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1 Introduction and General Ideas

The topic of this chapter is statistical inference of nonparametric finite mix-
tures. The latent variables (and thus the observations) will be mostly taken
independent and identically distributed, but in some cases, they will be pos-
sibly non independently distributed. For each observation, the corresponding
latent variable indicates from which population the observation comes from.
In particular, when the latent variables form a Markov chain, the observation
process will comme from a non parametric hidden Markov model (HMM) with
finite state space. We would like to emphasise the fact that the nonparamet-
ric modeling will concern only the conditional distribution of the observations,
conditional on the latent variables, not the mixing distribution. Nonparametric
modeling of the mixing distribution (with possibly infinitely denumerable or
continuous support) is considered in Chapter 6.

To fix ideas, assume that a random variable X follows a distribution

P =

G∑
g=1

ηgFg. (1)

In many problems, inference for the Fg is of interest in itself, for instance in
genomic applications, signal analysis, or econometric modeling, see references
in [7] or [15]. The distribution P may have density

p(x) =

G∑
g=1

ηgfg(x). (2)

Parametric modeling of the distributions Fg (or the densities fg) constraints
the distributions to have prescribed shapes. Because non parametric modeling
leads to more flexibility, methods to deal with non parametric models were
investigated in several applied papers, see for instance the references in [15] or
[12] for HMMs. One major obstacle of using nonparametric modeling seems
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to be the very basic question of identifiability (apart from that due to label
switching or to the identification of the number of hidden states).

However, it should be emphasized that nonparametric estimation of the dis-
tribution P of the observations (or its density p) is always possible, even if the
model is not identifiable. What will be of interest for us is the estimation of
the weights ηg and of the so-called emission distributions Fg (or the emission
densities fg) for g = 1, . . . , G. If the model is not identifiable, inference of the
weights and the emission distributions is hopeless. But though identifiability
is impossible to get in widest generality, it has been shown recently that it is
possible to get identifiability for particular classes of models. The aim of this
chapter is to review situations where identifiability has been proved, and where
inference thus can be meaningful.

Let us proceed with some general ideas about the situations we will consider.
If the observation is one-dimensional, it is obvious that, to obtain identifiability
of the weights and the emission distributions from the marginal distribution P ,
one needs to put some restrictions on the emission distributions. This will be
the subject of Section 2 and Section 3. In Section 2, we will consider mixtures
of two populations (that is G = 2) under specific restrictions on the emission
densities. In Section 3, we will consider mixtures of translated densities. A first
hint on the link between HMMs and multidimensional mixtures appears in this
section. If one wants to achieve fully nonparametric modeling of the translated
distribution, then one requires a block of two observations to be dependent,
which is the case for consecutive observations in HMMs.

Section 4 deals with multivariate mixtures. It appears that when the ob-
servations are at least three-dimensional and the coordinates are conditionally
independent, that is, the emission distributions are the tensor products of the
marginal distributions of the coordinates (or of three blocks of coordinates),
then identifiability holds under a simple linear independence assumption which
will be discussed in detail in Section 4.1. Using the fact that, conditionally
on the present state, past and future states of a Markov chain are indepen-
dent, it is possible to write the distribution of three consecutive observations
in a HMM as a multidimensional mixture where the coordinates of the three-
dimensional observations (made of the consecutive observations) are condition-
ally independent, and identifiability is obtained for HMMs. One way to prove
identifiability is constructive, by applying spectral methods to the tensor of the
three-dimensional distribution. We subsequently present nonparametric infer-
ence based on spectral methods in Section 4.2. Once the model is proven to
be identifiable, nonparametric estimation methods may be proposed based on
frequentist model selection ideas or based on Bayesian methodology. Model
selection methods usually lead to oracle inequalities for the risk of the estima-
tion of the distribution of the observations. One has then to go back from the
distribution of the observations to the weights and the emission densities. De-
velopment of results on these ideas is the aim of Section 4.3. A specific section,
Section 4.4, is dedicated to HMMs.

We conclude the chapter by discussing some related questions and extensions
to other nonparametric mixture models in Section 5.
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2 Mixtures With One Known Component

We consider in this section mixtures of two populations on the real line. Obvi-
ously, any distribution may be split in any mixture of itself, so that one has to
specify some assumptions on the emission densities. One way to do this is to
fix one of the components, so that for a known fixed density g,

p(x) = (1− η)g(x) + ηf(x), x ∈ R. (3)

Apart from the knowledge of the first component, one has still to restrict the
set of possible densities f for the other component. Indeed, one has for instance
(1 − η)g(x) + ηf(x) = (1 − η/2)g(x) + η/2[g(x) + 2f(x)] so that, with the
proportion η/2 and the second component equal to g(x) + 2f(x) one gets the
same mixture as (3).

2.1 The other component is symmetric

One possibility to obtain consistency is to assume that the second component
is symmetric around some unknown value µ, so that

p(x) = (1− η)g(x) + ηf(x− µ), (4)

where f is a symmetric density, that is for all x ∈ R, f(−x) = f(x). The
parameter to be estimated is (f, θ) with θ = (η, µ) ∈ [0, 1]× R. As soon as one

has an estimator θ̂ = (η̂, µ̂) of θ, one can build an estimator of the unknown
f from a non parametric estimator p̂ of p by taking a symmetrized version of
p̂(·+ µ̂)/η̂ − (1/η̂ − 1)g(·).

In [9], the authors prove, under a condition on the existence of moments, that
identifiability holds constraining f(·) to symmetry only and almost everywhere
on θ. They propose a minimum distance estimator for parameters θ, based on a
symmetrization based distance, and prove that this estimator is consistent. [8]
then established that the estimator is

√
n-consistent and asymptotically normal.

Further, [21] studied the situation where the known component g is symmetric
with a known center of symmetry. Identifiability is proven by comparing the tails
of (and thus under assumptions on) the characteristic functions. The authors
construct asymptotically normal estimators. [37] also proposed an asymptoti-
cally normal estimator based on the minimum profile Hellinger distance.

2.2 Mixture of a uniform and a non decreasing density

Model (3) is often considered in applications when dealing with multiple testing
problems. When the considered data are the p-values, the model transfers into

p(x) = (1− η) + ηf(x), x ∈ [0, 1], (5)

where the random variables take values in [0, 1] and the first component of the
mixture is the uniform distribution on [0, 1].
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In [32], efficient estimation of the proportion η is investigated when the
non parametric component is assumed to be in Fδ, the set of non increasing
probability densities that are positive on [0, 1− δ) and zero on [1− δ, 1]. When
δ > 0, it is possible to compute the efficient Fisher information that gives a lower
bound of the asymptotic variance of

√
n-consistent estimators. The authors

prove that a histogram based estimator of η is
√
n-consistent and conjecture

that there exist no asymptotically efficient estimators that can achieve the lower
bound given by the efficient Fisher information. This lower bound explodes
when δ goes to 0, which implies that, when δ = 0, the quadratic risk of any
estimator cannot converge to a finite value at a parametric rate.

When one has at hand a preliminary estimator of the unknown proportion
η and a non parametric estimator p̂ of the mixture density, it is possible to
estimate the non parametric component f from equation (5), after plugging-in
the estimators for η and p. However, though this estimator, theoretically, may
have good asymptotic properties, it does not behave well in practice. In [31], the
authors propose two different estimators for f that exhibit better performance in
simulation studies. The first estimator is a randomly weighted kernel estimator,
while the second estimator is a maximum smoothed likelihood estimator.

3 Translation Mixtures

A case of particular interest is the situation where the components of the mix-
ture are shifted versions of one (unknown) distribution, that is when, for some
unknown distribution F , and some unknown parameters µ1, . . . , µG the mixture
distribution is

P (·) =

G∑
g=1

ηgF (· − µg). (6)

When the observations X1, . . . , Xn are i.i.d. with distribution P , modeling the
distribution as (6) is not enough to get identifiability, and one has to add some
assumption on the unknown distribution F . This is the subject of Section 3.1.
However, when the observations are no longer independent, it is possible to get
identifiability without any assumption on F , as will be discussed in Section 3.2.

3.1 Translation of a symmetric density

The usual assumption made in the literature to get identifiability is the restric-
tion of F to a symmetric cumulative function in the sense that, for all x ∈ R,
F (−x) + F (x) = 1. This situation was studied independently by [10] and [24].

Let F be the set of symmetric cumulative functions. Denote ΩG the set of
weights (ηg)1≤g≤G and translation parameters (µg)1≤g≤G in RG. The weights

(ηg)1≤g≤G have to be such that ηg ≥ 0, g = 1, . . . , G, and
∑G
g=1 ηg = 1. De-

note Ω?G the subset of identifiable parameters of ΩG, that is the parameters
(ηg)1≤g≤G, (µg)1≤g≤G such that for any F ∈ F , one may recover the parame-

ters from
∑G
g=1 ηgF (· − µg).
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The main identifiability result (see Theorem 1 in [24]) says that the following
two statements are equivalent.

• The set of parameters (ηg)1≤g≤G, (µg)1≤g≤G is in Ω?G

• For all (η′g)1≤g≤G, (µ′g)1≤g≤G, the convolution
∑G
g=1 ηgδµg

?
∑G
g=1 η

′
gδ−µ′

g

is symmetric if and only if
∑G
g=1 η

′
gδ−µ′

g
=
∑G
g=1 ηgδ−µg .

From this result, [24] deduce that, when G = 2, identifiability holds if and
only if η1 /∈ {0, 1/2, 1}, which is equivalent to the assumption that the mixture
η1F (· − µ1) + (1− η1)F (· − µ2) is not symmetric.

In [10], the authors propose an iterative estimation procedure for which
they prove that the resulting estimator of the parameters is n−1/4+α-consistent
for any positive α. [24] build on their symmetry considerations, to develop an
estimator which is proven to be

√
n-consistent and asymptotically normal under

technical assumptions. Later, [11] propose a new class of M-estimators for these
parameters based on a Fourier approach, and prove that these estimators are√
n-consistent under mild regularity conditions.

3.2 Translation of any distribution and HMMs

We consider now observations with marginal distribution (6) but that are not
independent. This section mainly bulids on [16]. To get identifiability, we need
dependent two consecutive observations. Then to use identifiability for building
estimators, we need repetitions of such consecutive observations. We may have
independent repetitions of a block of two non-independent variables, or we may
have a stationary sequence of random variables. Thus, HMMs enter in this
setting.

Consider a pair (X1, X2) of random variables such that the marginal dis-
tribution of X1 (resp. X2) is (6), and the latent variables (Z1, Z2) have a
distribution given by the G × G matrix ξ on {1, . . . , G}2, that is for all g, g′,
ξ(g, g′) = P (Z1 = g, Z2 = g′). It is obvious that, by translating the distribution
F and translating all µg’s reversely, one obtains the same distribution. We thus
fix arbitrarily µ1 to 0, and consider the set of parameters ΘG for the matrix ξ and
the translation parameters µg, g = 1, . . . , G such that µ1 = 0 < µ2 < . . . < µG
and such that ξ is full rank.

The main identifiability result (Theorem 1) of [16] is the following. If the
parameters lie in ΘG for some (possibly unknown) G and if F is any probability
distribution, then one may recover G, ξ, µg, g = 1, . . . , G and F from the
distribution of (X1, X2). This is a strong result. Indeed, it requires very weak
assumptions. In particular, no assumption is put on F . The assumption that
the translation parameters are distinct is obviously a basic assumption (the
order constraint just fixes the label switching). The only structural assumption
is that ξ has full rank. Notice that, with only two latent states (that is, G = 2),
assuming that ξ has full rank is the same as assuming that the variables X1 and
X2 are not independent.
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The proof of the identifiability result uses characteristic functions and relies
on complex analysis arguments. Let us explain the main ideas.Let θ be a param-
eter vector, containing the parameters in the matrix ξ as well as the translation
parameters (µg)g, and let F be a probability distribution. One may rewrite the
model as

Xi = µZi + Ui, i = 1, 2, (7)

where U1 and U2 are independent variables with distribution F , and independent
from (Z1, Z2) which has distribution ξ. Then, the characteristic functions of
the variables Xi are products of the characteristic functions of corresponding
variables µZi and the characteristic functions of corresponding variables Ui.
Consider (θ1, F1) and (θ2, F2) such that the distribution of the pair (X1, X2) is
the same under both sets of parameters. Using the fact that the characteristic
functions of (X1, X2), of X1, and of X2, are the same for both sets of parameters,
one sees that it is possible to separate what comes from F1, F2 and what comes
from θ1, θ2. This leads to the following equation, for all (s, t) in a neighborhood
of (0, 0):

Φθ1(s, t)φθ2(s)φθ2(t) = Φθ2(s, t)φθ1(s)φθ1(t), (8)

where for any θ, Φθ is the characteristic function of (µZ1 , µZ2) under θ, and φθ
is the characteristic function of µZ1

(or µZ2
) under θ. The identifiability proof is

completed through studying the set of zeros of those functions, using properties
of the entire function. The fact that ξ has full rank is used to obtain that Φθ is
not the null function.

The milestone of the work in [16] is that, as soon as (8) holds in a neighbor-
hood of (0, 0), then θ1 = θ2. Let θ1 be the true (unknown) parameter and let θ2
be any possible θ. Taking the modulus of the difference of both sides of (8) and
integrating in a neighborhood of (0, 0), one obtains a contrast function M(θ)
which is non negative, and zero if and only if θ is the true (unknown) value.

Since characteristic functions may be estimated empirically, this allows to
build an empirical contrast function Mn(θ) that estimates M(θ) well enough

to define an estimator θ̂ as a minimizer of Mn(θ). It is proven in [16] that
such an estimator has good properties (parametric rate

√
n of convergence and

asymptotic Gaussian distribution).
Once an estimator of θ is given, one may use a model selection approach to

estimate the distribution F . One possibility is described in [16] and works as
follows. Assume that possible distributions are dominated, and have a density
f ∈ F , F being an infinite dimensional set of densities. Assume you are given
a collection (Fk)k≥1 of finite dimensional approximating sets of F (the larger
k, the better is the approximation and the larger is the dimension of Fk). For
instance, Fk may be the set of stepwise dentities defined by a partition which is
refined when k gets larger, or Fk may be the finite dimensional space spanned
by the first k elements of a basis. One may define for any density function f

`n (f) =
1

n

n∑
i=1

log

[
G∑
g=1

η̂gf (Xi − µ̂g)

]
,
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which could be seen as the log likelihood if the variables were independent (which
is not the case) and where θ is replaced by a preliminary estimator. For any k,

define f̂k to be the maximizer of `n(f) over Fk. As usual one has to make a
trade-off between complexity and variance so that the estimator will be chosen
by selecting k using a penalized criterion such as

Dn (k) = −`n
(
f̂k

)
+ pen (k, n) ,

where pen (k, n) is some penalty term that has to be chosen. Then the estimator

is defined by f̂ = f̂k̂, with k̂ being a minimizer of Dn. Doing so, adaptivity
results are proven in [16] on the estimation of the marginal density of X1 when
the penalty is adequately chosen. Then, when it is possible to go back from the
risk on p(·) =

∑G
g=1 ηgf (· − µg) to that on f , adaptivity results are proven for

the estimation of f .
Let us briefly describe how this works. Following model selection theory, one

gets an oracle inequality for the square of the Hellinger distance h2(p, p̂) from

which adaptivity for the estimation of p is deduced. Here, p̂(·) =
∑G
g=1 η̂g f̂ (· − µ̂g),

and for any densities p and q with respect to some measure ν, h2(p, q) =∫
(
√
p − √q)2dν(x). The problem is now to lower bound h(p, p̂) by some dis-

tance between f and f̂ . This may be done using the L1(ν)-distance, when
supg ηg > 1/2. Indeed, one has h(p, p̂) ≥ ‖p̂− p‖1, and then, using the triangu-
lar inequality, the fact that the L1-norm of a density is 1 and that the weights
add up to 1, we have on one hand

‖
∑
g

η̂g f̂(· − µ̂g)− ηgf(· − µg)‖1 ≤
∑
g

|η̂g − ηg|+ sup
g
‖f(· − µ̂g)− f(· − µg)‖1.

On the other hand, using iteratively the triangle inequality one gets that

‖
∑
g

ηg(f̂(· − µ̂g)− f(· − µ̂g))‖1 ≥
(

2 max
g

ηg − 1

)
‖f̂ − f‖1.

Then, if one has parametric rates for the estimation of ηg and µg, g = 1, . . . , G,
if f satisfies a Lipschitz property and if moreover maxg ηg > 1/2 (which is a
weak assumption when G = 2), one can transfer adaptive results from h2(p, p̂)

to adaptive results on ‖f̂ − f‖1. This is a first example of how model selection
methods allow to get adaptive estimators: obtain oracle inequality for the esti-
mation of the density of the observed variables, transfer it to the non parametric
part of the model if you are able to prove an inequality linking both risks. No-
tice that doing so requires to have a preliminary estimator with parametric rate.
Indeed, one could use the model selection strategy to estimate θ and f together,
but usual methods do not give directly a parametric rate for the parametric
part alone, so that it does not seem easy to go back to adaptive rates for the
non parametric part.

Finally, Bayesian methods can also be used, see [36].
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4 Multivariate Mixtures

Let us consider now multidimensional mixtures for which the coordinates may
be blocked in at least d ≥ 3 blocks that constitute random variables that are
conditionally independent knowing the population.That is, the observation has
distribution P given by

P =

G∑
g=1

ηg ⊗dj=1 Fg,j , (9)

where for each g = 1, . . . , G, Fg,1, . . . , Fg,d are probability distributions on d
spaces (that may have different dimensions). When the spaces are equal and
Fg,1 = . . . = Fg,d for all g = 1, . . . , G, this may be seen as modeling inde-
pendently repeated measurements in unknown several populations. We shall
first consider the situation where the observations X1, . . . , Xn are i.i.d., then
we will exhibit a structural link with HMMs via the fact that, when (Zt)t≥1 is
a Markov chain, conditionally on Zt, Zt−1 and Zt+1 are independent, so that
what has been understood for independent variables will be used to understand
finite state space non parametric HMMs in Section 4.4.

4.1 Identifiability

In the statistical literature, the first results may be found in [20] where the case
G = 2 and d = 2 or 3 is addressed, and in [19] who do not fix G and discuss
d = 2 and d > 2. General insights on identifiability for various latent models is
developed in [2]. Here, the authors point out a fundamental algebraic result by
[28], which may be stated as an identifiability result of model (9) when d = 3
and the probability distributions are on finite sets.

Building upon this result, the authors of [2] prove that, when d ≥ 3, model
(9) is identifiable as soon as, for j = 1, . . . , d, the probability measures F1,j , . . . , FG,j
are linearly independent (which reduces to F1,g and F2,G being distinct when
G = 2). Results in the parametric literature about spectral methods such as [3]
and [33] may be used to get the same result; see also [7] and [6].

Let us present the spectral methods argument of [3] in more details. For
sake of simplicity, we assume that d = 3 and that the Fg,j ’s are distributions on
R so that an observation

X =

 X1

X2

X3

 ∈ R3.

Let φ1, . . . , φM be M real valued functions and denote A(j) for j = 1, 2, 3 the

M × G matrix such that A
(j)
l,g =

∫
φldFg,j , l = 1, . . . ,M , g = 1, . . . , G. For

instance, when the φl’s are indicator functions of a partition of R, then A(j)

has the conditional distributions of the associated discretized coordinate Xj as
columns. More generally, when the φl’s are such that (φl)l≥1 forms a basis of the
space of densities or of the space of distributions, then for large enough M , A(j)
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has rank M as soon as F1,j , . . . , FG,j are linearly independent, which we now
assume for j = 1, 2, 3. Let D be the diagonal G×G matrix having the ηg’s on the
diagonal and denote S the M ×M matrix such that Sl,m = E[φl(X1)φm(X2)].
Then, one has

S = A(1)D(A(2))>,

so that as soon as A(1) and A(2) have full rank, which occurs for large enough
M ≥ G, one has rank(S) = G. Thus, G is identifiable based on the joint
distribution of (X1, X2). We now fix M such that A(1), A(2) and A(3) have full
rank.

Let T be the M ×M ×M tensor such that

T (l1, l2, l3) = E[φl1(X1)φl2(X2)φl3(X3)]

and let U1 and U2 be M × G matrices such that U>1 SU2 is invertible (such
matrices may be found by singular value decomposition of S). Let V be a
vector in RM , and define T [V ] to be the M ×M matrix given by applying the
tensor T to V , that is

T [V ]l,m = E[φl(X1)φm(X2)〈V,Φ(X3)〉], l,m = 1, . . . ,M,

where Φ(X3) = (φh(X3))1≤h≤M . Define now for all V the matrix B(V ) (which
may be computed as soon as one knows the distribution of X) as follows

B(V ) = (U>1 T [V ]U2)(U>1 SU2)−1.

Then, denoting ∆(V ) the diagonalG×Gmatrix with the coordinates of (A(3))>V
on the diagonal, one has

B(V ) = (U>1 A
(1))∆(V )(U>1 A

(1))−1.

Thus, all matrices B(V ) have the same eigenvectors, and their eigenvalues are
the coordinates of (A(3))>V . This means that, by exploring various vectors V ,
one may recover A(3). The eigenvectors stay also the same when permuting
coordinates 2 and 3 of the observed variable, so that one may recover A(2),
and thus also A(1). Recovering D is then also possible. Finally, by taking
M to infinity, one may recover the whole distributions F1,g, F2,g and F3,g,
g = 1, . . . , G.

4.2 Estimation with spectral methods

As seen in the spectral proof of identifiability, for large enough M , one may
recover all parameters by spectral analysis (singular value decompositions and
eigenvalue decompositions) using the matrix S and the tensor T . Given a sample
of observation of X, S and T may be estimated empirically, by taking empirical
means as estimators of the involved expectations. Thus, by spectral analysis
using the estimators Ŝ of S and T̂ of T , one get estimators of A(1), A(2), A(3),
and D for fixed M . Such an algorithm is studied in [3] and [33].

9



To achieve the right rate of convergence for the estimators of the non para-
metric part, that is the distributions F1,g, F2,g and F3,g, g = 1, . . . , G, one
has to choose M appropriately as a function of the number of observations n,
typically in a way that depends on the smoothness of the densities f1,g, f2,g
and f3,g, g = 1, . . . , G, of the distribution. This is studied in [7] for repeated
measurements and in [6], where asymptotic results are given at the minimax
asymptotic rate. However, choosing the right M when using spectral methods
for estimation requires prior knowledge on the smoothness of densities.

4.3 Estimation with nonparametric methods

When identifiability holds, one may use model selection methods for the esti-
mation of the parameters of the model (parametric weights and non parametric
probability distributions), as described in Section 3.2. This leads to oracle in-
equalities for the risk of the estimator of the density of the observed variables,
and one can deduce results for the risk on the parameters if it is possible to
relate both risks. We shall describe some possible way of using such ideas in
multivariate mixtures below.

Let us first mention that [20] propose an estimator of the weight and of
the repartition functions of the distributions that are

√
n- consistent , for d-

dimensional mixtures with d ≥ 3 and G = 2. The method is to minimize some
distance between the empirical d-dimensional repartition function and the set
of repartition functions belonging to the model (9) with G = 2, and then to
take the minimizer as an estimator. In [5], the authors propose an EM-type
algorithm for semi- and non-parametric estimation in multivariate mixtures,
but do not provide theoretical properties for the obtained estimator.

We shall now describe possible model selection methods such as penalized
maximum likelihood and penalized least squares. Assume that on each of the d
spaces, possible probability distributions are dominated and denote Fj the (non
parametric) sets of possible densities, j = 1, . . . , d. For each j = 1, . . . , d, denote
(Fj,k)k≥1 a collection of finite dimensional approximating sets of Fj . The log
likelihood is given by

`n ((ηg)1≤g≤G, (fg,j)1≤g≤G,1≤j≤d) =
1

n

n∑
i=1

log

 G∑
g=1

ηg

d∏
j=1

fg,j ((Xi)j)

 ,
and for any k = (k1, . . . , kd) ∈ (N∗)d, define ((η̂g)1≤g≤G, (f̂g,j,k)1≤g≤G,1≤j≤d)
the maximizer of `n(·) for (ηg)1≤g≤G and for fg,j ∈ Fj,kj , 1 ≤ g ≤ G, 1 ≤ j ≤ d.
To achieve a trade-off between complexity and variance, the estimator will be
chosen by selecting k̂ as minimizing a penalized criterion such as

Dn (k) = −`n
(

(η̂g)1≤g≤G, (f̂g,j,k)1≤g≤G,1≤j≤d

)
+ pen (k1, . . . , kd, n) .

Denote p the density of X1 = ((X1)j)1≤j≤d and p̂ the estimator of p obtained

with k̂. Then, following methods of [30], it may be possible to prove some oracle
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inequality with a statement as follows. Assume that the penalty is larger than
some quantity related to the complexity of the model times log n/n. Then, the
risk E

[
h2 (p̂, p)

]
for the estimation of p may be upper bounded, up to some

universal constant C, by the best (over all approximation spaces) Kullback-
Leibler divergence of p to its best approximation plus the penalty, plus some
negligible term.

Instead of using maximum likelihood, one may use least squares by mini-
mizing, on each approximating space, the contrast function γn given by

γn ((ηg)1≤g≤G, (fg,j)1≤g≤G,1≤j≤d) =

∫
p2(x)dx− 2

n

n∑
i=1

p (Xi)

where, for x = (xj)1≤j≤d,

p(x) =

G∑
g=1

ηg

d∏
j=1

fg,j(xj),

and by selecting k with a penalized criterion as before. Then the oracle inequal-
ity that may be proven is now based on the L2-risk E‖p̂− p‖22.

A very important feature of such model selection methods is that the choice
of the approximation space is data-driven, and often leads to adaptive minimax
rates of estimation. Moreover, on a more practical side, one may apply the
so-called slope heuristic to calibrate the penalty, see [4] for details.

If one is interested in risks about the parameters of the mixture, one has to
follow the same route as in Section 3.2. First, find a preliminary estimator of the
weights ηg, g = 1, . . . , G, with convergence rate

√
n, and use model selection to

obtain an estimator for the non parametric part by plugging in the estimation
criterion the estimator of the weights. Second, obtain an oracle inequality (this
requires slightly more elaborate analysis due to the plugged estimator in the
criterion). Third, go back from the risk on the density of the observations to
the risk of the emission densities.

Let us show an example of such inequality in the simple case of repeated
measurements models, that is when for all g, the fg,j ’s are the same, that is
fg,j = fg, j = 1, . . . , d. We assume that all fg’s are in L2(I) for some subset I
of R. In what follows, norms of functions are L2-norms and norms of vectors are
euclidian norms. We denote by 〈·, ·〉 the L2-inner product between functions.
For η = (η1, . . . , ηG) and f = (f1, . . . , fG) denote

pη,f (x1, x2, x3) =

G∑
g=1

ηgfg(x1)fg(x2)fg(x3).

Let H be a closed bounded subset of L2(I). Let F be the subspace spanned by
f1, . . . , fG, and define, for q ∈ RG and u = (u1, . . . , uG) ∈ FG

D(q,u) = 3
∑
g,j

qgqj〈fg, fj〉2〈ug, uj〉+ 6
∑
g,j

qgqj〈fg, fj〉〈ug, fj〉〈fg, uj〉.
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When writing u1, . . . , uG in the basis f1, . . . , fG, then D(q,u) is a quadratic
form in the coordinates of u1, . . . , uG, with G2 × G2 matrix A(q, f). We shall
assume, to obtain the inequality, that the determinant DetA(η, f) 6= 0. Notice
that DetA(q, f) is a polynomial in the qj ’s and the 〈fg, fj〉’s. Thus, if it is not
the null function, the set of zeros of DetA(q, f) is negligible. But by taking
functions fg’s with non intersecting supports, we get easily that D(q,u) ≥
3
∑G
g=1 q

2
g‖fg‖4‖ug‖2 so that for such f , DetA(q, f) 6= 0 and DetA(q, f) is not

the null function. The assumption DetA(η, f) 6= 0 is thus generically satisfied.
Moreover by continuity, under this assumption, there exists a neighborhood of
η such that for q in this neighborhood, DetA(q, f) 6= 0. We now state our
theorem.

Theorem 1. Assume ηg > 0, g = 1, . . . , G and that f1, . . . , fG are linearly
independent. Assume moreover that DetA(η, f) 6= 0. Let K be a compact neigh-
borhood of η in RG such that if q = (q1, . . . , qG) ∈ K, then DetA(q, f) 6= 0 and
qg > 0, g = 1, . . . , G. Then, there exists a constant c(K, f) > 0 such that for all
h ∈ HG and all q = (q1, . . . , qG) ∈ K,

‖pq,f+h − pq,f‖2 ≥ c(K, f)

(
G∑
g=1

‖hg‖2
)
.

Notice that for large enough n the estimator of η will be in K with large
probability.

Let us now prove Theorem 1.
Denote N(q,h) = ‖pq,f+h − pq,f‖2. Notice first that the identifiability proof
uses only spectral arguments so that it may be extended to get:

h ∈ HG is such that N(q,h) = 0⇐⇒ h = 0.

One may compute

N(q,h) =
∑
g,j qgqj〈fg + hg, fj + hj〉3 − qgqj〈fg, fj + hj〉3

−qgqj〈fg + hg, fj〉3 + qgqj〈fg, fj〉3.

Let F⊥ be the orthogonal of F . For g = 1, . . . , G, let ug be the projection of
hg on F and h⊥g its projection on F⊥. Then

N(q,h) = N(q,u) +M(q,u,h⊥)

where

M(q,u,h⊥) =
∑
g,j qgqj

{
〈h⊥g , h⊥j 〉3 + 3〈h⊥g , h⊥j 〉2〈fg + ug, fj + uj〉

+3〈h⊥g , h⊥j 〉〈fg + ug, fj + uj〉2
}
.

One may now write N(q,u) as a finite sum of homogeneous functions in the
qg’s and the ug’s. The constant and the linear terms are zero, and denote
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the homogeneous term of degree 2 as D(q,u). Using N(q,u) = D(q,u) +

o
(∑G

i=1 ‖hi‖2
)

we easily get that for all q ∈ K and all u ∈ FG, D(q,u) ≥ 0.

Denote ‖h‖2 =
∑G
g=1 ‖hg‖2 and define

c1(K, f) := inf
q∈K,u∈(F∩H)G

N(q,u)

‖(q,u)‖2
.

Let (qn,un)n be a sequence realizing c1(K, f). By compacity (closed and bounded
subset in a finite dimensional space), (qn,un)n has a limit point (q̄, h̄). If
(q̄, h̄) 6= 0, one has N(q̄, h̄) 6= 0 and we get c1(K, f) > 0. Else,

c1(K, f) = lim
n→+∞

D(qn,un)

‖(qn,un)‖2
.

But using the fact that D(q,u) is non negative and non degenerate by the
assumption DetA(f) 6= 0, we obtain that c1(K, f) > 0.
Using now Schur’s theorem (which says that the Hadamard product of two
positive matrices gives a positive matrix) and the fact that Gram matrices are
non negative, we easily get

M(q,u,h⊥) ≥ 3λmin(G(f + u))

(
G∑
g=1

q2g‖h⊥g ‖2
)
,

where G(?) denotes the Gram matrix of the function ? and λmin(�) is the
minimum eigenvalue of �. Then

N(q,h) ≥ 3λmin(G(f + u))

(
G∑
g=1

q2g‖h⊥g ‖2
)

+ c1(K, f)

(
G∑
g=1

‖ug‖2
)
,

≥ 3(λmin(G(f + u))( inf
q∈K

q2g)

G∑
g=1

‖h⊥g ‖2 + c1(K, f)

(
G∑
g=1

‖ug‖2
)
.

Let now (qn,hn)n be such that

c(K, f) := inf
(q,h)

N(q,h)

‖(q,h)‖2
= lim
n→+∞

N(qn,hn)

‖(qn,hn)‖2
.

If c(K, f) = 0, and since c1(K, f) > 0, we have that un tends to 0. But using the
fact thatλmin(G(f + u)) is a continuous function of u (in the finite dimensional
space F ) we get the contradiction

c(K, f) = 0 ≥
(
λmin(G(f))( inf

q∈K
q2g) ∧ c1(K, f)

)
> 0,

so that we may conclude that c(K, f) > 0.
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4.4 Hidden Markov models

We shall now consider stationary finite state space non parametric HMMs. In
this section, observations (Xt)t≥1 are independent conditionally on the latent
variables (Zt)t≥1, and the conditional distribution of Xt depends only on Zt.
The latent variables (Zt)t≥1 form a stationary Markov chain on the finite set
{1, . . . , G}, we shall denote ξ the transition matrix of the chain, and assume that
it is irreducible and aperiodic. Let Hg denote the distribution of Xt conditional
on Zt = g, g = 1, . . . , G. As discussed in Chapter ??, finite state space HMMs
are widely used as extensions of finite mixture models to model dependent vari-
ables coming from different populations. If (ηg)g=1,...,G denotes the stationary
probability mass function of ξ, then the marginal distribution of each variable
Xt is the finite mixture

G∑
g=1

ηgHg.

Now, let us exhibit the structural link between HMMs and multivariate mix-
tures given by (9). Consider X to be the vector of 3 consecutive observations
Xt−1, Xt, Xt+1. One may write the probability distribution of X as

G∑
g=1

(
G∑

g1=1

ηg1ξg1,gHg1

)
⊗Hg ⊗

(∑
g3

ξg,g3Hg3

)
,

which, since all weights ηg are positive, is the same as

G∑
g=1

ηg

(
G∑

g1=1

ηg1ξg1,g
ηg

Hg1

)
⊗Hg ⊗

(∑
g3

ξg,g3Hg3

)
,

and may thus be seen as coming from the fact that, when (Zt)t≥1 is a Markov
chain, the past Zt−1 and the future Zt+1 are independent conditional on the
present Zt. Thus the distribution of X is a 3-dimensional mixture given by (9)
with

Fg,1 =

G∑
g1=1

ηg1ξg1,g
ηg

Hg1 , Fg,2 = Hg, Fg,3 =
∑
g3

ξg,g3Hg3 ,

and one may apply the identifiability results of Section 4.1. This is what is
done in [23] for parametric HMMs where the observation can take finitely many
values and in [15] for non parametric HMMs.

When ξ is moreover full rank and the probability distributions H1, . . . ,HG

are linearly independent, then F1,1, . . . , FG,1 are linearly independent, F1,3, . . . , FG,3
are linearly independent, and the finite state space non parametric HMM model
is identifiable. A more general identifiability result is proven in [1] by using
Kruskal’s algebraic result and the methods of [2]. They get that, for a large
enough (more than 3) and depending on G number of consecutive variables, one
may identify the HMM as soon as ξ is full rank and the distributions H1, . . . ,HG
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are distinct. The proof is however not constructive in contrast to proofs using
spectral methods.

In [15], several estimation methods are proposed and real data results are
presented to support the conclusion that clustering using non parametric HMMs
may lead to better results than by using conventional parametric HMMs algo-
rithms. Spectral algorithms are proposed in [23] and their application in a non
parametric setting is investigated in [13] where theoretical results on the rates
of convergence are given. [36] gives assumptions under which Bayesian methods
lead to consistent posterior distributions, moreover the rates of convergence are
studied in [35]. In [12] the authors propose model selection based on penalized
least squares estimators for the emission distributions which is statistically op-
timal and practically tractable. They prove a non asymptotic oracle inequality
for the nonparametric estimator of the emission distributions Hg, g = 1, . . . , G.
This requires an inequality similar to Theorem 1 which is proven to hold under
a very weak assumption. A consequence is that this estimator is rate minimax
adaptive up to a logarithmic term. The results hold under the assumption that
the transition matrix Q is full rank and in the setting where the emission dis-
tributions have square integrable densities that are linearly independent. Simu-
lations are given that show the improvement obtained when applying the least
squares minimization consecutively to the spectral estimation. In [29], simula-
tions study the sensitivity of the method to the linear independence assumption.
It is shown that when the smallest eigenvalueof the Gram matrix of the scalar
products of the densities is very small, more observations are needed for a good
performance.

5 Related Questions

5.1 Clustering

Identification of the parameters of the mixture may be the first step for model-
based clustering, see the introductory section of Chapter 8. In [13], we consider
the filtering and smoothing recursions in nonparametric HMMs when the pa-
rameters of the model are unknown and replaced by estimators. We provide
an explicit and time uniform control of the filtering and smoothing errors in
total variation norm as a function of the parameter estimation errors, so that
performances on estimation may be transferred to performances in clustering
via a posteriori probabilities.

5.2 Order estimation

In a parametric context, the question of order estimation has been discussed in
Chapter 7. General principles for order identification as described in [17, Sec-
tion 4.1] remain valid, but are far more difficult to apply. In [27], the authors
develop a procedure to estimate consistently a lower bound on the number of
components in a multivariate finite mixture with conditionally independent co-
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ordinates. Recently, [29] provided two different methods to estimate consistently
the number of hidden states in a non parametric HMM, one using a tresholding
method on the singular values of the estimated distribution of two consecutive
variables, the other using model selection techniques such as developed in [12].
The theoretical results are completed by a very interesting simulation study to
compare the methods.

5.3 Semi-parametric estimation

As may be understood and proved for instance using spectral methods, the
weights ηg, g = 1, . . . , G, of the mixture may be estimated at a parametric

√
n

rate. Computing the efficient Fisher information allows to understand what
loss occurs due to the fact that the non parametric emission distributions are
unknown. In the case of finite mixtures of multidimensional distributions which
are tensor products of at least three one-dimensional distributions, using step
functions to approximate the densities, one obtains parametric models in which
the weights may be asymptotically efficiently estimated. Of course, the finer the
approximation, the better the asymptotic efficient variance of the estimator.
However, choosing the right degree of approximation with a finite number of
observations is a non trivial problem. Such questions are investigated in [18].

5.4 Regressions with random (observed or non observed)
design

One may consider situations where the model is a mixture of regression models
with unknown regression functions. The regressor variable may be random or
not random, observed or not observed.

Finite mixtures of regressions with observed design are discussed in Chapter
13, see also [26], [34], [25], [22].

When the regressor variable is random and observed with noise,one can re-
late the model to the so-called errors-in-variables model. But when a regression
model with random design is considered and the regressor variable is not ob-
served, then one faces a model which is a mixture of regressions. When the
design follows a continuous distribution, then the mixture is no longer finite,
and difficult identifiability problems occur. A recent situation where identifia-
bility can be solved may be found in [14].

6 Concluding remarks

We have presented in this chapter several mixture models where identifiability is
verified with non parametric modeling of the population distributions. In such
cases, one may use non parametric strategies such as model selection or non
parametric Bayesian methods, with provable guarantees. There is still a lot to
investigate both on the applied and theoretical sides. It is for instance fascinat-
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ing that mixture models for which identifiability was obviously not true became
identifiable when considering that the observations are dependent variables.
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