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We provide an in-depth analysis of the Bayes risk of clustering and the
Bayes risk of classification in the context of Hidden Markov and i.i.d. models.
In both settings, we identify the situations where the two risks are comparable
or not and those where the associated minimizers are related or not, as well
as the key quantity measuring the difficulty of both tasks. Then, leveraging
the nonparametric identifiability of HMMs, we control the excess risk of a
plug-in clustering procedure. Simulations illustrate our findings.

1. Introduction. Clustering is the problem of organizing a collection of objects into
groups, ensuring that elements within each group exhibit greater similarity to each other than
to those in other groups. Clustering plays a crucial role in various domains such as machine
learning, pattern recognition and image processing, helping to reveal the hidden structure
of data without requiring prior labels of the observations. In contrast, classification, while
closely related to clustering, seeks not only to group similar objects together but also to
assign class labels to them.

Mixture models are a common framework in which the two problems can be formally
defined. In these models, observations Y = (Y1, Y2, . . . ) are independent conditional on un-
observed random variables X= (X1,X2, . . . ) taking values in X= {1, . . . , J} that represent
the labels of the classes in which observations originated, with J being the total number of
classes. In this work, we consider the settings where the latent variables X are i.i.d. or form a
Markov Chain. Since the i.i.d. setting is a strict subcase of the Markovian case, without loss
of generality we consider the general model

Yi |X ind∼ FXi
i= 1,2, . . .

X∼Markov(ν,Q)
(1)

with parameter θ = (ν,Q, (Fx)x∈X) where ν is the initial distribution of the chain (in the
next identified with probability vectors on X), Q the transition matrix of the hidden chain
and (Fx)x∈X are the emission distributions (aka. populations). In particular, the case of i.i.d.
latent variables is obtained by restricting the parameters of the previous model to transition
matrices Q having identical lines equal to ν. The reason why we emphasize the i.i.d. subcase
in the paper is not only because of its wide use, but also because some interesting phenom-
ena emerge only in the absence of dependencies. More details on the model are given in
Section 2.2.

On one hand classification is the task of identifying the hidden variablesX1, . . . ,Xn based
on the observed variables Y1, . . . , Yn, usually given the knowledge of some of the labels
(supervised learning). The performance of a classifier h is naturally measured using the loss
that counts the number of misclassified observations, with the associated risk of classification
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denoted Rclass
n (θ,h) in the sequel. On the other hand, clustering is the task of recovering

the partition {A1, . . . ,Am} of {1, . . . , n} induced by the labels (aka. groups), namely i, j ∈
Ak ⇐⇒ Xi =Xj . In contrast with classification, clustering can be done in an unsupervised
setting. Measuring the loss incured by a clusterer g requires defining a notion of similiarity
between two partitions, which can be achieved in many ways. Here we make the choice of
using the misclassification error metric [31, 30] which is based on measuring the best overlap
achievable by matching the elements of the two partitions. A formal definition of the loss is
stated later in Section 2.3. We will denote the risk of clusterer g by Rclust

n (θ, g).
The Bayes risk of classification or clustering is defined as the smallest risk that a proce-

dure of classification or clustering can reach, that is infhRclass
n (θ,h) and infgRclust

n (θ, g).
The Bayes risk emerges as a crucial concept within the decision-theoretic framework. It es-
tablishes a benchmark for evaluating classification and clustering algorithms as it measures
the best performance that can be attained by an oracle having access to the parameter θ. The
minimizer of the risk of classification is called the Bayes classifier and the minimizer of the
risk of clustering is called the Bayes clusterer. While the Bayes classifier has a closed for-
mula and has been extensively studied (see [13] and references therein), the Bayes clusterer
is less explored, more difficult to compute and in general has no explicit formula. To the best
of our knowledge, the existence of a relationship between the two has never been studied.
Some natural questions arise in this context:

1. Is there any clear link between the Bayes classifier and the Bayes clusterer? If so, under
what condition?

2. When can the Bayes risk of clustering be comparable to the Bayes risk of classification?
3. What is the appropriate measure of separation quantifying the difficulty of the problems

of classification and clustering?
4. Is it possible for a clusterer agnostic of the true parameter to have vanishing excess risk

as the number of observation grows (ie. having clustering risk comparable to that of the
Bayes clusterer)?

In this work, we address these questions in the context of the model (1) with a focus on both
the i.i.d. and dependent subcases.

To answer Question 1, we note that a clusterer can be obtained from a classifier by forget-
ting the labels, ie. retaining only the partition induced by the groups. We show that surpris-
ingly, the clustering using the Bayes classifier equals that of the Bayes clusterer if and only if
observations are i.i.d. from a mixture of two components. In the remaining situations (more
than two components or dependent HMMs), there is always a set of parameters for which
the clusterer obtained from the Bayes classifier and the Bayes clusterer differ with non-zero
probability. See Theorems 1, 3, 5 and 7.

The Question 2 is of interest because, thanks to the closed formula of the Bayes risk of
classification, it can be easily analyzed and when the two risks are comparable, any bound on
the risk of classification can be extrapolated to the risk of clustering. We show that the Bayes
risk of clustering is comparable to the Bayes risk of classification in two situations: when
there are two clusters or when the risk of classification does not decrease exponentially in n.
These results are proved for i.i.d. and HMM observations. See Corollary 1 and Theorem 4
for the i.i.d. model, Theorem 6 and Theorem 8 for the HMM model.

Thanks to the relationship between the risks studied in Question 2, we are able to con-
duct a precise analysis of the Bayes risk of clustering relying on the simpler Bayes risk of
classification and answer Question 3. Understanding the dependence of the Bayes risks with
respect to the model parameters (mainly the population densities) is important because this
will clearly identify the appropriate notion of separation measuring the difficulty of each
problem. From a practical point of view, guaranteeing that the Bayes risk is of a certain mag-
nitude will therefore translate into a simple condition on the separation between densities,
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which is easily interpretable. In Theorem 9 and Corollary 4, we identify the key quantity
driving the difficulty of clustering and classification which turns out to be

Λ :=

∫

Y

min
x0∈X





∑

x 6=x0

fx(y)



dL(y)

in both HMMs and i.i.d. models. Here, (fx)x∈X are the population densities of the distribu-
tions (Fx)x∈X with respect to a dominating measure L over the observation space Y, that is
dFx = fxdL. Notice that when J = 2, Λ= 1−‖F1−F2‖TV, where ‖F1−F2‖TV is the total
variation distance between the two distributions, unsurprisingly showing that the difficulty of
the clustering tasks is governed by the difficulty of the hypothesis testing between F0 and F1.

Finally, we turn our attention to Question 4. We focus on the situation where the emission
densities (fx)x∈X are modeled non-parametrically. In many contexts, the nonparametric set-
ting seems to be more realistic because, due to the complex nature of real-world data, popula-
tions may not always be modeled using parametric mixtures [10, 25] and sometimes, strong
assumptions on the distributions should be relaxed. Unfortunately, mixture models suffer
from non-identifiability in general non-parametric settings, leading sometimes to the failure
of common clustering procedures that do not leverage the distribution of the data (k-means
and its variants, hierarchical clustering, etc.). To address the issue of non-identifiability, var-
ious assumptions are often made about the mixture components. For instance, some ap-
proaches rely on assumptions about the dependence between observations [17, 15], sym-
metry of the mixture components [22], or separation between components [7]. A significant
breakthrough in non-parametric mixtures has been achieved through the use of the Hidden
Markov Model (HMM), which assumes a simple Markovian dependence between the hidden
labels. Recent research has demonstrated the identifiability of non-parametric HMMs [16, 4].
Given that the transition matrix of the hidden Markov chain is non-singular and ergodic, all
parameters – including the number J of hidden states and the emission distributions – can
be identified from the distribution of K consecutive observations (Y1, . . . , YK), provided
that the emission distributions are distinct and K is sufficiently large compared to J [4].
This allows complete flexibility on the emission distributions, provided a Markovian depen-
dence of labels. Within the framework of this model, non-parametric estimation of the mix-
ture components becomes possible without any restrictions on the population densities, apart
from the fact that they are distinct, and various estimation procedures have been proposed
[9, 12, 26, 27, 1, 2]. These estimates can then be used to develop clustering procedures. For
example, the clustering procedure most commonly used in HMM involves two steps. First,
the parameters of the HMM (initial distribution, transition matrix of the hidden Markov chain
and population densities - usually called emission densities) are estimated, then, using these
estimates, the celebrated forward-backward algorithm (cf. [8]) is run to compute the plug-
in estimator of the a posteriori distribution of the hidden states given the observations. The
clustering is then performed by soft assignment. See [24, 35, 18]. While widely used, this
procedure does not have any theoretical justification. In fact, assuming the estimation of the
parameters is perfect, this clustering would match the clustering using the Bayes classifier
instead of the Bayes clusterer, which is not justified unless the Bayes clusterer can be derived
from the Bayes classifier or at least, the corresponding clustering excess risk is small. This
is why it is important to provide theoretical guarantees on the performance of this clustering
procedure. In Theorem 10, we show that the excess risk of this plug-in procedure decays at
the nonparametric estimation rate for a suitable estimator of the parameter, providing thus
a theoretical justification for its use. Finally, numerical simulations demonstrate that HMM
modeling can successfully cluster data where other standard methods fail to recover the hid-
den structure.
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The assumptions of the model and the definitions of the various risks we shall use in this
work are described in Section 2. We state our main results in Section 3, the proofs of which
are detailed in Section 6. Section 4 is devoted to simulation experiments, and Section 5 to
possible further work.

2. Setting and definitions.

2.1. Notations. We note for i≤ j Xi:j := (Xi, . . . ,Xj) and Yi:j := (Yi, . . . , Yj). We de-
note [n] := {1, . . . , n} and P[n] is the set of partitions of [n]. The set of permutations of
[J ] will be denoted by SJ , and for any τ ∈ SJ , we consider θτ , the model parameter when
labels are permuted with τ , that is θτ =

(

ντ ,Qτ , (fτ(x))x∈X
)

where ντ = (ντ(x))x∈X and
Qτ = (Qτ(x),τ(x′))x,x′∈X. For h a measurable function, ‖h‖∞ denotes the essential supre-
mum of h, possibly infinite. Frobenius norm is denoted by ‖.‖F and ‖.‖ stands for the oper-
ator norm. Given two sequences of positive numbers (an)n and (bn)n, an & bn means that
there exists an absolute constant c > 0 and n0 ∈ N such that (∀n≥ n0) an ≥ cbn. In the
HMM modeling, for any parameter θ and any τ ∈ SJ , the distribution of the observations un-
der Pθ is the same as under Pθτ . In other words, this distribution is invariant up to permutation
of the labels given by the hidden states. This is known as the label-switching issue.

2.2. The model. We consider a Hidden Markov Model with J hidden states taking value
in a set of labels X = {1, .., J}, and observations in a Polish space endowed with its Borel
σ-field (Y,Y). We denote X = (X1,X2, . . . ) and Y = (Y1, Y2, . . . ) respectively the sequence
of hidden states forming the Markov chain and the observations. We assume that the emis-
sion distributions have densities fx, x= 1, . . . J , with respect to a dominating measure L on
(Y,Y). The HMM assumption boils down to:

X ∼Markov(ν,Q)

Pθ(Yi ∈ · |X) = fXi
(·)dL

where ν is the initial distribution of the chain and Q the transition matrix of the hidden
chain. Throughout the paper, it is assumed that only the beginning Y1:n of the sequence Y

is observed, and nothing else. We set θ =
(

ν,Q, (fx)x∈X
)

the parameter of the model and Θ
denotes the space of all valid parameters. The following assumption is made:

• Independent case. In this case we assume that all the lines of Q are identical and equal to
the vector ν of weights forming its stationary distribution. This corresponds to the usual
mixture model with independent latent variables. The set of these parameters will be de-
noted Θind.

• Dependent case. In this case we assume the lines of the transition matrix Q not all equal,
so that the (Xi)i≥1 are not independent. The set of these parameters will be denoted Θdep.

Throughout this work, we shall consider the transition matrix being fixed, and we will be
interested in how the separation of populations, understood as some quantity depending on
the populations densities, drives the difficulty of the clustering task. We show that, under the
HMM modelling, it is possible to cluster general populations without assuming they belong
to some prescribed parametric family. While our primary interest is in the dependent case
in which the emission densities can be identified without any further constraint, we obtain,
however, results that have interest also in the widely used independent case, in particular the
analysis of the Bayes risk and its minimizers. (see Section 3).

One main difference between the HMM and the i.i.d. situation in the analysis of the Bayes
risk of classification is that in the HMM modeling, the probability of a label Xi given the
observations Y1, . . . , Yn depends on all the observations, whereas in the i.i.d. case it depends
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only on the associated observation Yi. The vector of probabilities of theXi’s given Y1, . . . , Yn
are called the smoothing distributions, they depend on i, n and the observations. The vectors
of probabilities of the Xi’s given the observations up to time i, Y1, . . . , Yi, are called the
filtering distributions, they depend on i, n and the involved observations. Recursive formulas
verified by the filtering and smoothing distributions make the computations tractable under
the HMM modelling. See Section 3 of [8] for details.

2.3. The problem of clustering. For any n≥ 1, the finite sequence X1:n = (X1, . . . ,Xn)
induces a random partition Πn = {C1,C2, . . .} of [n] whose blocks – the so-called clusters

– are the equivalence classes for the random equivalence relation i∼ j ⇐⇒ Xi =Xj . The
goal of clustering is to uncover this partition Πn on the sole basis of the observation Y1:n =
(Y1, . . . , Yn). We define a clusterer:

DEFINITION 1 (Clusterer). A n-clusterer is a measurable map g :Yn →P[n]. We denote
by Gn the set of all n-clusterers.

We measure the loss incurred by guessing g(Y1:n) in place of Πn via the misclassification
error distance [31, 30]. For two partitions A and B of [n], this loss is defined by:

(2) ℓ (A,B) = 1− 1

n
sup

M⊆E(A,B)
M is a matching

∑

{C,C′}∈M
Card(C ∩C ′)

where the supremum is taken over the set of matchings. To define a matching, we build the
complete bipartite graph (A,B,E(A,B)) on vertices A and B with edge set E(A,B) :=
{{C,C ′} : C ∈ A, C ′ ∈ B}. Then we recall that a matching M is a set M ⊆ E(A,B) of
edges without common vertices (i.e. each block of A and B appears in at most one edge of
the matching). An example of a matching is depicted in Figure 1. Then the risk of a clusterer
g can be defined as the expected loss of the partition g(Y1:n) with respect to the true partition
Πn which is summarized in the risk function Rclust

n : Θ×Gn → [0,1]

(3) Rclust
n (θ, g) := Eθ

[

ℓ (g(Y1:n),Πn)

]

.

A closely related notion is that of a classifier:

DEFINITION 2 (Classifier). A n-classifier is a measurable map h :Yn →X
n. We denote

by Hn the set of all n-classifiers.

One may find our Definition 2 different from standard textbook definitions [13]: we explain
the reason of this choice later in Remark 1. A classifier differs from a clusterer in that it not
only seeks for the hidden partition, but also for the labels of the observations. Hence, the
usage of a classifier only makes sense in a supervised framework where access to some
labeled data is allowed in some way. In an unsupervised framework such as our model, Y
does not contain any information about the labels and recovering them better than a lucky
guess is impossible. It is however true that, to any n-classifier h ∈Hn corresponds a unique
n-clusterer g ∈ Gn which can be built via the map πn :Xn →P[n] such that

g(Y1:n) = πn ◦ h(Y1:n) = {{i : hi(Y1:n) = x} : x ∈X}\{∅}
and any clusterer can be represented that way by choosing a specific labelling of the clusters.
For this reason, the notions of clusterer and classifier are very much often amalgamated in
the literature. We argue that it would be better to define them separately in order to avoid
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C1

C2

C3

C4

C5

C′
1

C′
2

C′
3

C′
4

C′
5

Πn g(Y1:n)

Figure 1: Example of a matching. Nodes on the left represent the clusters induced by the
partition of Πn; those on the right are the clusters of g(Y1:n). Edges form a matching between
the two partitions.

confusions between the risk of clustering Rclust
n (θ,πn ◦ h) and the risk of classification

Rclass
n : Θ×Hn → [0,1] (relative to the loss counting number of misclassified observations)

(4) Rclass
n (θ,h) := Eθ

[

1

n

n
∑

i=1

1hi(Y1:n) 6=Xi

]

.

Here again we insist that the definition of Rclass
n in Equation (4) – although mathematically

correct – has no statistical interest in an unsupervised model where the classifier h is not
allowed to see some of the labels. An easy exercise (see Lemma 14 in Section 6.13) shows
that the risk of clustering of πn ◦ h can be rewritten as

(5) Rclust
n (θ,πn ◦ h) = Eθ

[

min
τ∈SJ

1

n

n
∑

i=1

1hi(Y1:n) 6=τ(Xi)

]

and differs from (4). Note that it does not depend on the classifier h chosen to represent
the clusterer thanks to the infimum over the permutations of the labels. Note also that the
infimum inside the expectation reflects the ease of the clustering problem compared to the
classification problem, because unlike classification, clustering does not seek to identify the
true labels themselves.

It is customary to compare the performance of a given classifier h to the best performance
attainable by an oracle classifier, namely the Bayes risk of classification:

inf
h∈Hn

Rclass
n (θ,h).

In particular, it is well-known that the previous optimization problem is solved by the (albeit
non necessarily unique) so-called Bayes classifier h⋆θ = (h⋆θ,1, . . . , h

⋆
θ,n) such that

Pθ(Xi = h⋆θ,i(Y1:n) | Y1:n) =max
x∈X

Pθ(Xi = x | Y1:n), i= 1, . . . , n.

In an unsupervised learning context, it makes sense to compare the risk of a clusterer to the
Bayes risk of clustering:

inf
g∈Gn

Rclust
n (θ, g).
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As for the classification risk, the solution to the previous optimization problem exists and is
obtained by the Bayes clusterer g⋆θ such that g⋆θ(Y1:n) is the partition that minimizes

(6) g 7→ Eθ

[

1− 1

n
sup

M⊆E(g(Y1:n),Πn)
M is a matching

∑

{C,C′}∈M
Card(C ∩C ′)

∣

∣

∣

∣

Y1:n

]

.

In contrast with classification, however, the Bayes clusterer has usually no simple expres-
sion. It is to be noted that there is no reason that g⋆θ = πn ◦ h⋆θ . An analysis will be
conducted to determine when the equality g⋆θ = πn ◦ h⋆θ holds. Although the inequality
infg∈Gn

Rclust
n (θ, g)≤ infh∈Hn

Rclass
n (θ,h) is true and easily proved from (5), it is not guar-

anteed that infg∈Gn
Rclust
n (θ, g) and infh∈Hn

Rclass
n (θ,h) are equivalent (ie. have comparable

magnitude). In Sections 3.1 and 3.2 we show that the equivalence holds both in the inde-
pendent and in the dependent scenarios as long as the Bayes risk of classification is not
exponentially small in n or when there are only two clusters. Though we prove the two risks
to be equivalent in some specific contexts, we provide a counter-example showing that this is
not always true.

REMARK 1. It is common [13] to define a classifier as a function h : Y → X (as op-
posed to Y

n → X
n in our Definition 2). This usual definition is motivated by the fact that in

the independent scenario the law of Xi | Y1:n is that of X1 | Y1. Hence if one is willing to
classify the vector Y1:n, the Bayes classifier rewrites as h⋆θ = (h⋆θ,1(Y1), . . . , h

⋆
θ,1(Yn)) with

hθ,1(y) maximizing x 7→ Pθ(X1 = x | Y1 = y) and the Bayes risk of classification equals
Pθ(h

⋆
θ,1(Y1) 6=X1). Thus classifying Y1 or Y1:n is not very different. In the dependent case,

however, the situation differs since X | Y is a inhomogeneous Markov chain. This implies
in particular that classifying Y1 or Y1:n are different problems when n≥ 2, and the optimal
solution for classifying Y1:n can not be obtained from the optimal solution of classifying Y1.

REMARK 2. In [29], the authors define the risk of clustering of a n-classifier h in a
different way:

RMRSS
n (θ,h) := Eθ

[

inf
τ∈SJ

Eθ

[

1

n

n
∑

i=1

1τ(Xi) 6=hi(Y1:n)

∣

∣

∣

∣

Y1:n

]]

Similarly, in [28], the risk of clustering is defined by:

R̃clust
n (θ,h) := inf

τ∈SJ

Eθ

[

1

n

n
∑

i=1

1τ(Xi) 6=hi(Y1:n)

]

Their definition is mathematically convenient as one can easily show that (see Lemma 3):

inf
h∈Hn

RMRSS
n (θ,h) = inf

h∈Hn

R̃clust
n (θ,h) = inf

h∈Hn

Rclass
n (θ,h)

Hence, the Bayes clusterer relative to their risks is g⋆θ = πn ◦ h⋆θ with h⋆θ the Bayes classifier
relative to the risk Rclass

n (θ, .). However, contrary to our definition, it seems that there is no
suitable statistical interpretation of these risks of clustering.

3. Main results. The Bayes risk of classification offers an advantage due to its closed
formula, stemming from the explicit identification of the Bayes classifier. In contrast, the
Bayes risk of clustering lacks this straightforward formulation. However, thanks to Equation
(5), the risk of a clustering procedure can be seen as the risk of classification of the asso-
ciated classifier up to the best random permutation (the one minimizing the sum inside the
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expectation in Equation (5)). This is why a common idea is that risk of clustering and risk
of classification are closely related. Following this intuition, authors of [38, 14] propose an
inequality linking the minimax (over a specific class) risk of clustering to the minimax risk of
classification, in the context of community detection under the stochastic block model. Their
inequality is applied in [33] in the context of the mixture of two Gaussian distributions and
in [28] for general subGaussian mixtures. Although their argument is neat, it relies heavily
on two key ingredients: (i) in their model the latent partition is deterministic and viewed as
a parameter, and (ii) their point of view is minimax and thus, it is enough to consider some
well-chosen parameters in order to lower bound the minimax risk. Thus their argument is not
transposable to the situation where one is interested in bounding the Bayes risk of clustering
at every possible value of the parameter with random labels.

3.1. I.I.D. case. The following theorem shows that in the i.i.d. setting and when there
are only two classes (J = 2), the clustering resulting from the Bayes classifier coincides with
that of the Bayes clusterer, almost-everywhere.

THEOREM 1. In the case of independent labels, if J = 2, then for all θ ∈ Θind and all

n≥ 2

g⋆θ(Y1:n) = πn ◦ h⋆θ(Y1:n) Pθ-a.s.

The proof of Theorem 1 can be found in Section 6.1. Thanks to this result, the difference
between the two risks of clustering and classification can be bounded almost tightly, as shown
in the next theorem. Let εn,θ =

1
2 − infh∈Hn

Rclass
n (θ,h).

THEOREM 2. When J = 2 and θ ∈ Θind, infh∈Hn
Rclass
n (θ,h) = 0 if and only if

infg∈Gn
Rclust
n (θ, g) = 0. If infh∈Hn

Rclass
n (θ,h) 6= 0 then the difference between the Bayes

risks satisfies

inf
h∈Hn

Rclass
n (θ,h)− inf

g∈Gn

Rclust
n (θ, g)≤min

(

(1− 4ε2n,θ)
n

2

n
2 log

(

1+2εn,θ

1−2εn,θ

) ,

√

π

2n

)

.

Furthermore, there exists a universal constant B > 0 such that for all n ≥ 100 and all θ ∈
Θind

inf
h∈Hn

Rclass
n (θ,h)− inf

g∈Gn

Rclust
n (θ, g)≥Bmin

(

(1− 4ε2n,θ)
n

2

(

1+ 6.8

1∨√
nεn,θ

)

n
2 log

(

1+2εn,θ

1−2εn,θ

) ,
1√
n

)

.

The proof of Theorem 2 is given in Section 6.2. As emphasized by the lower bound,
the upper bound on the difference between the two Bayes risks in the previous theorem
is essentially tight. The lower bound also shows that the Bayes risk of clustering is always
strictly smaller than the Bayes risk of classification, unless they are both zero (which happens
when the two emission densities have disjoint support). Also, the difference between the
risks decays super-polynomially in n as soon as εn,θ ≫

√

log(n)/n, and polynomially if
εn,θ =O(

√

log(n)/n) with worst-case rate ≍ n−1/2 when εn,θ =O(n−1/2).
A direct consequence of this result is that the Bayes risk of classification is equivalent to

the Bayes risk of clustering for n large enough as shown in the following corollary.
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COROLLARY 1. In the case of independent labels with J = 2, for all θ ∈ Θind and all

n≥ 2

(1− αn) inf
h∈Hn

Rclass
n (θ,h)≤ inf

g∈Gn

Rclust
n (θ, g)≤ inf

h∈Hn

Rclass
n (θ,h)

where αn = 2min
(

2(1 + εn,θ)
(1−4ε2n,θ)

n−2
2

n log

(

1+2εn,θ

1−2εn,θ

) , 1
1−2εn,θ

√

π
2n

)

.

The following proposition shows that, contrary to Corollary 1, the two Bayes risks are not
equivalent in general.

PROPOSITION 1. Whenever J > 2 and n≥ 1 :

inf
θ∈Θind

infg∈Gn
Rclust
n (θ, g)

infh∈Hn
Rclass
n (θ,h)

= 0.

The proof of Proposition 1 is given in Section 6.9. It sheds light on why the previously
established equivalence when there were only two classes no longer holds when the number
of classes exceeds two. The proof is based on the following intuition. The observations which
are misclustered or misclassified appear only in regions of overlap between the emission den-
sities (cf. Theorem 9 and Corollary 4). Consider now the situation where n observations are
derived from a mixture of J = 3 densities F1, F2 and F3 with weights ν1 = 1− 2η, ν2 = η
and ν3 = η. Assume that the support of F1 is disjoint from that of F2 and F3 and that F2 and
F3 have overlapping supports over a small region of the space. When the weight η is small,
two situations are possible: eventually only one observation belongs to the support of F2 or
F3, in which case the clustering error is null, or more observations appear in this region of
the space which happens with very small probability because η is small. Combining these
two insights, the magnitude of the risk of clustering is shown to be negligible with respect to
the risk of classification. The use of compactly supported distributions is not essential to the
previous argument. For instance, the argument still holds modulo supplementary technicali-
ties if one takes F1 =N (−αx,1), F2 =N (−α,1) and F3 =N (α,1) with α > 0 and x > 0
large enough.

This dichotomy between J = 2 and J > 2 concerns also the minimizers of the risks. Con-
trary to Theorem 1 (when J = 2), in the i.i.d. setting with J > 2, one can always find some
model parameters for which the result of clustering using the Bayes classifier differs from
that of the Bayes clusterer with positive probability, as shown in the next theorem.

THEOREM 3. If J > 2, then for all θ ∈Θind, if

Pθ





J
⋃

j=1







0<max
l 6=j

νlfl(Y )< νjfj(Y )≤
∑

l 6=j
νlfl(Y )









> 0

then,

∀n≥ 2, Pθ (g
⋆
θ(Y1:n) 6= πn ◦ h⋆θ(Y1:n))> 0.

The condition above can be ensured easily for many distributions (fj)j∈X such as multi-
nomials, mixtures of Gaussians, etc. For example, it is valid when J = 3, (ν1, ν2, ν3) =
(0.4,0.4,0.2), and the emission densities are Gaussians with variance σ2 = 1 and means
(µ1, µ2, µ3) = (1,2,3). The proof of this theorem is given in Section 6.3.

Even though the Bayes risks of clustering and classification are not equivalent uniformly
over Θind by Proposition 1, we show in the next theorem that when J > 2, they become
equivalent when infg∈Gn

Rclust
n (θ, g)& J2e−nβ/8 where β =minj 6=k(νj + νk).
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THEOREM 4. For all θ ∈Θind and all n≥ 1 the following bounds hold

inf
g∈Gn

Rclust
n (θ, g)≥ inf

h∈Hn

Rclass
n (θ,h)−

√

log(J !)

2n
,

inf
g∈Gn

Rclust
n (θ, g)≥ (1− ξn) inf

h∈Hn

Rclass
n (θ,h)− J2e−nβ/8,

where β =minj 6=k(νj + νk) and ξn =
4e
β [
√

log(J !)/(2n)]1−4/(nβ).

The proof of Theorem 4 is given in Section 6.5. Even if the second lower bound obtained
does not establish an equivalence between the Bayes risks of clustering and classification, it
remains useful for analyzing phase transitions. Specifically, under a mild assumption on β,
this bound results in similar phase transitions for both risks.

Even if clustering using the Bayes classifier differs sometimes from that of the Bayes
clusterer (as shown in Theorem 3), Theorem 4 provides guarantees for the risk of clustering
using the Bayes classifier as shown by the following corollary.

COROLLARY 2. For all θ ∈Θind and all n≥ 1 the following bounds hold

inf
g∈Gn

Rclust
n (θ, g)≤Rclust

n (θ,πn ◦ h⋆θ)≤
1

1− ξn

(

inf
g∈Gn

Rclust
n (θ, g) + J2e−nβ/8

)

with ξn and β as defined in Theorem 4. When there are only two classes

inf
g∈Gn

Rclust
n (θ, g)≤Rclust

n (θ,πn ◦ h⋆θ)≤
1

1− αn
inf
g∈Gn

Rclust
n (θ, g)

where αn is defined in Corollary 1.

3.2. HMM case. The behavior of the Bayes risks under the HMM modeling exhibits
similarities and differences with the i.i.d. case. As we will see, the Bayes risks keep having
the same behavior under the HMM setting, while their minimizers, on the other hand, can
be different. First, contrary to the i.i.d. case where the result of clustering using the Bayes
classifier matches that of the Bayes clusterer, it is always possible to find a set of parameters
for which they differ under the HMM setting, as shown in the next theorem.

THEOREM 5. In the case of dependent labels and when J = 2, there exists a subset

Θ̃⊂Θdep such that
(

∀θ ∈ Θ̃
)

(∀n≥ 2) , Pθ (g
⋆
θ(Y1:n) 6= πn ◦ h⋆θ(Y1:n))> 0.

We illustrate this in the simple situation of n= 2. Assume one observes two consecutive
observations Y1 and Y2 of a HMM with transition matrix

Q=

(

1− p p
q 1− q

)

and emission densities f1 and f2. Denoting for simplicity p̄= 1− p and q̄ = 1− q, one can
easily check that the Bayes clusterer puts the two observations in the same cluster when

(7) qp̄f1(Y1)f1(Y2) + pq̄f2(Y1)f2(Y2)≥ pq (f2(Y1)f1(Y2) + f1(Y1)f2(Y2))

On the other hand, the Bayes classifier puts the two observations in the same class when

(Pθ (X1 = 2 | Y1:2)− Pθ (X1 = 1 | Y1:2)) (Pθ (X2 = 2 | Y1:2)− Pθ (X2 = 1 | Y1:2))≥ 0,
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or equivalently,

(8) (pqf2(Y1)f1(Y2) + pq̄f2(Y1)f2(Y2)− qp̄f1(Y1)f1(Y2)− qpf1(Y1)f2(Y2))

× (qpf1(Y1)f2(Y2) + pq̄f2(Y1)f2(Y2)− qp̄f1(Y1)f1(Y2)− pqf2(Y1)f1(Y2))≥ 0.

The two conditions (7) and (8) are not equivalent. In the simple situation of Bernoulli emis-
sions (f1, f2) = (B(α1),B(α2)), and Y1:2 = (1,1), the Bayes clustering puts the two obser-
vations in the same cluster when

qp̄α2
1 + pq̄α2

2 > 2pqα1α2

while the Bayes classifier puts them always in the same cluster since the corresponding con-
dition becomes

(

pq̄α2
2 − qp̄α2

1

)2 ≥ 0.

Note that the first condition is not always ensured when p and q are chosen near 1. Note also
that in the situation where p+ q = 1, the dependence structure is lost and the two conditions
become equivalent to

(qf1(Y1)− pf2(Y1))(qf1(Y2)− pf2(Y2))≥ 0

which is coherent with Theorem 1 in the i.i.d. case. This highlights the strong difference
between the dependent and independent setting. The proof of Theorem 5 can be found in
Section 6.7.

We now establish the equivalence between the two risks under the Markovian dependence
of the labels. We consider the following assumption.

ASSUMPTION 1. δ =minx,x′ Qx,x′ > 0 and minx νx ≥ δ.

The positive lower bound δ introduced in Assumption 1 makes the hidden Markov chain
irreducible. It will be used in proving deviation inequalities or when forgetting properties
of the chain are needed. Even if the minimizers of the risk of classification and the risk of
clustering might differ, we are still able to prove the equivalence between the two risks. The
following theorem shows this is the case for n large enough.

THEOREM 6. If J = 2, then for all θ ∈Θdep such that Assumption 1 holds and all n≥ 1

(1− α̃n) inf
h∈Hn

Rclass
n (θ,h)≤ inf

g∈Gn

Rclust
n (θ, g)≤ inf

h∈Hn

Rclass
n (θ,h),

where α̃n = 2e
(

1−δ
δ

)4
[
√

log(2)/(2n)]1−2/n.

Thanks to Theorem 6, it suffices to study the Bayes risk of classification, since any bound
on this risk can be extrapolated to the risk of clustering, regardless of the magnitude of the
Bayes risk of clustering.

Let us now consider the case J > 2. As in the i.i.d. setting where the minimizers of the
risks do not always coincide, it is always possible to find a set of parameters for which the
HMM observations are dependent, but the results of clustering using the Bayes clusterer and
the partition induced by the Bayes classifier are not the same, as shown in the next theorem.
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THEOREM 7. In the case of dependent labels, for all J > 2 and all n≥ 2, there exists a

subset Θ̃n,J ⊂Θdep such that

∀θ ∈ Θ̃n,J , Pθ (g
⋆
θ(Y1:n) 6= πn ◦ h⋆θ(Y1:n))> 0.

The proof of Theorem 7 can be found in Section 6.8.
Finally, we establish a result similar to Theorem 4 under the HMM setting.

THEOREM 8. For all θ ∈Θdep such that Assumption 1 holds and all n≥ 1, the following

bounds are true

inf
g∈Gn

Rclust
n (θ, g)≥ inf

h∈Hn

Rclass
n (θ,h)− 1

1− ρ0

√

log(J !)

2n
,

inf
g∈Gn

Rclust
n (θ, g)≥ (1− ξ̃n) inf

h∈Hn

Rclass
n (θ,h)− (J2 + 1)e−2n(1−ρ0)2β2/25,

where β =mini,j 6=k Pθ (Xi ∈ {j, k}), ρ0 = 1−Jδ
1−(J−1)δ , and ξ̃n =

5
β(1−ρ0)

√

log(J !)/(2n).

The proof of Theorems 6 and 8 is given in Section 6.6. Note that when the HMM is station-
ary, β =minj 6=k(νj+νk) as in the i.i.d. case. Notice also that when δ = 1/J , the observations
are i.i.d. with uniform distribution over the set X, and we recover the first inequality for i.i.d.
observations. However, we do not recover the inequality for i.i.d. observations in general
from that of HMM observations.

As for the i.i.d setting, even if clustering using the Bayes classifier differs sometimes from
that of the Bayes clusterer (as shown in Theorem 5 and Theorem 7), Theorem 8 provides
guarantees for the risk of clustering using the Bayes classifier as shown by the following
corollary.

COROLLARY 3. For all θ ∈Θdep and all n≥ 1 the following bounds hold

inf
g∈Gn

Rclust
n (θ, g)≤Rclust

n (θ,πn ◦ h⋆θ)≤
1

1− ξ̃n

(

inf
g∈Gn

Rclust
n (θ, g) + (J2 + 1)e−2n(1−ρ0)2β2/25

)

where ξ̃n, β and ρ0 are as in Theorem 8. When there are only two classes

inf
g∈Gn

Rclust
n (θ, g)≤Rclust

n (θ,πn ◦ h⋆θ)≤
1

1− α̃n
inf
g∈Gn

Rclust
n (θ, g)

where α̃n is as in Theorem 6.

3.3. A key quantity for the Bayes risk of clustering for both I.I.D. and HMM. We now
state our main result which proves upper and lower bounds on the Bayes risks in function of a
quantity measuring the separation between the emission densities up to constants depending
on the transition matrix. These bounds translate into bounds on the risk of clustering thanks

to the result above. Let Λ :=
∫

Y
minx0∈X

[

∑

x 6=x0
fx(y)

]

dL(y).

THEOREM 9. Under Assumption 1, for all n ≥ 1, the Bayes risk of classification satis-

fies:

∀θ ∈Θind, δΛ≤ inf
h∈Hn

Rclass
n (θ,h)≤ (1− (J − 1)δ)Λ

∀θ ∈Θdep,
δ2

1− (J − 1)δ
Λ≤ inf

h∈Hn

Rclass
n (θ,h)≤ (1− (J − 1)δ)Λ
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The proof of Theorem 9 is given in Section 6.10. Note that the bounds vanish when all
the emission densities have disjoint supports. Note also that upper and lower bounds match
when δ = 1

J and the risk corresponds to Λ/J in this case. This situation corresponds to i.i.d.
observations derived from a mixture with J components of equal weights. This proves in par-
ticular the tightless of the bounds which can not be improved by any absolute multiplicative
constant without restricting the parameter space. Thanks to the results comparing the Bayes
risks, Λ is the appropriate measure of the difficulty of clustering in many regimes as shown in
the following corollary. Recall the definition of αn from Corollary 1, of ξn from Theorem 4
of α̃n from Theorem 6, of ξ̃n from Theorem 8, and of β =mini∈[n],j 6=k∈X Pθ (Xi ∈ {j, k}).

COROLLARY 4. Under Assumption 1, the following holds.

• When J = 2:

∀θ ∈Θind, (1− αn)δΛ≤ inf
g∈Gn

Rclust
n (θ, g)≤ (1− δ)Λ,

∀θ ∈Θdep,
δ2(1− α̃n)

1− δ
Λ≤ inf

g∈Gn

Rclust
n (θ, g)≤ (1− δ)Λ.

• When J > 2 and θ = (ν,Q, (fx)x∈X) ∈Θind is such that δΛ≥ 4J2e−nβ/8 and n is suffi-

ciently large to have ξn ≤ 1
2 :

δ

4
Λ≤ inf

g∈Gn

Rclust
n (θ, g)≤ (1− (J − 1)δ)Λ.

• When J > 2 and θ = (ν,Q, (fx)x∈X) ∈ Θdep is such that δ2Λ ≥ 4(1 − (J − 1)δ)(J2 +

1)e−2n(1−ρ0)2β2/15 and n is sufficiently large to have ξ̃n ≤ 1
2 :

δ2

4(1− δ)
Λ≤ inf

g∈Gn

Rclust
n (θ, g)≤ (1− (J − 1)δ)Λ.

In other words, when there are only two classes, we obtain a tight characterization of the
Bayes risk of clustering in terms of the separation between the two emission densities (i)
covering all the regimes (ii) valid in the parametric and non-parametric setting (iii) without
imposing any separation between the emission densities. In both i.i.d. and HMM settings,
when there are only two classes, there exists a positive constant α(δ) depending only on δ
such that

α(δ)

∫

Y

[f1 ∧ f2](y)dL(y)≤ inf
g∈Gn

Rclust
n (θ, g)≤ (1− δ)

∫

Y

[f1 ∧ f2](y)dL(y).

For example, in the case of Gaussian emission distributions with two hidden states, this trans-
lates in a clear identification of the signal-to-noise ratio which drives the Bayes risk of clus-
tering. For two Gaussian emission densities with means µ0 and µ1 and the same covariance
matrix Σ, the Bayes risk of clustering ensures:

α(δ)

2
exp

(

−SNR
4

)

≤ inf
g∈Gn

Rclust
n (θ, g)≤ (1− δ) exp

(

−SNR
8

)

where SNR = (µ0 − µ1)
⊺Σ−1(µ0 − µ1).

3.4. Reaching the Bayes risk.
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3.4.1. I.I.D. setting. While there is no formal proof of this fact, it seems that there is no
way of reaching the Bayes risk of clustering or classification without strong assumptions on
the mixture components under the non-parametric i.i.d. mixture model. Without structural
assumptions, the associated Bayes classifier can never be learnt nor approximated from the
data in the i.i.d. case because the model is not identifiable and thus, the mixture components
can not be estimated. The algorithms proposed in the literature perform well in clustering
i.i.d. observations only when the clusters are assumed to be separated. This is the case for the
k-means and its variants [20, 32] and the spectral algorithms [37, 23] to cite a few. We refer
to [21] and Chapter 12 of [19] for a review of model-based clustering techniques.

3.4.2. HMM setting. Unlike the i.i.d. hypothesis, the HMM hypothesis allows us to iden-
tify the model without any assumptions about the emission distributions, apart from the fact
that they are distinct [5]. This allows the construction of simple clustering procedures with
risk comparable to the Bayes risk of clustering. The widely used method of clustering when
the observations are drawn from a HMM consists in approaching the behavior of the Bayes
classifier h⋆θ by plugging-in estimated parameters θ̂ and using the induced clusterer πn ◦ h⋆θ̂ .
Even though we have shown in Theorems 5 and 7 that the Bayes clusterer g⋆θ does not neces-
sarily coincide with πn ◦h⋆θ , the Corollary 3 justifies that it is not worth the effort of comput-
ing g⋆θ and use the plugging-in g⋆

θ̂
: the price to pay in the excess risk for trading the true θ by

estimate θ̂ is most likely of several order of magnitude larger than the price to pay in using
πn ◦ h⋆θ in place of g⋆θ . Thus in this section, we focus on the clustering rule

g⋆
θ̂
(Y1:n) := πn ◦ h⋆θ̂(Y1:n) = πn

(

(

argmax
x∈X

Pθ̂ (Xi = x | Y1:n)
)

1≤i≤n

)

where θ̂ = θ̂(Y1:n) is an estimator constructed using the celebrated tensor method [6, 1].
The main advantage in using πn ◦ h⋆

θ̂
is that in contrast with g⋆

θ̂
the classifier h⋆

θ̂
is easily

computed thanks to the recurrence formulas ensured by the Forward-Backward algorithm
[8]. Theorem 10 below controls the excess risk of this clustering procedure. We will make
the following assumption:

ASSUMPTION 2. The initial distribution ν is the stationary distribution of X.

Notice however that under Assumption 2, the second part of Assumption 1 follows directly
from the first part.

ASSUMPTION 3. Q is full-rank and aperiodic.

Under Assumptions 1, 2 and 3, the hidden Markov chain is stationary ergodic. The fol-
lowing assumption is sufficient to build estimators using the empirical distribution of the
distribution of three consecutive observations.

ASSUMPTION 4. The emission densities (fx)x∈X are compactly supported and C⋆ =
∫ dy

∑

x∈X
fx(y)

<∞, the integral is over the union of the supports of the emission densities.

ASSUMPTION 5. (fx)x∈X are linearly independent and belong to Cs(R) the space of
locally Hölder continuous functions.

We now state the theorem. Its proof is given in Section 6.11.
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THEOREM 10. Let Dn −→+∞ arbitrarily slowly. There exists a sequence of randomized

estimators (θ̂n)n≥1 such that for all θ ∈Θdep satisfying Assumption 1 to 5

E[Rclust
n (θ,πn ◦ h⋆θ̂)]− inf

g∈Gn

Rclust
n (θ, g) =O

(

D5/2
n

(

log(n)

n

)
s

2s+1

)

where the expectation E[·] is understood with respect to the randomness of the algorithm.

The cornerstone of the proof is the analysis of how errors in estimation of the parameters
propagate to errors in the filtering and smoothing distributions proved in [12]. To achieve
this rate for the excess risk, we must specify an estimator. Here we make the choice of us-
ing a modified version of the spectral algorithm of [1] which relies on the tensor method
developped in [6]. The full algorithm is given in details in Section 6.11. The main difference
with the original algorithm of [1] is a modification guaranteeing that the algorithm outputs
the same permutation for the estimation of the transition matrix Q̂ and the emission densi-
ties f̂1, . . . , f̂J . Indeed, in the previous works, the aim was more to get upper bounds on the
risks up to label-switching, and the analysis was done for Q and the emission distributions
separately which does not guarantee that the permutation used in the control of the error
of estimation of Q and the emission densities is the same. Albeit the modification is rather
natural, proof that it works require a substantial effort.

Notice that the rate on the excess risk is exactly the estimation rate of Hölder regular func-
tions in sup-norm. However, since we do not observe realizations of each emission density
separately, this rate is not a straightforward consequence of density estimation theory. See [1]
where the usual non-parametric rate for the estimation of densities in sup-norm is obtained
in the HMM context.

Though we analyse the question for the spectral estimator, we believe that results similar
to Theorem 10 hold for most estimation procedures previously proposed in the literature,
putting in the upper bounds the bounds on the estimation risk up to label-switching obtained
in those works. This is why we shall use in Section 4 the least-squares estimation method for
which a public and efficient code exists [11].

4. Numerical simulations. We present here the results of numerical simulations which
leverage the added value of non-parametric clustering under hidden Markov modelling. We
will consider two examples in which the hidden states will be generated through the same
transition matrix

Q=

(

0.8 0.2
0.3 0.7

)

.

EXAMPLE 1. A sample of n = 5.104 observations of a HMM with transition matrix Q
and emissions: F1 =

1
2 (N (1.7,0.2) +N (7,0.15)) and F2 =

1
2 (N (3.5,0.2) +N (5,0.4)).

EXAMPLE 2. A sample of n= 105 observations of a HMM with transition matrix Q and
emissions: F1 =

1
2 (N (3,0.6) +N (7,0.4)) and F2 =

1
2 (N (5,0.3) +N (9,0.4)).

On these examples, we use the plug-in classifier whose clustering risk has been controlled
in Theorem 10. Recall our procedure works as follows:

• First, the emission densities are estimated using the observations. We use the penalized
least squares estimator proposed in [9] whose code has been made public in [11]. We use
the histogram basis for the estimation.



16

• Second, the Forward-Backward algorithm is used to compute the a posteriori distributions
of the hidden states under the estimated model parameters and given the observations.

• Third, the hidden states are estimated by maximizing the a posteriori distributions.

The results of clustering using the Forward-Backward algorithm will be compared to those
using the k-means algorithm. Since we have access to the hidden states, the error of clus-
tering can be estimated by choosing the best permutation. Figures 2, 3, and 4 display the
results of estimation and clustering. Performance of Bayes classifier, plug-in classifier and
k-means are reported in Table 1. If the observations were independent and the emissions

Bayes classifier Plug-in classifier k-means algorithm Λ

Example 1 1.56% 1.61% 46.7% 0.046
Example 2 6.42% 6.51% 47.3% 0.165

TABLE 1
Errors of clustering using three clustering rules: the Bayes classifier (using the true model parameters), the

plug-in classifier (using the estimated parameters) and the k-means algorithm.

modelled non-parametrically, the unique quantity that could have been estimated consistently
would be the stationary distribution. However, under the HMM assumption, the estimation of
each emission density with the minimax rate is possible. This is due to the identifiability of
the model which holds even if no assumption is made on the emission densities. This is not
possible in the independent case. Figure 2 shows the estimation results of the emission den-
sities and confirms the theoretical properties of the estimator. On the other hand, Corollary
4 proves that in the case of a HMM with two classes, clustering errors could appear only in
zones where the two emission densities overlap. In Figures 3b, and 4b, misclustered observa-
tions appear only in the overlaps between the emission densities. Compared to the k-means
algorithm which is purely geometric and does not exploit the distribution of the observations,
the plug-in procedure allows combining together observations even if they are geometrically
distant from each other, which is not possible with the k-means algorithm. In this context
of Gaussian mixtures, the performance of the k-means algorithm is mediocre as depicted in
Table 1 and does not improve significantly when the overlap between the emission densities
is small. However, for the plug-in procedure, the more separated are the emission densities,
the better are the results of clustering.

5. Discussions and Perspectives. This work focuses on an in-depth study of Bayes risks
of clustering and classification. This analysis has led us to prove a form of equivalence be-
tween both risks. After identifying the key quantity which measures the difficulty of the clas-
sification task, it was extrapolated to the Bayes risk of clustering in several regimes. Finally,
the excess risk of the plug-in procedure was studied. Although the analysis is sufficiently
detailed to ensure a thorough understanding of both problems, there are still some interesting
questions which were not covered by this work. We give a small overview below.

Lower-bound on entries of Q. Throughout our analysis of the Bayes risk of clustering, we
have used Assumption 1 which was crucial in obtaining the lower-bounds. In the absence of
such an assumption, the lower-bound of Theorem 9 no more matches the upper-bound and
the magnitude of the Bayes risk of classification can not be precisely understood. The same
thing applies to the Bayes risk of clustering. In addition, the control of the excess risk of the
plug-in procedure is no more guaranteed.
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(a) Estimation results for Example 1
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(b) Estimation results for Example 2

Figure 2: Non-parametric penalized least squares density estimation using the histogram ba-
sis for Example 1 and Example 2

Approaching the frontier to independence. This situation happens when the emission distri-
butions are nearly similar or when the transition matrix has almost equal lines. In this case,
one can hope to improve the coefficient δ2

1−(J−1)δ which appears in the lower-bound on the
risk of classification (Theorem 9) to δ as in the independent case. In fact, in this situation,
the dependence between the observations is so weak and the effect of future and past obser-
vations on the current classification rule is so negligible that the magnitude of the Bayes risk
of classification is the same as in the i.i.d. setting. On the other hand, as shown in [3, 2], es-
timation of the model parameters no more becomes possible when approaching the frontier.
The plug-in procedure should not work as well.
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(a) Clustering using plug-in clusterer (b) Misclustered observations for plug-in clusterer

(c) Clustering using k-means (d) Misclustered observations for k-means

Figure 3: Histograms of clusters and clustering errors for Example 1

Lower bounds on the Bayes risk of clustering when it is very small. Theorems 2, 4, 6 and
8 establish lower bounds on the Bayes risk of clustering in terms of the Bayes risk of clas-
sification. When J = 2 these bounds are meaningful regardless of how small is the Bayes
risk of clustering. When J > 2, however, these bounds can be vacuous if the Bayes risk of
classification gets too small. This is not an artifact of our bounds since we have shown in
Proposition 1 that the two Bayes risks are not uniformly comparable when J > 2. Whence
from the current work we only know that the Bayes risk of clustering is driven by Λ in the
region of parameters for which it is not exponentially small in n and that it can not be driven
by Λ otherwise. If it was the case, then it would be equivalent to the Bayes risk of classifi-
cation in contradiction with the Proposition 1. Understanding the Bayes risk of clustering in
the region of extreme parameters is still an open question.

Fast rates. Theorem 10 has interest mainly in the situation where infg∈Gn
Rclust
n (θ, g) &

(log(n)/n)
s

2s+1 . In this regime, Theorem 10 tells us that the plug-in procedure has a risk
of the same magnitude. However, in the situation where the magnitude of the Bayes risk of
clustering is much smaller, that is when the emission distributions are very separated, one
can hope to obtain faster rates. For example, when infg∈Gn

Rclust
n (θ, g) = O (e−cn) for c a
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(a) Clustering using plug-in clusterer (b) Misclustered observations for plug-in clusterer

(c) Clustering using k-means (d) Misclustered observations for k-means

Figure 4: Histograms of clusters and clustering errors for Example 2

positive absolute constant, one can hope to show that the risk of the plug-in procedure is
exponentially small in n. The following lemma represents a first step for the proof of such a
result.

LEMMA 1. For all 0< γ < 1/2 and all θ ∈Θ

(9) Rclass
n (θ,hθ̂)≤

infh∈Hn
Rclass
n (θ,h)

1/2− γ
+

1

n

n
∑

i=1

Pθ

(∥

∥

∥
φθ,i|n − φθ̂,i|n

∥

∥

∥

TV
> γ
)

.

where φθ,i|n = Pθ (Xi ∈ . | Y1:n) and hθ̂ is the plug-in classifier defined in Section 3.4.2.

The proof of Lemma 1 is given in Section 6.12.
Observe that the second term of the rhs of (9) is a large deviation term which may even-

tually decrease exponentially fast in n. The only price to pay to obtain large deviation type
of decay is a constant factor of at least 2 in front of infh∈Hn

Rclass
n (θ,h). In situations where

infh∈Hn
Rclass
n (θ,h) is small, this might be advantageous compared to the bound in Theo-

rem 10. In Proposition 2.2 of [12], the authors prove the inequality
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(10) ‖φθ,i|n(., Y1:n)− φθ̂,i|n(., Y1:n)‖TV ≤ 4(1− δ)

δ2

(

ρi−1‖ν − ν̂‖2

+ (1/(1− ρ) + 1/(1− ρ̂))‖Q− Q̂‖F +

n
∑

l=1

δ
(ρ̂∨ ρ)|l−i|
c⋆(Yl)

max
x∈X

∣

∣

∣
fx(Yl)− f̂x(Yl)

∣

∣

∣

)

where c⋆(y) =minx∈X
∑

x′∈XQ(x,x′)fx′(y), ρ= 1−δ/(1−δ) and ρ̂= 1− δ̂/(1− δ̂) where

δ̂ is an estimator of δ. (10) can be used to control the second term in the rhs of (9). This would
require to derive large deviation inequalities for all the terms involved in (10), which turns
out to be a rather challenging problem.

Optimal excess risk. Although we obtain upper bounds on the excess risk of clustering of
the plug-in procedure (Theorem 10), we do not know the optimal rate of decay of the excess
risk. In particular, it is unknown if the plug-in procedure achieves optimal excess risk. The
Lemma 1 suggests that when the Bayes risk is smaller than O(n−s/(2s+1)) then our upper
bounds on the excess risk of the plug-in could be improved. Yet without optimality guaran-
tees. Determining the optimal excess risk is an open and interesting question to investigate.

Alternatives to plug-in. Under the hidden Markov modeling, the most straightforward way
to take advantage of the identifiability of the model is to estimate the model parameters and
use them for clustering through the plug-in procedure. Unlike the i.i.d. case where algorithms
such as k-means can be used as an alternative, we do not know of any alternative to the plug-
in in the HMM case. It would be very interesting to find clustering procedures that leverage
the nonparametric identifiability of HMM without relying on estimating the parameters first.

6. Proofs.

6.1. Proof of Theorem 1. Let θ ∈ Θind. Thanks to Equation (5), the Bayes clusterer g⋆θ
can be defined as the partition g⋆θ = πn ◦ h̃θ where h̃θ =

(

h̃θ,i

)

i∈[n]
is the classifier minimiz-

ing:

(11) h= (hi)1≤i≤n 7→ Eθ

[

min
τ∈S2

1

n

n
∑

i=1

1hi(Y1:n) 6=τ(Xi)

]

.

Let Y1:n be n i.i.d. observations of the mixture with parameters θ. We have g⋆θ(Y1:n) = πn ◦
h̃θ(Y1:n) a.e, where

h̃θ(Y1:n) ∈ argmin
h=(hi)i∈[n]

Eθ

[

min
τ∈S2

1

n

n
∑

i=1

1hi(Y1:n) 6=τ(Xi)

∣

∣

∣

∣

Y1:n

]

.

Given that:

Eθ

[

min
τ∈S2

1

n

n
∑

i=1

1hi(Y1:n) 6=τ(Xi)

∣

∣

∣

∣

Y1:n

]

= Eθ

[

min

(

1

n

n
∑

i=1

1hi(Y1:n) 6=Xi
,1− 1

n

n
∑

i=1

1hi(Y1:n) 6=Xi

)

∣

∣

∣

∣

Y1:n

]

=
1

2
− 1

n
Eθ

[ ∣

∣

∣

∣

∣

n
∑

i=1

1hi(Y1:n) 6=Xi
− n

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

Y1:n

]

one gets h̃θ(Y1:n) ∈ argmaxh=(hi)i∈[n]
Eθ

[

∣

∣

∑n
i=1 1hi(Y1:n) 6=Xi

− n
2

∣

∣

∣

∣

∣

∣

Y1:n

]

. We now con-

sider the following lemma. Its proof is due to Ziv Scully and can be found in [36]. We will
detail its proof in Section 6.14 for the sake of completeness.
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LEMMA 2. Let (Zi)i∈[n] be a sequence of independent Bernoulli random variables such

thatZi ∼B(pi) where pi ∈ {αi,1− αi}. Then the maximum max(pi)i∈[n]
E

[∣

∣

∣

∑

i∈[n]Zi − n
2

∣

∣

∣

]

is reached at (pi)i∈[n] = (αi ∧ (1− αi))i∈[n] and (pi)i∈[n] = (αi ∨ (1− αi))i∈[n].

We apply this lemma to the random variables
(

1hi(Y1:n) 6=Xi

)

i∈[n] which are independent
conditionally to Y1:n and ensure :

1hi(Y1:n) 6=Xi
| Y1:n ∼B(pi(Yi))

such that pi(Yi) ∈ {Pθ (Xi = 1 | Yi) ,Pθ (Xi = 2 | Yi)}. Two cases occur:

• (∀i ∈ [n]) Pθ (Xi = 1 | Yi) 6= 1/2, then the Bayes classifier is unique and Lemma 2 allows
us to conclude that h̃θ(Y1:n) =

(

argmaxx=1,2 Pθ (Xi = x | Yi)
)

i∈[n] = h⋆θ (Y1:n). Conse-
quently:

g⋆θ(Y1:n) = πn ◦ h⋆θ(Y1:n).
• (∃i ∈ [n]) Pθ (Xi = 1 | Yi) = 1/2, then the same argument yields

g⋆θ(Y1:n) = πn ◦ h⋆θ(Y1:n).
where we abuse the notation of h⋆θ(Y1:n) to refer not only to a specific Bayes classifier but
to the set of all the Bayes classifiers since it is not unique. The same is done for the Bayes
clusterer g⋆θ(Y1:n). The permutation πn is then applied to the set of all Bayes classifiers.

6.2. Proof of Theorem 2. We first prove the upper bound. Let h⋆θ,i(Yi) = argmaxa∈{1,2} Pθ (Xi = a | Yi).
Let Zn =

∑n
i=1 1Xi 6=h⋆

θ,i(Yi). One gets:

inf
h∈Hn

Rclass
n (θ,h)− inf

g∈Gn

Rclust
n (θ, g) = Eθ

[(

2

n
Zn − 1

)

1 2

n
Zn>1

]

=

∫ 1

0
Pθ

((

2

n
Zn − 1

)

1 2

n
Zn>1 > x

)

dx.

Namely,

(12) inf
h∈Hn

Rclass
n (θ,h)− inf

g∈Gn

Rclust
n (θ, g) =

∫ 1

0
Pθ

(

Zn >
n

2
(x+ 1)

)

dx=: Jn.

Chernoff bound yields:

Pθ

(

Zn >
n

2
(x+ 1)

)

≤ inf
λ

{

exp

(

−nλ
2
(x+ 1)

)

Eθ [exp (λZn)]

}

dx

≤
(

(

1 + x

1− 2εn,θ

)
1+x

2
(

1− x

1 + 2εn,θ

)
1−x

2

)−n

.

Let g(t) = 1+t
2 log

(

1+t
1−2εn,θ

)

+ 1−t
2 log

(

1−t
1+2εn,θ

)

. Then, g′(t) = 1
2 log

(

1+t
1−t

)

+ 1
2 log

(

1+2εn,θ

1−2εn,θ

)

and g′′(t) = 1
1−t2 . Deduce that g(t)≥ g(0) +max(g′(0)t, t

2

2 ) for all t ∈ (0,1). Then,

Jn ≤ e−ng(0)
∫ 1

0
e−nmax(g′(0)t, t

2

2
)dt

≤ e−ng(0)min

(

∫ 1

0
e−ng

′(0)tdt,

∫ 1

0
e−nt

2/2dt

)

≤min
(e−ng(0)

ng′(0)
,

√

π

2n

)
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We now derive the more challenging lower bound. We assume throughout that n ≥ 100.
We also assume that infh∈Hn

Rclass
n (θ,h) > 0 otherwise the lower bound is zero and holds

trivially. Suppose first that 0≤ εn,θ ≤ 1
10

√
n

. Then,

Jn ≥
∫ 1

10
√

n

0
P
(

Sn >
n(x+ 1)

2

)

dx

≥ 1

10
√
n
P
(

Sn >
n

2
+

√
n

20

)

=
1

10
√
n
P
(Sn − n(12 − εn,θ)
√

n(1− ε2n,θ)/4)
>

√
n

20 + nεn,θ
√

n(1− ε2n,θ)/4

)

≥ 1

10
√
n
P
(Sn − n(12 − εn,θ)
√

n(1− ε2n,θ)/4
>

√

10

111

)

because n≥ 100 and εn,θ ≤ 1
10

√
n
≤ 1

100 . By the theorem of Berry and Esseen,

Jn ≥
1√
n

(

1−Φ
(

√

10

111

)

− 0.4748
√

n(1− ε2n,θ)/4

)

≥ 0.2870√
n

since n≥ 100. Finally, because εn,θ ≤ 1
10

√
n

it must be that

exp
(

− ng(0)
[

1 + 6.8

1∨10
√
nε2n,θ

])

ng′(0)
≥ 1√

n

exp
(

− 1
2 log(1− 0.04/n)[1 + 6.8]

)

1
2
√
n
log(1+0.2/

√
n

1−0.2/
√
n
)

≥ 500√
n
.

Deduce that for a universal constant B > 0

(13) Jn ≥Bmin

(exp
(

− ng(0)
[

1 + 6.8

1∨10
√
nε2n,θ

])

ng′(0)
,
1√
n

)

.

Now suppose 1
10

√
n
< εn,θ <

1
2 . We first lower bound,

Jn ≥
∫ 1

10
√

n

0
P
(

Sn >
n(x+ 1)

2

)

dx.

We lower bound the probability P (Sn > n
2 (x+1)) using Cramér’s technique. In the next 0≤

x≤ 1
10

√
n

. Then for all λ > 0 and all 0< δ < n
2 −

√
n

20 (which guarantees that n(1+x)2 + δ < n]
we have

P
(

Sn >
n

2
(x+ 1)

)

=
∑

n(x+1)

2
<y≤n

(

n

y

)

ry(1− r)n−y

≥
∑

n(x+1)

2
<y<n(x+1)

2
+δ

(

n

y

)

e−λy+nψr(λ) (re
λ)y(1− r)n−y

exp(nψr(λ))
w
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where ψr(λ) = log(1− r+ reλ) is the cumulant generating function of the Bernoulli distri-
bution with parameter r; where r ≡ infh∈Hn

Rclass
n (θ,h) for simplicity. Here one notice that

y 7→
(

n
y

) (peλ)y(1−p)n−y

exp(nψr(λ))
is the density of the Binomial distribution with parameters (n, qλ)

where qλ =
reλ/(1−r)

1+reλ/(1−r) . Letting S̃n ∼Binomial(n, qλ), it is seen that

P
(

Sn >
n

2
(x+ 1)

)

≥ e−λ(
n(x+1)

2
+δ)+nψr(λ)P

(

n

2
(x+ 1)< S̃n <

n

2
(x+ 1) + δ

)

.

Now we make the choice that qλ = 1+x
2 + δ/n, which corresponds to λ = − log

(

1 −
1+x+2δ/n

2

)

+ log
(

1−r
r

)

. Observe that λ is well-defined and positive since by assumption
0< r ≤ 1

2 and 1 + x+ 2δ/n < 2; this also guarantees that 0< qλ < 1. Then,

P
(

Sn >
n

2
(x+ 1)

)

≥ e−nIr(
1+x

2
+ δ

n
)P
(n(1 + x)

2
< S̃n <

n(1 + x)

2
+ δ
)

w

= e−ng(x+2δ/n)P
(

− δ
√

nqλ(1− qλ)
<

S̃n − nqλ
√

nqλ(1− qλ)
< 0
)

By the theorem of Berry and Esseen, we can conclude that

P
(

Sn >
n

2
(x+ 1)

)

≥ e−ng(x+2δ/n)

(

Φ(0)−Φ
(

− δ
√

nqλ(1− qλ)

)

− 2
0.4748

√

nqλ(1− qλ)

)

≥ e−ng(x+2δ/n)

(

1

2
−Φ

(

− 2δ√
n

)

− 1.8992
√

n(1− κ2x)

)

where κx := x+ 2δ
n . We choose δ =−

√
n
2 Φ−1(1/4). This implies that κx ≤ 0.1−Φ−1(1/4)√

n
≤

0.7745√
n

and Φ(−2δ/
√
n) = 1

4 . Consequently for n≥ 100,

P
(

Sn >
n

2
(x+ 1)

)

≥ 0.0595 · e−ng(x+2δ/n), and, Jn ≥ 0.0595

∫ 1

10
√

n

0
e−ng(x+2δ/n)dx.

A Taylor expansion of g near zero yields the existence of u ∈ (0, x+ 2δ/n) such that g(x+
2δ/n) = g(0) + g′(0)(x+2δ/n) + g′′(u)(x+2δ/n)2/2. But when x ∈ (0, 1

10
√
n
) it must be

that 0≤ x+ 2δ/n≤ 0.1−Φ−1(1/4)√
n

≤ 0.7745√
n

and thus g′′(u) = 1
1−u2 ≤ 1.0061 when n≥ 100.

Hence,

Jn ≥ 0.0595 · e−ng(0)−2δg′(0)− 1.0061·0.77452
2

∫ 1

10
√

n

0
e−ng

′(0)xdx

= 0.0440 ·
(

1− e−
g′(0)√n

10

)e
−ng(0)[1+ 2δg′(0)

ng(0)
]

ng′(0)
.

Here recall that g(0) = −1
2 log(1 − 4ε2n,θ) and g′(0) = 1

2 log
(1+2εn,θ

1−2εn,θ

)

. It follows that the

function εn,θ 7→ g′(0)− g(0)
εn,θ

admits the derivative εn,θ 7→ −(1−4ε2n,θ) log(1−4ε2n,θ)−4ε2n,θ

ε2n,θ(1−4ε2n,θ)
which

is negative for εn,θ > 0. Deduce that g′(0)− g(0)
εn,θ

≤ 0, or equivalently g′(0)
g(0) ≤ 1

εn,θ
. Therefore,

2δg′(0)
ng(0)

≤ −Φ−1(1/4)√
nεn,θ

≤ 6.8

max(1,10
√

nε2n,θ)
.
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Similarly since εn,θ 7→ g′(0) is monotonically increasing, g
′(0)

√
n

10 ≥
1

2
log( 1+0.4/

√
n

1−0.4/
√

n
)
√
n

10 ≥ 0.04.
Hence,

Jn ≥ 0.0017 ·
exp

(

− ng(0)
[

1 + 6.8

1∨10
√
nε2n,θ

])

ng′(0)

Finally, since εn,θ > 1
10

√
n

the above computations show that ng′(0) ≥ 0.4
√
n. Therefore

there is a universal constant B > 0 such that (13) is also satisfied when 1
10

√
n
< εn,θ <

1
2 .

6.3. Proof of Theorem 3. Given two partitions A and B, we recall the clustering loss
defined in (2) :

ℓ (A,B) = 1− 1

n
sup

M⊆E(A,B)
M is a matching

∑

{C,C′}∈M
Card(C ∩C ′)

We define

(∀i ∈ [n]) (∀k ∈X) α
(Yi)
k =

νkfk(Yi)
∑J

j=1 νjfj(Yi)

and h⋆θ(Y1:n) =
(

h⋆θ,i(Yi)
)

i∈[n]
where (∀i ∈ [n]) h⋆θ,i(Yi) = argmaxk∈Xα

(Yi)
k .

Consider the event :

An =

J
⋃

j=1

n
⋂

i=1

{

max
k 6=j

νkfk(Yi)< νjfj(Yi)

}

.

Then,

An ⊂
{

πn

(

(

h⋆θ,i(Yi)
)

i∈[n]

)

= πn ((1, . . . ,1))
}

.

Let θ ∈Θind, such that

Pθ





J
⋃

j=1







0<max
l 6=j

νlfl(Y )< νjfj(Y )≤
∑

l 6=j
νlfl(Y )









> 0.

Then Pθ (An)> 0. Since:

An ∩
{

Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1)))

∣

∣

∣

∣

Y1:n

]

> Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1,2)))

∣

∣

∣

∣

Y1:n

]}

⊂ {g⋆θ(Y1:n) 6= πn ◦ h⋆θ(Y1:n)} ,
it suffices then to show that

Pθ

(

Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1)))

∣

∣

∣

∣

Y1:n

]

> Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1,2)))

∣

∣

∣

∣

Y1:n

]

∣

∣

∣

∣

An

)

> 0.
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Let:

k(1)n (x1:n) = argmax
i∈X

n
∑

k=1

1xk=i

N (1)
n (x1:n) =max

i∈X

n
∑

k=1

1xk=i

N (2)
n (x1:n) = max

i 6=k(1)
n (x1:n)

n
∑

k=1

1xk=i

Nn,i(x1:n) =

n
∑

k=1

1xk=i

First, note that for x1:n ∈X
n:

ℓ(πn (x1:n) , πn (1, . . . ,1,2)) =



















n−N
(1)
n (x1:n)− 1 if xn 6= k

(1)
n (x1:n)

n−N
(1)
n (x1:n) + 1 if N (2)

n (x1:n)<N
(1)
n (x1:n)− 1, xn = k

(1)
n (x1:n)

n−N
(1)
n (x1:n) if N (2)

n (x1:n) =N
(1)
n (x1:n)− 1, xn = k

(1)
n (x1:n)

n−N
(1)
n (x1:n)− 1 if N (2)

n (x1:n) =N
(1)
n (x1:n), xn = k

(1)
n (x1:n)

The inequality

(14) Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1)))
∣

∣Y1:n
]

> Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1,2)))
∣

∣Y1:n
]

is equivalent to:

∑

x1:n∈Xn

ℓ(πn(x1:n), πn((1, ...,1)))

n
∏

i=1

α(Yi)
xi

>
∑

x1:n∈Xn

ℓ(πn(x1:n), πn((1, ..,1,2)))

n
∏

i=1

α(Yi)
xi

Conditionally to Y1:n, X1, ...,Xn are independent multinomial random variables such that

Xi

∣

∣

∣

∣

Yi ∼
(

α
(Yi)
k

)

k∈X
. Using the expression of ℓ(πn(x1:n), πn((1, . . . ,1,2))) and the fact that

ℓ(πn(x1:n), πn((1, . . . ,1))) = n−N
(1)
n (x1:n), one obtains:

(14) ⇔
∑

x1:n∈Xn

xn 6=k(1)
n (x1:n) or

xn=k(1)
n (x1:n) and N (2)

n (x1:n)=N (1)
n (x1:n)

n
∏

i=1

α(Yi)
xi

>
∑

x1:n∈Xn

xn=k(1)
n (x1:n) and N (2)

n (x1:n)<N (1)
n (x1:n)−1

n
∏

i=1

α(Yi)
xi

⇔ Pθ

(

Xn 6= k(1)n (X1:n)

∣

∣

∣

∣

Y1:n

)

+ Pθ

(

Xn = k(1)n (X1:n),N
(2)
n (X1:n) =N (1)

n (X1:n)

∣

∣

∣

∣

Y1:n

)

> Pθ

(

Xn = k(1)n (X1:n),N
(2)
n (X1:n)<N (1)

n (X1:n)− 1

∣

∣

∣

∣

Y1:n

)

⇔ Pθ

(

Xn 6= k(1)n (X1:n)

∣

∣

∣

∣

Y1:n

)

− Pθ

(

Xn = k(1)n (X1:n),N
(2)
n (X1:n)<N (1)

n (X1:n)− 1

∣

∣

∣

∣

Y1:n

)

+ Pθ

(

Xn = k(1)n (X1:n),N
(2)
n (X1:n) =N (1)

n (X1:n)

∣

∣

∣

∣

Y1:n

)

> 0



26

By marginalization over the possible values of Xn, one gets:

(14) ⇔
J
∑

j=1

[

Pθ

(

Xn 6= j,Nn,j(X1:n)≥max
k 6=j

Nn,k(X1:n)

∣

∣

∣

∣

Y1:n

)

− Pθ

(

Xn = j,Nn,j(X1:n)>max
k 6=j

Nn,k(X1:n) + 1

∣

∣

∣

∣

Y1:n

)

+ Pθ

(

Xn = j,Nn,j(X1:n) =max
k 6=j

Nn,k(X1:n)

∣

∣

∣

∣

Y1:n

)]

> 0

⇔
J
∑

j=1

∑

l 6=j

[

α
(Yn)
l Pθ

(

Nn−1,j(X1:n−1)≥max
k 6=j,l

Nn−1,k(X1:n−1)∨ (Nn−1,l(X1:n−1) + 1)

∣

∣

∣

∣

Y1:n−1

)

−
α
(Yn)
l α

(Yn)
j

1− α
(Yn)
j

Pθ

(

Nn−1,j(X1:n−1)>max
k 6=j

Nn−1,k(X1:n−1)

∣

∣

∣

∣

Y1:n−1

)

α
(Yn)
l α

(Yn)
j

1− α
(Yn)
j

Pθ

(

Nn−1,j(X1:n−1) =max
k 6=j

Nn−1,k(X1:n−1)− 1

∣

∣

∣

∣

Y1:n−1

)]

> 0

⇔
J
∑

j=1

∑

l 6=j

[

α
(Yn)
l

{

Pθ

(

Nn−1,j(X1:n−1)≥max
k 6=j,l

Nn−1,k(X1:n−1)∨ (Nn−1,l(X1:n−1) + 1)

∣

∣

∣

∣

Y1:n−1

)

−
α
(Yn)
j

1− α
(Yn)
j

Pθ

(

Nn−1,j(X1:n−1)>max
k 6=j

Nn−1,k(X1:n−1)

∣

∣

∣

∣

Y1:n−1

)

}

]

+

J
∑

j=1

α
(Yn)
j Pθ

(

Nn−1,j(X1:n−1) =max
k 6=j

Nn−1,k(X1:n−1)− 1

∣

∣

∣

∣

Y1:n−1

)

> 0.

On the one hand, since:
{

Nn−1,j(X1:n−1)>max
k 6=j

Nn−1,k(X1:n−1)

}

⊂
{

Nn−1,j(X1:n−1)≥max
k 6=j,l

Nn−1,k(X1:n−1)∨ (Nn−1,l(X1:n−1) + 1)

}

and α(Yn)
k ≤ 1

2 ⇐⇒ α
(Yn)
k

1−α(Yn)
k

≤ 1, one gets:

⋂

k∈X

{

α
(Yn)
k ≤ 1

2

}

⊂







J
∑

j=1

∑

l 6=j
α
(Yn)
l

[

Pθ

(

Nn−1,j(X1:n−1)≥max
k 6=j,l

Nn−1,k(X1:n−1)∨ (Nn−1,l(X1:n−1) + 1)

∣

∣

∣

∣

Y1:n−1

)

−
α
(Yn)
j

1− α
(Yn)
j

Pθ

(

Nn−1,j(X1:n−1)>max
k 6=j

Nn−1,k(X1:n−1)

∣

∣

∣

∣

Y1:n−1

)]

≥ 0

}

.
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On the other hand,

⋃

l 6=j∈X

n
⋂

i=1

{

α
(Yi)
l ∧ α(Yi)

j > 0
}

⊂







J
∑

j=1

α
(Yn)
j Pθ

(

Nn−1,j(X1:n−1) =max
k 6=j

Nn−1,k(X1:n−1)− 1

∣

∣

∣

∣

Y1:n−1

)

> 0







because for k ∈X, Nn−1,k(X1:n−1) is a sum of Bernoulli random variables. Consequently,

⋃

l 6=j∈X

n
⋂

i=1

{

α
(Yi)
l ∧ α(Yi)

j > 0
}

⋂ ⋂

k∈X

{

α
(Yn)
k ≤ 1

2

}

⊂ {(14)}

Consequently,

Pθ





⋃

l 6=j∈X

n
⋂

i=1

{

α
(Yi)
l ∧ α(Yi)

j > 0
}

⋂ ⋂

k∈X

{

α
(Yn)
k ≤ 1

2

}∣

∣

∣

∣

An





≤ Pθ

(

Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1)))

∣

∣

∣

∣

Y1:n

]

> Eθ

[

ℓ(πn(X1:n), πn((1, . . . ,1,2)))

∣

∣

∣

∣

Y1:n

]

∣

∣

∣

∣

An

)

To conclude, we only need to prove that the conditional probability in the lower-bound is
positive. Finally,

⋃

1≤j 6=k≤J

n
⋂

i=1







max
l 6=j

νlfl(Yi)< νjfj(Yi)≤
∑

l 6=j
νlfl(Yi), νkfk(Yi)> 0







⊂
J
⋃

j=1

n
⋂

i=1

{

max
l 6=j

νlfl(Yi)< νjfj(Yi)≤
1

2

J
∑

l=1

νlfl(Yi)

}

⋂ ⋃

1≤l 6=j≤J

n
⋂

i=1

{νlfl(Yi)> 0, νjfj(Yi)> 0}

⊂
J
⋃

j=1

n
⋂

i=1

{

max
l 6=j

νlfl(Yi)< νjfj(Yi)

}

⋂ ⋃

1≤l 6=j≤J

n
⋂

i=1

{νlfl(Yi)> 0, νjfj(Yi)> 0}
⋂

J
⋂

k=1

{

α
(Yn)
k <

1

2

}

⊂An
⋂ ⋃

1≤l 6=j≤J

n
⋂

i=1

{

α
(Yi)
l ∧ α(Yi)

j > 0
}

⋂

J
⋂

k=1

{

α
(Yn)
k ≤ 1

2

}

Given that the observations Y1:n are i.i.d. following the stationary distribution
∑J

k=1 νkfk
and that

J
⋃

j=1







0<max
l 6=j

νlfl(Y )< νjfj(Y )≤
∑

l 6=j
νlfl(Y )







⊂
⋃

1≤j 6=k≤J







max
l 6=j

νlfl(Y )< νjfj(Y )≤
∑

l 6=j
νlfl(Y ), νkfk(Y )> 0







and that by assumption,

Pθ





J
⋃

j=1







0<max
l 6=j

νlfl(Y )< νjfj(Y )≤
∑

l 6=j
νlfl(Y )









> 0,

the result follows.
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6.4. Common elements to the proof of Theorems 4, 6 and 8. Recall the definition of
RMRSS
n in Remark 2: for all (θ,h) ∈Θ×Hn,

(15) RMRSS
n (θ,h) = Eθ

[

min
τ∈SJ

Eθ

[

Un,τ (h) | Y1:n
]

]

where Un,τ (h) :=
1
n

∑n
i=1 1τ(Xi) 6=hi(Y1:n). We also make use of the notation p̂τ (h) :=

Eθ [Un,τ (h) | Y1:n]. Let τ̂h denote a Y1:n-measurable permutation satisfying:

p̂τ̂h(h) = Eθ [Un,τ̂h(h) | Y1:n] = min
τ

Eθ [Un,τ (h) | Y1:n] = min
τ
p̂τ (h).

Instead of comparing Rclust
n and Rclass

n , we compare Rclust
n and RMRSS

n , which is enough to
obtain the result thanks to the following easy lemma.

LEMMA 3. For all θ ∈Θ and all n≥ 1

inf
h∈Hn

Rclass
n (θ,h) = inf

h∈Hn

RMRSS
n (θ,h).

PROOF. The optimal permutation τ̂h such that p̂τ̂h(h) = minτ∈SJ
Eθ [Un,τ (h) | Y1:n] is

a Y1:n-measurable permutation valued random variable. Since any h ∈ Hn is also Y1:n-
measurable, the result is immediate.

In the next we then focus on comparing Rclust
n and RMRSS

n . We let Nj :=
∑n

i=1 1{Xi=j}
and N(1) ≤N(2) ≤ · · · ≤N(J) denote the order statistics of (N1, . . . ,NJ).

PROPOSITION 2. A generic lower bound that works for any latent model (i.i.d. or HMM

or whatever). For all classifiers h, all ε, all η and all θ ∈Θ

Eθ

[

min
τ
Un,τ (h)

]

≥ Eθ

[

min
τ

Eθ[Un,τ (h) | Y1:n]
]

−Eθ

[

Eθ

[

max
τ

(−Un,τ (h) + p̂τ (h)) | Y1:n
]

1{p̂τ̂h (h)≥ε}
]

−Eθ

[

Pθ(Un,τ̂h(h)> η | Y1:n)1{p̂τ̂h (h)<ε}
]

− Pθ

(

N(1) +N(2) < 2nη
)

.

PROOF. For ε ∈ [0,1], we decompose

(16) Eθ

[

min
τ
Un,τ (h)

]

= Eθ

[

min
τ
Un,τ (h)1{p̂τ̂h (h)≥ε}

]

+Eθ

[

min
τ
Un,τ (h)1{p̂τ̂h (h)<ε}

]

.

The first term in the rhs of (16) is handled via a small deviation principle, remarking that on
the event {p̂τ̂(h)(h)≥ ε}

Eθ

[

min
τ
Un,τ (h) | Y1:n

]

= Eθ

[

min
τ

(p̂τ (h) +Un,τ (h)− p̂τ (h)) | Y1:n
]

≥min
τ
p̂τ (h)−Eθ

[

max
τ

(−Un,τ (h) + p̂τ (h)) | Y1:n
]

.

The second term in (16) is handled via a large deviation principle. By Lemma 4, on the event
{p̂τ̂h(h)< ε}

Eθ

[

min
τ
Un,τ (h) | Y1:n

]

≥ Eθ

[

min
τ
Un,τ (h)1{Un,τ̂h

(h)≤(N(1)+N(2))/(2n)} | Y1:n
]

= Eθ

[

Un,τ̂h(h)1{Un,τ̂h
(h)≤(N(1)+N(2))/(2n)} | Y1:n

]

≥ p̂τ̂h(h)− Pθ

(

Un,τ̂h(h)>
N(1) +N(2)

2n
| Y1:n

)

.
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But,

Pθ

(

Un,τ̂h(h)>
N(1) +N(2)

2n
| Y1:n

)

≤ Pθ

(

Un,τ̂h(h)> η | Y1:n
)

+ Pθ

(

N(1) +N(2) < 2nη | Y1:n
)

.

The generic lower bound follows.

LEMMA 4. If Un,τ ′(h)≤ N(1)+N(2)

2n then minτ Un,τ (h) = Un,τ ′(h).

PROOF. Let Un,τ ′(h) ≤ N(1)+N(2)

2n and suppose minτ Un,τ (h) < Un,τ ′(h). Then, there
exists a permutation τ ′′ 6= τ ′ such that Un,τ ′′(h) < Un,τ ′(h). But then, letting I = {i ∈
{1, . . . , n} : τ ′(Xi) = hi(Y1:n)}:

n(Un,τ ′(h)−Un,τ ′′(h)) =

n
∑

i=1

(

1{τ ′(Xi) 6=hi(Y1:n)} − 1{τ ′′(Xi) 6=hi(Y1:n)}
)

=

n
∑

i=1

(

1{τ ′′(Xi)=hi(Y1:n)} − 1{τ ′(Xi)=hi(Y1:n)}
)

=−
∑

i∈I
1{τ ′(Xi) 6=τ ′′(Xi)} +

∑

i∈Ic
1{τ ′(Xi)=hi(Y1:n)}

=−
n
∑

i=1

1{τ ′(Xi) 6=τ ′′(Xi)} +
∑

i∈Ic

(

1{τ ′(Xi)=hi(Y1:n)} + 1{τ ′(Xi) 6=τ ′′(Xi)}
)

≤−(N(1) +N(2)) + 2|Ic|
=−(N(1) +N(2)) + 2nUn,τ ′(h)

where we have used that since τ ′ 6= τ ′′, it must be that
∑n

i=1 1τ ′(Xi) 6=τ ′′(Xi) ≥N(1) +N(2).
Rearranging the previous:

Un,τ ′′(h)≥
N(1) +N(2)

n
−Un,τ ′(h)≥ Un,τ ′(h)

which contradicts that Un,τ ′′(h)<Un,τ ′(h). Hence minτ Un,τ (h)≥ Un,τ ′(h).

6.5. Proof of Theorem 4 (independent scenario). Here we apply the result of Proposi-
tion 2 to the i.i.d. case.

When J > 2, the first trivial bound is obtained by choosing ε = η = 0. With this choice,
Proposition 2 gives for J ≥ 2:

Eθ

[

min
τ
Un,τ (h)

]

≥ Eθ

[

min
τ

Eθ[Un,τ (h) | Y1:n]
]

−Eθ

[

Eθ

[

max
τ

(−Un,τ (h) + p̂τ (h)) | Y1:n
]]

≥ Eθ

[

min
τ

Eθ[Un,τ (h) | Y1:n]
]

−
√

log(J !)

2n

by Lemma 5 below.

When J > 2, Lemma 7 can be used to find that

Pθ

(

N(1) +N(2) < 2nη
)

≤ J2e−
n(β−2η)2

2β

and the bound is obtained by choosing η = β/4 and ε= β
4e [log(J !)/(2n)]

2/(nβ).
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LEMMA 5. For all θ ∈Θind, Pθ-almost-surely

Eθ

[

max
τ

(−Un,τ (h) + p̂τ (h)) | Y1:n
]

≤
√

log(J !)

2n
.

PROOF. For any λ > 0,

Eθ

[

max
τ

{−Un,τ (h) + p̂τ (h)}
]

≤ 1

λ
log

(

Eθ

[

exp

(

sup
τ

{−λ (Un,τ (h)− p̂τ (h))}
)∣

∣

∣

∣

Y1:n

])

=
1

λ
log

(

Eθ

[

sup
τ

exp (−λ (Un,τ (h)− p̂τ (h)))

∣

∣

∣

∣

Y1:n

])

≤ 1

λ
log

(

J ! sup
τ

Eθ

[

exp (−λ (Un,τ (h)− p̂τ (h)))

∣

∣

∣

∣

Y1:n

])

≤ 1

λ
log

(

J ! exp

(

λ2

8
× n×

(

1

n

)2
))

(Hoeffding’s lemma)

≤ inf
λ>0

{

log(J !)

λ
+

λ

8n

}

≤
√

log(J !)

2n
.

Hoeffding’s lemma applies because conditionally to the sequence of observations Y1:n, the
labels X1:n are still independent.

LEMMA 6. For all θ ∈Θind, Pθ-almost-surely

Pθ

(

Un,τ̂h(h)> η | Y1:n
)

≤ p̂τ̂h(h) ·
e

η

(ep̂τ̂h(h)

η

)nη−1
e−np̂τ̂h (h).

PROOF. By Chernoff’s bound (with qi(h) = Pθ(hi(Y1:n) 6= τ̂h(Xi) | Y1:n)):

Pθ

(

Un,τ̂h(h)> η | Y1:n
)

= Pθ

(

n
∑

i=1

1hi(Y1:n) 6=τ̂h(Xi) > nη | Y1:n
)

≤ inf
λ>0

exp
(

− λnη+

n
∑

i=1

log
(

qi(h)e
λ + 1− qi(h)

))

≤ inf
λ>0

exp
(

− λnη+ np̂τ̂h(h)(e
λ − 1)

)

=
(ep̂τ̂h(h)

η

)nη
e−np̂τ̂h (h)

≤ p̂τ̂h(h) ·
e

η

(ep̂τ̂h(h)

η

)nη−1
e−np̂τ̂h (h).

LEMMA 7. For θ ∈Θind, let β =minj 6=k(νj + νk). If J > 2, then

Pθ

(

N(1) +N(2) < 2nη
)

≤ J2e−
n(β−2η)2

2β .
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PROOF. If J = 2, remark that N(1) +N(2) = n. Now we assume that J > 2. It holds that

Pθ

(

N(1) +N(2) < 2nη
)

= Pθ
(

∃ j 6= k, Nj +Nk ≤ 2nη
)

≤ J2max
j 6=k

Pθ

(

Nj +Nk ≤ 2nη
)

.

Then observe that Nj +Nk =
∑n

i=1(1Xi=j + 1Xi=k) =
∑n

i=1 1Xi∈{j,k} whenever j 6= k. In
other words, when j 6= k the random variables Nj + Nk has a Binomial distribution with
parameters (n,νj + νk) under Pθ . The conclusion follows using Chernoff’s bound on the
Binomial distribution (recall the Binomial distribution is subGaussian on the left-tail).

6.6. Proof of Theorems 6 and 8 (dependent scenario).

6.6.1. Preliminary. We first recall basic results for HMMs that can be found in [8] about
the distribution of the hidden states given a set of observations. For any parameter θ, any
integers k, i ≤ j, the distribution of Xk given Yi:j under Pθ will be denoted φθ,k|i:j(., Yi:j).
For any integers i≤ n, we shall simplify the so-called filtering distribution φθ,n|i:n(., Yi:n) to
φθ,n(., Yi:n).

Conditional on observations Yi:n, the sequence of the hidden states is an inhomogeneous
Markov chain, with transition matrices called forward kernels. For each k ≤ n− 1, the for-
ward kernel is denoted (Fθ,k|n[Yk+1:n]) to emphasize that it only depends on Yk+1:n. When
k ≥ n, the kernel does not depend on the observations and is equal to the transition matrix Q,
so that Fθ,k|n[Yk+1:n] :=Q for k ≥ n. In other words, for any n ∈N, for any index i≤ n and
k ≥ i and any real-valued function f on X (understood as a vector in R

J ),

Eθ[f(Xk+1) |Xi:k, Yi:n] = Fθ,k|n[Yk+1:n]f =
∑

x∈X
Fθ,k|n[Yk+1:n](Xk, x)f(x).

Conditional on observations Yi:n, the reverse time sequence of hidden states is also an
inhomogeneous Markov chain with transition matrices (Bθ,k[Yi:k])k≤n−1 called backward

kernels. In other words, for any n ∈N, i≤ k ≤ n− 1 and any function f on X:

Eθ[f(Xk) |Xk+1:n, Yi:n] =Bθ,k[Yi:k]f =
∑

x∈X
Bθ,k[Yi:k](Xk+1, x)f(x).

Here, the backward kernel Bθ,k[Yi:k] depends only on the observations up to time k. It is
given by:

(17) Bθ,k[Yi:k](x̃, x) =
φθ,k(x,Yi:k)Q(x, x̃)

∑

x′∈X φθ,k(x
′, Yi:k)Q(x′, x̃)

.

Note that the denominator is always positive thanks to Assumption 1.
For any transition kernel T , we denote δ(T ) is the Dobrushin coefficient of T defined by:

δ(T ) = sup
(x,x′)∈X×X

‖T (x, .)− T (x′, .)‖TV

where ‖ · ‖TV is the total variation norm. We recall the following two lemmas which can be
found in [8]. To end with, notice that under Assumption 1, for any subset A of X,

Jδγ(A)≤
∑

x′∈A
Q(x,x′)≤ J(1− (J − 1)δ)γ(A)

with γ the uniform distribution over X. Using Lemma 4.3.13 in [8], this leads to the following
lemma.
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LEMMA 8. Under Assumption 1, for any integers k and n, the Dobrushin coefficient of

the forward kernel Fθ,k|n satisfies:

δ(Fθ,k|n)≤
{

ρ0 k < n

ρ1 k ≥ n

with ρ0 = 1− Jδ
J(1−(J−1)δ) =

1−Jδ
1−(J−1)δ and ρ1 = 1− Jδ.

Using Equation (17) we get that, under Assumption 1, for any (possibly non positive)
integers i≤ k,

∀x ∈X, Bθ,k[Yi:k](x, .)≥
δ

1− (J − 1)δ
φθ,k(., Yi:k),

so that applying Lemma 4.3.13 in [8], one gets

LEMMA 9. Under Assumption 1, for any (possibly non positive) integers i≤ k ≤ n− 1,

the Dobrushin coefficient of the backward kernel Bθ,k[Yi:k] satisfies:

δ(Bθ,k[Yi:k])≤ 1− δ

1− (J − 1)δ
= ρ0.

6.6.2. Proofs. We apply the result of Proposition 2 to the HMM case. As in the i.i.d. case,
when J = 2 it must be that Pθ(N(1) +N(2) < n) = 0. On the one hand, using Lemma 10 and
Markov’s inequality as in the independent case, one gets for θ ∈Θdep

Eθ

[

Eθ

[

max
τ

(−Un,τ (h) + p̂τ (h)) | Y1:n
]

1{p̂τ̂h (h)≥ε}
]

≤ 1

1− ρ0

√

log(J !)

2n
Pθ

(

p̂τ̂h(h)≥ ε
)

≤ 1

ε(1− ρ0)

√

log(J !)

2n
Eθ

[

min
τ

Eθ[Un,τ (h) | Y1:n]1{p̂τ̂h (h)≥ε}
]

and then using Lemma 11, we establish that for all ε, η > 0

Eθ

[

Pθ(Un,τ̂h(h)> η | Y1:n)1{p̂τ̂h (h)<ε}
]

≤ Eθ

[

p̂τ̂h(h) ·
e

η

(

1− (J − 1)δ

δ

)2n
(ep̂τ̂h(h)

η

)nη−1
e−np̂τ̂h (h)1{p̂τ̂h (h)<ε}

]

≤ e

η

(

1− (J − 1)δ

δ

)2n
(eε

η

)nη−1
Eθ

[

min
τ

Eθ[Un,τ (h) | Y1:n]1{p̂τ̂h (h)<ε}
]

.

Then, the bound in this case follows by taking η→ 1
2 (by below) and ε= 1

2e

(

δ
1−δ

)4
[log(J !)/(2n)]1/n.

When J > 2, the first trivial bound is obtained by choosing ε= η = 0. Proposition 2 yields:

Eθ

[

min
τ
Un,τ (h)

]

≥ Eθ

[

min
τ

Eθ(Un,τ (h) | Y1:n)
]

−Eθ

[

Eθ

[

max
τ

(p̂τ (h)−Un,τ (h)) | Y1:n
]]

≥ Eθ

[

min
τ

Eθ(Un,τ (h) | Y1:n)
]

− 1

1− ρ0

√

log(J !)

2n

by Lemma 10 below. The inequality follows by taking the infimum over h on both sides.
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For the remaining inequality, when J > 2, Lemma 12 ensures:

Pθ

(

N(1) +N(2) < 2nη
)

≤ J2e−2n(1−ρ1)2(β−2η)2 .

On the other hand, we have by Lemma 10:

Eθ

[

max
τ

(p̂τ (h)−Un,τ (h)) | Y1:n
]

≤ 1

1− ρ0

√

log(J !)

2n

On the event {p̂τ̂h(h)< ε}, for ε < η:

Pθ (Un,τ̂h(h)> η | Y1:n) = Pθ (Un,τ̂h(h)− p̂τ̂h(h)> η− p̂τ̂h(h) | Y1:n)
≤ Pθ (Un,τ̂h(h)− p̂τ̂h(h)> η− ε | Y1:n)

≤ e−λ(η−ε)Eθ
[

eλ{Un,τ̂h
(h)−p̂τ̂h (h)} | Y1:n

]

≤ e−λ(η−ε)e
1

8n

(

λ

1−ρ0

)2

where the last inequality is due to the argument using Marton coupling as shown in the proof
of Lemma 10. Taking the minimum over λ, one gets

Eθ

[

Pθ (Un,τ̂h(h)> η | Y1:n)1p̂τ̂h (h)<ε
]

≤ e−2n(1−ρ0)2(η−ε)2 .

Using Lemma 12, the final bound reads:

Eθ

[

min
τ
Un,τ (h)

]

≥ Eθ

[

min
τ

Eθ [Un,τ (h) | Y1:n]
]

− 1

ε(1− ρ0)

√

log(J !)

2n
Eθ

[

p̂τ̂h(h)1p̂τ̂h (h)≥ε
]

− e−2n(1−ρ0)2(η−ε)2 − J2e−2n(1−ρ1)2(β−2η)2

Choosing ε= η
2 and η = 2

5β and noting that ρ1 < ρ0 one obtains:

Eθ

[

min
τ
Un,τ (h)

]

≥
[

1− 5

β(1− ρ0)

√

log(J !)

2n

]

Eθ

[

min
τ

Eθ [Un,τ (h) | Y1:n]
]

− (J2 + 1)e−cn(1−ρ0)
2β2

.

The result follows by taking the infimum over h.

LEMMA 10. Under Assumptions 1 and 2, for all θ ∈Θdep, Pθ-almost-surely

Eθ

[

max
τ

(p̂τ (h)−Un,τ (h)) | Y1:n
]

≤ 1

1− ρ0

√

log(J !)

2n

where ρ0 =
1−Jδ

1−(J−1)δ .

PROOF. Given that for any λ > 0,

Eθ

[

max
τ

(p̂τ (h)− (Un,τ (h))
]

≤ 1

λ
log

(

J !max
τ

Eθ

[

exp (−λ(Un,τ (h)− p̂τ (h)))

∣

∣

∣

∣

Y1:n

])

we shall exhibit an upper bound of the rhs term by applying Theorem 2.9 of [34], conditional
on Y1:n. So that for now we consider Y = Y1:n as fixed. Define fh,τY for any x= x1:n by:

fh,τY (x) =− 1

n

n
∑

i=1

1τ(xi) 6=hi(Y1:n).
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Then, for any x= x1:n and x′ = x′1:n,

fh,τY (x)− fh,τY (x′)≤ 1

n

n
∑

i=1

1xi 6=x′
i
.

We thus may apply (2.5) in Theorem 2.9 of [34] to get

(18) Eθ

[

eλ(f
h,τ
Y (X)−Eθ[fh,τ

Y (X)|Y1:n])
∣

∣

∣

∣

Y1:n

]

≤ e
λ2

8n2

∑n
i=1(

∑n
j=i Γi,j)

2

,

where Γ comes from a Marton coupling (see Definition 2.1 in [34]) and is given by:

Γj,i := 0, Γi,j := sup
x1,...,xi,x′

i∈X
Pθ

(

X
(x1,...,xi,x′

i,Y1:n)
1,j 6=X

(x1,...,xi,x′
i,Y1:n)

2,j

∣

∣

∣

∣

Y1:n

)

for 1≤ i < j ≤ n. Now,

Γi,j ≤ sup
x1:i−1∈Xi−1

∥

∥

∥

∥

∥

Pθ

(

X
(x1:i−1,ã,b̃,Y1:n)
1,j ∈ ·

∣

∣

∣

∣

X1:i−1 = x1:i−1, Y1:n

)

− Pθ

(

X
(x1:i−1,ã,b̃,Y1:n)
2,j ∈ ·

∣

∣

∣

∣

X1:i−1 = x1:i−1, Y1:n

)

∥

∥

∥

∥

∥

TV

,

ie.,

Γi,j ≤ sup
x1:i−1∈Xi−1

∥

∥

∥

∥

∥

Pθ

(

Xj ∈ ·
∣

∣

∣

∣

X1:i−1 = x1:i−1,Xi = ã, Y1:n

)

− Pθ

(

Xj ∈ ·
∣

∣

∣

∣

X1:i−1 = x1:i−1,Xi = b̃, Y1:n

)

∥

∥

∥

∥

∥

TV

,

ie.,

Γi,j ≤
∥

∥

∥

∥

∥

Pθ

(

Xj ∈ ·
∣

∣

∣

∣

Xi = ã, Y1:n

)

− Pθ

(

Xj ∈ ·
∣

∣

∣

∣

Xi = b̃, Y1:n

)

∥

∥

∥

∥

∥

TV

since conditional on Y1:n, the hidden states form a inhomogeneous Markov chain with transi-
tion kernels (Fk|n[Yk+1:n]). Exponential forgetting of the smoothing distributions in HMMs
(Proposition 4.3.26 in [8]) allows to conclude that

∥

∥

∥

∥

∥

Pθ

(

Xj ∈ ·
∣

∣

∣

∣

Xi = ã, Y1:n

)

− Pθ

(

Xj ∈ ·
∣

∣

∣

∣

Xi = b̃, Y1:n

)

∥

∥

∥

∥

∥

TV

≤ ρj−i0

where ρ0 = 1−Jδ
1−(J−1)δ (see also Lemma 8). By inequality (18):

max
τ

Eθ

[

eλ(f
h,τ
Y (X)−Eθ[fh,τ

Y (X)|Y1:n])
∣

∣

∣

∣

Y1:n

]

≤ e
1

8n

(

λ

1−ρ0

)2

.

Thus,

Eθ

[

max
τ

(p̂τ (h)−Un,τ (h))

∣

∣

∣

∣

Y1:n

]

≤ inf
λ>0

{

log(J !)

λ
+

λ

8n(1− ρ0)2

}

=
1

1− ρ0

√

log(J !)

2n
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LEMMA 11. For all θ ∈Θdep, Pθ-almost-surely

Pθ

(

Un,τ̂h(h)> η | Y1:n
)

≤ p̂τ̂h(h) ·
e

η

(

1− (J − 1)δ

δ

)2n
(ep̂τ̂h(h)

η

)nη−1
e−np̂τ̂h (h).

PROOF. Let S =
∑n

i=1 1τ̂h(Xi) 6=hi(Y1:n). We consider the following operators defined on
L∞({0,1}), for i ∈ [n]:

(Mθ,i.f)(x) := f(0)eλ1τ̂h(0) 6=hi(Y1:n)Bθ,i(x,0) + f(1)eλ1τ̂h(1) 6=hi(Y1:n)Bθ,i(x,1)

where Bθ,i is the Backward kernel defined by:

Bθ,i(x, y) =
φθ,i(y)Q(y,x)

∑

y′ φθ,i(y
′)Q(y′, x)

.

Then observe that,

Eθ[e
λS | Y1:n] = Eθ

[

eλ
∑n

i=2 1τ̂h(Xi) 6=hi(Y1:n)Eθ

[

eλ1τ̂h(X1) 6=h1(Y1:n) |X2:n, Y1:n

]

| Y1:n
]

= Eθ

[

eλ
∑n

i=2 1τ̂h(Xi) 6=hi(Y1:n)(Mθ,1.1)(X2) | Y1:n
]

Repeating inductively the same trick leads to

Eθ[e
λS | Y1:n] = Eθ [(Mθ,n...Mθ,1.1)(Xn+1) | Y1:n]

Hence

Eθ[e
λS | Y1:n]≤ ‖(Mθ,n...Mθ,1.1)‖∞ ≤

n
∏

i=1

|||Mθ,i|||∞

where

|||Mθ,i|||∞ := sup
f,||f ||∞=1

||Mθ,i.f ||∞

=max((Mθ,i.f)(0), (Mθ,i.f)(1))

≤max





∑

z∈{0,1}
eλ1τ̂h(z) 6=hi(Y1:n)Bθ,i(0, z),

∑

z∈{0,1}
eλ1τ̂h(z) 6=hi(Y1:n)Bθ,i(1, z)



 .

But, given that

Bθ,i(x, y) =
φθ,i(y)Q(y,x)

∑

y′ φθ,i(y
′)Q(y′, x)

≤ 1− (J − 1)δ

δ
φθ,i(y)

and that

φθ,i|n(y) = φθ,i+1|nBθ,i(y) =

∑

x φθ,i+1|n(x)φθ,i(y)Q(y,x)
∑

y′ φθ,i(y
′)Q(y′, x)

≥ δφθ,i(y)

1− (J − 1)δ

one obtains

Bθ,i(x, y)≤
(

1− (J − 1)δ

δ

)2

φθ,i|n(y).

Thus,

|||Mθ,i|||∞ ≤
(

1− (J − 1)δ

δ

)2
(

eλ1τ̂h(0) 6=hi(Y1:n)φi|n(0) + eλ1τ̂h(1) 6=hi(Y1:n)φi|n(1)
)

=

(

1− (J − 1)δ

δ

)2

Eθ

[

eλ1τ̂h(Xi) 6=hi(Y1:n) | Y1:n
]

.
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Finally,

Eθ[exp(λS) | Y1:n]≤
(

1− (J − 1)δ

δ

)2n n
∏

i=1

Eθ

[

eλ1τ̂h(Xi) 6=hi(Y1:n) | Y1:n
]

.

One can then use Chernoff’s bound (with qi(h) = Pθ(hi(Y1:n) 6= τ̂h(Xi) | Y1:n)):

Pθ

(

Un,τ̂h(h)> η | Y1:n
)

= Pθ

(

n
∑

i=1

1hi(Y1:n) 6=τ̂h(Xi) > nη | Y1:n
)

≤ inf
λ>0

e−λnηEθ
[

eλS | Y1:n
]

≤ inf
λ>0

e−λnη
(

1− (J − 1)δ

δ

)2n n
∏

i=1

Eθ

[

eλ1τ̂h(Xi) 6=hi(Y1:n) | Y1:n
]

≤ inf
λ>0

e−λnη
(

1− (J − 1)δ

δ

)2n

e
∑n

i=1 log(qi(h)e
λ+1−qi(h))

≤ inf
λ>0

e−λnη
(

1− (J − 1)δ

δ

)2n

enp̂τ̂h (h)(e
λ−1)

≤ p̂τ̂h(h) ·
e

η

(

1− (J − 1)δ

δ

)2n
(ep̂τ̂h(h)

η

)nη−1
e−np̂τ̂h (h)

LEMMA 12. Let β =mini,j 6=k Pθ (Xi ∈ {j, k}) and ρ1 = 1−Jδ. If J ≥ 3, then for η < β
2

and θ ∈Θdep

Pθ

(

N(1) +N(2) < 2nη
)

≤ J2e−2n(1−ρ1)2(β−2η)2 .

PROOF. Let λ > 0, η < β
2 , j 6= k , βi(j, k) = Pθ (Xi ∈ {j, k}).

Pθ (Nj +Nk < 2nη) = Pθ

(

n
∑

i=1

(1Xi∈{j,k} − βi(j, k))< 2nη−
n
∑

i=1

βi(j, k)

)

= Pθ

(

eλ
∑n

i=1(βi(j,k)−1Xi∈{j,k}) > eλ(
∑n

i=1 βi(j,k)−2nη)
)

≤ e−λ(
∑n

i=1 βi(j,k)−2nη)
Eθ

[

eλ
∑n

i=1(βi(j,k)−1Xi∈{j,k})
]

Eθ

[

eλ
∑n

i=1(βi(j,k)−1Xi∈{j,k})
]

can be controlled by the same technique using the Marton cou-

pling that was used in the proof of Lemma 10:

Eθ

[

eλ
∑n

i=1(βi(j,k)−1Xi∈{j,k})
]

≤ e
(nλ)2

8n(1−ρ1)2 = e
nλ2

8(1−ρ1)2

It follows that

Pθ (Nj +Nk < 2nη)≤ inf
λ>0

e
−λ(∑n

i=1 βi(j,k)−2nη)+ nλ2

8(1−ρ1)2

≤ e
−2n(1−ρ1)2

(∑n
i=1 βi(j,k)

n
−2η

)2

≤ e−2n(1−ρ1)2(β−2η)2
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Thus,

Pθ

(

N(1) +N(2) < 2nη
)

≤ J2max
j 6=k

Pθ (Nj +Nk < 2nη)

≤ J2e−2n(1−ρ1)2(β−2η)2 .

6.7. Proof of Theorem 5. Let a ∈ {1,2} and n ∈N. LetQ=

(

1− p p
q 1− q

)

be the transi-

tion matrix and assume 0< q < 1
2 < p and p+ q < 1. Assume also that the initial distribution

is the stationary distribution, that is ν =
(

q
p+q ,

p
p+q

)

.

Pθ (X1 = a | Y1:n) =
∑

x2:n∈{1,2}
Pθ (X1 = a,X2:n = x2:n | Y1:n)

∝
∑

x2:n∈{1,2}
ν(a)Qa,x2

...Qxn−1,xn
fa(Y1)..fxn

(Yn)

Pθ (X2 = a | Y1:n) =
∑

x1,x3:n∈{1,2}
Pθ (X1 = x1,X2 = a,X3:n = x3:n | Y1:n)

∝
∑

x1,x3:n∈{1,2}
ν(x1)Qx1,a...Qxn−1,xn

fx1
(Y1)fa(Y2)...fxn

(Yn)

The Bayes classifier puts the two first observations in the same cluster when:
[

Pθ (X1 = 2 | Y1:n)− Pθ (X1 = 1 | Y1:n)
]

×
[

Pθ (X2 = 2 | Y1:n)− Pθ (X2 = 1 | Y1:n)
]

≥ 0

⇐⇒
[

∑

x2:n∈{1,2}
(ν(2)Q2,x2

f2(Y1)− ν(1)Q1,x2
f1(Y1))Qx2,x3

...Qxn−1,xn
fx2

(Y2)...fxn
(Yn)

]

×
[

∑

x1,x3:n∈{1,2}
(Qx1,2Q2,x3

f2(Y2)−Qx1,1Q1,x3
f1(Y2))ν(x1)Qx3,x4

...Qxn−1,xn
fx1

(Y1)fx3
(Y3)...fxn

(Yn)

]

≥ 0

A sufficient condition for this to be ensured is:
(

f1
f2

(Y1)<
pmin(q,1− q)

qmax(p,1− p)
and

f1
f2

(Y2)<
min(p,1− q)min(q,1− q)

max(q,1− p)max(p,1− p)

)

or
(

f2
f1

(Y1)<
qmin(p,1− p)

pmax(q,1− q)
and

f2
f1

(Y2)<
min(q,1− p)min(p,1− p)

max(p,1− q)max(q,1− q)

)

Since q < 1
2 < p and p+ q < 1, the condition simplifies to:

(

f1
f2

(Y1)< 1 and
f1
f2

(Y2)<
q

1− p

)

or

(

f2
f1

(Y1)<
q(1− p)

p(1− q)
and

f2
f1

(Y2)<
q(1− p)

(1− q)2

)

.

We consider the event:

A=

{

f1
f2

(Y1)< 1,
f1
f2

(Y2)<
q

1− p

}

⋃

{

f2
f1

(Y1)<
q(1− p)

p(1− q)
,
f2
f1

(Y2)<
q(1− p)

(1− q)2

}

In what follows, we seek a sufficient condition under which the Bayes clusterer puts the
two first observations in two different clusters. The Bayes clusterer is a partition F ⋆n that



38

minimizes Eθ [ℓ (πn (X1:n) , Fn) | Y1:n]. Let L(Y1:n) be the likelihood of the observations
Y1:n. Consider the event

Bn = {(∀i ∈ J3, nK) Yi /∈ Supp (f2)}
Assume Bn has positive probability. Since the hidden Markov chain is mixing, this happens
for example when f1 and f2 do not have the same support. On this event,

Eθ [ℓ (πn(X1:n), Fn) | Y1:n] =
∑

x1:n∈{1,2}n

ℓ (πn(x1:n), Fn)Pθ (X1:n = x1:n | Y1:n)

=
∑

x1:2∈{1,2}2

ℓ (πn((x1, x2,1, . . . ,1), Fn)Pθ (X1:2 = x1:2,X3:n = 1 | Y1:n)

=
1

L(Y1:n)

∑

x1:2∈{1,2}2

ℓ (πn((x1, x2,1, . . . ,1)), Fn)ν(x1)Qx1,x2
Qx2,1Q

n−3
1,1 fx1

(Y1)fx2
(Y2)

n
∏

i=3

f1(Yi)

∝
(

ℓ (πn((1, . . . ,1)), Fn)ν(1)Q
2
1,1f1(Y1)f1(Y2) + ℓ (πn((2,2,1, . . . ,1), Fn)ν(2)Q2,2Q2,1f2(Y1)f2(Y2)

+ ℓ (πn((1,2,1, . . . ,1)), Fn)ν(1)Q1,2Q2,1f1(Y1)f2(Y2) + ℓ (πn((2,1, . . . ,1)), Fn)ν(2)Q2,1Q1,1f2(Y1)f1(Y2)
)

∝
(

ℓ (πn((1, . . . ,1)), Fn) q(1− p)2f1(Y1)f1(Y2) + ℓ (πn((2,2,1, . . . ,1), Fn)pq(1− q)f2(Y1)f2(Y2)

+ ℓ (πn((1,2,1, . . . ,1)), Fn)pq
2f1(Y1)f2(Y2) + ℓ (πn((2,1, . . . ,1)), Fn)pq(1− p)f2(Y1)f1(Y2)

)

For n≥ 5, F ⋆n is necessarily of the form F ⋆n = πn((y
⋆
1, y

⋆
2,1, ..,1)) with y⋆1 and y⋆2 in {1,2}.

Thus,

F ⋆n ∈ argminEθ [ℓ (πn(X1:n), Fn) | Y1:n] ⇐⇒ (y⋆1, y
⋆
2) ∈ argminH(y1, y2)

where

H(y1, y2) = (y1 + y2 − 2)(1− p)2f1(Y1)f1(Y2) + (4− y1 − y2)p(1− q)f2(Y1)f2(Y2)

+ (1 + y1 − y2)pqf1(Y1)f2(Y2) + (1− y1 + y2)p(1− p)f2(Y1)f1(Y2)

= y1
[

(1− p)2f1(Y1)f1(Y2) + pqf1(Y1)f2(Y2)− p(1− q)f2(Y1)f2(Y2)− p(1− p)f2(Y1)f1(Y2)
]

+ y2
[

(1− p)2f1(Y1)f1(Y2)− pqf1(Y1)f2(Y2)− p(1− q)f2(Y1)f2(Y2) + p(1− p)f2(Y1)f1(Y2)
]

− 2(1− p)2f1(Y1)f1(Y2) + 4p(1− q)f2(Y1)f2(Y2) + pqf1(Y1)f2(Y2) + p(1− p)f2(Y1)f1(Y2)

y⋆1 6= y⋆2 ⇐⇒
[

(1− p)2f1(Y1)f1(Y2) + pqf1(Y1)f2(Y2)− p(1− q)f2(Y1)f2(Y2)− p(1− p)f2(Y1)f1(Y2)
]

×
[

(1− p)2f1(Y1)f1(Y2)− pqf1(Y1)f2(Y2)− p(1− q)f2(Y1)f2(Y2) + p(1− p)f2(Y1)f1(Y2)
]

< 0

⇐⇒
∣

∣(1− p)2f1(Y1)f1(Y2)− p(1− q)f2(Y1)f2(Y2)
∣

∣< p |qf1(Y1)f2(Y2)− (1− p)f2(Y1)f1(Y2)|
Finally, consider the event:

Cn =
{∣

∣(1− p)2f1(Y1)f1(Y2)− p(1− q)f2(Y1)f2(Y2)
∣

∣< p |qf1(Y1)f2(Y2)− (1− p)f2(Y1)f1(Y2)|
}

We finally have:

A∩Bn ∩Cn ⊂ {g⋆θ(Y1:n) 6= πn ◦ h⋆θ(Y1:n)} .
By choosing appropriately the parameters p and q, one can ensure that Pθ (A∩Bn ∩Cn)
is positive for many emission densities not having the same support. For example, one can
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ensure that for p = 0.58, q = 0.35, f1(Y1) = 5, f2(Y1) = 2.5, f1(Y2) = 1.8, f2(Y2) = 1.2,
both inequalities involved in the definition of event Cn and A are ensured. Choosing smooth
densities having not exactly the same support, the event A∩Bn ∩Cn can be ensured to have
positive probability. The counterexamples for n ∈ {3,4} can be proved as for the case n= 2
presented in Section 3.2.

6.8. Proof of Theorem 7. Let n ∈ N and θ⋆ =
(

ν⋆,Q⋆, (f⋆x)x∈X
)

∈ Θind such that the
assumption of Theorem 3 is ensured. It follows that Pθ⋆ (g⋆θ⋆(Y1:n) 6= πn ◦ h⋆θ⋆(Y1:n))> 0. We
also assume the emission densities (f⋆x)x∈X to be uniformly continuous. We denote Θ̃ ⊂ Θ
the subset of parameters of the form θ = (ν,Q, f⋆1 , . . . , f

⋆
J ). Consider the two functions

H : Hn ×Θ×Yn −→ [0,1]

(h, θ, y1:n) 7−→ Eθ

[

1

n

n
∑

i=1

1hi(Y1:n) 6=Xi

∣

∣

∣

∣

Y1:n = y1:n

]

G : Gn ×Θ×Yn −→ [0,1]

(g, θ, y1:n) 7−→ Eθ

[

ℓ (πn (X1:n) , g(Y1:n))

∣

∣

∣

∣

Y1:n = y1:n

]

By uniform continuity of (f⋆x)x∈X, it follows that for all g ∈ Gn and h ∈ Hn, H(h, ., .)
and G(g, ., .) are uniformly continuous. Since Hn and Gn are finite, there exists V(θ⋆) ⊂
Θ̃ a neighborhood of θ⋆ and An an open subset of Yn such that Pθ⋆ (An) > 0 and
(∀θ ∈ V(θ⋆)) (∀y1:n ∈An)
argmin

h
H(h, θ, y1:n) = argmin

h
H(h, θ⋆, y1:n) and argmin

g
G(g, θ, y1:n) = argmin

g
G(g, θ⋆, y1:n)

Or equivalently g⋆θ⋆(y1:n) = g⋆θ(y1:n) and h⋆θ⋆(y1:n) = h⋆θ(y1:n). On the other hand, using ex-
actly the same arguments as those of Theorem 3, one could also have chosen θ⋆ ∈Θind such
that not only Pθ⋆ (g

⋆
θ⋆(Y1:n) 6= πn ◦ h⋆θ⋆(Y1:n))> 0 but also Pθ⋆ ({g⋆θ⋆(Y1:n) 6= πn ◦ h⋆θ⋆(Y1:n)} ∩An)>

0. It follows that

(∀θ ∈ V(θ⋆))Pθ ({g⋆θ(Y1:n) 6= πn ◦ h⋆θ(Y1:n)} ∩An) = Pθ ({g⋆θ⋆(Y1:n) 6= πn ◦ h⋆θ⋆(Y1:n)} ∩An)
which is positive when θ approches θ⋆ by continuity of the map

θ 7→ Pθ ({g⋆θ⋆(Y1:n) 6= πn ◦ h⋆θ⋆(Y1:n)} ∩An) .
The result follows.

6.9. Proof of Proposition 1. The result is straightforward when n = 1. We assume in
what follows n≥ 2. We prove the proposition by showing that when the probability of having
small clusters is high, the two risks are not necessarily equivalent; and infg∈Gn

Rclust
n (θ, g)

may be much smaller than infh∈Hn
Rclass
n (θ,h).

Consider J = 3 (similar examples can be constructed for any J ≥ 3) with ν1 = 1 − 2η,
ν2 = ν3 = η. We take F1 = U(0,1/2), F2 = U(3/4,1) and F3 = U(3/4− ε,1− ε) for some
0< ε< 1/4 where U(a, b) is the uniform distribution on the interval (a, b). In this case,

Pθ(Xi ∈ · | Yi ∈ (0,1/2)) = δ1(·)
Pθ(Xi ∈ · | Yi ∈ (3/4− ε,3/4)) = δ3(·)

Pθ(Xi ∈ · | Yi ∈ (1− ε,1)) = δ2(·)

Pθ(Xi ∈ · | Yi ∈ (3/4,1− ε)) =
1

2
δ2(·) +

1

2
δ3(·).



40

So in this case

Eθ [Un,τ (h) | Y1:n] = Eθ

[ 1

n

n
∑

i=1

1hi(Y1:n) 6=τ(Xi) | Y1:n
]

=
1

n

n
∑

i=1

Pθ(hi(Y1:n) 6= τ(Xi) | Y1:n).

A Bayes “classifier” minimizing h 7→ Rclass
n (θ,h) in this case is given by h⋆θ =

(

h⋆θ,i

)

i∈[n]
where

h⋆θ,i =











1 if Yi ∈ (0,1/2)

2 if Yi ∈ (1− ε,1)

3 if Yi ∈ (3/4− ε,1− ε).

With this choice, the optimal permutation is identity and

min
τ

Eθ [Un,τ (h
⋆
θ) | Y1:n] =

1

n

n
∑

i=1

1Yi∈(0,1/2)Pθ(1 6=Xi | Yi)

+
1

n

n
∑

i=1

1Yi∈(3/4−ε,3/4)Pθ(3 6=Xi | Yi)

+
1

n

n
∑

i=1

1Yi∈(1−ε,1)Pθ(2 6=Xi | Yi)

+
1

n

n
∑

i=1

1Yi∈(3/4,1−ε)Pθ(3 6=Xi | Yi),

ie.,

min
τ

Eθ [Un,τ (h
⋆
θ) | Y1:n] =

1

2n

n
∑

i=1

1Yi∈(3/4,1−ε).

Thus,

Eθ

[

min
τ

Eθ(Un,τ (h
⋆
θ) | Y1:n)

]

=
1

2
Pθ(Y1 ∈ (3/4,1− ε))

=
1

2

(

η · (1− 4ε) + η · (1− 4ε)
)

= η(1− 4ε).

We now investigate Eθ [minτ Un,τ (h
⋆
θ)], for the previous Bayes classifier h⋆θ (which does

not necessarily minimize h 7→ Eθ [minτ Un,τ (h)]). We rewrite,

Eθ

[

min
τ
Un,τ (h

⋆
θ)
]

= Eθ

[

min
τ
Un,τ (h

⋆
θ)1

∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1)=0

]

+

n
∑

m=1

Eθ

[

min
τ
Un,τ (h

⋆
θ)1

∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1)=m

]

Let first consider Eθ[minτ Un,τ (h
⋆
θ) | Y1:n] on the event that {∑n

i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1) =
0}. Let define N =

∑n
i=1 1Xi 6=1:
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• if N = 0 this means that all the Yi are in (0,1/2) and our classifier h⋆θ combined with the
identity permutation will make zero error, i.e. minτ Un,τ (h

⋆
θ) = 0 on this event;

• if N = 1 this means that there is only one j ∈ {1, . . . , n} such that Yj ∈ (3/4,1− ε) [by
assumption it can not be in (3/4− ε,3/4) or (1− ε,1)]. Our classifier will predict h⋆θ,i = 1
for all i 6= j and h⋆θ,j = 3. Now, necessarily Xi = 1 for i 6= j. If Xj = 3 then h⋆θ ◦ Id will

have loss zero, and if Xj = 2 then h⋆θ ◦
(

1 2 3
1 3 2

)

will have loss zero. So in the event that

{N = 1} we also have that minτ Un,τ (h
⋆
θ) = 0.

• If N ≥ 2 our classifier will still classify perfectly all the Yi ∈ (0,1/2) so the loss can not
exceed minτ Un,τ (h

⋆
θ)≤N/n in this case.

So on the event {∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1) = 0}:

Eθ

[

min
τ
Un,τ (h

⋆
θ) | Y1:n

]

≤ Eθ

[N

n
1N≥2 | Y1:n

]

≤
n
∑

k=2

k

n
Pθ

(

N = k | Y1:n
)

But under the law of X1:n | Y1:n in the considered event, we have that N is almost-surely
equal to the number of Yi ∈ (3/4,1− ε), so

Eθ

[

min
τ
Un,τ (h

⋆
θ) | Y1:n

]

≤
n
∑

k=2

k

n
1
∑n

i=1 1Yi∈(3/4,1−ε)=k

=
( 1

n

n
∑

i=1

1Yi∈(3/4,1−ε)
)

1
∑n

i=1 1Yi∈(3/4,1−ε)≥2.

Deduce that,

Eθ

[

min
τ
Un,τ (h

⋆
θ)1

∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1)=0

]

≤ Eθ

[

( 1

n

n
∑

i=1

1Yi∈(3/4,1−ε)
)

1
∑n

i=1 1Yi∈(3/4,1−ε)≥2 |
n
∑

i=1

1Yi∈(3/4−ε,3/4)∪(1−ε,1) = 0

]

Conditional on {∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1) = 0}, the random variable

∑n
i=1 1Yi∈(3/4,1−ε)

has a Binomial(n,2η) distribution. Then,

Eθ

[

min
τ
Un,τ (h

⋆
θ)1

∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1)=0

]

≤ 1

n

n
∑

k=2

(

n

k

)

k · (2η)k(1− 2η)n−k

=
2η(1− (1− 2η)n − 2η)

1− 2η

≍ 4(n− 1)η2

when η≪ 1/n.
Next (remark that this can be largely improved, but this is indeed for our purpose),

n
∑

m=1

Eθ

[

min
τ
Un,τ (h

⋆
θ)1

∑n
i=1 1Yi∈(3/4−ε,3/4)∪(1−ε,1)=m

]
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≤ Pθ

(

n
∑

i=1

1Yi∈(3/4−ε,3/4)∪(1−ε,1) ≥ 1

)

= 1− Pθ

(

n
∑

i=1

1Yi∈(3/4−ε,3/4)∪(1−ε,1) = 0

)

= 1− Pθ

(

∀i, Yi /∈ (3/4− ε,3/4)∪ (1− ε,1)
)

= 1−
(

(1− 2η) + 2η(1− 4ε)
)n

= 1− (1− 8ηε)n

≍ 8nηε

when η≪ n. So by choosing ε≍ η, we have shown that whenever η≪ 1/n

inf
h
Eθ

[

min
τ
Un,τ (h)

]

≤ Eθ

[

min
τ
Un,τ (h

⋆
θ)
]

. nη2

but

inf
h
Eθ

[

min
τ

Eθ [Un,τ (h) | Y1:n]
]

= Eθ

[

min
τ

Eθ [Un,τ (h
⋆
θ) | Y1:n]

]

∼ η

so that

infhEθ [minτ Un,τ (h)]

infhEθ [minτ Eθ [Un,τ (h) | Y1:n]]
. nη

which goes to zero as η→ 0.

6.10. Proof of Theorem 9. Simple computations lead to the expression of the Bayes risk
of classification:

inf
h∈Hn

Rclass
n (θ,h) =

1

n

n
∑

i=1

Eθ

[

min
x0∈X

Pθ (Xi 6= x0 | Y1:n)
]

=
1

n

n
∑

i=1

Eθ



min
x0∈X





∑

x 6=x0

φθ,i|n(x)







 .

6.10.1. Bounds for the independent scenario. First, for θ ∈Θind,

inf
h∈Hn

Rclass
n (θ,h) = Eθ

[

min
x0∈X

Pθ (X1 6= x0 | Y1)
]

= Eθ

[

min
x0∈X

∑

x 6=x0
νxfx(Y1)

∑

x νxfx(Y1)

]

=

∫

min
x0∈X

∑

x 6=x0

νxfx(y)dL(y)

so that using Assumption 1,

(19) δ

∫

Y

min
x0∈X





∑

x 6=x0

fx(y)



dL(y)≤ inf
h∈Hn

Rclass
n (θ,h)

≤ (1− (J − 1)δ)

∫

Y

min
x0∈X





∑

x 6=x0

fx(y)



dL(y).
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6.10.2. Bounds for the dependent scenario. Let θ ∈Θdep. We first have

inf
h∈Hn

Rclass
n (θ,h) =

1

n

n
∑

i=1

Eθ



min
x0∈X

∑

x 6=x0

φθ,i|1:n(x)



≤ 1

n

n
∑

i=1

Eθ



min
x0∈X

∑

x 6=x0

φθ,i(x)



 .

Now, for any i≤ n− 1, using the Backward recursions (see Proposition 3.3.9 in [8]),

Eθ



min
x0∈X

∑

x 6=x0

φθ,i|1:n(x)



= Eθ



min
x0∈X

∑

x 6=x0

∑

x′∈X
φθ,i+1|1:n(x

′)Bθ,i[Y1:i](x
′, x)



 .

Now, using Assumption 1 and Equation (17), we get

Bθ,i[Y1:i](x
′, x) =

φθ,i(x)Q(x,x′)
∑

x̃∈X φθ,i(x̃)Q(x̃, x′)
≥ φθ,i(x)Q(x,x′)

1− (J − 1)δ

so that

Eθ



min
x0∈X

∑

x 6=x0

φθ,i|1:n(x)



≥ δ

1− (J − 1)δ
Eθ



min
x0∈X

∑

x′

φθ,i+1(x
′)
∑

x 6=x0

φθ,i(x)





≥ δ

1− (J − 1)δ
Eθ



min
x0∈X

∑

x 6=x0

φθ,i(x)





=
δ

1− (J − 1)δ
Eθ



min
x0∈X

∑

x 6=x0

φθ,i(x)



 .

Now, for i= n, the same inequality obviously holds, so that we get

δ

1− (J − 1)δ

1

n

n
∑

i=1

Eθ



min
x0∈X

∑

x 6=x0

φθ,i(x)



≤ inf
h∈Hn

Rclass
n (θ,h)≤ 1

n

n
∑

i=1

Eθ



min
x0∈X

∑

x 6=x0

φθ,i(x)



 .

It suffices then to exhibit upper and lower bounds on
∑n

i=1Eθ

[

minx0∈X
∑

x 6=x0
φθ,i(x)

]

.

Using the Forward recursions (see Equation (3.22) in Proposition 3.2.5 of [8]), for any i≥ 2,

Eθ



min
x0∈X





∑

x 6=x0

φθ,i(x)







= Eθ

[

min
x0∈X

(

∑

x 6=x0

∑

x′∈XQx′,xφθ,i−1(x
′)fx(Yi)

∑

x∈X
∑

x′∈XQx′,xφθ,i−1(x′)fx(Yi)

)]

.
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Let A ∈ Y . One has:

Pθ (Yi ∈A | Y1:i−1) =
∑

x∈X
Pθ (Yi ∈A,Xi = x | Y1:i−1)

=
∑

x∈X
Pθ (Yi ∈A |Xi = x,Y1:i−1)Pθ (Xi = x | Y1:i−1)

=
∑

x∈X
Pθ (Xi = x | Y1:i−1)

∫

A
fx(y)dL(y)

=
∑

x∈X

∑

x′∈X
Pθ

(

Xi−1 = x′,Xi = x | Y1:i−1

)

∫

A
fx(y)dL(y)

=
∑

x∈X

∑

x′∈X
Pθ

(

Xi = x |Xi−1 = x′, Y1:i−1

)

φθ,i−1(x
′)
∫

A
fx(y)dL(y)

=

∫

A

(

∑

x∈X

∑

x′∈X
Qx′,xφθ,i−1(x

′)fx(y)

)

dL(y),

so that, conditionally on Y1:i−1, Yi has density
∑

x∈X
∑

x′∈XQx′,xφθ,i−1(x
′)fx with respect

to the dominating measure L. We thus get :

Eθ



min
x0∈X





∑

x 6=x0

φθ,i(x)







= Eθ

[

Eθ

[

min
x0∈X

(

∑

x 6=x0

∑

x′∈XQx′,xφθ,i−1(x
′)fx(Yi)

∑

x∈X
∑

x′∈XQx′,xφθ,i−1(x′)fx(Yi)

)

∣

∣

∣

∣

Y1:i−1

]]

= Eθ





∫

Y

min
x0∈X





∑

x 6=x0

∑

x′∈X
Qx′,xφθ,i−1(x

′)fx(y)



dL(y)



 .

Then, under Assumption 1, for any i≥ 2,

(20) δ

∫

Y

min
x0∈X





∑

x 6=x0

fx(y)



dL(y)≤ Eθ



min
x0∈X





∑

x 6=x0

φθ,i(x)









≤ (1− (J − 1)δ)

∫

Y

min
x0∈X





∑

x 6=x0

fx(y)



dL(y),

The result follows.

6.11. Proof of Theorem 10. We first control the excess risk of classification by the errors
made in the estimation of the parameters.

PROPOSITION 3. For all θ ∈Θdep satisfying assumptions 1, 2 and 4 and for all n≥ 1,

Rclass
n (θ, ĥ)− inf

h∈Hn

Rclass
n (θ,h)≤CEθ

[

1

n
‖ν − ν̂‖2 +

(

1 +
δ

δ̂

)

‖Q− Q̂‖F
]

+
δC

√
C⋆

n

n
∑

i=1

n
∑

l=1

Eθ

[

(ρ̂∨ ρ)2|l−i|‖fx − f̂x‖2∞
]1/2

,

where C = 8(1−δ)
δ3 , ρ= 1−2δ

1−δ , ρ̂= 1−2δ̂
1−δ̂ and δ̂ =minx,x′ Q̂x,x′ .
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PROOF. Recall that φθ,i|n(·) = Pθ(Xi ∈ · | Y1:n). Then,

Rclass
n (θ, ĥ)− inf

h∈Hn

Rclass
n (θ,h)

= Eθ

[ 1

n

n
∑

i=1

1Xi 6=ĥi

]

−Eθ

[ 1

n

n
∑

i=1

1Xi 6=h⋆
θ,i

]

=
1

n

n
∑

i=1

Eθ

[

Pθ(Xi = h⋆θ,i | Y1:n)− Pθ(Xi = ĥi | Y1:n)
]

≤ 1

n

n
∑

i=1

Eθ

[

Pθ(Xi = h⋆θ,i | Y1:n)− Pθ̂(Xi = ĥi | Y1:n) + ‖φθ̂,i|n − φθ,i|n‖TV

]

≤ 1

n

n
∑

i=1

Eθ

[

Pθ(Xi = h⋆θ,i | Y1:n)− Pθ̂(Xi = h⋆θ,i | Y1:n) + ‖φθ̂,i|n − φθ,i|n‖TV

]

≤ 2

n

n
∑

i=1

Eθ

[

‖φθ̂,i|n − φθ,i|n‖TV

]

where the penultimate line follows because by definition ĥi maximizes x 7→ Pθ̂(Xi = x |
Y1:n). Then, under Assumption 4 and by application of Proposition 2.2 of [12] (Equation
(10)), one has

Rclass
n (θ, ĥ)− inf

h∈Hn

Rclass
n (θ,h)

≤ 8(1− δ)

δ2
Eθ

[

1

nδ
‖ν − ν̂‖2 +

(

1

δ
+

1

δ̂

)

‖Q− Q̂‖F +
1

n

n
∑

i=1

n
∑

l=1

δ
(ρ̂∨ ρ)|l−i|
c⋆(Yl)

max
x∈X

‖fx − f̂x‖∞
]

≤CEθ

[

1

n
‖ν − ν̂‖2 +

(

1 +
δ

δ̂

)

‖Q− Q̂‖F +
δ2

n

n
∑

i=1

n
∑

l=1

(ρ̂∨ ρ)|l−i|
c⋆(Yl)

max
x∈X

‖fx − f̂x‖∞
]

≤CEθ

[

1

n
‖ν − ν̂‖2 +

(

1 +
δ

δ̂

)

‖Q− Q̂‖F
]

+
δ2C

n

n
∑

i=1

n
∑

l=1

Eθ

[

(ρ̂∨ ρ)|l−i|
c⋆(Yl)

max
x∈X

‖fx − f̂x‖∞
]

≤CEθ

[

1

n
‖ν − ν̂‖2 +

(

1 +
δ

δ̂

)

‖Q− Q̂‖F
]

+
δ2C

n

n
∑

i=1

n
∑

l=1

Eθ

[

1

c⋆(Yl)2

]1/2

Eθ

[

(ρ̂∨ ρ)2|l−i|‖fx − f̂x‖2∞
]1/2

≤CEθ

[

1

n
‖ν − ν̂‖2 +

(

1 +
δ

δ̂

)

‖Q− Q̂‖F
]

+
δC

√
C⋆

n

n
∑

i=1

n
∑

l=1

Eθ

[

(ρ̂∨ ρ)2|l−i|‖fx − f̂x‖2∞
]1/2

In order to obtain a rate on the excess risk, we make use of Algorithm 1 which will yield the
estimates used in the statement of the corollary. This algorithm merges the spectral algorithms
of [12, 1] with some slight modifications. Note that all the expectations and probabilities of
this proof are with respect to the observations and the random unit matrices. Also note that
the algorithm outputs estimates of the densities that are not necessarily bona-fide densities.
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Algorithm 1 Non-parametric spectral estimation of the transition matrix and the emission
laws

Input

• Number of states J , integers D and r.
• Data (Yi)i≤n+2 drawn from a HMM with J states.
• Functions (ϕd)d∈N uniformly bounded such that O = (Eθ[ϕd(Y1) |X1 = j])1≤d≤D,1≤j≤J is of rank
J with σJ (O) bounded away from 0 uniformly in D, at least for D large enough.

• K a Lipschitz-continuous kernel

Output

• Spectral estimators Q̂ and (f̂j)1≤j≤J
Estimation

[Step 1] For all a, b, c ∈ J1,DK, consider the following empirical estimators:

L̂(a) =
1

n

n
∑

s=1

ϕa(Ys)

N̂(a, b) =
1

n

n
∑

s=1

ϕa(Ys)ϕb(Ys+1)

P̂ (a, c) =
1

n

n
∑

s=1

ϕa(Ys)ϕc(Ys+2)

M̂(a, b, c) =
1

n

n
∑

s=1

ϕa(Ys)ϕb(Ys+1)ϕc(Ys+2)

M̂x,L(a, b) =
1

n

n
∑

s=1

ϕa(Ys)KL(x,Ys+1)ϕb(Ys+2)

where L is chosen such that: 2L ≍ (n/ log(n))1/(2s+1) and s is the smoothness of the emissions.
[Step 2] Let V̂ be the D × J matrix of orthonormal right singular vectors of P̂ corresponding to its top J

singular values.
[Step 3] For all d ∈ J1,DK, set B̂(d) = (V̂ ⊤P̂ V̂ )−1V̂ ⊤M̂(., d, .)V̂

[Step 4] Generate Ω a J×J unit matrix uniformly drawn, for all x ∈ J1, JK, Ĉ(x) =
∑D
d=1(V̂ Ω)(d,x)B̂(d)

[Step 5] Compute R̂1 a J × J unit Euclidean norm columns matrix that diagonalizes the matrix Ĉ(1):

R̂−1
1 Ĉ(1)R̂1 =Diag[(Λ̂(1,1), ..., Λ̂(1, J))]

[Step 6] For all x,x′ ∈ J1, JK, Λ̂(x,x′) = (R̂−1
1 Ĉ(x)R̂1)x′,x′ .

[Step 7] Repeat steps 4 to 6 r times and take Ωr maximizing i 7→mink≤J mink1 6=k2 |Λ̂i(k, k1)− Λ̂i(k, k2)|

[Step 8] Set Ô = V̂ ΩrΛ̂, ν̃ = (V̂ ⊤Ô)−1V̂ ⊤L̂ and Q̂ = ΠTM

(

(V̂ ⊤ÔDiag[ν̃])−1V̂ ⊤N̂ V̂ (Ô⊤V̂ )−1
)

where ΠTM denotes the projection (with respect to the scalar product given by the Frobenius norm) onto
the convex set of transition matrices.

[Step 9] For x ∈R, set B̂x = B̂x,D,L = (V̂ ⊤P̂ V̂ )−1V̂ ⊤M̂x,LV̂

[Step 10] Set R̂2 = Q̂Ô⊤V̂ and take f̃j(x) = (R̂2B̂
xR̂−1

2 )j,j

[Step 11] f̂j(x) =

{

f̃j(x) si |f̃j(x)| ≤ nβ

nβsign(f̃j(x)) otherwise
for β > 0 fixed (but arbitrary).

This is not problematic for the plug-in procedure as one typically uses the Forward-Backward
algorithm [8] which works even if the emissions are not correctly normalized.

First, we start by controlling Eθ

[

‖Q− Q̂‖2F
]

, Eθ
[

1
δ̂2

]

and Eθ

[

maxx∈X‖fx − f̂x‖2∞
]

us-

ing the estimates yielded by the algorithm. Thanks to step 7 of the algorithm, one can obtain
a slightly different version of Theorem 3.1 of [12] (Note that this version is used in the
proof of Corollary 3.2 in [12]). It ensures the existence of positive constants C,x0, y0,D0
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and n1 such that for all D ≥ D0 there exist a permutation τD ∈ SJ such that for all
n ≥ n1η

2
3(ϕD)x(y + log(r))ey/r , x ≥ x0, y ≥ y0 and r ≥ 1, with probability at least

1− 4e−x − 2e−y:

‖QτD − Q̂‖2F ≤Cη23(ϕD)x(y+ log(r))ey/r/n

max
x∈X

‖fD,τD(x) − f̂
(r)
D,x‖22 ≤Cη23(ϕD)x(y+ log(r))ey/r/n

(21)

where:

• (ϕk)k∈N is the basis used in Algorithm 1

• η23(ϕD) = supy,y′∈Y3

∑D
a,b,c=1 (ϕa(y1)ϕb(y2)ϕc(y3)−ϕa(y

′
1)ϕb(y

′
2)ϕc(y

′
3))

2

• fD,x =
∑D

d=1〈fx,ϕd〉ϕd the projection of the density fx on the subspace spanned by the
first D components of the basis.

• f̂ (r)D,x =
∑D

d=1 Ôd,xϕd where Ô is the matrix constructed at step 8 of Algorithm 1.

As detailed in [12], when using a wavelet basis or trigonometric polynomials basis, η3(ϕD)
ensures for a constant Cη > 0:

(22) η3(ϕD)≤CηD
3/2 and max

l∈N
‖ϕl‖∞ <∞

We assume a similar basis is used.
It is important to note that the estimator f̂ (r)D,x is not the one yielded by the algorithm 1 but

it is rather the one used in [12]. We do not use it for the estimation because it does not allow
obtaining the appropriate rate in infinite norm (see [12] for more details). However, we will
use it in our proof because ‖Ô(., k)−O(., τDn

(k))‖2 = ‖f̂ (r)Dn,k
− fDn,τDn (k)

‖2.
Assume that the parameters x = xn, y = yn, D = Dn and r = rn are increasing with

respect to n and that n≥ n1C
2
ηD

3
nxn(yn + log(rn))e

yn/rn .

Control of Eθ

[

‖QτDn − Q̂‖2F
]

. The control of ‖QτDn − Q̂‖2F in expectation is already

proved in Corollary 3.2 of [12] using Inequality (21). The proof chooses rn ∝ log(n) and
η3(ϕDn

) = o(
√
n/ log(n)) and yields:

Eθ

[

‖QτDn − Q̂‖2F
]

=O(η23(ϕDn
) log(n)/n) =O(D3

n log(n)/n) (by (22))

for a sequence (τDn
)n of permutations. We will keep the same values of rn and Dn in what

follows.
One of the advantages of this algorithm with respect to the previous versions is that it

allows obtaining the appropriate rate on the errors in the estimation of all the model parame-
ters. This is done thanks to the use of the kernel estimator of the emission densities for which
the error of approximation is tuned (through the parameter L) independently of the error of
estimation of the transition matrix. The shortcoming of the algorithm proposed in [12] is that
it does not allow controlling the rate on the emission densities without altering that of the
transition matrix as it is clear in Corollary 3.3 of that paper.

Control of Eθ

[

1
δ̂2

]

. Let δ̃ = δ
2 . Then,

Eθ

[

1

δ̂2

]

= Eθ

[

1

δ̂2
1δ̂<δ̃

]

+Eθ

[

1

δ̂2
1δ̂≥δ̃

]

≤ Eθ

[

1

δ̂2
1δ̂<δ̃

]

+
1

δ̃2
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On the other hand:

δ̃ − δ̂ = δ− δ̂ − δ

2
≤
∣

∣

∣
δ − δ̂

∣

∣

∣
− δ

2
≤max

i,j

∣

∣

∣
Q
τDn

i,j − Q̂i,j

∣

∣

∣
− δ

2
≤ ‖QτDn − Q̂‖F − δ

2

where we have used the inequality |mini,jQi,j −mini,j Q̂i,j | ≤maxi,j |Qi,j − Q̂i,j |.
We assume that all the entries of Q̂ are between n−α/2 and 1− n−α/2 for α ≥ 2. If it is

not the case, modifying the entries of Q̂ to obtain a similar property induces an error of order
n−α/2 which is negligible with respect to the rates we seek and all the subsequent results
remain unchanged. It follows that δ̂ ≥ n−α/2 and:

Eθ

[

1

δ̂2

]

≤ nαPθ

(

‖QτDn − Q̂‖F >
δ

2

)

+
1

δ̃2

Choosing for example xn = yn = rn = α log(n), then one obtains for n large enough:

Pθ

(

‖QτDn − Q̂‖F >
δ

2

)

≤ Pθ

(

‖QτDn − Q̂‖F >Cη23(ϕDn
)xn(yn + log(rn))e/n

)

≤ 4e−xn + 2e−yn

It follows that Eθ
[

1
δ̂2

]

is upper-bounded by an absolute constant.

The values xn, yn and rn will be kept the same in what follows.

Control of Eθ

[

maxx∈X‖fτDn (x)
− f̂x‖2∞

]

. The difficulty of the control of this quantity lies

in ensuring that the same permutation τDn
used for the control ofQ still works for the control

of the emission densities. In the spectral algorithm of [1], the matrix R̂ is chosen indepen-
dently of Q or Q̂ (In fact, this algorithm does not even estimate Q̂). Had we used this matrix,
there would not be any reason for which the same permutation τDn

works for the control of
the emission densities. To solve this problem, we choose a matrix R̂ that depends explicitly
on Q̂ so that the same permutation that works for the control of Q works also for that of the
emission densities. We follow here the steps of the proof of Theorem 5 in [1].

Let Mx,L, P,O be the quantities estimated by M̂x,L, P̂ , Ô and construct f̂j , f̃j using Al-
gorithm 1. Let En be the event with probability greater than 1− 4e−xn − 2e−yn on which
the control of (21) holds when xn = yn = rn = α log(n) and D =Dn. For γ > 0 there exists
c= c(γ) such that the event:

An =

{

‖P̂ − P‖ ≤ cDn

(

log(n)

n

) s

2s+1

, sup
x∈R

‖M̂x,L −Mx,L‖ ≤ cD2
n

(

log(n)

n

) s

2s+1

}

is measurable and has probability n−γ (Cf. Lemma 25.a of [1]). Given thatEn has probability
greater than 1− 4e−xn − 2e−yn = 1− 6n−α, it follows that An ∩En has probability greater
than 1 − n−γ − 6n−α. Note that the difference with the original proof is that we use the
event An ∩ En instead of the event An. This is compulsory to control the errors of Q̂ and f̂
simultaneously.

On the event An ∩ En, and at step 10 of Algorithm 1, instead of using the matrix R̂
appearing in the spectral algorithm in [1], we rather use the matrix R̂2 = Q̂Ô⊤V̂ where the
components V̂ , Q̂ and Ô are constructed in the Algorithm 1. On the other hand, since the
columns of R̂ are not normalized, we choose R̃2 =QO⊤V̂ on the contrary to what is done
in the proof of Theorem 5 in [1]. By denoting QτDn = PτDn

QP−1
τDn

, one obtains:

R̂2 − PτDn
R̃2 = Q̂Ô⊤V̂ − PτDn

QO⊤V̂ =
(

Q̂(Ô−OP⊤
τDn

)⊤ + (Q̂−QτDn )PτDn
O⊤
)

V̂
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It follows by using operator norm:

‖R̂2 − PτDn
R̃2‖ ≤

(

‖Q̂‖‖Ô−OP⊤
τDn

‖+ ‖PτDn
O⊤‖‖Q̂−QτDn‖

)

‖V̂ ‖(23)

First, note that on the event An ∩En:

‖Q̂‖ ≤ 1

‖V̂ ‖ ≤ ‖V̂ ‖F = J1/2 (columns are normalized)

‖Q̂−QτDn‖ ≤ ‖Q̂−QτDn‖F

≤
(

CC2
ηD

3
nxn(yn + log(rn))e

yn/rn/n
)1/2

(by (21) and (22))

‖PτDn
O⊤‖= ‖O‖= sup

‖v‖=1





J
∑

j=1

(

Dn
∑

l=1

vl〈fj ,ϕl〉
)2




1/2

≤ (JDn)
1/2 max

1≤l≤Dn

‖ϕl‖∞

‖Ô−OP⊤
τDn

‖ ≤ ‖Ô−OP⊤
τDn

‖F =

(

K
∑

k=1

‖Ô(., k)−O(., τDn
(k))‖22

)1/2

=

(

K
∑

k=1

‖f̂ (r)Dn,k
− fDn,τDn (k)

‖22

)1/2

≤
(

KCC2
ηD

3
nxn(yn + log(rn))e

yn/rn/n
)1/2

(by (21) and (22)).

By keeping the previous choices of xn, yn and rn then by Inequality (23), there exists a
constant C ′ such that:

1An∩En
‖R̂2 − PτDn

R̃2‖ ≤C ′D1/2
n D3/2

n

log(n)√
n

.

By Lemma 25.b of [1], for n large enough, P̂ has rank J , (V̂ T P̂ V̂ ) and (V̂ TPV̂ ) are in-
vertible and the matrices (B̂(d))1≤d≤Dn

appearing in algorithm 1 are then well-defined. By
Lemma 11 and 25.b of [1], B̃x = (V̂ TPV̂ )−1V̂ TMxV̂ satisfies:

(24) B̃x = (QOT V̂ )−1Dx(QOT V̂ ) = R̃−1
2 DxR̃2

where Dx = (KL[fj ](x))j≤J . Using the fact that σJ(V̂ ) = 1 (the columns of V̂ are orthonor-
mal) and σJ(QOT )≥ σJ(Q)σJ(O)> 0 (because Q in full rank and σJ(O) is bounded from
below by an absolute constant by assumption of the algorithm), it follows that ‖R̃−1

2 ‖−1 is
bounded from below by an absolute constant because:

(25) ‖R̃−1
2 ‖−1 =

1

σ1(R̃
−1
2 )

= σJ(R̃2)

= σJ(QO
T V̂ )≥ σJ(QO

T )σJ(V̂ ) = σJ(QO
T )≥ σJ(Q)σJ(O)> 0.

Thus, for n large enough, the assumption of Lemma 13 (stated below) is verified with At =
B̃t, Ât = B̂t , R= R̃2 =QOT V̂ . This ensures that:
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1An∩En
max
x∈X

‖f̃x −KL[fτDn (x)
]‖∞

≤ 4κ(R̃2)

[

1An∩En
sup
t
‖B̃t − B̂t‖+ λmaxκ(R̃2)‖R̃−1

2 ‖1An∩En
‖R̂2 − PτDn

R̃2‖
]

where λmax = suptmaxj |λt,j |= suptmaxj |KL[fj ]|<∞ and λt,j is the j-th eigenvalue of
B̃t. By Lemma 35.c of [1], one has for some constant C:

1An∩En
sup
t
‖B̃t − B̂t‖ ≤CD2

n

(

log(n)

n

)
s

2s+1

.

By Lemma 35.b in [1], one obtains: κ(R̃2)≤ C̃D
1/2
n and ‖R̃−1

2 ‖ upper-bounded by an abso-
lute constant by (25). We finally obtain that:

1An∩En
max
x∈X

‖f̃x −KL[fτDn (x)
]‖∞ ≤ c′D1/2

n

[

D2
n

(

log(n)

n

) s

2s+1

+D1/2
n D1/2

n D3/2
n

log(n)√
n

]

≤ c′′D5/2
n

(

log(n)

n

) s

2s+1

for come constants c′, c′′. The choice of L (cf. Algorithm 1) allows obtaining then:

1An∩En
max
x∈X

‖f̃x − fτDn (x)
‖∞ ≤ c′′D5/2

n

(

log(n)

n

) s

2s+1

.

Given that for n large enough ‖fj‖∞ ≤ nβ , it follows that: ‖f̂j − fτDn (j)
‖∞ ≤ ‖f̃Lj −

fτDn (j)
‖∞.

Finally, thanks to the truncation of the emission densities, it is possible to obtain the same
rate in expectation:

Eθ

[

‖f̂j − fτDn (j)
‖2∞
]

≤ c′′D5/2
n

(

log(n)

n

)
2s

2s+1

+ 2nβP((An ∩En)c)

≤ c′′D5/2
n

(

log(n)

n

) 2s

2s+1

+ 2nβ(n−γ + 6n−α).

By choosing α and γ sufficiently large, one obtains:

Eθ

[

‖f̂j − fτDn (j)
‖2∞
]

=O
(

D5/2
n

(

log(n)

n

) 2s

2s+1

)

.

Control of 1
n

∑n
i=1

∑n
l=1Eθ

[

(ρ∨ ρ̂)2|l−i|maxx∈X ‖fx − f̂x‖2∞
]1/2

. Let ρ̃ = 1−2δ̃
1−δ̃ where

δ̃ = δ
2 .

Eθ

[

(ρ∨ ρ̂)2|l−i|max
x∈X

‖fx − f̂x‖2∞
]1/2

≤ ρ̃|l−i|Eθ

[

max
x∈X

‖fx − f̂x‖2∞
]1/2

+Eθ

[

max
x∈X

‖fx − f̂x‖2∞1ρ̂≥ρ̃

]1/2

.

The term Eθ

[

maxx∈X ‖fx − f̂x‖2∞1ρ̂≥ρ̃
]1/2

can be made of order n−α for arbitrary α > 0

by the same large deviation argument used in the control of Eθ
[

1
δ̂2

]

. Then, summing up over
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i and n yields:

1

n

n
∑

i=1

n
∑

l=1

Eθ

[

(ρ∨ ρ̂)2|l−i|max
x∈X

‖fx − f̂x‖2∞
]1/2

=O
(

D5/2
n

(

log(n)

n

) s

2s+1

)

Finally, using Proposition 3 and the previous controls of the errors of estimation of the model
parameters, one gets:

E[Rclass
n (θ, ĥτn)]− inf

h∈Hn

Rclass
n (θ,h) =O

(

D5/2
n

(

log(n)

n

) s

2s+1

)

.

A similar rate holds for the excess risk of clustering thanks to the relationship between the
Bayes risk of classification and the Bayes risk of clustering established in Theorems 6 and 8.

LEMMA 13. Suppose (At, t ∈ R) are J × J matrices simultaneously diagonalized by a

matrix R:

RAtR
−1 = diag(λt,1, ..., λt,J), t ∈R.

Let R̂ be a matrix such that for some permutation τ of {1, ..., J}, we have:

‖R̂− PτR‖= εR ≤ ‖R−1‖−1

2

Assume λmax = suptmaxj |λt,j |<∞. For matrices (Ât)t∈R, write εA = supt‖At− Ât‖ and

define

λ̂t,j = eTj R̂ÂtR̂
−1ej and λt,τ(j) = eTj (PτR)At(PτR)

−1ej .

Then

sup
t

max
j

|λ̂t,j − λt,τ(j)| ≤ 4κ(R)
[

εA + λmaxκ(R)‖R−1‖εR
]

.

PROOF. Let ζ̂Tj = eTj R̂, let ξ̂j = R̂−1ej and define ζTj = eTj PτR and ξj = (PτR)
−1ej .

Then, λt,τ(j) = ζTj Atξj , λ̂t,j = ζ̂Tj Âtξ̂j and we have:

|λ̂t,j − λt,τ(j)|= |ζ̂Tj Âtξ̂j − ζTj Atξj |

= |ζ̂Tj Ât(ξ̂j − ξj) + (ζ̂Tj − ζTj )Atξj + ζ̂Tj (Ât −At)ξj |

≤ ‖ζ̂Tj ‖‖Ât‖‖ξ̂j − ξj‖+ ‖ζ̂Tj − ζTj ‖‖Atξj‖+ ‖ζ̂Tj ‖‖ξj‖εA
‖ζTj ‖= ‖eTj PτR‖ ≤ ‖PτR‖= ‖R‖

‖ζ̂Tj − ζTj ‖= ‖eTj (R̂− PτR)‖ ≤ ‖R̂− PτR‖= εR

‖ξj‖= ‖(PτR)−1ej‖ ≤ ‖(PτR)−1‖= ‖R−1‖

‖ξ̂j − ξj‖= ‖(R̂−1 − (PτR)
−1)ej‖ ≤ ‖R̂−1 − (PτR)

−1‖

≤ ‖R−1‖2εR
1− εR‖R−1‖ (by Lemma 37 of [1])

‖At‖= ‖R−1diag(λt,.)R‖ ≤ λmaxκ(R)

‖Atξj‖= ‖λt,τ(j)ξj‖ ≤ λmax‖R−1‖

‖ζ̂Tj ‖= ‖ζ̂Tj − ζTj + ζTj ‖ ≤ ‖ζ̂Tj − ζTj ‖+ ‖ζTj ‖ ≤ εR + ‖R‖

‖Ât‖ ≤ εA + ‖At‖ ≤ εA + λmaxκ(R).
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Thus, by the inequalities above:

|λ̂t,j − λt,τ(j)| ≤ (εR + ‖R‖)(εA + λmaxκ(R))
‖R−1‖2εR

1− εR‖R−1‖
+ λmaxεR‖R−1‖+ ‖R−1‖(εR + ‖R‖)εA

≤ 2(εR + ‖R‖)(εA + λmaxκ(R))‖R−1‖2εR
+ λmax‖R−1‖εR + ‖R−1‖(εR + ‖R‖)εA

≤ 2‖R−1‖2ε2RεA + 2κ(R)‖R−1‖εAεR + 2λmaxκ(R)‖R−1‖2ε2R
+ 2λmaxκ(R)

2‖R−1‖εR + λmax‖R−1‖εR + κ(R)εA + ‖R−1‖εRεA
≤ 2‖R−1‖2ε2RεA + (2κ(R) + 1)‖R−1‖εAεR
+ 2λmaxκ(R)

(

(‖R−1‖εR)2 + κ(R)
(

‖R−1‖εR
))

+ λmax‖R−1‖εR + κ(R)εA

≤ 2

(

1

2

)2

εA +
3

2
κ(R)εA + 2λmaxκ(R)‖R−1‖εR

(

κ(R) +
1

2

)

+ λmax‖R−1‖εR + κ(R)εA

≤ 3κ(R)εA + λmax(1 + 3κ(R)2)‖R−1‖εR
≤ 4κ(R)

[

εA + λmaxκ(R)‖R−1‖εR
]

where we have used ‖R−1‖εR ≤ 1/2 and κ(R)≥ 1.

6.12. Proof of Lemma 1. Let define pn,i(θ) := maxk Pθ (Xi = k | Y1:n) = Pθ

(

Xi = h⋆θ,i | Y1:n
)

;

defining h⋆θ,i realizing the maximum. Suppose pn,i(θ)≥ 1
2 + γ for some 0< γ ≤ 1/2. Then,

pn,i(θ)− max
k 6=h⋆

θ,i

Pθ (Xi = k | Y1:n)≥ pn,i(θ)−
∑

k 6=h⋆
θ,i

Pθ (Xi = k | Y1:n)

= pn,i(θ)− [1− pn,i(θ)]

= 2pn,i(θ)− 1

≥ 2γ.

Consequently if pn,i(θ)≥ 1
2 + γ,

Pθ̂

(

Xi = h⋆θ,i | Y1:n
)

≥ pn,i(θ)−
∥

∥

∥
φθ,i|n − φθ̂,i|n

∥

∥

∥

TV

≥ max
k 6=h⋆

θ,i

Pθ (Xi = k | Y1:n) + 2γ −
∥

∥

∥
φθ,i|n − φθ̂,i|n

∥

∥

∥

TV

≥ max
k 6=h⋆

θ,i

Pθ̂ (Xi = k | Y1:n) + 2γ − 2
∥

∥

∥
φθ,i|n − φθ̂,i|n

∥

∥

∥

TV

We have shown that on the intersection of the two events

En,i :=

{

pn,i(θ)≥
1

2
+ γ

}

, Fn,i :=
{∥

∥

∥
φθ,i|n − φθ̂,i|n

∥

∥

∥

TV
< γ
}
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the plug-in rule h⋆
θ̂

maximizing k 7→ Pθ̂ (Xi = k | Y1:n) is unique and it must be that h⋆
θ̂,i

=

h⋆θ,i. Then, we bound the risk as follows,

Rclass
n (θ,h⋆

θ̂
)≤ Eθ

[

1

n

n
∑

i=1

1{

h⋆
θ̂,i

6=Xi

}1En,i∩Fn,i

]

+Eθ

[

1

n

n
∑

i=1

1{

h⋆
θ̂,i

6=Xi

}1Ec
n,i

]

+Eθ

[

1

n

n
∑

i=1

1{

h⋆
θ̂,i

6=Xi

}1F c
n,i

]

≤ Eθ

[

1

n

n
∑

i=1

Pθ

(

h⋆θ,i 6=Xi

)

1En,i

]

+
1

n

n
∑

i=1

Pθ

(

Ecn,i
)

+
1

n

n
∑

i=1

Pθ

(

F cn,i
)

Finally, notice that,

Pθ

(

Ecn,i
)

= Pθ

(

pn,i(θ)<
1

2
+ γ

)

= Pθ

(

Pθ

(

Xi = h⋆θ,i | Y1:n
)

<
1

2
+ γ

)

= Pθ

(

Pθ

(

Xi 6= h⋆θ,i | Y1:n
)

>
1

2
− γ

)

≤ 1

1/2− γ
Eθ

(

Pθ

(

h⋆θ,i 6=Xi | Y1:n
)

1Ec
n,i

)

.

Hence the result.

6.13. Equivalence of the definitions of the risk of clustering.

LEMMA 14. The risk of clustering of πn ◦ h can be rewritten as

(26) Rclust
n (θ,πn ◦ h) := Eθ

[

min
τ∈SJ

1

n

n
∑

i=1

1hi(Y1:n) 6=τ(Xi)

]

PROOF. It suffices to show that

sup
M⊆E(πn◦h(Y1:n),Πn)

M is a matching

∑

{C,C′}∈M
Card(C ∩C ′) = sup

τ∈SJ

1

n

n
∑

i=1

1hi(Y1:n)=τ(Xi)

Let Ck = {i ∈ [n] | hi(Y1:n) = k} and C ′
k = {i ∈ [n] |Xi = k}. Since the two partitions Πn

and πn ◦ h(Y1:n) have the same number of clusters J (with possibly empty clusters), the
supremum is reached on matchings with J edges. Using this fact, it follow that the matching
reaching the supremum is of the form:

M =
{

(Ck,C
′
τ(k)) | 1≤ k ≤ J

}
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where τ is a permutation of {1, .., J}. One obtains:

sup
M⊆E(πn◦h(Y1:n),Πn)

M is a matching

∑

{C,C′}∈M
Card(C ∩C ′) = sup

τ∈SJ

J
∑

k=1

Card(Ck ∩C ′
τ(k))

= sup
τ∈SJ

J
∑

k=1

n
∑

i=1

1τ−1(Xi)=hi(Y1:n)=k

= sup
τ∈SJ

n
∑

i=1

1τ(Xi)=hi(Y1:n)

(27)

6.14. Proof of Lemma 2. Without loss of generality, let αi ≥ 1
2 for all i. When pi = αi,

we will say that i is given positive bias, and similarly when pi = 1−αi we say it has negative
bias. We show that unless we give all positive bias or all negative bias, we can flip the bias of
some i to increase the expectation. This suffices to conclude. Let (Zi)i∈[n] be a sequence of
independent Bernoulli random variables such that Zn ∼B(αi), and let βi ∈ {−1,+1} be the
bias we give i. We then let

Yi = 2Zi − 1 ∈ {−1,+1} and Xi =
1+ βiYi

2
∈ {0,1}.

Consequently, Xi ∼ B (αi1βi=1 + (1− αi)1βi=−1) and
∑n

i=1Xi − n
2 = 1

2

∑n
i=1 βiYi. Let-

ting Sn =
∑n

i=1 βiYi, we intend to choose the βi to maximize E[|Sn|].
Let S6=k =

∑

i 6=k βiYi and define:

sign(x) =







1 if x < 0
0 if x= 0
−1 if x > 0

Then,

|Sn|= Snsign(Sn)

= Snsign (S6=k) + Sn (sign(Sn)− sign(S6=k))

= S6=ksign (S6=k) + βkYksign (S6=k) + Sn (sign (Sn)− sign (S6=k))

= |S6=k|+ βkYksign (S6=k) + 1S6=k=0

By the computation above and the fact that S6=k and Yk are independent:

E[|Sn|] = E[|S 6=k|] + P(S6=k = 0) +E[sign(S 6=k)]βkE[Yk].

Since E[Yk] ≥ 0, we conclude that if we fix the values of (βi)i 6=k, then the value of βk that
maximizes E[|Sn|] is:

(28) βk = sign (E[sign(S 6=k)]) .

Assume for the moment that all the αi are distinct and obey αi >
1
2 . This assumption

will guarantee that for non-same-sign biases, there is always at least one bias we can flip to
strictly increase E[|Sn|]. We will remove this assumption at the end of the proof. Consider
any assignment of the biases β1, . . . , βn.

LEMMA 15. If all the αi are distinct and ensure αi >
1
2 , the values (E[sign(S 6=j)])j∈[n]

are distinct, so there exists k such that E[sign(S 6=k)] 6= 0.
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LEMMA 16. Suppose βj = 1 and βk =−1. Then E[sign(S 6=k)]≥ E[sign(S 6=j)].

Both facts will be proved at the end of this section. With these facts in hand, consider any
non-same-sign biases β1, . . . , βn. By Lemma 15, there exists k such that:

E[sign(S 6=k)] 6= 0.

Without loss of generality, suppose βk =−1. There are two cases to consider.

• If E[sign(S6=k)]> 0, then βk disobeys the condition (28), so swapping to βk = 1 increases
Eθ[|Sn|].

• If E[sign(S6=k)]< 0, then βk obeys the condition (28), so we need to find another bias to
swap. Because the assignment is non-same-sign, there exists j such that βj = 1. And by
Lemma 16 , E[sign(S6=j)]< 0. This means βj disobeys the condition 28, so swapping to
βj =−1 increases E[|Sn|].
We have shown that any non-same-sign bias assignment is suboptimal for maximizing

E[|Sn|], so only the same-sign cases can be optimal. And it is clear by symmetry that they
both yield the same E[|Sn|] value, so both are optimal. Note that E[|Sn|] is a polynomial in
the parameters (αi)i∈[n]. When the assumption that all αi are distinct and obey αi > 1

2 does
not hold, the result is still true thanks to continuity with respect to (αi)i∈[n].

6.14.1. Proof of Lemma 15. Let S/∈{j,k} =
∑

i/∈{j,k} βiYi and j 6= k ∈ [n].

E
[

sign(S6=j)
]

−E [sign(S6=k)] = P (S 6=j > 0)− P (S6=j < 0)− P (S6=k > 0) + P (S6=k < 0)

= P
(

S/∈{j,k} + βkYk > 0
)

− P
(

S/∈{j,k} + βkYk < 0
)

− P
(

S/∈{j,k} + βjYj > 0
)

+ P
(

S/∈{j,k} + βjYj < 0
)

= αkP
(

S/∈{j,k} >−βk
)

+ (1− αk)P
(

S/∈{j,k} > βk
)

− αkP
(

S/∈{j,k} <−βk
)

− (1− αk)P
(

S/∈{j,k} < βk
)

− αjP
(

S/∈{j,k} >−βj
)

− (1− αj)P
(

S/∈{j,k} > βj
)

+ αjP
(

S/∈{j,k} <−βj
)

+ (1− αj)P
(

S/∈{j,k} < βj
)

When βj = βk = 1,

E
[

sign(S6=j)
]

−E [sign(S6=k)] = (αk−αj)
(

P
(

S/∈{j,k} ∈ {0,1}
)

+ P
(

S/∈{j,k} ∈ {0,−1}
))

6= 0.

The remaining cases can be analyzed similarly.

6.14.2. Proof of Lemma 16. We want to show that:

E
[

sign(S/∈{j,k} + Yj)
]

≥ E
[

sign(S/∈{j,k} − Yk)
]

The key observation is that we have a stochastic dominance +Yj ≥st −Yk. This means that
for any nondecreasing function f :

E [f(Yj)]≥ E [f(−Yk)] .
The desired result follows by applying the above to

f(x) = E
[

sign(S/∈{j,k} + x)
]

which is clearly nondecreasing.
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