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Hidden Markov models (HMMs) are flexible tools for clustering depen-
dent data coming from unknown populations, allowing nonparametric mod-
elling of the population densities. Identifiability fails when the data is in fact
independent, and we study the frontier between learnable and unlearnable
two-state nonparametric HMMs. Interesting new phenomena emerge when
the cluster distributions are modelled via density functions (the ‘emission’
densities) belonging to standard smoothness classes compared to the multi-
nomial setting [2]. Notably, in contrast to the multinomial setting previously
considered, the identification of a direction separating the two emission den-
sities becomes a critical, and challenging, issue. Surprisingly, it is possible to
“borrow strength” from estimators of the smoother density to improve esti-
mation of the other. We conduct precise analysis of minimax rates, showing a
transition depending on the relative smoothnesses of the emission densities.

1. Introduction. Consider a two-state HMM with real-valued emissions, in which we
observe the first n entries of a sequence Y = (Y1, Y2, . . . ) ∈ [0,1]N which, under a parameter
θ = (p, q, f0, f1), satisfies

Pθ(Yn ∈A |X) =

∫

A
fXn

(y)dy,

X = (Xn)n∈N ∼Markov(π,Q),

(1)

with the Yn, n ∈ N conditionally independent given X . The vector X of ‘hidden states’,
which we assume is started from its invariant distribution X1 ∼ π, takes values in {0,1}N.
The transition matrix of the chain is given by

(2) Q :=

(

1− p p
q 1− q

)

,

with the convention that for j ≥ 1, Pθ(Xj+1 = 0 |Xj = 0) = 1− p < 1 and Pθ(Xj+1 = 0 |
Xj = 1) = q > 0. The densities f0 ∈ Bs0

2,∞(R), f1 ∈ Bs1
2,∞(R) are the ‘emission densities’

with respect to Lebesgue measure on [0,1]; here we use the notation

Bs
2,∞(R) = {f ∈Bs

2,∞ : ‖f‖Bs
2,∞

≤R}
for the scaled unit ball of the Besov spaceBs

2,∞. The precise definition of ‖·‖Bs
2,∞

used in this
paper is delayed to equation (10) below. We throughout use Pθ to denote the law of (X,Y ),
and all induced marginal and conditional laws.

The goal is to estimate the parameter θ. This is known to be possible, up to a label-
switching issue, under very mild conditions [10, 3]: specifically, given that the highly non-
identifiable i.i.d. nonparametric mixture is a degenerate submodel of a HMM, under con-
ditions which rule out independence. There are three ways in which the data (Yn)n∈N can
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fail to exhibit dependence: when the hidden states themselves are in reality independently
distributed; when the emission distributions are identical; or when only one population is
observed.

Once these i.i.d. submodels are excluded, consistent estimation is possible even for non-
parametric emission distributions. Moreover, no cost is incurred relative to the case where
the underlying labels are observed: for s-smooth functions, the minimax rate n−s/(1+2s) is
achieved, see [8, 9]. This rate can be achieved adaptively in a “state-by-state” manner: up
to a label-switching issue, one can achieve the rate n−sj/(1+2sj) if fj has smoothness sj ,
without knowledge of (sj, j = 0,1), see [15]. See also [14] for robust estimation of the law
of the observations in finite state space HMMs. These works do not consider the tradeoff
between the required sample size and the required “distance” from independence, and it is
this tradeoff that forms the focus of the current work, continuing from the previous article
[2] in which we considered the model (1) but with f0, f1 multinomial densities with respect
to counting measure on {1, . . . ,K} rather than the Lebesgue densities on [0,1] as consid-
ered herein. The nonparametric setting exhibits striking qualitative, as well as quantitative,
differences relative to the multinomial setting: see Section 1.2.

As in [2] we adopt the minimax paradigm and we analysis the smallest maximum risk
attainable over the following class of parameters. We define for some δ, ǫ ∈ (0,1) and some
ζ, s0, s1,R > 0

(3) Θs0,s1
δ,ǫ,ζ (R) := {θ : p, q ≥ δ, |1− p− q| ≥ ǫ, ‖f0 − f1‖L2 ≥ ζ, ‖fi‖Bsi

2,∞
≤R}.

The quantities δ, ǫ and ζ lower bound the “distance” to the i.i.d. submodel. Indeed if δ = 0,
we may be unable to estimate both f0 and f1 since we may see data from one of these alone;
if ζ = 0 we may be unable to estimate p and q; and if ǫ= 0 then we may be unable to identify
the contributions of f0 and f1 to the mixture π0f0 + π1f1. In contrast with [8, 9] which
consider nonparametric estimation of f0 and f1 in the large δ, ǫ, ζ regime, we are mainly
interested in the regimes where δ, ǫ, ζ can be eventually small, and how the minimax risks for
Q and f0, f1 over Θs0,s1

δ,ǫ,ζ (R) are affected in these regimes.
The main message of our theorems may now be stated roughly as follows (up to label

switching and technical details relative to smoothnesses).

• The minimax rate over Θs0,s1
δ,ǫ,ζ (R) for the estimation of the finite dimensional parameter Q

is the same as in the multinomial (parametric) setting, (nδ2ǫ4ζ6)−1/2max(δ, ǫζ).
• The minimax rate over Θs0,s1

δ,ǫ,ζ (R) for the estimation of emission densities f0 and f1
exhibits a transition according to the relative smoothnesses of the densities. If s0 =
s1 = s, then the minimax rate of estimating f0 and f1 in L2 norm is (δ2ǫ4ζ4n)−1 +
(nδ2ǫ2ζ2)−s/(2s+1), while if s0 > s1 (morally, see Section 4.4 for details), then the mini-
max rate for f0 in L2 norm is (δ2ǫ4ζ4n)−1 + (nδ2ǫ2ζ2)−s0/(2s0+1) and the minimax rate
for f1 in L2 norm is (δ2ǫ4ζ4n)−1 + (nδ2)−s1/(2s1+1).

• There exist estimators achieving the minimax risk (up to constants) that are adaptive in the
smoothness of the emission densities.

Suppressed constants may depend on R, on an upper bound L for the essential supremum of
f0 and f1 and on a lower bound γ∗ for the absolute spectral gap of the chain X .

For full statements of the theorems see Section 3 (minimax rates for the estimation of Q),
Sections 4.2 and 4.4 (upper bounds) and Section 4.3 (lower bounds). The precise theorems
are stated in a nonasymptotic manner and upper bounds contain several terms with precise
behaviour with respect to the constants R, L and γ∗. The asymptotic leading terms given in
the above main results are in the case where the “distance” to frontier is large compared to
n−a for some (precisely defined) a. In this setting, the transition between the situation where
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emission densities have similar or different smoothnesses can be described as “s0 = s1” or
“s0 > s1”, but the transition appears in a more intricate manner when taking a nonasymptotic
point of view. The exact relationship between s0 and s1 required is described in Section 4.4.
However, the main message is that some transition in the minimax rate occurs depending on
the relative smoothnesses of the emission densities.

1.1. Comparison to the multinomial case. Let us compare the above theorem to what
was obtained in the multinomial case in [2]. There, in place of the Besov classes Bs0

2,∞(R),
Bs1

2,∞(R), we considered density vectors, i.e. densities with respect to counting measure on
{1, . . . ,K} for some K ≥ 2. An identifiability assumption that f1− f0 lies in some specified
half plane was taken, to avoid any label switching issues.

The main result of that work can be summarised as follows. The worst-case (minimax)
risk for estimating parameters are the following (suppressed constants may depend on K and
on γ∗):

• The transition matrix Q can be estimated at minimax rate (nδ2ǫ4ζ6)−1/2max(δ, ǫζ);
• The multinomial density vectors can each be estimated at minimax rate (nδ2ǫ4ζ4)−1/2.

We note that the parametric part Q̂ achieves the same rate in the nonparametric setting
as in the multinomial setting; at first glance this seems unsurprising in view of the fact that
the pairs ((Xn, h(Yn))n≥0 form a hidden Markov model with transition matrix Q for any
function h, so that for a suitable h we can reduce to a parametric setting. However, reducing
to a parametric setting in which Q is still identifiable is in fact a nonparametric problem, see
Section 2.3, so that getting the same minimax parametric rate is not a priori guaranteed.

In contrast the rates for f0 and f1 in the nonparametric setting arise from delicate interplay
between the smoothnesses s0, s1 and the parameters δ, ǫ, ζ appear with different powers.

1.2. Novelties in the nonparametric setting. One typical approach in nonparametric
statistics is to reduce to a multinomial case by projecting onto a wavelet basis with maxi-
mum level chosen to balance the bias and variance. This basic approach broadly works here
but the inverse nature of the problem, specifically with regards to inverting the map θ 7→ Pθ,
introduces some novelties.

Separating the two distributions. In the HMM setting, the key issue of separation from the
independent subcase becomes entangled with the choice of a direction in which to project f0
and f1. Let us illustrate this point in the context of estimating the parametric part Q. As noted
above, for any function h the pairs ((Xn, h(Yn))n≥0 form a hidden Markov model with tran-
sition matrix Q. This is the no bias phenomenon already used in [11] for multidimensional
mixture models and in [16] for finite state space HMMs. Choosing A1, . . . ,AK partitioning
Y and defining h by h(y) = k for y ∈ Ak , we may apply the results from the multinomial
setting to deduce that Q can be estimated at the rate given in Section 1.1. However in said
rate ζ must lower bound the euclidean distance between vectors (〈f0,1Ak

〉 : k ≤ K) and
(〈f1,1Ak

〉 : k ≤K). If the Ak are not chosen carefully, this distance may be much smaller
than ‖f0 − f1‖L2 , potentially even equal to 0. The suitable choice of Ak depends on the
direction (f0 − f1)/‖f0 − f1‖L2 , which is unknown and nonparametric. One must there-
fore account for the nonparametric modelling of the emission distributions even in estimat-
ing the parametric portion. The requirement on an initial estimator is not too stringent: one
sufficient condition, which we will use in what follows, is to find h of norm 1 such that
〈h, f0 − f1〉/‖f0 − f1‖L2 is bounded away from zero. Finding such an h is nevertheless an
interesting challenge in the current setting, since we consider the case where f0 and f1 are
potentially very close. This preliminary estimation step is important also for estimating the
nonparametric part.



4

Sharing estimation strength. Another novelty in the nonparametric setting is a “coupling”
that appears between estimation for f0 and estimation for f1. Indeed, it is possible to estimate
the combination ψ1 = π0f0 + π1f1 at a fast rate because we avoid the inversion step: ψ1 is
simply the invariant density of Yn, and so an empirical estimator achieves the nonparametric
rate n−s/(1+2s) where s is the smoothness of ψ1 (this can be proven using Lemma 7). In
the case where f0 is much smoother than f1, it may be more efficient to estimate f0 and
ψ1, and estimate f1 by plug in, rather than directly estimating f1. This is reflected both in
the upper bounds (see Theorem 3 and Theorem 5) and the lower bounds (see Theorem 4).
The precise analysis of how one can “borrow” strength from the estimator of the smoother
emission density to improve on the estimation rate for the rougher emission density is more
involved, but this is the ground idea.

Choice of wavelet thresholding estimator. One additional novelty relative to other HMM
papers in the nonparametric setting is that we use a wavelet block thresholding estimator.
This allows us to adapt to the smoothnesses s0 and s1 without needing to use Lepskii’s
method, and so in principle at least is more computationally feasible. One could also achieve
adaptive rates using updated versions of previous, Lepskii’s method based, estimators, from
[15].

1.3. Outline of the paper. In Section 2, we recall the reparametrisation trick that illu-
minates how the distance to the i.i.d. frontier appears to be key for being able to solve the
inverse problem, together with the need to find a way to separate the two emission distribu-
tions. In Section 3 we focus first on the estimation of the transition matrix Q, for which we
provide a new moment-based estimator and precise minimax rates, see Theorem 1 for the
upper bound and Theorem 2 for the lower bound. Section 4 studies estimation of the emis-
sion densities with L2[0,1]-norm risk. Using the strategy of Section 2 to solve the inverse
problem, we provide a new block-thresholding wavelet based estimation method for which
we give in Theorem 3 precise upper bounds for the maximum risk, adaptively achieving the
usual asymptotic minimax rate. Lower bounds are proved in Theorem 4 for which a transition
depending on the relative smoothnesses of the emission distributions appears. A consequence
is that for similar smoothnesses the previous estimator achieves the asymptotic minimax rate
even with respect to constants governing the distance to the frontier as soon as this distance
is not too small compared to some negative power of n. In Section 4.4 we propose another
estimator which can handle the transition if we can identify which is the smoother function,
see Theorem 5. Section 5 explains how to separate the emission distributions, see Theorem
6. Section 6 is devoted to the discussion of questions left open in our work, in particular the
question of full adaptation to distance to the frontier with respect to unknown possible differ-
ent smoothnesses in the emission densities. All detailed proofs are given in Section A (upper
bounds) and Section B (lower bounds).

2. Key elements for solving the inverse problem.

2.1. Reparametrisation. As noted previously [10], understanding law of three consecu-
tive observations is key to solving the inverse problem and recovering the model parameters.
As in the multinomial case, a reparametrisation simplifies the expression for said law, and
allows the dependence on the parameters δ, ǫ and ζ to appear more naturally.

Set

φ(θ) =
( q−p
p+q 1− p− q ‖f0 − f1‖L2

)

, ψ(θ) =
( qf0+pf1

p+q
f0−f1

‖f0−f1‖L2

)

.(4)
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For m ≥ 1, let P (m)
φ,ψ denote the law of (Y1, . . . , Ym) under parameter (φ,ψ), and let

p
(m)
φ,ψ denote the corresponding density with respect to Lebesgue measure on [0,1]m. In this

parametrisation, defining

(5) r(φ) = 1
4 (1− φ21)φ2φ

2
3,

one computes, with f ⊗ g defined by (f ⊗ g)(x, y) = f(x)g(y),

(6) p
(3)
φ,ψ = ψ1 ⊗ ψ1 ⊗ ψ1 + r(φ)

(

ψ2 ⊗ψ2 ⊗ψ1 + ψ1 ⊗ψ2 ⊗ψ2

)

+ φ2r(φ)ψ2 ⊗ψ1 ⊗ ψ2 − φ1φ2φ3r(φ)ψ2 ⊗ψ2 ⊗ψ2.

The parametrisation θ 7→ (φ,ψ) is invertible: see Lemma 1. It is also possible to invert the

map (φ,ψ) 7→ p
(3)
φ,ψ up to label switching issues.

2.2. Solving the direct problem. Of course, to solve the inverse problem we must solve
the direct problem (which here means estimating p(3)φ,ψ or equivalent). In [2], where multino-

mial emission densities were considered, it was proposed to use an empirical estimator p̂(3) of
p(3), and then solve the inverse problem using an estimator (φ̂, ψ̂) minimizing the (euclidean)

distance (φ,ψ) 7→ ‖p(3)φ,ψ − p̂(3)‖. Here we use a similar heuristic, but we propose using the
method of moments to improve tractability. As explained in Section 1.2, we need to have
access to a separating hyperplane, or equivalently the unit normal to such a plane, which will
be a “sufficiently good” separating function ψ̃2 (preliminary estimator of ψ2), discussed in
the next subsection. Given ψ̃2, by considering the expectations of ψ̃2, ψ̃2 ⊗ ψ̃2, ψ̃2 ⊗ 1⊗ ψ̃2

and ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2, from (6) one can extract

(7) m=m(φ) := (r(φ)Ĩ2, r(φ)φ2Ĩ2, r(φ)φ1φ2φ3Ĩ3), Ĩ := 〈ψ2, ψ̃2〉;
see Lemma 2. If Ĩ 6= 0, one can retrieve from m the parametric part (i.e. the parameters
(p, q), or equivalently (φ1, φ2)): for example, φ2 =m2/m1. We therefore propose a method
of moments estimator for (p, q) constructed via estimating the expectations above using their
empirical versions, see Section 3, computed using

(8) P
(s)
n (h) :=

1

n− s+ 1

n−s+1
∑

i=1

h(Yi, . . . , Yi+s−1), h : [0,1]s →R, s≥ 1.

We use concentration inequalities for Markov chains [17] to ensure our empirical estima-
tors are sufficiently close to their means. This requires us to slightly shrink the set Θs0,s1

δ,ǫ,ζ (R)
and restrict our attention to parameters that are also in (see Lemma 7)

(9) Σγ∗(L) := {θ : 1− |1− p− q| ≥ γ∗, max
j=0,1

‖fj‖∞ ≤ L},

i.e. parameters with uniformly bounded emission densities (here ‖·‖∞ denotes the usual
supremum norm) and having an absolute spectral gap. Note that for θ ∈ Θs0,s1

δ,ǫ,ζ (R) we au-
tomatically have ‖fj‖∞ . R, but we introduce L to highlight the distinct role played by
‖fj‖∞ from that played by R. Also note that we distinguish between the parameters δ, ǫ, ζ
which relate to the “distance” to independence and the others.

To estimate the nonparametric part, i.e. f0 and f1, we use empirical estimators of their
respective wavelet coefficients based on P

(s)
n (h) for well-chosen h, using again the separating

function ψ̃2, see Section 4. Inversion to get the emission densities again requires that Ĩ 6= 0.
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2.3. Nonparametric estimation of a separating hyperplane. As described above, pro-
vided Ĩ = 〈ψ̃2, ψ2〉 6= 0 one can build a map

(

Eθ(ψ̃2),Eθ(ψ̃2 ⊗ ψ̃2),Eθ(ψ̃2 ⊗ 1⊗ ψ̃2),Eθ(ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2)
)

7→m(φ) 7→ (p, q),

up to label switching (and similarly to recover the nonparametric part). Then an estimator
(p̂, q̂) of (p, q) is obtained via the method of moments by evaluating the previous map at

(P
(1)
n (ψ̃2),P

(2)
n (ψ̃2 ⊗ ψ̃2),P

(3)
n (ψ̃2 ⊗ 1 ⊗ ψ̃2),P

(3)
n (ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2)). When Ĩ is too small,

however, said map turns out to be unstable and (p̂, q̂) may end up being far from (p, q) even
though the empirical moments are close to their expectations. Hence one requires |Ĩ | to be
bounded away from zero to avoid deteriorated rates of convergence. Although seemingly in-
nocuous, this has great consequences when working close to the i.i.d. boundary. To illustrate
this claim, suppose that we choose ψ̃2 randomly as follows (other random mechanisms will
lead to similar issues): let (ek)k≥1 be an orthonormal basis for L2[0,1], for K ≥ 1 draw

U1, . . . ,UK
iid∼ N (0,1), and let ψ̃2 =

∑K
k=1Ukek/[

∑K
m=1U

2
k ]

1/2. Then, for K large enough,

〈ψ̃2, ψ2〉=
∑K

k=1Uk〈ek, f0 − f1〉
[
∑K

m=1U
2
k ]

1/2‖f0 − f1‖L2

law≈ N (0,1) · ‖πKf0 − πKf1‖L2√
K‖f0 − f1‖L2

with πKf0 − πKf1 the orthogonal projection of f0 − f1 onto the span of e1, . . . , eK . In a
maximum risk analysis we cannot exclude that ‖πKf0 − πKf1‖L2 ≪ ‖f0 − f1‖L2 unless
K is taken very large or going to infinity fast enough. But then, 〈ψ̃2, ψ2〉 will be Op(K−1/2)

and harm the rates of convergence of our estimators. This simple example shows that ψ̃2 must
be determined from a priori knowledge or computed from the data. We note that this is an
issue only when ζ is very small and/or f0 − f1 is non-smooth. Otherwise, when working far
from the i.i.d. boundary, choosing a random ψ̃2 may work reasonably well. Indeed, similar
heuristics have been used in other papers with good performances [1, 9, 16].

Thus a main step to be able to use (6) to solve the inverse problem is to build a function
ψ̃2 such that |Ĩ| is bounded away from zero. This explains why we describe ψ̃2 as a sepa-
rating function: since ψ2 := (f0 − f1)/‖f0 − f1‖L2 , finding ψ̃2 is tantamount to finding an
hyperplane in L2[0,1] which separates f0 and f1 sufficiently well. This means that even for
estimating the parametric part, we must first solve for the nonparametric problem of finding
ψ̃2. As explained in the introduction, this step is an important difference to the multinomial
situation where densities lived in a finite dimensional space, and it is therefore not trivial that
(p, q) can be estimated at parametric speed in the current setting.

Since f 7→ |〈ψ2, f〉| is maximized over the unit ball when f = ψ2, the best choice for ψ̃2 is
an estimator of ψ2. Since we only require that |Ĩ|= |〈ψ2, ψ̃2〉| bounded away from zero, said
estimator does not necessarily need to be good. One way to build such an estimator is to start
with a truncated orthonormal basis (ek)k=1,...,K for L2[0,1] and define the K ×K matrix G
with entries

Gjk :=
1

2
Eθ(ej ⊗ ek + ek ⊗ ej)−Eθ(ej)Eθ(ek) = r(φ)〈ψ2, ej〉〈ψ2, ek〉

where the last equality follows from Lemma 2. Hence, G is proportional to the Gram matrix
of the vector Vθ ∝ (〈ψ2, e1〉, . . . , 〈ψ2, eK〉). Clearly Vθ/‖Vθ‖ is the sole eigenvector of G with
a non-zero eigenvalue, this unique non-zero eigenvalue being equal to r(φ)

∑K
k=1〈ψ2, ek〉2.

Hence, the basis coefficients of ψ2 can be recovered from G. By concentration arguments, we
expect that an estimator of ψ2 can be obtained from the empirical version of G. We leverage
that idea using a wavelet basis in Section 5.

Since we ultimately wish to compute empirical averages of the form P
(2)
n (ψ̃2 ⊗ f), it

is convenient to assume that ψ̃2 is independent of the data Y , for example because it ex-
presses a priori knowledge or because it is computed using the above method from a sample
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(Ỹ1, . . . , Ỹn)∼ P
(n)
θ that is independent of (Y1, . . . , Yn). This will be always assumed in the

sequel and we come back to discuss this point in Section 5.

3. Estimation of the parametric part and minimax rates. First we estimate the m
functional defined in (7), using the method of moments. Drawing inspiration from expres-
sions in Lemma 2, we let

m̂1 := P
(2)
n (ψ̃2 ⊗ ψ̃2)− P

(1)
n (ψ̃2)

2,

m̂2 := P
(3)
n (ψ̃2 ⊗ 1⊗ ψ̃2)− P

(1)
n (ψ̃2)

2,

m̂3 =−P
(3)
n (ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2) + P

(1)
n (ψ̃2)

3 +
(

2m̂1 + m̂2

)

P
(1)
n (ψ̃2),

and then

φ̂1 =
m̂3

[4m̂2
1(m̂2)+ + m̂2

3]
1/2

, φ̂2 =max
(

− 1, min
(m̂2

m̂1
, 1
))

.

We then build an estimator of the transition matrix Q, justified by Lemma 1, by letting

Q̂01 = 1− Q̂00 =
1
2(1− φ̂1)(1− φ̂2),

Q̂10 = 1− Q̂11 =
1
2(1 + φ̂1)(1− φ̂2).

To account for label switching, write Qσ for the matrix with entries (Qσ)ij =Qσ(i),σ(j) for a
permutation σ. We consider the loss relative to the Frobenius norm ‖·‖F :=

∑

i,j(·)2i,j .

THEOREM 1. Assume ζ ≤ 1, and assume ψ̃2 is a given unit vector in L2[0,1], in-

dependent of the sample Y1, . . . , Yn, satisfying ‖ψ̃2‖∞ ≤ τ and |〈ψ̃2, ψ2〉| ≥ 7/8. Assume

nγ∗ ≥ τ6/L3. Then there are universal constants B,C > 0 such that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

inf
σ
Eθ

(

‖Q̂σ −Q‖2F
)

≤B exp

(

− Cnγ∗δ2ǫ4ζ6

L3 +max(τ,
√
L)3δǫ2ζ3

)

+
BL3max(δ2, ǫ2ζ2)

δ2ǫ4ζ6
1

nγ∗
.

We assumed that |〈ψ̃2, ψ2〉| ≥ 7/8 in the statement of the Theorem 1. As discussed earlier
in Section 2.3 what matters the most is that |〈ψ̃2, ψ2〉| is bounded away from zero. The lower
bound of 7/8 is somewhat arbitrary and inspired from the further results in Section 5. Having
a smaller value for |〈ψ̃2, ψ2〉| would only affect the upper bound in Theorem 1 through the
value of the constant B. It is also required in Theorem 1 that ‖ψ̃2‖∞ ≤ τ for some τ > 0
[note that ‖ψ̃2‖L2 = 1, so necessarily τ ≥ 1] which comes from technicalities arising in the
proof from the use of certain Bernstein-type concentration inequalities. The same remarks
will also apply to the subsequent Theorems 3 and 5.

In most regimes of interest the first term in the bound in Theorem 1 can be neglected and
our estimator achieves the rate of convergence L3 max(δ2,ǫ2ζ2)

δ2ǫ4ζ6
1
nγ∗ , which is, up to constants,

the minimax rate, as the lower bound below proves.
We give a lower bound for each component of Q separately, which obviously implies a

bound for the left side of the above display.
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THEOREM 2. Assume nδ2ǫ4ζ6 ≥ 1, ζ ≤ 1/(4
√
3), γ∗ ≤ 1/3, ǫ≤ ǫ0 for a suitable ǫ0 > 0,

δ ≤ 1/6, R≥ 5/4 + 1/(8
√
3) and L≥ 5/8. Then there exists a constant c > 0 such that

inf
θ̂

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

|p̂− p|2
)

≥ cmax(δ2, ǫ2ζ2)

δ2ǫ4ζ6
1

n

where the infimum is over all estimators θ̂ based on Y1, . . . , Yn. The same lower bound holds

for the estimation of q.

The proof of Theorem 1 can be found in Section A.3 and that of Theorem 2 in Section
B.1.

4. Estimation of the emission densities.

4.1. Preliminaries on wavelets and the space Bs
2,∞. Throughout the paper we use the

S-regular boundary-corrected wavelet basis of [7], see also e.g. [12, Section 4.3.5], denoted
{{ΦJk : k = 0, . . . ,2J−1},{Ψjk : j ≥ J, k = 0, . . . ,2j − 1}}, with initial resolution level J
chosen as in the latter reference. As is common, we will refer to the (ΦJk) as father wavelets
and to the (Ψjk) as mother wavelets. Any f ∈L2[0,1] has the series expansion

f =

2J−1
∑

k=0

〈ΦJk, f〉ΦJk +
∞
∑

j=J

2j−1
∑

k=0

〈Ψjk, f〉Ψjk

with convergence of the series in L2[0,1]. In fact, as our densities will be assumed regu-
lar enough, wavelet series expansions for f0 and f1 will also converge uniformly (see [12,
eq. (4.71)]). Furthermore, it is well-known that the Besov space Bs

2,∞ can be characterised
via the wavelet coefficients. Indeed the norm for Bs

2,∞ that we will use (see e.g. [12, Equa-
tion (4.166)]) is given by

(10) ‖f‖2Bs
2,∞

:=

2J−1
∑

k=0

〈ΦJk, f〉2 + sup
j≥J

22js
2j−1
∑

k=0

〈Ψjk, f〉2.

4.2. Block wavelet estimators achieve smoothness adaptive rates. Using the ideas in Sec-
tion 2, the coefficients of f0 and f1 can be extracted from {Eθ(ψ̃2⊗ΦJk)}, {Eθ(ψ̃2⊗Ψjk)},
{Eθ(ΦJk)}, {Eθ(Ψjk)} and Eθ(ψ̃2), and further estimated using their empirical relatives.
Given these empirical wavelets coefficients, we construct estimators for f0 and f1 based on
block-thresholding the coefficients.

For notational convenience, we write fΦJk := 〈ΦJk, f〉 and fΨjk := 〈Ψjk, f〉. Hence, our

goal is to find estimators {(f̂ΦJk

0 )k, (f̂
Ψjk

0 )jk} of {(fΦJk

0 )k, (f
Ψjk

0 )jk} (and similarly for f1).
To obtain an expression for these coefficients, we draw inspiration from the inversion formu-
lae in Lemma 1. In particular, letting

ĝ :=

√

4m̂2
1(m̂2)+ + m̂2

3

m̂2
1{m̂2>0}

be an estimator of g := φ3|Ĩ|, we set

ĜΦJk := P
(2)
n (ψ̃2 ⊗ΦJk)− P

(1)
n (ψ̃2)P

(1)
n (ΦJk),

f̂ΦJk

0 := P
(1)
n (ΦJk) +

ĝ(1− φ̂1)

2m̂1
1{m̂1 6=0}Ĝ

ΦJk ,

f̂ΦJk

1 := P
(1)
n (ΦJk) +

ĝ(1 + φ̂1)

2m̂1
1{m̂1 6=0}Ĝ

ΦJk .
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Lemmas 1 and 2 (and the sentence after the latter) justify that these target coefficients of f0, f1
(up to label switching). The same definition applies mutatis mutandis to the estimators of the
mother coefficients f̂Ψjk

0 , f̂Ψjk

1 , and ĜΨjk . It is customary that not all empirical coefficients
be retained in the final estimator, and that small coefficients should be discarded to reduce
the risk. It is also well-known [5] that individual coefficient thresholding is sub-optimal with
respect to the L2 loss, as opposed to block-thresholding procedures with carefully chosen
blocks [4, 6]. Here, we build the blocks as follows.

Motivated by [4, 6] we wish to build blocks of consecutive wavelets with size approxi-
mately log(n), which is known to be the best compromise for global versus local adaptation.
Since there might be fewer than log(n) wavelets at small resolution level j, we will only
threshold coefficients with j large enough. We define

Jn := inf
{

j ≥ J : 2j ≥ log(n)
}

where the infimum is over the integers. We then let N := 2Jn so that each level with j ≥
Jn can be partitioned into an integer number of blocks of N consecutive wavelets. More
precisely, for each level j ≥ Jn, and each ℓ = 0, . . . ,N−12j − 1 we define the blocks of
indices

(11) Bjℓ := {k ∈ {0, . . . ,2j−1} : (ℓ− 1)N ≤ k ≤ ℓN − 1}.
For a constant τ ≥ 1 we also define ̃n as the largest integer such that 2̃n ≤ n

log(n)τ2 ; we
shall assume that J < Jn < ̃n which is always satisfied for n large enough. We then let, for
i= 0,1,

f̂i :=

2J−1
∑

k=0

f̂ΦJk

i ΦJk +

Jn−1
∑

j=J

2j−1
∑

k=0

f̂
Ψjk

i Ψjk +

̃n
∑

j=Jn

∑

ℓ

(

∑

k∈Bjℓ

f̂
Ψjk

i Ψjk

)

1{‖f̂Bjℓ
i ‖>ΓŜn}

where ‖f̂Bjℓ

i ‖2 :=∑k∈Bjℓ
(f̂

Ψjk

± )2, Γ> 0 is a tuning parameter, and

Ŝn :=

√

log(n)

n
max

(

1,
ĝ

|m̂1|
)

1{m̂1 6=0}.

The above estimators perform well in probability; to ensure good perfomance in expectation
we truncate below at 0 and above at some Ť , defining for i= 0,1

f̌i :=max
(

0, min
(

Ť , f̂i
))

.

THEOREM 3. Suppose nγ∗ ≥ max(τ3, τ
2 log(n)2

L ), ̃n > Jn, L ≤ n, τ ≥ 1, Ť ≥ L, and

ζ ≤ 1. Assume ψ̃2 is a given unit vector in L2[0,1], independent of the sample Y1, . . . , Yn,

satisfying ‖ψ̃2‖∞ ≤ τ and |〈ψ̃2, ψ2〉| ≥ 7/8. Then there are universal constants β > 0, B > 0
and C > 0 such that for all Γ ≥ βL1/2max((L/γ∗)1/2,1/γ∗) and for i = 0,1, provided

0< si ≤ S with S > 0 the regularity of the wavelet basis,

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ min
i′=0,1

(

‖f̌i′ − fi‖2L2

)

≤BŤ 2 exp

(

− Cnγ∗δ2ǫ4ζ6

L3 +max(τ,
√
L)3δǫ2ζ3

)

+
BL2

δ2ǫ2ζ2
log(n)

nγ∗
+

BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2

+
BR2max(1, L2

Γ2γ∗ )

min(1, si)

( Γ2

R2δ2ǫ2ζ2n

)2si/(2si+1)
+
BR2max(1, L2

Γ2γ∗ )

min(1, si)

(τ2 log(n)

n

)2si
.
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The proof of Theorem 3 is in Section A.4. Of particular interest is the boundary regime,
where γ∗, R, L, Ť and τ are of constant order while δ, γ and ζ are small. The following
corollary is intended to illustrate how the bound simplifies in such setting. The proof of
Corollary 1 is given in Section A.7.

COROLLARY 1. Assume that γ∗, R, L, Ť , and τ remain constant as n→∞ and δ ≥
n−a, ǫ ≥ n−b, 1 ≥ ζ ≥ n−c for constants a, b, c > 0 such that 1 − 2a − 4b − 6c > 0 (this

latter requirement corresponds to where the bounds on the right vanish, so that parameters

are proved to be learnable). Then the bound in the Theorem 3 simplifies: for large enough n,

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ min
i′=0,1

(

‖f̌i′ − fi‖2L2

)

≤C

{

1

δ2ǫ4ζ4n
+
( 1

δ2ǫ2ζ2n

)2si/(1+2si)
}

,

for a constant C depending on γ∗, L, R, Γ, B, τ , Ť , and a, b, c.

4.3. Lower bounds. The following theorem gives lower bounds for the estimation risk
of the emission densities. The detailed proof can be found in Section B.2.

THEOREM 4. Assume nδ2ǫ2ζ4 ≥ 1, ζ ≤ 1/(4
√
3), γ∗ ≤ 1/3, ǫ≤ ǫ0 for a suitable ǫ0 > 0,

δ ≤ 1/6, R≥ 5/4 + 1/(8
√
3) and L≥ 5/8. Then there exists a constant c > 0 such that

(12) inf
f̌0

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

‖f̌0 − f0‖2L2

)

≥ c

{

1

δ2ǫ4ζ4n
+

(

1

δ2n

)2s0/(2s0+1)
}

.

If moreover for suitable constants c0 and c1, it holds (nδ2ǫ2ζ4)−s0/(1+2s0) ≤ c0ζ and

δ2s1+1(nǫ2ζ2)(s1−s0) ≤ c1, then there exists a constant c > 0 such that

(13) inf
f̌0

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

‖f̌0 − f0‖2L2

)

≥ c

{

1

δ2ǫ4ζ4n
+

(

1

δ2ǫ2ζ2n

)2s0/(2s0+1)
}

.

The infima are over all estimators f̌0 based on Y1, . . . , Yn. The same lower bounds hold for

the estimation of f1 by exchanging the role of s0 and s1 in the conditions and in the bounds.

This theorem calls for a number of comments. In the particular situation where s0 = s1,
the lower bound (13) holds for the estimation of both emission densities, and the estimator
described in Section 4.2 is rate minimax adaptive, including to the parameters of interest
δ, ǫ, ζ .
The first part of the theorem states that for the estimation of the emission densities, the min-
imax risk is lower bounded by a parametric term which is similar to the one obtained in the
multinomial situation, and a nonparametric term with the usual rate n−2s0/(2s0+1) corrected
with δ2, that is with an effective sample size δ2n replacing n. This shows that the inverse
problem fundamentally makes estimation harder: if we were to observe X , we would on av-
erage see nπ0 & nδ i.i.d. samples from f0, hence would be able to estimate this with effective
sample size nδ, which may be much larger than nδ2.

The second part of the theorem is more involved. It states that, if one of the emission
density is smooth enough compared to the other one and relatively to frontiers parameters,
the lower bound can be made larger, with an effective sample size δ2ǫ2ζ2n. This occurs
for instance when s0 ≥ s1. Thus, the smoothest emission density gets the smallest effective
sample size when getting close to the frontier.

Now, the question remains: if indeed one of the emission density is much smoother than
the other, can we improve the estimation of the one that is less smooth so that the upper bound
for the maximum risk matches, up to constants, the lower bound (12)? In the next section, we
propose an estimation procedure proving that the lower bound (12) is indeed sharp, and we
discuss adaptation.
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4.4. Matching the upper and the lower bounds. In this section, we propose another esti-
mation procedure for the emission densities, with the aim of sharing the estimation strength
of the smoother one with the rougher one. The starting point is to remark that
(14)

f0 =
2ψ1

1 + φ1
−
(

1− φ1
1 + φ1

ψ1−
g(1− φ1)

2m1
G

)

and f1 =
2ψ1

1− φ1
−
(

1 + φ1
1− φ1

ψ1+
g(1 + φ1)

2m1
G

)

.

Let us now focus on the estimation of f0, estimation of f1 is similar. For the father wavelet
coefficients, we shall keep the ones defined in Section 4.2. In the expression (14) for f0 call
the first component α0 and the second β0; we shall define estimators for their mother wavelet
coefficients as

α̂
Ψjk

0 :=
2ψ̂

Ψjk

1

1 + φ̂1
1{φ̂1 6=−1}, β̂

Ψjk

0 :=−
(

1− φ̂1

1 + φ̂1
1{φ̂1 6=−1}ψ̂

Ψjk

1 − ĝ(1− φ̂1)

2m̂1
1{m̂1 6=0}Ĝ

Ψjk

)

.

Then, what we shall call the ‘rough estimator’ is defined as:

(15) f̂R0 :=

2Jn−1
∑

k=0

f̂ΦJk

0 ΦJnk +

Jn−1
∑

j=J

2j−1
∑

k=0

f̂
Ψjk

0 Ψjk

+

̃n
∑

j=Jn

2j/N−1
∑

ℓ=0

(

∑

k∈Bjℓ

α̂
Ψjk

0 Ψjk

)

1{‖ψ̂Bjℓ
1 ‖>Γ

√
log(n)/n}

+

̃n
∑

j=Jn

2j/N−1
∑

ℓ=0

(

∑

k∈Bjℓ

β̂
Ψjk

0 Ψjk

)

1{‖β̂Bjℓ
0 ‖>ΓT̂n}

,

with f̂ΦJk

0 and f̂Ψjk

0 as previously defined in Section 4.2 and

T̂n :=

√

log(n)

n
max

(

1,
ĝ

|m̂1|
1m̂1 6=0,

1

1− φ̂21
1φ̂2

1 6=1

)

.

It has to be noted that in (15), thresholding of the estimated coefficients of ψ1 is done “as
usual” for density estimation, whereas thresholding of the β̂Ψjk

0 ’s is done with another care-
fully chosen threshold. The general idea here is that it can be shown that

(16) β0 =−1− φ1
1 + φ1

f1,

hence if f1 is much smoother than f0, we combine the fact that estimation of the stationary
density ψ1 is easy with the other fact that estimating the smoother emission density f1 leads
to a better rate using Theorem 3.

In fact the analysis of the maximum risk of f̂R0 over the class is much more intricate, and
one has to look carefully how the two parts also compensate each other, but at the end we
prove that doing so we are able to take advantage of both estimation strenghts. As it was the
also the case in Section 3, we also further require a truncation of the estimator to control the
risk on events where f̂R0 may become bad, and we we truncate below at 0 and above at some
Ť , defining

f̌R0 :=max
(

0, min
(

Ť , f̂R0
))

.

The following theorem proves that the lower bound (12) is indeed sharp in many interest-
ing regimes.
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THEOREM 5. Suppose nγ∗ ≥max(τ3, τ
2 log(n)2

L ), ̃n > Jn, L≤ n, τ ≥ 1, Ť ≥L, ζ ≤ 1,

and 0 < s0 ≤ S, with S > 0 the regularity of the wavelet basis. Assume ψ̃2 is a given

unit vector in L2[0,1], independent of the sample Y1, . . . , Yn, satisfying ‖ψ̃2‖∞ ≤ τ and

|〈ψ̃2, ψ2〉| ≥ 7/8. Then there are universal constants β > 0, B > 0 and C > 0 such that

for all Γ≥ βmax( L√
γ∗ ,

√
L

τγ∗ )

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

‖f̌R0 − f0‖2L2

)

≤BŤ 2 exp

(

− Cnγ∗δ2ǫ4ζ6

L3 +max(τ,
√
L)3δǫ2ζ3

)

+
BL2

δ2ǫ2ζ2
log(n)

nγ∗
+

BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
+

R2

min(1, s0)

( Γ2

nR2δ2

)2s0/(2s0+1)

+
R2

min(1, s1)

1

δ2

( Γ2

R2nǫ2ζ2

)2s1/(2s1+1)
+

BR2

min(1, s0)

(τ2 log(n)

n

)2s0

The proof of Theorem 5 is detailed in Section A.5. As with Theorem 3 and its Corollary 1,
of particular interest is the boundary regime, where γ∗, R, L, Ť and τ are of constant order
while δ, γ and ζ are small, but not too small. The following corollary is intended to illustrate
how the bound simplifies in such setting. The proof of Corollary 2 is given in Section A.8.

COROLLARY 2. Assume that γ∗, R, L, Ť , and τ remain constant as n→∞ and δ ≥
n−a, ǫ ≥ n−b, 1 ≥ ζ ≥ n−c for constants a, b, c > 0 with a, b, c = o(1) as n→∞. Then if

s1 < s0 the bound in the Theorem 5 simplifies: for large enough n,

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

‖f̌R0 − f0‖2L2

)

≤C

{

1

δ2ǫ4ζ4n
+

(

1

δ2n

)2s0/(2s0+1)
}

,

for a constant C depending on γ∗, L, R, Γ, B, τ , Ť .

In the regime of Corollary 2, ie. when δ, ǫ, ζ are small but not too small, if we know that
one emission distribution is smoother than the other, and if we are able to get rid of label
switching, for example by knowing that the smoothest emission distribution has heavier tails
or corresponds to a smaller π1 (e.g. as in Assumptions 1 or 2 in Proposition 7 of [1]), then
Corollary 2 says that we get matching upper and lower bounds. In settings where δ, ǫ, ζ are
allowed to be smaller than a polynomial in n, a transition in the rate still occurs according to
how s0 and s1 compare, but then it may be required to have s1 much larger than s0 (depending
on δ, ǫ, ζ) to get matching upper and lower bounds.

We believe testing whether f0 or f1 is smoother is not possible in general (by comparison
to other settings), hence full adaptation is not possible. See also Section 6.

5. Estimation of a separating hyperplane. Theorems 1, 3 and 5 required that ψ̃2 was
a given function independent of the sample, but we need to estimate it. We therefore suppose
that ψ̃2 is estimated using a sample (Ỹ1, . . . , Ỹn)∼ P

(n)
θ that is independent of (Y1, . . . , Yn);

we discuss in Section 5.2 how to relax this assumption. Similarly to (8), we write P̃
(s)
n for the

empirical distribution of (Ỹ1, . . . , Ỹn).

5.1. Estimation procedure. The crude estimator ψ̃2 is constructed using the heuris-
tic described in Section 2.3. Here again, we use the the S-regular boundary-corrected
wavelet basis of [7] with initial resolution level J , see also e.g. [12, Section 4.3.5] and
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Section 4. For notational convenience, we define the set of wavelet indices Λ(M) :=
{(Jk)k=0,...,2J−1, (j, k)j=J,...,M,k=0,...,2j−1} including all father indices and mother indices
up to level J ≤ j ≤M , and for all λ ∈ Λ(M) we set eλ = ΦJk if λ = Jk and eλ = Ψjk if
λ= (j, k).

For M large enough (see Theorem 6 below) compute the 2M × 2M matrix G̃ with entries

G̃λ,λ′ =
1

2
P̃
(2)
n (eλ ⊗ eλ′ + eλ′ ⊗ eλ)− P̃

(1)
n (eλ)P̃

(1)
n (eλ′).

The matrix G̃ is an estimator of the matrix G with entries

Gλ,λ′ =
1

2
Eθ(eλ ⊗ eλ′ + eλ′ ⊗ eλ)−Eθ(eλ)Eθ(eλ) = r(φ)〈ψ2, eλ〉〈ψ2, eλ′〉

where the second line follows from equation (6). Hence, G is proportional to the Gram matrix
of the vector Vθ ∝ (〈ψ2, eλ〉 : λ ∈ Λ(M)). The matrices G̃ and G are real symmetric, and thus
by the spectral theorem are always diagonalizable. By concentration arguments, we expect
that G̃ will have an eigenvalue ≈ r(φ) (which can be positive or negative) and the rest of
eigenvalues will be smaller in absolute value. The eigenvector Ṽ (chosen such that ‖Ṽ ‖= 1)
corresponding to the leading eigenvalue is an estimator of ±Vθ/‖Vθ‖. We then suggest to use

ψ̃2(x) :=
max

(

− τ, min
(

τ,
∑

λ∈Λ(M) Ṽλeλ(x)
))

(

∫ 1
0 max

(

− τ, min
(

τ,
∑

λ∈Λ(M) Ṽλeλ(y)
))2

dy
)1/2

where the truncation τ ≥ 1 is intended to prevent technicalities within the proofs.

THEOREM 6. Suppose for some L≥ 1, ζ > 0, R> 0, s∗ > 0, M ≥ J we have

τ ≥ L

ζ
, 2−Ms∗ ≤ ζ

√
22s∗ − 1

4R
.

Then for every θ ∈Θs0,s1
δ,ǫ,ζ (R) ∩Σγ∗(L) with S ≥min(s0, s1)≥ s∗,

Pθ

(

|〈ψ̃2, ψ2〉| ≤
7

8

)

≤ 2 · 242M

exp

(

− Cnγ∗r(φ)2

L3 +2M
√
L|r(φ)|

)

.

The proof of Theorem 6 can be found in Section A.6.

5.2. Discussion about the assumption of two independent samples. We assumed in the
previous that we first get ψ̃2 based on an independent sample of the HMM. Suppose we are
given a single stationary HMM of length 3n with distribution Pθ such that the hidden Markov
chain has absolute spectral gap γ∗. Let Y ′ = (Y1, . . . , Yn), Ỹ ′ = (Y2n+1, . . . , Y3n), and denote
P(Y ′,Ỹ ′) the distribution of (Y ′, Ỹ ′). Denote also PY ′ the distribution of Y ′ (which is the same

as the distribution of Ỹ ′ by stationarity). For j = 1, . . . ,4 let θ̂j denote our estimator of θj .
Notice that θ̂j (resp. θj) is non-negative and bounded by 2 (resp. 1) for j = 1,2 and Ť (resp.
L) for j = 3,4, so that, denotingM (resp. M̃ ) the upper bound, we have ‖θ̂j−θj‖ ≤M ∨M̃ ,
‖·‖ being the euclidean norm for j = 1,2 and the L2[0,1]-norm for j = 3,4. Then,

EP(Y ′,Ỹ ′)

(

‖θ̂j − θj‖2
)

=

∫ M∨M̃

0
P(Y ′,Ỹ ′)

(

‖θ̂j − θj‖2 ≥ t
)

dt
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= E
P
⊗2

Y ′

(

‖θ̂j − θj‖2
)

+

∫ M∨M̃

0

[

P(Y ′,Ỹ ′)

(

‖θ̂j − θj‖2 ≥ t
)

− P
⊗2
Y ′

(

‖θ̂j − θj‖2 ≥ t
)]

≤ E
P
⊗2

Y ′

(

‖θ̂j − θj‖2
)

+
(

M ∨ M̃
)

‖P(Y ′,Ỹ ′) − P
⊗2
Y ′ ‖TV,

where ‖·‖TV denotes the total variation norm. Using Proposition 1 below, we deduce that the
first term on the right side of the last display dominates the second, hence the only cost of
using one sample for the whole procedure is a multiplicative constant factor.

PROPOSITION 1. There exist universal constants C and c such that

‖P(Y ′,Ỹ ′) − P
⊗2
Y ′ ‖TV ≤Ce−cγ

∗n.

PROOF. Denote Zi = (Xi, Yi), i= 1, . . . ,3n, where (X1, · · · ,Xn) is the hidden Markov
chain. Using similar notations, we have

‖P(Y ′,Ỹ ′) − P
⊗2
Y ′ ‖TV ≤ ‖P(Z′,Z̃′) − P

⊗2
Z′ ‖TV.

Now, for any (x1, . . . , xn, x2n+1, . . . , x3n), the distribution of (Y1, . . . , Yn, Y2n+1, . . . , Y3n)
conditional on (X1, . . . ,Xn,X2n+1, . . . ,X3n) = (x1, . . . , xn, x2n+1, . . . , x3n) is the same un-
der P(Y ′,Ỹ ′) and P

⊗2
Y ′ , so that

‖P(Z′,Z̃′) − P
⊗2
Z′ ‖TV ≤ 2‖P(X′,X̃′) − P

⊗2
X′‖TV

and the result follows from the uniform geometric ergodicity of the binary chain.

6. Conclusion and open questions. In this paper, we obtain precise behaviour of the
minimax risk of all parameters in a nonparametric hidden Markov models, with exact
constants regarding the distance to the i.i.d. frontier where the parameters become non-
identifiable (we were not interested in the exact dependence of the constants with respect
to L, R and γ∗). In particular, we prove a surprising transition in the minimax rates depend-
ing on relative smoothnesses of the emission densities.

Similarly to wavelet density estimation with i.i.d. data, the parameter Γ used in the opti-
mal threshold must be chosen depending on the upper L for the supremum norms of f0, f1.
In the i.i.d. case a simple workaround to adapt to L is to obtain a consistent estimator of
the density in L∞ norm, see [12] Exercise 8.2.1, and plug into the threshold. In the HMM
situation, it is not obvious how to obtain an asymptotically valid value for L empirically. Our
optimal threshold also depends on γ∗, which requires the preliminary step of the separation
hyperplane estimation, itself requiring L. For the estimation of the separating hyperplane, we
assume lower bounds on min{s0, s1} and on ζ . If neither L nor γ∗ is known, the intercon-
nectedness of the parametric and nonparametric part causes us difficulty in fully adapting.
We do not know how to build a fully adaptative procedure or if it is even possible.

The main open question concerns full adaptation to get the right constants in the upper
bound when a transition occurs relatively to different smoothnesses. We were only able to
prove that if the transition exists, then there is an estimator attaining the optimal maximum
risk. To be more precise, we did propose pairs of estimators (f̌0, f̌1), (f̌R0 , f̌1), (f̌0, f̌

R
1 ),

(f̌R0 , f̌
R
1 ) in which one pair is minimax optimal. When it is known which pair to use, then we

indeed get minimax optimal estimators. We tried to build a selection procedure, but we were
not able to get good enough upper bounds. We also tried to prove lower bounds to show that
full adaptation is not possible but we were not able to. We conjecture that full adaptation is
impossible.
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Defining p± = 1
2(1∓ s̃φ1)(1− φ2), where s̃ := sgn(〈ψ2, ψ̃2〉) we have

(p+, p−) :=

{

(p, q) if s̃ > 0,

(q, p) if s̃ < 0.

Recalling the definition (7) of m, define

g := φ3|Ĩ |=
√

4m2
1m2 +m2

3

m2
,

and define

f± := ψ1 ±
g(1∓ s̃φ1)

2m1
G, G :=

m1ψ2

Ĩ
.

Then

(f+, f−) :=

{

(f0, f1) if s̃ > 0,

(f1, f0) if s̃ < 0.

The proof is elementary. Note that P(1)
n (ΦJk) is the empirical estimator of Eθ[ΦJk] =

〈ΦJk, ψ1〉, hence the above lemma justifies the use of f̂ΦJk

0 , f̂ΦJk

1 from Section 4.2.

LEMMA 2. Given p
(3)
φ,ψ as defined in (6) and any function ψ̃, one can compute m(φ)

defined in (7). Also if G=m1ψ2/Ĩ , then 〈ΦJk,G〉= E[ψ̃2 ⊗ΦJk]− Eθ[ψ̃2]Eθ[ΦJk].

PROOF. We compute, from the expression for p(3)φ,ψ, applied for example to ψ̃2⊗1⊗1 and
using that 〈ψ1,1〉=

∫

ψ1 = 1, 〈ψ2,1〉= 0,

Eθ(ψ̃2) = 〈ψ1, ψ̃2〉
Eθ(ψ̃2 ⊗ ψ̃2) = 〈ψ1, ψ̃2〉2 + r(φ)〈ψ2, ψ̃2〉2

Eθ(ψ̃2 ⊗ 1⊗ ψ̃2) = 〈ψ1, ψ̃2〉2 + r(φ)φ2〈ψ2, ψ̃2〉2

Eθ(ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2) = 〈ψ1, ψ̃2〉3 + (2r(φ) + r(φ)φ2)〈ψ2, ψ̃2〉2〈ψ1, ψ̃2〉 − r(φ)φ1φ2φ3〈ψ2, ψ̃2〉3

Then m := (r(φ)Ĩ2, r(φ)φ2Ĩ2, r(φ)φ1φ2φ3Ĩ3), Ĩ := 〈ψ2, ψ̃2〉 is easily extracted.
Similarly, Eθ[ψ̃2 ⊗ ΦJk] = 〈ψ1, ψ̃2〉〈ψ1,ΦJk〉 + r(φ)Ĩ〈ψ2,ΦJk〉, and the expression for

the coefficient of G can be extracted.

The following bounds are immediate from the definition of the parameter space (3) and
the reparametrisation (4) (recall also the definition (5) of r).

LEMMA 3. For φ corresponding to θ ∈Θs0,s1
δ,ǫ,ζ (R) we have the bounds

−1− δ

1 + δ
≤ φ1 ≤

1− δ

1 + δ
, ǫ≤ |φ2| ≤ 1− 2δ, φ3 ≥ ζ, δǫζ2/4≤ |r(φ)| ≤ φ23/4.

LEMMA 4. Let m1,m2,m3 be defined as in (7) and let v := 4m2
1m2 +m2

3. Then 0 ≤
m2 ≤ |m1| and

√
v = Ĩ3r(φ)φ2φ3 = Ĩm2φ3. Furthermore, for every θ ∈ Θs0,s1

δ,ǫ,ζ (R) and

0< δ ≤ 1, 0< ǫ≤ 1, and 0< ζ ≤ 1:

∣

∣

∣

g

m1

∣

∣

∣
≤ 4

δǫζ|Ĩ |
,

max(1, g)

m2
≤ 4

δǫ2ζ2|Ĩ |2
,

max(1, g)

gm2
≤ 4

δǫ2ζ3|Ĩ |3
.
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PROOF. Observe that m2 = m1φ2 and |φ2| ≤ 1. Also, m2 = r(φ)φ2Ĩ2 = 1
4(1 −

φ21)φ
2
2φ

2
3Ĩ2 ≥ 0. Similarly,

v = 4r(φ)2Ĩ4 · r(φ)φ2Ĩ2 + r(φ)2φ21φ
2
2φ

2
3Ĩ6 = r(φ)2Ĩ6

(

4r(φ)φ2 + φ21φ
2
2φ

2
3

)

= r(φ)2φ22φ
2
3Ĩ6.

Next, observe that g
m1

= φ3|Ĩ|
1

4
(1−φ2

1)φ2φ2
3|Ĩ|2

= 4
(1−φ2

1)φ2φ3|Ĩ|
. But 0 ≥ 1 − φ21 ≥ 4δ

(1+δ)2 ≥ δ,

|φ2| ≥ ǫ, and φ3 ≥ ζ by Lemma 3. Similarly, since g = φ3|Ĩ| ≤ ζ ≤ 1, 0≤ max(1,g)
m2

= 1
m2

=
4

(1−φ2
1)φ

2
2φ

2
3|Ĩ|2

≤ 4
δǫ2ζ2|Ĩ|2 .

LEMMA 5. For any k ≥ 1,

‖p(k)θ ‖∞ ≤max
(

‖f0‖∞, ‖f1‖∞
)k
.

Consequently, for any θ ∈Σγ∗(L) and any measurable function h :Rk →R, we have

Eθ[h(Y1, . . . , Yk)
2]≤Lk‖h‖2L2 .

PROOF. Observe that p(k)θ (y1, . . . , yk) =
∑

x1,...,xk
Pθ(X1 = x1, . . . ,Xk = xk)

∏k
i=1 fxi

(yi).
The first conclusion is immediate, and the second follows from

Eθh(Y1, . . . , Yk)
2 =

∫

p
(k)
θ (y1, . . . , yk)h(y1, . . . , yk)dy1 · · ·dyk ≤ ‖p(k)‖∞‖h‖2L2 .

REMARK 1. The proof adapts to yieldEθ[h(Y1, Y3)
2]≤L2‖h‖2L2 rather than the weaker

bound L3‖h‖2L2 directly obtainable using the lemma. Indeed, we have

sup
y1,y3

∣

∣

∣

∫

p(3)(y1, y2, y3)dy2

∣

∣

∣
=

∑

x1,x2,x3

Pθ(X1 = x1,X2 = x2,X3 = x3)fx1
(y1)fx3

(y3)≤L2,

and the rest of the proof is the same.

LEMMA 6. For all θ ∈Σγ∗(L), φ3 ≤
√
2L.

PROOF. We compute φ23 =
∫ 1
0 (f0 − f1)

2 ≤ ‖f0 − f1‖∞
∫ 1
0 (|f0|+ |f1|) = 2‖f0 − f1‖∞.

Since we have the pointwise bounds 0 ≤ f0, f1 ≤ L for every θ ∈ Σγ∗(L), it follows that
φ23 ≤ 2L. We remark that this upper bound is tight since it is attained for instance when f0 is
the uniform density on [0,1/L] and f1 the uniform density on [1− 1/L,1].

We now recall the following result, which is adapted from [17] and will be key to getting
deviation inequalities of empirical ingredients in our procedures.

LEMMA 7. Let 1≤ k ≤ 3 and let h : Rk → R be measurable. There is a universal con-

stant C > 0 such that for all θ, all n≥ 4 such that nγ∗ ≥ 1/99, and all t≥ 0

Pθ

(

|P(k)
n (h)−Eθ(h)| ≥ t

)

≤ exp
(

− Cnt2γ∗

Eθ(h2) + ‖h‖∞t
)

.

This in particular implies that there is a is a universal constant C > 0 such that for all θ, all

n≥ 4 such that nγ∗ ≥ 1/99, and all x≥ 0

Pθ

(

|P(k)
n (h)−Eθ(h)| ≥C

√

Eθ[h2]x

nγ∗
+
C‖h‖∞x
nγ∗

)

≤ e−x.
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PROOF. Since 1 ≤ k ≤ 3, we can view any function h : Rk → R as h̃ : R6 → R

with h(Yi, . . . , Yi+k) = h̃(Xi,Xi+1,Xi+2, Yi, Yi+1, Yi+2). By our assumptions, the process
(

(Xi,Xi+1,Xi+2, Yi, Yi+1, Yi+2)
)

i≥1
is a stationary Markov Chain with pseudo spectral gap

(defined as in [17]) γps ≥ γ∗/8. Indeed, calculations in [2, Lemma 1] based on the relation-
ship between the pseudo spectral gap and the mixing time show that γps ≥ 0.5((log 4/γ∗) +
2)−1, and the bound max(γ∗, log 2)≤ 1 yields the claimed bound.

By Theorem 3.4 in [17] (though note there is an updated version of the paper on arXiv),
for Sn :=

∑n−k+1
i=1 h̃(Xi,Xi+1,Xi+2, Yi, Yi+1, Yi+2) we do have for any t≥ 0

Pθ

(

|Sn −Eθ(Sn)| ≥ t
)

≤ exp
(

− t2γps
8(n− k+ 1+ 1/γps)Eθ(h2) + 20‖h‖∞t

)

.

Dividing Sn by n− k + 1 and replacing n− k + 1 and γps by the respective lower bounds
n/2 and γ∗/8, we find that

Pθ

(

|P(k)
n (h)−Eθ(h)| ≥ t

)

≤ exp
(

− nt2γ∗/16

8(1 + 16
nγ∗ )Eθ(h2) + 20‖h‖∞t

)

≤ exp
(

− nt2γ∗

16× 8× (1 + 16× 99)×Eθ(h2) + 320‖h‖∞t
)

under the assumption that nγ∗ ≥ 1/99. The result follows by taking t=C
√

Eθ[h2]x/(nγ∗)+
C‖h‖∞x/(nγ∗) for C a sufficiently large constant that the argument of the exponential is
smaller than −x (by splitting into cases based on which of the two terms in the denominator is
larger it can be seen that it suffices to take C =max(

√

2× 16× 8× (1 + 16× 99),640) =
640), yielding the claim.

The following consequence of deviation inequalities to get bounds in expectation will also
be used.

LEMMA 8. SupposeX is a non-negative random variable and there exist a, b, c > 0 such

that P(X > b
√

x/n+ ax/n)≤ ce−x for all x > 0. There for all d≥ 0

E(X2
1{X>d})≤ c

(

d2 +
5b2

4n
+

7a2

2n2

)

exp
(

− nd2

2b2 + 8ad

)

.

PROOF. Applying the standard identity E(Y ) =
∫∞
0 P(Y > y)dy for any non-negative

random variable Y to Y =X2
1{X>d} and making the substitution y = u2 we obtain

E(X2
1{X>d}) =

∫ ∞

0
P
(

X2
1{X>d} > y

)

dy

=

∫ ∞

0
P
(

X >max(d,
√
y)
)

dy

=

∫ d2

0
P(X > d)dy +

∫ ∞

d2
P
(

X >
√
y
)

dy

= d2P(X > d) +

∫ ∞

d
2uP(X > u)du.

Define ϕ(x) := b
2a

(
√

1 + 4ax/b2 − 1
)

. For the change of variables u= b
√

x/n+ ax/n one
calculates that x= nϕ(u)2 and hence computes, using Cauchy–Schwarz for the penultimate



FRONTIERS TO THE LEARNING OF NONPARAMETRIC HIDDEN MARKOV MODELS 19

line,
∫ ∞

d
uP(X > u)du=

∫ ∞

nϕ(d)2

(

b

√

x

n
+ a

x

n

)( b

2
√
nx

+
a

n

)

P

(

X > b

√

x

n
+ a

x

n

)

dx

≤ c

∫ ∞

nϕ(d)2

( b2

2n
+

3

2

b√
n

a
√
x

n
+
a2x

n2

)

e−xdx

≤ c

∫ ∞

nϕ(d)2

(5b2

4n
+

7a2x

4n2

)

e−xdx

=
c

4

(5b2

n
+

7a2

n2
(nϕ(d)2 +1)

)

e−nϕ(d)
2

.

Similarly one has

P(X > d) = P

(

X > b

√

nϕ(d)2

n
+ a

nϕ(d)2

n

)

≤ ce−nϕ(d)
2

.

To obtain the final expression, we remark that xe−x ≤ 2
ee

−x/2, that 2/e+1≤ 2 and that for
all x > 0

ϕ(x)≥ b

2a

4ax/b2

2
√

1 + 4ax/b2
=

x/b
√

1 + 4ax/b2
.

A.2. Solving the direct problem: inequalities for the m functional. Recall the defini-
tions

m̂1 := P
(2)
n (ψ̃2 ⊗ ψ̃2)− P

(1)
n (ψ̃2)

2,

m̂2 := P
(3)
n (ψ̃2 ⊗ 1⊗ ψ̃2)− P

(1)
n (ψ̃2)

2

m̂3 =−P
(3)
n (ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2) + P

(1)
n (ψ̃2)

3 +
(

2m̂1 + m̂2

)

P
(1)
n (ψ̃2),

estimators of the functional m defined in (7) as m = (r(φ)Ĩ2, r(φ)φ2Ĩ2, r(φ)φ1φ2φ3Ĩ3)
with Ĩ = 〈ψ2, ψ̃2〉, and deduced from Lemma 2 to be equal to what is obtained in the expres-
sions for m̂ on replacing every instance of an empirical estimator by the expectation operator.
[This does not mean that Eθm̂=m, since there are powers and products in the expressions.]
In this section, we prove deviation inequalities for the estimators of m, from which we de-
duce bounds in expectation. The results of this section will be used to prove Theorem 1 and
Theorem 3.

We remark that the results are mostly uniform over the whole class Σγ∗(L), not our final
parameter set Θs0,s1

δ,ǫ,ζ (R) ∩Σγ∗(L). The need to intersect with Θs0,s1
δ,ǫ,ζ (R) arises for ensuring

the parameters θ are identifiable from m.

PROPOSITION 2. Let nγ∗ ≥ 1/99. Then there exists a universal constant C > 0 such

that for all x≥ 0

sup
θ∈Σγ∗(L)

Pθ

(

max
j=1,2

|m̂j −mj | ≥CL

√

x

nγ∗
+Cmax(τ,

√
L)2

x

nγ∗

)

≤ 3e−x.

PROPOSITION 3. Let nγ∗ ≥ 1/99. Then there exists a universal constant C > 0 such

that for all x≥ 0

sup
θ∈Σγ∗ (L)

Pθ

(

max
j=1,2,3

|m̂j −mj| ≥CL3/2

√

x

nγ∗
+Cmax(τ,

√
L)3

x

nγ∗

)

≤ 4e−x.
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PROPOSITION 4. There exists a constant K > 0 such that whenever nγ∗ ≥ 1/99,

sup
θ∈Σγ∗ (L)

Eθ

(

max
j=1,2,3

|m̂j −mj|2
)

≤K
( L3

nγ∗
+

max(τ,
√
L)6

(nγ∗)2

)

.

PROPOSITION 5. Assume nγ∗ ≥ 1/99, |Ĩ | ≥ 7/8 and ζ ≤ 1, and define the event

(17) Ωn :=

{

max
j=1,2

∣

∣

∣

m̂j

mj
− 1
∣

∣

∣
≤ 1

2
, max
j=1,2,3

|m̂j −mj| ≤
gm2

44max(1, g)

}

.

Then there exists a universal constant C > 0 such that

sup
θ∈Σγ∗(L)

Pθ(Ω
c
n)≤ 7exp

(

− Cnγ∗g2m2
2/max(1, g)2

L3 +max(τ,
√
L)3gm2/max(1, g)

)

,

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Pθ(Ω
c
n)≤ 7exp

(

− Cnγ∗δ2ǫ4ζ6

L3 +max(τ,
√
L)3δǫ2ζ3

)

.

The proof of Proposition 3 is the most involved of these, and we outline how to prove the
other results before addressing it.

PROOF OF PROPOSITION 2. The proof is similar to the proof of Proposition 3, where
maxj=1,2,3 |m̂j −mj| is controlled. Here, since only m̂1 and m̂2 are involved, the proxy

variance is no more than L since only P
(2)
n is involved (versus L3/2 when P

(3)
n is involved).

PROOF OF PROPOSITION 4. In view of Proposition 3 we may apply Lemma 8 with a=
Cmax(τ,

√
L)3/γ∗, b=CL3/2/

√
γ∗, c= 8 and d= 0 to obtain the claimed bound.

PROOF OF PROPOSITION 5. The first inequality essentially follows from Propositions 2
and 3 and a change of variables: see Lemmas 10 and 11 (and the sentence after the former)
below where this change of variables is explicitly made. The second inequality follows from
the fact that max(1,g)

gm2
≤ 16

δǫ2ζ3Ĩ2
on Θs0,s1

δ,ǫ,ζ (R) by Lemma 4.

PROOF OF PROPOSITION 3. We have that maxj=1,2,3|m̂j −mj| ≤ 16‖ψ̃2‖3∞ ≤ 16τ3 by
construction. Hence whenever x> nγ∗ we have with probability 1≥ 1− e−x under Pθ that

max
j=1,2,3

|m̂j −mj| ≤ 16τ3 ≤CL3/2

√

x

nγ∗
+Cmax(τ,

√
L)3

x

nγ∗

Next we address the case x≤ nγ∗. It is seen that

m̂1 −m1 = P
(2)
n (ψ̃2 ⊗ ψ̃2)−Eθ(ψ̃2 ⊗ ψ̃2)−

(

P
(1)
n (ψ̃2)

2 − Eθ(ψ̃2)
2
)

ie.

m̂1 −m1 =
(

P
(2)
n (ψ̃2 ⊗ ψ̃2)−Eθ(ψ̃2 ⊗ ψ̃2)

)

− 2Eθ(ψ̃2)
(

P
(1)
n (ψ̃2)

− Eθ(ψ̃2)
)

−
(

P
(1)
n (ψ̃2)− Eθ(ψ̃2)

)2
.

Noting that Eθ(|ψ̃2|)≤ Eθ(ψ̃
2
2)

1/2 ≤
√
L‖ψ̃2‖L2 =

√
L whenever θ ∈ Σγ∗(L) by Lemma 5,

we deduce

|m̂1 −m1| ≤ |Z2|+ 2
√
L|Z1|+ |Z1|2,
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where Z1 = P
(1)
n (ψ̃2)−Eθ(ψ̃2) and Z2 = P

(2)
n (ψ̃2⊗ ψ̃2)−Eθ(ψ̃2⊗ ψ̃2). The same reasoning

yields, with , Z3 = P
(3)
n (ψ̃2 ⊗ 1⊗ ψ̃2)− Eθ(ψ̃2 ⊗ 1⊗ ψ̃2),

|m̂2 −m2| ≤ |Z3|+ 2
√
L|Z1|+ |Z1|2.

The decomposition for m̂3−m3 is similar but slightly more involved. Sincem3 =−Eθ(ψ̃2⊗
ψ̃2 ⊗ ψ̃2) +Eθ(ψ̃2)

3 +
(

2m1 +m2

)

Eθ(ψ̃2), we deduce

m̂3 −m3 =−
(

P
(3)
n (ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2)−Eθ(ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2)

)

+ P
(1)
n (ψ̃2)

3 −Eθ(ψ̃2)
3

+
[

(2m̂1 + m̂2)− (2m1 +m2)
]

Eθ(ψ̃2)

+ (2m1 +m2)
(

P
(1)
n (ψ̃2)−Eθ(ψ̃2)

)

+
[

(2m̂1 + m̂2)− (2m1 +m2)
](

P
(1)
n (ψ̃2)−Eθ(ψ̃2)

)

.

But P(1)
n (ψ̃2)

3 − Eθ(ψ̃2)
3 = 3Eθ(ψ̃2)

2Z1 +3Eθ(ψ̃2)Z
2
1 +Z3

1 , and thus recalling Eθ(|ψ̃2|)≤√
L and m2 ≤ |m1| ≤ 1

4φ
2
3 ≤ 1

2L by Lemmas 6 and 3, writing Z4 = P
(3)
n (ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2)−

Eθ(ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2) we have

|m̂3 −m3| ≤ |Z4|+3L|Z1|+ 3
√
L|Z1|2 + |Z1|3 + 2

√
L|m̂1 −m1|+

√
L|m̂2 −m2|

+
3L

2
|Z1|+2|m̂1 −m1||Z1|+ |m̂2 −m2||Z1|.

It follows (recall L≥ 1 necessarily)

max
j=1,2,3

|m̂j −mj| ≤ |Z4|+
√
L|Z3|+ 2

√
L|Z2|+ 10.5L|Z1|

+9
√
LZ2

1 +4|Z1|3 +2|Z1Z2|+ |Z1Z3|.
Feeding in bounds on the Zi from Lemma 9 below, we deduce with probability at least
1− 4e−x under Pθ that

max
j=1,2,3

|m̂j −mj | ≤C

(

L3/2

√

x

nγ∗
+ τ3

x

nγ∗

)

+3C

(

L3/2

√

x

nγ∗
+L1/2τ2

x

nγ∗

)

+10.5C

(

L3/2

√

x

nγ∗
+Lτ

x

nγ∗

)

+9C2
√
L

(

L1/2

√

x

nγ∗
+ τ

x

nγ∗

)2

+4C3

(

L1/2

√

x

nγ∗
+ τ

x

nγ∗

)3

+3C2

(

L1/2

√

x

nγ∗
+ τ

x

nγ∗

)(

L

√

x

nγ∗
+ τ2

x

nγ∗

)

.

Grouping together the terms with same powers, still with probability at least 1− 8e−x under
Pθ

max
j=1,2,3

|m̂j −mj| ≤ 14.5CL3/2
( x

nγ∗

)1/2
+C

(

τ3 +3L1/2τ2 + 10.5Lτ +12CL3/2
) x

nγ∗
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+C2
(

18τL+4CL3/2 +3τ2
√
L+3τL

)( x

nγ∗

)3/2

+C2
(

9
√
Lτ2 +12CτL+3τ3

)( x

nγ∗

)2
+ 12C3τ2

√
L
( x

nγ∗

)5/2

+4C3τ3
( x

nγ∗

)3
.

The conclusion follows since we are in the case where x ≤ nγ∗, and because L ≥ 1 and
τ ≥ 1.

LEMMA 9. Assume θ ∈ Σγ∗(L) and nγ∗ ≥ 1/99. Write Z1 = P
(1)
n (ψ̃2)− Eθ(ψ̃2), Z2 =

P
(2)
n (ψ̃2⊗ψ̃2)−Eθ(ψ̃2⊗ψ̃2),Z3 = P

(3)
n (ψ̃2⊗1⊗ψ̃2)−Eθ(ψ̃2⊗1⊗ψ̃2), andZ4 = P

(3)
n (ψ̃2⊗

ψ̃2 ⊗ ψ̃2)−Eθ(ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2). Then

Pθ

(

|Z1| ≥C

√

Lx

nγ∗
+Cτ

x

nγ∗

)

≤ e−x,

Pθ

(

|Zj | ≥CL

√

x

nγ∗
+Cτ2

x

nγ∗

)

≤ e−x, j = 2,3,

Pθ

(

|Z4| ≥CL3/2

√

x

nγ∗
+Cτ3

x

nγ∗

)

≤ e−x.

PROOF. For Z4, use Lemma 7 together with the facts that ‖ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2‖∞ = ‖ψ̃2‖3∞ ≤
τ3 and that Eθ[(ψ̃2 ⊗ ψ̃2 ⊗ ψ̃2)

2]≤ L3‖ψ̃2‖6L2 = L3 by Lemma 5. The arguments are similar
for j = 1,2,3, though note for j = 3 we use Remark 1 rather than Lemma 5 itself.

LEMMA 10. Let nγ∗ ≥ 1/99. Then, there exists a universal constant C > 0 such that for

all θ ∈Σγ∗(L)

Pθ

(

max
j=1,2

∣

∣

∣

m̂j

mj
− 1
∣

∣

∣
≥ 1

2

)

≤ 3exp

(

− Cnγ∗m2
2

L2 +max(τ,
√
L)2m2

)

.

Note that gm2

max(1,g) ≤m2 and that L ≥ 1 necessarily, hence the the absolute value of the
exponent in Lemma 10 is larger than that in Lemma 11.

PROOF. We apply Proposition 2 with x≥ 0 such that

CL

√

x

nγ∗
+Cmax(τ,

√
L)2

x

nγ∗
=
m2

2
,

i.e.,

√

x

nγ∗
=

L

2max(τ,
√
L)2

(

√

1 +
2max(τ,

√
L)2m2

CL2
− 1
)

≥ L

2

m2/(CL
2)

√

1 + 2max(τ,
√
L)2m2

CL2

.
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Then, using that 0≤m2 ≤ |m1|, (Lemma 4), we have

Pθ

(

max
j=1,2

∣

∣

∣

m̂j

mj
− 1
∣

∣

∣
≥ 1

2

)

≤ Pθ

(

max
j=1,2

∣

∣

∣
m̂j −mj

∣

∣

∣
≥ m2

2

)

≤ 6exp

(

− nγ∗m2
2

2C2L2 + 2Cmax(τ,
√
L)2|m2|

)

concluding the proof.

LEMMA 11. Let nγ∗ ≥ 1/99. Then, there exists a universal constant C > 0 such that for

all θ ∈Σγ∗(L)

Pθ

(

max
j=1,2,3

|m̂j −mj | ≥
gm2

44max(1, g)

)

≤ 4exp

(

− Cnγ∗g2m2
2/max(1, g)2

L3 +max(τ,
√
L)3gm2/max(1, g)

)

.

PROOF. By Proposition 3, applied with x≥ 0 such that

CL3/2

√

x

nγ∗
+Cmax(τ,

√
L)3

x

nγ∗
=

gm2

44max(1, g)

ie,

√

x

nγ∗
=

L3/2

2max(τ,
√
L)3

(

√

1 +
4max(τ,

√
L)3gm2

44CL3max(1, g)
− 1

)

≥ 1

44CL3/2

gm2/max(1, g)
√

1 + 4max(τ,
√
L)3gm2

44CL3 max(1,g)

,

we obtain the result.

A.3. Proof of Theorem 1. Due to label switching, φ̂1 may be either an estimator of
φ1 or −φ1, depending on the value of s̃ := sgn(〈ψ2, ψ̃2〉). In the proofs, rather than allow
an arbitrary permutation, we define p± as an (unobserved) permutation of (p, q) and we
define p̂+, p̂− such that p̂± estimates p±. To this end, define p± = 1

2(1∓ s̃φ1)(1− φ2) (as in
Lemma 1 already) and define p̂± accordingly:

(18) p̂± = 1
2 (1∓ φ̂1)(1− φ̂2).

It is noted in Lemma 1 that we may equivalently define

(p+, p−) :=

{

(p, q) if s̃ > 0,

(q, p) if s̃ < 0.

Recall the definitions g := φ3|Ĩ| =m−1
2

√

4m2
1m2 +m2

3, m1 := r(φ)Ĩ2, m2 := r(φ)φ2Ĩ2,
and m3 := r(φ)φ1φ2φ3Ĩ3. Also recall the event Ωn defined in Proposition 5, and proved

therein to satisfy supθ∈Θs0,s1
δ,ǫ,ζ (R)∩Σγ∗ (L)Pθ(Ω

c
n)≤ 14exp

(

− Cnγ∗δ2ǫ4ζ6

L3+max(τ,
√
L)3δǫ2ζ3

)

for a con-

stant C > 0:

Ωn :=

{

max
j=1,2

∣

∣

∣

m̂j

mj
− 1
∣

∣

∣
≤ 1

2
, max
j=1,2,3

|m̂j −mj| ≤
gm2

44max(1, g)

}

.

Its definition is according to the needs of the proof of Theorem 3 which are more stringent
than those of the current result. In particular, note that on Ωn we have maxj=1,2,3 |m̂j−mj| ≤
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|Ĩ|3r(φ)φ2φ3

20max(|φ1|,(1−φ2
1)φ3|Ĩ|)

, as a consequence of the fact that |φ1| ≤ 1; this latter bound is what we

will use for the current theorem.
We decompose

Eθ

(

|p̂± − p±|2
)

= Eθ

(

|p̂± − p±|21Ωc
n

)

+Eθ

(

|p̂± − p±|21Ωn

)

≤ Pθ(Ω
c
n) + Eθ

(

|p̂± − p±|21Ωn

)

,

We have

p̂± − p± =−1

2
(φ̂2 − φ2)∓

1

2
(φ̂1 − s̃φ1)±

s̃φ1
2

(φ̂2 − φ2)∓
φ̂2
2
(φ̂1 − s̃φ1),

hence, using that |φ̂2| ≤ 1 and |φ1| ≤ 1,

|p̂± − p±| ≤ |φ̂1 − φ1|+ |φ̂2 − φ2|.
Using Lemmas 12 and 14 below and Proposition 4, we get for a constant K

Eθ

(

|p̂± − p±|21Ωn

)

≤ 2Eθ

(

|φ̂1 − s̃φ1|21Ωn

)

+ 2Eθ

(

|φ̂2 − φ2|21Ωn

)

≤ 2
(532max(1, g2)

φ42φ
6
3|Ĩ|6

+
16

m2
1

)

Eθ

(

max
j=1,2,3

|m̂j −mj|2
)

≤ 2K
(532max(1, g2)

φ42φ
6
3|Ĩ|6

+
16

m2
1

)( L3

nγ∗
+

max(τ,
√
L)6

(nγ∗)2

)

.

Therefore, there is a universal constant B ≥ 1 such that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

|p̂± − p±|21Ωn

)

≤ BL3max(δ2, ǫ2ζ2)

δ2ǫ4ζ6
1

nγ∗
+
Bmax(τ,L)6max(δ2, ǫ2ζ2)

δ2ǫ4ζ6
1

(nγ∗)2

≤ 2BL3max(δ2, ǫ2ζ2)

δ2ǫ4ζ6
1

nγ∗
,

since L ≥ 1 and supθ∈Θs0,s1
δ,ǫ,ζ (R)∩Σγ∗ (L)Eθ

(

|p̂± − p±|21Ωn

)

≤ 1. Lemmas 12 and 14 there-

fore conclude the proof.

LEMMA 12. Suppose

max
j=1,2

∣

∣

m̂j

mj
− 1
∣

∣≤ 1

2
, and, max

j=1,2,3
|m̂j −mj | ≤

|Ĩ|3r(φ)φ2φ3
20max(|φ1|, (1− φ21)φ3|Ĩ|)

.

Then,

|φ̂1 − s̃φ1| ≤
53max(1, φ3|Ĩ|)

φ22φ
3
3|Ĩ|3

max
j=1,2,3

|m̂j −mj|.

PROOF. We use the notations ∆1 = m̂1 −m1, ∆2 = (m̂2)+ −m2, and ∆3 = m̂3 −m3.
Then, we define

v̂ := 4m̂2
1(m̂2)+ + m̂2

3,
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v := 4m2
1m2 +m2

3,

h := v̂− v,

ξ := 8m1m2∆1 +4m2
1∆2 +8m1∆1∆2 +4m2∆

2
1 +4∆2

1∆2,

η := 2m3∆3 +∆2
3.

Lemma 13 below tells us that 10max(|φ1|, (1− φ21)φ3|Ĩ |)|r(φ)φ2φ3Ĩ3|maxj=1,2,3|∆j |.
Furthermore, it is seen that

√
v = |Ĩ |3r(φ)φ2φ3 = |Ĩ |m2φ3 (see Lemma 4) and then under

the conditions of this lemma, we have |h| ≤ v/2 and |∆3| ≤ (1/2)|m3|= (1/2)φ1φ3Ĩ |m2| ≤√
v/2. Consequently, 1 − ∆2

3

(
√
v+h+

√
v)2

≥ 3/4 and (v + h)1/2[(v + h)1/2 + v1/2] ≥ (1 +
√
2)v/2≥ v and hence

|φ̂1 − s̃φ1| ≤
|φ1ξ|
v

+
4

3v

[

2|∆3|(1− φ21)v
1/2 + |φ1|∆2

3|ξ|v−1 + |∆3ξ|v−1/2
]

≤ 28

v
m2

1 max
j=1,2

|∆j |+
8

3
(1− φ21)v

−1/2|∆3|+
4

3
|ξ|[1/2 + |φ1|/4]

≤ 28
m2

1

v
max
j=1,2

|∆j |+
8

3
(1− φ21)v

−1/2|∆3|+56
m2

1

v
max
j=1,2

|∆j |

≤ 42(φ22φ
2
3Ĩ2)−1 max

j=1,2
|∆j|+

32

3
(φ22φ

3
3Ĩ3)−1|∆3|

≤ 53(φ22φ
3
3Ĩ3)−1max(φ3Ĩ,1) max

j=1,2,3
|∆j |.

The conclusion follows since x 7→ (x)+ is 1-Lipschitz and thus |∆2| = |(m̂2)+ − m2| =
|(m̂2)+ − (m2)+| ≤ |m̂2 −m2|, so that maxj=1,2,3 |∆j | ≤maxj=1,2,3 |m̂j −mj |.

LEMMA 13. Define v = 4m2
1m2 +m2

3, v̂ = 4m̂2
1(m̂2)+ + m̂2

3. Then

|v̂− v| ≤ 10max(|φ1|, (1− φ21)φ3|Ĩ|)|r(φ)φ2φ3Ĩ3| max
j=1,2,3

|∆j|,

where ∆j = m̂j −mj, j = 1,3 and ∆2 = (m̂2)+ −m2.

PROOF. Define

h := v̂− v,

ξ := 8m1m2∆1 +4m2
1∆2 +8m1∆1∆2 +4m2∆

2
1 +4∆2

1∆2,

η := 2m3∆3 +∆2
3.

Note that h= ξ + η. By mimicking the proof of [2] Proposition 3, it is found that

φ̂1 − s̃φ1 =
φ1ξ +

−2∆3(1−φ2
1)v

1/2+
φ1∆2

3ξ

((v+h)1/2+v1/2)2
− ∆3ξ

(v+h)1/2+v1/2

1−∆2
3/((v+h)

1/2+v1/2)2

(v+ h)1/2[(v + h)1/2 + v1/2]

We note that the assumptions of the lemma imply that |∆j | ≤ |mj| for j = 1,2,3; recall also
that 0≤m2 =m1 ≤ |m1|. Thus,

|ξ|=
∣

∣

∣
8m1m2∆1 +4m2

1∆2 +8m1∆1∆2 + 4m2∆
2
1 +4∆2

1∆2

∣

∣

∣

≤ 28m2
1 max
j=1,2

|∆j|.
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Since |η| ≤ 2|m3∆3| + ∆2
3 ≤ 3|m3∆3|, it also follows that (recall m1 = r(φ)Ĩ2, m3 =

φ1φ2φ3r(φ)Ĩ3, r(φ) = (1/4)(1− φ21)φ2φ
2
3)

|h| ≤
(

28m2
1 +3|m3|

)

max
j=1,2,3

|∆j|

= |r(φ)φ2φ3Ĩ3|
(

3|φ1|+
28|r(φ)Ĩ |
|φ2φ3|

)

max
j=1,2,3

|∆j |

= |r(φ)φ2φ3Ĩ3|
(

3|φ1|+7(1− φ21)φ3|Ĩ|
)

max
j=1,2,3

|∆j|

≤ 10max
(

|φ1|, (1− φ21)φ3|Ĩ|
)

|r(φ)φ2φ3Ĩ3| max
j=1,2,3

|∆j|.

This concludes the proof.

LEMMA 14. The following bounds holds true.

|φ̂2 − φ2| ≤ 2min

(

1,
2maxj=1,2 |m̂j −mj|

|m1|

)

.

PROOF. We let ∆1 := m̂1−m1 and ∆2 := m̂2−m2. We also let f(x) := max(−1,min(x,1)).
It is easily seen that |f(x)− f(y)| ≤min(2, |x− y|). Suppose first that |∆1|> |m1|/2. Then,
|φ̂2 − φ2| ≤ 2 ≤ min(2, 4|∆1|

|m1| ). On the other hand, if |∆1| ≤ |m1|/2, then, recalling that
m2 ≤ |m1| we have

|φ̂2 − φ2|= |f(m̂2/m̂1)− f(m2/m1)|

≤min
(

2,
∣

∣

∣

m2 +∆2

m1 +∆1
− m2

m1

∣

∣

∣

)

=min
(

2,
∣

∣

∣

m1∆2 −m2∆1

m1(m1 +∆1)

∣

∣

∣

)

≤min
(

2,
2|∆1|+ 2|∆2|

|m1|
)

.

The conclusion follows since x 7→ (x)+ is 1-Lipschitz and thus |∆2| = |(m̂2)+ − m2| =
|(m̂2)+ − (m2)+| ≤ |m̂2 −m2|.

A.4. Proof of Theorem 3. As in Appendix A.3, rather than allow an arbitrary permu-
tation to account for the label-switching, we give a specific (unobserved) permutation. We
recall the definitions of the estimators of f0 and f1 from Section 4, here writing as f̌± to
align with notation used in Lemma 1. We define

g := φ3|Ĩ|=
√

4m2
1m2 +m2

3

m2
, G :=

m1ψ2

Ĩ
,

f± := ψ1 ±
g(1∓ s̃φ1)

2m1
G,

and

ĝ :=

√

4m̂2
1(m̂2)+ + m̂2

3

m̂2
1{m̂2>0}, ĜΦJk := P

(2)
n (ψ̃2 ⊗ΦJk)− P

(1)
n (ψ̃2)P

(1)
n (ΦJk),

f̂ΦJk

± := P
(1)
n (ΦJk) +

ĝ(1− φ̂1)

2m̂1
1{m̂1 6=0}Ĝ

ΦJk .
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Then, defining f̂Ψjk

± and ĜΨjk correspondingly we set

f̂± :=

2J−1
∑

k=0

f̂ΦJk

± ΦJk +

Jn−1
∑

j=J

2j−1
∑

k=0

f̂
Ψjk

± Ψjk +

̃n
∑

j=Jn

∑

ℓ

(

∑

k∈Bjℓ

f̂
Ψjk

± Ψjk

)

1{‖f̂Bjℓ
± ‖>ΓŜn}

,

f̌± :=max
(

0, min
(

Ť , f̂±
))

,

where Jn := inf{j ≥ J : 2j ≥ log(n)}, N = 2Jn , and Bjℓ := {k : (ℓ− 1)N ≤ k ≤ ℓN − 1}
and ̃n is the largest integer such that 2̃n ≤ n

log(n)τ2 (recall we assume that ̃n is larger than

Jn) and where ‖f̂Bjℓ

± ‖2 :=∑k∈Bjℓ
(f̂

Ψjk

± )2, Γ> 0 is a tuning parameter, and

Ŝn :=

√

log(n)

n
max

(

1,
ĝ

|m̂1|
)

1{m̂1 6=0}.

Recall the event Ωn =
{

maxj=1,2

∣

∣

∣

m̂j

mj
− 1
∣

∣

∣
≤ 1

2 , maxj=1,2,3 |m̂j −mj | ≤ gm2

44max(1,g)

}

de-

fined in Proposition 5 which by the proposition satisfies for a universal constant C > 0

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Pθ(Ω
c
n)≤ 7exp

(

− Cnγ∗δ2ǫ4ζ6

L3 +max(τ,
√
L)3δǫ2ζ3

)

.

Decompose

Eθ

(

‖f̌± − f±‖2L2

)

= Eθ

(

‖f̌± − f±‖2L21Ωc
n

)

+ Eθ

(

‖f̌± − f±‖2L21Ωn

)

≤ Ť 2
Pθ(Ω

c
n) +Eθ

(

‖f̂± − f±‖2L21Ωn

)

where the last line follows because 0≤ f±, f̌± ≤ Ť since Ť ≥ L by assumption, and because
|f̌± − f±| ≤ |f̂± − f±| pointwise. The first term is included in the theorem and it remains to
bound the second term. We decompose as follows (recall that ̃n > Jn by assumption and the
sum over ℓ is the sum over blocks from ℓ= 0 to ℓ= 2j/N − 1)

Eθ

(

‖f̂± − f±‖2L21Ωn

)

= Eθ

(

‖f̂Jn

± − fJn

± ‖2L21Ωn

)

+Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖fBjℓ

± ‖21{‖f̂Bjℓ
± ‖≤ΓŜn}

1{‖fBjℓ
± ‖≤2ΓŜn}

1Ωn

)

+Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖fBjℓ

± ‖21{‖f̂Bjℓ
± ‖≤ΓŜn}

1{‖fBjℓ
± ‖>2ΓŜn}

1Ωn

)

+Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± ‖>ΓŜn}

1{‖fBjℓ
± ‖≤ 1

2
ΓŜn}}

1Ωn

)

+Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± ‖>ΓŜn}

1{‖fBjℓ
± ‖> 1

2
ΓŜn}

1Ωn

)

+ Pθ(Ωn)
∑

j>̃n

2j−1
∑

k=0

|fΨjk

± |2

where we have used the convention that for any function f the notation fJn stands for the
projection fJn

± :=
∑2J−1

k=0 fΦJk

± ΦJk +
∑Jn−1

j=J

∑2j−1
k=0 f

Ψjk

± Ψjk. Recall that fBjℓ denotes the
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vector of coefficients (〈f,Ψjk〉 : (j, k) ∈ Bjℓ) and ‖ · ‖ the euclidean norm. We call the
terms in the previous decomposition R1(θ), . . . ,R6(θ), respectively. To ease the notations in
the proof, we also introduce the quantities

(19) ω̂± :=± ĝ(1∓ φ̂1)

m̂1
1{m̂1 6=0}, ω± :=±g(1∓ s̃φ1)

m1

and

(20) Sn :=

√

log(n)

n
max

(

1,
g

|m1|
)

.

In the next subsections we prove the following bounds, uniformly over θ ∈ Θs0,s1
δ,ǫ,ζ (R) ∩

Σγ∗(L):

R1(θ)≤
BL2

δ2ǫ2ζ2
log(n)

nγ∗
+

BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2

R2(θ)≤
BR2

min(1, s±)

( Γ2

R2δ2ǫ2ζ2n

)2s±/(2s±+1)
+

BR2

min(1, s±)

(τ2 log(n)

n

)2s±

R3(θ)≤
BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
,

R4(θ)≤
BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
,

R5(θ)≤
BL2

Γ2γ∗

(

R2

min(1, s±)

( Γ2

R2δ2ǫ2ζ2n

)2s±/(2s±+1)
+

R2

min(1, s±)

(τ2 log(n)

n

)2s±

)

+
BL3

δ2ǫ4ζ6
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
,

R6(θ)≤
BR2

min(1, s±)

(τ2 log(n)

n

)2s±
.

Combining will yield the theorem.

A.4.1. Control of R1. Using Lemma 15 to control ‖f̂Jn

± − fJn

± ‖L2 and Proposition 10 in
Section A.4.7 to control |ω̂±−ω±|, the bounds (a+b+c)2 ≤ 3(a2+b2+c2) and ‖GJn‖L2 =
|m1|‖ψJn

2 ‖L2/|Ĩ | ≤ (8/7)|m1| allow us to deduce

R1(θ) := Eθ

(

‖f̂Jn

± − fJn

± ‖2L21Ωn

)

≤ 3Eθ

(

‖ψ̂Jn

1 − ψJn

1 ‖2L2

)

+
12g2

m2
1

Eθ

(

‖ĜJn −GJn‖2L2

)

+
3‖GJn‖2L2

4
Eθ

(

|ω̂± − ω±|21Ωn

)

.

ie.

(21) R1(θ)≤ 3Eθ

(

‖ψ̂Jn

1 − ψJn

1 ‖2L2

)

+
12g2

m2
1

Eθ

(

‖ĜJn −GJn‖2L2

)

+
3 · 82 · 832max(1, φ23Ĩ2)

4 · 72m2
2

Eθ

(

max
j=1,2,3

|m̂j −mj |2
)

.
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Proposition 6 tells us that

Pθ

(

‖ψ̂Jn

1 − ψJn

1 ‖L2 ≥C

√

Lx

nγ∗
+C2Jn/2 x

nγ∗

)

≤ 242
Jn

e−x,

hence, using that 2Jn ≤ 2 log(n) for n ≥ 2, for a sufficient large constant α > 0 we
may apply Lemma 8 with a = C

√

2 log(n)/γ∗, b = C
√

L/γ∗, c = 242 log(n) and d2 =
αC2L log(n)/(nγ∗)

Eθ

(

‖ψ̂Jn

1 −ψJn

1 ‖2L2

)

≤ αC2L
log(n)

nγ∗
+ Eθ

(

‖ψ̂Jn

1 − ψJn

1 ‖2L21{‖ψ̂Jn
1 −ψJn

1 ‖2
L2>αC

2L log(n)/(nγ∗)}

)

≤ αC2L
log(n)

nγ∗
+ c
(

d2 +
5b2

2n
+

7a2

2n2

)

e−nd
2/(2b2+8ad)

≤ αC2L
log(n)

nγ∗
+C2242 log(n)

(αL log(n)

nγ∗
+

5L

2nγ∗
+

14 log(n)

2(nγ∗)2

)

e−nd
2/(2b2+8ad)

≤ αC2L
log(n)

nγ∗
+C2242 log(n)

(

αL+
5L

2
+ 7
)

log(n)e−nd
2/(2b2+8ad)

where the last line follows because nγ∗ ≥ τ3 ≥ 1. Let us now study the argument of the
exponential in the last display. If 2b2 ≥ 8ad, then

nd2

2b2 + 8ad
≥ nd2

4b2
=
α

4
log(n),

while if 2b2 < 8ad, then

nd2

2b2 +8ad
≥ nd2

16ad
=
nγ∗

√

αC2L log(n)/(nγ∗)
16C

√
2 logn

≥
√
αL

16
√
2

√

nγ∗ ≥
√
α

16
√
2
log(n)

because by assumption nγ∗ ≥ log(n)2

L . Hence, since L≤ n and γ∗ ≤ 1 it is possible to choose
α > 0 universally such that

Eθ

(

‖ψ̂Jn

1 − ψJn

1 ‖2L2

)

≤ 2αC2L
log(n)

nγ∗
.

Similarly, Proposition 7 tells us that

Pθ

(

‖ĜJn −GJn‖L2 ≥CL

√

x

nγ∗
+Cmax(τ2Jn/2,

√
L2Jn/2, τ

√
L)

x

nγ∗

)

≤ 4 · 242Jn

e−x,

hence, for anyα> 0, using that 2Jn ≤ 2 log(n) for n≥ 2, Lemma 8 with a=Cτ
√

2L log(n)/γ∗,
b = CL/

√
γ∗, c = 4 × 242 logn, and d2 = αC2L2 log(n)/(nγ∗) [and by remarking that

max(τ2Jn/2,
√
L2Jn/2, τ

√
L)≤ τ

√
L2Jn/2] yields

Eθ

(

‖ĜJn −GJn‖2L2

)

≤ αC2L2 log(n)

nγ∗
+ c
(

d2 +
5b2

2n
+

7a2

2n2

)

e−nd
2/(2b2+8ad)

≤ αC2L2 log(n)

nγ∗
+4C2242 log(n)

(αL2 log(n)

nγ∗
+

5L2

2nγ∗
+

14τ2L log(n)

2(nγ∗)2

)

e−nd
2/(2b2+8ad).
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Let us study the argument of the exponential in the last display. If 2b2 ≥ 8ad, then

nd2

2b2 +8ad
≥ nd2

4b2
=
α

4
log(n)

while if 2b2 < 8ad, then

nd2

2b2 + 8ad
≥ nd2

16ad
=
nγ∗

√

αC2L2 log(n)/(nγ∗)

16Cτ
√
L2Jn/2

≥
√
αL

32τ

√

nγ∗ ≥
√
α

32
log(n)

because by assumption nγ∗ ≥ τ2 log(n)2

L . Since by assumption L≤ n and nγ∗ ≥ τ3 ≥ 1, it is
possible to choose α> 0 universally such that

Eθ

(

‖ĜJn −GJn‖2L2

)

≤ 2αC2L2 log(n)

nγ∗
.

Returning to (21) and feeding the bound for Eθmaxj |m̂j −mj |2 from Proposition 4, we
deduce that

R1(θ)≤ 6αC2L
(

1+
g2L

m2
1

) log(n)

nγ∗
+
3 · 832 · 40C2L3max(1, g2)

nγ∗m2
2

+
3 · 832 · 64C2max(τ,

√
L)6

(nγ∗)2m2
2

.

Finally, we remark g2

m2
1
≤ 16

δ2ǫ2ζ2Ĩ2
and max(1,g2)

m2
2

≤ 16
δ2ǫ4ζ4Ĩ4

by Lemma 4 and by the assump-

tion that ζ ≤ 1. Thus, there exists a universal constant B > 0 such that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R1(θ)≤
BL2

δ2ǫ2ζ2
log(n)

nγ∗
+

BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
.

A.4.2. Control of R2. From equation (10) whenever θ ∈ Θs0,s1
δ,ǫ,ζ (R) it is the case that

supj≥J 2
2js±

∑

k|f
Ψjk

± |2 ≤ R2. This in particular implies that
∑

ℓ‖f
Bjℓ

± ‖2 ≤ R22−2js± .

Moreover Ŝn ≤ 4Sn on Ωn by Proposition 11 in Section A.4.7. Then, since Jn ≤ ̃n,

R2(θ) := Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖fBjℓ

± ‖21{‖f̂Bjℓ
± ‖≤ΓŜn}

1{‖fBjℓ
± ‖≤2ΓŜn}

1Ωn

)

≤
̃n
∑

j=Jn

∑

ℓ

min
(

‖fBjℓ

± ‖2,8ΓSn
)2

≤
̃n
∑

j=Jn

min

(

∑

ℓ

‖fBjℓ

± ‖2, 2
j

N
· 64Γ2S2

n

)

≤
̃n
∑

j=Jn

min
(

R22−2js±,
2j

N
· 64Γ2S2

n

)

.

DefineA= sup{0≤ j ≤ ̃n : 2
−j(s±+1/2) > 8ΓSn/(R

√
N)}, so that the first term in the min-

imum is the smaller exactly when j > A. Then we observe that 2A < (R2N/(64Γ2S2
n))

1/(2s±+1)

and 2A+1 ≥min{(R2N/(64Γ2S2
n))

1/(2s±+1), n/(τ2 logn)} (for the latter recall that ̃ is the
largest integer such that 2̃ ≤ n/(τ2 logn)), and we calculate

R2(θ)≤
64Γ2S2

n

N

A
∑

j=0

2j +R2
∞
∑

j=A+1

2−2js±
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≤ 128Γ2S2
n

N

(

c2R2N

64Γ2S2
n

)1/(2s±+1)

+
R2

1− 2−2s±
max

(

τ2 log(n)

n
,
(64Γ2S2

n

R2N

)1/(2s±+1)
)2s±

= 2R2

(

64Γ2S2
n

R2N

)2s±/(2s±+1)

+
R2

1− 2−2s±
max

(

τ2 log(n)

n
,
(64Γ2S2

n

R2N

)1/(2s±+1)
)2s±

.

Recalling that Sn =
√

(logn)/nmax(1, g/|m1|) and N > logn, we deduce that

R2(θ)≤ 2R2

(

64Γ2max(1, g2/m2
1)

R2n

)2s±/(2s±+1)

+
R2

1− 2−2s±
max

(

τ2 log(n)

n
,
(64Γ2max(1, g2/m2

1)

R2n

)1/(2s±+1)
)2s±

.

Hence, recalling that |Ĩ | ≥ 7/8 and the result of Lemma 4, there exists a universal constant
B > 0 such that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R2(θ)≤
BR2

min(1, s±)

( Γ2

R2δ2ǫ2ζ2n

)2s±/(2s±+1)
+

BR2

min(1, s±)

(τ2 log(n)

n

)2s±

A.4.3. Control ofR3. We remark that on the event {‖f̂Bjℓ‖ ≤ ΓŜn}∩{‖fBjℓ‖> 2ΓŜn}
it must that

‖fBjℓ

± ‖ ≤ ‖f̂Bjℓ

± − f
Bjℓ

± ‖+ ‖f̂Bjℓ

± ‖ ≤ ‖f̂Bjℓ

± − f
Bjℓ

± ‖+ 1

2
‖fBjℓ

± ‖

and thus ‖fBjℓ

± ‖ ≤ 2‖f̂Bjℓ

± −fBjℓ

± ‖. Then, since 1
4Sn ≤ Ŝn ≤ 4Sn on the event Ωn by Propo-

sition 11 in Section A.4.7,

R3(θ) := Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖fBjℓ

± ‖21{‖f̂Bjℓ
± ‖≤ΓŜn}

1{‖fBjℓ
± ‖>2ΓŜn}

1Ωn

)

≤ 4

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± ‖≤ΓŜn}

1{‖fBjℓ
± ‖>2ΓŜn}

1Ωn

)

≤ 4

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± −fBjℓ

± ‖>ΓSn/4}
1Ωn

)

.

Recalling that f̂± = ψ̂1+
1
2 ω̂±Ĝ, we defineWBjℓ

1 := ‖ψ̂Bjℓ

1 −ψBjℓ

1 ‖, WBjℓ

2 := 4g
|m1|‖Ĝ

Bjℓ −
GBjℓ‖, and W

Bjℓ

3 := 1
2 |ω̂± − ω±|‖GBjℓ‖, so that a direct calculation (see Lemma 15)

yields ‖f̂Bjℓ

± − f
Bjℓ

± ‖L2 ≤ W
Bjℓ

1 + W
Bjℓ

2 + W
Bjℓ

3 . We then observe, writing W̄Bjℓ =

max(W
Bjℓ

1 ,W
Bjℓ

2 ,W
Bjℓ

3 ), that

R3(θ)≤ 4

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± −fBjℓ

± ‖>ΓSn/4}
1{W̄Bjℓ=W

Bjℓ
1 }1Ωn

)

+4

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± −fBjℓ

± ‖>ΓSn/4}
1{W̄Bjℓ=W

Bjℓ
2 }1Ωn

)
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+4

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± −fBjℓ

± ‖>ΓSn/4}
1{W̄Bjℓ=W

Bjℓ
3 }1Ωn

)

We call these terms R3,1, R3,2, and R3,3, respectively. Let us start with R3,1. Observe that on

the event Ωn ∩ {W̄Bjℓ =W
Bjℓ

1 } we have ‖f̂Bjℓ

± − f
Bjℓ

± ‖ ≤ 3W
Bjℓ

1 . Therefore,

R3,1 ≤ 36

̃n
∑

j=Jn

∑

ℓ

Eθ

(

(

W
Bjℓ

1

)2
1{WBjℓ

1 >ΓSn/12}

)

Proposition 8 in Section A.4.7 tells us that, for nγ∗ ≥ 1/99, there is a universal constant
C > 0 such that for all θ ∈Σγ∗(L) and all x≥ 0

Pθ

(

‖ψ̂Bjℓ

1 − ψ
Bjℓ

1 ‖ ≥C

√

Lx

nγ∗
+C2j/2

x

nγ∗

)

≤ 24Ne−x.

Then by Lemma 8 with a= C2j/2/γ∗, b= C
√

L/γ∗, c = 24N ≤ 242 log(n) [n ≥ 2 so N ≤
2 log(n)], we find that

R3,1 ≤ 36 · 24N
̃n
∑

j=Jn

∑

ℓ

(Γ2S2
n

144
+

5C2L

2nγ∗
+

7C22j

2(nγ∗)2

)

exp
(

− nγ∗Γ2S2
n/144

2C2L+8C2j/2ΓSn/12

)

.

≤ 36 · 24N
(Γ2max(1, g2/m2

1)

144
+ 5C2Ln+

14C2n2

2

)

exp
(

− nγ∗Γ2S2
n/144

2C2L+ 8C2j/2ΓSn/12

)

where the last line follows since there are 2j/N ≤ 2j blocks at each level j, and because
2̃n ≤ n by construction whenever n ≥ 3, and because nγ∗ ≥ τ3 ≥ 1. Let us analyse the
argument of the exponential in the last display. Firstly if 8C2j/2ΓSn/12 ≤ 2C2L, it is the
case that

nγ∗Γ2S2
n/144

2C2L+8C2j/2ΓSn/12
≥ nγ∗Γ2S2

n

576C2L
≥ γ∗Γ2

576C2L
log(n)

since Sn =
√

log(n)/nmax(1, g/|m1|). Secondly, if 8C2j/2ΓSn/12> 2C2L, it is the case
that for any j ≤ ̃n

nγ∗Γ2S2
n/144

2C2L+8C2j/2ΓSn/12
≥ nγ∗ΓSn

192C2j/2
≥ γ∗Γ

192C
2−̃n/2

√

n log(n)≥ γ∗Γ
192C

log(n)

since by construction 2̃n ≤ n
τ2 log(n) ≤ n

log(n) . Therefore since L≤ n by assumption, for any

A> 0 there exists c0 > 0 such that whenever Γ≥ c0max(L1/2(γ∗)−1/2, (γ∗)−1):

R3,1 ≤max
(

1,
g2

m2
1

)

n−A.

We now control R3,2. With the same argument as before,

R3,2 ≤ 36

̃n
∑

j=Jn

∑

ℓ

Eθ

(

(

W
Bjℓ

2

)2
1{WBjℓ

2 >ΓSn/12}

)

.

Proposition 9 tells us that Pθ
(

‖ĜBjℓ −GBjℓ‖ ≥CL
√

x
nγ∗ +Cmax(τ2j/2,

√
L2j/2, τ

√
L) x

nγ∗

)

≤
4 · 24N e−x. Thus, applying Lemma 8 with a= 4Cg

|m1|γ∗ τ
√
L2j/2, b= 4CLg

|m1|
√
γ∗ , c= 24N , and
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d=ΓSn/12 [note that max(τ2j/2,
√
L2j/2, τ

√
L)≤ τ

√
L2j/2], we find that

R3,2 ≤ 36 · 24N
̃n
∑

j=Jn

∑

ℓ

(

Γ2S2
n

144
+

10C2L2g2

nγ∗m2
1

+
7 · 42C2τ2L2jg2

2(nγ∗)2m2
1

)

× exp

(

− nγ∗Γ2S2
n/144

8C2L2g2

m2
1

+ 16Cτ
√
L2j/2g

12|m1| ΓSn

)

ie.

R3,2 ≤ 36 · 24N max
(

1,
g2

m2
1

)( Γ2

144
+ 20C2L2n+

14 · 42τ2Ln2
2

)

× exp

(

− nγ∗Γ2S2
n/144

8C2L2g2

m2
1

+ 16Cτ
√
L2j/2g

12|m1| ΓSn

)

Let us analyse the argument of the exponential in the previous display. Firstly, in the case

where 16Cτ
√
L2j/2g

12|m1| ΓSn ≤ 8C2L3g2

m2
1

,

nγ∗Γ2S2
n/144

8C2L2g2

m2
1

+ 16Cτ
√
L2j/2g

12|m1| ΓSn
≥ nγ∗Γ2S2

n
2304C2L2g2

m2
1

≥ γ∗Γ2

2304C2L2
log(n)

since Sn =
√

log(n)/nmax(1, g/|m1|). Secondly, in the case where 16Cτ
√
L2j/2g

12|m1| ΓSn ≤
8C2L2g2

m2
1

, for any j ≤ ̃n

nγ∗Γ2S2
n/144

8C2L2g2

m2
1

+ 16Cτ
√
L2j/2g

12|m1| ΓSn
≥ nγ∗ΓSn

384Cτ
√
L2j/2g

|m1|
≥ γ∗Γ

384Cτ
√
L
2−̃n/2

√

n log(n)

≥ γ∗Γ

384C
√
L
log(n)

since by construction 2̃n ≤ n
τ2 log(n). Therefore, for any A> 0 there exits a constant c0 > 0

such that whenever Γ≥ c0L
1/2max(L1/2(γ∗)−1/2, (γ∗)−1)

R3,2 ≤max
(

1,
g2

m2
1

)

n−A.

We now control R3,3. With the same argument as before,

R3,3 ≤ 36

̃n
∑

j=Jn

∑

ℓ

Eθ

(

(

W
Bjℓ

3

)2
1{WBjℓ

3 >ΓSn/12}
1Ωn

)

≤ 36

̃n
∑

j=Jn

∑

ℓ

Eθ

(

(

W
Bjℓ

3

)2
1Ωn

)

.

Proposition 10 in Section A.4.7 tells us that |ω̂±−ω±| ≤ 83max(1,φ3|Ĩ|)
|m1m2| maxj=1,2,3|m̂j−mj|

on the event Ωn, hence

R3,3 ≤
9 · 832max(1, φ23Ĩ2)

m2
1m

2
2

Eθ

(

max
j=1,2,3

|m̂j −mj |2
)

̃n
∑

j=Jn

∑

ℓ

‖GBjℓ‖2
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≤ 9 · 832max(1, φ23Ĩ2)

m2
2

Eθ

(

max
j=1,2,3

|m̂j −mj |2
)

because ‖G‖L2 = |m1|‖ψ2‖L2 = |m1|. Furthermore, by Proposition 4, we deduce

R3,3 ≤
9 · 832 · 40C2L3max(1, g2)

nγ∗m2
2

+
9 · 832 · 64C2max(τ,

√
L)6max(1, g2)

(nγ∗)2m2
2

.

In the end for every A > 0 there exists c0 > 0 such that whenever the threshold constant
satisfies Γ≥ c0L

1/2max(L1/2(γ∗)−1/2, (γ∗)−1)

R3(θ)≤ 2max
(

1,
g2

m2
1

)

n−A +
9 · 832 · 40C2L3max(1, g2)

nγ∗m2
2

+
9 · 832 · 64C2max(τ,

√
L)6max(1, g2)

(nγ∗)2m2
2

.

By choosing β > 0 carefully enough, there is a universal constant B > 0 such that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R3(θ)≤
BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
.

A.4.4. Control of R4. Observe that

R4(θ) := Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± ‖>ΓŜn}

1{‖fBjℓ
± ‖≤ 1

2
ΓŜn}}

1Ωn

)

≤ Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± −fBjℓ

± ‖> 1

2
ΓŜn}

1Ωn

)

≤ Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± −fBjℓ

± ‖> 1

8
ΓSn}

1Ωn

)

since Ŝn ≥ Sn/4 on the event Ωn by Proposition 11 in Section A.4.7. From here, we see that
the bounds derived for R3 adapts mutatis mutandis by letting Γ 7→ Γ/2. In the end it is found
that for β > 0 chosen carefully enough

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R4(θ)≤
BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2
.

A.4.5. Control of R5. First see that, since Ŝn ≥ Sn/4 on the event Ωn by Proposition 11,

R5(θ) := Eθ

(

̃n
∑

j=Jn

∑

ℓ

‖f̂Bjℓ

± − f
Bjℓ

± ‖21{‖f̂Bjℓ
± ‖>ΓŜn}

1{‖fBjℓ
± ‖> 1

2
ΓŜn}

1Ωn

)

≤
̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21Ωn

)

1{‖fBjℓ
± ‖> 1

8
ΓSn}

.

Let WBjℓ

j be defined as in Section A.4.3. Then, by Lemma 15 in Section A.4.7,

Eθ

(

‖f̂Bjℓ

± − f
Bjℓ

± ‖21Ωn

)

≤ 3Eθ

(

(

W
Bjℓ

1

)2
)

+3Eθ

(

(

W
Bjℓ

2

)2
)

+3Eθ

(

(

W
Bjℓ

3

)2
1Ωn

)
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By computations made in Section A.4.3, for any A> 0 we can choose α > 0 such that

Eθ

(

(

W
Bjℓ

1

)2
)

≤ α2C2L
log(n)

nγ∗
+ Eθ

(

(

W
Bjℓ

1

)2
1{WBjℓ

1 >αC
√
L log(n)/(nγ∗)}

)

≤ α2C2L
log(n)

nγ∗
+max

(

1,
g2

m2
1

)

2−̃nn−A

≤ α2C2LS2
n

γ∗
+max

(

1,
g2

m2
1

)

2−̃nn−A.

Similarly,

Eθ

(

(

W
Bjℓ

2

)2
)

≤ α2C2L2 g
2 log(n)

nγ∗m2
1

+Eθ

(

(

W
Bjℓ

2

)2
1{WBjℓ

2 >αCLg

|m1|

√
log(n)/(nγ∗)

)

≤ α2C2L2 g
2 log(n)

nγ∗m2
1

+max
(

1,
g2

m2
1

)

2−̃nn−A

≤ α2C2L2S2
n

γ∗
+max

(

1,
g2

m2
1

)

2−̃nn−A.

Also, by computations made in Section A.4.3, we know that

̃n
∑

j=Jn

∑

ℓ

Eθ

(

(

W
Bjℓ

3

)2
1Ωn

)

≤ 9 · 832 · 40C2L3max(1, g2)

36nγ∗m2
2

+
9 · 832 · 64C2max(τ,

√
L)6max(1, g2)

36(nγ∗)2m2
2

.

Consequently,

R5(θ)≤
6α2C2L2S2

n

γ∗

̃n
∑

j=Jn

∑

ℓ

1{‖fBjℓ
± ‖> 1

8
ΓSn}

+
27 · 832 · 40C2L3max(1, g2)

36nγ∗m2
2

+
27 · 832 · 64C2max(τ,

√
L)6max(1, g2)

36(nγ∗)2m2
2

+ 2max
(

1,
g2

m2
1

)

n−A.

Whenever θ ∈ Θs0,s1
δ,ǫ,ζ (R), it is the case (recall (26)) that supj≥Jn

22js±
∑

k |f
Ψjk

± |2 ≤ R2.
This in particular implies that for all j ≥ Jn

R22−2js± ≥
∑

ℓ

‖fBjℓ

± ‖2

≥
∑

ℓ

‖fBjℓ

± ‖21{‖fBjℓ
± ‖> 1

8
ΓSn}

≥ Γ2S2
n

64

∑

ℓ

1{‖fBjℓ
± ‖> 1

8
ΓSn}

.

Since there are 2j/N blocks at level j, deduce that

∑

ℓ

1{‖fBjℓ
± ‖> 1

8
ΓSn}

≤min
(2j

N
,
64R2

Γ2S2
n

2−2js±
)

=
1

Γ2S2
n

min
(2j

N
Γ2S2

n, 64R
22−2js±

)
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Therefore,

R5(θ)≤
6α2C2L2

Γ2γ∗

̃n
∑

j=Jn

min
(2j

N
Γ2S2

n, 64R
22−2js±

)

+
27 · 832 · 40C2L3max(1, g2)

36nγ∗m2
2

+
27 · 832 · 64C2max(τ,

√
L)6max(1, g2)

36(nγ∗)2m2
2

+ 2max
(

1,
g2

m2
1

)

n−A.

Then by inspecting the proof of the bound of R2(θ) and by choosing α sufficiently large it
follows immediately that there exists a universal constant B > 0 such that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R5(θ)≤
BL3

δ2ǫ4ζ6
1

nγ∗
+
Bmax(τ,

√
L)6

δ2ǫ4ζ4
1

(nγ∗)2

+
BL2

Γ2γ∗

(

R2

min(1, s±)

( Γ2

R2δ2ǫ2ζ2n

)2s±/(2s±+1)
+

R2

min(1, s±)

(τ2 log(n)

n

)2s±

)

.

A.4.6. Control of R6. Whenever θ ∈Θs0,s1
δ,ǫ,ζ (R), it is the case (recall equation (26)) that

supj≥Jn
22js±

∑

k |f
Ψjk

± |2 ≤R2. Therefore,

R6(θ) := Pθ(Ωn)
∑

j>̃n

2j−1
∑

k=0

|fΨjk

± |2 ≤R2
∑

j>̃n

2−2js± =
L2

22s± − 1
2−2̃ns±

≤ R2

22s± − 1

(2τ2 log(n)

n

)2s±

because by construction 2̃n+1 > n
τ2 log(n) . Hence, there is a universal constant B > 0 such

that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R6(θ)≤
BR2

min(1, s±)

(τ2 log(n)

n

)2s±
.

A.4.7. Auxiliary results.

PROPOSITION 6. Let nγ∗ ≥ 1/99. Then, there is a universal constant C > 0 such that

for all θ ∈Σγ∗(L) and all x≥ 0

Pθ

(

‖ψ̂Jn

1 − ψJn

1 ‖L2 ≥C

√

Lx

nγ∗
+C2Jn/2 x

nγ∗

)

≤ 242
Jn

e−x.

PROOF. The strategy is classical and consists on remarking that ‖ψ̂Jn

1 − ψJn

1 ‖L2 =

supu∈U 〈ψ̂Jn

1 − ψ̂Jn

1 , u〉 where U is the unit ball of the appropriate vector space (which has
dimension 2J +

∑Jn−1
j=J 2j = 2Jn). Then, letting N be a (1/2)-net over U and π : U →N

mapping any point u ∈U to its closest element in N , we see that

‖ψ̂Jn

1 − ψJn

1 ‖L2 = sup
u∈U

〈ψ̂Jn

1 − ψ̂Jn

1 , u〉
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= sup
u∈U

(

〈ψ̂Jn

1 − ψ̂Jn

1 , π(u)〉+ 〈ψ̂Jn

1 − ψ̂Jn

1 , u− π(u)〉
)

≤max
u∈N

〈ψ̂Jn

1 − ψ̂Jn

1 , u〉+ 1

2
‖ψ̂Jn

1 − ψJn

1 ‖L2

and hence

‖ψ̂Jn

1 − ψJn

1 ‖L2 ≤ 2max
u∈N

〈ψ̂Jn

1 − ψ̂Jn

1 , u〉.

It follows that

Pθ

(

‖ψ̂Jn

1 − ψJn

1 ‖L2 ≥ 2x
)

≤ |N |max
u∈N

Pθ

(

〈ψ̂Jn

1 − ψ̂Jn

1 , u〉 ≥ x
)

The conclusion follows by Lemma 7 applied to the function h(y) =
∑2J−1

k=0 uJkΦJk(y) +
∑Jn

j=J

∑2j−1
k=0 ujkψjk(y), because Eθ(h2)≤L‖h‖2L2 = L for every θ ∈Σγ∗(L) by Lemma 5,

because ‖h‖∞ ≤ c2Jn/2 for a universal c > 0, by standard localization properties of wavelets
[12, Theorem 4.2.10 or Definition 4.2.14] and because N can be chosen so that |N | ≤ 242

Jn

because N can always be chosen to have cardinality no more than 242
Jn (e.g. [12, Theorem

4.3.34]).

PROPOSITION 7. Let nγ∗ ≥ 1/99 and ‖ψ̃2‖∞ ≤ τ . Then, there is a universal constant

C > 0 such that for all θ ∈Σγ∗(L) and all x≥ 0

Pθ

(

‖ĜJn −GJn‖L2 ≥CL

√

x

nγ∗
+Cmax(τ2Jn/2,

√
L2Jn/2, τ

√
L)

x

nγ∗

)

≤ 4 · 242Jn

e−x.

PROOF. We remark that ĜΦJk = P
(2)
n (ψ̃2 ⊗ ΦJk) − P

(1)
n (ψ̃2)P

(1)
n (ΦJk); similarly for

ĜΨjk . Recall that ‖ψ̃2‖∞ ≤ τ by assumption. Hence, ‖ĜJn‖L2 ≤ cτ2Jn/2 for a universal
constant c > 0. Similarly ‖GJn‖L2 ≤ cτ2Jn/2. Hence with probability 1 ≥ 1− e−x, when-
ever x> nγ∗

‖ĜJn −GJn‖L2 ≤ 2cτ2Jn/2 ≤CL3/2

√

x

nγ∗

provided C > 2c. We now consider the case where 0≤ x≤ nγ∗. We decompose

ĜJn −GJn =

2J−1
∑

k=0

(

P
(2)
n

(

ψ̃2 ⊗ΦJk
)

−Eθ

(

ψ̃2 ⊗ΦJk
)

)

ΦJk

+

Jn
∑

j=J

2j−1
∑

k=0

(

P
(2)
n

(

ψ̃2 ⊗Ψjk

)

−Eθ

(

ψ̃2 ⊗Ψjk

)

)

Ψjk

−Eθ(ψ̃2)
(

ψ̂Jn

1 −ψJn

1

)

− ψJn

1

(

P
(1)
n (ψ̃2)− Eθ(ψ̃2)

)

−
(

P
(1)
n (ψ̃2)−Eθ(ψ̃2)

)(

ψ̂Jn

1 − ψJn

1

)

.

But ‖ψJn

1 ‖L2 ≤ ‖ψ1‖L2 ≤ max(‖f0‖L2 ,‖f1‖L2) and ‖fj‖2L2 =
∫ 1
0 f

2
j ≤ ‖fj‖∞

∫ 1
0 fj ≤ L

whenever θ ∈ Σγ∗(L). Thus ‖ψJn

1 ‖L2 ≤
√
L. Similarly by Cauchy-Schwarz’ |Eθ(ψ̃2)| ≤

Eθ(ψ̃
2
2)

1/2 ≤ ‖ψ1‖1/2∞ ‖ψ̃2‖L2 ≤
√
L. Therefore, letting vJn :=

∑2J−1
k=0 Eθ(ψ̃2 ⊗ ΦJk)ΦJk +
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∑Jn

j=J

∑2j−1

k=0 Eθ(ψ̃2 ⊗Ψjk)Ψjk and its empirical counterpart v̂Jn defined similarly:

‖ĜJn −GJn‖L2 ≤ ‖v̂Jn − vJn‖L2 +
√
L‖ψ̂Jn

1 −ψJn

1 ‖L2 +
√
L
∣

∣

∣
P
(1)
n (ψ̃2)−Eθ(ψ̃2)

∣

∣

∣

+
∣

∣

∣
P
(1)
n (ψ̃2)− Eθ(ψ̃2)

∣

∣

∣
‖ψ̂Jn

1 −ψJn

1 ‖L2 .

Using the same ε-net argument as in the proof of Proposition 6, we find that

Pθ

(

‖v̂Jn − vJn‖L2 ≥CL

√

x

nγ∗
+Cτ2J/2

x

nγ∗

)

≤ 242
Jn

sup
u∈U

Pθ

(

〈v̂Jn − vJn, u〉 ≥CL

√

x

nγ∗
+Cτ2J/2

x

nγ∗

)

≤ 242
Jn

e−x

where the last inequality follows from Lemma 7 applied to the function h(y1, y2) =
∑2J−1

k=0 uJkψ̃2(y1)ΦJk(y2) +
∑Jn

j=J

∑2j−1
k=0 ujkψ̃2(y1)Ψjk(y1) which satisfies Eθ(h

2) ≤
L2‖h‖2L2 = L2 for every θ ∈ Σγ∗(L) by Lemma 5, and ‖h‖∞ ≤ c‖ψ̃2‖∞2J/2 ≤ cτ2J/2 by
standard localization properties of wavelets [12, Theorem 4.2.10 or Definition 4.2.14]. Also
by Lemma 7 applies to h= ψ̃2,

Pθ

(

∣

∣

∣
P
(1)
n (ψ̃2)−Eθ(ψ̃2)

∣

∣

∣
≥C

√

Lx

nγ∗
+Cτ

x

nγ∗

)

≤ e−x

and using Proposition 6

Pθ

(

‖ψ̂Jn

1 −ψJn

1 ‖ ≥C

√

Lx

nγ∗
+C2J/2

x

nγ∗

)

≤ 242
Jn

e−x.

Therefore with probability at least 1− (2 · 242Jn
+1)e−x under Pθ

‖ĜJn −GJn‖L2 ≤C

(

√

L2x

nγ∗
+ τ2Jn/2 x

nγ∗

)

+C
√
L

(
√

Lx

nγ∗
+2Jn/2 x

nγ∗

)

+C
√
L

(
√

Lx

nγ∗
+ τ

x

nγ∗

)

+C2

(
√

Lx

nγ∗
+2Jn/2 x

nγ∗

)(
√

Lx

nγ∗
+ τ

x

nγ∗

)

≤ 3CL

√

x

nγ∗
+C

(

τ2Jn/2 +
√
L2Jn/2 + τ

√
L+CL

) x

nγ∗

+C2
(

τ
√
L+2Jn/2

√
L
) x3/2

(nγ∗)3/2
+C2τ2Jn/2 x2

(nγ∗)2
.

The conclusion follows since x≤ nγ∗ which implies that the last two terms are bounded by
the second term, and the Lx/(nγ∗) part of second term is bounded by the first term.

PROPOSITION 8. Let nγ∗ ≥ 1/99. Then, there is a universal constant C > 0 such that

for all θ ∈Σγ∗(L), all j ≥ Jn, all ℓ, and all x≥ 0,

Pθ

(

‖ψ̂Bjℓ

1 − ψ
Bjℓ

1 ‖ ≥C

√

Lx

nγ∗
+C2j/2

x

nγ∗

)

≤ 24Ne−x.
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PROOF. The proof is identical to Proposition 6. (Note the vector ψBjℓ

1 is in R
N , where

ψΦ
1 was in R

2Jn .)

PROPOSITION 9. Let nγ∗ ≥ 1/99. Then, there is a universal constant C > 0 such that

for all θ ∈Σγ∗(L), all j ≥ Jn, all ℓ, and all x≥ 0

Pθ

(

‖ĜBjℓ −GBjℓ‖ ≥CL

√

x

nγ∗
+Cmax(τ2j/2,

√
L2j/2, τ

√
L)

x

nγ∗

)

≤ 4 · 24Ne−x.

PROOF. The proof is identical to Proposition 7.

LEMMA 15. On the event Ωn, for all j ≥ Jn and all ℓ:

‖f̂Bjℓ

± − f
Bjℓ

± ‖ ≤ ‖ψ̂Bjℓ

1 − ψ
Bjℓ

1 ‖+ 4g‖ĜBjℓ −GBjℓ‖
|m1|

+
|ω̂± − ω±|‖GBjℓ‖

2
,

and similarly for ‖f̂Jn

± − fJn

± ‖L2 .

PROOF. Trivially,

f̂
Bjℓ

± − f
Bjℓ

± = ψ̂
Bjℓ

1 −ψ
Bjℓ

1 +
ω̂±
2

(

ĜBjℓ −GBjℓ

)

+
ω̂± − ω±

2
GBjℓ .

The conclusion follows since on Ωn, Proposition 11 implies that ĝ ≤ 2g and |m̂1| ≥ |m1|/2>
0. (Recall also that |φ1| ≤ 1.)

PROPOSITION 10. On the event Ωn

|ω̂± − ω±| ≤
83max(1, φ3|Ĩ |)

|m1m2|
max
j=1,2,3

|m̂j −mj|.

PROOF. On Ωn we have ĝ ≤ 2g by Proposition 11 to follow, and note that |m̂1| ≥
|m1|/2> 0. Consequently, by straightforward computations, using Lemmas 12 and 16,

|ω̂± − ω±|=
∣

∣

∣

1

m1
(ĝ − g)(1∓ φ̂1) +

g

m1
(1∓ φ̂1 − (1∓ s̃φ1)) + ĝ(1∓ φ̂1)(

1

m̂1
− 1

m1
)
∣

∣

∣

≤ 2|ĝ − g|
|m1|

+
g|φ̂1 − s̃φ1|

|m1|
+

8g|m̂1 −m1|
m2

1

≤
(

22max(1, φ3|Ĩ|)
|m1m2|

+
53max(1, φ3|Ĩ|)g
|m1|φ22φ33|Ĩ|3

+
8g

m2
1

)

max
j=1,2,3

|m̂j −mj|

≤ 83max(1, φ3|Ĩ |)
|m1m2|

max
j=1,2,3

|m̂j −mj|

because m2 =
1
4(1− φ21)φ

2
2φ

2
3Ĩ2, because g = φ3|Ĩ|, and becausem2 =m1φ2 ≤ |m1|.

PROPOSITION 11. On the event Ωn, we have | ĝg − 1| ≤ 1
2 . Consequently, 1

4Sn ≤ Ŝn ≤
4Sn and |ω̂±| ≤ 8|g/m1| on Ωn.

PROOF. It suffices to remark that
gm2

44max(1, g)
≤ gm2

20max(|φ1|, (1− φ21)φ3|Ĩ|)
,



40

since −1 ≤ φ1 ≤ 1, so that Lemma 16 applies. Replacing maxj |m̂j − mj| by its bound
gm2/44max(1, g) on the event Ωn yields the result for ĝ. For Sn, recalling the defini-
tions Sn =

√

(logn)/nmax(1, g/|m1|), Ŝn =
√

(logn)/nmax(1, ĝ/|m̂1|)1{m̂1 6= 0} and
inserting the bounds g/2≤ ĝ ≤ 2g, |m1|/2≤ m̂1 ≤ 2|m1| yields the bounds for Ŝn.

LEMMA 16. Suppose

max
j=1,2

∣

∣

m̂j

mj
− 1
∣

∣≤ 1

2
, and, max

j=1,2,3
|m̂j −mj| ≤

m2g

20max(|φ1|, (1− φ21)g)

Then,

|ĝ− g| ≤ 22max(1, g)

m2
max
j=1,2,3

|m̂j −mj|.

Recall that g = φ3|Ĩ| and m2 = φ2r(φ)Ĩ2, so that the conditions of Lemma 16 match
those of Lemma 12.

PROOF. We let ∆1 = m̂1 −m1, ∆2 = (m̂2)+ −m2, ∆3 = m̂3 −m3, v̂ := 4m̂2
1(m̂2)+ +

m̂2
3, v := 4m2

1m2 +m2
3, and h := v̂ − v. Then, since m̂2 ≥m2/2 > 0 under the assumption

of the lemma

ĝ− g =

√
v+ h

m2 +∆2
−

√
v

m2

=

√
v+ h−√

v

m2 +∆2
− ∆2

√
v

m2(m2 +∆2)

=
h

(
√
v+ h+

√
v)(m2 +∆2)

− ∆2
√
v

m2(m2 +∆2)
.

Hence it must be that

|ĝ− g| ≤ 2|h|
m2

√
v
+

2
√
v

m2
2

|∆2|.

Lemma 13, together with the fact that |φ1| ≤ 1, tells us that

|h| ≤ 10max(1, φ3|Ĩ|)|r(φ)φ2φ3Ĩ3| max
j=1,2,3

|∆j |

and
√
v = |Ĩ|3r(φ)φ2φ3 = |Ĩ|m2φ3 ≤m2max(1, φ3|Ĩ |), thus

|ĝ − g| ≤ 20max(1, φ3|Ĩ|)
m2

max
j=1,2,3

|∆j |+
2max(1, φ3|Ĩ|)

m2
|∆2|

concluding the proof.

A.5. Proof of Theorem 5.

A.5.1. Definitions and rationale. To avoid issues with the non-identifiability, we once
again define p± and f± as in Lemma 1. The starting point of the proof is to remark that f±
can be rewritten as

f± =

[

2ψ1

1± s̃φ1

]

+

[

−
(

1∓ s̃φ1
1± s̃φ1

ψ1 ∓
g(1∓ s̃φ1)

2m1
G

)]

.
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Then each of the two functions in bracket;s in the previous display is estimated separately
using block-thresholded wavelets estimators. The population mother coefficients are defined
as

α
Ψjk

± :=
2ψ

Ψjk

1

1± s̃φ1
, β

Ψjk

± :=−
(

1∓ s̃φ1
1± s̃φ1

ψ
Ψjk

1 ∓ g(1∓ s̃φ1)

2m1
GΨjk

)

and the corresponding empirical versions are

α̂
Ψjk

± :=
2ψ̂

Ψjk

1

1± φ̂1
1{φ̂1 6=∓1}, β̂

Ψjk

± :=−
(

1∓ φ̂1

1± φ̂1
1{φ̂1 6=∓1}ψ̂

Ψjk

1 ∓ ĝ(1∓ φ̂1)

2m̂1
1{m̂1 6=0}Ĝ

Ψjk

)

.

Then, the untruncated estimators can be rewritten as (here f̂ΦJk

± are the father coefficients
that were defined in the beginning of Section A.4)

f̂R± :=

2Jn−1
∑

k=0

f̂ΦJk

± ΦJnk +

Jn−1
∑

j=J

2j−1
∑

k=0

f̂
Ψjk

± Ψjk

+

̃n
∑

j=Jn

2j/N−1
∑

ℓ=0

(

∑

k∈Bjℓ

α̂
Ψjk

± Ψjk

)

1{‖ψ̂Bjℓ
1 ‖>Γ

√
log(n)/n}

+

̃n
∑

j=Jn

2j/N−1
∑

ℓ=0

(

∑

k∈Bjℓ

β̂
Ψjk

± Ψjk

)

1{‖β̂Bjℓ
± ‖>ΓT̂n}

while the truncated versions are

f̌R± :=max
(

0, min
(

Ť , f̂R±
))

.

A.5.2. Decomposition of the error. We define auxiliary events

Ξ(1)
n :=

{

∀j = Jn, . . . , ̃n, ∀ℓ, ‖ψ̂Bjℓ

1 −ψ
Bjℓ

1 ‖ ≤ c0Γ
√

log(n)/n
}

,

and

Ξ(2)
n :=

{

∀j = Jn, . . . , ̃n, ∀ℓ, ‖ĜBjℓ −GBjℓ‖ ≤ c1Γ
√

log(n)/n
}

. We let Ξn denote the intersection of both of these events. Then by the same argument used
in Section A.4

Eθ

(

‖f̌R± − f±‖2L2

)

≤ Ť 2
(

Pθ(Ω
c
n) + Pθ(Ξ

c
n)
)

+Eθ

(

‖f̂R± − f±‖2L21Ωn∩Ξn

)

.

The probability of the event Ωcn is bounded in Proposition 5, while the probability of Ξcn is
bounded in Lemma 17 (to follow). We bound the remaining term by decomposing it into
several terms. For this matter, we introduce the events

Ejℓ :=

{

max
j=1,2,3

|m̂j −mj|‖GBjℓ‖ ≤ c2|m1m2|ΓTn/max(1, g)

}

and we decompose

Eθ

(

‖f̂R± − f±‖2L21Ωn∩Ξn

)

= Eθ

(

‖f̂Jn

± − fJn

± ‖2L21Ωn∩Ξn

)

+

̃n
∑

j=Jn

∑

ℓ

Eθ

(

∥

∥α̂
Bjℓ

± + β̂
Bjℓ

± − α
Bjℓ

± − β
Bjℓ

±
∥

∥

2

× 1Ωn∩Ξn
1
n‖ψ̂Bjℓ

1 ‖2>Γ2 log(n)
1‖β̂Bjℓ

± ‖>ΓT̂n

1Ec
jℓ

)
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+

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖α̂Bjℓ

± + β̂
Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖2

× 1Ωn∩Ξn
1
n‖ψ̂Bjℓ

1 ‖2>Γ2 log(n)
1‖β̂Bjℓ

± ‖>ΓT̂n

1Ejℓ

)

+

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖α̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖2

× 1Ωn∩Ξn
1
n‖ψ̂Bjℓ

1 ‖2>Γ2 log(n)
1‖β̂Bjℓ

± ‖≤ΓT̂n

1Ejℓ
1‖ψBjℓ

1 ‖> g(1±s̃φ1)

|m1|
‖GBjℓ‖

)

+

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖α̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖2

× 1Ωn∩Ξn
1
n‖ψ̂Bjℓ

1 ‖2>Γ2 log(n)
1‖β̂Bjℓ

± ‖≤ΓT̂n

1Ejℓ
1‖ψBjℓ

1 ‖≤ g(1±s̃φ1)

|m1|
‖GBjℓ‖

)

+

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖β̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖21Ωn∩Ξn
1
n‖ψ̂Bjℓ

1 ‖2≤Γ2 log(n)
1‖β̂Bjℓ

± ‖>ΓT̂n

1Ejℓ

)

+

̃n
∑

j=Jn

∑

ℓ

Eθ

(

‖αBjℓ

± + β
Bjℓ

± ‖21Ωn∩Ξn
1
n‖ψ̂Bjℓ

1 ‖2≤Γ2 log(n)
1‖β̂Bjℓ

± ‖≤ΓT̂n

1Ejℓ

)

+
∑

j>̃n

∑

k

|fΨjk

± |2Pθ(Ωn ∩Ξn)

where we have used the same convention as in Section A.4 to define f̂Jn

± and fJn

± . We call
R1(θ), . . . ,R8(θ), respectively, each of the terms of the previous right hand side. In the next
subsections, after stating a couple of preliminary results, we prove the following bounds,
uniformly over θ ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗(L) and for a universal constant B > 0:

R1(θ)≤
BL2

δ2ǫ2ζ2
log(n)

nγ∗
+

BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,L)6

δ2ǫ4ζ4
1

(nγ∗)2
.

R2(θ)≤
B

δ2ǫ4ζ4

( L3

nγ∗
+

max(τ,L)6

(nγ∗)2

)

.

R3(θ)≤
BR2

min(1, s∓)
1

δ2

( Γ2

R2nǫ2ζ2

)2s∓/(2s∓+1)
.

R4(θ)≤
BR2

min(1, s±)

( Γ2

nR2δ2

)2s±/(2s±+1)
+

BR2

min(1, s∓)
1

δ2

( Γ2

R2nǫ2ζ2

)2s∓/(2s∓+1)
.

R5(θ)≤
B

δ2ǫ4ζ4

( L3

nγ∗
+

max(τ,L)6

(nγ∗)2

)

+
BR2

min(1, s±)

( Γ2

nR2δ2

)2s±/(2s±+1)

+
BR2

min(1, s∓)
1

δ2

( Γ2

R2nǫ2ζ2

)2s∓/(2s∓+1)

R6(θ)≤
BR2

min(1, s∓)
1

δ2

( Γ2

R2nǫ2ζ2

)2s∓/(2s∓+1)
.
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R7(θ)≤
BR2

min(1, s±)

( Γ2

nR2δ2

)2s±/(2s±+1)
+

R2

min(1, s∓)
1

δ2

( Γ2

BR2nǫ2ζ2

)2s∓/(2s∓+1)
.

R8(θ)≤
BR2

min(1, s±)

(τ2 log(n)

n

)2s±
.

A.5.3. Preliminary computations.

LEMMA 17. For all A> 0 and for all choice of c0, c1 > 0 there exists a constant β0 > 0

such that if Γ≥ βmax( L√
γ∗ ,

√
L

τγ∗ ) with β ≥ β0 then

Pθ(Ξ
c
n)≤ n−A.

PROOF. By a union bound,

Pθ

(

(Ξ(1)
n )c

)

≤
̃n
∑

j=Jn

∑

ℓ

Pθ

(

‖ψ̂Bjℓ

1 − ψ
Bjℓ

1 ‖> c0Γ
√

log(n)/n
)

≤ 2̃n+1

N
max
j≤̃n

max
ℓ

Pθ

(

‖ψ̂Bjℓ

1 −ψ
Bjℓ

1 ‖> c0Γ
√

log(n)/n
)

≤ nmax
j≤̃n

max
ℓ

Pθ

(

‖ψ̂Bjℓ

1 −ψ
Bjℓ

1 ‖> c0Γ
√

log(n)/n
)

.

Then choose x = B log(n) for some B > 0 to be chosen accordingly. Observe that for all
j ≤ ̃n (recall L≥ 1)

C

√

Lx

nγ∗
+C2j/2

x

nγ∗
≤ C

√
BL√
γ∗

·
√

log(n)

n
+C

√

n

log(n)τ2
B log(n)

nγ∗

≤ C
√
B +CB

β
Γ
√

log(n)/n.

Hence by choosing c0 = (C
√
B +CB)/β we deduce from the Proposition 8 that

Pθ

(

(Ξ(1)
n )c

)

≤ 24Nn−B+1.

The probability of Ξ(2)
n is bounded similarly, remarking that for x=B log(n)/n we have for

all j ≤ ̃n

CL

√

x

nγ∗
+Cmax(τ2j/2,

√
L2j/2, τ

√
L)

x

nγ∗

≤ CL
√
B√

γ∗

√

log(n)

n
+
CB

γ∗
max

(

√

n

log(n)
,

√
L

τ

√

log(n)

n
, τ
√
L

)

log(n)

n

≤ CL
√
B√

γ∗

√

log(n)

n
+
CB

√
L

γ∗τ

√

log(n)

n

≤ C
√
B +CB

β
Γ
√

log(n)/n,

where the third line is true because by assumption 1 ≤ 2Jn ≤ 2̃n ≤ n
log(n)τ2 and hence τ ≤

√

n/ log(n) necessarily. We then deduce from Proposition 9 that

Pθ

(

(Ξ(1)
n )c

)

≤ 4 · 24Nn−B+1
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which concludes the proof by taking B sufficiently large.

LEMMA 18. On the event Ωn

1

2
≤ 1± s̃φ1

1± φ̂1
≤ 2, and,

1

2
≤ 1∓ s̃φ1

1∓ φ̂1
≤ 2.

PROOF. Observe that

1± s̃φ1

1± φ̂1
=

1

1+ φ̂1−s̃φ1

1±s̃φ1

But on the event Ωn, by Lemma 12

|φ̂1 − s̃φ1| ≤
53max(1, g)

gm2
· 1− φ21

4
· max
j=1,2,3

|m̂j −mj |

≤ 53

4 · 44(1± s̃φ1)(1∓ s̃φ1)

≤ 1± s̃φ1
2

which proves the first claim. The second claim is proven similarly.

LEMMA 19. On the event Ωn we have m̂1 6= 0 and φ̂21 6= 1.

PROOF. The fact that m̂1 6= 0 follows immediately from the definition of Ωn. The fact
that φ̂21 6= 1 follows from Lemma 18 (either one of the two inequalities would not hold if
φ̂21 = 1).

The next Proposition controls the empirical threshold T̂n in term of its population version
defined as

Tn :=

√

log(n)

n
max

(

1,
g

|m1|
,

1

1− φ21

)

.

LEMMA 20. On the event Ωn, 1
4Tn ≤ T̂n ≤ 4Tn.

PROOF. Notice that Tn = max
(

Sn,

√
log(n)/n

1−φ2
1

)

. Thus, in view of Proposition 11 it is

enough to show that 1−φ2
1

4 ≤ 1− φ̂21 ≤ 4(1− φ21). But,

1− φ̂21 = (1± φ̂1)(1∓ φ̂1) =
1± φ̂1

1± ˜sφ1

1∓ φ̂1
1∓ s̃φ1

(1∓ s̃φ1)(1± s̃φ1) =
1± φ̂1

1± ˜sφ1

1∓ φ̂1
1∓ s̃φ1

(1−φ21).

Thus the conclusion follows from Lemma 18.

LEMMA 21. It is possible to choose c0, c1, c2 such that on the event Ejℓ ∩Ξn ∩Ωn:

1. ‖β̂Bjℓ

± ‖> ΓT̂n =⇒ ‖βBjℓ

± ‖> 1
32ΓTn;

2. ‖β̂Bjℓ

± ‖ ≤ ΓT̂n =⇒ ‖βBjℓ

± ‖ ≤ 32ΓTn;

3. ‖ψ̂Bjℓ

1 ‖> Γ
√

log(n)/n =⇒ ‖ψBjℓ

1 ‖> 1
2Γ
√

log(n)/n;

4. ‖ψ̂Bjℓ

1 ‖ ≤ Γ
√

log(n)/n =⇒ ‖ψBjℓ

1 ‖ ≤ 3
2Γ
√

log(n)/n.
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PROOF. Before proving the items, we first remark that we never have φ̂21 = 1 nor m̂1 = 0
on the event Ωn thanks to Lemma 19.

We establish Item 1. Notice that

‖β̂Bjℓ

± ‖> ΓT̂n ⇐⇒
∥

∥

∥

1∓ φ̂1

1± φ̂1
ψ̂
Bjℓ

1 ∓ ĝ(1∓ φ̂1)

2m̂1
ĜBjℓ

∥

∥

∥
> ΓT̂n

⇐⇒
∥

∥

∥

1∓ s̃φ1
1± s̃φ1

ψ̂
Bjℓ

1 ∓ 1± φ̂1
1± s̃φ1

ĝ(1∓ s̃φ1)

2m̂1
ĜBjℓ

∥

∥

∥
>

1∓ s̃φ1
1± s̃φ1

1± φ̂1

1∓ φ̂1
ΓT̂n

=⇒
∥

∥

∥

1∓ s̃φ1
1± s̃φ1

ψ̂
Bjℓ

1 ∓ 1± φ̂1
1± s̃φ1

ĝ(1∓ s̃φ1)

2m̂1
ĜBjℓ

∥

∥

∥
>

1

16
ΓTn

ie.

‖β̂Bjℓ

± ‖> ΓT̂n =⇒

‖βBjℓ

± ‖> 1

16
ΓTn −

1∓ s̃φ1
1± s̃φ1

‖ψ̂Bjℓ

1 −ψ
Bjℓ

1 ‖ −
∥

∥

∥

1± φ̂1
1± s̃φ1

ĝ

m̂1
ĜBjℓ − g

m1
GBjℓ

∥

∥

∥

where we have used Lemmas 18 and 20. But on the event Ejℓ ∩ Ξn ∩Ωn

1∓ s̃φ1
1± s̃φ1

‖ψ̂Bjℓ

1 −ψ
Bjℓ

1 ‖ ≤ (1∓ ˜sφ1)
2

1− φ21
· c0Γ

√

log(n)/n≤ c0ΓTn

and
∥

∥

∥

1± φ̂1
1± s̃φ1

ĝ

m̂1
ĜBjℓ − g

m1
GBjℓ

∥

∥

∥

≤ 1± φ̂1
1± s̃φ1

ĝ

|m̂1|
‖ĜBjℓ −GBjℓ‖+

∣

∣

∣

1± φ̂1
1± s̃φ1

ĝ

|m̂1|
− g

m1

∣

∣

∣
‖GBjℓ‖

≤ 1± φ̂1
1± s̃φ1

ĝ

|m̂1|
‖ĜBjℓ −GBjℓ‖

+

(

1± φ̂1
1± s̃φ1

|ĝ− g|
|m̂1|

+
1± φ̂1
1± s̃φ1

g|m̂1 −m1|
|m̂1m1|

+
g

|m1|
∣

∣

∣

1± φ̂1
1± s̃φ1

− 1
∣

∣

∣

)

‖GBjℓ‖

≤ 8g

|m1|
‖ĜBjℓ −GBjℓ‖+

(

4|ĝ − g|
|m1|

+
4g|m̂1 −m1|

m2
1

+
g|φ̂1 − s̃φ1|
(1− φ21)|m1|

)

‖GBjℓ‖

where the last line holds true on Ωn by Lemmas 11 and 18. Therefore by Lemmas 12 and 16,
there is a universal constant C > 0 such that

∥

∥

∥

1± φ̂1
1± s̃φ1

ĝ

m̂1
ĜBjℓ − g

m1
GBjℓ

∥

∥

∥

≤ 8g

|m1|
‖ĜBjℓ −GBjℓ‖+ Cmax(1, g)

|m1m2|
max
j=1,2,3

|m̂j −mj|‖GBjℓ‖ ≤ (8c1 +Cc2)ΓTn

on the event Ejℓ ∩ Ξn ∩ Ωn by definitions of these events. Therefore by choosing c0, c1, c2
small enough, the Item 1 claim follows. The proof of the Item 2 is nearly identical. Items 3
and 4 are immediate from the definition of Ξn provided c0 ≤ 1/2.
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In the next we make use of the symbol . to denote inequalities that are valid up to a
universal multiplicative constant. Furthermore, since m̂1 6= 0 and φ̂21 6= 1 on the event Ωn
thanks to Lemma 19, and since all the terms we wish to control are conditional on Ωn, we
will assume throughout the rest of the proof that m̂1 6= 0 and φ̂21 6= 1 without justification.

A.5.4. Control of R1. This has already been done in Section A.4.1. We recall the result:

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R1(θ)≤
BL2

δ2ǫ2ζ2
log(n)

nγ∗
+

BL3

δ2ǫ4ζ4
1

nγ∗
+
Bmax(τ,L)6

δ2ǫ4ζ4
1

(nγ∗)2
.

A.5.5. Control of R2.

‖α̂Bjℓ

± 1‖ψ̂Bjℓ
1 ‖>Γ

√
log(n)/n

+ β̂
Bjℓ

± 1‖β̂Bjℓ
± ‖>ΓT̂n

−α
Bjℓ

± − β
Bjℓ

± ‖

= ‖α̂Bjℓ

± + β̂
Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± − α̂
Bjℓ

± 1‖ψ̂Bjℓ
1 ‖≤Γ

√
log(n)/n

− β̂
Bjℓ

± 1‖β̂Bjℓ
± ‖≤ΓT̂n

‖

≤ ‖α̂Bjℓ

± + β̂
Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖+ 2Γ
√

log(n)/n

1± φ̂1
+ΓT̂n

≤ ‖α̂Bjℓ

± + β̂
Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖+8ΓTn

on the event Ωn by Lemmas 18 and 20. Furthermore, letting f̂Bjℓ

± and fBjℓ

± as defined in
Section A.4, it is easily seen that

α̂
Bjℓ

± + β̂
Bjℓ

± − α
Bjℓ

± − β
Bjℓ

± = f̂
Bjℓ

± − f
Bjℓ

± .

Hence by Lemma 15, on the event Ξn ∩Ωn,

‖α̂Bjℓ

± + β̂
Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖ ≤ c0Γ
√

log(n)/n+
4g

|m1|
c1Γ
√

log(n)/n+
1

2
|ω̂± − ω±|‖GBjℓ‖

≤ (c0 +4c1)ΓTn +
1

2
|ω̂± − ω±|‖GBjℓ‖

≤ (c0 +4c1)ΓTn +
41.5max(1, g)

|m1m2|
max
j=1,2,3

|m̂j −mj|‖GBjℓ‖(22)

where the last line follows by Proposition 10. Deduce from the definition of Ejℓ that on the
event Ecjℓ ∩ Ξn ∩Ωn we must have

‖α̂Bjℓ

± 1‖ψ̂Bjℓ
1 ‖>Γ

√
log(n)/n

+ β̂
Bjℓ

± 1‖β̂Bjℓ
± ‖>ΓT̂n

− α
Bjℓ

± − β
Bjℓ

± ‖

≤
(8 + c0 + 4c1

c2
+ 41.5

)max(1, g)

|m1m2|
max
j=1,2,3

|m̂j −mj|‖GBjℓ‖.

From this we obtain the estimate

R2(θ).
max(1, g)2

m2
1m

2
2

Eθ

(

max
j=1,2,3

|m̂j −mj|2
)

∑

j≥Jn

∑

ℓ

‖GBjℓ‖2

.
max(1, g)2

m2
2

(C2L3

nγ∗
+
C2max(τ,L)6

(nγ∗)2

)

where the last line follows from Proposition 4. Therefore we deduce from Lemma 4 that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R2(θ).
1

δ2ǫ4ζ4

( L3

nγ∗
+

max(τ,L)6

(nγ∗)2

)

.
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A.5.6. Control of R3. By equation (22) and the definition of Ejℓ, it is found that on the
event Ejℓ ∩ Ξn ∩Ωn,

‖α̂Bjℓ

± + β̂
Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖ ≤ (c0 + 2c1 +41.5c2)ΓTn.

Then we deduce from Lemma 21 that

R3(θ). Γ2T 2
n

̃n
∑

j=Jn

∑

ℓ

1{‖βBjℓ
± ‖> 1

32
ΓTn}

.

Noting β± =−1∓s̃φ1

1±s̃φ1
f∓ and mimicking the proof in Section A.4.5, it is found that

(23)
∑

ℓ

1{‖βBjℓ
± ‖> 1

32
ΓTn}

≤min

(

2j

N
,
(1∓ s̃φ1
1± s̃φ1

)2R22−2js∓

Γ2T 2
n

)

Letting A= sup{0≤ j ≤ ̃n : 2−j(s∓+1/2) > ΓTn

R
√
N

1± ˜sφ1

1∓s̃φ1
} it is found that

R3(θ). Γ2T 2
n

A
∑

j=0

2j

N
+Γ2T 2

n

∑

j>A

(1∓ s̃φ1
1± s̃φ1

)2R22−2js∓

Γ2T 2
n

.
Γ2T 2

n

N
2A +

(1∓ s̃φ1
1± s̃φ1

)2
R2 2−2As∓

22s∓ − 1

.
Γ2T 2

n

N

(

(1∓ s̃φ1
1± s̃φ1

)2R2N

Γ2T 2
n

)1/(2s∓+1)

+
(1∓ s̃φ1
1± s̃φ1

)2
R2 1

22s∓ − 1

(

(1± s̃φ1
1∓ s̃φ1

)2Γ2T 2
n

R2N

)2s∓/(2s∓+1)

.
R2

min(1, s∓)

(1∓ s̃φ1
1± s̃φ1

)2/(2s∓+1)(Γ2T 2
n

R2N

)2s∓/(2s∓+1)
.

It follows using the definition of Tn and Θs0,s1
δ,ǫ,ζ (R) together with Lemma 4 (recall that ζ ≤ 1

by assumption) that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R3(θ).
R2

min(1, s∓)
1

δ2

( Γ2

R2nǫ2ζ2

)2s∓/(2s∓+1)
.

A.5.7. Control of R4. When ‖ψBjℓ

1 ‖> g(1±s̃φ1)
|m1| ‖GBjℓ‖

‖βBjℓ

± ‖=
∥

∥

∥

1∓ s̃φ1
1± s̃φ1

ψ
Bjℓ

1 ∓ g(1∓ s̃φ1)

2m1
GBjℓ

∥

∥

∥

≥ 1∓ s̃φ1
1± s̃φ1

‖ψBjℓ

1 ‖ − g(1∓ s̃φ1)

2|m1|
‖GBjℓ‖

≥ 1

2

1∓ s̃φ1
1± s̃φ1

‖ψBjℓ

1 ‖.

Consequently,

‖α̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖=
∥

∥

∥

2

1± φ̂1
ψ̂
Bjℓ

1 − 2

1± s̃φ1
ψ
Bjℓ

1 +
(1∓ s̃φ1
1± s̃φ1

ψ
Bjℓ

1 ∓ g(1∓ s̃φ1)

2m1
GBjℓ

)∥

∥

∥
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=
∥

∥

∥

2(ψ̂
Bjℓ

1 −ψ
Bjℓ

1 )

1± φ̂1
+
(1∓ φ̂1

1± φ̂1
ψ
Bjℓ

1 ∓ g(1∓ s̃φ1)

2m1
GBjℓ

)∥

∥

∥

≤ 2‖ψ̂Bjℓ

1 − ψ
Bjℓ

1 ‖
1± φ̂1

+
1∓ φ̂1

1± φ̂1
‖ψBjℓ

1 ‖+ g(1∓ s̃φ1)

2|m1|
‖GBjℓ‖

Then on the event Ξn ∩Ωn, by Lemma 18

‖α̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖ ≤ 4c0Γ
√

log(n)/n

1± s̃φ1
+

1∓ s̃φ1
1± s̃φ1

(

4‖ψBjℓ

1 ‖+ g(1± s̃φ1)

2|m1|
‖GBjℓ‖

)

≤ 4c0Γ
√

log(n)/n

1± s̃φ1
+ 5

1∓ s̃φ1
1± s̃φ1

‖ψBjℓ

1 ‖

≤ 4c0Γ
√

log(n)/n

1± s̃φ1
+ 10‖βBjℓ

± ‖.

Deduce from Lemma 21 that

R4(θ).
Γ2 log(n)/n

(1± s̃φ1)2

̃n
∑

j=Jn

∑

ℓ

1{‖ψBjℓ
1 ‖> 1

2
Γ
√

log(n)/n} +
̃n
∑

j=Jn

∑

ℓ

‖βBjℓ

± ‖21{‖βBjℓ
± ‖≤32ΓTn}

.

Observe that 2ψ1 = (1 + s̃φ1)f+ + (1− s̃φ1)f−. Therefore, for all j ≥ Jn
∑

k

|ψΨjk

1 |2 ≤ (1 + s̃φ1)
2

2

∑

k

|fΨjk

+ |2 + (1− s̃φ1)
2

2

∑

k

|fΨjk

− |2

≤R2 (1 + s̃φ1)
22−2js+ + (1− s̃φ1)

22−2js−

2
,(24)

whenever θ ∈Θs0,s1
δ,ǫ,ζ (R) (recall equation (10)). Deduce that (see also Section A.4.5)

∑

ℓ

1{‖ψBjℓ
1 ‖> 1

2
Γ
√

log(n)/n} ≤min

(

2j

N
,
2nR2

(

(1 + s̃φ1)
22−2js+ + (1− s̃φ1)

22−2js−
)

Γ2 log(n)

)

≤ 1

2
min

(2j

N
,
4nR2(1 + s̃φ1)

22−2js+

Γ2 log(n)

)

+
1

2
min

(2j

N
,
4nR2(1− s̃φ1)

22−2js−

Γ2 log(n)

)

by convexity of x 7→min(2j/N,x). Deduce that,

Γ2 log(n)/n

(1± s̃φ1)2

̃n
∑

j=Jn

∑

ℓ

1{‖ψBjℓ
1 ‖> 1

2
Γ
√

log(n)/n}

.
Γ2

n(1± s̃φ1)2

(nR2(1 + s̃φ1)
2

Γ2

)1/(2s++1)

+
1

22s+ − 1

R2(1 + s̃φ1)
2

(1± s̃φ1)2

( Γ2

nR2(1 + s̃φ1)2

)2s+/(2s++1)

+
Γ2

n(1± s̃φ1)2

(nR2(1− s̃φ1)
2

Γ2

)1/(2s−+1)

+
1

22s− − 1

R2(1− s̃φ1)
2

(1± s̃φ1)2

( Γ2

nR2(1− s̃φ1)2

)2s−/(2s−+1)
.
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That is,

Γ2 log(n)/n

(1± s̃φ1)2

̃n
∑

j=Jn

∑

ℓ

1{‖ψBjℓ
1 ‖> 1

2
Γ
√

log(n)/n}

.
R2

min(1, s+)

(1 + s̃φ1
1± s̃φ1

)2( Γ2

nR2(1 + s̃φ1)2

)2s+/(2s++1)

+
R2

min(1, s−)

(1− s̃φ1
1± s̃φ1

)2( Γ2

nR2(1− s̃φ1)2

)2s−/(2s−+1)
.

Regarding the remaining term, recall that β± =−1∓s̃φ1

1±s̃φ1
f∓ and observe that

̃n
∑

j=Jn

∑

ℓ

‖βBjℓ

± ‖21{‖βBjℓ
± ‖≤32ΓTn}

.

̃n
∑

j=Jn

min

(

∑

ℓ

‖βBjℓ

± ‖2, 2
jΓ2T 2

n

N

)

.

̃n
∑

j=Jn

min

(

∑

ℓ

‖βBjℓ

± ‖2, 2
jΓ2T 2

n

N

)

.

̃n
∑

j=Jn
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(

R2
(1∓ s̃φ1
1± s̃φ1
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2−2js∓ ,

2jΓ2T 2
n

N

)

.
R2

min(1, s∓)

(1∓ s̃φ1
1± s̃φ1

)2/(2s∓+1)(Γ2T 2
n

R2N

)2s∓/(2s∓+1)
(25)

where the last line follows from the estimate in (23) and subsequent iterates. In the end,

R4(θ).
R2

min(1, s+)

(1 + s̃φ1
1± s̃φ1

)2( Γ2

nR2(1 + s̃φ1)2
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+
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min(1, s−)

(1− s̃φ1
1± s̃φ1

)2( Γ2

nR2(1− s̃φ1)2
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+
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min(1, s∓)

(1∓ s̃φ1
1± s̃φ1

)2/(2s∓+1)(Γ2T 2
n

R2N

)2s∓/(2s∓+1)
.

Taking the suprema of each terms, with the help of Lemma 4 it is found that

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R4(θ).
R2

min(1, s±)

( Γ2

nR2δ2
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+
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1
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+
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R2nǫ2ζ2
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.

Namely,

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R4(θ).
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min(1, s±)

( Γ2

nR2δ2
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+
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1
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.
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A.5.8. Control of R5. When ‖ψBjℓ

1 ‖ ≤ g(1±s̃φ1)
|m1| ‖GBjℓ‖,

‖α̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖ ≤ ‖α̂Bjℓ
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Bjℓ
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± ‖
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∥

∥

∥

2

1± φ̂1
ψ̂
Bjℓ

1 − 2

1± s̃φ1
ψ
Bjℓ

1

∥

∥

∥
+ ‖βBjℓ

± ‖

≤ 2

1± φ̂1
‖ψ̂Bjℓ

1 −ψ
Bjℓ

1 ‖+2‖ψBjℓ

1 ‖
∣

∣

∣

1

1± φ̂1
− 1

1± s̃φ1

∣

∣

∣
+ ‖βBjℓ

± ‖

≤ 2
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Bjℓ

1 ‖+2‖ψBjℓ

1 ‖ |φ̂1 − s̃φ1|
(1± φ̂1)(1± s̃φ1)
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± ‖

So by Lemmas 12 and 18, it holds on the event Ejℓ ∩Ξn ∩Ωn

‖α̂Bjℓ

± − α
Bjℓ

± − β
Bjℓ

± ‖

≤ 4c0Γ
√

log(n)/n
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+

800max(1, g)
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2
3Ĩ2g
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± ‖.

From here, it is seen that an upper bound on the supremum of R5 is obtained by adding
the bounds obtained on R2 together with the bound on R4, eventually up to a universal
multiplicative constant.

A.5.9. Control of R6.

‖β̂Bjℓ

± −α
Bjℓ

± − β
Bjℓ

± ‖

≤ ‖β̂Bjℓ
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∥
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)∥

∥

∥

+
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≤ 3
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∥
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∥
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∥

but by Proposition 10 on the event Ωn we have
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∥

∥
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∥

∥
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Therefore on the event Ejℓ ∩Ξn ∩Ωn

‖β̂Bjℓ

± − α
Bjℓ

± − β
Bjℓ

± ‖. ‖ψBjℓ

1 ‖+ ‖ψ̂Bjℓ

1 ‖
1± s̃φ1

+
g

|m1|
c1Γ
√

log(n)/n+ c2ΓTn

≤ ‖ψBjℓ

1 ‖+ ‖ψ̂Bjℓ
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Deduce by Lemma 21 that

R6(θ). Γ2T 2
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̃n
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∑

ℓ

1‖βBjℓ
± ‖> 1

32
ΓTn

.

Therefore, R6(θ) admits the same upper bound as R3(θ), eventually up to a universal multi-
plicative factor.

A.5.10. Control of R7.
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From equation (24),
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̃n
∑

j=Jn

∑

ℓ

‖ψBjℓ

1 ‖21‖ψBjℓ
1 ‖≤ 3

2
Γ
√

log(n)/n

≤ 2

(1± s̃φ1)2

̃n
∑

j=Jn

min

(

9Γ2 log(n)

4n

2j

N
,
∑

ℓ

‖ψBjℓ

1 ‖2
)

.
1

(1± s̃φ1)2
Γ2 log(n)

n

̃n
∑

j=Jn

min

(

2j

N
, nR2 (1 + s̃φ1)

22−2js+ + (1− s̃φ1)
22−2js−

Γ2 log(n)

)

Then deduce from the series of estimates after (24) that

2

(1± s̃φ1)2

̃n
∑

j=Jn

∑

ℓ

‖ψBjℓ

1 ‖21‖ψBjℓ
1 ‖≤ 3

2
Γ
√

log(n)/n

.
R2

min(1, s+)

(1 + s̃φ1
1± s̃φ1

)2( Γ2

nR2(1 + s̃φ1)2

)2s+/(2s++1)

+
R2

min(1, s−)

(1− s̃φ1
1± s̃φ1

)2( Γ2

nR2(1− s̃φ1)2

)2s−/(2s−+1)
.
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Next, it has been already established in (25) that

̃n
∑

j=Jn

∑

ℓ

‖βBjℓ

± ‖21‖βBjℓ
± ‖≤32ΓTn

.
R2

min(1, s∓)

(1∓ s̃φ1
1± s̃φ1

)2/(2s∓+1)(Γ2T 2
n

R2N

)2s∓/(2s∓+1)
.

Consequently, when passing to the supremum, R7 will obey the same upper bound as R4,
eventually up to a universal multiplicative constant.

A.5.11. Control of R8. This has already been done in Section A.4.6. We recall the result:

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

R8(θ)≤
BR2

min(1, s±)

(τ2 log(n)

n

)2s±
.

A.6. Proof of Theorem 6. Recall Ṽ is the leading eigenvector of the empirical Gram
matrix G̃ and Vθ the leading eigenvector of the Gram matrix G normalized such that ‖Ṽ ‖=
‖Vθ‖ = 1. We use a Davis-Kahan argument to bound the norm ‖Ṽ − sgn(〈Ṽ , Vθ〉)Vθ‖. In
particular using the version of Davis-Kahan’s theorem given in the Corollary 1 of [20], we
know that

‖Ṽ − sgn(〈Ṽ , Vθ〉)Vθ‖ ≤
2
√
2‖G̃ − G‖op

|λ|
where λ is the unique non-zero eigenvalue of G, and ‖ · ‖op stands for the operator norm. It is
rapidly seen that

λ= r(φ)
∑

λ∈Λ(M)

〈ψ2, eλ〉2 = r(φ)

(

2J−1
∑

k=0

〈ψ2,ΦJk〉2 +
M
∑

j=J

2j−1
∑

k=0

〈ψ2,Ψjk〉2
)

.

We now bound ‖G̃ −G‖op. By definition of the operator norm and then by a duality argument
[here U denotes the unit ball of RΛ(M)]

‖G̃ − G‖op = sup
u∈U

‖G̃u−Gu‖

= sup
u∈U

sup
v∈U

vT (G̃ − G)u

= sup
u∈U

sup
v∈U

[(u+ v

2

)T
(G̃ − G)u+ v

2
−
(u− v

2

)T
(G̃ − G)u− v

2

]

≤ sup
u∈U

sup
v∈U

[

uT (G̃ − G)u− vT (G̃ − G)v
]

≤ 2 sup
u∈U

uT (G̃ − G)u.

Then, let N be a (1/8)-net over U in the euclidean norm, and let π : U →N denote the
map that projects elements of U onto their closest element in N . Then,

sup
u∈U

uT (G̃ − G)u= sup
u∈U

[

π(u)T (G̃ − G)π(u) + 2π(u)T (G̃ − G)(u− π(u))

+ (u− π(u))T (G̃ − G)(u− π(u))
]

≤max
u∈N

uT (G̃ − G)u+ 3

8
‖G̃ − G‖op
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and thus

‖G̃ − G‖op ≤ 8max
u∈N

uT (G̃ − G)u.

Next, we decompose G̃ − G =∆(1) +∆(2) +∆(3) +∆(4) with

∆
(1)
λλ′ :=

1

2

(

P̃
(1)
n (eλ ⊗ eλ′ + eλ′ ⊗ eλ)− Eθ(eλ ⊗ eλ′ + eλ′ ⊗ eλ)

)

∆
(2)
λλ′ :=−Eθ(eλ′)

(

P̃
(1)
n (eλ)− Eθ(eλ)

)

∆
(3)
λλ′ :=−Eθ(eλ)

(

P̃
(1)
n (eλ′)− Eθ(eλ′)

)

∆
(4)
λλ′ :=−

(

P̃
(1)
n (eλ)−Eθ(eλ)

)(

P̃
(1)
n (eλ′)−Eθ(eλ′)

)

Using Lemma 7 applied to the function h(y1, y2) = 1
2

∑

λ,λ′∈Λ(M) uλuλ′

(

eλ(y1)eλ′(y2) +

eλ′(y1)eλ(y2)
)

we find that

Pθ

(

max
u∈N

|uT∆(1)u| ≥ x
)

≤ |N | max
u∈|N |

Pθ

(

|uT∆(1)u| ≥ x
)

≤ 242
M

exp

(

− Cnγ∗x2

L2 +2Mx

)

because N can always be chosen to have cardinality no more than 242
M

(e.g. [12, Theorem
4.3.34]), because Eθ(h2)≤ L2‖h‖2L2 = L2 for all θ ∈Σγ∗(L) by Lemma 5, and because

‖h‖∞ ≤ sup
y1,y2

∣

∣

∣

∑

λ∈Λ(M)

uλeλ(y1)
∑

λ′∈Λ(M)

uλ′eλ′(y2)
∣

∣

∣

≤
(

sup
y

∑

λ∈Λ(M)

∣

∣eλ(y)
∣

∣

)2

≤ c2M

for a constant c > 0 depending only on the wavelet basis by a standard localization properties
of wavelets [12, Theorem 4.2.10 or Definition 4.2.14]. Next, note that

uT∆(2)u= uT∆(3)u=−Eθ

(

∑

λ∈Λ(M)

uλeλ

)(

∑

λ∈Λ(M)

uλ

(

P̃
(1)
n (eλ)− Eθ(eλ)

)

)

and,

uT∆(4)u=−
(

∑

λ∈Λ(M)

uλ

(

P̃
(1)
n (eλ)− Eθ(eλ)

)

)2

.

Again using Lemma 7, this time applied to the function h(y) =
∑

λ∈Λ(M) uλeλ(y) which

satisfies Eθ(h
2) ≤ L for all θ ∈ Σγ∗(L) and ‖h‖∞ ≤ c2M/2 for a universal constant c > 0,

we deduce that

Pθ

(

max
u∈N

∣

∣

∣

∑

λ∈Λ(M)

uλ

(

P̃
(1)
n (eλ)−Eθ(eλ)

)∣

∣

∣
≥ x

)

≤ 242
M

exp

(

− Cnγ∗x2

L+2M/2x

)

.
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Since |Eθh| ≤ [Eθh
2]1/2 ≤

√
L, using that L,2M/2 ≥ 1, we deduce that

Pθ

(

1
8‖G̃ − G‖op ≥ (2

√
L+1)x+ x2

)

≤ 2 · 242M

exp

(

− Cnγ∗x2

L2 +2Mx

)

for a constant C > 0. This entails that

Pθ

(

‖Ṽ − sgn(〈Ṽ , Vθ〉)Vθ‖ ≥
16
√
2
(

(2
√
L+1)x+ x2

)

|r(φ)|∑λ∈Λ(M)〈ψ2, eλ〉2

)

≤ 2 · 242M

exp

(

− Cnγ∗x2

L2 +2Mx

)

Let us remark that the wavelets coefficients of ψ2 are those of (f0− f1)/φ3. Hence, when-
ever θ ∈Θs0,s1

δ,ǫ,ζ (R), from the definition of Θs0,s1
δ,ǫ,ζ (R) and of the Besov norm in equation (10)

it must be that

(26) sup
j≥J

22js∗
2j−1
∑

k=0

|〈ψ2,Ψjk〉|2 ≤
4R2

φ23
,

Consequently since ‖ψ2‖L2 = 1:

1 =

2J−1
∑

k=0

〈ψ2,ΦJk〉2 +
∑

j≥J

2j−1
∑

k=0

〈ψ2,Ψjk〉2

≤
2J−1
∑

k=0

〈ψ2,ΦJk〉2 +
M
∑

j=J

2j−1
∑

k=0

〈ψ2,Ψjk〉2 +
4R2

φ23

∑

j>M

2−2js∗

=
∑

λ∈Λ(M)

〈ψ2, eλ〉2 +
4R2

φ23

2−2Ms∗

22s∗ − 1
.

and hence
∑

λ∈Λ(M)〈ψ2, eλ〉2 ≥ 3/4 under the assumptions of the theorem. Observe that

|r(φ)| ≤ φ23/4≤ L/2 by Lemmas 6 and 3. Then taking x= κ|r(φ)|/
√
L for a small enough

constant κ, we find that for some C > 0

Pθ

(

‖Ṽ − sgn(〈Ṽ , Vθ〉)Vθ‖ ≥
1

5

)

≤ 2 · 242M

exp

(

− Cnγ∗r(φ)2

L3 +2M
√
L|r(φ)|

)

.

Next, let define t :=
∑

λ∈Λ(M) Ṽλeλ and f(x) := max(−τ,min(τ, x)). Observe that

‖ψ2‖∞ =
‖f0 − f1‖∞

φ3
≤ L

ζ

since 0 ≤ f0, f1 ≤ L and φ3 ≥ ζ when θ ∈ Θs0,s1
δ,ǫ,ζ (R) ∩ Σγ∗(L). Then by assumption

|ψ2(x)| ≤ τ for all x, and thus ψ2(x) = f(ψ2(x)). Also f is 1-Lipschitz, and thus

‖f ◦ t− s̃ψ2‖L2 = ‖f ◦ t− f ◦ (s̃ψ2)‖L2 ≤ ‖t− s̃ψ2‖L2 = ‖Ṽ − sgn
(

〈Ṽ , Vθ〉
)

Vθ‖.

Since ψ̃2 = f ◦ t/‖f ◦ t‖L2 , we use that for any norm ‖a/‖a‖ − b/‖b‖‖ ≤ 2‖a − b‖/(1 −
‖a− b‖) if ‖b‖= 1, ‖a− b‖< 1 to deduce that

‖ψ̃2 − s̃ψ2‖L2 ≤ 2‖Ṽ − sgn
(

〈Ṽ , Vθ〉
)

Vθ‖
1−‖Ṽ − sgn

(

〈Ṽ , Vθ〉
)

Vθ‖
.

The conclusion follows since ‖ψ̃2 − s̃ψ2‖2L2 = 2− 2|〈ψ̃2, ψ2〉|, and hence |〈ψ̃2, ψ2〉| ≥ 1−
‖ψ̃2−s̃ψ2‖2

L2

2 .
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A.7. Proof of Corollary 1. In the considered regime nδ2ǫ4ζ6 ≥ n1−2a−4b−6c while
L3+max(τ,

√
L)3δǫ2ζ3 ≤L3+max(τ,

√
L)3 since δǫ2ζ3 ≤ 1. Hence, the exponential term

in the bound of Theorem 3 is smaller than exp(−Kn1−2a−4b−6c) for some K > 0 and is
negligible.

We claim that the term 1
δ2ǫ2ζ2

log(n)
n never dominates. Indeed, for this term to dominate, it is

necessary that ǫ2ζ2 ≫ 1
log(n) to dominate the term 1

δ2ǫ4ζ4n and that δ2ǫ2ζ2n=O(log(n)2si+1)

to dominate the term (δ2ǫ2ζ2n)−2si/(2si+1), ie. ǫ2ζ2 =O( log(n)
2si+1

nδ2 ) =O( log(n)
2si+1

n1−2a ). Since
1− 2a > 0, the two requirements cannot be fulfilled simultaneously for n large.

Finally, the term 1
δ2ǫ4ζ6n2 is clearly dominated by the term 1

δ2ǫ4ζ6n and the remaining term

is clearly dominated by the term (δ2ǫ2ζ2n)−2si/(2si+1).

A.8. Proof of Corollary 2. As for the proof of Corollary 1 the exponential term in
the bound of Theorem 5 cannot dominate in the considered regime. It has been shown
in Corollary 1 that the term log(n)

δ2ǫ2ζ2n cannot simultaneously dominate the terms 1
δ2ǫ4ζ4n

and δ−2(nǫ2ζ2)−2s1/(2s1+1) [observe that δ−2(nǫ2ζ2)−2s1/(2s1+1) ≥ (nδ2ǫ2ζ2)−2s1/(2s1+1)].
Also using the arguments in the proof of Corollary 1 it is trivial that the terms 1

δ2ǫ4ζ4n2 and

(log(n)/n)2s0 cannot dominate.
To finish the proof, it is enough to show that the term δ−2(nǫ2ζ2)−2s1/(2s1+1) is domi-

nated by the term (nδ2)−2s0/(2s0+1). But in the considered regime δ−2(nǫ2ζ2)−2s1/(2s1+1) =
n−2s1/(2s1+1)+o(1) and (nδ2)−2s0/(2s0+1) = n−2s0/(2s0+1)+o(1). The conclusion follows since
s1 > s0 by assumption.

APPENDIX B: PROOFS FOR THE LOWER BOUNDS

For proving our lower bounds, we shall follow the usual path, in which we need at some
point upper bounds for distances between joint distributions P (n)

θ for different values of θ.
We shall use the same trick as the one used in [2], that is an upper bound on the Kullback-
Leibler divergence using a pseudo-distance ρ between parameters, see the end of Section III
in [2] for heuristics explaining the importance of ρ interpreted as a fundamental statistical
distance in HMM learning.

The following result is Proposition 2 in [2], for which a close look at the proof shows that
it still holds with emission densities on [0,1] instead of probability mass functions.

PROPOSITION 12. Assume there exists c > 0 such that uniformly on [0,1] it holds

min(f0, f1, f̃0, f̃1)≥ c . Then

(27) K(P
(n)
θ , P

(n)

θ̃
)≤Cnρ(φ(θ), ψ(θ);φ(θ̃), ψ(θ̃))2,

where, as in [2], we have defined

(28) ρ(φ,ψ; φ̃, ψ̃) = max
{

|r(φ)− r(φ̃)|, |φ2r(φ)− φ̃2r(φ̃)|,
|φ1φ2φ3r(φ)− sgn

(

〈ψ2, ψ̃2〉
)

φ̃1φ̃2φ̃3r(φ̃)|,
‖ψ1 − ψ̃1‖L2 ,max(|r(φ)|, |r(φ̃)|)‖ψ2 − sgn

(

〈ψ2, ψ̃2〉
)

ψ̃2‖L2

}

.

[Recall r(φ) = (1/4)(1− φ21)φ2φ
2
3.]
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B.1. Proof of Theorem 2. To prove Theorem 2, we shall use a standard two-points
argument using Le Cam’s method ([13], see also [19] for a review of lower bound ideas): if
θ and θ̃ in Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗(L) are such that |p− p̃|2 ≥Rn and K(P
(n)
θ , P

(n)

θ̃
)≤ α< 1, then

inf
θ̂

sup
θ∈Θs0,s1

δ,ǫ,ζ (R)∩Σγ∗ (L)

Eθ

(

|p̂− p|2
)

≥ Rn
4

(

1−√
α
)

.

We follow the method in the multinomial case (see [2]) used to choose the two points in
proving Theorems 1 and 3 therein, except that rather than defining ψ according to Lemma
3 therein we choose ψ1 = 1 and ψ2(x) =

√
3(2x− 1). This choice of ψ̃ = ψ leads to lower

bounded f0 and f1 (so that we can apply Proposition 12) when ‖f0 − f1‖L2 = ζ ≤ 1/(4
√
3),

‖fi‖∞ ≤ 5/8 and ‖fi‖Bsi
2,∞

≤ 5/4 + 1/(8
√
3), i = 0,1, as a consequence of the inversion

formulae (Lemma 1). Under the assumption that for a suitable ǫ0 > 0 we have ζ ≤ 1/(4
√
3),

γ∗ ≤ 1/3, ǫ≤ ǫ0, δ ≤ 1/6, the proof of the lower bounds for φ in Theorem 3 and the lower
bound for p in Theorem 1 in [2] goes through to get the result. [Note that the bound obtained
for φ3 using this method is not sharp, but is also not of interest since below we lower bound
estimation rates for f0, f1 directly without passing via φ3.]

B.2. Proof of Theorem 4. For the parametric term in the lower bound, we are again
able to copy the proof of [2] Theorems 1 and 3 up to the choice of ψ. Under the assumption
that for a suitable ǫ0 > 0 we have ζ ≤ 1/(4

√
3), γ∗ ≤ 1/3, ǫ≤ ǫ0, δ ≤ 1/6, as with proving

Theorem 2 we choose ψ1 = 1, ψ2(x) =
√
3(2x− 1), and the proof of the lower bound for f0

in [2, Theorem 1] goes through.
We now prove the lower bound given in the second part of the theorem

Rsmooth = (nδ2ǫ2ζ2)−s0/(2s0+1)

We proceed via a usual reduction to multiple testing, see for instance [18]. For a suitable
c,α, it suffices to construct function f0,m ∈Hs0(R), f1,m ∈Hs1(R), 0≤m≤M = ⌈2c2j⌉,
for some j, such that

(29) K
(

P (n)
m , P

(n)
0

)

≤ cα2j , ‖f0,m − f0,m′‖L2 ≥ cRsmooth,

where P (n)
m denotes the law of (Y1, . . . , Yn) under parameter θm = (pm, qm, f0,m, f1,m) (for

suitable choices of the parameters pm, qm). Indeed, given such functions, we note that

1

M logM

M
∑

m=1

K
(

P (n)
m , P

(n)
0

)

≤ α,

so that applying [12, Theorem 6.3.2] yields the claim (for example α = 1/16 suffices). We
closely follow the proof of [12, Theorem 6.3.9] to construct f0,m, and use ideas inspired by
[2] to choose the remaining parameters of θm.

Define

f0,0 = 1, f1,0 = f0,0 + ζψ2,0,

ψ2,0(x) =
√
3(2x− 1).

Note that f0,0, f1,0 ≥ 3/4 pointwise (recall we assumed ζ ≤ (4
√
3)−1) and hence any small

perturbations of these will remain bounded away from zero.
We choose perturbations f0,m of f0 to satisfy the second condition of equation (29), and

we choose the remaining parameters f1,m, pm, qm to ensure the Kullback–Leibler condition
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holds. Proposition 12, which upper bounds the KL divergence by a “ distance” ρ will be of
help for the latter.

Define the parameters θm = (pm, qm, f0,m, f1,m) as follows: First, choose φ1,m = −1 +
cδ and φ2,m = ǫ for all m ≥ 0 and define pm, qm according to the inversion formulae in
Lemma 1. Next, for m≥ 1, for gm to be chosen define

f0,m = f0,0 + gm, f1,m = f1,0 −
1 + φ1
1− φ1

gm.

Writing ψ1,m, ψ2,m, φ3,m for the corresponding alternative parametrisation as in Section 2.1,
the above choice ensures that ψ1,m = ψ1,0 regardless of the choice of gm. We will choose
gm (depending on n) such that ‖ψ2,m − ψ2,0‖L2 → 0 (uniformly in m) as n→∞ so that in
particular it is less than 2 eventually, hence

〈ψ2,m, ψ2,0〉= 1− 1
2‖ψ2,m −ψ2,0‖2L2 ≥ 0.

Under the condition that φ3,m ≍ ζ , one sees that

ρ
(

(φ,ψ)(θm); (φ,ψ)(θ0))
)

=Cmax
{

δǫζ|φ3,m − φ3,0|, δǫζ2‖ψ2,m −ψ2,0‖L2

}

.

We calculate f0,m − f1,m = f0,0 − f1,0 +
2

2−cδgm and hence, using that ‖f0,0 − f1,0‖L2 =
φ3,0 = ζ ,

|φ3,m − φ3,0|= ‖f0,m − f1,m‖L2 − ‖f0,0 − f1,0‖L2 ≤ 2
2−cδ‖gm‖L2 ,

and

‖ψ2,m −ψ2,0‖L2 =
∥

∥

∥

f0,m − f1,m
φ3,m

− f0,0 − f1,0
φ3,0

∥

∥

∥

L2

≤ |φ3,0 − φ3,m|
φ3,m

+
2‖gm‖L2

2− cδφ3,m
. ζ−1‖gm‖L2 ,

yielding

(30) ρ
(

(φ,ψ)(θm); (φ,ψ)(θ0))
)

≤C ′δǫζ‖gm‖L2 .

[provided cδ ≤ 1, say, and the condition φ3,m ≍ ζ reduces to ‖gm‖L2 ≤ ζ/3, say.].
Now we verify that there are M valid choices of gm such that f0,m and f0,m′ are suitably

separated in L2 distance but suitably close in Kullback–Leibler divergence as in (29), and
f0,m and f1,m are in the appropriate Sobolev balls. Fix S ≥ s0, and let ϕjk, k ≤ 2j be a
collection of wavelet functions supported in the interior of [0,1] given as scaled translates
ϕjk = 2j/2ϕ(2j(·)− k) of an S-regular Daubechies wavelet function ϕ supported in [1,2N ]
for some N =N(S). We may choose a collection of c02j of these functions whose supports
are pairwise disjoint for some c0 = c0(S) > 0; we denote these {ϕjp : 1 ≤ p ≤ c02

j} in a
slight abuse of notation. By the Varsharmov–Gilbert bound [12, Example 3.1.4] there exist
c1, c2 > 0 such that we may choose a set M= {βm,· ∈ {−1,1}c02j

:m≤ 2c12
j} for which

∑

p

|βmp − βm′p|2 ≥ c22
j , ∀p′ 6= p.

Set gm = α1
∑

p βm,pϕjp for α1 to be chosen and observe that

‖f0,m‖Bs0
2,∞

≤ 1 + ‖gm‖Bs0
2,∞

= 1+α12
js0
(

∑

p

β2m,p
)1/2

= 1+ c0α12
j(s0+1/2),

‖gm‖2L2 = α2
1

∑

p

β2m,p‖ϕjp‖2L2 = c0α
2
12
j ,

‖f0,m − f0,m′‖2 = ‖gm − gm′‖2L2 = α2
1

∑

p

|βm,p − βm,p′ |2 ≥ c2α
2
12
j .
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The first line ensures that ‖f0,m‖Bs0
2,∞

≤ R if α2
1 ≍ 2−j(2s0+1); note also that consequently

‖f1,m‖Bs1
2,∞

≤ 1 + δ‖gm‖Bs1
2,∞

. 1 + δ2j[s1−s0]. For this choice of α1, the second line, in

conjunction with (30) and Proposition 12 yields that K(P
(n)
m , P

(n)
0 ) . nδ2ǫ2ζ22−2js0 , so

that choosing j such that 2j(2s0+1) ≍ nδ2ǫ2ζ2 gives the required bound on Kullback–Leibler
divergences in (29). Note also that ‖g‖∞ ≍ α12

j/2 so that for this choice of j we have
f0,m ≥ 1/2, f1,m ≥ 1/2 on [0,1] for n large, hence Proposition 12 indeed applies, and as
soon as (nδ2ǫ2ζ2)−s0/(1+2s0) . ζ we get as needed φ3,m ≍ ζ . Also, f1,m is in the appropri-
ate Sobolev ball if δ2s1+1(nǫ2ζ2)s1−s0 . 1. Finally, for these choices of α1 and j, the third
line yields ‖f0,m − f0,m′‖L2 & (nδ2ǫ2ζ2)−s0/(2s0+1).

We finally prove the general lower bound

Rrough = (nδ2)−s0/(2s0+1),

again using a reduction to multiple testing. As before choose φ1,m =−1 + cδ,φ2,m = ǫ, and
choose f0,0, f1,0 as in proving Rsmooth. Now set

f0,m = f0,0 + gm, f1,m = f1,0.

We now have f0,m − f1,m = f0,0 − f1,0 + gm which is of the same form as before up to
the coefficient 2/(2 − cδ) ∈ [1,2] which no longer appears. The calculations for ρ then go
through fundamentally unchanged except that we no longer have ψ1,m = ψ1,0, hence

ρ
(

(φ,ψ)(θm); (φ,ψ)(θ0)
)

≤C ′max
(

δǫζ‖gm‖L2 ,‖ψ1,m −ψ1,0‖L2

)

.

We calculate

ψ1,m − ψ1,0 =
1
2(1 + φ1,m)f0,m + 1

2(1− φ1,m)f1,m = 1
2cδgm,

hence calculating the upper bound C ′′δ‖gm‖L2 for ρ.
Choosing M = ⌊2c2j⌋ functions gm as before, we again choose the factor α1 proportional

2−j(2s0+1) to ensure ‖f0,m‖Bs0
2,∞

≤ R; note now that ‖f1,m‖Bs1
2,∞

= ‖f1,0‖Bs1
2,∞

for all m so
that these are suitably bounded.

Where before we chose 2j(2s0+1) ≍ nδ2ǫ2ζ2 to obtain the required bound on the KL di-
vergences in equation (29), we now must choose 2j(2s0+1) ≍ nδ2. This leads to ‖f0,m −
f0,m′‖L2 & (nδ2)−s0/(2s0+1) so that equation (29) holds with Rrough = (nδ2)−s0/(2s0+1) in
place of Rsmooth. This yields the claim.
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