:n
(h)

=
∫ 1−

dNMn

kn
(h)
∫ wn(θ0+

g√
n

)

dNMn
kn

(g)

dPn,g(X1:n)
dPn,0(X1:n)dN

Mn

kn
(g)

wn(θ0 + h√
n
)dPn,h(X1:n)

dPn,0(X1:n)


+

dPMn

Hn|X1:n
(h) .

Using the convexity of x 7→ (1− x)+ and Jensen inequality, the right-hand-side
can be upper-bounded:∥∥∥NMn

kn
− PMn

Hn|X1:n

∥∥∥
≤

∫∫ 1−
dNMn

kn
(h)wn(θ0 + g√

n
)dPn,g(X1:n)
dPn,0(X1:n)

dNMn

kn
(g)wn(θ0 + h√

n
)dPn,h(X1:n)

dPn,0(X1:n)


+

dNMn

kn
(g)dPMn

Hn|X1:n
(h) .

Now, the quadratic Taylor expansion of the log-likelihood ratio translates into

Pn,g(X1:n)dNMn

kn
(h)

Pn,h(X1:n)dNMn

kn
(g)

= e{
1
2 (An(g)−An(h))+(Cn(g)−Cn(h))} .

Plugging this expansion into the upper-bound on nv(Mn) leads to (3.9).

Appendix D: Tail bounds for non-centered Pearson statistics

This section provides a proof of Inequality (4.4). Recall from Section 4.2, that

Pn,h (Vn(θ0) ≤ sn) ≤ Pn,h

(
kn∑
i=0

a∗i
Ni−nθ(i)√

nθ0(i)
≤ −σn(h) + sn

)
.

where a∗i = h(i)√
θ0(i)σ2(h)

for all i ≤ kn. Despite
∑kn

i=0 a∗i
Ni−nθ(i)√

nθ0(i)
is just a sum

of i.i.d. random variables, we found no obvious way to use classical exponential
inequalities (either Hoeffding or Bernstein inequalities) to prove the tail bounds
we need. Before resorting to classical inequalities, we split the sum into two
pieces according to the signs of the coefficients a∗i . The two pieces are handled
using negative association arguments.
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Let J = {i : i ≤ kn,a∗i ≥ 0} and J c = {i : i ≤ kn,a∗i < 0}. Note first that

Pn,h

(
kn∑
i=0

a∗i
Ni − nθ(i)√

nθ0(i)
≤ −σn(h) + sn

)

≤ Pn,h

(∑
i∈J

a∗i
Ni − nθ(i)√

nθ0(i)
≤ −1

2
(σn(h)− sn)

)

+Pn,h

(∑
i∈J c

a∗i
Ni − nθ(i)√

nθ0(i)
≤ −1

2
(σn(h)− sn)

)

≤ inf
λ<0

exp

(
logPn,h

[
exp

(∑
i∈J

λa∗i
Ni − nθ(i)√

nθ0(i)

)]
+

λ

2
(σn(h)− sn)

)

+ inf
λ>0

exp

(
logPn,h

[
exp

(
−
∑
i∈J c

λa∗i
Ni − nθ(i)√

nθ0(i)

)]
− λ

2
(σn(h)− sn)

)
.

Following Dubhashi and Ranjan [1998], a collection of random variables Z1, . . . , Zn

is said to be negatively associated if for any I ⊆ {1, . . . , n}, for any functions
f : R|I| → R and g : RIc → R that are either both non-decreasing or both
non-increasing,

P [f(Xi : i ∈ I)g(Xi : i ∈ Ic)] ≤ P [f(Xi : i ∈ I)]P [g(Xi : i ∈ Ic)] .

By Theorem 14 from Dubhashi and Ranjan [1998], both sets of random vari-
ables

(
a∗i (Ni − nθ(i))/

√
nθ0(i)

)
, i ∈ J and

(
a∗i (Ni − nθ(i))/

√
nθ0(i)

)
, i ∈ J c

are negatively associated in the sense of Dubhashi and Ranjan [1998].
The logarithmic moment generating function of

∑
i∈I a∗i

Ni−nθ(i)√
nθ0(i)

satisfies

logPn,he
λ
∑

i∈I
a∗i

Ni−nθ(i)√
nθ0(i) ≤

∑
i∈I

logPn,he
λa∗i

Ni−nθ(i)√
nθ0(i)

where I = J or J c. Each Ni is binomially distributed with parameter n and θi.
For i ∈ J ,a∗i ≥ 0 so that for λ ≤ 0 :

logPn,he
λ
∑

i∈J
a∗i

(Ni−nθ(i))√
nθ0(i) ≤

∑
i∈J

(λa∗i )
2θ(i)

2θ0(i)
.

Note that∑
i∈J

a∗i
2 θ(i)
θ0(i)

≤
∑
i∈J

a∗i
2 +

∑
i∈J

a∗i
2 1√

nθ0(i)
h(i)√
θ0(i)

≤
∑
i∈J

a∗i
2 +

(∑
i∈J a∗i

4
)1/2√

n infi≤kn θ0(i)

(∑
i∈J

h2(i)
θ0(i)

)1/2

≤ 1 +
σn(h)√

n infi≤kn
θ0(i)

.
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Hence

inf
λ<0

exp

(
logPn,h

[
exp

(∑
i∈J

λa∗i
Ni − nθ(i)√

nθ0(i)

)]
+

λ

2
(σn(h)− sn)

)

≤ exp

− (σn(h)− sn)2

8
(

1 + σn(h)√
n infi≤kn θ0(i)

)
 .

If σn(h) ≥ 2sn, σn(h)− sn ≥ σn(h)/2 and the last term may be upper-bounded
by exp

(
− 1

64

[
σ2

n(h) ∧ σn(h)
√

n infi≤kn θ0(i)
])

.

Now, if i ∈ J c, h(i) ≤ 0 so that h(i) ≥ −
√

nθ0(i) which entails−a∗i /
√

nθ0(i) ≤
1

σn(h) . For any λ ≥ 0

∑
i∈J c

logPn,h

[
exp

(
−λa∗i

Ni − nθ(i)√
nθ0(i)

)]
≤

∑
i∈J c(a∗i )

2θ(i)λ2

2θ0(i)
(
1− λ

σn(h)

)

≤ λ2

(
1 + σn(h)√

n infi≤kn θ0(i)

)
2
(
1− λ

σn(h)

) .

Hence

inf
λ>0

exp

(
logPn,h

[
exp

(
−
∑
i∈J c

λa∗i
Ni − nθ(i)√

nθ0(i)

)]
− λ

2
(σn(h)− sn)

)

≤ exp

− (σn(h)− sn)2

8
(

1 + σn(h)√
n infi≤kn θ0(i)

+ σn(h)−sn

σn(h)

)
 .

If σn(h) ≥ 2sn, σn(h)−sn ≥ σn(h)/2 and the right-hand-side is upper-bounded
by

exp

−
(
σ2

n(h) ∧
√

n infi≤kn
θ0(i)σn(h)

)
96

 .
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