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Abstract

We study a problem of model selection for data produced by two dif-
ferent context tree sources. Motivated by linguistic questions, we consider
the case where the probabilistic context trees corresponding to the two
sources are finite and share many of their contexts. In order to understand
the differences between the two sources, it is important to identify which
contexts and which transition probabilities are specific to each source. We
consider a class of probabilistic context tree models with three types of
contexts: those which appear in one, the other, or both sources. We use a
BIC penalized maximum likelihood procedure that jointly estimates the
two sources. We propose a new algorithm which efficiently computes the
estimated context trees. We prove that the procedure is strongly consis-
tent. We also present a simulation study showing the practical advantage
of our procedure over a procedure that works separately on each dataset.

Key words: Context Tree Models, Variable Length Markov Chains,
Penalized Maximum Likelihood, joint estimation, BIC.

1 Introduction

We assign probabilistic context tree models to data produced by two dif-
ferent sources on the same finite alphabet A. Probabilistic context tree
models were first introduced in Rissanen (1983) as a flexible and parsi-
monious model for data compression. Originally called by Rissanen finite
memory source or probabilistic tree, this class of models recently became
popular in the statistics literature under the name of Variable Length
Markov Chains (VLMC) Bühlmann & Wyner (1999). The idea behind
the notion of variable memory models is that, given the whole past, the
conditional distribution of each symbol only depends on a finite part of
the past and the length of this relevant portion is a function of the past it-
self. Following Rissanen we call context the minimal relevant part of each
past. The set of all contexts satisfies the suffix property which means that
no context is a proper suffix of another context. This property allows us
to represent the set of all contexts as a rooted labeled tree, by reading
the contexts’ symbols from the nodes to the root. With this representa-
tion, the process is described by the tree of all contexts, called context
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tree, together with a family of probability measures on A indexed by the
contexts. In this work we shall only consider finite context trees. The
probability distribution of a context gives the transition probability to
the next symbol from any past having this context as a suffix. From now
on, the pair composed by the context tree and its family of probability
measures will be called probabilistic context tree.

The issue we consider here was suggested by a linguistic case study
presented in Galves et al. (2009). This paper addresses the problem of
characterizing rhythmic patterns displayed by two variants of Portuguese:
Brazilian and European. This is done by considering two data sets consist-
ing of encoded newspaper texts in two languages. Each data set was anal-
ysed separately using a penalized maximum likelihood procedure which
selected two different probabilistic context trees corresponding to the two
variants of Portuguese. A striking feature emerging from this analysis
is the fact that most of the contexts and corresponding transition prob-
abilities are common to the two dialects of Portuguese. Obviously the
discriminant features characterizing the different rhythms implemented
by the two dialects are expressed by the contexts which appear in one but
not in the other model.

To identify those discriminant contexts, the first idea is to estimate
separately the context tree for each set of observations, using some classi-
cal context tree estimator like the algorithm Context Rissanen (1983) or
a penalized maximum likelihood procedure as in Csiszár & Talata (2006),
and then compare the obtained trees. This is precisely what is done in
Galves et al. (2009). However, such an approach does not use the infor-
mation that the two sources share some identical contexts and probability
distributions. We propose in this paper a selection method using penalized
maximum likelihood for the whole set of observations.

In this paper, we argue that a joint model selection more efficiently
identifies the relevant features and estimates the parameters. The joint
estimation of the two probabilistic context trees is accomplished by a pe-
nalized maximum likelihood criterium. Namely, we distinguish two types
of contexts: those which appear in both sources with the same probability
distribution (we call them shared contexts), and the others. The latters
appear either in only one of the two sources, or appear in both sources
but with different associated probability distributions.

At first sight the huge number of models in the class suggests that such
a procedure is intractable. Actually this is not the case. We show that the
Context Tree Maximizing procedure, which has been described in Willems
et al. (1995), can be adapted to recursively find the maximizer: we propose
a new algorithm to efficiently compute the estimated context trees. We
prove the strong consistency of the procedure. Our proof is inspired by
some arguments given in Csiszár & Talata (2006), which handles the case
of a single (but possibly infinite) context tree source estimation; as is
Garivier (2006), the size of the trees is not bounded in the maximization
procedure. We also present a simulation study showing the significant
advantage of our procedure, for the estimation of the shared contexts,
over a procedure that works separately on each dataset.

The paper is organized as follows. In Section 2, we present the joint
context tree estimation problem and the notation. Section 3 is devoted to
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the presentation of the penalized maximum likelihood estimator we study
in this paper. For an appropriate choice of the penalty function, a strong
consistency result is given. We describe in Section 4 how to efficiently
compute the joint estimator. This is a challenging task, as the number
of possible models grows exponentially with the sample size. We show
how to take advantage of the recursive tree structure to build an efficient
greedy algorithm. The value of this estimator is experimentally shown in
Section 5 through a simulation study. The proof of the consistency result
is given in Appendix B. It relies on a technical result on the Krichevsky-
Trofimov distribution that is given in Appendix A.

2 Notation

Let A be a finite alphabet, and A∗ = ∪n∈NAn the set of all possible
strings including the empty string ε. Denote also by A+ = ∪n≥1A

n the
set of non-empty strings. A string s ∈ A+ has length |s| = n if s ∈ An,
and we note s = s1:|s|. The empty string has length 0. The concatenation
of strings s and s′ is denoted by ss′. s′ is a suffix of s if there exists a
string u such that s = us′; it is a proper suffix if u 6= ε.

A tree τ is a non-empty subset of A∗ such that no s1 ∈ τ is a suffix of
any other s2 ∈ τ . The depth of a finite tree τ is defined as

D(τ) = max
{
|s| : s ∈ τ

}
.

A tree is complete if each node except the leaves has exactly |A| chil-
dren (here |A| denotes the number of elements in A). Note that {ε} is a
complete tree.

Let PA be the (|A| − 1)-dimensional simplex, that is the subset of
vectors p = (pa)a∈A in R|A| such that pa ≥ 0, a ∈ A and

∑
a∈A pa = 1.

To define a stationary context tree source, we need a complete tree τ and
a parameter θ ∈ PτA, that is θ = (θ(s))s∈τ where, for any s ∈ τ , θ(s) ∈ PA.
The A-valued stochastic process Z = (Zn)n∈Z is said to be a stationary
context-tree source (or variable length Markov Chain) with distribution
Pτ,θ if for any semi-infinite sequence denoted by z−∞:0, there exists one
(and only one) s ∈ τ such that s is a suffix of z−∞:−1, and such that, for
any n ≥ |s|, if the event {Z−n:−1 = z−n:−1} has positive probability, the
conditional distribution of Z0 given {Z−n:−1 = z−n:−1} is θ(s) and thus
depends only on z−|s|:−1. Following Rissanen, an element of τ is called a
context. In the case when τ = {ε}, the source is called memoryless.

For any s ∈ τ , any integer n and any z1:n ∈ An, denote by S(s; z1:n)
the string with the symbols that appear after an occurrence of s in the
sequence z1:n. Formally,

S(s; z1:n) =
⊙

i:zi−|s|:i−1=s

zi ,

where � denotes the concatenation operator. When zi−|s|:i−1 = s, we say
that z1 is in context s. Besides, denote by I(z1:n; τ) the set of indices i of
z1:n that are not in context s for any s ∈ τ :

I(z1:n; τ) = {i ∈ {1, . . . , n} : ∀s ∈ τ, z(i−|s|)∨1:i−1 6= s} .
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Then, if Pτ,θ (Z1:n = z1:n) > 0,

Pτ,θ (Z1:n = z1:n) =
∏

i∈I(z1:n;τ)

Pτ,θ (Zi = zi|Z1:i−1 = z1:i−1)

∏
s∈τ

Pθ(s) (S(s; z1:n)) ,

where for ϑ ∈ PA, Pϑ denotes the probability distribution of the memo-
ryless source on A with parameter ϑ.

Assume that X = (Xn)n∈Z and Y = (Yn)n∈Z are independent sta-
tionary context tree sources. Let us define subsets σ0, σ1 and σ2 of A∗,
and parameters θ0 = (θ0(s))s∈σ0 , θ1 = (θ1(s))s∈σ1 , θ2 = (θ2(s))s∈σ2 ,
θi(s) ∈ PA, s ∈ σi, i = 0, 1, 2 by the following properties: X has distribu-
tion Pτ1,(θ0,θ1), Y has distribution Pτ2,(θ0,θ2), and

σ1 ∩ σ0 = ∅, σ2 ∩ σ0 = ∅, (1)

τ1 := σ1 ∪ σ0 is a complete tree, (2)

τ2 := σ2 ∪ σ0 is a complete tree, (3)

∀s ∈ σ1 ∩ σ2, θ1 (s) 6= θ2 (s) . (4)

σ0 is the set of shared contexts, that is the set of contexts which intervene
in both sources with the same associated probability distributions.

Given two samples X1:n = (X1, . . . , Xn) and Y1:m = (Y1, . . . , Ym) gen-
erated by X and Y respectively, the aim of this paper is to propose a
statistical method for the joint estimation of σ0, σ1 and σ2, and conse-
quently of θ0, θ1 and θ2.

This is a model selection problem, in which the collection of models
is described by possible σ0, σ1 and σ2,’s and for fixed σ0, σ1 and σ2 the
model consists of all Pσ1∪σ0,(θ0,θ1) and Pσ2∪σ0,(θ0,θ2) for any possible θi,
i = 0, 1, 2.

We propose in the next section a selection method using penalized
maximum likelihood for the entire set of observations.

3 The joint Context Tree Estimator

3.1 Likelihood in context-tree models

For any (σ0, σ1, σ2) satisfying (1), (2) and (3), define M(σ0,σ1,σ2) as the
set of distributions Q on AN ×AN of form

Q = Pσ1∪σ0,(θ0,θ1) ⊗Pσ2∪σ0,(θ0,θ2) := QX ⊗QY

for some θ0 = (θ0(s))s∈σ0 , θ1 = (θ1(s))s∈σ1 , θ2 = (θ2(s))s∈σ2 , such that
θi(s) ∈ PA, s ∈ σi, i = 0, 1, 2. Here we do not assume (4).
For any integers n and m, any x1:n ∈ An and y1:m ∈ Am and any string s,
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denote by S(s;x1:n; y1:m) = S(s;x1:n)S(s; y1:m) the concatenation of the
xi’s in context s, and of the yi’s in context s. One has :

Q (X1:n = x1:n;Y1:m = y1:m) =∏
i∈I(x1:n;σ1∪σ0)

Pσ1∪σ0,(θ0,θ1) (Xi = xi|X1:i−1 = x1:i−1)

∏
i∈I(y1:m;σ2∪σ0)

Pσ2∪σ0,(θ0,θ2) (Yi = yi|Y1:i−1 = y1:i−1)

∏
s∈σ0

Pθ0(s) (S(s;x1:n; y1:m))
∏
s∈σ1

Pθ1(s) (S(s;x1:n))
∏
s∈σ2

Pθ2(s) (S(s; y1:m)) .

(5)

Let us now note for any s ∈ A∗ and any a ∈ A:

Nn,X (s, a) =

n∑
i=|s|+1

1Xi−|s|:i−1=s,Xi=a, Nn,X (s) =

n∑
i=|s|+1

1Xi−|s|:i−1=s

where it is understood that an empty sum is 0, and

Nm,Y (s, a) =

m∑
i=|s|+1

1Yi−|s|:i−1=s,Yi=a, Nm,Y (s) =

m∑
i=|s|+1

1Yi−|s|:i−1=s.

Observe that Nn,X (ε) = n and Nm,Y (ε) = m. Then, when maximizing
over M(σ0,σ1,σ2) the likelihood as given by (5), we shall use the approxi-
mation that the first two terms may be maximized as free parameters (so
that their maximization gives 1). Thus we shall use the pseudo maximum
log-likelihood

`n,m
(
σ0, σ1, σ2

)
=
∑
s∈σ1

∑
a∈A

Nn,X (s, a) log

(
Nn,X (s, a)

Nn,X (s)

)

+
∑
s∈σ2

∑
a∈A

Nm,Y (s, a) log

(
Nm,Y (s, a)

Nm,Y (s)

)

+
∑
s∈σ0

∑
a∈A

[Nn,X (s, a) +Nm,Y (s, a)] log

(
Nn,X (s, a) +Nm,Y (s, a)

Nn,X (s) +Nm,Y (s)

)
,

where by convention for any non negative integer p, 0 log 0
p

= 0. Here
log u denotes the logarithm of u in base 2.
For any string s, we shall write QX (·|s) and QY (·|s) the probability
distributions on A given by: ∀a ∈ A,

QX (a|s) = Q
(
X|s|+1 = a|X1:|s| = s

)
,

QY (a|s) = Q
(
Y|s|+1 = a|Y1:|s| = s

)
,

and Q̂X (·|s), Q̂Y (·|s) and Q̂XY (·|s) the probability distributions on A
given by: ∀a ∈ A

Q̂X (a|s) =
Nn,X (s, a)

Nn,X (s)
, Q̂Y (a|s) =

Nm,Y (s, a)

Nm,Y (s)

Q̂XY (a|s) =
Nn,X (s, a) +Nm,Y (s, a)

Nn,X (s) +Nm,Y (s)
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whenever Nn,X(s) > 0, Nm,Y (s) > 0 and Nn,X(s) +Nm,Y (s) > 0 respec-
tively. In the same way, with some abuse of notation, we note QX and
QY any |s|-marginal probability distributions on A|s| defined respectively
by QX and QY .

3.2 Definition of the joint estimator

Let pen(·) be a function from N to R, which will be called penalty func-
tion, and define the estimators σ̂0, σ̂1 and σ̂2 as a triple of maximizers
of

Cn,m (σ0, σ1, σ2) = `n,m (σ0, σ1, σ2)

− (|A| − 1)

2
(|σ0|pen(n+m) + |σ1|pen(n) + |σ2|pen(m))

over all possible (σ0, σ1, σ2) satisfying (1), (2) and (3). The BIC estimator
corresponds to the choice pen(·) = log(·). Notice that it is enough to
restrict the maximum over sets σ0, σ1, σ2 that have strings s with length
|s| ≤ n ∨ m − 1. Indeed, if a string s has length |s| ≥ n, then for any
a ∈ A, Nn,X(s, a) = 0, if s has length |s| ≥ m, then for any a ∈ A,
Nm,Y (s, a) = 0.
For any integer D, denote

(σ̂D,0, σ̂D,1, σ̂D,2) = arg maxCn,m (σ0, σ1, σ2)

where the maximization is over all (σ0, σ1, σ2) satisfying (1), (2) and (3)
and such that for any s ∈ σ0∪σ1∪σ2, |s| ≤ D. Then, as explained before,
the joint estimator (σ̂0, σ̂1, σ̂2) is seen to be:

(σ̂0, σ̂1, σ̂2) = (σ̂n∨m−1,0, σ̂n∨m−1,1, σ̂n∨m−1,2) .

3.3 Consistency of the joint estimator

Now assume that X and Y are independent with distribution

Q
∗ = Pσ∗1∪σ∗0 ,(θ∗0 ,θ∗1 ) ⊗Pσ∗2∪σ∗0 ,(θ∗0 ,θ∗2 )

where σ∗0 , σ∗1 , σ∗2 are finite subsets of A∗ satisfying (1), (2) and (3), and
such that (4) holds.

Theorem 1 Assume that n and m go to infinity in such a way that

lim
n→∞

n

m
= c, 0 < c < +∞. (6)

Assume moreover that for any integer k,

pen (k) = log k.

Then the joint estimator is consistent, i.e.

(σ̂0, σ̂1, σ̂2) = (σ∗0 , σ
∗
1 , σ
∗
2)

Q∗-eventually almost surely as n goes to infinity.
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We have presented our joint estimator with a generic penalty pen(·), and
Section 4 describes a procedure for computing efficiently this estimator in
the general case. However, the consistency result only covers the choice of
the BIC penalty Schwarz (1978), that is the penalty which is the logarithm
of the number of observations times half the number of free parameters.
The proof of Theorem 1 is given in Section B.

4 An Efficient algorithm for the joint es-
timator

In this section, we propose an efficient algorithm for the computation of
the joint estimator with no restriction on the depth of the trees. The
recursive tree structure makes it possible to maximize the penalized max-
imum likelihood criterion without considering all possible models (which
are far too numerous). The greedy algorithm we present here can be
seen as a non-trivial extension of the Context Tree Maximization algo-
rithm that was first presented in Willems et al. (1995), see also Csiszár
& Talata (2006). For each possible node s of the estimated tree, the al-
gorithm first computes recursively, from the leaves to the root, indices
χs(X1:n), χs(Y1:m) and χs(X1:n;Y1:m). In a second step, the estimated
tree is constructed from the root to the leaves according to these indices.

For any string s let

P̂s (X1:n) =
∏
a∈A

(
Nn,X (s, a)

Nn,X (s)

)Nn,X (s,a)

,

P̂s (Y1:m) =
∏
a∈A

(
Nm,Y (s, a)

Nm,Y (s)

)Nm,Y (s,a)

,

and let

P̂s (X1:n;Y1:m) =
∏
a∈A

(
Nn,X (s, a) +Nm,Y (s, a)

Nn,X (s) +Nm,Y (s)

)Nn,X (s,a)+Nm,Y (s,a)

where again it is understood that for any non negative integer n, ( 0
n

)0 = 1.

Notice that, because of possible side effects, P̂s (X1:n;Y1:m) is not in gen-

eral equal to P̂s (X1:nY1:m).

Step 1: computation of the indices

For any set of strings σ, we denote by σs the set of strings us, u ∈ σ:
σs = {us : u ∈ σ}. Let σ be a tree, and let

Rσ;s (X1:n) =
∑
u∈σs

log P̂u (X1:n)− |σ|pen (n) ,

Rσ;s (Y1:m) =
∑
u∈σs

log P̂u (Y1:m)− |σ|pen (m) ,
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Rσ;s (X1:n;Y1:m) =
∑
u∈σs

log P̂u (X1:n;Y1:m)− |σ|pen (n+m) .

Let D be an upper-bound on the size of the candidate contexts in σ0 ∪
σ1 ∪ σ2. Note that it is sufficient to consider D = n∨m to investigate all
possible trees. Define for any string of length |s| = D:

Vs (X1:n) = R{ε};s (X1:n) , χs (X1:n) = 0,

Vs (Y1:m) = R{ε};s (Y1:m) , χs (Y1:m) = 0,

Vs (X1:n;Y1:m) = max
{
R{ε};s (X1:n;Y1:m) ;R{ε};s (X1:n) +R{ε};s (Y1:m)

}
,

and

χs (X1:n;Y1:m) =

{
1 , if Vs (X1:n;Y1:m) = R{ε};s (X1:n;Y1:m)
2 , else.

Then compute recursively for all s such that |s| < D:

Vs (X1:n) = max

{
R{ε};s (X1:n) ;

∑
a∈A

Vas (X1:n)

}
,

and

χs (X1:n) =

{
0 , if Vs (X1:n) = R{ε};s (X1:n)
1 else,

Vs (Y1:m) = max

{
R{ε};s (Y1:m) ;

∑
a∈A

Vas (Y1:m)

}
,

and

χs (Y1:m) =

{
0 , if Vs (Y1:m) = R{ε};s (Y1:m)
1 else.

Define also

Vs (X1:n;Y1:m) = max


R{ε};s (X1:n;Y1:m)
Vs (X1:n) + Vs (Y1:m)∑
a∈A Vas (X1:n;Y1:m) ,

and

χs (X1:n;Y1:m) =


1 , if Vs (X1:n;Y1:m) = R{ε};s (X1:n;Y1:m) ,
2 , if Vs (X1:n;Y1:m) = Vs (X1:n) + Vs (Y1:m) ,
3 else.

For any (σ0, σ1, σ2) satisfying (1), (2) and (3), define

R(σ1,σ2,σ0);s (X1:n;Y1:m) = Rσ1;s (X1:n)+Rσ2;s (Y1:m)+Rσ0;s (X1:n;Y1:m) .

Notice that

R(σ1,σ2,∅);s (X1:n;Y1:m) = Rσ1;s (X1:n) +Rσ2;s (Y1:m)

and
R(∅,∅,σ0);s (X1:n;Y1:m) = Rσ0;s (X1:n;Y1:m) .

Moreover, remark that

• either σ1 and σ2 are the empty set and σ0 is not the empty set,

• or σ0 is the empty set and neither σ1 nor σ2 are the empty set,

• or none of them is the empty set.
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Step 2: construction of the estimated trees

Once the indicators χs (X1:n) and χs (X1:n) have been computed, the
estimated sets can be computed recursively from the root to the leaves.
Recall that Csiszar and Talata Csiszár & Talata (2006) prove that for any
string s such that |s| ≤ D:

Vs (X) = max
σ

Rσ;s (X) (7)

and
Vs (Y ) = max

σ
Rσ;s (Y ) . (8)

Call σX1:n (s) (resp. σY1:m (s)) a tree maximizing (7) (resp. (8)). σX1:n (s)
and σY1:m (s) can be computed recursively as follows: start with the
strings s of length D;

• if χs (X1:n) = 0, then σX1:n (s) = {ε},
• if χs (X1:n) = 1, then σX1:n (s) = ∪a∈AσX1:n (as) a,

• if χs (Y1:m) = 0, then σY1:m (s) = {ε},
• if χs (Y1:m) = 1, then σY1:m (s) = ∪a∈AσY1:m (as) a.

Namely, for any string s such that |s| ≤ D, define σ1 (s), σ2 (s) and
σ0 (s) as:

• if χs (X1:n;Y1:m) = 1, then σ1 (s) = σ2 (s) = ∅ and σ0 (s) = {ε},
• if χs (X1:n;Y1:m) = 2, then σ1 (s) = σX1:n (s), σ2 (s) = σY1:m (s) and
σ0 (s) = ∅,

• if χs (X1:n;Y1:m) = 3, then σ1 (s) = ∪a∈Aσ1 (as) a, σ2 (s) = ∪a∈Aσ2 (as) a
and σ0 (s) = ∪a∈Aσ0 (as) a.

Validity of the algorithm

The next proposition shows that the two-step procedure described above
computes the maximum pseudo-likelihood estimator in the joint model.

Proposition 1 For any string s such that |s| ≤ D,

Vs (X1:n;Y1:m) = maxR(σ1,σ2,σ0);s (X1:n;Y1:m)

where the maximum is over all (σ0, σ1, σ2) that verify (1), (2) and (3) and
such that

∀u ∈ σ1 ∪ σ2 ∪ σ0, |u|+ |s| = D.

In particular,

σ̂D,0 = σ0 (ε) , σ̂D,1 = σ1 (ε) , σ̂D,2 = σ2 (ε) .

Proof:
The proof is by induction. Observe first that

Vs (X1:n) + Vs (Y1:m) = max
σ1,σ2

R(σ1,σ2,∅);s (X1:n;Y1:m) .

Now, if |s| = D, then either σ1 = σ2 = {ε} and σ0 = ∅, or σ1 = σ2 = ∅
and σ0 = {ε}, and we have

Vs (X1:n;Y1:m) = max
{
R({ε},{ε},∅);s (X1:n;Y1:m) ;R(∅,∅,{ε});s (X1:n;Y1:m)

}
.
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Let us now take |s| < D and assume that Proposition 1 is true for all
strings as, a ∈ A. The maximum of the R(σ1,σ2,σ0);s (X1:n;Y1:m) over
all (σ0, σ1, σ2) that verify (1), (2) and (3) and such that ∀u ∈ σ1 ∪ σ2 ∪
σ0, |u|+ |s| = D, is reached by a triple (σ1, σ2, σ0) such that:

• either σ0 = {ε}, in which case σ1 and σ2 are necessarily empty and

R(σ1,σ2,σ0);s (X1:n;Y1:m) = R(∅,∅,{ε});s (X1:n;Y1:m) = R{ε};s (X1:n;Y1:m) ;

• or at least one among σ1 and σ2 is equal to {ε}: then σ0 = ∅ and

R(σ1,σ2,σ0);s (X1:n;Y1:m) = Rσ1;s(X1:n)+Rσ2;s(Y1:m) = Vs(X1:n)+Vs(Y1:m)

as in Csiszár & Talata (2006);

• or σ1, σ2, σ0 are all different from {ε}, and then each σi, 0 ≤ i ≤ 2
can be written as σi = ∪a∈Aσi(a)a; note that it is possible that,
for some i ∈ {0, 1, 2} and some a ∈ A, σi(a) is empty, or even that
σi is empty. In any case, for each a ∈ A it is easily checked that
σ1(a), σ2(a) and σ0(a) satisfy (1), (2) and (3). Thus

R(σ1,σ2,σ0);s (X1:n;Y1:m) =
∑
a∈A

R(σ1(a),σ2(a),σ0(a));as (X1:n;Y1:m)

=
∑
a∈A

max
σ̄1,σ̄2,σ̄0

R(σ1,σ2,σ0);as (X1:n;Y1:m)

=
∑
a∈A

Vas (X1:n;Y1:m)

by the induction hypothese.

To conclude the proof, it is enough to be reminded that, by definition,

Vs (X1:n;Y1:m) = max

{
R{ε};s (X1:n;Y1:m) ,

Vs (X1:n) + Vs (Y1:m) ,
∑
a∈A

Vas (X1:n;Y1:m)

}
.

Obviously the computational complexity of this procedure is propor-
tional to the number of candidate nodes s, which is equal to the number of
distinct subsequences of X1:n and Y1:m, and hence quadratic in n and m.
However, if necessary, it is possible to obtain a linear complexity algorithm
by using compact suffix trees, as explained in Garivier (2006).

5 Simulation study

In this section, we experimentally show the value of joint estimation when
the two sources X and Y share some contexts. We compare the results
obtained by the BIC joint-estimator described above with the following di-
rect approach. First, we estimate τX using the standard BIC tree estimate
τ̂X = τ̂X(X1:n), and we independently estimate τY using τ̂Y = τ̂Y (Y1:m).
Then, for all contexts s that are present both in τ̂X and in τ̂Y , we compute
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τX τY τX and τY σ0 σ1 σ2 KLX KLY

sep. est. 51% 44% 22% 20% 31% 31% 6.7 10−3 5.7 10−3

joint est. 80% 78% 76% 77% 90% 90% 3.2 10−3 2.3 10−3

Figure 1: Comparative performance of separate and joint estimation in a fa-
vorable case (probabilities of correct estimation). KLX and KLY denote
KL(QX |Q̂X) and KL(QY |Q̂Y ), respectively.

the chi-squared distance of the conditional empirical distributions: if this
distance is smaller than a given threshold, we decide that s is a shared
context. The value of the threshold was chosen in order to maximize the
frequency of correct estimation.

5.1 A particularly favorable example

First consider the following case:

• X and Y are {1, 2}-valued context-tree sources;

• QX is defined by the conditional distributions QX(X0 = 1|X−1 =
1) = 1/3,QX(X0 = 1|X−2:−1 = 12) = 1/3,QX(X0 = 1|X−2:−1 =
22) = 2/3;

• QY is defined by the conditional distributions QY (Y0 = 1|Y−1 =
1) = 3/4,QY (Y = 0 = 1|Y−2:−1 = 12) = 1/3,QY (Y0 = 1|Y−2:−1 =
22) = 2/3;

• the estimates are computed from X1:n and Y1:m with n = 500 and
m = 1000;

• the probability of correctly identifying the tree by each method is es-
timated by a Monte-Carlo procedure with 1000 replications (margin
of error ≈ 1.5%).

In that example, we hence have σ0 = {12, 22}, σ1 = {1} and σ2 = {1}.
We compare our joint estimation procedure with separate estimation using
the following criteria:

• the probability of correctly identifying τX (resp. τY );

• the probability of correctly identifying simultaneously τX and τY ;

• the probability of correctly identifying σ0, σ1, σ2;

• the Kullback-Leibler divergence rates KL(QZ |Q̂Z) between the sta-
tionary processesQZ and Q̂Z for Z ∈ {X,Y }, which are computated
by using the fact that both X and Y are Markov chains of finite or-
der.

The results are summarized in Figure 1. It appears that the joint es-
timation approach has a significant advantage over separate estimation
on all the criteria considered here, with one restriction: in some cases,
the estimation of either τX or τY can be deteriorated, while the other is
(more significantly) improved. In all cases, the probability of correctly
estimating both τX and τY at the same time is increased.

11



τX τY τX and τY σ0 σ1 σ2 KLX KLY

sep. est. 97% 89% 86% 84% 84% 82% 1.0 10−3 1.3 10−3

joint est. 60% 76% 39% 40% 40% 39% 1.7 10−3 2.0 10−3

Figure 2: Comparative performance of separate and joint estimation in the
unfavourable case (probabilities of correct estimation). KLX and KLY denote
KL(QX |Q̂X) and KL(QY |Q̂Y ), respectively..

5.2 A less favorable example

On the other hand, when X and Y share no (or few) contexts, then the
joint estimation procedure can obviously only deteriorate the separate
estimates by introducing some confusion between similar, but distinct
conditional distributions of X and Y . An example of such a case is the
following:

• X and Y are {1, 2}-valued context-tree sources;

• QX is defined by the conditional distributions QX(X0 = 1|X−1 =
1) = 1/2,QX(X0 = 1|X−1 = 2) = 2/3;

• QY is defined by the conditional distributions QY (Y0 = 1|Y−1 =
1) = 1/2,QY (Y0 = 1|Y−2:−1 = 12) = 3/5,QY (Y0 = 1|Y−2:−1 =
22) = 3/4;

• the estimates are computed from X1:n and Y1:m with n = 1000 and
m = 1500;

• the probability of correctly identifying the tree by each method is es-
timated by a Monte-Carlo procedure with 1000 replications (margin
of error ≈ 1.5%).

In that example, σ0 = {1}, σ1 = {2} and σ2 = {12, 22}. The results are
summarized in Figure 2. In this case, QX and QY are quite close, and
the joint estimation procedure tends to merge them into a single, common
distribution. Thus, the probability of correctly inferring the structure of
QX and QY is significantly deteriorated.

5.3 Influence of the penalty term

A natural question is whether the performance of joint (or even sepa-
rate) estimation can be significantly improved by using other choices of
penalty functions, especially choices of the form pen(n) = λ log(n) for
some positive λ. The BIC choice λ = 1 may be improved by using a
recent data-driven procedure called slope heuristic, see Birgé & Massart
(2007). However, in the present case, the attempts to tune the penalty
function by using the slope heuristic merely resulted in a confirmation
that the BIC choice could not be significantly improved on the examples
considered here. In fact, in addition to the difficulty to detect the dimen-
sion gap and thus the minimal penalty in our simulations (which could
be expected, as the number of models is very large whereas the sample
are not huge), the ideal penalty estimator was never observed to be very
different from λ = 1.

12



5.4 Discussion

The simulation study strongly indicates that the joint estimation proce-
dure has a significantly improved performance when the two sources do
share contexts and conditional distributions which appear with a signif-
icant probability in the samples. On the other hand, when the sources
share no or few contexts, the procedure may introduce some confusion
between the estimates, as could be expected.

When the goal is joint estimation, deterioration in the estimation of
one of the trees seems to be the price to pay for better estimating the
other tree, and the net effect is positive.

The predictive power of the estimated model is reflected by a measure
of discrepancy between the true law of the process and the law of the
estimated distribution. We chose to consider Kullback-Leibler divergence,
as it is naturally associated to logarithmic prediction loss in information
theory. As expected, a significant improvement is observed for the joint
estimator in presence of shared contexts.
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Appendix

A Technical Lemma

Let PU denote the probability distribution of the memoryless source with
uniform marginal distribution on A. For a context tree τ and a string
z1:k ∈ Ak denote by Sτ (ω, z1:k) the concatenation of the symbols that
are not in context s for any s ∈ τ , that is Sτ (ω, z1:k) =

⊙
i∈I(z1:k,τ) zi.
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Then the Krichevsky-Trofimov Krichevsky & Trofimov (1981) probability
distribution is defined as

KT(σ0,σ1,σ2) (x1:n; y1:m) = PU (Sσ1∪σ0(ω;x1:n))PU (Sσ2∪σ0(ω; y1:m))∏
s∈σ0

KT (S(s;x1:n; y1:m))
∏
s∈σ1

KT (S(s;x1:n))
∏
s∈σ2

KT (S(s; y1:m)) ,

(9)

where

KT (S(s;x1:n; y1:m)) =
Γ
(
|A|
2

)∏
a∈A Γ

(
Nn,x (s, a) +Nn,y (s, a) + 1

2

)
Γ
(

1
2

)|A|
Γ
(
Nn,x (s) +Nn,y (s) + |A|

2

) ,

KT (S(s;x1:n)) =
Γ
(
|A|
2

)∏
a∈A Γ

(
Nn,x (s, a) + 1

2

)
Γ
(

1
2

)|A|
Γ
(
Nn,x (s) + |A|

2

) ,

KT (S(s; y1:m)) =
Γ
(
|A|
2

)∏
a∈A Γ

(
Nn,y (s, a) + 1

2

)
Γ
(

1
2

)|A|
Γ
(
Nn,y (s) + |A|

2

) .

Recall that for any tree σ, D (σ) is its depth :

D (σ) = max {|s| : s ∈ σ} .

Following Willems Willems et al. (1995) (see also Gassiat (2010), and
references therein), Jensen’s inequality leads to the following result:

Lemma 1 For any x1:n and any y1:m,

− logKT(σ0,σ1,σ2) (x1:n; y1:m) ≤ −`n,m (σ0, σ1, σ2)

+ [D (σ0 ∪ σ1) +D (σ0 ∪ σ2) + |σ0|+ |σ1|+ |σ2|] log |A|

+
|A| − 1

2

{
|σ0| log

(
n+m

|σ0|

)
+ |σ1| log

(
n

|σ1|

)
+ |σ2| log

(
m

|σ2|

)}

B Proof of Theorem 1

The proof is divided into four parts.

1. We first prove that eventually almost surely, |σ̂0| ≤ kn and |σ̂1| ≤ kn
and |σ̂2| ≤ kn with

kn =
logn

log log logn
.

For any (σ0, σ1, σ2) satisfying (1), (2) and (3), define B(σ0,σ1,σ2) as
the set of (x1:n, y1:m) in An+m such that

(X1:n, Y1:m) = (x1:n, y1:m)⇔ (σ̂0, σ̂1, σ̂2) = (σ0, σ1, σ2),

so that

Q
∗ ((σ̂0, σ̂1, σ̂2) = (σ0, σ1, σ2))

=
∑

(x1:n,y1:m)∈B(σ0,σ1,σ2)

Q
∗ ((X1:n, Y1:m) = (x1:n, y1:m)) .

14



If (X1:n, Y1:m) ∈ B(σ0,σ1,σ2), then

`n,m (σ0, σ1, σ2)− (|A| − 1)

2
(|σ0|pen(n+m)+|σ1|pen(n)+|σ2|pen(m))

≥ `n,m (σ∗0 , σ
∗
1 , σ
∗
2)− (|A| − 1)

2
(|σ∗0 |pen(n+m)+|σ∗1 |pen(n)+|σ∗2 |pen(m)),

and using Lemma 1, if (x1:n, y1:m) ∈ B(σ0,σ1,σ2), then

Q
∗ ((x1:n, y1:m)) ≤ 2`n,m(σ∗0 ,σ

∗
1 ,σ
∗
2)

≤ 2`n,m(σ0,σ1,σ2)+
(|A|−1)

2 ((|σ∗0 |−t0)pen(n+m)+(|σ∗1 |−t1)pen(n)+(|σ∗2 |−t2)pen(m))

≤ KT(σ0,σ1,σ2) (x1:n; y1:m) 2H(n,m,t0,t1,t2)

with ti = |σi|, i = 0, 1, 2, and

H
(
n,m, t0, t1, t2

)
=

|A| − 1

2

{
t0 log

(
n+m

t0

)
+ t1 log

(
n

t1

)
+ t2 log

(
m

t2

)}
+

(|A| − 1)

2
((|σ∗0 | − t0)pen(n+m) + (|σ∗1 | − t1)pen(n) + (|σ∗2 | − t2)pen(m))

+ [3t0 + 2t1 + 2t2] log |A|

=
|A| − 1

2

{
− t0 log t0 − t1 log t1 − t2 log t2 + |σ∗0 | log (n+m) +

|σ∗1 | log (n) + |σ∗2 | log (m)
}

+ [3t0 + 2t1 + 2t2] log |A|

using pen(·) = log(·) and using that for a complete tree σ, D(σ) ≤
|σ|.
Thus,

Q
∗ ((σ̂0, σ̂1, σ̂2) = (σ0, σ1, σ2)) ≤ 2H(n,m,t0,t1,t2),

and

Q
∗ (|σ̂0| ≥ kn or |σ̂1| ≥ kn or |σ̂2| ≥ kn)

≤
n∨m∑

t0=kn+1

n∨m∑
t1,t2=0

F (t0, t1, t2) 2H(n,m,t0,t1,t2)

+

n∨m∑
t1=kn+1

n∨m∑
t0,t2=0

F (t0, t1, t2) 2H(n,m,t0,t1,t2)

+

n∨m∑
t2=kn+1

n∨m∑
t0,t1=0

F (t0, t1, t2) 2H(n,m,t0,t1,t2)

where F (t0, t1, t2) is the number of (σ0, σ1, σ2) satisfying (1), (2)
and (3) and such that |σ0| = t0, |σ1| = t1, and |σ2| = t2.
But the number of complete trees with t elements is upper bounded
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by 16t, see Garivier (2006), so that, denoting by
(
b
a

)
≤ 2b the bino-

mial coefficient, one has

F (t0, t1, t2) ≤

(
t0 + t1
t0

)
16t0+t1

(
t0 + t2
t0

)
16t0+t2

≤ 164t0+2t1+2t2 .

Using the fact that for any constant a, −t log t + at is bounded on
R+, and using (6) one gets that for some constants C1, C2 and C3,

Q
∗ (|σ̂0| ≥ kn or |σ̂1| ≥ kn or |σ̂2| ≥ kn) ≤ C12−C2kn log kn+C3 logn.

But

lim
n→+∞

kn log kn
logn

= +∞

so that one gets that for another constant C,

Q
∗ (|σ̂0| ≥ kn or |σ̂1| ≥ kn or |σ̂2| ≥ kn) ≤ C

n2

and using Borel-Cantelli’s Lemma, we obtain that Q∗-eventually
almost surely, |σ̂0| ≤ kn and |σ̂1| ≤ kn and |σ̂2| ≤ kn.

2. We prove that Q∗-eventually almost surely, no context is overesti-
mated.
It is sufficient to prove that, Q∗-almost surely, if (σ0, σ1, σ2) sat-
isfy (1), (2) and (3) and are such that for some i, σi contains some
string that has a proper suffix in σ∗i , there exists (σ̄0, σ̄1, σ̄2) satis-
fying (1), (2) and (3) and such that, eventually, Cn,m(σ̄0, σ̄1, σ̄2) >
Cn,m(σ0, σ1, σ2), so that (σ̂0, σ̂1, σ̂2) 6= (σ0, σ1, σ2).
Consider first the case where σ∗0 is overestimated. Let (σ0, σ1, σ2)
satisfy (1), (2) and (3) and be such that σ0 contains some string
that has a proper suffix in σ∗0 . Let s = av, a ∈ A, be the longest
such string, and let u ∈ σ∗0 be the corresponding suffix of v. For
i ∈ {0, 1, 2}, let Si = A+v ∩ σi and define

σ̄0 = (σ0\S0) ∪ {v} , σ̄1 = (σ1\S1) , σ̄2 = (σ2\S2) .
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Then

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2)

=
∑
b∈A

[Nn,X (v, b) +Nm,Y (v, b)] log

(
Nn,X (v, b) +Nm,Y (v, b)

Nn,X (v) +Nm,Y (v)

)
− |A| − 1

2
log (n+m)

−
∑
w∈S0

{∑
b∈A

[Nn,X (w, b) +Nm,Y (w, b)] log

(
Nn,X (w, b) +Nm,Y (w, b)

Nn,X (w) +Nm,Y (w)

)

− |A| − 1

2
log (n+m)

}

−
∑
w∈S1

{∑
b∈A

Nn,X (w, b) log

(
Nn,X (w, b)

Nn,X (w)

)
− |A| − 1

2
log (n)

}

−
∑
w∈S2

{∑
b∈A

Nm,Y (w, b) log

(
Nm,Y (w, b)

Nm,Y (w)

)
− |A| − 1

2
log (m)

}

By definition of the maximum likelihood, the above expression is
lower-bounded by:

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2)

≥
∑
b∈A

[Nn,X (v, b) +Nm,Y (v, b)] log (Q∗X (b|v))− |A| − 1

2
log (n+m)

−
∑
w∈S0

{∑
b∈A

[Nn,X (w, b) +Nm,Y (w, b)] log
(
Q̂XY (b|w)

)

− |A| − 1

2
log (n+m)

}

−
∑
w∈S1

{∑
b∈A

Nn,X (w, b) log
(
Q̂X (b|w)

)
− |A| − 1

2
log (n)

}

−
∑
w∈S2

{∑
b∈A

Nm,Y (w, b) log
(
Q̂Y (b|w)

)
− |A| − 1

2
log (m)

}

Notice that
Q∗X (·|v) = Q∗Y (·|v) = Q∗X (·|w)

for any w ∈ S0 ∪ S1 ∪ S2.
It follows from part 1 of the proof that we only need to consider trees
σi such that |σi| = o(logn). Notice also that since D(σi) = o(logn),
for any b ∈ A,

Nn,X (v, b) =
∑

w∈S0∪S1

Nn,X (w, b) + o(logn),

Nm,Y (v, b) =
∑

w∈S0∪S2

Nm,Y (w, b) + o(logn).
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Let KL (q1|q2) =
∑
a∈A q1(a) log q1(a)

q2(a)
denotes the Kullback-Leibler

divergence between two probability measures q1 and q2 on A, with
the convention that 0 log(0/x) = 0 for x ≥ 0 and x log(x/0) = +∞
for x > 0. Since the minimum of all positive transition probabilities
in Q∗ is positive, one gets

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2)

≥
∑
w∈S0

∑
b∈A

[Nn,X (w, b) +Nm,Y (w, b)] log

(
Q∗X (b|w)

Q̂XY (b|w)

)

+ (|S0| − 1)
|A| − 1

2
log (n+m)

+
∑
w∈S1

∑
b∈A

Nn,X (w, b) log

(
Q∗X (b|w)

Q̂X (b|w)

)
+ |S1|

|A| − 1

2
log (n)

+
∑
w∈S2

∑
b∈A

Nm,Y (w, b) log

(
Q∗Y (b|w)

Q̂Y (b|w)

)
+ |S2|

|A| − 1

2
log (m)

+ o(logn)

= −
∑
w∈S0

[Nn,X (w) +Nm,Y (w)] KL
(
Q̂XY (·|w) |Q∗X (·|w)

)
+ (|S0| − 1)

|A| − 1

2
log (n+m)

−
∑
w∈S1

Nn,X (w) KL
(
Q̂X (·|w) |Q∗X (·|w)

)
+ |S1|

|A| − 1

2
log (n)

−
∑
w∈S2

Nm,Y (w) KL
(
Q̂Y (·|w) |Q∗Y (·|w)

)
+ |S2|

|A| − 1

2
log (m)

+ o (logn) .

According to typicality Lemma 6.2 of Csiszár & Talata (2006), for
all δ > 0, for all w such that Nn,X(w) ≥ 1 and for all b ∈ A it holds
that, Q∗-eventually almost surely,

∣∣∣Q̂X (b|w)−Q∗X (b|w)
∣∣∣ ≤√ δ log(n)

Nn,X (w)
.

Besides, Lemma 6.3 of Csiszár & Talata (2006) states that

KL
(
Q̂X (·|w) |Q∗X (·|w)

)
≤
∑
b∈A

(
Q̂X (b|w)−Q∗X (b|w)

)2

Q∗X (b|w)
.

Handling similarly the terms involving Q∗Y and Q∗XY , and denoting
q∗min > 0 the minimum of all positive transition probabilities in Q∗,
we obtain that for any δ > 0, Q∗-eventually almost surely for all
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possible (σ0, σ1, σ2) :

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) ≥

− δ|A|
q∗min

|S0| log (n+m) + (|S0| − 1)
|A| − 1

2
log (n+m)

− δ|A|
q∗min

|S1| log (n) + |S1|
|A| − 1

2
log (n)

− δ|A|
q∗min

|S2| log (m) + |S2|
|A| − 1

2
log (m)

which is positive, for all possible (σ0, σ1, σ2), Q∗-eventually almost
surely. This follows from the fact that we consider complete context
trees, and therefore |S0| ≥ 1, |S0|+ |S1| ≥ |A| and |S0|+ |S2| ≥ |A|.
Consider now the case where σ∗i , i = 1 or i = 2 is overestimated.
Let (σ0, σ1, σ2) satisfy (1), (2) and (3) and be such that σi contains
some string that has a proper suffix in σ∗i . Let s = av, a ∈ A, be
the longest such string, and let u ∈ σ∗i be the corresponding suffix
of v. For i = 0, 1, 2, let again, Si = A+v ∩ σi. Then, either S0 = ∅,
and the problem boils down the the overestimation of a single tree:
the consistency result of Csiszár & Talata (2006) applies and shows
that denoting

σ̄i = (σ1\Si) ∪ {v} , σ̄j = σj , j 6= i ,

we have Cn,m(σ̄0, σ̄1, σ̄2) > Cn,m(σ0, σ1, σ2) Q∗-eventually almost
surely. Or σ∗0 has also been overestimated, so that one may apply
the previous proof.

3. Consider now the underestimation case. If σ0 has been underesti-
mated, there exists s ∈ σ0 which is a proper suffix of s0 ∈ σ∗0 . For
i = 0, 1, 2, let Si = A+s ∩ σ∗i , and define

σ̄0 = (σ0\{s}) ∪ S0 , σ̄1 = σ1 ∪ S1 , σ̄2 = σ2 ∪ S2.

Then

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2)

=
∑
w∈S0

{∑
b∈A

[Nn,X (w, b) +Nm,Y (w, b)] log

(
Nn,X (w, b) +Nm,Y (w, b)

Nn,X (w) +Nm,Y (w)

)

− |A| − 1

2
log (n+m)

}

+
∑
w∈S1

{∑
b∈A

Nn,X (w, b) log

(
Nn,X (w, b)

Nn,X (w)

)
− |A| − 1

2
log (n)

}

+
∑
w∈S2

{∑
b∈A

Nm,Y (w, b) log

(
Nm,Y (w, b)

Nm,Y (w)

)
− |A| − 1

2
log (m)

}

−
∑
b∈A

[Nn,X (s, b) +Nm,Y (s, b)] log

(
Nn,X (s, b) +Nm,Y (s, b)

Nn,X (s) +Nm,Y (v)

)
+
|A| − 1

2
log (n+m)
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Notice that for any string u, for any b ∈ A, 1
n
Nn,X (u, b) and 1

n
Nn,X (u)

converge Q∗ almost surely to Q∗X (ub) and Q∗X (u) respectively, and
1
n
Nm,Y (u, b) and 1

n
Nm,Y (u) convergeQ∗ almost surely to 1

c
Q∗Y (ub)

and 1
c
Q∗Y (u), respectively.

Thus, Q∗ almost surely,

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) = −O (logn)

+ n
∑
w∈S0

∑
b∈A

[
Q∗X (wb) +

1

c
Q∗Y (wb)

]
log

(
Q∗X (wb) + 1

c
Q∗Y (wb)

Q∗X (w) + 1
c
Q∗Y (w)

)

+ n
∑
w∈S1

∑
b∈A

Q∗X (wb) log

(
Q∗X (wb)

Q∗X (w)

)

+ n
∑
w∈S2

∑
b∈A

1

c
Q∗Y (wb) log

(
Q∗Y (wb)

Q∗Y (w)

)

− n
∑
b∈A

[
Q∗X (sb) +

1

c
Q∗Y (sb)

]
log

(
Q∗X (sb) + 1

c
Q∗Y (sb)

Q∗X (s) + 1
c
Q∗Y (s)

)
+ o (n)

= −O (logn) + o (n) + n
∑

w∈S0∪S1

∑
b∈A

Q∗X (wb) log

(
Q∗X (wb)

Q∗X (w)

)

+ n
∑

w∈S0∪S2

∑
b∈A

1

c
Q∗Y (wb) log

(
Q∗Y (wb)

Q∗Y (w)

)

− n
∑
b∈A

[
Q∗X (sb) +

1

c
Q∗Y (sb)

]
log

(
Q∗X (sb) + 1

c
Q∗Y (sb)

Q∗X (s) + 1
c
Q∗Y (s)

)
because for w ∈ S0, Q∗X (wb) = Q∗Y (wb). Since∑

w∈S0∪S1

Q∗X (w) = Q∗X (s) ,

for any b ∈ A, Jensen’s inequality implies that∑
w∈S0∪S1

Q∗X (wb) log

(
Q∗X (wb)

Q∗X (w)

)
≥ Q∗X (sb) log

(
Q∗X (sb)

Q∗X (s)

)
,

and the inequality is strict for at least one b ∈ A, for otherwise, s
would be a context for Q∗X . Similarly for any b ∈ A,∑

w∈S0∪S2

Q∗Y (wb) log

(
Q∗Y (wb)

Q∗Y (w)

)
≥ Q∗Y (sb) log

(
Q∗Y (sb)

Q∗Y (s)

)
.

Using the concavity of the entropy function∑
b∈A

Q∗X (sb) log

(
Q∗X (sb)

Q∗X (s)

)
+

1

c

∑
b∈A

Q∗Y (sb) log

(
Q∗Y (sb)

Q∗Y (s)

)

≥
∑
b∈A

(
Q∗X (sb) +

1

c
Q∗Y (sb)

)
log

(
Q∗X (sb) + 1

c
Q∗Y (sb)

Q∗X (s) + 1
c
Q∗Y (s)

)
,
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so that there exists δ > 0 such that

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) ≥ nδ

Q∗-eventually almost surely.
If σi, i = 1 or i = 2 has been underestimated, then the problem
boils down to the standard underestimation of a single context tree.
Defining (with obvious notation)

σ̄i = (σ1\ {s}) ∪ Si ∪ S0 , σ̄j = σj , j 6= i ,

it is proved in Csiszár & Talata (2006), Section III, thatQ∗-eventually
almost surely, Cn,m(σ̄0, σ̄1, σ̄2) > Cn,m(σ0, σ1, σ2).

4. We have thus proved that, for i = 1 and i = 2, σ̂0 ∪ σ̂i = σ∗0 ∪ σ∗i ,
Q∗-eventually almost surely. Let (σ0, σ1, σ2) satisfy (1), (2) and (3)
and be such that, for i = 1 and i = 2, σ0 ∪ σi = σ∗0 ∪ σ∗i . There
remains to check that Q∗ almost surely, if there exists a string s
such that

• s ∈ σ0, but s ∈ σ∗1 and s ∈ σ∗2 ,

• or s ∈ σ1 and s ∈ σ2, but s ∈ σ∗0 ,

then (σ̂0, σ̂1, σ̂2) 6= (σ0, σ1, σ2) eventually.
Consider first the case where s ∈ σ0, but s ∈ σ∗1 and s ∈ σ∗2 . Define

σ̄0 = (σ0\{s}) , σ̄1 = σ1 ∪ {s} , σ̄2 = σ2 ∪ {s} .

Then

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) =

+
∑
b∈A

Nn,X (s, b) log

(
Nn,X (s, b)

Nn,X (s)

)
∑
b∈A

Nm,Y (s, b) log

(
Nm,Y (s, b)

Nm,Y (s)

)
−
∑
b∈A

[Nn,X (s, b) +Nm,Y (s, b)] log

(
Nn,X (s, b) +Nm,Y (s, b)

Nn,X (s) +Nm,Y (s)

)
+
|A| − 1

2
{log (n+m)− logn− logm}

= n

{∑
b∈A

Q∗X (sb) log

(
Q∗X (sb)

Q∗X (s)

)
+

1

c

∑
b∈A

Q∗Y (sb) log

(
Q∗Y (sb)

Q∗Y (s)

)

−
∑
b∈A

(
Q∗X (sb) +

1

c
Q∗Y (sb)

)
log

(
Q∗X (sb) + 1

c
Q∗Y (sb)

Q∗X (s) + 1
c
Q∗Y (s)

)
+ o(1)

}
−O (logn)

Q∗ almost surely. But the quantity into brackets is positive by
the strict concavity of the entropy function, unless for any b ∈ A,
Q∗X(b|s) = Q∗Y (b|s) which would mean that s ∈ σ∗0 .
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Consider now the case where s ∈ σ1 and s ∈ σ2, but s ∈ σ∗0 . Define

σ̄0 = σ0 ∪ {s},
σ̄1 = (σ1\{s}) ,
σ̄2 = (σ2\{s}) .

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) =∑
b∈A

[Nn,X (s, b) +Nm,Y (s, b)] log

(
Nn,X (s, b) +Nm,Y (s, b)

Nn,X (s) +Nm,Y (s)

)
−
∑
b∈A

Nn,X (s, b) log

(
Nn,X (s, b)

Nn,X (s)

)
−
∑
b∈A

Nm,Y (s, b) log

(
Nm,Y (s, b)

Nm,Y (s)

)
+
|A| − 1

2
{logn+ logm− log (n+m)} .

Using Taylor expansion until second order of u log u, one gets

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2)

=

{
1

2

∑
b∈A

([Nn,X (s, b) +Nm,Y (s, b)]− [Nn,X (s) +Nm,Y (s)]Q∗X(b|s))2

[Nn,X (s) +Nm,Y (s)]Q∗X(b|s)

− 1

2

∑
b∈A

(Nn,X (s, b)−Nn,X (s)Q∗X(b|s))2

Nn,X (s)Q∗X(b|s)

− 1

2

∑
b∈A

(Nm,Y (s, b)−Nm,Y (s)Q∗Y (b|s))2

Nm,Y (s)Q∗Y (b|s)

}
(1 + o(1))

+
|A| − 1

2
{logn+ logm− log (n+m)} .

The sequences

(Nn,X (s, b)−Nn,X (s)Q∗X(b|s))n≥0 ,

(Nm,Y (s, b)−Nm,Y (s)Q∗Y (b|s))m≥0 ,

are martingales with respect to the natural filtration. Thus, it fol-
lows from the law of iterated logarithm for martingales Neveu (1972)
that, Q∗ almost surely,

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) = O (log log n)

+
|A| − 1

2
{logn+ logm− log (n+m)} ,

so that Q∗ almost surely,

Cn,m(σ̄0, σ̄1, σ̄2)− Cn,m(σ0, σ1, σ2) > 0

eventually. This ends the proof of Theorem 1.
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Rissanen, J. (1983). A universal data compression system. IEEE Trans.
Inform. Theory 29, 656–664.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist.
6, 461–464.

Willems, F., Shtarkov, Y. & Tjalkens, T. (1995). The context-tree weight-
ing method: Basic properties. IEEE Trans. Inf. Theory 41, 653–664.

23


