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THE LIKELIHOOD RATIO TEST FOR GENERAL MIXTURE MODELS WITH
OR WITHOUT STRUCTURAL PARAMETER

Jean-Marc Azäıs1, Elisabeth Gassiat2 and Cécile Mercadier3

Abstract. This paper deals with the likelihood ratio test (LRT) for testing hypotheses on the mixing
measure in mixture models with or without structural parameter. The main result gives the asymptotic
distribution of the LRT statistics under some conditions that are proved to be almost necessary. A
detailed solution is given for two testing problems: the test of a single distribution against any mixture,
with application to Gaussian, Poisson and binomial distributions; the test of the number of populations
in a finite mixture with or without structural parameter.

Résumé. Nous étudions le test du rapport de vraisemblance (TRV) pour des hypothèses sur la mesure
mélangeante dans un mélange en présence éventuelle d’un paramètre structurel, et ce dans toutes
les situations possibles. Le résultat principal donne la distribution asymptotique du TRV sous des
hypothèses qui ne sont pas loin d’être nécessaires. Nous donnons une solution détaillée pour le test d’une
simple distribution contre un mélange avec application aux lois Gaussiennes, Poisson et binomiales,
ainsi que pour le test du nombre de populations dans un mélange fini avec un paramètre structurel.
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1. Introduction

1.1. Motivations and aims

Latent variables are used in location-scale problems, in various regression settings with covariate measurement
error, in biased sampling models or for modelling some censoring mechanisms. We refer to [Bickel et al., 1993]
for the description of several latent variable models. An other example is that of mixtures, see [Lindsay,
1995], [McLachlan and Peel, 2000], [Titterington et al., 1985]. One observes a sample X1, . . . , Xn, that is
independent and identically distributed random variables with a density of the type

pγ,η(x) =
∫

pγ(x|z)dη(z). (1)
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Here x → pγ(x|z) is a family of probability densities with respect to some measure µ on a measurable space
(X ,A), γ is called the structural parameter. The latent variable Z has distribution η on a measurable space
(Z, C), η is called the mixing distribution. In case η has q supporting points z1, . . . , zq with weights π1, . . . , πq

and if in addition z and γ vary in finite dimension spaces, (1) reduces to a parametric family

pθ(x) =
q∑

i=1

πipγ(x|zi), (2)

in which the parameter is
θ = (γ, π1, . . . , πq, z1, . . . , zq) . (3)

When all supporting points zi are distinct and all weights πi are non null, q is the number of populations in the
mixture.

This paper focuses on testing hypotheses on the mixing distribution using the likelihood ratio test (LRT for
short). Let G1 ⊂ G2 be two sets of probability distributions on Z, and consider the problem of testing

H0 : “η ∈ G1” against H1 : “η ∈ G2 \ G1”. (4)

In case G1 is the set of Dirac masses and G2 the set of all probability distributions on Z, the problem is that of
testing whether there is a single population against a mixture of any kind.
In case Gi is the set of finite measures with qi supporting points, q1 < q2, the problem is that of testing whether
the number of populations is less or equal to q1 or at least q1 + 1 but not more than q2. When q1 = 1, the
question is that of “homogeneity” against “heterogeneity”.
To set the threshold in the LRT at a prescribed level, one has to know the distribution of the likelihood ratio
statistic when the true mixing distribution η0 lies in G1.
In classical parametric statistics, twice the log-likelihood ratio has a chi-square asymptotic distribution or a
convex combination of chi-square distributions. Such a result does not apply here, due to lack of identifiabil-
ity of the parameters in G2 and degeneracy of the Fisher information of the model. The challenging question
of the asymptotic distribution of the likelihood ratio has received much interest in the past decade, after
that [Ghosh and Sen, 1985] raised the question, see [Chernoff and Lander, 1995], [Dacunha-Castelle and Gas-
siat, 1997], [Dacunha-Castelle and Gassiat, 1999], [Lemdani and Pons, 1997], [Lemdani and Pons, 1999], [Chen
and Chen, 2001], [Garel, 2001], [Chen and Chen, 2003], [Chambaz, 2006], [Chen et al, 2004], [Garel, 2005], [Lo,
2005]. Chen et al. (followed by Qin et al.) proposed a simple and clever idea to avoid the degeneracy problems:
they add a penalization to the log-likelihood with a factor increasing to infinity as the parameters tend to values
where degeneracy occurs. They consequently obtain convex combination of chi-square for the asymptotic dis-
tribution of the modified testing statistic, see [Chen et al, 2001], [Chen and Kalbfleisch, 2005], [Qin and Smith,
2004], [Qin and Smith, 2006].

The aim of the current paper is to give a detailed general solution to the asymptotic distribution of the LRT
statistic for the testing problem (4). One of the author proved a general result for likelihood ratio statistics
under weak assumptions, see Theorem 3.1 in [Gassiat, 2002]. Some applications to mixtures were developed in
Section 2 of [Azais et al., 2006]. Here, we solve the precise form of the asymptotic distribution for the previous
two problems: testing a single population against any mixture, and testing the number of components in a
mixture with or without structural parameter (with the above notations, it means that γ is unknown). This
precise form allows to construct numerical tables by simulation or by Gaussian calculation [Mercadier, 2005].

1.2. Intuition

In the parametric case, likelihood procedures for estimating and testing parameters are well understood.
Under identifiability and regularity conditions, the maximum likelihood estimator is consistent. Thus it can be
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expanded around the true value of the parameter so that it is seen that this difference has asymptotic Gaussian
behaviour, and the log-likelihood ratio statistic has asymptotic chi-square behaviour. This comes from two-
term Taylor expansion in the classical Wald’s argument, and from more intricate arguments in Le Cam’s theory,
see [van der Vaart, 1998]. In the semi-parametric or non-parametric situation, such a theory does not hold in
full generality, [Murphy and van der Vaart, 1997]. One may try to use one dimensional sub-models to obtain
the result as follows. Let (pt)t≥0 be a sub-model of probability densities with respect to some measure µ such
that p0 is the true density of the observations, and such that the parameter t is identifiable along the sub-model:
pt = p0 if and only if t = 0. Under weak integrability conditions, the maximum likelihood estimator (m.l.e.) t̂

is consistent: t̂ tends to 0 in probability.
Assume moreover that the sub-model is differentiable in quadratic mean, with score function g in the sense of
(10) below . Then the score satisfies

∫
gp0dµ = 0, the Fisher information of the sub-model exists and its value

is I(g) =
∫

g2p0dµ. Under regularity assumptions, it holds that

√
n t̂ = I(g)−1

(
1√
n

n∑

i=1

g(Xi)

)
1Pn

i=1 g(Xi)≥0 + oP(1)

where oP(1) is a random variable tending to 0 in probability as the number n of observations tends to infinity.
Moreover, letting `n(t) =

∑n
i=1 log pt(Xi), it holds that

sup
t≥0

`n(t)− `n(0) =
1

2I(g)

(
1√
n

n∑

i=1

g(Xi)

)2

1Pn
i=1 g(Xi)≥0 + oP(1).

If now {pθ, θ ∈ Θ} is a family of probability densities, and S a set of scores obtained using all possible one-
dimensional sub models (pθt)t≥0, then one may think that, if S is rich enough, and under Donsker-like conditions

sup
θ∈Θ

`n(θ)− `n(θ0) =
1
2

sup
g∈S


 1

I(g)

(
1√
n

n∑

i=1

g(Xi)

)2

1Pn
i=1 g(Xi)≥0


 + oP(1), (5)

where now `n(θ) =
∑n

i=1 log pθ(Xi) and pθ0 is the density of the observations. Observe that I(g) is the square
norm of g in L2(p0µ), so that one may rewrite (5) as

sup
θ∈Θ

`n(θ)− `n(θ0) =
1
2

sup
d∈D




(
1√
n

n∑

i=1

d(Xi)

)2

1Pn
i=1 d(Xi)≥0


 + oP(1), (6)

where D is the set of normalized scores: D = {g/‖g‖2, g ∈ S}, ‖ · ‖2 being the norm in L2(p0µ).
In the regular parametric identifiable situation, where Θ is a subset of a k-dimensional Euclidean space, the
largest set of scores S is

S =
{
〈U, ˙̀

θ0〉, U ∈ U
}

where ˙̀
θ0 is the score function at θ0, 〈·, ·〉 denotes usual scalar product, U is the full Euclidean space in case θ0

is in the interior of Θ, and only a sub-cone of it in case θ0 is on the boundary of Θ. The supremum over D is
easily computed and gives the asymptotic chi-square distribution in case θ0 is in the interior of Θ, or convex
combination of chi-square distribution if θ0 is on the boundary and Θ is polyhedral.

Consider now a non-identifiable situation with model (1) and the testing problem (4). Let Gi be the set
of finite measures with qi supporting points, q2 = q1 + q, q ≥ 1. Define Θ1 and Θ2 the associated sets of



4 TITLE WILL BE SET BY THE PUBLISHER

parameters, and LRT statistic

Λn = 2
(

sup
θ∈Θ2

`n(θ)− sup
θ∈Θ1

`n(θ)
)

. (7)

Assume that the true density of the observations has finite mixing distribution with q1 populations, and parame-
ter θ0 = (γ0, π0

1 , . . . , π0
q1

, z0
1 , . . . , z0

q1
). Let ˙̀

z be the vector score for the model (pγ0(·|z))z at point z, ṁ0 be the
vector score for the model (

∑q1
i=1 π0

i pγ(·|z0
i ))γ at point γ0, and let ˙̀

0 be the vector obtained by concatenation

of ˙̀
z0
1

pγ0 (·|z0
1)

pθ0 (·) , . . . , ˙̀
z0

q1

pγ0 (·|z0
q1

)

pθ0 (·) and ṁ0. Then it will be proved later on that scores along one dimensional
sub-models for η ∈ G2 are of form

〈U, ˙̀
0(·)〉+

∑q1
i=1 αipγ0(·|z0

i ) +
∑q

i=1 ρipγ0(·|zi)
pθ0(·)

,

where: U is any vector (with the same dimension as ˙̀
0), α1, . . . , αq1 are real numbers, ρ1, . . . .ρq are non negative

real numbers such that
∑q1

i=1 αi +
∑q

i=1 ρi = 0, and z1, . . . , zq are points in Z. In the same way, scores along
one dimensional sub-models for η ∈ G1 are of form

〈U, ˙̀
0(·)〉+

∑q1
i=1 αipγ0(·|z0

i )
pθ0(·)

,

where: U is any vector (with the same dimension as ˙̀
0), and α1, . . . ,αp are real numbers such that

∑q1
i=1 αi = 0.

Define (W (z))z as the centered Gaussian process with covariance function

Γ(z, z′) =
∫

pγ0(x|z)pγ0(x|z′)
pθ0(x)

dµ(x)− 1.

Define V as the centered Gaussian vector with variance Σ, the variance of ˙̀
0(X1), and covariance with

W (z) given by C(z) =
∫

pγ0(x|z) ˙̀
0(x)dµ(x). Denote B(U,α,ρ, z) the variance of 〈U, V 〉 +

∑q1
i=1 αiW (z0

i ) +∑q
i=1 ρiW (zi) (which is a quadratic form in U , (αi), (ρi)). Then if it is possible to apply (6), Λn converges in

distribution to the random variable Λ:

Λ = sup
z1,...,zq

[
sup

U,α,ρ≥0,
P

i ρi+
P

i αi=0,B(U,α,ρ,z)=1

(
〈U, V 〉+

q1∑

i=1

αiW (z0
i ) +

q∑

i=1

ρiW (zi)

)]2

−
[

sup
U,α,

P
i αi=0,B(U,α,0,·)=1

(
〈U, V 〉+

q1∑

i=1

αiW (z0
i )

)]2

. (8)

Indeed, the supremum of the random variables involved in (6) are in this case easily seen to be non negative.
In (8) or equivalently in (40) below, derivation of the suprema inside the brackets involves pure algebraic
computations. This will be done in a further section after proving that this intuitive reasoning is indeed true.
One may just notice, for the moment, that since the Fisher informations I(g) may tend to 0, for (6) to be true,
it is needed that the closure of D in L2(pθ0µ) be Donsker, that is the centered process ( 1√

n

∑n
i=1 d(Xi))d∈D

converges uniformly to a Gaussian process, see [van der Vaart and Wellner, 1996] for instance for more about
uniform convergence of empirical measures.

1.3. Related questions

Power is an important issue in the validation of a testing procedure. Our methods allow to identify contiguous
alternatives and their associated asymptotic power. We shall not insist on this question in this work since, as
usual for LRT, there is no general optimality conclusion.
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For normal mixtures, [Hartigan, 1985] noted first the unboundness of the LRT when the parameters are un-
bounded. [Gassiat, Keribin, 2000] proved also this divergence in a mixture with Markov regime, [Ciuperca,
2002] in the contamination model of exponential densities and [Liu et al., 2003] for testing homogeneity against
gamma mixture alternatives. [Liu and Shao, 2004] obtained the asymptotic distribution of a normalization of
the LRT. [Azais et al., 2006] extended this result to contiguous alternatives and characterized the local power
as trivial in several cases. This loss of power is also established in [Hall and Stewart, 2005] for Gaussian models
under stronger hypotheses that allow the determination of the separation speed.
The estimation of the number of components in a mixture using likelihood technics is closely related to the LRT.
One may use penalized likelihood and estimate the number of components by maximization. The main problem
is to calibrate the penalization factor. In case the possible number of populations is a priori bounded, one
obtains easily a consistent estimator as soon as it is known that the likelihood statistic remains stochastically
bounded, see [Keribin, 2000], [Gassiat, 2002] Section 2, see also [James et al., 2001], [Henna, 2005] and [Cham-
baz, Garivier, Gassiat 2005] without prior bounds.

1.4. Roadmap

Section 2 gives a rigorous form of the heuristics explained in 1.2 leading to the asymptotic distribution in
general testing problems. The main theorem gives sufficient conditions under which the result holds, and it is
proved that these assumptions are not far to be necessary. The main part of the section may be viewed as a
rewriting under weaker assumptions of Section 3 of [Gassiat, 2002].
Section 3 develops a particular non parametric testing procedure: testing a single population against any
mixture. The latent variable is real valued and the structural parameter is known. In this context, the set of
scores is exhibited. The asymptotic distribution of the LRT statistic is stated for mixtures of Gaussian, Poisson
and binomial distributions. These results are completely new.
Section 4 derives our initial main goal: the application of Theorem 1 for testing the number of components in
a mixture with possible unknown structural parameter in all possible situations. Indeed, in the literature one
may find many papers that give partial results on that question. Section 4 gives weak simple assumptions to
obtain the asymptotic distribution of the LRT statistic in all cases, and a computation of its precise form. The
most popular example, that of Gaussian mixtures, is then handled.
A last section is devoted to technical proofs that are not essential at first reading.

2. Asymptotics for the LRT statistic

Let F be a set of probability densities with respect to the measure µ on the measurable space (X ,A).
Let the observations X1, . . . , Xn have density p0 in F , and denote by p̂ the m.l.e., that is an approximate
maximizer of the log-likelihood `n(p) =

∑n
i=1 log p(Xi): for all p in F , `n(p̂) ≥ `n(p)− oP(1), so that it satisfies

`n(p̂)− `n(p0) = supp∈F `n(p)− `n(p0) + oP(1).
Note H2(p1, p2) the square Hellinger distance between densities p1 and p2: H2(p1, p2) =

∫
(
√

p1 − √
p2)2dµ,

and K(p1, p2) the Kullback-Leibler divergence K(p1, p2) =
∫

p1 log(p1/p2)dµ in [0, +∞]. Recall the following
inequality:

H2 (p1, p2) ≤ K (p1, p2) . (9)

As usual, consistency of the m.l.e. and asymptotic distribution (of the m.l.e. or of the LRT statistic) require
assumptions of different kinds. Introduce

Assumption 1. The set {log p, p ∈ F} is Glivenko-Cantelli in p0µ probability.

Then, if Assumption 1 holds, K(p0, p̂) = oP(1), and by (9) also H2(p0, p̂) = oP(1).
In order to derive the asymptotic distribution of the LRT statistic `n(p̂)− `n(p0), we introduce one dimensional
sub-models in which differentiability in quadratic mean holds with scores in some subset S of L2(p0µ).
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Assumption 2. The set S satisfies Assumption 2 if for any g ∈ S, there is a sub-model (pt,g)t≥0 in F such
that ∫ (√

pt,g −√p0 − t

2
g
√

p0

)2

dµ = o(t2), (10)

and the Fisher information in the sub-model is non null: I(g) =
∫

g2p0dµ 6= 0.

Let for any g ∈ S the m.l.e. in the sub-model (pt,g)t≥0 be t̂g. Since for every g ∈ S,

`n(p̂)− `n(p0) ≥ `n(pbtg,g)− `n(p0) + oP(1)

one may use classical parametric results to obtain:

Proposition 1. Suppose that Assumptions 1 and 2 hold. Then for any finite subset I of S:

sup
p∈F

`n(p)− `n(p0) ≥ 1
2

sup
g∈I


 1

I(g)

(
1√
n

n∑

i=1

g(Xi)

)2

1Pn
i=1 g(Xi)≥0


 + oP(1).

Define now the set

D̃ =

{
g√
I(g)

, g ∈ S
}

.

Note that if g is the score in sub-model (pt,g)t≥0 then for positive real a, ag is the score in (pat,g)t≥0 so that we
may assume that S is a cone, and D̃ is a subset of S. D̃ is also a subset of the unit sphere of L2(p0µ).
Define (W (d))d∈D̃ the centered Gaussian process with covariance function Γ(d1, d2) =

∫
d1d2p0dµ. In other

words, W is the isonormal process on D̃. Obviously, for any finite subset I of D̃ and any x, under the
assumptions of Proposition 1,

lim inf
n→+∞

P
(

sup
p∈F

`n(p)− `n(p0) ≥ x

)
≥ P

(
1
2

sup
d∈I

W (d)21W (d)≥0 ≥ x

)

so that as soon as supd∈D̃ W (d)21W (d)≥0 is not finite a.s., so is asymptotically supp∈F `n(p)− `n(p0).
Properties of the isonormal Gaussian process indexed by a subset H of the Hilbert space L2(p0µ) are understood
through entropy numbers. Let H be a class of real functions and d a metric on it. The ε-covering number
N(ε,H, d) is defined to be the minimum number of balls of radius ε needed to cover H. The ε-bracketing
number N[ ](ε,H, d) is defined to be the minimum number of brackets of size ε needed to cover H, where a
bracket of size ε is a set of the form [l, u] = {h : l(x) ≤ h(x) ≤ u(x), ∀x ∈ X} and d(l, u) ≤ ε. The ε-covering
number is upper bounded by the ε-bracketing number.
Suppose that the closure of D̃ is compact. Remarking that the isonormal process is stationary with respect to
the group of isometries on the unit sphere of L2(p0µ), it is known (see Theorem 4.16 of [Adler, 1990]) that a
necessary and sufficient condition for finiteness of supD̃ W (d) is the convergence of

∫ +∞

0

√
log(N(ε, D̃, d))dε (11)

where d is the canonical distance in L2(p0µ) since the process is isonormal. Throughout the paper, the canonical
distance will be used for bracketing and covering numbers, so that d will be omitted in the notation.
To obtain the convergence result for the LRT statistic, in view of Proposition 1, it is needed that for a rich
enough S, the associated D̃ be Donsker, in which case the closure of D̃ is compact and the isonormal process
indexed by D̃ has a.s. uniformly continuous and bounded paths.
When D̃ is not compact, one could use (if this is the case) that it has parametric description and is locally
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compact.
It has been noticed in earlier papers that the LRT statistic may diverge to infinity in p0-probability for mixture
testing problems, see [Hartigan, 1985]. [Ciuperca, 2002], [Gassiat, Keribin, 2000], [Liu and Shao, 2004], [Liu
et al., 2003], [Hall and Stewart, 2005], [Azais et al., 2006]. In all these papers, the reason is that the set of
normalized scores contains almost an infinite dimensional linear space (one may construct an infinite sequence
of normalized scores with Hilbertian product near zero).
We shall now state a sufficient condition under which the asymptotic distribution of the LRT statistic may be
derived. For any positive ε, define

Dε =





√
p
p0
− 1

H(p, p0)
, H(p, p0) ≤ ε, p ∈ F \ {p0}



 (12)

and D as the set of all limit points (in L2(p0µ)) of sequences of functions in Dεn , εn → 0. Then the closure of
Dε is Dε = Dε ∪ D. Introduce

Assumption 3. There exists some positive ε0 such that Dε0 is Donsker and has a p0µ-square integrable envelope
function F .

A sufficient condition for Assumption 3 to hold is that

∫ +∞

0

√
log N[ ](u,Dε0)du < +∞,

see Theorem 19.5 in [van der Vaart, 1998]. Under Assumption 3, Dε0 is a compact subset of the unit sphere of
L2(p0µ). Thus D is also the compact subset

D =
⋂

ε≤ε0

Dε.

Under Assumption 3, D is the ”rich enough” set D̃ that we need to obtain precise asymptotics for the LRT
statistic. We shall need differentiability in quadratic mean along sub-models with scores in a dense subset of
D. This will in general be a consequence of smooth parameterization: in case F may be continuously parame-
terized, all functions in D are half score functions along one-dimensional sub-models (since they occur as the
Hellinger distance to the true distribution tends to 0) or limit points of such scores when their norm (the Fisher
Information along the sub-model) tends to 0.

Theorem 1. Assume that Assumptions 1 and 3 hold. Assume there exists a dense subset S of D for which
Assumption 2 holds. Then

sup
p∈F

`n(p)− `n(p0) =
1
2

sup
d∈D




(
1√
n

n∑

i=1

d(Xi)

)2

1Pn
i=1 d(Xi)≥0


 + oP(1).

Proof: The proof follows that of Theorem 3.1 in [Gassiat, 2002]. Since H(p̂, p0) = oP(1) by Assumption 1,
for any positive ε,

`n(p̂)− `n(p0) = sup
p∈F,H(p,p0)≤ε

(`n(p)− `n(p0)) + oP(1),

so that we can limit our attention to the densities p belonging to

Fε0 = {p ∈ F\{p0} : H(p, p0) ≤ ε0}.
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Define for any p ∈ Fε0

sp =

√
p
p0
− 1

H(p, p0)
and sp = sp −

∫
spp0dµ = sp +

H(p, p0)
2

. (13)

Step 1 We have for p ∈ F :

`n(p)− `n(p0) = 2
n∑

i=1

log
(√

p

p0

)
(Xi) = 2

n∑

i=1

log
(
1 + H(p, p0)sp(Xi)

)
.

Throughout the paper, for a real number u, we note u− = −u1u<0 and u+ = u1u>0.
Since for u > −1, log(1 + u) ≤ u− 1

2u2
−, we have

`n(p)− `n(p0) ≤ 2H(p, p0)
n∑

i=1

sp(Xi)−H2(p, p0)
n∑

i=1

(sp(Xi))2−.

As a consequence, for p such that `n(p)− `n(p0) ≥ 0,

√
nH(p, p0) ≤ 2

n−1/2
∑n

i=1 sp(Xi)
n−1

∑n
i=1(sp(Xi))2−

≤ 2
n−1/2

∑n
i=1 sp(Xi)

n−1
∑n

i=1(sp(Xi))2−

since sp ≤ sp. Theorem 2.6.10 of [van der Vaart and Wellner, 1996] and Assumption 3 give that the set
{(sp)−, p ∈ Fε0} is Donsker and has integrable envelope, so that by Lemma 2.10.14 of [van der Vaart and
Wellner, 1996], the set of squares is Glivenko-Cantelli, and the right hand side of the previous inequality is
uniformly OP(1) as soon as infp∈Fε0

∫
(sp)2−p0dµ 6= 0, which holds and may be proved by contradiction. Thus

sup
p∈Fε0 :`n(p)−`n(p0)≥0

H(p, p0) = OP(n−1/2). (14)

Step 2 Setting log(1 + u) = u− u2/2 + u2R(u) with R(u) → 0 as u → 0, it comes:

`n(p)− `n(p0) = 2H(p, p0)
n∑

i=1

sp(Xi)−H2(p, p0)
n∑

i=1

s2
p(Xi) + 2H2(p, p0)

n∑

i=1

s2
p(Xi)R

(
H(p, p0)sp(Xi)

)
. (15)

Since the envelope function F is square integrable, an application of Markov inequality to the variable F1F≥√nη

yields
max

i=1,...,n
F (Xi) = oP(

√
n).

Also, by Lemma 2.10.14 of [van der Vaart and Wellner, 1996], the set {s2
p, p ∈ Fε0} is Glivenko-Cantelli with∫

s2
pp0dµ = 1. Then it easy to see that the last term in (15) is negligible as soon as H(p, p0) = OP(n−1/2):

sup
p∈Fε0 :`n(p)−`n(p0)≥0

(`n(p)− `n(p0)) = sup
p∈Fε0 :`n(p)−`n(p0)≥0

(
2H(p, p0)

n∑

i=1

sp(Xi)−H2(p, p0)
n∑

i=1

s2
p(Xi)

)
+oP(1).

Now, sp = sp −H(p, p0)/2, so that

sup
p∈Fε0 :`n(p)−`n(p0)≥0

(`n(p)− `n(p0)) = sup
p∈Fε0 :`n(p)−`n(p0)≥0

2

(
H(p, p0)

n∑

i=1

sp(Xi)− nH2(p, p0)

)
+ oP(1).
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Using Equation (14), we have that, for any εn tending to 0 slower than 1/
√

n,

sup
p∈Fε0 :`n(p)−`n(p0)≥0

(`n(p)− `n(p0)) = sup
p∈Fεn :`n(p)−`n(p0)≥0

(`n(p)− `n(p0)) + oP(1),

and maximizing in H(p, p0) gives that

sup
p∈F

(
`n(p)− `n(p0)

) ≤ 1
2

sup
p∈Fεn

(
n−1/2(

n∑

i=1

sp(Xi))1Pn
i=1 sp(Xi)≥0

)2

+ oP(1)

=
1
2

sup
d∈Dεn

(
n−1/2(

n∑

i=1

d(Xi))1Pn
i=1 d(Xi)≥0

)2

+ oP(1).

But if we represent weak convergence by an almost sure convergence in a suitable probability space (see for
instance Theorem 1.10.3 of [van der Vaart and Wellner, 1996]), we get that for any ε ≤ ε0

sup
d∈Dε

(
n−1/2(

n∑

i=1

d(Xi))1Pn
i=1 d(Xi)≥0

)2

= sup
d∈Dε

(
W (d)1W (d)≥0

)2 + oP(1),

where W is the isonormal Gaussian process. Since D and Dε are compact, the distance between D and the
complementary of Dε tends to zero as ε → 0, and the isonormal process W is continuous on Dε0 ,

sup
d∈Dεn

(
W (d)1W (d)≥0

)2 = sup
d∈D

(
W (d)1W (d)≥0

)2 + oP(1),

so that

sup
p∈F

`n(p)− `n(p0) ≤ 1
2

sup
d∈D




(
n−1/2

n∑

i=1

d(Xi)

)2

1Pn
i=1 d(Xi)≥0


 + oP(1). (16)

Step 3 We have by Proposition 1

sup
p∈F

`n(p)− `n(p0) ≥ 1
2

sup
d∈S




(
n−1/2

n∑

i=1

d(Xi)

)2

1Pn
i=1 d(Xi)≥0


 + oP(1). (17)

But again, the isonormal process W is separable and D is compact, so that the supremum over S equals the
supremum over D, and the theorem follows from equations (16) and (17).

Proposition 2. Let Assumption 3 hold. If (pn)n∈N is a deterministic sequence in F such that
√

nH(pn, p0)
tends to a positive constant c/2, and spn tends to d0 in D, then the sequences (pnµ)⊗n and (p0µ)⊗n are mutually
contiguous.
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Proof. Indeed,

`n(pn)− `n(p0) =
c√
n

n∑

i=1

spn
(Xi)− c2

2
+ oP(1)

= cW (spn
) + oP(1)− c2

2
+ oP(1)

= cW (d0) + oP(1)− c2

2
+ oP(1)

=
c√
n

n∑

i=1

d0(Xi)− c2

2
+ oP(1).

The proposition follows from Example 6.5 of [van der Vaart, 1998].

Then one may apply Le Cam’s third Lemma (see for instance [van der Vaart, 1998]) to obtain that under
the assumptions of Theorem 1,

sup
p∈F

`n(p)− `n(p0)

converges in distribution under (pnµ)⊗n (that is if X1, . . . , Xn are i.i.d. with density pn) to

1
2

sup
d∈D

[
(W (d) + cΓ(d, d0))

2 1W (d)+cΓ(d,d0)≥0

]
.

Thus Theorem 1 allows to derive asymptotic properties of LRT statistic as the difference of two terms in which
the sets D are defined under the null hypothesis H0 and the alternative hypothesis H1 respectively.

3. One population against any mixture

3.1. General result

We now assume that Z is a closed compact interval of R. Consider the mixture model with known structural
parameter, that is F is the set of densities:

pη(x) =
∫

p(x|z)dη(z). (18)

Let the observations X1, . . . , Xn be i.i.d. with distribution p0 = pη0 , η0 ∈ G, where G is the set of all probability
distributions on (Z, C).
We want to test that the mixing measure η reduces to a Dirac mass δz at some z ∈ Z against that it does not:

H0 : “∃z0 ∈ Z : pη0(·) = p(·|z0)” against H1 : “∀z ∈ Z : pη0(·) 6= p(·|z)”. (19)

We assume that p0 = p(·|z0) for some z0 in the interior of Z.
We shall need the following weak local identifiability assumption:

Assumption 4. For any z̃ in Z, pη(·) = p(·|z̃) if and only if η is the Dirac mass at z̃.

We shall use:

Assumption 5. For all x, z → p(x|z) is continuous, | log supz p(·|z)| and | log infz p(·|z)| are p0µ-integrable.
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Since Z is compact, G is a compact metric space (for the weak convergence topology), η → log
∫

p(x|z)dη(z)
is continuous for all x and it is easy to see that Assumption 1 holds, so that if η̂ is the m.l.e.,

H(pbη, p0) = oP(1).

We now assume that p(·|z) is defined for z in some open interval Z+ that contains Z.

Assumption 6. For all x, z → p(x|z) is twice continuously differentiable on Z+,

supz∈Z p(x|z)
p0(x)

∈ L2 (p0µ) ,
supz∈Z ṗ(x|z)
infz∈Z p(x|z)

∈ L2 (p0µ) ,

and for some neighborhood V of z0:
supz∈V p̈(x|z)

p0(x)
∈ L2 (p0µ) .

Here, ṗ(x|z) and p̈(x|z) denote the first and second derivative of p(x|z) with respect to the variable z.

For any ν ∈ G, we shall denote by Fν its cumulative distribution function.
Define for a ∈ R, b ≥ 0, c ≥ 0, ν ∈ G with Fν continuous at z0:

d(a, b, c, ν)(x) = a
ṗ(x|z0)
p0(x)

+ b
p̈(x|z0)
p0(x)

+ c

(
pν(x)− p0(x)

p0(x)

)
. (20)

We shall need the following assumption:

Assumption 7. d(a, b, c, ν) = 0 µ-a.e. if and only if a = 0, b = 0, and c = 0.

Let now E be the closure in L2(p0µ) of the set
{

d(a, b, c, ν)
‖d(a, b, c, ν)‖2 : ‖d(a, b, c, ν)‖2 6= 0, a ∈ R, b ≥ 0, c ≥ 0, ν ∈ G s.t. Fν continuous at z0

}
. (21)

Throughout the paper, ‖ · ‖2 will denote the norm in L2(p0µ).
Then under Assumption 7, E is the union of (21) and the set of all limit points in L2(p0µ) of sequences

d(an,bn,cn,νn)
‖d(an,bn,cn,νn)‖2 for an → 0, bn → 0, and (cn → 0 or νn converging weakly to the Dirac mass at z0).

Proposition 3. Under Assumptions 4, 5, 6 and 7, the set of all possible accumulation points in L2(p0µ) of
sequences of functions in Dεn , εn tending to 0, is exactly E, and there exists a dense subset of E for which
Assumption 2 holds.

Proof. Let A be the set of all possible accumulation points in L2(p0µ) of sequences of functions in Dεn , with
εn tending to 0. Define for a ∈ R, 0 ≤ b ≤ 1, c ≥ 0, ν ∈ G with Fν continuous at z0 and t ≥ 0:

pηt(x) = (1− b)
[(

1− ct2
)
p

(
x|z0 + at2

)
+ ct2pν

]
+

b

2
[p (x|z0 − t) + p (x|z0 + t)] .

Then using Assumption 6 and Lemma 7.6 in [van der Vaart, 1998], (pηt)t≥0 is differentiable in quadratic mean
with score function d((1− b)a, b, (1− b)c, ν). Since as t tends to 0

√
pηt

p0
− 1

H(pηt , p0)
L2(p0µ)−−−−−→ d ((1− b)a, b, (1− b)c, ν)

‖d ((1− b)a, b, (1− b)c, ν) ‖2 ,

we get that
E ⊂ A
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and that there exists a dense subset of E for which Assumption 2 holds.
Let now √

pηt

p0
− 1

H(pηt , p0)

be a sequence converging in L2(p0µ) and such that H(pηt , p0) tends to 0 as t tends to 0. Then ηt converges
weakly to the Dirac mass at z0, and for all x, pηt

(x) converges to p0(x).
Notice that for all x, there exists yt(x) in (pηt

(x), p0(x)) such that

√
pηt(x)−

√
p0(x) =

pηt
(x)− p0(x)
2
√

yt(x)
. (22)

For any sequence ut of non negative real numbers, let

ρt = Ft

(
(z0 − ut)−

)
+ 1− Ft(z0 + ut),

with F0 = Fη0 and Ft = Fηt
.

Notice the following. For any positive u, Ft ((z0 − u)−) + 1 − Ft(z0 + u) tends to 0, so that there exists ut, a
non negative sequence of real numbers decreasing (slowly enough) to 0, such that ρt tends to 0. (From now on,
unless specifically said, all limits are taken as t tends to 0).
Let

mt =
∫

|z−z0|≤ut

(z − z0) dηt and et =
1
2

∫

|z−z0|≤ut

(z − z0)
2
dηt.

Then mt and et tend to 0. Also, as soon as ρt < 1, et > 0, and if this is the case for all small enough t, using
Assumption 6, ∫

|z−z0|≤ut

(p(x|z)− p(x|z0)) dηt = [mtṗ(x|z0) + etp̈(x|z0)] (1 + o(1)). (23)

Also, ∫

|z−z0|>ut

(p(x|z)− p(x|z0)) dηt =
∫

|z−z0|>ut

ṗ(x|z) (F0(z)− Ft(z)) dz. (24)

Define, if ρt 6= 0, the probability distribution ηt restricted to |z − z0| > ut, with distribution function Gt:

Gt(z) =
Ft(z)

ρt
=

Ft(z)− F0(z)
ρt

, z < z0 − ut,

Gt(z) = 1− 1− Ft(z)
ρt

= 1− F0(z)− Ft(z)
ρt

, z > z0 + ut.

Let νt be the probability distribution with repartition function Gt (which is continuous at z0). Then using
Equation (24), ∫

|z−z0|>ut

(p(x|z)− p(x|z0)) dηt = ρt(pνt − p0)(1 + o(1)), (25)

and
pηt(x)− p0(x) = [mtṗ(x|z0) + etp̈(x|z0) + ρt(pνt − p0)] (1 + o(1)),

which leads, using Equation (22) to

√
pηt

p0
− 1 =

1
2

[
mt

ṗ(x|z0)
p0

+ et
p̈(x|z0)

p0
+ ρt

(pν − p0)
p0

]
(1 + o(1)).
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Using Assumption 6, the limit also holds in L2(p0µ) so that

√
pηt

p0
− 1

H(pηt
, p0)

=
d(mt, et, ρt, νt)

‖d(mt, et, ρt, νt)‖2 (1 + o(1)).

Also, if there exists a sequence ut such that for small enough t, ρt = 0, then the limit of (
√

pηt

p0
− 1)/H(pηt , p0)

is some d(a, b, 0, ·)/‖d(a, b, 0, ·)‖2 in D.
We have thus proved that in all cases the limit of (

√
pηt

p0
− 1)/H(pηt

, p0) is in D, and

A ⊂ E .

In other words, the set of scores D is the set E , which is the closure of the set





(
pη(x)−p0(x)

p0(x)

)
∥∥∥pη(x)−p0(x)

p0(x)

∥∥∥
2

,

∥∥∥∥
pη(x)− p0(x)

p0(x)

∥∥∥∥
2

6= 0, η ∈ G


 . (26)

Then, in such a situation, Assumption 3 is not weaker than the following one, which may be easier to verify:

Assumption 8. E is Donsker and has a p0µ-square integrable envelope function.

Comparing with Theorem 3.1 in [Gassiat, 2002], we thus state:

Theorem 2. Under Assumptions 4, 5, 6, 7, and 8,

sup
p∈F

`n(p)− `n(p0) =
1
2

sup
d∈E




(
1√
n

n∑

i=1

d(Xi)

)2

+


 + oP (1).

3.2. Application to the Gaussian family

In this section, we derive the asymptotic distribution of the LRT statistic for testing that the observations fol-
low a Gaussian distribution (with unknown mean) against that they follow a mixture of Gaussian distributions.
That is we consider the situation where µ is the Lebesgue measure on R and:

p(x|z) =
1√
2π

exp
(
− (x− z)2

2

)
, ∀x ∈ R.

Here, the variance is considered to be known and is fixed to one without loss of generality, and Z = [−M, +M ].
We note M = max{M, M}.
Assumptions 4, 5, 6, and 7 hold.
Let (Hk)k∈N be the Hermite polynomials, given by:

Hk(x) = (−1)k exp
(

x2

2

)[
dk

dxk
exp

(−x2

2

)]
.

By the Taylor formula
p(x|z)
p0(x)

= 1 +
∞∑

k=1

(z − z0)k

k!
Hk(x− z0),
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and
pη(x)− p0(x)

p0(x)
=

∞∑

k=1

E[(Z − z0)k]
k!

Hk(x− z0) (27)

where Z is a random variable with distribution η, η ∈ G. Set mk,η = E[(Z − z0)k].
The {Hk(x− z0), k ∈ N} form an orthogonal system in L2(p0µ), each Hk(x− z0) having norm

√
k!. Then E is

the closure of the set {∑∞
k=1

mk,η

k! Hk(x− z0)

(
∑∞

k=1
(mk,η)2

k! )1/2
, η ∈ G

}
.

Let (Wk)k≥1 be a sequence of i.i.d. standard Gaussian random variables. Then

Theorem 3. The likelihood ratio test statistic 2
(

sup
η∈G

`n(η)− sup
z∈Z

`n(δz)
)

converges in distribution, as n tends

to infinity, to

sup
η∈G

(∑∞
k=1

mk,η√
k!

Wk

)2

+∑∞
k=1

(mk,η)2

k!

−W 2
1 .

Recall that u+ = u1u>0.

Proof: Classical parametric theory gives that 2
(

sup
z∈Z

`n(δz)− `n(δz0)
)

converges in distribution to W 2
1 , as

n tends to infinity. Theorem 1 will give that 2
(

sup
η∈G

`n(η)− `n(δz0)
)

converges in distribution, as n tends to

infinity, to

sup
η∈G

(∑∞
k=1

mk,η√
k!

Wk

)2

+∑∞
k=1

(mk,η)2

k!

as soon as it is seen that Assumption 8 holds.
Let us first prove that E has a p0µ-square integrable envelope function. We have

∥∥∥∥
pη

p0
− 1

∥∥∥∥
2

≥ E
∣∣∣∣
pη(X)
p0(X)

− 1
∣∣∣∣

where X is a random variable with density p0. But, for Z a random variable with distribution η,
∣∣∣∣
pη(x)
p0(x)

− 1
∣∣∣∣ = E

∣∣∣∣exp
(

(Z − z0)(x− z0)− (Z − z0)2

2

)
− 1

∣∣∣∣

≥ E
[(

(Z − z0)(x− z0)− (Z − z0)2

2

)
1
(Z−z0)(x−z0)≥ (Z−z0)2

2

]

≥ E
[(

(Z − z0)(x− z0)− (Z − z0)2

2

)
1(Z−z0)(x−z0)≥(Z−z0)2

]
,

so that ∥∥∥∥
pη

p0
− 1

∥∥∥∥
2

≥ m2,η/2. (28)

On the other hand since

1(Z−z0)(x−z0)≥(Z−z0)2 ≥ 1x≥M1(Z−z0)≥0 + 1x≤−M1(Z−z0)≤0



TITLE WILL BE SET BY THE PUBLISHER 15

one gets ∥∥∥∥
pη

p0
− 1

∥∥∥∥
2

≥ 1
2
(|m1,η|(M − |z0|)− m2,η

2
)
P0 (|X| ≥ M + |z0|) . (29)

Also, remarking that | exp(u)− 1| ≤ |u| exp(|u|), one obtains easily that
∣∣∣∣
pη(x)
p0(x)

− 1
∣∣∣∣ ≤

(
|m1,η||x− z0|+ m2,η

2

)
exp[(M + |z0|)|x− z0|]. (30)

Using (28 ) (29) and (30), it follows that there exists a positive constant C such that for any η ∈ G,
∣∣∣pη(x)

p0(x) − 1
∣∣∣

∥∥∥pη

p0
− 1

∥∥∥
2

≤ C (|x− z0|+ 1) exp[(M + |z0|)|x− z0|]

which proves that E has a p0µ-square integrable envelope function.

Let now fk =
Hk

k
√

k!
and set

ck,η =
kmk,η/

√
k!

(
∑∞

k=1
(mk,η)2

k! )1/2
.

Then ∞∑

k=1

c2
k,η ≤ 1 + 2

∞∑

k=2

k2(mk,η)2

(m2,η)2k!
.

Since |mk,η| ≤ m2,ηMk−2 for k ≥ 2, we can write

∞∑

k=1

c2
k,η ≤ 1 + 2

∞∑

k=2

k2(Mk−2)2

k!

and for a constant C that does not depend of η:

∞∑

k=1

c2
k,η ≤ CM4 exp M2.

As a consequence:

E ⊂
{ ∞∑

k=1

ckfk,

∞∑

k=1

c2
k ≤ CM4 expM2

}
,

which is Donsker by Theorem 2.13.2 of [van der Vaart and Wellner, 1996], so that E is Donsker.

3.3. Application to the Poisson family

The study of mixtures of Poisson distributions is, for example, motivated by ecological sampling problems,
see [Misra et al., 2003]. The abundance of a given species can be modelled by a Poisson distribution with
parameter depending on the species. If there is a lot of species that are too difficult to identify, the number of
individuals on a given location will have a distribution which is a mixture of Poisson distributions.

In this section, we derive the asymptotic distribution of the LRT statistic for testing that the observations
follow a Poisson distribution (with unknown mean) against that they follow a mixture of Poisson distributions.
That is we consider the situation where:

p(x|z) =
zx

x!
exp (−z) , ∀x ∈ N.
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Here, Z = [M,M ] with M > 0. Again Assumptions 4, 5, 6, and 7 hold.
Let (Ck)k∈N be the Charlier polynomials (see [Chihara, 1978]):

Ck(x) = zk
0

[
dk

dzk

(
z

z0

)x

exp (−z + z0)
]

z=z0

.

Then, as in (27)
pη(x)− p0(x)

p0(x)
=

∞∑

k=1

E[(Z − z0)k]
k!zk

0

Ck(x) (31)

where Z is a random variable with distribution η, η ∈ G. Let us note mk,η = E[(Z − z0)k].
The {Ck(X), k ∈ N} are centered under p0µ, (µ is here the counting measure on N), and are the orthogonal
polynomials associated to p0µ, with square norm:

‖Ck‖22 = zk
0k!,

so that the square norm of
pη − p0

p0
in L2(p0µ) is:

∥∥∥∥
pη − p0

p0

∥∥∥∥
2

2

=
∞∑

k=1

(mk,η)2

k!zk
0

.

Then E is the closure of the set 



∑∞
k=1

mk,η

k!zk
0

Ck(x)

(
∑∞

k=1

(mk,η)2

k!zk
0

)1/2

, η ∈ G





.

Let (Wk)k≥1 be a sequence of i.i.d. standard Gaussian random variables. Then

Theorem 4. The likelihood ratio test statistic 2
(

sup
η∈G

`n(η)− sup
z∈Z

`n(δz)
)

converges in distribution, as n tends

to infinity, to

sup
η∈G

(
∑∞

k=1

mk,η√
k!zk/2

0

Wk

)2

+

∑∞
k=1

(mk,η)2

k!zk
0

−W 2
1 .

Proof: We proceed as in the proof of Theorem 3. Using the inequality
∥∥∥∥

pη − p0

p0

∥∥∥∥
2

2

≥ (m1,η)2

z0
+

(m2,η)2

2z2
0

and the fact that, for some constants A and B
∣∣∣∣
pη(x)
p0(x)

− 1
∣∣∣∣ ≤ |m1,η|

∣∣∣∣
x

z0
− 1

∣∣∣∣ + Am2,ηx2Bx

one obtains that there exists a positive constant C such that for any η ∈ G,
∣∣∣pη(x)

p0(x) − 1
∣∣∣

∥∥∥pη

p0
− 1

∥∥∥
2

≤ Cx2Bx.
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This proves that E has a p0µ-square integrable envelope function.

Set fk =
Ck

k
√

k!zk/2
0

and

ck,η =
kmk,η/

√
k!zk/2

0

(
∑∞

k=1

(mk,η)2

k!zk
0

)1/2

.

It is easy to prove that for a positive constant C that does not depend of η:

∞∑

k=1

c2
k,η ≤ CM4 exp

M2

z0
.

As a consequence E is Donsker since

E ⊂
{ ∞∑

k=1

ckfk,

∞∑

k=1

c2
k ≤ CM4 exp

M2

z0

}
.

3.4. Application to the binomial family

Historically mixture of binomial distributions were introduced by [Lord, 1969] in the context of psychological
testing: each student has a random score z and sits an n questions test. An other example is the following:
consider the admixture of different human populations with different sex ratio, i.e. different probability z of
having a male child, and suppose that we consider families with a fixed number of children say N . If we assume
the independence between the sex of the different children of the same family, we see that the distribution of
the number of males is a mixture of binomial distributions. More precisely if X is the number of males in a
family ”at random”

P (X = x) =
∫ 1

0

(
N

x

)
zx(1− z)N−xdη(z), ∀x ∈ {0, 1, . . . , N} (32)

where η is the distribution of the probability of a family to have a male in the admixture of populations. This
topic of mixture of binomial distribution has received a lot of attention, see [Wood, 1999] and references therein.
The problem we consider is to test whether the probability of having a male is constant in the population or
not. Thus Z is a closed subset of ]0, 1[, and the conditional density with respect to the counting measure µ on
the set {0, . . . , N} is

p(x|z) =
(

N

x

)
zx(1− z)N−x.

Assumptions 4, 5 and 6 hold.
Since p(x|z) is a polynomial in z with degree N ,

p(x|z)− p0(x) =
N∑

k=1

(z − z0)k

k!
p(k)(x|z0),

where p(k)(x|z0) is the k-th derivative of p(x|z) with respect to z at point z0, so that

pη(x)− p0(x)
p0(x)

=
N∑

k=1

E[(Z − z0)k]
k!

p(k)(x|z0)
p0(x)

(33)

where Z is a random variable with distribution η.
Let b = (b1, . . . , bN )T ∈ RN , let fk(x) = 1

k!
p(k)(x|z0)

p0(x) for any k ∈ {1, . . . , N} and set f = (f1, . . . , fN )T . It is



18 TITLE WILL BE SET BY THE PUBLISHER

easy to see that
〈b, f〉 = 0 µ− a.e. ⇔ b = 0.

Recall that 〈·, ·〉 is the the usual scalar product in Euclidean space.
Indeed, the p(k)(x|z0)

p0(x) are polynomial in x with degree k and leading coefficient 1
zk
0 (1−z0)k , and the linear combi-

nation has N + 1 zeros (0, 1, . . . , N). Thus, Assumption 7 holds and if Σ is the variance matrix of f(X1), Σ is
positive definite.
Let now ΦN be the closed convex hull of the set {((z − z0), (z − z0)2, . . . , (z − z0)N

)T
, z ∈ Z}. ΦN is in ZN

the set of possible moments of (Z − z0) under a distribution with support in Z. Let UN be the set of limit
points of ( b1

(bT Σb)1/2 , . . . , bN

(bT Σb)1/2 )T , as b ∈ ΦN tends to the null vector. Then applying Proposition 3:

D = {〈U, f〉, U ∈ UN} .

Set `n(η) =
∑n

i=1 log pη(Xi). Let V be a N -dimensional centered Gaussian vector with variance matrix Σ.
Then

Theorem 5. The likelihood ratio test statistic 2
(

sup
η∈G

`n(η)− sup
z∈Z

`n(δz)
)

converges in distribution, as n tends

to infinity, to
sup

U∈UN

〈U, V 〉21〈U,V 〉≥0 − V 2
1 .

The proof of the Theorem is immediate by applying Theorem 2, but may also be obtained by classical
parametric considerations. Indeed, pη may be finitely parameterized through mk,η, k = 1, . . . , N .

4. Finite mixture models with or without structural parameter

In this section we focus on the testing problem (4) where Gj , j = 1, 2 is the set of finite measures with qj

supporting points, q1 < q2, so that the problem is that of testing whether the number of populations is less
or equal to q1 or at least q1 + 1 but not more than q2. We assume that pθ0 has exactly q1 populations (the
supporting points z0

i , i = 1, . . . , q1, are distinct and the weights π0
i , i = 1, . . . , q1, are non null).

We shall prove that the LRT statistic converges in distribution to Λ as stated in (8) under natural assumptions,
and propose a way to compute Λ.
Weak identifiability of the mixtures is a minimal assumption:

Assumption 9.
r∑

i=1

πipγ(·|zi) =
r̃∑

i=1

π̃ipγ̃(·|z̃i) µ-a.e.

if and only if γ = γ̃ and the mixing measures are equal:
∑r

i=1 πiδzi =
∑r̃

i=1 π̃iδz̃i .

We consider the class Fj = {pθ, θ ∈ Θj}, j = 1, 2, where pθ is defined by (2) and the parameter sets can be
written as

Θj = H×Πj ×Zqj

where H denotes a subset of Rh, Πj = {(π1, . . . , πqj ), πi ∈ (0, 1),
∑qj

i=1 πi = 1} and Z is a compact subset of Rk

for k the common dimension of the z0
i .

Assumption 10. We assume that (i) or (ii) is satisfied:
(i) H is compact.

(ii) Under pθ with θ ∈ Θ1 or under pθ with θ ∈ Θ2 the maximum likelihood estimator of γ is weakly
consistent.
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If Assumption (10) (ii) holds, one may reduce the parameter space to a compact neigborhood of the true
parameter when studying the asymptotics of the LRT statistics, in the same way as for the proof of Theorem
1. If Assumption (10) (i) is assumed, it is useful only to prove that the maximum likelihood estimator of γ
is consistent, which is not always necessary for that, see for instance the Gaussian case with the variance as
structural parameter.

4.1. Sets of scores

Consider (Ji)i=0,...,q1 a partition of {1, . . . , q2}. Let |J0| denotes the cardinal of J0.
For π = (πi,j)1≤i≤q1,j∈Ji

∈ Rq2−|J0|, γ ∈ H, α = (αi,j)1≤i≤q1,j∈Ji
∈ Rq2−|J0|, u = (ui,j)i≤q1,j∈Ji

∈ Rk(q2−|J0|),
ρ = (ρj)j∈J0 ∈ R|J0|, and z ∈ Z |J0|, we set v = (γ, α,u, ρ) and

pπ,v,z(·) =
q1∑

i=1


∑

j∈Ji

(πi,j + αi,j)pγ0+γ(·|z0
i + ui,j)


 +

∑

j∈J0

ρjpγ0+γ(·|zj). (34)

Assumption 11. The map θ 7→ pθ is continuously differentiable on Θ2.
Moreover, R(π,v, z) = ∂vpπ,v,z/

√
pπ,v,zpθ0 has pθ0µ-square integrable coordinates, and

lim
v→0

sup
π,z

‖〈v,
∫ 1

0
(R(π, tv, z)−R(π,0, z)) dt〉‖2
‖〈v, R(π,0, z)〉‖2 = 0,

where we recall that ‖ · ‖2 is the norm in L2(pθ0µ).
Here, ∂vpπ,v,z denotes the partial derivative of pπ,v,z with respect to the variable v.

An application of Lemma 7.6 of [van der Vaart, 1998] gives that, if Assumption 11 holds, the model (pπ,tv,z)t≥0

is differentiable in quadratic mean at t = 0 with score function 〈v, R(π,0, z)〉. Thus, we may define the sets Sj

such that Assumption 2 holds for Sj in model Fj , j = 1, 2 as follows.

Let ˙̀
γ0,z be the score function in the model (pγ(·|z)µ)γ∈Γ,z∈Z at point (γ0, z) for z ∈ Z. Let ˙̀

γ0,[z] = ( ˙̀
γ0,z)1,...,h

be the score function in the model (pγ(·|z)µ)γ∈H at point γ0. Let ˙̀
[γ0],z = ( ˙̀

γ0,z)h+1,...,h+k be the score function
in the model (pγ0(·|z)µ)z∈Z at point z.

Let ˙̀
0 be the vector obtained by concatenation of

{
π0

i
˙̀
[γ0],z0

i

pγ0 (·|z0
i )

pθ0 (·)

}

i=1,...,q1

and
∑q1

i=1 π0
i
˙̀
γ0,[z0

i ]
pγ0 (·|z0

i )

pθ0 (·) .

Denote by q0 its dimension: q0 = kq1 + h. Then since for all i, |π
0
i pγ0 (·|z0

i )

pθ0 (·) | ≤ 1, ˙̀
0 ∈ (L2(pθ0µ))q0 .

For any U ∈ Rq0 , α = (α1, . . . , αq1) ∈ Rq1 , ρ = (ρ1, . . . .ρq) where ρ1, . . . , ρq are non negative real num-
bers such that

∑q1
i=1 αi +

∑q
i=1 ρi = 0, and for any z = (z1, . . . , zq) ∈ Zq, define

s2(U,α,ρ,z) = 〈U, ˙̀
0(·)〉+

∑q1
i=1 αipγ0(·|z0

i ) +
∑q

i=1 ρipγ0(·|zi)
pθ0(·)

, (35)

and

s1(U, α) = s2(U,α,0, ·) = 〈U, ˙̀
0(·)〉+

∑q1
i=1 αipγ0(·|z0

i )
pθ0(·)

, (36)

with the convention s2(U, α, ρ, z) = s1(U, α) = 0 on {pθ0 = 0}. Let now

S2 =
{

s2(U, α, ρ, z)
‖s2(U,α,ρ,z)‖2 , U,α, ρ, z : ‖s2(U,α, ρ, z)‖2 6= 0

}
(37)
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and

S1 =
{

s1(U,α)
‖s1(U,α)‖2 , U,α : ‖s1(U,α)‖2 6= 0

}
. (38)

Indeed, using Assumption 11, for any z ∈ Z,
pγ0 (·|z)

pθ0 (·) ∈ L2(pθ0µ). Since L2(pθ0µ) is closed under linear com-
binations, we notice that for any U,α,ρ,z satisfying previous conditions, the function s2(U,α, ρ, z) ∈ L2(pθ0µ).

Let also for j = 1, 2, the set Dj
ε be defined by (12) for the model Fj and Dj be the closure of Sj in L2(p0µ).

Then

Proposition 4. Under Assumptions 9, 10 and 11, we have Dj =
⋂

ε≤ε0

Dj
ε for j = 1, 2.

Assumption 12. There exists m ∈ L2(pθ0µ) and β > 0 such that
∣∣∣∣∣∣

∫ 1

0
〈v1, R(π1, tv1,z1)〉dt∥∥∥

∫ 1

0
〈v1, R(π1, tv1, z1)〉dt

∥∥∥
2

−
∫ 1

0
〈v2, R(π2, tv2, z2)〉dt∥∥∥

∫ 1

0
〈v2, R(π2, tv2,z2)〉dt

∥∥∥
2

∣∣∣∣∣∣
≤ m‖(π1,v1, z1)− (π2,v2, z2)‖β .

Proposition 5. Under Assumptions 10, 11, 12, Assumption 3 holds for models F1 and F2.

Thus, Assumptions 9, 10, 11 and 12 are sufficient to apply Theorem 1 in order to derive the asymptotic
distribution of the LRT statistic. This will be done in the next section.

Remark 1. Assume

Assumption 13.
- The model (pγ(·|z)µ)γ∈Γ,z∈Z is differentiable in quadratic mean at points (γ0, z) for z ∈ Z.
- The model

((
(1− t)pθ0 + tpγ0(·|z)

)
µ
)
t≥0

is differentiable in quadratic mean at t = 0 for any z ∈ Z.

Then using the fact that the set of models that are differentiable in quadratic mean is closed under convex
combinations, we can prove that Assumption 2 holds for Sj in model Fj for j = 1, 2. In some cases this is
sufficient to prove that the LRT statistic converges to infinity if the isonormal process on D2 is unbounded as
explained in Section 2.

4.2. Asymptotic distribution of the LRT statistic

Last results gave conditions under which the asymptotic distribution of the LRT statistic may be derived.
In this part, we simplify considerably its form using only algebraic arguments. Indeed, the LRT statistic Λn

defined by (7) can obviously be written as

Λn = 2
(

sup
θ∈Θ2

`n(θ)− `n(θ0)
)
− 2

(
sup
θ∈Θ1

`n(θ)− `n(θ0)
)

so that using Propositions 4, 5 and applying twice Theorem 1, we obtain under Assumptions 9, 10, 11 and 12:

Λn = sup
d∈D2




(
1√
n

n∑

i=1

d(Xi)

)2

1Pn
i=1 d(Xi)≥0


− sup

d∈D1




(
1√
n

n∑

i=1

d(Xi)

)2

1Pn
i=1 d(Xi)≥0


 + oP(1).

Consequently Λn converges in distribution to

Λ = sup
z∈Zq

sup
U,α,ρ≥0P

i αi+
P

i ρi=0
B(U,α,ρ,z)=1

[(
〈U, V 〉+

q1∑

i=2

αiW (z0
i ) +

q∑

i=1

ρiW (zi)

)

+

]2

− sup
U,αP
i αi=0

B(U,α,0,·)=1

[(
〈U, V 〉+

q1∑

i=2

αiW (z0
i )

)

+

]2
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where W is the centered Gaussian process on Z with covariance function Γ(z, z′) =
∫

pγ0(x|z)pγ0(x|z′)
pθ0(x)

dµ(x)− 1,

V is the centered Gaussian vector with variance Σ =
∫ ˙̀

0(x) ˙̀
0(x)T pθ0(x)dµ(x) and covariance with W (z) given

by C(z) =
∫

pγ0(x|z) ˙̀
0(x)dµ(x), and where B(U, α, ρ; z) = Var

(〈U, V 〉+
∑q1

i=1 αiW (z0
i ) +

∑q
i=1 ρiW (zi)

)
which is a quadratic form in U , (αi), (ρi).

In order to present a simplified form of Λ, we need to introduce the notations κ(z) = C(z) − C(z0
1) and

∆(zi, z
′
j) = Γ(zi, z

′
j)− Γ(zi, z

0
1)− Γ(z′j , z

0
1) + Γ(z0

1 , z0
1). For any z and z′ in Zq, we set

Aq(z, z′) = Γq(z, z′)− Cq(z)T Υ−1
∅ Cq(z′) (39)

where Γq(z, z′) =
[
∆(zi, z

′
j)

]
i=1,...,q
j=1,...,q

,

Υ∅ =




Σ κ(z0
2) . . . κ(z0

q1
)

κ(z0
2)T ∆(z0

2 , z0
2) . . . ∆(z0

q1
, z0

2)
...

...
...

κ(z0
q1

)T ∆(z0
2 , z0

q1
) . . . ∆(z0

q1
, z0

q1
)




and Cq(z) =




κ(z1) . . . κ(zq)

∆(z1, z
0
2) . . . ∆(zq, z

0
2)

...
...

∆(z1, z
0
q1

) . . . ∆(zq, z
0
q1

)




.

Remark that Γq(z, z′) ∈Mq(R), Υ∅ ∈Mq0+q1−1(R) and Cq(z) ∈M(q0+q1−1)×q(R), so that Aq(z, z′) ∈Mq(R).
Moreover, since Aq(z, z) is definite positive, we can introduce the notation Aq(z, z)−1/2.

Theorem 6. Under Assumptions 9, 10, 11 and 12, the LRT statistic converges in distribution to

Λ = sup
z∈Zq

{
‖Yq(z)‖21Aq(z,z)−1/2Yq(z)≥0

}

where ‖ · ‖ denotes the norm in Rq, Yq is the q−dimensional centered Gaussian field with covariance function
E

[
Yq(z)Yq(z′)T

]
=

(
Aq(z, z)−1/2

)T
Aq(z, z′)Aq(z′, z′)−1/2 and where the condition of positivity means that all

coordinates of the vector have to be non negative.

Proof: Remark that the supremum inside the brackets of Λ is always positive (use the particular case when
U is parallel to V and the other terms vanish). To get rid of the conditions

∑
i αi +

∑
i ρi = 0 and

∑
i αi = 0,

last formula can be written (with the trivial convention that the sum vanishes when q1 = 1)

Λ = sup
z∈Zq


 sup

U,α,ρ≥0
B(U,α,ρ,z)=1

(
〈U, V 〉+

q1∑

i=2

αi

(
W (z0

i )−W (z0
1)

)
+

q∑

i=1

ρi

(
W (zi)−W (z0

1)
)
)


2

−

 sup

U,α
B(U,α,0;...)=1

(
〈U, V 〉+

q1∑

i=2

αi

(
W (z0

i )−W (z0
1)

)
)


2

. (40)

For J ⊂ {1, . . . , q} and for z ∈ Zq define WJ(z) as the vector that consists of the |J | coordinates W (zj)−W (z0
1)

for j ∈ J (ordered as in J). Denoting by : the concatenation, define also the vector

WT
J (z) =

(
V T : W (z0

2)−W (z0
1), . . . , W (z0

q1
)−W (z0

1) : WJ(z)T
)
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and ΥJ(z) = Var (WJ(z)). To simplify the notations, set Wq = W{1,...,q}, Wq := W{1,...,q} and Υq = Υ{1,...,q}.
Then the first inner term in (40) satisfies

sup
U,ρ≥0,α

B(U,α,ρ,z1,...,zq)=1

(
〈U, V 〉+

q1∑

i=2

αi

(
W (z0

i )−W (z0
1)

)
+

q∑

i=1

ρi

(
W (zi)−W (z0

1)
)
)

= sup
τ∈Rq0+q1−1×Rq

+
τT Υqτ=1

〈τ,Wq(z)〉 .

Remark that for any J subset of {1, . . . , q} and any z ∈ Zq:

MJ(z) :=


 sup

τ∈Rq0+q1+|J|−1

τT ΥJ (z)τ=1

〈τ,WJ (z)〉




2

= WT
J (z)Υ−1

J (z)WJ (z),

and that the supremum is attained for τ = (const)Υ−1
J (z)WJ(z), where (const) is some positive constant.

Let DJ(z) be the condition

DJ (z) = ”The last |J | coordinates of Υ−1
J (z)WJ(z) are non-negative”,

and set again Dq = D{1,...,q}. Then considering the location where the maximum is attained, we easily get:


 sup

τ∈Rq0+q1−1×Rq
+

τT Υqτ=1

〈τ,Wq(z)〉




2

= max
J⊂{1,...,q}

MJ(z)1DJ (z).

Observe now that MJ(z)1DJ (z) is the value at the point (zj)j∈J of some function depending only on |J |. Taking
the supremum over z = (z1 . . . , zq) ∈ Zq, as it is required by Formula (40), we deduce that the contributions of
MJ (z)1DJ (z) and M|J|(z)1D|J|(z) are the same. So, with the convention that M01D0 = M∅, we get

sup
z∈Zq

max
J⊂{1,...,q}

MJ(z)1DJ (z) = sup
z∈Zq

max
k=0,...,q

Mk(z)1Dk(z).

For k ∈ {2, . . . , q}, let (z̃1, . . . , z̃k−1) ∈ Zk−1 and fix z̃k = z0
1 . Then Mk(z̃) = Mk−1(z̃) and the conditions Dk(z̃)

and Dk−1(z̃) are equivalent. Thus sup
z∈Zq

Mk(z)1Dk(z) ≥ sup
z∈Zq

Mk−1(z)1Dk−1(z), and consequently

sup
z∈Zq

max
k=0,...,q

Mk(z)1Dk(z) = sup
z∈Zq

max(Mq(z)1Dq(z),M∅).

On the other hand, we can write

Υq(z) =
[

Υ∅ Cq(z)
Cq(z)T Γq(z, z)

]

where Cq(z) is the covariance of W∅ with Wq(z) and Γq(z, z) is the variance of Wq(z). It is well known that

Υq(z)−1 =




Υ−1
∅ + Υ−1

∅ Cq(z)Aq(z, z)−1Cq(z)T Υ−1
∅ −Υ−1

∅ Cq(z)Aq(z, z)−1

−Aq(z, z)−1Cq(z)T Υ−1
∅ Aq(z, z)−1




where Aq(z, z) can be deduced from (39). Some calculations show that

Mq(z)−M∅ =
(
Wq(z)− Cq(z)T Υ−1

∅ W∅
)T [

Aq(z, z)−1
(
Wq(z)− Cq(z)T Υ−1

∅ W∅
)]
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and also that

Dq(z) = ”All the coordinates of
[
Aq(z, z)−1

(
Wq(z)− Cq(z)T Υ−1

∅ W∅
)]

are non-negative”.

Then remarking that max(Mq(z)1Dq(z),M∅) can be written as M∅ + (Mq(z)−M∅)1Dq(z), we obtain

Λ = sup
z∈Zq

{(
Wq(z)− Cq(z)T Υ−1

∅ W∅
)T

Aq(z, z)−1
(
Wq(z)− Cq(z)T Υ−1

∅ W∅
)
1Aq(z,z)−1(Wq(z)−Cq(z)T Υ−1

∅ W∅)≥0

}
.

To conclude, it suffices to define Yq as the field
(
Aq(·, ·)−1/2

)T (
Wq(·)− Cq(·)T Υ−1

∅ W∅
)
.

4.3. Application to the Gaussian family

In this part, we apply our results for testing homogeneity on Gaussian mixture in R and R2. We present
the computation of elements that characterizes the asymptotic distribution of the LRT statistic (according
to Theorem 6). Notice that under homogeneity (q1 = 1), we have Υ∅ = Σ, κ(z) = C(z) for all z ∈ Z,
Cq(z) = (C(z1) . . . C(zq)) for all z = (z1, . . . , zq) ∈ Zq.

4.3.1. Testing homogeneity for univariate Gaussian distributions

We consider the family of Gaussian densities in R of mean z and variance γ, denoted by pγ(·|z). We assume
that the true distribution is pγ0(·|z0). We set for simplicity γ = σ2 so that

pγ(x|z) =
1√
2πσ

exp
(
− (x− z)2

2σ2

)
, ∀x ∈ R,

for σ ∈ H a subset of ]0,+∞[ and z ∈ Z a compact subset of R. It can be proved that Assumptions 9, 10, 11
and 12 are satisfied. In this framework, the centered Gaussian process W has for covariance function

Γ(z, z′) = exp
(

z0
2 + zz′ − zz0 − z′z0

σ0
2

)
− 1 = exp(z̃z̃′)− 1,

with z̃ = (z − z0)/σ0 and z̃′ = (z′ − z0)/σ0. By regularity of the model, we easily compute that:

˙̀
0 =

(
˙̀ T
[γ0],z0

, ˙̀ T
γ0,[z0]

)T

=
(

x− z0

σ0
2

,
(x− z0)2

σ0
3

− 1
σ0

)T

.

We deduce that V is the centered Gaussian vector with variance Σ and covariance C(z) with W (z) given by

Σ =
1

σ0
2

[
1 0
0 2

]
and C(z)T =

(
z − z0

σ0
2

,
(z − z0)2

σ0
3

)
.

Eventually, we obtain with obvious notations

Aq(z, z′) =
[
exp(z̃iz̃

′
j)− 1− z̃iz̃

′
j −

1
2
(z̃iz̃

′
j)

2

]
i=1,...,q
j=1,...,q

.

In the particular case of q = 1 we find that

Λ = sup
z∈Z

{
Y 2(z)1Y (z)≥0

}
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with

E(Y (z)Y (z′)) =
exp(z̃z̃′)− 1− z̃z̃′ − 1

2 (z̃z̃′)2√
exp(z̃2)− 1− z̃2 − 1

2 z̃4
√

exp((z̃′)2 − 1− (z̃′)2 − 1
2 (z̃′)4

.

This expression corresponds to that conjectured by Garel [Garel, 2001] or obtained by Delmas [Delmas, 2003].
Looking to the properties of the process Y around zero, we see as in [Azais et al., 2006] that the indicator
function can be removed.

4.3.2. Testing homogeneity for Bivariate Gaussian distributions

We consider Z a compact subset of R2 and H a subset of the set of the 2× 2 positive definite matrices. For
Z ∈ Z, we set Z = (zx, zy)T and we write γ ∈ H as follow:

γ =
[

σ2
x rσxσy

rσxσy σ2
y

]
.

Consequently, we consider the parametric family of Gaussian densities given by

pγ(X|Z) =
1

2πσxσy

√
1− r2

exp

(
−σ2

y(x− zx)2 − 2rσxσy(x− zx)(y − zy) + σ2
x(y − zy)2

2σ2
xσ2

y(1− r2)

)
,∀X = (x, y) ∈ R2.

We assume that the true distribution is p0 = pγ0(·|Z0) with Z0 = (zx,0, zy,0)
T and γ0 =

[
σ2

x,0 r0σx,0σy,0

r0σx,0σy,0 σ2
y,0

]
.

In that case, the centered Gaussian process W has for covariance function

Γ(Z, Z ′) = exp
[
−1

2
(Z − Z0)T γ−1

0 (Z − Z0)− 1
2
(Z ′ − Z0)T γ−1

0 (Z ′ − Z0)
]
− 1.

In order to describe ˙̀
0 we introduce, according to the parameters (zx, zy, σx, σy, r), the following functions:

`1,Z,γ(X) =
(x− zx)

σ2
x(1− r2)

− r(y − zy)
σxσy(1− r2)

, `2,Z,γ(X) =
(y − zy)

σ2
y(1− r2)

− r(x− zx)
σxσy(1− r2)

,

`3,Z,γ(X) = − 1
σx

(
1− 1

1− r2

{
(x− zx)2

σ2
x

− r(x− zx)(y − zy)
σxσy

})
,

`4,Z,γ(X) = − 1
σy

(
1− 1

1− r2

{
(y − zy)2

σ2
y

− r(x− zx)(y − zy)
σxσy

})
,

`5,Z,γ(X) =
r

1− r2
− r

(1− r2)2

[
(x− zx)2

σ2
x

+
(y − zy)2

σ2
y

]
+

1 + r2

(1− r2)2

(
x− zx

σx

)(
y − zy

σy

)
.

Since ˙̀
[γ0],Z0 =

(
`1,Z0,γ0 , `2,Z0,γ0

)T , ˙̀
γ0,[Z0] =

(
`3,Z0,γ0 , `4,Z0,γ0 , `5,Z0,γ0

)T and ˙̀
0 =

(
˙̀ T
[γ0],z0

, ˙̀ T
γ0,[z0]

)T

we
deduce that the Gaussian vector V has for variance matrix:

Σ =
1

(1− r2
0)σ

2
x,0σ

2
y,0




σ2
y,0 −r0σx,0σy,0 0 0 0

−r0σx,0σy,0 σ2
x,0 0 0 0

0 0 (2− r2
0)σ

2
y,0 −r2

0σx,0σy,0 −r0σx,0σ
2
y,0

0 0 −r2
0σx,0σy,0 (2− r2

0)σ
2
x,0 −r0σ

2
x,0σy,0

0 0 −r0σx,0σ
2
y,0 −r0σ

2
x,0σy,0

(1+r2
0)σ2

x,0σ2
y,0

(1−r2
0)
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and covariance C(Z) with W (Z):

C(Z) =
1

(1− r2
0)σ

2
x,0σ

2
y,0




(zx − zx,0)σ2
y,0 − r0(zy − zy,0)σx,0σy,0

(zy − zy,0)σ2
x,0 − r0(zx − zx,0)σx,0σy,0

(zx − zx,0)2σ−1
x,0σ

2
y,0 − r0(zx − zx,0)(zy − zy,0)σy,0

(zy − zy,0)2σ2
x,0σ

−1
y,0 − r0(zx − zx,0)(zy − zy,0)σx,0

1+r2
0

1−r2
0
σx,0σy,0(zx − zx,0)(zy − zy,0)− r0

1−r2
0
σ2

x,0(zy − zy,0)2 − r0
1−r2

0
σ2

y,0(zx − zx,0)2




.

Then Formula (39) allows the computation of Aq.

5. Proofs

Proof of Proposition 4 Consider some U,α,ρ, z such that ‖s2(U,α, ρ, z)‖2 6= 0. Let

pt(·) =
q1∑

i=1

(π0
i + t αi)pγt

(·|zi,t) + t

q∑

j=1

ρjpγt
(·|zj). (41)

We know that √
pt

pθ0
− 1

H(pt, pθ0)
has a limit in

⋂
ε≤ε0

D2
ε . Using the property of differentiability in quadratic mean we deduce that S2 ⊂

⋂
ε≤ε0

D2
ε .

Let us define Θ̃1 consisting of the elements (γ0, π, z) ∈ Θ2 such that:

• ∃J0 ⊂ {1, . . . , q2} : ∀j ∈ J0, πj = 0;
• ∀i ∈ {1, . . . , q1}, ∃Ji ⊂ {1, . . . , q2} : ∀j ∈ Ji, zj = z0

i and
∑

j∈Ji
πj = π0

i ;

• (Ji)i=0,...,q1 is a partition of {1, . . . , q2}.

By Assumption 10 and the remark that follows, it suffices to prove that converging subsequences θn ∈ Θ2

such that H(pθn , p0) → 0 have their limit, say θ = (γ, π, z), in Θ̃1. By application of Fatou’s lemma and first
part of Assumption 11, H(pθn , pθ0) → 0 implies that pθ = pθ0 µ-a.e. By Assumption 9, we know that γ = γ0

and
∑q2

i=1 πiαzi =
∑q1

i=1 π0
i αz0

i
. Set Ji =

{
j ∈ {1, . . . , q2}, zj = z0

i

}
and J0 = {1, . . . , q2} \ (∪q1

i=1Ji). Since
we assumed that pθ0 has exactly q1 populations, we deduce that (Ji)i=0,...,q1 is a partition of {1, . . . , q2} and
consequently that θ ∈ Θ̃1.
According to previous remark, it suffices to characterize limits of spπ,v,z as v = (γ, α,u, ρ) tends to 0, z tends
to zlim and for vectors π such that for all i = 1, . . . , q1 we have

∑
j∈Ji

πi,j = π0
i . A Taylor series with Lagrange

remainder of the function v 7→ √
pπ,v,z at the point 0 yields

spπ,v,z =

√
pπ,v,z

pθ0
− 1

H(pπ,v,z, pθ0)
=

∫ 1

0
〈v, R(π, tv, z)〉dt∥∥∥

∫ 1

0
〈v, R(π, tv, z)〉dt

∥∥∥
2

.

Now we can prove that 〈v, R(π, 0, zlim)〉 = s2(U,α,ρ, zlim) where we set U =
((

ui,jπi,j

π0
i

)
i=1,...,q1;j=1,...,|Ji|

, γ

)

and for any i = 1, . . . , q1, αi =
∑

j∈Ji
αi,j . Observing that

lim
v→0,z→zlim

∥∥∥∥spπ,v,z −
s2(U,α, ρ, zlim)

‖s2(U,α, ρ, zlim)‖2

∥∥∥∥
2

≤ 2 lim
v→0

sup
π,z

‖〈v,
∫ 1

0
(R(π, tv, z)−R(π,0, z)) dt〉‖2
‖〈v, R(π,0, z)〉‖2
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and applying second part of Assumption 11, we conclude that
⋂

ε≤ε0
D2

ε ⊂ S2.

Proof of Proposition 5. Applying the characterization obtained along the proof of Proposition 4, it suffices
to upper bound the bracketing numbers for the class {spπ,v,z ,v → 0}. Arguments that follow are inspired by
Lemma 6.11 in [van der Vaart, 1999] which gives a sufficient condition for parametric classes to be Donsker.
We use brackets of the type [sp − em, sp + em] for p of the form of some pπ,v,z. Their L2(pθ0µ)-size is equal to
2e‖m‖2. Taking into account Assumption 12, we can prove that the class is covered if (π,v, z) ranges over a
grid of mesh width e

1
β over Θ2. So we can deduce that there exists a constant (const) depending only on Θ2

such that the bracketing numbers satisfy

N[ ]

(
e‖m‖2, {sp}, L2(pθ0µ)

) ≤ (const)
(

diamΘ2

e
1
β

)dim(Θ2)

.
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Probab. Statist., 6, 897–906.

[Gassiat, Keribin, 2000] Gassiat, E. and Keribin, C. (2000). The likelihood ratio test for the number of components in a mixture
with Markov regime , 2000. iESAIM P&S.

[Garel, 2001] Garel, B. (2001), Likelihood Ratio Test for Univariate Gaussian Mixture, J. Statist. Plann. Inference, 96(2), 325–350.
[Garel, 2005] Garel, B. (2005), Asymptotic theory of the likelihood ratio test for the identification of a mixture, J. Statist. Plann.
Inference, 131(2), 271–296.

[Ghosal and van der Vaart, 2001] Ghosal, S. and van der Vaart, A. W. (2001) Entropies and rates of convergence for maximum
likelihood and Bayes estimation for mixtures of normal densities, Ann. Statist., 29 (5), 1233–1263.

[Ghosh and Sen, 1985] Ghosh, J. and Sen, P. (1985), On the asymptotic performance of the log likelihood ratio statistic for the
mixture model and related results, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, vol. II,
789–806, Wadsworth, Belmont, CA.

[Hall and Stewart, 2005] Hall, P. and Stewart, M. (2005), Theoretical analysis of power in a two-component normal mixture model.
J. Statist. Plann. Inference 134 (1), 158–179.



TITLE WILL BE SET BY THE PUBLISHER 27

[Hartigan, 1985] Hartigan, J.A. (1985), A failure of likelihood asymptotics for normal mixtures, In Proceedings of the Berkeley
conference in honor of Jerzy Neyman and Jack Kiefer (Berkeley, Calif., 1983), Vol. II, 807–810, Wadsworth, Belmont, CA.

[Henna, 2005] Henna, J. (2005), Estimation of the number of components of finite mixtures of multivariate distributions, Ann.
Inst. Statist. Math., 57 (4), 655–664.

[James et al., 2001] James, L.F., Priebe, C.E., and Marchette, D.J. (2001), Consistent Estimation of Mixture Complexity, Ann.
Statist., 29, 1281–1296.

[Keribin, 2000] Keribin, C. (2000). Consistent estimation of the order of mixture models. Sankhyā Ser. A, 62(1) 49–66
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