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Pattern Coding Meets Censoring: (almost) Adaptive
Coding on Countable Alphabets

Anna Ben-Hamou∗ Stéphane Boucheron† Elisabeth Gassiat‡

Abstract

Adaptive coding faces the following problem: given a collection of source classes such that each class in the collection
has non-trivial minimax redundancy rate, can we design a single code which is asymptotically minimax over each class in the
collection? In particular, adaptive coding makes sense when there is no universal code on the union of classes in the collection.
In this paper, we deal with classes of sources over an infinite alphabet, that are characterized by a dominating envelope. We
provide asymptotic equivalents for the redundancy of envelope classes enjoying a regular variation property. We finally construct
a computationally efficient online prefix code, which interleaves the encoding of the so-called pattern of the message and the
encoding of the dictionary of discovered symbols. This code is shown to be adaptive, within a log log n factor, over the collection
of regularly varying envelope classes. The code is both simpler and less redundant than previously described contenders. In contrast
with previous attempts, it also covers the full range of slowly varying envelope classes.
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I. INTRODUCTION

Lossless coding consists of mapping in a one-to-one way finite sequences of symbols x1:n = x1, ..., xn (also called messages)
from a finite or countably infinite alphabet X to binary sequences so as to minimize the expected length of codewords. The
mapping (or code) is not only assumed to be one-to-one but also uniquely decodable (any concatenation of codewords can
not be parsed into codewords in more than one way). Sequences are assumed to be generated by a stationary and memoryless
source, defined as a product probability measure Pn, where P ∈M1(X ) is a probability measure on the alphabet X .

Throughout the paper, we identify uniquely decodable codes with probability distributions (thanks to the Kraft-McMillan
inequality) and the notation Qn ∈M1(Xn) is used to denote coding distributions. Under this identification, the length of the
codeword assigned to a sequence x1:n is at most d− logQn(x1:n)e (here and throughout the paper, log denotes the base-2
logarithm while ln denotes the natural logarithm) [15]. The expected redundancy of the coding distribution Qn (the expected
number of additional bits beyond the entropy used by Qn to encode a sequence generated by the source) then corresponds to
the Kullback-Leibler divergence (or relative entropy) between Pn and Qn: D(Pn, Qn) :=

∑
x1:n∈Xn Pn(x1:n) log Pn(x1:n)

Qn(x1:n)
.

In decision theoretic language, redundancy is also called cumulative entropy risk [26].
When facing a source class C with a common alphabet X rather than a single source, the universal coding problem

consists of finding codes that perform well over the entire source class C. For a given class C of sources on X , we define
Cn = {Pn : P ∈ C}, the class of product distributions induced by C on Xn. The performance of a code (a coding distribution
Qn over Xn) with respect to a source class is quantified by the maximal expected redundancy defined as

R(Qn, Cn) = sup
P∈C

D(Pn, Qn) .

The infimum of R(Qn, Cn) over all Qn, is called the minimax redundancy of Cn:

R(Cn) = inf
Qn∈M1(Xn)

R(Qn, Cn) .

Minimax redundancy quantifies the hardness of universal coding with respect to Cn. A source class C is said to have a
non-trivial minimax redundancy rate if R(Cn) = o(n). In the language of mathematical statistics, universal coding is the
information theoretical counterpart of density estimation under cumulative entropy risk [See 26, for a scholarly presentation
of this correspondence].

There are situations where universal coding is achievable and where minimax redundancy rates are precisely known. The
simplest and most important setting consists of stationary memoryless sources over finite alphabets (|X | = k) where

R(Cn) =
k − 1

2
log

n

2πe
+Ok(1) ,

as demonstrated in a series of paper that culminate with [13, 47, 48, 14]. (The notation Ok(1) indicates that the upper
bound may depend on k). Moreover it is known that in this setting optimal coding distributions are mixtures of product
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distributions. Dirichlet distributions with parameters 1/2, . . . , 1/2 over the k − 1 dimensional simplex define the so-called
Krichevsky-Trofimov coding distributions which form an important building block in our construction [See 23, for details].

This suggests that, while redundancy grows only logarithmically in the message length, it grows rapidly with the alphabet
size. Recent results provide us with a refined picture when alphabet size grows with message length [42, 20, 49, 38].

If the considered collection of sources is too large, minimax redundancy may turn out to be trivial (scaling linearly with
message length). In other settings, the source class may be the union of smaller classes with widely differing minimax
redundancy rates (for example sources defined by finite context trees over a finite alphabet have redundancy rates that depend
on the shape of the context tree).

Adaptive coding then considers an appropriate, more general approach. Assume that the excessively large collection of
sources is the union of smaller subclasses and that, for each subclass, the minimax redundancy rate is non trivial and a good
universal coder is available. Is it then possible to engineer a single coding method that performs well over all subclasses in
the collection?

Let (C(α))α∈A be a collection of source classes. A sequence (Qn)n≥1 of coding probabilities is said to be asymptotically
adaptive with respect to (C(α))α∈A if for all α ∈ A

R(Qn, C(α)n) = sup
P∈C(α)

D(Pn, Qn) ≤ (1 + oα(1))R(C(α)n) (1)

as n tends to infinity. If the inequality (1) holds with a factor other than (1 + oα(1)) (that may depend on the source class
C(α)) larger than 1 to the right, then we say that there is adaptivity within this factor. Context-Tree-Weighting [46] provides
an example of an adaptive code with respect to sources with bounded or unbounded memory over finite alphabets [11, 21].

The notion of adaptivity comes from mathematical statistics [44], and adaptive coding is much related to competitive
estimation [41]. It is also known as twice-universal coding [37] or hierarchical universal coding [31].

When facing countably infinite alphabets, adaptive coding is a natural problem: when the alphabet is infinite, a theorem due
to Kieffer [30] entails that there does not exist a code Qn such that for all distribution P over X , D(Pn,Qn)

n → 0, that is, there
is no universal code for the entire class of stationary memoryless sources over X and for this class the minimax redundancy
rate is trivial.

This result has not deterred investigations on coding against countable alphabets. There are indeed sensible motivations for
investigating such a framework: Orlitsky and Santhanam [32] observe that applications of compression techniques (text, image
and so on) usually involve alphabets that are very large (words or even groups of words) and that the traditional transformation
of words into letters and then into bits hides useful dependencies. Kieffer’s theorem prompted at least two different approaches:

i) Orlitsky and Santhanam [32] separate the description of strings over large alphabets into two parts: description of the
symbols appearing in the string, and of their pattern, the order in which the symbols appear. They redefine the performance
criterion by focusing on compressing the message’s pattern [32, 35, 22, 20, 39];

ii) investigating the redundancy on smaller source classes that satisfy Kieffer’s condition. The so-called envelope classes
investigated in [8] form an example of such classes [See also 1, 7, 10].

This paper pursues both lines of research: we deal with the collection of so-called envelope classes, but the adaptive code we
introduce and investigate will turn out to be a pattern encoder. In contrast with [32, 35], we handle simultaneously dictionary
and pattern encoding.

Definition 1 (ENVELOPE CLASSES AND ENVELOPE DISTRIBUTIONS). Let f be a non-increasing mapping from N+ to (0, 1],
with 1 <

∑
j∈N+

f(j) <∞. The envelope class C(f) defined by the function f is the collection of distributions which are
dominated by f : C(f) :=

{
P : ∀j ∈ N+, pj ≤ f(j)

}
. Define `f = min

{
` ≥ 1,

∑+∞
j=` f(j) ≤ 1

}
. The associated envelope

distribution F is defined as F (k) := 1 −
∑
j>k f(j) if k + 1 ≥ `f , and F (k) := 0 otherwise. The envelope probabilities

(fj)j≥1 are defined by fj = F (j)− F (j − 1).

Envelope classes provide a framework where the search for adaptive coding strategies is feasible Falahatgar et al. [20].
The contribution of our paper is two-fold:
i) we use Poissonization arguments introduced by Acharya et al. [1] to derive tight bounds on the minimax redundancy

of envelope classes. Karlin’s framework (see Section II-B) then provides a tractable interpretation of those bounds, and
allows us to readily obtain asymptotic equivalents when the envelope satisfies a so-called regular variation property. We
thus fill the gap between previously proved upper and lower bounds for minimax redundancies of such classes;

ii) we construct a simple coding scheme, which we call the Pattern Censoring Code (PC code). This code performs an online
encoding or decoding of a sequence of symbols. It pertains to the family of censoring codes described in [8, 6, 7, 10]: in the
PC code, first occurrences of symbols are censored, that is they are encoded using a general purpose encoder for integers
(such as Elias encoding [19]) and are implicitly inserted into a dictionary; symbols that have already been inserted into the
dictionary are translated into their rank of insertion in the dictionary and then fed to a Krichevsky-Trofimov encoder that
works on an alphabet that matches the current size of the dictionary. The Krichevsky-Trofimov encoder actually performs
a variant of pattern coding as introduced in [32]. We show that the PC code is adaptive, within a log logn factor, over the
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collection of envelope classes whose decay is regularly varying. We thus get, with a single code, almost adaptivity over
envelope classes for the whole range of possible regular variation.

The paper is organized as follows. In Section II, we lay down the notation and introduce Karlin’s framework and regular
variation. The main results are stated in Section III. In Section IV, we provide a sketch of the derivation of the redundancy
bounds by combining the Poissonization techniques of Acharya et al. [1] and Karlin’s framework. In particular, when the
envelope f has a so-called light tail (a regular variation index equal to zero), we show that R(C(f)n) is asymptotically
equivalent to

Rf (n) := log(e)

∫ n

1

~νf (1/t)

2t
dt ,

where ~νf (x) = |{j ≥ 1, fj ≥ x}|. This characterization is a powerful generalization of the tight bounds that have been
established for memoryless sources over finite alphabets. The latter can be regarded as envelope classes where ~νf (x) = k
for some k and all small enough x. Indeed k−1

2 log n scales like Rf (n) with respect to both k and n. The quantity Rf (n)
also provides an equivalent of the minimax redundancy for envelope classes defined by log-concave envelopes (such that
f(k)f(k+ 2)/f(k+ 1)2 ≤ 1 for all k ≥ 1) that was characterized in [7]. Up to a constant factor, the minimax redundancy for
envelope classes defined by heavy-tailed envelopes (with positive regular variation indexes, as investigated in [10]) also scales
like Rf (n). This is the content of Theorem 5.

The bounds on minimax redundancy rates in Karlin’s framework also suggest a universal coding strategy for each envelope
class. In words, when encoding the nth symbol in the message, it seems sensible to handle symbols with probability larger than
1/n (frequent symbols) differently from symbols with probability smaller than 1/n (rare symbols). The probability of frequent
symbols can be faithfully estimated while the probability of rare symbols can barely be estimated from the message. This
is widely acknowledged in the blossoming literature concerning estimation of discrete probability distributions, see [45]. The
censoring code approach described in [8, 6, 7, 10] explores that kind of path. Here, we combine pattern coding and censoring
so as to manufacture a simple encoder that achieves adaptivity within a log log n factor with respect to all regularly varying
envelope classes (except the extreme case of very heavy-tailed envelopes, corresponding to an index equal to 1, see Section
II-C). The Pattern Censoring Code is described in Section V, and Section VI provides a modular analysis of its redundancy.
Proofs are gathered in Section VII.

II. BACKGROUND AND NOTATION

From now on, the message alphabet X is the set of positive integers N+ := N \ {0}, and the source probabilities will be
denoted by their probability mass functions (pj)j≥1.

A. Occupancy counts

Define N j
n as the empirical count of symbol j, that is the number of times symbol j occurs in a sample of size n. The

sequence (N j
n)j≥1 is called the type of the sample. Let Kn,r denote the occupancy counts, defined as the number of symbols

that appear exactly r times in a sample of size n:

Kn,r =
∑
j≥1

I{Nj
n=r} .

The sequence (Kn,r)r≥1 is called the profile of the sample. The occupancy counts combine to yield the total number of distinct
symbols in the sample, denoted by Kn:

Kn =
∑
j≥1

I{Nj
n>0} =

∑
r≥1

Kn,r .

We will also encounter a quantity known as the missing mass, which corresponds to the cumulated probability of the unseen
symbols:

Mn,0 =
∑
j≥1

pjI{Nj
n=0} .

Those quantities play a central role in estimating various properties of the sampling distribution, especially in situations where
the sample size is small compared to the alphabet size [34, 45, 28]. In light of the correspondence between compression and
probability estimation, they also are crucial to the analysis of the coding strategy we investigate here.

Henceforth, E will denote expectation with respect to the source distribution P or its n-fold product Pn, while Ef will
denote the expectation with respect to the envelope distribution (fj)j≥1 or its n-fold product.

B. Karlin’s framework

In 1967, S. Karlin introduced an elegant framework for investigating the asymptotic properties of infinite urn models. Sources
over countable alphabets fit nicely into this framework. This framework has recently received attention in random combinatorics
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and stochastic processes theory [See 24, for a survey]. Although the framework had been introduced in order to perform a
thorough exploration of asymptotic normality of occupancy counts, it has also proved convenient when assessing the tightness
of non-asymptotic tail or moment bounds for occupancy counts as demonstrated in [4].

A probability mass function (pj)j≥1 defines a counting measure ν defined by ν(dx) =
∑
j≥1 δpj (dx) , where δp is the

Dirac mass at p. Let the counting function ~ν(·) be the right tail of ν, that is for all x ∈ (0, 1],

~ν(x) = ν[x,∞[= |{j ≥ 1, pj ≥ x}| .

Let us also define the measure ν1 by
ν1(dx) =

∑
j≥1

pjδpj (dx) .

For x ∈ [0, 1], ν1[0, x] =
∑
j≥1 pjIpj≤x is the cumulated probability of symbols with probability smaller than x. Expected

occupancy counts and masses can be written simply as integrals against the measure ν. For instance

EKn =

∫ 1

0

(1− (1− x)n) ν(dx) .

The sequence (EKn)n characterizes the measure ν (this follows easily from a Laplace transform argument).

C. Regular variation and regularly varying envelopes

The envelope distribution considered in this paper will most often satisfy a so-called regular variation property. A fascinating
treatment of regular variation can be found in the textbook [5].

Definition 2. A measurable function g :]a,∞) →]0,∞) (where a > 0) is said to be regularly varying at infinity if for all
x > 0

lim
t→∞

g(tx)

g(t)
= xα

for some α ∈ R. This is summarized by g ∈ RVα. If α = 0, g is said to be slowly varying. Note that g ∈ RVα if and only if,
for all t > a, g(t) = tα`(t) where ` is slowly varying.

Useful results from regular variation theory are gathered in Appendix A.
Following Karlin [29] and Gnedin, Hansen, and Pitman [24], source classes with regularly varying envelopes are defined as

follows.

Definition 3 (REGULARLY VARYING SOURCE CLASSES). The envelope class C(f) is said to be regularly varying with index
α ∈ [0, 1] if the function ~νf (1/·) is regularly varying with index α (denoted ~νf (1/·) ∈ RVα).

Note that the property pertains to the envelope counting function. The counting functions associated with source distributions
in the class may or may not satisfy the regular variation property.

If the envelope distribution is a so-called power-law distribution, that is if, for some C > 0 and 0 < α < 1, f(j) ∼
Cj−1/α, j →∞, then ~νf is regularly varying with index α [See 1, for details].

The case α = 0 corresponds to light-tailed envelopes. It contains for instance frequencies proportional to C exp
(
−C ′jβ

)
,

for some β > 0 (in particular, when β = 1, the Geometric distribution), or for example frequencies corresponding to the
integral part of a log-normal variable as treated in [7].

Under the regular variation assumption, the asymptotic expected values of Kn, Kn,r and Mn,0 are nicely related to the
counting function ~ν (see Appendix B). Appendix C relates properties of the counting function and properties of the quantile
function of the sampling distribution.

If f, g denote two functions from R+ to R+, notation f � g means that there exists some constant C ≥ 1 and t0 ∈ R+

such that for t > t0, 1/Cg(t) ≤ f(t) ≤ Cg(t).

III. MAIN RESULTS

We first describe the minimax redundancy of envelope classes C(f)n in Karlin’s framework, that is using the counting
function ~ν and measure ν1. The first theorem follows from the Poissonization approach promoted in [49] and [1] [See also
27]. It gathers upper and lower bounds on the minimax redundancy of envelope classes. Note that the bounds do not depend
on any regular variation assumption on the envelope function.

Theorem 4. For any envelope function f , the minimax redundancy of C(f)n satisfies
i)

R (C(f)n) ≤ log(e)

(∫ n

1

~νf (1/t)

2t
dt+ ~νf (1/n) + nν1,f [0, 1/n]

)
+O(`f log n) . (2)
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ii) Let m = n− n2/3. For any envelope function f , there exists a constant cf > 0 such, for large enough n,

R (C(f)n) ≥
(

log(e)

∫ m

1

~νf (1/t)

2t
dt− 5~νf (1/m)− 1

)
∨ (Ef [Kn]− cf ) . (3)

Note that, as soon as the support of (fj)j≥1 is infinite, R (C(f)n)� log n. Hence, in our context, the term O(`f log n) in
(2) is asymptotically negligible with respect to the other terms.

For an envelope function f defined by frequencies (fj)j≥1, with counting function ~νf , recall that Rf (n) is defined as

Rf (n) = log(e)

∫ n

1

~νf (1/t)

2t
dt .

Regular variation assumptions on the envelope allow us to compare the different terms in (2) and (3) (see Theorems 19 and 23
in Appendix A and B). Assuming that the counting function ~νf satisfies a regular variation property, the sequence (Rf (n))n is
proportional to the redundancy rate of the envelope class C(f). It will also turn out to characterize the maximum redundancy
of the PC code over C(f).

When ~νf (1/·) ∈ RV0, Karamata’s integration Theorem and Proposition 15 in [24] imply

Rf (n)� ~νf (1/n) ∼
n→∞

Ef [Kn]� nν1,f [0, 1/n] .

Hence if ~νf (1/·) ∈ RV0, Theorem 4 entails R(C(f)n) ∼
n→∞

Rf (n).
When ~νf (1/·) ∈ RV1, the largest term in the upper bound is now n~ν1,f [0, 1/n], which is of order Ef [Kn]� ~νf (1/n).
Last but not least, when ~νf (1/·) ∈ RVα for 0 < α < 1, all three terms in the right-hand-side of (2) have the same order of

magnitude Ef [Kn] � ~νf (1/n) � Rf (n). Hence, the following theorem follows directly from Theorem 4.

Theorem 5 ([1]). Let C(f) be an envelope source class, with f ∈ RVα and α ∈ [0, 1[. Then

R(C(f)n) � Rf (n) .

If α = 0,

lim
n→∞

Rf (n)

R(C(f)n)
= 1 .

If α = 1,

R(C(f)n) � Ef [Kn]� Rf (n) .

The implementation of the Poissonization technique by Acharya et al. answered a number of open questions raised in [8, 7].
Previously, the minimax redundancy rate for source classes defined by regularly varying envelopes was only known when
envelopes were discrete log-concave (which implies non-decreasing hazard rate), that is for a strict subset of classes defined
by slowly varying envelopes. Before [1], the best known general upper bound on the redundancy of envelopes classes was
stated using the tail envelope function and read as

R(C(f)n) ≤ inf
u≤n

{
nF (u) log e +

u− 1

2
log n

}
+ 2

where F (u) =
∑
j>u fj [8].

Optimizing over u leads to outline u = ~νf ( lnn
2n ). The redundancy upper bound then translates into

R(C(f)n) ≤
(

2n

lnn
ν1,f

(
0, lnn2n

)
+ ~νf

(
lnn

2n

))
log n

2
. (4)

When ~νf (1/t) ∼
t→∞

tα`(t) with ` ∈ RV0, α ∈ (0, 1), combining (4) and Proposition 13 from [24] reveals that the upper
bound in (4) is asymptotically equivalent to

log e

21−α(1− α)
`
(

2n
lnn

)
nα(lnn)1−α .

Invoking Proposition 13 from [24] and Karamata’s integration Theorem show that the right-hand-side of (2) is asymptotically
equivalent to

log(e)(1 + α)

2α(1− α)
`(n)nα .

For envelopes with positive regular variation index α, the redundancy upper bound from [8] is off by a factor (lnn)1−α.
For envelopes that satisfy the discrete log-concavity condition (a special case of envelope function with non-decreasing hazard

rate as treated in [7]), then by Lemma 24, the redundancy bounds derived in [7] and Rf (n) are asymptotically equivalent.
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An interesting benefit from the Poissonization method concerns slowly varying envelopes that do not satisfy the discrete log-
concavity condition. For slowly varying envelopes, the upper bound in (4) is asymptotically equivalent to ~νf

(
lnn
2n

)
logn
2 . If we

focus on ~νf (1/t) = bexp
(
(ln t)β

)
c for β ∈ (0, 1), t > 1, then, integration by part shows that Rf (n) ≤ ~νf (1/n)(ln(n))1−β/β.

Under this setting, for β ∈ (0, 1/2), by Theorem from [5], ~νf
(
lnn
2n

)
∼

n→∞
~νf (1/n). This is enough to conclude that the

redundancy upper bound derived from (4) and the bound derived from (2) are not of the same order of magnitude: Rf (n) =
o
(
~νf
(
lnn
2n

)
logn
2

)
.

We now turn to adaptivity and characterize the performance of the PC Code (Qn)n defined in Section V on regularly varying
envelope classes C(f), with index α ∈ [0, 1[.

A regular variation assumption on the envelope distribution is enough to characterize the redundancy rate of the source class
(Theorem 5). Underneath this rewarding message lies a more ambivalent finding: the redundancy rate breaks down into three
components whose relative importance depends on the unknown regular variation index (Theorem 4).

Experience with different attempts at designing adaptive codes suggests that an adaptive code should be able to sort rare
symbols from frequent symbols (with probability mass larger than the reciprocal of the current message length) and to work
with an effective alphabet of size not larger than ~νf (1/n). The PC code attempts to do this in a simple and efficient manner:
any recurring symbol is deemed to be frequent; any symbol occurring for the first time is deemed to be rare. In this way, the
size of the alphabet used by the mixture coder coincides with the number of distinct symbols in the portion of the message
encoded so far. The latter quantity is well concentrated around its mean value and is bounded from above by the mean value
under the envelope distribution. No special attempt is made to encode the dictionary in a way that adapts to a regular variation
index since the source distribution may not satisfy any regular variation assumption.

Despite its simplicity the PC code achieves adaptivity within a log log n factor over all regularly varying envelope classes.

Theorem 6. Let (Qn)n be the sequence of coding distributions associated with the Pattern Censoring code. For all α ∈ [0, 1[,
for every envelope function f with ~νf (1/·) ∈ RVα, there exists constants af , bf > 0 such that

(af + of (1)) ≤ R(C(f)n)

Rf (n)
≤ R(Qn, C(f)n)

Rf (n)
≤ (bf + of (1)) log log n .

In particular, the Pattern Censoring code is adaptive, within a log log n factor, with respect to the collection{
C(f) : f ∈ RVα, α ∈ [0, 1[

}
.

The PC code is designed in a way that parallels the design of the AC and ETAC codes from [7, 10]. All three codes interleave
mixture coding of symbols that are deemed frequent and Elias encoding of symbols that are deemed rare. They differ in
the way censoring is performed. The AC code censors records that is symbols that are larger than symbols seen so far. The
ETAC code censors the nth symbol if it is larger than Mn where Mn is a carefully chosen order statistics of the sub-sample
X1, X2, . . . , Xn (See Equation (13) in Appendix C). At each instant, the AC and the ETAC codes handle an effective alphabet
formed by a sequence of consecutive symbols. The AC code is doomed to failure if the source has a positive regular variation
index α ∈ (0, 1): the increasing alphabet used by the mixture code typically grows like nα/(1−α) instead of nα. The increasing
alphabet used by the mixture code of the ETAC code grows much more reasonably: if the source distribution is dominated
by a regularly varying envelope f with index α ∈ (0, 1), the increasing alphabet typically grows like EMn which is or order
~νf (1/n) (See Appendix C). If the envelope is slowly varying and discrete log-concave, EMn also grows at a pace that is
consistent with the slow variation property of the envelope. But our current understanding of the rate of slow variation problem
[See 5, Section 2.3] does not allow us to quantify precisely the rate of growth the alphabet when the envelope is slowly varying
and is equivalent to a function in the de Haan class (See Definition 22 in Appendix A) where the auxiliary function tends
to infinity. This lack of understanding also prevents us from quantifying the redundancy of the ETAC code with respect to
corresponding envelope classes.

The ETAC and PC codes also differ in the way they encode the escape symbol 0 (see below for details). The mixture encoder
used by ETAC code always considers 0 as a new symbol: the predictive probability associated with 0 at instant n + 1 is
1/(n + (Mn + 1)/2). The predictive probability assigned to 0 should rather be close to an estimator of the probability of
discovering a new symbol, that is of the missing mass. For a regularly varying sampling distribution with index α ∈ (0, 1),
the predictive probability assigned to 0 should scale like nα−1 rather than 1/n. The PC code assigns a predictive probability
(Kn + 1/2)/(n+Kn + 1) to the escape symbol. Even though this does not coincide with the Good-Turing estimator of the
missing mass Kn,1/n, it scales correctly with n for regularly varying sampling distributions.

Theorems 4 and 5 are established in Section IV. Theorem 6 is proved in Section VI. Useful technical results and arguments
are stated in Section VII.

IV. MINIMAX REDUNDANCY OF ENVELOPE SOURCE CLASSES

This section describes upper and lower bounds for the minimax redundancy of envelope source classes. The techniques are
borrowed from [1] where tight bounds on minimax regret (see below) are derived thanks to Poissonization arguments. Not too
surprisingly, Poissonization allows to derive tight bounds for minimax redundancy as well. In Karlin’s framework these bounds
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are illuminating. When applied to regularly varying envelopes with positive regular variation parameter, the resulting bounds
are tight up to constant factors. When applied to slowly varying envelopes, the resulting bounds actually imply asymptotic
equivalence.

We now give the main ingredients leading to Theorem 4. The upper bound (2) follows from minimax regret bounds in [1].
Upper bounds are then translated using Karlin’s framework, this provides us with insights onto effective coding methods. In
the other direction, we need to show that Poissonization arguments also apply to minimax redundancy, and to establish lower
bounds on the redundancy of Poisson classes.

A. Properties of minimax redundancy

The next theorem collects properties of minimax redundancies [See 23, for a general perspective].

Proposition 7. The sequence (R(Cn))n≥1 of minimax redundancies of a class C of stationary memoryless sources satisfies
i) (R(Cn))n≥1 is non-decreasing.

ii) (R(Cn))n≥1 is sub-additive:

for all n,m ≥ 1, R(Cn+m) ≤ R(Cn) +R(Cm) .

iii) The minimax redundancy is equal to the maximin Bayesian redundancy:

R(Cn) = sup
π∈M1(C)

inf
Qn∈M1(Xn)

∫
D(Pn, Qn)dπ(P )

= sup
π∈M1(C)

∫
D(Pn, Pnπ )dπ(P ) ,

where Pnπ is the mixture distribution given by Pπ(j) =
∫
P (j)dπ(P ).

We will also use the notion of regret that originates from individual sequence analysis [12]. The regret of a coding probability
with respect to a source class C is

R̂(Qn, Cn) := sup
x1:n∈Xn

sup
P∈C

log
Pn(x1:n)

Qn(x1:n)

and the minimax regret of Cn is R̂(Cn) := infQn
R̂(Qn, Cn).

As pointed out by Acharya et al. [1], the minimax redundancy of a class of stationary memoryless sources is equal to the
minimax redundancy of the induced class on types. Recall that the type of a sequence [16] is the sequence of frequencies
of the different symbols in the sequence. As such, it is a random variables with values in the set of infinite sequences of
integers with finitely many non-zero entries. More precisely, for P ∈ C, let us denote by τ(Pn) the distribution of the type
of a sequence (X1, . . . , Xn) ∼ Pn, that is τ(Pn) is the probability distribution of the sequence (N j

n)j≥1. For a class C of
sources over X , the class of probability distributions τ(Cn) is defined as as

τ(Cn) = {τ(Pn), P ∈ C} .

As types are minimal sufficient statistics,

R(Cn) = R(τ(Cn)) and R̂(Cn) = R̂(τ(Cn)) .

Poissonization provides a simplified framework in various settings. Under Poisson sampling, the message length is a random
variable N that is distributed according to a Poisson distribution with mean n (N ∼ P(n)). Picking a Poissonized sample
from P consist first of picking N according to P(n) and then picking an i.i.d. sample of random length N from P .

Let CP(n) be the Poissonized version of Cn:

CP(n) =
{
PP(n), P ∈ C

}
,

where, for all P ∈ C, all k ≥ 1 and x1:k ∈ X k,

PP(n)(x1:k) = P(N = k).P k(x1:k).

By convention, the empty sequence has probability zero. For j ≥ 1, let us denote by Nj(n) the number of occurrences of
symbol j in a Poisson sample with size P(n). Then Nj(n) is distributed as P(nP (j)), and a very useful property of Poisson
sampling is that the symbol counts (Nj(n))j≥1 are independent. Let us also note that, as in the fixed-n setting, the redundancy
of CP(n) is equal to the type-redundancy [1]:

R(CP(n)) = R
(
τ(CP(n))

)
and R̂(CP(n)) = R̂

(
τ(CP(n))

)
. (5)
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Proposition 8. For all class C, the Poissonized minimax redundancy satisfies

R(CP(n)) = inf
(Qk)

sup
P∈C

∑
k≥0

P(N = k)D(P k, Qk) =
∑
k≥0

P(N = k)R(Ck) ,

where the infimum is taken over sequences (Qk)k≥0, such that, for all k ≥ 0, Qk is a probability distribution over X k.

Minimax regret and minimax regret under Poisson sampling are related by Theorem 2 from [1]. Falahatgar et al. [20] also
show that R(CP(n)) ≤ 2R(Cn). The next proposition complements these connections.

Proposition 9. For any class C of stationary memoryless sources with R(C) <∞,

R
(
CP(n−n

2/3)
)

+ oC(1) ≤ R(Cn) ≤ (1− o(1))R
(
CP(n+n

2/3)
)

B. Minimax redundancy of envelope classes

When the source class is an envelope source class C = C(f), the class of types distributions τ
(
C(f)P(n)

)
under Poisson

sampling is a class of product distributions,

τ
(
C(f)P(n)

)
=


∞∏
j=1

P(npj) : P = (pj)j≥1 ∈ C(f)

 . (6)

Let us define, for λ ≥ 0,

P?(λ) = {P(µ) : µ ≤ λ} ,

the class of Poisson distributions with mean smaller than λ. The minimax redundancy of envelope classes under Poisson
sampling is tightly related to the sum of minimax redundancies of classes of Poisson distributions.

Lemma 10. Let C(f) be an envelope class. Then for all n ≥ 0,
∞∑
j=`f

R(P?(nfj)) ≤ R
(
C(f)P(n)

)
≤ `fR(P?(n)) +

∞∑
j=`f

R(P?(nfj)) .

The next lemma provides us with a lower bound on R (P?(nfj)).

Lemma 11. For λ ≥ 1, the redundancy of P?(λ) satisfies

R(P?(λ)) ≥ log λ

2
− 5 .

The first lower bound in Theorem 4 now follows from Proposition 9, Lemma 10, and Lemma 11.

V. THE PATTERN CENSORING CODE

The Pattern Censoring code (PC code) borrows ideas from pattern coding [32, 22]. The encoder and the decoder maintain
a dictionary of symbols seen so far. With each symbol is associated the number of occurrences of the symbol and its rank of
insertion in the dictionary. If the nth symbol in the message is the first occurrence of symbol j, an escape symbol is fed to the
Krichevsky-Trofimov encoder, symbol j is inserted into a dictionary with count 1 and symbol j is encoded using a general
purpose prefix code for integer (an Elias encoder). If the nth symbol has already been inserted into the dictionary, the index
of its first occurrence is fed to the Krichevsky-Trofimov encoder.

We first give a bird-eye view of the PC encoding of a sequence x1:n = x1, . . . , xn of symbols from the message alphabet
X = N+ = N \ {0}. The message is appended with a 0 that will serve as a termination signal.

Encoding:
— The dictionary is initialized as follows: D0 = {〈0, 0〉}, i.e. we start with the single (escape) symbol 0, associated with

its virtual rank of insertion, 0.
— At every index i corresponding to an input symbol, maintain a dictionary Di containing symbol 0 and the symbols

occurring in x1:i, along with their rank of insertion. Dictionary Di thus contains 〈0, 0〉 and ordered pairs 〈j, k〉 if symbol
j is the kth distinct symbol occurring in x1:i (∃m ≤ i, xm = j,Km−1 = k − 1,Km = k).

— Create a censored sequence x̃1:n such that every symbol xi that does not belong to Di−1 is replaced by the special 0
symbol and every symbol xi that belongs to Di−1 is replaced by its rank of insertion:

x̃i =

{
k if ∃k ≤ Ki−1, 〈xi, k〉 ∈ Di−1
0 otherwise .
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Note that each time i such that x̃i = 0 corresponds to the discovery of a new symbol and thus to an insertion in the
dictionary: Di = Di−1 ∪ 〈xi,Ki〉, with Ki = Ki−1 + 1.

— Let Kn be the number of redacted (censored-out) input symbols (this is the number of distinct symbols in x1:n) and let
i1:Kn

be their indexes. Extract the subsequence xi1:Kn
of all such redacted symbols.

— Perform an instantaneously decodable lossless progressive encoding (in the style of Mixture / arithmetic coding) of the
censored sequence x̃1:n, assuming decoder side-information about past symbols. Call the resulting string CM .

— Perform an instantaneously decodable lossless encoding (in the style of Elias / integer coding) of each redacted symbol
in xi1:Kn

and of the appended 0 individually rather than as a sequence, assuming decoder side-information about past
symbols. Call the resulting string CE .

— Interleave the coded redacted symbols of CE just after each coded 0 symbol of CM , to form the overall PC-code.
— The first 0 in the sequence of redacted symbols signals termination.

Decoding:
— Decode the interleaved CM and CE strings until exhaustion, as follows.
— Decode CM to obtain x̃1:n progressively.
— When a 0 is encountered, decode the single interleaved redacted symbol from CE to take the place of the 0 symbol in

the decoded sequence, then move back to decoding CM .
— Note that at all times the decoder knows the entire past sequence, and therefore the decoder side past side-information

hypothesis is upheld.

The censored sequence generated by message abracadabra is

00010101231

while the dictionary constructed from this sequence is

{〈0, 0〉, 〈a, 1〉, 〈b, 2〉, 〈r, 3〉, 〈c, 4〉, 〈d, 5〉}

We now give the details of the dictionary, the encoding of the censored sequence x̃1:n, and the encoding of the redacted
symbols xi1:Kn

. We also take additional care in guaranteeing that the overall PC code is instantaneously decodable.
The censored sequence x̃1:n is encoded into the string CM as follows. We start by appending an extra 0 at the end of the

original censored sequence, to signal the termination of the input. We therefore in fact encode x̃1:n0 into CM . We do this by
performing a progressive arithmetic coding [36] using coding probabilities Q̃n+1(x̃1:n0) given by:

Q̃n+1(x̃1:n0) = Q̃n+1(0 | x̃1:n)

n−1∏
i=0

Q̃i+1(x̃i+1 | x̃1:i) ,

where the predictive probabilities Q̃i+1(· | x̃1:i) are given by Krichevsky-Trofimov mixtures on the alphabet {0, 1, . . . ,Ki},

Q̃i+1

(
X̃i+1 = k | X̃1:i = x̃1:i

)
=

ñki + 1
2

i+ Ki+1
2

,

where, for 0 ≤ k ≤ Ki, ñki is the number of occurrences of symbol k in x̃1:i. Note that, for 0 ≤ k ≤ Ki,

ñki =

{
Ki if k = 0 ,
nji − 1 if 1 ≤ k ≤ Ki and 〈j, k〉 ∈ Di ,

where nji is the number of occurrences of symbol j in x1:i.
The subsequence xi1:Kn

of redacted symbols is encoded into the string CE as follows. For each i ∈ i1:Kn , we encode xi
using Elias penultimate coding [19]. Thus, if xi = j and N j

i−1 = 0, the cost of inserting this new symbol in the dictionary
(the Elias encoding of j) is 1 + log(j ∨ 1) + 2 log(1 + log(j ∨ 1)). The extra 0 appended to the message is fed to the Elias
encoder. Since no other encoded redacted symbol but this one equals 0, it unambiguously signals to the decoder that the last
0 symbol decoded from CM is in fact the termination signal. This ensures that the overall code is instantaneously decodable,
and that it corresponds to a coding probability Qn.

The number of elementary operations required by dictionary maintenance depends on the chosen implementation [See 43].
If a self-adjusting balanced search tree is chosen, the number of elementary operations is at most proportional to the logarithm
of the size of the dictionary. As the expected total number of symbols inserted in the dictionary coincides with the number of
distinct symbols Kn, on average it is sub-linear, the total expected computational cost of dictionary maintenance is O(n log n)
if n denotes the message length.

After reading the ith symbol from the message, the alphabet used by the Krichevsky-Trofimov encoder is 0, . . . ,Ki, the
state of the arithmetic encoder is a function of the counts ñ0i , ñ

1
i , . . . ñ

Ki
i . Counts may be handled using map or dictionary

data structures provided by modern programming languages.
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Algorithm 1 PC encoder
1: Append 0 at the end of message x1:n
2: D ← {〈0, 0〉} {Initialize dictionary}
3: n0 ← 0 {Initialize counters}
4: Initialize the arithmetic encoder
5: K ← 0 {Initialize the number of distinct symbols seen so far}
6: for i = 1 to length(x1:n0) do
7: j ← xi
8: if symbol j ∈ D and j 6= 0 then
9: k ← rank of insertion of j in D { exists 〈j, k〉 ∈ D }

10: feed mixture arithmetic encoder with k
11: emit output of arithmetic encoder if any
12: nk ← nk + 1 {update counter}
13: else
14: feed mixture arithmetic encoder with escape symbol 0

{ this forces the arithmetic coder to output the encoding of the current substring }
15: emit the output of the arithmetic encoder
16: feed the Elias encoder with j
17: emit the output of the Elias encoder
18: n0 ← n0 + 1
19: if j 6= 0 then
20: K ← K + 1 {increment number of distinct symbols}
21: D ← D ∪ {〈j,K〉}
22: nK ← 1 {initialize new counter}
23: else
24: exit
25: end if
26: end if
27: end for

From a bird-eye viewpoint, the sequence of censored symbols defines a parsing of the message into substrings of uncensored
symbols that are terminated by 0. Each substring is encoded by an arithmetic encoder provided with incrementally updated
sequences of probability vectors. The arithmetic encodings of substrings are interleaved with Elias encodings of censored
symbols.

Encoding and decoding are performed in an incremental way, even though arithmetic coding may require buffering [40].

VI. REDUNDANCY OF THE PATTERN CENSORING CODE

The redundancy of the PC code, that is the cumulative entropy risk of the coding probability with respect to the sampling
probability is the sum of expected instantaneous redundancies.

D(Pn, Qn) =

n−1∑
i=0

EP i

[
EP
[
log

P (Xi+1)

Qi+1(Xi+1|X1:i)

∣∣∣X1:i

]]
.

For i ≥ 0, the conditional expected instantaneous redundancy is given by

EP
[
log

P (Xi+1)

Qi+1(Xi+1|X1:i)

∣∣∣X1:i

]
=
∑
j≥1

pjINj
i>0 log

(
pj
(
i+ Ki+1

2

)
N j
i − 1

2

)
︸ ︷︷ ︸

(I)

+
∑
j≥1

pjINj
i =0 log

(
pj
(
i+ Ki+1

2

)
Ki + 1

2

)
︸ ︷︷ ︸

(II)

+
∑
j≥1

pjINj
i =0 (1 + log(j) + 2 log (log(j) + 1))︸ ︷︷ ︸

(III)

.

Terms (I) and (II) correspond to the mixture encoding on the censored sequence while the last term corresponds to the Elias
encoding of first occurrences of symbols.

Let us point out right away that, in contrast with the analyses from [6, 7, 10], the analysis of the PC code does not separate
the contributions of the two interleaved codes. We proceed cautiously in order to take into account the fact that redundancy
accounting has to match the (unknown) envelope tail behavior.
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The conditional instantaneous redundancy may be rearranged as follows:

EP

[
log

P (Xi+1)

Qi+1(Xi+1|X1:i)

∣∣∣X1:i

]
(7)

=
∑
j≥1

pj log

(
ipj

(
1 +

Ki + 1

2i

))
︸ ︷︷ ︸

A:=

+
∑
j≥1

pjINj
i >0

log

(
1

N j
i − 1

2

)
︸ ︷︷ ︸

B:=

+
∑
j≥1

pjINj
i =0

(
1 + log

(
j

Ki +
1
2

))
︸ ︷︷ ︸

C:=

+2
∑
j≥1

pjINj
i =0

log (log(j) + 1)

︸ ︷︷ ︸
D:=

.

Note that in term C the log(j) contribution of Elias encoding is balanced by the log(Ki + 1/2) coming from the encoding of
the 0 symbols in the censored sequence. This turns out to be crucial and allows us to obtain adaptivity within a log log n factor
(which comes from the residual part of Elias code) instead of a log n factor. The encoding of the 0 symbols in the censored
sequence is then pivotal, this is one of the main differences with the AC or ETAC codes: in those previous codes, zeros were
actually not encoded, and the KT code was working with the counts stemming from the sequence X1:i instead of X̃1:i. Here,
the KT code considers 0 as a proper symbol in the sequence X̃1:i, and this allows us to gain the term (II) in (7) at the price
of decreasing the other counts N j

i by one, which does not significantly affects the redundancy.
Bounding the redundancy of the PC code then consists in two steps. The instantaneous redundancy incurred by encoding

the (i+ 1)th symbol code is first upper bounded by an expression involving EKi, the expected number of distinct symbols in
a message of length i as well as other occupancy counts. This should not be regarded as surprising if we keep in mind that
redundancy and regret of pattern coding essentially depend on the profile of the message [33, 32, 35], that is on the occupancy
counts. This first upper bound is distribution-free, it holds for all stationary memoryless sources.

Proposition 12. For any source P , the instantaneous redundancy of the PC code satisfies

EP
[
log

P (Xi+1)

Qi+1(Xi+1|X1:i)

]
≤ κEKi

i
+
∑
j≥1

pjP{N j
i = 0}

(
log

(
j

EKi

)
+ 2 log (log(j) + 1)

)
,

where κ ≤ 19.

The second step assumes that the source probability mass function is dominated by a regularly varying envelope.

Proposition 13. Let P ∈ C(f) and assume that ~νf (1/·) ∈ RVα with α ∈ [0, 1[. Then there exists i0 ∈ N such that for all
i ≥ i0,

EP
[
log

P (Xi+1)

Qi+1(Xi+1|X1:i)

]
≤ cα

log log(i)~νf (1/i)

i
,

with cα = 3
(

Γ(1− α) + 1
1−α

)
.

Before proceeding with the analysis of the code, we first state some useful comparisons between the expected occupancy
counts, the number of distinct symbols in a random message, the missing mass and the measure ν1, under the source and
under the envelope. We start again with distribution-free statements, and proceed with the precise asymptotic results which
are valid in the regular variation scenario. As our code is fundamentally related to occupancy counts and to the occurrences
of new symbols, those will be very helpful to evaluate the contribution of each term to the redundancy.

Lemma 14. For any stationary memoryless source defined by the counting function ~ν, for all i ≥ 1,
i) The expected missing mass, the expected number of singletons and the expected number of distinct symbols are connected:

EMi,0 ≤ E
Ki,1

i
≤ E

Ki

i
,

ii)
e− 1

e
~ν(1/i) ≤ EKi ≤ ~ν(1/i) + iν1(0, 1/i)

iii)
1 ≤ EKi × E[1/Ki] ≤ 3 .

The largest value κ1 of E[1/Ki]EKi over all i ∈ N and over all sampling distributions is yet to be determined. It is not
smaller than 9/8: consider a geometric distribution with success probability 2/3.

The expected number of distinct symbols under the sampling distribution is related to the expected number of distinct
symbols under the envelope distribution.

Lemma 15. If P ∈ C(f), then ~ν(1/i) ≤ `f + ~νf (1/i) and EKi ≤ `f + Ef [Ki].

Finally, if the counting function ~νf associated with the envelope is regularly varying in the sense of [29], the expected
number of distinct symbols under the envelope distribution is simply connected with ~νf .



12

Lemma 16. [29, 24] If ~νf (1/·) ∈ RVα with α ∈ [0, 1[, then

Ef [Kn] ∼
n→∞

Γ(1− α)~νf (1/n) .

For all ε > 0, there exists n0 ∈ N, such that for n ≥ n0,

n ν1,f [0, 1/n] ≤ α+ ε

1− α
~νf (1/n) .

Notice that Γ(1) = 1 whereas limα↗1 Γ(1−α) =∞. The heavier the envelope tail, the larger the ratio between EfKn and
~νf (1/n).

We now proceed with the analysis of the redundancy of the PC code.

Proof of Theorem 6. Recall expansion (7) of the instantaneous redundancy incurred by encoding the (i + 1)th symbol, given
X1:i:

EP

[
log

P (Xi+1)

Qi+1(Xi+1|X1:i)

∣∣∣X1:i

]
=
∑
j≥1

pj log

(
ipj

(
1 +

Ki + 1

2i

))
︸ ︷︷ ︸

A:=

+
∑
j≥1

pjINj
i >0

log

(
1

N j
i − 1

2

)
︸ ︷︷ ︸

B:=

+
∑
j≥1

pjINj
i =0

(
1 + log

(
j

Ki +
1
2

))
︸ ︷︷ ︸

C:=

+2
∑
j≥1

pjINj
i =0

log (log(j) + 1)

︸ ︷︷ ︸
D:=

.

Starting with term A, we use the fact that for all x ≥ 0, log(1 + x) ≤ log(e)x and obtain

A ≤
∑
j≥1

pj log(ipj) + log(e)
Ki + 1

2i
.

Averaging over the first i symbols X1:i leads to

E[A] ≤
∑
j≥1

pj log(ipj) + log(e)
E[Ki] + 1

2i
.

Moving on to term B, the conditional Jensen inequality entails

E[B] = E

∑
j≥1

pjINj
i>0E

[
log

1

N j
i − 1

2

∣∣N j
i > 0

]
≤ E

∑
j≥1

pjINj
i>0 logE

[
1

N j
i − 1

2

∣∣N j
i > 0

] .
Resorting to Lemma 28 in Appendix E,

E[B] ≤ E

∑
j≥1

pjINj
i>0 log

(
1

ipj

(
1 +

9

ipj

))
≤ −

∑
j≥1

pjP(N j
i > 0) log(ipj) + log(e)

9E[Ki]

i
.

Hence,

E[A+B] ≤ 1

i

∑
j≥1

ipje
−ipj log(ipj) + log(e)

10E[Ki]

i
.

For pj ≤ 1/i or equivalently j > ~ν(1/i), log(ipj) ≤ 0. As for all x ≥ 1, x exp(−x) log(x) ≤ log(e)/e,

1

i

∑
j≥1

ipje
−ipj log(ipj) ≤

1

i

∑
j≤~ν(1/i)

ipje
−ipj log(ipj)

≤ ~ν(1/i)

i

log(e)

e
≤ log(e)

e− 1

EKi

i
,

where the last inequality comes from Lemma 14, ii). We get

E[A+B] ≤
(

log(e)

e− 1
+ 10 log(e)

)
E[Ki]

i
. (8)
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We turn towards term C. As Ki + 1/2 ≥ 1
2 (Ki + 1), we have

C ≤ 2Mi,0 +
∑
j≥1

pjINj
i =0 log

(
j

Ki + 1

)

= 2Mi,0 +
∑
j≥1

pjINj
i =0 log

(
j∑

` 6=j IN`
i>0 + 1

)
.

The collection of random variables (N j
i )j≥1 is negatively associated (See Appendix D). Hence, for all j ≥ 1, N j

i and
∑
` 6=j N

`
j

are negatively associated,

E

[
INj

i =0 log

(
j∑

` 6=j IN`
i>0 + 1

)]
≤ P(N j

i = 0)E

[
log

(
j∑

` 6=j IN`
i>0 + 1

)]
.

Resorting to Jensen’s inequality and noticing that
∑
` 6=j IN`

i>0 + 1 ≥ Ki, we get

E[C] ≤ 2E[Mi,0] +
∑
j≥1

pjP(N j
i = 0) logE

[
j

Ki

]
.

Using Lemma 14, iii), we obtain

E[C] ≤ (2 + log 3)E[Mi,0] +
∑
j≥1

pjP(N j
i = 0) log

(
j

EKi

)
. (9)

Note that Proposition 12 follows from (8) and (9), combined with Lemma 14, i.
The next step consists in assuming that the source belongs to an envelope class C(f).

Lemma 17. Let f be an envelope function and assume P ∈ C(f). Then
i) ∑

j≥1

pjP(N j
i = 0) log

(
j

EKi

)
≤ 2

EfKi + `f
i

+
∑

j≥~νf (1/i)

fj log

(
j

~νf (1/i)

)
.

ii)

E[D] ≤ 2
∑

j≥~νf (1/i)

fj log (log(j) + 1) + 2
EfKi + `f

i
log (log (~νf (1/i)) + 1) .

Finally, in a last step, the regular assumption on the envelope allows us to evaluate each of the terms involved in the
instantaneous redundancy.

Lemma 18. Let P ∈ C(f) and assume that ~νf (1/·) ∈ RVα, for α ∈ [0, 1[. For all ε > 0, there exists i0 ∈ N such that, for all
i ≥ i0

i) ∑
j≥~νf (1/i)

fj log
j

~νf (1/i)
≤ 3− α

(1− α)2
~νf (1/i)

i
.

ii)

E[D] ≤ 2(1 + ε)

(
Γ(1− α) +

1

1− α

)
log log(i)~νf (1/i)

i
.

As the bound on E[D] in Lemma 18 is much larger than ~νf (1/i)/i, we finally obtain that there exists i0 ∈ N that may
depend on the envelope f such that for all i ≥ i0,

EP
[
log

P (Xi+1)

Q(Xi+1|X1:i)

]
≤ cα

log log(i)~νf (1/i)

i
,

with cα = 3
(

Γ(1− α) + 1
1−α

)
.

Hence, for n ≥ i0, we obtain

R(Qn, C(f)n) ≤ C(i0, f) + cα log log(n)

n∑
i=1

~νf (1/i)

i
,
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which establishes the upper bound in Theorem 6.

VII. PROOFS

A. Proof of Theorem 4

i) As announced, the upper bound follows from bounds of [1] on the minimax regret defined as

R̂(C(f)n) = inf
Qn

sup
P∈C(f)

sup
x1:n∈Xn

log
Pn(x1:n)

Qn(x1:n)
.

Clearly, R (C(f)n) ≤ R̂ (C(f)n). Now Theorem 14 of [1] states that

R̂ (C(f)n) ≤ 1 + R̂
(
C(f)P(n)

)
= 1 + R̂

(
τ(C(f)P(n))

)
,

Using (6) and the fact that for j < `f , we still have the crude bound pj ≤ 1,

τ(C(f)P(n)) ⊂

`f−1∏
j=1

P?(n)

 ∞∏
j=`f

P?(nfj) .

As enlarging the class can not reduce the regret, and as, for two classes C1, C2, R̂(C1 × C2) = R̂(C1) + R̂(C2), we have

R̂
(
τ(C(f)P(n))

)
≤ `f R̂ (P?(n)) +

∑
j≥`f

R̂ (P?(nfj)) .

Lemma 17 of [1] provide us with the following bounds: if λ ≤ 1,

R̂ (P?(λ)) = log
(
2− e−λ

)
≤ log(e)λ ,

and, if λ > 1,

R̂ (P?(λ)) ≤ log

(√
2λ

π
+ 2

)
.

For aesthetic purposes (getting the common log(e) constant in front of each terms), we find it convenient to notice that
the bound above can be very slightly improved to

R̂ (P?(λ)) ≤ log

(√
2λ

π
+

3

2

)
.

As 3
2 +

√
2
π ≤ e,

R̂ (C(f)n) ≤ O(`f log n) +
∑

j,fj≥1/n

log
(

e
√
nfj

)
+ log(e)

∑
j,fj≤1/n

nfj .

Now, using the integral representation and integrating by parts gives∑
fj≥1/n

log
(

e
√
nfj

)
= log(e)~νf (1/n) +

∫ 1

1/n

log(nx)

2
νf (dx)

= log(e)

(
~νf (1/n) +

∫ 1

1/n

~νf (x)

2x
dx

)
.

Also, we may write
∑
j,fj≤1/n fj = ν1,f [0, 1/n], which gives the desired upper bound.

ii) Let m = n− n2/3. Thanks to Proposition 9, for n large enough

R (C(f)n) ≥ R
(
C(f)P(m)

)
− 1 .

Now, by Lemmas 10 and 11,

R
(
C(f)P(m)

)
≥
∞∑
j=`f

R (P?(mfj)) ≥
∑

j, fj≥1/m

R (P?(mfj)) ≥
∑

j, fj≥1/m

(
log(mfj)

2
− 5

)
.
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Using the integral representation and integrating by parts,∑
j, fj≥1/m

log(mfj)

2
=

log(e)

2

∫ 1

1/m

ln(mx)νf (dx)

=
log(e)

2

(
[−~νf (x) ln(mx)]

1
1/m +

∫ 1

1/m

~νf (x)

x
dx

)

= log(e)

∫ m

1

~νf (1/t)

2t
dt .

We obtain

R (C(f)n) ≥ log(e)

∫ m

1

~νf (1/t)

2t
dt− 5~νf (1/m)− 1 . (10)

Note that the lower bound (10) might be irrelevant. For instance, when ~νf (1/·) ∈ RVα with α > log(e)/10, the right-hand
side becomes negative. However, an order-optimal lower bound in the case of heavy-tailed envelopes (that is, when α > 0)
was established in [10]: the expected redundancy of a class C(f)n is lower-bounded by the expected number of distinct
symbols in a sample of size n drawn according to the envelope distribution (fj)j≥1. More precisely, for all envelope
function f , there exists a constant cf ≥ 0 such that, for all n ≥ 1, R (C(f)n) ≥ Ef [Kn]− cf .

B. Proofs of Section IV

Proof of Proposition 8. We have
R(CP(n)) = inf

Q∈M1(X∗)
sup
P∈C

D(PP(n), Q).

Let P ∈ C and Q ∈M1(X ∗), with X ∗ = ∪k≥1X k. The distribution Q can be written as Q =
∑
k≥1 q(k)Qk, where (q(k))k≥1

is a probability distribution over N, and, for each k ≥ 1, Qk is a distribution over Ck. Hence

D(PP(n), Q) =
∑
k≥1

P(N = k)
∑
x∈Ck

P k(x) log
P(N = k)P k(x)

q(k)Qk

= D(P(n), q) +
∑
k≥1

P(N = k)D(P k, Qk) . (11)

Maximizing in P and minimizing in (q(k))k≥1 and (Qk)k≥0, we get

R(CP(n)) = inf
(q(k))

D(P(n), q) + inf
(Qk)

sup
P∈C

∑
k≥1

P(N = k)D(P k, Qk) .

The first term is equal to zero for q = P(n), implying that the distribution Q which achieves the minimax redundancy is also
a Poisson mixture. Hence

R(CP(n)) = inf
(Qk)

sup
P∈C

∑
k≥1

P(N = k)D(P k, Qk) .

Proof of Proposition 9. We start with the lower bound on R(Cn). Let m = n−n2/3, and let M be a Poisson random variable
with mean m. By Proposition 8,

R(CP(m)) = inf
(Qk)

sup
P∈C

∑
k≥0

P(M = k)D(P k, Qk)

≤ inf
(Qk)

∑
k≥0

P(M = k) sup
P∈C

D(P k, Qk)

Using the fact that the sequence (R(Ck))k≥0 is increasing and sub-additive (see Proposition 7), we have

R(CP(m)) ≤ R(Cn) +
∑
k>n

P(M = k)
(
R(Ck)−R(Cn)

)
≤ R(Cn) +

∑
k>n

P(M = k)R(Ck−n)

≤ R(Cn) +R(C)
∑
k>n

P(M = k)(k − n) .



16

Resorting to Lemma 27 in Appendix E, we have∑
k>n

P(M = k)(k − n) = E
[
(M − n)I{M>n}

]
=

∫ ∞
0

P
(
M −m > t+ n2/3

)
dt

≤
∫ n

0

e
− n4/3

2(m+n2/3) dt+

∫ ∞
n

e−
t2

6t dt

≤ ne−n
1/3/2 + 6e−n/6 −→

n→∞
0 .

This establishes the lower bound on R(Cn) in Proposition 9.
Let us now establish the upper bound. Let now m = n+ n2/3 and M be a Poisson random variable with mean m. Using

the Bayesian representation of the minimax redundancy (see Proposition 7), we have

R(CP(m)) = sup
π∈M1(C)

inf
Q∈M1(X∗)

∫
D(PP(m), Q)dπ(P ) .

Fix π ∈M1(C). Resorting to Equation (11) in the proof of Proposition 8, we have

inf
Q∈M1(X∗)

∫
D(PP(m), Q)dπ(P )

= inf
(Qk),(q(k))

∫ D(P(m), q) +
∑
k≥0

P(M = k)D(P k, Qk)

 dπ(P )

= inf
(Qk)

∫ ∑
k≥0

P(M = k)D(P k, Qk)dπ(P )

=
∑
k≥0

P(M = k) inf
Qk

∫
D(P k, Qk)dπ(P ) .

We claim that the sequence
(
infQk

∫
D(P k, Qk)dπ(P )

)
k≥0 is increasing with respect to k. Indeed, let k ≥ 0 and let Qk+1 ∈

M1(X k). Denote by Q(k)
k+1 its restriction to the first k symbols. Then, for all P ∈M1(X ), D(Qk+1, P

k+1) ≥ D(P k, Q
(k)
k+1).

Hence for all Qk+1 there exist Qk ∈ M1(X k) such that
∫
D(P k, Qk)dπ(P ) ≤

∫
D(P k+1, Qk+1)dπ(P ), which gives the

desired result. We get

R(CP(m)) ≥ sup
π

∑
k≥n

P(M = k) inf
Qk

∫
D(P k, Qk)dπ(P )

≥ P(M ≥ n)R(Cn) .

Now, using again Lemma 27, we have

P(M ≥ n) ≥ 1− exp

(
−n

4/3

2m

)
−→
n→∞

1 ,

which concludes the proof.

Proof of Lemma 11. Using the Bayesian representation of the minimax redundancy, we have

R(P?(λ)) = sup
π∈M1([0,λ])

∫
D(P(µ),Pπ)dπ(µ) ,

where Pπ =

∫
P(µ)dπ(µ). In particular, taking π equal to the uniform distribution over [0, λ], we get

R(P?(λ)) ≥
∫ λ

0

1

λ

∑
k≥0

P(P(µ) = k) log
P(P(µ) = k)

P(Pπ = k)
dµ .

We have

P(Pπ = k) =
1

λ

∫ λ

0

e−µµk

k!
dµ =

P(P(λ) > k)

λ
≤ 1

λ
.

Hence

R(P?(λ)) ≥ log λ− 1

λ

∫ λ

0

H(P(µ))dµ .
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Using Stirling’s bound k! ≤ e1/12k
(
k
e

)k√
2πk, we have, for all µ ∈ [0, λ],

H(P(µ))

log(e)
= µ− µ lnµ+

∑
k≥0

e−µµk

k!
ln(k!)

≤ µ− µ lnµ+
∑
k≥1

e−µµk

k!

(
k ln k − k +

ln(2πk)

2
+

1

12k

)

≤
∑
k≥1

e−µµk

k!

(
k ln k +

ln(2πk)

2

)
− µ lnµ+

1

12
.

We use Jensen’s inequality to obtain∑
k≥1

e−µµk

k!
k ln k = µ

∑
k≥0

e−µµk

k!
ln(k + 1) ≤ µ ln(1 + µ) ,

and ∑
k≥1

e−µµk

k!
ln k ≤ (1− e−µ) ln

(
µ

1− e−µ

)
≤ lnµ+

1

e
,

where the last inequality is due to the fact that the function x 7→ x lnx is larger than −1/e for all x ≥ 0. We get

H(P(µ))

log(e)
≤ lnµ

2
+ µ ln

(
1 +

1

µ

)
+

ln(2π)

2
+

1

2e
+

1

12

≤ lnµ

2
+ 3 ,

which is smaller than 3 for µ ≤ 1. Hence

R(P?(λ)) ≥ log λ− 3 log(e)− 1

λ

∫ λ

1

logµ

2
dµ

≥ log λ

2
− 5 .

C. Proofs of Section VI
Proof of Lemma 14. i) Observe that

EMn,0 =

∫ 1

0

x(1− x)nν(dx) ≤ 1

n

∫ 1

0

nx(1− x)n−1ν(dx) =
EKn,1

n
≤ EKn

n
.

The relation between EKn and EfKn is easily obtained by noticing that the function x 7→ 1− (1− x)n is increasing on
[0, 1], which gives

EKn =
∑
j≥1

(1− (1− pj)n) ≤ `f +
∑
j≥1

(1− (1− fj)n) = `f + EfKn .

ii) The expected number of distinct symbols in a message of length i is never much less that the number of symbols with
probability larger than 1/i:

EKi ≥
∑

j≤~ν(1/i)

(1−
(
1− pj)i

)
≥ e− 1

e
~ν(1/i) .

The upper bound is obtained in a similar way

EKi =
∑
j≥1

(
1− (1− pj)i

)
≤ ~ν(1/i) +

∑
j>~ν(1/i)

(
1− (1− pj)i

)
≤ ~ν(1/i) +

∑
j>~ν(1/i)

ipj

= ~ν(1/i) + iν1(0, 1/i)

where the second inequality comes from 1− x ≤ (1− x/i)i for 0 ≤ x ≤ 1 and i ≥ 1.
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iii) The quantity E1/Ki satisfies a quadratic inequality:

E
[

1

Ki

]
− 1

EKi
= E

[
E[Ki]−Ki√

EKi

× 1

Ki

√
EKi

]
≤ E

[
(E[Ki]−Ki)

2

EKi

]1/2
× E

[
1

K2
i EKi

]1/2
≤ (EKi,1)1/2

EKi
× E

[
1

Ki

]1/2
where the first inequality follows by invoking Cauchy-Schwarz inequality, the first factor in the penultimate line is upper
bounded by 1 thanks to the fact that var(Ki) ≤ EKi,1 [4], while the second factor is crudely upper bounded using the
fact that Ki ≥ 1 entails 1/K2

i ≤ 1/Ki. Solving the inequality leads to

E
[

1

Ki

]
≤ 1

EKi

(
1 +

EKi,1

2EKi
+

(
EKi,1

EKi

)1/2√
1 +

EKi,1

4EKi

)

≤ 1

EKi

(
1 +

EKi,1

EKi
+

(
EKi,1

EKi

)1/2
)

≤ 1

EKi

(
1 + 2

(
EKi,1

EKi

)1/2
)

≤ 3

EKi
.

Proof of Lemma 17. i) We have∑
j≥1

pjP(N j
i = 0) log

(
j

E[Ki]

)
=
∑
j≥1

pjP(N j
i = 0) log

(
j

Ef [Ki]

)
+ E[Mi,0] log

Ef [Ki]

E[Ki]

≤
∑
j≥1

pjP(N j
i = 0) log

(
j

Ef [Ki]

)
+

EKi

i
log

Ef [Ki]

E[Ki]

≤
∑
j≥1

pjP(N j
i = 0) log

(
j

Ef [Ki]

)
+

Ef [Ki]

2i
,

where the first inequality follows from E[Mi,0] ≤ E[Ki]/i (see Lemma 14), and the second inequality follows from the
fact that x 7→ x log y

x achieves its maximum y/2 at x = y/2.
By Lemma 14, ii, we have EfKi ≥ e−1

e ~νf (1/i). Hence∑
j≥1

pjP(N j
i = 0) log

(
j

Ef [Ki]

)
≤ log

e

e− 1
E[Mi,0] +

∑
j≥1

pj log

(
j

~νf (1/i)

)
.

Now, for j < ~νf (1/i), the summands are negative and we simply omit them to get∑
j≥1

pj log

(
j

~νf (1/i)

)
≤

∑
j≥~νf (1/i)

fj log

(
j

~νf (1/i)

)
,

where we used pj ≤ fj , provided that j ≥ `f .
ii) Decomposing the sum according to ~νf (1/i) and using the fact that E[Mi,0] ≤ (EfKi + `f )/i readily yield the desired

bound on E[D].

Proof of Lemma 18. i) Using the integral representation, we have∑
j≥~νf (1/i)

fj log

(
j

~νf (1/i)

)
=

∫ 1/i

0

x log
~νf (x)

~νf (1/i)
νf (dx) .

By the regular variation assumption on ~νf (1/·), the Potter-Drees Inequality (see section A) implies that: for all ε, δ > 0,
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∃i0 ∈ N such that, for all i ≥ i0, for all x ∈ (0, 1/i],

~νf (x)

~νf (1/i)
≤
(

1

xi

)α
+ ε

(
1

xi

)α+δ
.

Taking crudely ε = 1, δ = 1− α and bounding α by 1, we obtain that for i large enough and x ∈ (0, 1/i],

~νf (x)

~νf (1/i)
≤ 2

xi
.

Hence ∫ 1/i

0

x log
~νf (x)

~νf (1/i)
νf (dx) ≤ ν1,f [0, 1/i] + log(e)

∫ 1/i

0

x ln

(
1

xi

)
νf (dx) .

By Fubini’s Theorem, ∫ 1/i

0

x ln

(
1

xi

)
νf (dx) =

∫ 1/i

0

x

∫ 1
xi

1

1

t
dt νf (dx)

=

∫ ∞
1

1

t

∫ 1
ti

0

xνf (dx)dt =

∫ ∞
i

ν1,f [0, 1/t]

t
dt .

Now, Lemma 16 implies that, for all ε > 0, for i large enough and for all t ≥ i, ν1,f [0, 1/t] ≤ (α+ε)~νf (1/t)
(1−α)t , and by

Karamata’s Theorem (see section A), ∫ ∞
i

~νf (1/t)

t2
dt ∼ ~νf (1/i)

(1− α)i
.

Hence, for i large enough, ∑
j≥~νf (1/i)

fj log

(
j

~νf (1/i)

)
≤ 3− α

(1− α)2
× ~νf (1/i)

i
.

ii) By Lemma 17,

E[D] ≤ 2
∑

j≥~νf (1/i)

fj log (log(j) + 1) + 2
EfKi + `f

i
log (log (~νf (1/i)) + 1) . (12)

As ~νf (x) � 1/x when x → 0 (which is true as soon as the support is infinite, see [24]), for i large enough, we have
log(~νf (x)) + 1 ≤ log(1/x) for all x ∈]0, 1/i]. Hence, the first term in the right-hand side of (12) can be controlled as
follows, ∑

j≥~νf (1/i)

fj log (log(j) + 1) =

∫ 1/i

0

x log (log(~νf (x)) + 1) νf (dx)

≤
∫ 1/i

0

x log log

(
1

x

)
νf (dx)

=

[
−~νf (x)x log log

(
1

x

)]1/i
0

+

∫ 1/i

0

(
log log

(
1

x

)
+

log(e)

lnx

)
~νf (x)dx

≤
∫ 1/i

0

log log

(
1

x

)
~νf (x)dx =

∫ ∞
i

log log(t)~νf (1/t)

t2
dt .

We used that, as α < 1, the limit of ~νf (x)x log log(1/x) as x → 0 is equal to 0. Now, the function t 7→ log log(t)~νf (1/t)
t2

belongs to RVα−2. Hence, by Karamata’s Theorem (see section A),∫ ∞
i

log log(t)~νf (1/t)

t2
dt ∼

i→∞

~νf (1/i)

(1− α)i
log log(i) .

As for the second term in the right-hand side of (12), we use ~νf (1/i)� i and EfKi ∼ Γ(1−α)~νf (1/i) and obtain that,
for all ε > 0, there exists i0 ∈ N such that, for all i ≥ i0

E[D] ≤ 2(1 + ε)

(
Γ(1− α) +

1

1− α

)
log log(i)~νf (1/i)

i
.
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APPENDIX A
REGULAR VARIATION

The determination of bounds on minimax redundancies and the analysis of the performance of the PC code for classes with
regularly varying envelopes rely at some point on classical results from regular variation theory. For the sake of self-reference,
these results are recalled here [See 5, 17, for proofs and refinements].

Theorem 19. (KARAMATA’S INTEGRATION THEOREM) Let f ∈ RVα and assume that there exists t0 > 0 such that f is
positive and locally bounded on [t0,+∞[.

(i) If α > −1, then ∫ t

t0

f(s)ds ∼
t→+∞

tf(t)

α+ 1
.

(ii) If α < −1, or α = −1 and
∫∞
0
f(s)ds <∞, then

tf(t)∫ +∞
t

f(s)ds
∼

t→+∞
−α− 1 .

Theorem 20. (POTTER-DREES INEQUALITIES.) If f ∈ RVα, then for all δ > 0, there exists t0 = t0(α), such that for all
t, x : min(t, tx) > t0,

(1− δ)xα min
(
xδ, x−δ

)
≤ f(tx)

f(t)
≤ (1 + δ)xα max

(
xδ, x−δ

)
.

In order to relate Karlin’s infinite urn scheme setting and the setting of [10] in Appendix C, we need to compute asymptotic
inverses of regularly varying functions. This is done using the notion of De Bruijn conjugacy.

Theorem 21 (DE BRUIJN CONJUGACY). [5, Proposition 1.5.15] Let ` ∈ RV(0), then there exists a function `# ∈ RV(0) such
that `#(x)`(x`#(x)) → 1 and `(x)`#(x`(x)) → 1 as x → ∞. Any function satisfying these two relations is asymptotically
equivalent to `#. The functions (`, `#) are said to form a pair of De Bruijn conjugates.

If f = tγ`(t) where ` is slowly varying, then `1/γ is also slowly varying and the function y 7→ y1/γ
(
`1/γ

)#(
y1/γ

)
is an

asymptotic inverse of f . This entails that for α > 0, f ∈ RVα, any asymptotic inverse of f is regularly varying with regular
variation index 1/α.

While exploring source classes defined by slowly varying counting functions, a refined notion of regular variation due to de
Haan may prove relevant.
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Definition 22. A slowly varying function ` has the extended regular variation property if there exists a slowly varying function
`0 such that for all x > 0

lim
t→∞

`(tx)− `(t)
`0(t)

= log(x) ,

this is summarized by ` ∈ Π`0 .

Slowly varying functions satisfying the extended regular variation property form a proper subset of RV0. For example,
g(t) = blog(t)c and g(t) = blog(t)c2 are slowly varying but do not satisfy the extended regular variation property, while
g(t) = blog(t)2c ∈ Π2 log.

APPENDIX B
INFINITE URN SCHEMES AND REGULAR VARIATION

The next theorem connects EKn and the regular variation properties of the envelope (characterized by the regular variation
of ~ν). For much more on the asymptotic behavior of occupancy counts, see Karlin [29], Gnedin, Hansen, and Pitman [24].

Theorem 23 ([29, 24]). Assume that there exists a slowly varying function ` such that ~ν(1/n) = nα`(n), with α ∈ [0, 1] and
` slowly varying at infinity.

i) If 0 < α < 1,

EKn ∼ Γ(1− α)~ν(1/n) , and ν1[0, 1/n] ∼ α~ν(1/n)

(1− α)n
.

ii) If α = 1,

EKn ∼ EKn,1 ∼ nν1[0, 1/n] ∼ n`1(n) where `1(n) =

∫ ∞
n

`(t)

t
dt� `(n) .

iii) If α = 0,

EKn ∼ `(n) , and ν1[0, 1/n]� `(n)

n
.

If furthermore, ~ν(1/·) ∈ Π`0 , then ν1[0, x] ∼ x`0(1/x) and `(x) ∼
∫ x
1
u−1`0(u)du.

APPENDIX C
CONNECTIONS BETWEEN COUNTING FUNCTION AND TAIL QUANTILE FUNCTION

In [7, 10], censoring methods and minimax redundancy rates for envelope classes are described using the envelope tail
quantile function (or a smothed version of it) U(t) = inf{x : F (x) ≤ 1

t } (where F denotes the envelope survival function). In
order to clarify the connection between the performance of the PC code and the performance of the codes described in these
two references, we relate the regular variation properties of the counting function ~ν and the regular variation properties of the
tail quantile function U .

For the sake of simplicity we assume that the probability mass function (pj)j≥1 is decreasing and that no pj is null. This
assumption entails ~ν(pj) = j for j ≥ 1.

For t > 1,
U(t) = inf

{
j :
∑
k>jpk ≤

1
t

}
= inf

{
j : ν1(0, pj) ≤ 1

t

}
.

This entails that U may be defined from ~ν and ν1,

U(t) = 1 + ~ν
(
sup

{
x : ν1(0, x) ≤ 1

t

})
.

Note that 1/sup
{
x : ν1(0, x) ≤ 1

t

}
= inf {y : 1/ν1(0, 1/y) ≥ t} , so letting h(y) be a shorthand for 1/ν1(0, 1/y), U(t) =

1 + ~ν(1/h←(t)).

Lemma 24. Assume that there exists a slowly varying function ` such that ~ν(x) ∼ x−α`(1/x), with α ∈ [0, 1) and that the
probability mass function (pj)j≥1 is decreasing and that no pj is null. Let γ = α/(1− α). Then,

i) U is asymptotically equivalent with a regularly varying function with index γ.
ii) If α ∈ (0, 1), let ˜̀ be a shorthand for (1/`1+γ)#. Then

U(t) ∼
t→∞

γγtγ ˜̀(t1+γ) .
iii) If α = 0 and ` ∈ Π`0 , let ˜̀0 be a shorthand for (1/`0)

#. Then U has the extended regular variation property, U ∈ Π˜̀
0

and
U(t) ∼

t→∞
`
(
t˜̀0(t)

)
.

iv) If α = 0 and the distribution is discrete log-concave, then U(t) ∼
t→∞

~ν(1/t).
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Proof. If ~ν(1/·) has either positive regular variation index or has both the slow variation and the extended regular variation
property, then h← is the generalized inverse of the regularly varying function 1/ν1(0, 1/·) (See Theorem 23 above). As such,
h← is regularly varying, and so is U.

If h(y) = 1/ν1(0, 1/·) ∈ RV1−α for α ∈ (0, 1) , then its generalized inverse is regularly varying with index 1+γ = 1/(1−α)
and, from Propositions 1.5.14 and 1.5.15 from [5],

h←(t) ∼
t→∞

γ1+γt1+γ ˜̀(t1+γ) .
and

U(t) ∼
t→∞

γγtγ ˜̀(t1+γ)γ/(1+γ) `(t1+γ ˜̀(t1+γ) )
∼

t→∞
γγtγ ˜̀(t1+γ) .

If ~ν(1/·) ∈ Π`0 where `0 is slowly varying, then by Theorem 23 and conjugacy arguments

U(t) ∼ `
(
t˜̀0(t)

)
.

If the distribution is discrete long-concave (which is equivalent to (pk+1/pk) is non increasing) the counting function ~ν is
readily verified to be slowly varying. The fact that U is slowly varying (but does not satisfy the extended regular variation
property) is well known [2].

For all k ≥ 1, pk+1 ≤ ν1(0, pk) ≤ pk+1/(1 − pk+1/pk). If pj ≥ 1
t > pj+1, then j ≤ U(t) ≤ j + k where k ≤

2 + log(pj/(pj − pj+1)/ log(pj/pj+1) which is bounded. This entails that ~ν(1/t) ≤ U(t) and limt→∞ U(t)/~ν(1/t) = 1.

In [10], the ETAC code escapes the n+ 1th symbol Xn+1, if Xn+1 ≥Mn where

Mn = min (n, {k : Xk,n ≤ k}) , (13)

while (Xk,n)k≤n is the non-decreasing rearrangement of X1, . . . , Xn. The random threshold Mn is concentrated around mn

where mn = m(n) and m(t) is defined for t ≥ 1 as the solution of equation U(t/x) = x. In [10], it is proved that the function
m inherits the regular variation properties of U . Namely, if U(t) = γγtγ ˜̀(t1+γ) where ˜̀= (1/`1+γ)# and ` ∈ RV0, m is
regularly varying with index γ/(γ + 1) = α,

m(t) ∼
t→∞

γtα`(t) ∼
t→∞

α

1− α
tα`(t) ∼

t→∞

α

1− α
~ν(1/t) .

When ` is slowly varying, the connexion between ~ν(1/·) and m is more subtle. The function m is the reciprocal of a De
Bruijn conjugate of U . Hence by Lemma 24, in order to have m(t) ∼

t→∞
`(t), we need to have to have

`
(

t
`(t)
˜̀
0

(
t
`(t)

))
`(t)

∼
t→∞

1 .

We are not aware of any meaningful characterization of this property.

APPENDIX D
NEGATIVE ASSOCIATION

When handling finite or infinite urn models, negative association arguments are a source of elegant moment or tail inequalities
for occupancy counts. They complement Poissonization arguments.

Definition 25 (NEGATIVE ASSOCIATION). Real-valued random variables Z1, . . . , ZK are said to be negatively associated if,
for any two disjoint subsets A and B of {1, . . . ,K}, and any two real-valued functions f : R|A| 7→ R and g : R|B| 7→ R that
are both either coordinate-wise non-increasing or coordinate-wise non-decreasing, we have:

E [f(ZA).g(ZB)] ≤ E [f(ZA)] .E [g(ZB)] .

Theorem 26. [18] For each n ∈ N, the occupancy scores (N j
n)j≥1 are negatively associated.

Monotonic functions of negatively associated variables are negatively associated. Hence, the variables (I{Nj
n>0})j≥1 (re-

spectively (I{Nj
n=0})j≥1) are negatively associated as increasing (respectively decreasing) functions of (N j

n)j≥1.

APPENDIX E
CONCENTRATION AND MOMENT BOUNDS

Poisson distributions satisfy Bennett and thus Bernstein inequalities [See 9, Chapter 2].
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Lemma 27. For any Poisson distributed random variable N , for all t > 0,

P (N ≥ EN + t) ≤ exp

(
− t2

2(EN + t/3)

)
,

P (N ≤ EN − t) ≤ exp

(
− t2

2EN

)
.

Bounds on expected inverse binomial random variables can be found in the literature [See 25, 3, and references therein].
The next results were developed for the purpose of this paper.

Lemma 28. Let N be a binomial random variable with parameters n and p.

E
[

1

N − 1
2

∣∣N > 0

]
≤ 1

EN

(
1 +

9

EN

)
.

Proof of Lemma 28. Using the fact that, for k ≥ 1,

1

k − 1
2

=
1

k + 1

(
1 +

3

2k − 1

)
≤ 1

k + 1
+

9

(k + 1)(k + 2)
,

we have

E
[

1

N − 1
2

∣∣N > 0

]
≤ 1

1− (1− p)n
n∑
k=1

(
n

k

)
pk(1− p)n−k

(
1

k + 1
+

9

(k + 1)(k + 2)

)
=

1

1− (1− p)n

(
P (B(n+ 1, p) ≥ 2)

(n+ 1)p
+

9P (B(n+ 2, p) ≥ 3)

p2(n+ 1)(n+ 2)

)
≤ 1

np
+

9

(np)2
.


