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1 Introduction

Hidden Markov models (hmm) were formally introduced by Baum & Petrie

in 1966. Since then, they have proved useful in various applications, from

speech recognition (Levinson et al., 1983) to blind deconvolution of unknown

communication channels (Kaleh & Vallet, 1994), biostatistics (Koski, 2001)

or meteorology (Hughes & Guttorp, 1994). For a mathematical survey into

hmm, see (Ephraim & Merhav, 2002; Cappé et al., 2005). Mixture models

with independent observations are a particular case of hmms.

In most practical cases, the order of the model (ie the true number of hidden

states) is unknown and has to be estimated. There is an extensive litera-

ture dedicated to the issue of order estimation. The particular case of order

estimation for mixtures of continuous densities with independent identically

distributed (abbreviated to i.i.d) observations is notoriously challenging (see

(Chambaz, 2006) for a comprehensive bibliography). It has been addressed

through various methods: ad hoc or minimum distance (Henna, 1985; Chen

& Kalbfleisch, 1996; Dacunha-Castelle & Gassiat, 1997; James et al., 2001),

maximum likelihood (Leroux, 1992b; Keribin, 2000; Gassiat, 2002; Chambaz,

2006) or Bayesian (Ishwaran et al., 2001; Chambaz & Rousseau, 2007). Actu-

ally, Bayesian literature on order selection in mixture models is essentially de-

voted to determining coherent non informative priors, see for instance (Moreno

& Liseo, 2003) and to implementing procedures, see for instance (Mengersen

& Robert, 1996). Order estimation in hmms is much more difficult. It has

been proved that, even if the null hypothesis is true, the maximum likelihood

test statistic is unbounded (Gassiat & Kéribin, 2000) in the case of indepen-

dent mixture only if parameters are unbounded, see (Azais et al., 2006) and
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references therein. This is why the choice of a penalty to obtain estimators

using penalized maximum likelihood that do not over-estimate the order is a

difficult problem. Earlier results on penalized maximum likelihood estimators

(as in (Finesso, 1991)) and Bayesian procedures (as in (Liu & Narayan, 1994))

assume a prior upper bound on the order. In (McKay, 2002), the minimum

distance estimator introduced by (Chen & Kalbfleisch, 1996) for mixtures is

extended to hmms. Regarding finite emission alphabet, Kieffer (1993) proves

the consistency of the penalized maximum likelihood estimator with penalties

increasing exponentially fast with the order with no prior upper bound. In

the same context, Gassiat & Boucheron (2003) prove almost sure (abbrevi-

ated to “a.s.”) consistency with penalties increasing as a power of the order.

The question of the minimal penalty which is sufficient to obtain almost sure

consistency with no prior upper bound remains open.

In this paper, we address the issue of order identification for hmm with Poisson

and Gaussian emissions. In 1978, Rissanen introduced the Minimum Descrip-

tion Length (mdl) principle which connected model selection to coding theory

via the following principle: “Choose the model that gives the shortest descrip-

tion of data.” We prove here mdl-inspired mixture inequalities which lead to

consistent penalized estimators requiring no prior bound on the order.

Let us recall basic ideas that sustain the mdl principle. Given any k-dimensional

model (ie parametric family of densities indexed by Θ of dimension k ≥ 1), let

Eθ be the expectation with respect to a random variable Xn
1 with distribution

Pθ, whose density is gθ (with respect to Lebesgue measure). For any density

q such that q(xn
1 ) = 0 implies gθ(x

n
1 ) = 0, the Kullback-Leibler divergence
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between gθ and q is

Kn(gθ, q) = Eθ log
gθ(X

n
1 )

q(Xn
1 )

= Eθ [− log q(Xn
1 ) − (− log gθ(X

n
1 ))] .

In Information Theory, − log q(Xn
1 ) is interpreted as the code length for Xn

1

when using coding distribution q, so Eθ[− log gθ(X
n
1 )] is the ideal code length

for Xn
1 . In this perspective, Kn(gθ, q) is the average additional cost (or redun-

dancy) caused by using the same q for compressing all gθ (θ ∈ Θ).

If one assumes that the maximum likelihood estimator θ̂(Xn
1 ) achieves a

√
n-

rate and that there exists a summable sequence {δn} of positive numbers which

is such that, for every θ ∈ Θ,

Pθ

{√
n
∥∥∥θ̂(Xn

1 ) − θ
∥∥∥ ≥ log n

}
≤ δn,

then Theorem 1 in (Rissanen, 1986) guarantees that

lim inf
n→∞

Kn(gθ, q)
k
2
log n

≥ 1 (1)

for all θ ∈ Θ except on a set with Lebesgue measure 0 (that depends on q

and k, the dimension of Θ). This result has a minimax counterpart for i.i.d

sequences (Clarke & Barron, 1990): under mild assumptions,

K∗
n = min

q
sup
θ∈Θ

Kn(gθ, q) ≥
k

2
log

n

2πe
+ O(1). (2)

Both (1) and (2) put forward a leading term k
2
log n that has taken a great

importance in Information Theory and Statistics. The coding density q is

called optimal if it achieves equality in (1). The following optimal coding

distributions are often encountered in Information theory (we refer to (Barron

et al., 1998; Hansen & Yu, 2001) for surveys):
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• two-stage coding, that yields description length

− log q(xn
1 ) = − log g

θ̂(xn
1
)
(xn

1 ) +
k

2
log n;

• mixture coding, where q is a mixture of all densities gθ (θ ∈ Θ).

We want to highlight that the quantity − log g
θ̂(xn

1
)
(xn

1 ) + k
2
log n, also called

Bayesian Information Criterion (bic), has been considerably studied since

its first introduction by Schwarz (1978) with the aim of estimating model

dimension.

Now, let us consider the following problem: given a family of models (Mi)i∈I ,

which best represents some given data xn
1? The mdl methodology suggests to

choose model M̂ = M
î
that yields the shortest description length of xn

1 .

Let ki be the dimension of model Mi for every i ∈ I. Each of the two optimal

coding distributions presented above selects a model:

• two-stage coding chooses

M̂bic = arg min
Mi (i∈I)

{
− log g

θ̂i(xn
1
)
(xn

1 ) +
ki

2
log n

}
,

where θ̂i is the maximum likelihood estimator over model Mi;

• mixture coding chooses

M̂mix = arg min
Mi (i∈I)

{− log qi(x
n
1 )} ,

where qi is a particular mixture to be specified later – we will actually

introduce a penalized version of this estimation procedure.

The challenging task is to prove that such estimators are consistent: if xn
1

is emitted by a source of density gθ0
such that gθ0

∈ Mi0 and gθ0
∈ Mi

implies Mi0 ⊂ Mi, then M̂ = Mi0 eventually a.s. This has been successfully
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accomplished for Markov Chains by Csiszár & Shields (2000), and for Context

Tree Models (or Variable Length Markov Chains) by Csiszár & Talata (2006)

and Garivier (2005).

Organization of the paper

In Section 2 we prove inequalities that compare maximum likelihood and a

particular mixture coding distribution (see Theorems 1 and 2) for hmm mix-

ture models and i.i.d models, with Poisson or Gaussian emissions. In Section 3,

these inequalities are used to calibrate a penalty to obtain a.s consistent esti-

mators using penalized likelihood or penalized mixture coding distributions.

They require no prior bound on orders (see Theorems 5 and 6). The penal-

ties are heavier than bic penalties. The question whether bic penalties lead

to consistent estimation of the order remains open. In Section 4, we inves-

tigate this question through a simulation study. An application to postural

analysis in humans is also presented. Proofs of two lemmas as well as a use-

ful result demonstrated by Leroux (1992a) are contained in Appendix A and

Appendix B.

2 Mixture inequalities

Mixture inequalities for hmm mixture model

Let σ2 be a positive number. The Gaussian density with mean m and variance

σ2 (with respect to the Lebesgue measure on the real line) is denoted by φm,σ2 .

The Poisson density with mean m (with respect to the counting measure on

the set of non negative integers) is denoted by πm.
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Let {Xn}n≥1 be a sequence of random variables with values in the measured

space (X ,A, µ). Let us denote by {Zn}n≥0 a sequence of hidden random vari-

ables such that, conditionally on Zn
1 = (Z1, . . . , Zn), X1, . . . , Xn are indepen-

dent and the distribution of each Xi only depends on Zi (all i ≤ n).

We denote by R the set of real numbers and by R+ that of non-negative real

numbers. For every k ≥ 1, let (po
j : j ≤ k) ∈ R

k
+ be an initial distribution, and

let Sk be the set of possible transition probabilities p = (pjj′ : j, j′ ≤ k) ∈ R
k2

+

(
∑k

j′=1 pjj′ = 1 for all j ≤ k). Let C ⊂ R be a bounded set. Then the parameter

set is

Θk =
{
θ = (p,m) : p ∈ Sk,m = (m1, . . . , mk) ∈ Ck

}
.

Under parameter θ = (p,m) ∈ Θk (some k ≥ 1), {Zn}n≥0 is a Markov chain

with values in {1, . . . , k}, initial distribution Pθ{Z0 = j′} = po
j′ and transition

probabilities Pθ{Zi+1 = j′|Zi = j} = pjj′ (all j, j′ ≤ k). Therefore, {Xn}n≥1 is

a hmm under parameter θ.

We shall consider two examples of emission distributions:

Gaussian emission (GE) For every n ≥ 1, Xn has density φmZn ,σ2 condi-

tionally on Zn.

Poisson emission (PE) For every n ≥ 1, Xn has density πmZn
conditionally

on Zn.

For all parameter θ ∈ Θk (any k ≥ 1), let gθ be the density of Xn
1 =

(X1, . . . , Xn) under θ. For every k ≥ 1, let νk be a prior probability on Θk

such that, for some chosen τ > 0, under νk:

• p and m are independent,
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• po
j′ = 1/k for all j′ ≤ k are deterministic,

• the vectors (pjj′ : j′ ≤ k) (j ≤ k) are independently Dirichlet(1/2, . . . , 1/2)

distributed,

• m1, . . . , mk are independent, identically distributed with density φ0,τ2 in

example GE and with density Gamma(τ, 1/2) in example PE.

The related mixture statistic is defined by

qk(X
n
1 ) =

∫

Θk

gθ(X
n
1 )dνk(θ). (3)

It is worth noting that qk is a positive function of xn
1 ∈ X n in examples GE

and PE.

The main results of this section are comparisons between the maximum log-

likelihood and the mixture statistics in examples GE and PE.

Denote the positive part of a real number t by (t)+. Let X(n) and |X|(n) be the

maxima of X1, . . . , Xn and |X1|, . . . , |Xn|, respectively. Let us also introduce,

for all k, n ≥ 1,

ckn =

(
log k − k log

Γ(k/2)

Γ(1/2)
+

k2(k − 1)

4n
+

k

12n

)

+

,

dkn =

(
k

2
log

(
τ 2

kσ2
+

1

n

))

+

,

ekn =

(
k

2

(
1 + τ − log(kτ)

))

+

.

Theorem 1 (hmm mixture models) Under the assumptions described above,

for every integer k ≥ 1 and for every integer n ≥ 1,

GE

0 ≤ sup
θ∈Θk

log gθ(X
n
1 ) − log qk(X

n
1 ) ≤ k2

2
log n +

k

2τ 2
|X|2(n) + ckn + dkn; (4)
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PE

0 ≤ sup
θ∈Θk

log gθ(X
n
1 ) − log qk(X

n
1 ) ≤ k2

2
log n + kτX(n) + ckn + ekn. (5)

Particular case of i.i.d mixture models

The i.i.d mixture model is a particular case of the hmm model. Here, {Zn}n≥0

is a sequence of i.i.d random variables.

For every k ≥ 1, let us introduce the set S ′
k of possible discrete distributions

p = (po
j : j ≤ k) ∈ R

k
+ (
∑k

j=1 po
j = 1), then the parameter set is

Θ′
k =

{
θ = (p,m) : p ∈ S ′

k,m = (m1, . . . , mk) ∈ Ck
}

.

Again, gθ is the density of Xn
1 under parameter θ ∈ Θ′

k. For every k ≥ 1, a

new mixing probability ν ′
k on Θ′

k is chosen such that, under ν ′
k:

• p and m are independent,

• p is Dirichlet(1/2, . . . , 1/2) distributed,

• m1, . . . , mk are independent, identically distributed with density φ0,τ2 in

example GE and with density Gamma(τ, 1/2) in example PE.

Equality (3) with ν ′
k in place of νk and Θ′

k in place of Θk defines a mixture

statistic qk(X
n
1 ) in this framework. The second main result is another com-

parison between the maximum log-likelihood and the mixture statistics in

examples GE and PE.

Let us introduce, for all n, k ≥ 1,

c′kn =

(
− log

Γ(k/2)

Γ(1/2)
+

k(k − 1)

4n
+

1

12n

)

+

.
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Theorem 2 (i.i.d mixture models) Under the assumptions described above,

for every integer k ≥ 1 and for every integer n ≥ 1,

GE

0 ≤ sup
θ∈Θk

log gθ(X
n
1 )−log qk(X

n
1 ) ≤ 2k − 1

2
log n+

k

2τ 2
|X|2(n)+c′kn+dkn; (6)

PE

0 ≤ sup
θ∈Θk

log gθ(X
n
1 ) − log qk(X

n
1 ) ≤ 2k − 1

2
log n + kτX(n) + c′kn + ekn. (7)

Comment

In (4), (5), (6), (7), the upper bounds are written as a sum of 1
2
dim(Θk) log n, a

bounded term and a random term which involves the maximum of |X1|, . . . , |Xn|.

The following lemmas guarantee that these random terms are bounded in prob-

ability at rate log n in example GE and slower than log n in example PE (for

hmm and i.i.d mixture models). Indeed, the probability that |X|(n) or X(n) ex-

ceeds some level un may be written as the expectation of the same probability

conditionally on the hidden variables. As soon as this conditional probability

has an upper bound that does not depend on the hidden variables, the same

upper bound holds for the unconditional probability.

Lemma 3 Let {Yn}n≥1 be a sequence of independent Gaussian random vari-

ables with variance σ2. The mean of Yn is denoted by mn. If supn≥1 |mn| is

finite, then for n large enough,

P
{
|Y |2(n) ≥ 5σ2 log n

}
≤ 1

n3/2
.

Lemma 4 Let {Yn}n≥1 be a sequence of independent Poisson random vari-

ables. The mean of Yn is denoted by mn. If supn≥1 mn is finite, then for n
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large enough,

P

{
Y(n) ≥

log n√
log log n

}
≤ 1

n2
.

The proofs of Lemmas 3 and 4 are postponed to Section A of the Appendix.

Proof of Theorems 1 and 2

First, let us introduce some notations.

For all θ ∈ Θk or θ ∈ Θ′
k (any k ≥ 1), as appropriate, and for all xn

1 ∈ X n,

zn
0 = (z0, . . . , zn) ∈ {1, . . . , k}n+1, we denote by gθ(x

n
1 |zn

1 ) the density of Xn
1 at

xn
1 conditionally on Zn

1 = zn
1 . The mixture density qk(x

n
1 |zn

1 ) at xn
1 conditionally

on Zn
1 = zn

1 is defined as in (3), with a substitution of gθ(x
n
1 |zn

1 ) for gθ(X
n
1 ).

Similarly, we denote by gθ(x
n
1 |z0) the density of Xn

1 at xn
1 conditionally on

Z0 = z0, and qk(·|z0) the corresponding conditional mixture density. Besides,

if Pθ{zn
1 |z0} is a shorthand for Pθ{Zn

1 = zn
1 |Z0 = z0}, then the mixture density

at zn
1 qk(z

n
1 |z0) is defined as in (3), with replacement of gθ(X

n
1 ) by Pθ{zn

1 |z0}.

Finally, for every j ≤ k such that nj > 0, let us set

nj =
n∑

i=1

1l{zi = j}, Ij = {i ≤ n : zi = j} and x̄j = n−1
j

∑

i∈Ij

xi.

By convention, we set x̄j = 0 whenever nj = 0.

Proof of Theorem 1. Let us set xn
1 ∈ X n. The left-hand inequalities of (4)

and (5) are obvious.

Straightforwardly, using twice the inequality
∑

j≤k αj/
∑

j≤k βj ≤ maxj≤k αj/βj

(valid for all non negative α1, . . . , αk and positive β1, . . . , βk) yields
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sup
θ∈Θk

log
gθ(x

n
1 )

qk(xn
1 )

= log k + sup
θ∈Θk

log

∑
z0≤k gθ(x

n
1 |z0)p

o
z0∑

z0≤k qk(xn
1 |z0)

≤ log k + sup
θ∈Θk

max
z0≤k

log
gθ(x

n
1 |z0)p

o
z0

qk(xn
1 |z0)

≤ log k + sup
θ∈Θk

max
z0≤k

log
gθ(x

n
1 |z0)

qk(x
n
1 |z0)

≤ log k + sup
θ∈Θk

max
z0≤k

log

∑
zn
1
∈{1,...,k}n gθ(x

n
1 |zn

0 )Pθ{zn
1 |z0}

∑
zn
1
∈{1,...,k}n qk(x

n
1 |zn

0 )qk(z
n
1 |z0)

≤ log k + sup
θ∈Θk

max
zn
0
∈{1,...,k}n+1

log
gθ(x

n
1 |zn

1 )

qk(x
n
1 |zn

1 )
· Pθ{zn

1 |z0}
qk(z

n
1 |z0)

. (8)

Now, as shown in (Davisson et al., 1981) (see equations (52)-(61) therein),

sup
θ∈Θk

max
zn
0
∈{1,...,k}n+1

log
Pθ{zn

1 |z0}
qk(z

n
1 |z0)

≤ k log
Γ(n + k/2)Γ(1/2)

Γ(k/2)Γ(n + 1/2)

≤ k

(
k − 1

2
log n − log

Γ(k/2)

Γ(1/2)
+

k(k − 1)

4n
+

1

12n

)
, (9)

where the second inequality is derived from the following Robbins-Stirling

approximation formula, valid for all z > 0,

√
2πe−zzz−1/2 ≤ Γ(z) ≤

√
2πe−z+1/12zzz−1/2.

This concludes the study of the second ratio in the right-hand term of (8). The

last step of the proof is dedicated to bounding the first ratio. The same scheme

of proof applies to both examples GE and PE. It is nevertheless simpler to

address each of them at a time.

GE Conditionally on Zn
1 = zn

1 the maximum likelihood estimator of mj is x̄j

for every j ≤ k, so that the following bound holds for every xn
1 ∈ X n and

zn
1 ∈ {1, . . . , k}n:

gθ(x
n
1 |zn

1 ) ≤
k∏

j=1

∏

i∈Ij

φx̄j ,σ2(xi) =
1

(σ
√

2π)n

k∏

j=1

exp

(
−
∑

i∈Ij
x2

i

2σ2
+

nj(x̄j)
2

2σ2

)
.

(10)
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Besides, simple calculations yield

qk(x
n
1 |zn

1 ) =
k∏

j=1

1

(σ
√

2π)nj

∫ 1

τ
√

2π
exp



−m2

2τ 2
− 1

2σ2

∑

i∈Ij

(xi − m)2



 dm

=
1

(σ
√

2π)n

k∏

j=1

1
√

1 +
njτ2

σ2

exp

(
−
∑

i∈Ij
x2

i

2σ2
+

n2
j

2σ2(nj + σ2

τ2 )
(x̄j)

2

)
. (11)

We now get, as a by-product of (10) and (11),

gθ(x
n
1 |zn

1 )

qk(x
n
1 |zn

1 )
≤

k∏

j=1

√

1 +
njτ 2

σ2
exp




k∑

j=1

nj

2σ2(1 + njτ 2/σ2)
(x̄j)

2



 .

By convexity, the first factor in the right-hand side expression above satisfies

k∏

j=1

√

1 +
njτ 2

σ2
≤
(

1 +
nτ 2

kσ2

)k/2

, (12)

while the ratios nj/(1+njτ
2/σ2) are upper bounded by σ2/τ 2 for all j ≤ k.

Therefore,

sup
θ∈Θk

max
zn
0
∈{1,...,k}n+1

log
gθ(x

n
1 |zn

1 )

qk(xn
1 |zn

1 )
≤ k

2
log

(
1 +

nτ 2

kσ2

)
+

k

2τ 2
|x|2(n). (13)

Combining (8), (9) and (13) yields the result.

PE The same argument as in example GE implies that, for each j ≤ k, for

every xn
1 ∈ X n and zn

1 ∈ {1, . . . , k}n:

gθ(x
n
1 |zn

1 ) ≤
k∏

j=1

∏

i∈Ij

πx̄j
(xi) = Pn

k∏

j=1

exp
(
− nj x̄j(1 − log x̄j)

)
(14)

if Pn = 1/
∏n

i=1(xi)!. In particular, the factor associated with some j ≤ k for

which x̄j = 0 equals one. Furthermore, the following can easily be derived:

qk(x
n
1 |zn

1 ) =Pn

k∏

j=1

√
τ

2π

∫
mnj x̄j−1/2 exp

(
− (nj + τ)m

)
dm

=Pn

k∏

j=1

√
τ

2π

Γ(nj x̄j + 1/2)

(nj + τ)nj x̄j+1/2
. (15)

Here, the factor associated with some j ≤ k for which x̄j = 0 equals
√

τ/(nj + τ).
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At this stage, the ratio gθ(x
n
1 |zn

1 )/qk(x
n
1 |zn

1 ) is naturally decomposed into

the product of k ratios: for each j ≤ k, the right-hand side factor of (14)

divided by the right-hand side factor of (15) is upper bounded by

√
e

τ
× exp

(
1

2
log nj +

(
nj x̄j +

1

2

)
log

(
1 +

τ

nj

))

whether x̄j = 0 or not. This simple calculation relies again on the lower

bound for Γ(njx̄j + 1/2) yielded by the Robbins-Stirling approximation

formula.

Consequently, the following holds:

log
gθ(x

n
1 |zn

1 )

qk(x
n
1 |zn

1 )
≤ k

2
(1 − log τ) +

k∑

j=1

[
1

2
log nj + τ

(
x(n) +

1

2

)]

≤ k

2
log

n

k
+ kτx(n) +

k

2
(1 + τ − log τ) (16)

(the second inequality follows by convexity). Combining (8), (9) and (16)

(we emphasize that the right-hand term in (16) does not depend on zn
0 nor

on θ) gives the result.

2

Note that (12) cannot be improved, since equality is attained when the nj are

equal.

The scheme of proof for Theorem 2 is similar to that of Theorem 1.

Proof of Theorem 2. Let xn
1 ∈ X n. Straightforwardly, for every θ ∈ Θ′

k,

gθ(x
n
1 ) =

∑

zn
1
∈{1,...,k}n

gθ(x
n
1 |zn

1 )
k∏

j=1

(po
j)

nj ≤
∑

zn
1
∈{1,...,k}n

gθ(x
n
1 |zn

1 )
k∏

j=1

(
nj

n

)nj

.

In addition,
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qk(x
n
1 ) =

∑

zn
1
∈{1,...,k}n

qk(x
n
1 |zn

1 )
∫

S′

k

k∏

j=1

(po
j)

njdν ′
k(p)

=
∑

zn
1
∈{1,...,k}n

Γ(k/2)

Γ(n + k/2)
qk(x

n
1 |zn

1 )
k∏

j=1

Γ(nj + 1/2)

Γ(1/2)
.

Consequently, using the same argument as the one that yielded (8) implies

that

log
gθ(x

n
1 )

qk(xn
1 )

≤ sup
zn
1
∈{1,...,k}n

(
log

Γ(n + k/2)Γ(1/2)k

Γ(k/2)
+

log
k∏

j=1

(
nj

n

)nj

Γ(nj + 1/2)
+ log

gθ(x
n
1 |zn

1 )

qk(xn
1 |zn

1 )



 .

Handling the second term in the right-hand side of the display above has

already been done in the proof of Theorem 1. As for the first term, it is

bounded by

log
Γ(n + k/2)Γ(1/2)

Γ(k/2)Γ(n + 1/2)
≤ k − 1

2
log n + c′kn

(by virtue of (Davisson et al., 1981), equations (52-61) again and the Robbins-

Stirling approximation formula). This completes the proof. 2

3 Application to order identification

Let k0 be the sole integer such that the distribution P0 of process {Xn}n≥1

satisfies

P0 ∈ {Pθ : θ ∈ Θk0
} \ {Pθ : θ ∈ Θk0−1}

(with convention Θ0 = ∅). By definition, k0 is the order of P0. In examples GE

and PE, k0 is the minimal number of Gaussian or Poisson densities needed to

describe the distribution P0. Our goal in this section is to estimate k0.

Let us denote by pen(n, k) a positively valued increasing function of n, k ≥ 1

such that, for each k ≥ 1, pen(n, k) = o(n). We define hereby the estimators:

15



k̂ml
n = arg min

k≥1

{
− sup

θ∈Θk

log gθ(X
n
1 ) + pen(n, k)

}
and

k̂mix
n = arg min

k≥1
{− log qk(X

n
1 ) + pen(n, k)} .

Convenient choices of the penalty term involve the following quantities: for

every n, k ≥ 1, we introduce the cumulative sums Ckn =
∑k

ℓ=1 cℓn, C ′
kn =

∑k
ℓ=1 c′ℓn, Dkn =

∑k
ℓ=1 dℓn and Ekn =

∑k
ℓ=1 eℓn. All of them are bounded func-

tions of n.

Theorem 5 (consistency of k̂ml
n ) Set α > 2, and for each n ≥ 3, k ≥ 1,

pen(n, k) =
k∑

ℓ=1

D(ℓ) + α

2
log n + Rkn + Skn,

where D(k) = dim(Θk) = k2 and Rkn = Ckn for hmm mixtures models,

D(k) = dim(Θ′
k) = (2k − 1) and Rkn = C ′

kn for i.i.d mixtures models and

GE

Skn = Dkn + 5σ2k(k + 1) log n,

PE

Skn = Ekn + k(k + 1)
log n√
log log n

.

Under the assumptions described above, k̂ml
n = k0 eventually P0-a.s.

Similarly,

Theorem 6 (consistency of k̂mix
n ) Set α > 2, and for each n ≥ 3, k ≥ 1,

pen(n, k) =
k−1∑

ℓ=1

D(ℓ) + α

2
log n + Skn,

where D(k) = dim(Θk) = k2 for hmm mixtures models, D(k) = dim(Θ′
k) =

(2k − 1) for i.i.d mixtures models and
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GE

Skn = 5σ2k(k + 1) log n,

PE

Skn = k(k + 1)
log n√
log log n

.

Under the assumptions described above, k̂mix
n = k0 eventually P0-a.s.

Theorems 5 and 6 thus guarantee that k̂ml
n and k̂mix

n are consistent estimators

of k0. We emphasize that no prior bound on k0 is required.

The penalty function satisfies pen(n, k) = O(logn) for every k ≥ 1 in both

examples. It is also important to compare the dependency of pen(n, k) with

respect to k with that of the bic criterion. We do not get a single term 1
2
D(k)

on the log n scale, but rather a cumulative sum of terms 1
2
[D(ℓ) + α] for ℓ

ranging from 1 to k.

It is well understood that Bayesian estimators naturally take into account

the uncertainty on the parameter by integrating it out (Jefferys & Berger,

1992), thus providing an example of auto-penalization. This is illustrated by

the equivalence between marginal likelihood and bic criterion that holds, for

instance, in regular models:

− log qk(X
n
1 ) = − log sup

θ∈Θk

gθ(X
n
1 ) +

1

2
D(k) log n + OP (1),

as n goes to infinity, valid for every k ≥ 1. It is proven in (Chambaz &

Rousseau, 2007) that efficient order estimation can be achieved by compar-

ing marginal likelihoods (implicitly, without additional penalization) even in

non-regular models (and for instance for mixtures of continuous densities).

However, Csiszár & Shields (2000) provide an example where k̂ml
n is consistent

while k̂mix
n is not when its penalty term is set to zero. Here, we (over-) penalize

17



qk(X
n
1 ) so that the proofs of Theorems 5 and 6 mainly rely on the mixture

inequalities stated in Theorems 1 and 2.

Proof of Theorem 5. In the i.i.d framework, showing that k̂ml
n ≥ k0 eventu-

ally P0-a.s is a rather simple consequence of the strong law of large numbers

and mink<k0
infθ∈Θ′

k
K(gθ0

, gθ) > 0 for any θ0 ∈ Θ′
k0

\ Θ′
k0−1 (see (Leroux,

1992b) for a proof of the latter, where

K(gθ0
, gθ) =

∫

x1∈X
gθ0

(x1) log
gθ0

(x1)

gθ(x1)
dµ(x1)

is the Pθ0
-a.s limit of n−1[log gθ0

(Xn
1 ) − log gθ(X

n
1 )].

In the hmm framework, it is a consequence of Lemma 8 (see Appendix B),

which contains a Shannon-Breiman-McMillan theorem for hmm that holds

in examples GE and PE (see Theorem 2 in (Leroux, 1992a)) and a useful

by-product of the proof of Theorem 3 in the same paper.

The more difficult part is to obtain that k̂ml
n ≤ k0 eventually P0-a.s.

Let P0 = Pθ0
for θ0 ∈ Θk0

\Θk0−1. Let us consider a positively valued sequence

{tn}n≥3 to be chosen conveniently later on. Let k > k0 and n ≥ 3. Obviously,

if k̂ml
n = k, then

log gθ0
(Xn

1 ) ≤ sup
θ∈Tk

log gθ(X
n
1 ) + pen(n, k0) − pen(n, k).

Here, Tk equals Θk for hmm mixture models and equals Θ′
k for i.i.d mixture

models. Consequently, using (4), (5), (6) or (7) (with τ = 1/2 in example GE

and τ = 2 in example PE), k̂ml
n = k yields

log gθ0
(Xn

1 ) ≤ log qk(X
n
1 ) + ∆nk (17)
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with

∆nk = pen(n, k0) − pen(n, k) +
D(k)

2
log n + akn + bkn + 2kUn,

where Un = |X|2(n), bkn = dkn in example GE and Un = X(n), bkn = ekn

in example PE, while akn = ckn for hmm mixture models and akn = c′kn

for i.i.d mixture models. Let us choose tn = 5σ2 log n in example GE and

tn = log n/
√

log log n in example PE, so that as soon as Un ≤ tn, then

∆nk ≤ −α

2
(k − k0) log n. (18)

Obviously, we have

P0

{
k̂ml

n > k0

}
≤ P0

{
k̂ml

n > k0, Un ≤ tn
}

+ P0{Un ≥ tn}. (19)

Because qk defines a probability measure, we have

P0

{
k̂ml

n = k, Un ≤ tn
}

≤
∫

xn
1
∈Xn

gθ0
(xn

1 )

qk(xn
1 )

1l

{
log

gθ0
(xn

1 )

qk(xn
1 )

≤ ∆nk, Un ≤ tn

}
qk(x

n
1 )dµ(xn

1)

≤ exp
{
−α

2
(k − k0) log n

}
,

hence

P0

{
k̂ml

n > k0, Un ≤ tn
}
≤
∑

k>k0

exp
{
−α

2
(k − k0) log n

}
= O(n−α/2).

As a consequence of Lemmas 3 and 4, P0{k̂ml
n > k0} is O(n−α/2 + n−3/2) in

example GE and O(n−α/2 +n−2) in example PE: we apply the Borel-Cantelli

lemma to complete the proof. 2

The proof of Theorem 6 uses the following

Lemma 7 There exists a sequence {εn}n≥1 of random variables that converges
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to 0 P0-a.s such that, for any n ≥ 1, if k̂mix
n < k0 then

1

n

[
sup
θ∈Θk

log gθ(X
n
1 ) − log gθ0

(Xn
1 )

]
≥ εn. (20)

Proof of Lemma 7. Set k < k0. It is sufficient to show the existence of

{εn}n≥1 that converges to 0 P0-a.s such that, for any n ≥ 1, k̂mix
n = k implies

that (20) holds.

Because pen(n, k) = o(n) and pen(n, k0) = o(n), k̂mix
n = k yields

0 ≥ 1

n
log

qk0
(Xn

1 )

qk(X
n
1 )

+ o(1).

By adding the same quantity to both sides, we get (20) where

εn =
1

n
log

supθ∈Θk
gθ(X

n
1 )

qk(Xn
1 )

− 1

n
log

gθ0
(Xn

1 )

qk0
(Xn

1 )
+ o(1).

Now, by virtue of (4), (5), (6), (7) and Lemmas 3, 4, P0-a.s,

1

n
log

supθ∈Θk
gθ(X

n
1 )

qk(X
n
1 )

−→
n→∞

0.

The same inequalities and lemmas also guarantee that, P0-a.s,

1

n

(
log

gθ0
(Xn

1 )

qk0
(Xn

1 )

)

+

−→
n→∞

0.

The final step is a variant of the so-called Barron’s lemma taken from ((Fi-

nesso, 1991), Theorem 4.4.1): another application of the Borel-Cantelli lemma

implies that, P0-a.s,

lim inf
n→∞

1

n
log

gθ0
(Xn

1 )

qk0
(Xn

1 )
≥ lim inf

n→∞

−2 log n

n
= 0.

This completes the proof. 2

Proof of Theorem 6. A straightforward combination of Lemma 7 with the

strong law of large numbers (in the i.i.d framework) or Lemma 8 from the
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Appendix (in the hmm framework) yields that k̂mix
n ≥ k0 eventually P0-a.s.

From now on, we use the same notations as those used in the preceding proof

except when notified. Let k > k0. If k̂mix
n = k, then

− log qk(X
n
1 ) + pen(n, k) ≤ − log qk0

(Xn
1 ) + pen(n, k0).

By using (4), (5), (6), (7), the latter inequality implies that

log gθ0
(Xn

1 ) ≤ log qk(X
n
1 ) + ∆nk

with

∆nk = pen(n, k0) − pen(n, k) +
D(k0)

2
log n + ak0n + 2k0Un,

where {ak0n}n≥1 is a bounded sequence. The definition of the penalty guaran-

tees that, as soon as Un ≤ tn, one has (18). Consequently,

P0

{
k̂mix

n > k0 and Un ≤ tn
}
≤
∑

k>k0

exp
{
−α

2
(k − k0) log n

}
= O(n−α/2).

The result follows by virtue of the Borel-Cantelli lemma, the previous bound

and Lemmas 3, 4: k̂mix
n ≤ k0 eventually P0-a.s. 2

4 Simulations and experimentation

In this section, we focus on the penalized maximum likelihood estimator k̂ml
n . In

Section 4.1 we investigate the importance of the choice of the penalty term. We

first illustrate that the penalty given in Theorems 5 and 6 is heavy enough to

obtain a.s consistency with no prior upper bound. Then we try to understand

whether a smaller penalty could be chosen to retain a.s consistency in the

same context. Section 4.2 is dedicated to the presentation of an application to
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postural analysis in humans within framework GE. In order to compute the

maximum likelihood estimates, we use standard EM algorithm (Baum et al.,

1970; Cappé et al., 2005). The algorithm is run with several random starting

points, and iterations are stopped whenever the parameter estimates hardly

differ from one iteration to the other.

4.1 A simulation study of the penalty calibration

We first propose to illustrate the a.s convergence of k̂ml
n in a toy-model of

hmm with Poisson emissions. We simulate 5 samples of distribution Pθ for

θ = (p,m) ∈ Θ6, where mj = 3j (each j ≤ 6), and p6,1 = 1, pj,j+1 =

1 − pj,1 = 0.9 (each j ≤ 5). As estimator k̂ml
n requires no upper bound on

the order, the question arises to determine at which values of k the penalized

maximum likelihood should be evaluated. Figure 1 illustrates the behavior of

criterion − supθ∈Θk
log gθ(x

n
1 ) + pen(n, k) with a sample size n = 1, 000 versus

the number k of hidden states. The criterion looks very regular: it first de-

creases rapidly, then stabilizes, and finally increases slowly but systematically.

Thus, identifying the maximizer k̂ml
n is an easy task. The values of k̂ml

n are

displayed in Figure 2. We emphasize that only under-estimation and never

over-estimation occur with our choice of penalty. This may indicate that our

penalty is as small as possible.

We also study the examples considered in Section 5 (pp 582–585) of (McKay,

2002). As expected, estimator k̂ml
n has a good behavior for sample sizes which

are large enough. Figure 3 represents the evolution of the penalized maximum

likelihood criteria − supθ∈Θk
log gθ(x

n
1 ) + pen(n, k) for k ≤ 4 as the sample

size n grows for a realization xn
1 of the so-called “well separated, unbalanced”
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Fig. 1. For each of 5 samples of length n = 1, 000, penalized maximum likelihood

criteria − supθ∈Θk
log gθ(x

n
1 ) + pen(n, k) for k varying from 1 to 20.

model of order 2 taken from Section 5 in (McKay, 2002).

For small samples, smaller models are systematically chosen, and this agrees

with our presumption that our penalty is too heavy. Note that the bic cri-

terion suffers from the same defect, as can be seen in Figure 2 of (McKay,

2002). In that perspective, one may search for some minimal penalty lead-

ing to a consistent estimator. We address this issue by computing the differ-

ences [supθ∈Θ2
log gθ(x

n
1 )− supθ∈Θk

log gθ(x
n
1 )] for k = 1, 3, 4, see Figure 4. For

k = 1, the difference grows linearly so that any sub-linear penalty prevents

from under-estimation (see also the beginning of the proof of Theorem 5). For

k = 3, 4, the differences seem almost constant in expectation. A convenient

penalty should dominate (eventually almost surely) their extreme values. For

instance, it is proved in (Chambaz, 2006) that a log log n penalty guarantees
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Fig. 2. Almost sure convergence of k̂ml
n . As the sample size grows (x-axis), the values

of k̂ml
n (y-axis) increase to the true order k0 = 6.

consistency when an upper bound on the order is known. Without such a

bound, it remains open whether a log n penalty is optimal or not.

4.2 Application to postural analysis in humans

Maintaining posture efficiently is achieved by dynamically resorting to the

best available sensory information. The latter is divided in three categories:

vestibular, proprioceptive, and visual information. Every individual has devel-

oped his/her own preferences according to his/her sensorimotor experience.

Sometimes, a sole kind of information –usually, visual– is processed in all

situations. This occurs in healthy individuals, but it is more common in elderly

people, in people having suffered from a stroke, in people afflicted by Parkinson
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Fig. 3. Values of − supθ∈Θk
log gθ(x

n
1 ) + pen(n, k) (k ≤ 4) as n grows. From top to

bottom, for large values of n: k = 4, k = 1, k = 3, k = 2.

Disease for instance. Although processing a sole kind of information may be

efficient for maintaining posture in one’s usual environment, it is likely not

to be adapted to new or unexpected situations, and may result in a fall.

Therefore, it is of primordial importance to learn how to detect such a sensory

typology, so as to propose an adapted reeducation program.

Postural analysis in humans at stable equilibrium has already been addressed

using fractional Brownian motion (see (Bardet & Bertrand, 2007) and refer-

ences therein), or diffusion processes (Rozenholc et al., 2007). We illustrate

now how the study of this difficult issue can be addressed within the theoret-

ical framework of hmm with Gaussian emission. Data are collected during a

70-second experiment. Every ∆ = 0.025 second, the position where a control

subject exerts maximal pressure on a force platform is recorded. We denote

by Tn the distance between the latter at time n∆ and a reference position.
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Fig. 4. Representation of differences [supθ∈Θ2
log gθ(x

n
1 ) − supθ∈Θk

log gθ(x
n
1 )] (for

k = 1, 3, 4) as n grows. Top: all curves (from top to bottom, for large n: k = 1,

k = 3, k = 4). Bottom: curves for k = 3, 4 (from top to bottom for large n: k = 3,

k = 4; note the change in scale along y-axis).
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The experimental protocol we choose to present here is decomposed into three

phases: a phase of 35 seconds during which the subject’s balance is perturbed

(by vibratory stimulation of the left tendon, known to force to tilt forward)

is preceded by 15 seconds and followed by 20 seconds of recording without

stimulation.

According to the medical background and a preliminary analysis, the process

(Xn)n≥1 of interest derives from the differenced process (∇Tn)n≥1 = (Tn+1 −

Tn)n≥1, which is arguably stationary: for all n ≥ 1,

Xn = log{(∇Tn)2}

(in any continuous model, ∇Tn = 0 has probability 0). We hereafter assume

that (Xn)n≥1 is a hmm with Gaussian emission. Heuristically, we focus on the

evolution of the volatility of process (Tn)n≥1.

The estimated order k̂ml
n equals 3. The result coincides with that of the bic

criterion. In order to compute k̂ml
n , we estimated σ on an independent ex-

periment (same subject, eyes open, no perturbation). We assume that the

variance of the volatility process remains the same all over the three-phase ex-

periment. We are also interested in the inference concerning the unobservable

sequence of hidden states. We compute the a posteriori most likely sequence

of states by the Viterbi algorithm. In words, we find the sequence zn
1 which

maximizes (with respect to ξn
1 ∈ {1, 2, 3}n) the joint conditional probability

P
θ̂
{Zn

1 = ξn
1 |Xn

1 = xn
1}, θ̂ ∈ Θ3 denoting the value of θ output by the EM

algorithm on that model. Figure 5 represents the data and zn
1 .

Sequence zn
1 carries (non distributional) information about the model, and

helps interpreting the event “k̂ml
n = 3′′. The three hidden states hmm proves
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very satisfactory from a medical point of view. Figure 5 suggests the follow-

ing interpretation: a reference behavior in standard conditions of standing up

(time intervals [0; 15] and [∼ 65; 70]) is a combination of two regimes (in-

dexed by 1 and 2); a learning behavior to adapt to new conditions when

standing up corresponds to the third regime (indexed by 3). The first, second,

and third regimes are respectively associated with medium (m1 = −3.90),

small (m2 = −6.13), and large (m3 = −1.52) volatility for process (Tn)n≥1.

The empirical proportions π̂i(ξ) of each regime ξ ∈ {1, 2, 3} on each phase

i ∈ {1, 2, 3} are as follows: π̂1(1) = 0.69, π̂1(2) = 0.31, π̂1(3) = 0; π̂2(1) = 0.64,

π̂2(2) = 0.04, π̂2(3) = 0.32; π̂3(1) = 0.50, π̂3(2) = 0.25, π̂3(3) = 0.25.

The whole description (characterization of the three regimes and their succes-

sion through the duration of the experiment) coincides with the expectations

of the medical team.

A Proofs of Lemmas 3 and 4

Proof of Lemma 3. Let m = supn≥1 |mn| and tn =
√

5σ2 log n (all n ≥ 1).

Let n be large enough, so that tn ≥ m. For every i ≤ n,

P {|Yi| ≤ tn}= P {|mi + Yi − mi| ≤ tn}
≥P {|Yi − mi| ≤ tn − |mi|}
≥P {|Yi − mi| ≤ tn − m}
=
∫ tn−m

−tn+m
φ0,σ2(y)dy

=

(
1 − σ

φ0,σ2(tn)

tn

)
(1 + o(1)) .

Hence, by virtue of the independence of Y1, . . . , Yn,
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Fig. 5. Realizations tn1 (top) and xn
1 (middle), and a posteriori most likely sequence

of hidden states zn
1 (bottom). The vertical dotted lines indicate the limits of the

vibratory stimulation phase. Top: points (n∆, tn). Middle: points (n∆, xn). Bottom:

points (n∆, zn); each of the three postulated hidden states is associated with a

particular level of volatility for ∇Tn. Note that the scale on the y-axis is not linear.
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P
{
|Y |2(n) ≥ t2n

}
= 1 −

n∏

i=1

P {|Yi| ≤ tn}

≤ 1 −
(

1 − σ
φ0,σ2(tn)

tn
(1 + o(1))

)n

= 1 − exp




−
n exp

(
− t2n

2σ2

)

tn
√

2π
(1 + o(1))






=
n exp

(
−5σ2 log n

2σ2

)

√
5σ2 log n

√
2π

(1 + o(1))

≤n−3/2,

as soon as n is large enough. 2

Proof of Lemma 4. Let m = supn≥1 mn and tn = log n/
√

log log n (all

n ≥ 3). Let Y be a Poisson random variable with mean m. The logarithmic

moment generating function Ψ of (Y − m) satisfies Ψ(λ) = log Eeλ(Y −m) =

m(eλ − λ − 1) (all λ ≥ 0). Its Legendre transform Ψ∗ is given for all t ≥ 0 by

Ψ∗(t) = sup
λ≥0

{λt − Ψ(λ)} = (t + m) log
t + m

m
− t.

Now, it is obvious that P{Yi ≥ t} ≤ P{Y ≥ t} (for each i ≤ n and t > m).

Therefore, by using the Chernoff bounding method,

P{Y(n) ≥ tn} ≤ nP{Y ≥ tn} = nP{Y −m ≥ tn −m} ≤ n exp{−Ψ∗(tn −m)}.

(A.1)

Besides,

Ψ∗(tn − m) = tn log
tn
m

− tn − m = (log n)
√

log log n(1 + o(1)) ≥ 3 log n

as soon as n is large enough. We conclude by plugging this lower bound into

(A.1). 2
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B A useful lemma for hmm mixture models

Lemma 8 (Leroux) For hmm mixture models with bounded parameter sets,

both in examples GE and PE, for every k ≥ 1 and θ0, θ ∈ Θk, there exists

a constant K∞(gθ0
, gθ) < ∞ such that, Pθ0

-a.s, n−1[log gθ0
(Xn

1 ) − log gθ(X
n
1 )]

tends to K∞(gθ0
, gθ) as n goes to infinity. Besides, for any θ0 ∈ Θk0

\ Θk0−1,

min
k<k0

inf
θ∈Θk

K∞(gθ0
, gθ) > 0.

Sketch of proof of Lemma 8. The Shannon-Breiman-McMillan part of the

lemma is a straightforward consequence of Theorem 2 in (Leroux, 1992a). The

second part of the lemma is a by-product of the proof of Theorem 3 of the same

paper. Indeed, Leroux proved that, for each θ ∈ Θk0
such that gθ 6= gθ0

, there

exists an open neighborhood Oθ of θ (for the Euclidean topology of the one-

point compactification of Θk0
) and ε > 0 such that infθ′∈Oθ

K∞(gθ0
, gθ) > ε.

Because Θk0−1 is precompact, it is covered by the finite union of Oθ1
, . . . ,OθI

(each of them associated with εi > 0) and therefore

inf
θ∈Θk0−1

K∞(gθ0
, gθ) ≥ min

i≤I
inf

θ∈Oθi

K∞(gθ0
, gθ) ≥ min

i≤I
εi > 0.

2
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