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Error exponents for AR order testing
Stéphane Boucheron and Elisabeth Gassiat

Abstract— This paper is concerned with error exponents in
testing problems raised by auto-regressive (AR) modeling. The
tests to be considered are variants of generalized likelihood
ratio testing corresponding to traditional approaches to auto-
regressive moving-average (ARMA) modeling estimation. In sev-
eral related problems like Markov order or hidden Markov model
order estimation, optimal error exponents have been determined
thanks to large deviations theory. AR order testing is specially
challenging since the natural tests rely on quadratic forms of
Gaussian processes. In sharp contrast with empirical measures
of Markov chains, the large deviation principles satisfied by
Gaussian quadratic forms do not always admit an information-
theoretical representation. Despite this impediment, we prove
the existence of non-trivial error exponents for Gaussian AR
order testing. And furthermore, we exhibit situations where the
exponents are optimal. These results are obtained by showing that
the log-likelihood process indexed by AR models of a given order
satisfy a large deviation principle upper-bound with a weakened
information-theoretical representation.

Index Terms— Time series; Error exponents; Large deviations;
Gaussian processes; Order; Test; Levinson-Durbin

I. INTRODUCTION

A. Nested composite hypothesis testing

THIS paper is concerned with composite hypothesis test-
ing: a measurable space (Ω,A) and two sets of proba-

bility distributions M0 and M1 are given. In the sequel, we
assume M0 ⊂ M1. A test is the indicator of a measurable
set K ⊆ Ω called the detection region. The problem consists
of choosing K so that if P ∈M0, the level P{K} is not too
large while if P ∈M1\M0, the power P{K} should remain
not too small.

If both M0 and M1 actually contain only one probability
distribution, the hypothesis testing problem is said to be
simple, and thanks to the Neyman-Pearson Lemma (see [48],
[10]), test design is well-understood: for a given level, the
most powerful test consists of comparing the likelihood ratio
P1{y}
P0{y} with a threshold.

When M0 and M1 are composite and nested, optimal test
design and test analysis turn out to be much more complicated.
As a matter of fact, most powerful tests may fail to exist.
And rather than trying to construct a single test, it is common
to resort to asymptotic analysis. A filtration (An)n∈N on
Ω and a sequence of tests (Kn)n∈N are considered where,
for each n, Kn is An measurable. It is commonplace to
search for sequences of tests with non-trivial asymptotic level
supP∈M0

lim supn αn(P ) < 1 with αn(P ) = P{Kn} and
optimal asymptotic power infP∈M1 lim infn 1−βn(P ) where
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βn(P ) = 1 − P{Kn}. A sequence of tests is said to be
consistent if its asymptotic level is null while its asymptotic
power is one.

In this paper, we focus on Gaussian auto-regressive pro-
cesses. The measurable space (Ω,A) consists of RN pro-
vided with the cylindrical σ-algebra. Recall that a stationary
Gaussian process . . . Y−k, . . . , Y1, Y2, . . . , Yn . . . is an auto-
regressive (AR) process of order r if and only if there ex-
ists a Gaussian independently identically distributed sequence
. . . X−k, . . . , X1, X2, . . . , Xn . . . called the innovation process
and a vector a ∈ Rr, where (1, a1, . . . , ar) is called the
prediction filter, such that for each n ∈ Z:

Yn +
r∑

i=1

aiYn−i = Xn .

If a process is an AR process of order r but not an AR process
of order r − 1, it is said to be of order exactly r.

We are interested in testing the order of auto-regressive
processes. The alternative hypotheses are:

H0(r) : “ the order of the auto-regressive process is < r”

against

H1(r) : “ the order of the auto-regressive process is ≥ r.”

Testing the order of a process is related to order identification
[41], [51], [44], [27], [26], [24], [21], [22] and thus to model
selection [6], [50], [49], [7], [3], [45] . Note that testing the
order of AR processes may be regarded as an instance of
testing the order of Markov processes. In the finite alphabet
setting, the latter problem has received distinguished attention
during recent years [22], [24], [31]. Testing the order of an AR
process may also be considered as a detection problem (see
[38]).

B. Error exponents and Large Deviation Principles

As far as AR processes are concerned, consistent sequences
of tests have been known for a while [36], [35], [37]. On
the other hand, little seems to be known about the efficiency
of AR testing procedures. In this paper, we adopt the error
exponents perspective that has been used since the early days
of information theory [23], [43], [31], [21], [40], [33].

A sequence of tests is said to achieve error exponent E0()
(resp. E1()) at P ∈M0 (resp. P ∈M1) if the corresponding
sequence of level functions αn() (resp. power functions 1 −
βn()) satisfies

lim inf
n

1
n

log αn(P ) ≤ −E0(P ) ,

respectively

lim inf
n

1
n

log βn(P ) ≤ −E1(P ) .
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Error-exponents are non-trivial whenever they are positive.
Note that this notion of asymptotic efficiency is connected to

other notions of asymptotic efficiency in classical statistics. For
example, Bahadur efficiency provides a related but different
approach to asymptotic efficiency [34], [48], [46], [39], both
notions are usually investigated using large deviations methods
[29].

The following definition gathers the basic concepts that are
useful in large deviation theory (see [29] for details).

Definition 1 (Definition of LDP): A rate function on a
topological space E is a function I : E 7→ [0,∞] which is
lower-semi-continuous. It is said to be a good rate function if
its level sets {x : x ∈ E, I(x) ≤ a} are compact.
A sequence (Zn)n≥1 of random elements in E is said to
satisfy the large deviations principle (LDP) with rate function
I and linear speed if the corresponding sequence (Pn)n≥1 of
laws on E satisfies the following properties:

1) Upper bound: For any measurable closed subset C of
E,

lim sup
n→∞

1
n

log Pn(C) ≤ − inf
x∈C

I(x) . (1)

2) Lower bound: For any measurable open subset G of
E,

lim inf
n→∞

1
n

log Pn(G) ≥ − inf
x∈G

I(x) . (2)

Henceforth, if P and Q are two probability distributions
such that the density of P with respect to Q, dP/dQ is
well-defined, the relative entropy K(Q | P ) between P and Q
is defined as the expected value under Q of the log-likelihood
ratio log Q/P : K(Q | P ) = EQ[log Q/P ], (see [20], [23],
[29] for more material on this notion).

In this paper we will say that a large deviation principle
admits an information-theoretical interpretation if, for any x ∈
E such that I(x) < ∞, there exists a sequence (Qn)n of
probability distributions on E such that

1)

lim
n

1
n

K(Qn | Pn) = I(x) .

2) The sequence of image probability distributions (Qn ◦
Zn)n, converges weakly to δx, the probability mass
function concentrated on x.

The information theoretical interpretation is often (but not
always) at the core of Cramer’s change of measure argument.
The latter usually paves the way to the LDP lower bound (see
[9], [42] for exceptions).

The Sanov Theorem on the large deviations of the empirical
measure of an independently identically collected sample,
is the prototype of a large deviation principle admitting an
information-theoretical interpretation. [29].

C. Previous work

In most testing problems, provided there is a sufficient
supply of limit theorems for log-likelihood ratios, upper-
bounds on error-exponents can be obtained using an argument

credited to Stein (see [29] and Section III below). Henceforth,
those upper-bounds will be called Stein upper-bounds.

Checking whether the so-called Stein upper-bounds may be
achieved or not is more difficult (this is also true for Bahadur
efficiencies, see [46, discussion page 564]). In some simple
but non-trivial situations like product distributions on finite
sets, the Sanov Theorem [29] allows to check the optimality
of generalized likelihood ratio testing (GLRT) (see [21] and
references therein).

The possibility to check whether generalized likelihood
ratio testing achieves the Stein upper-bound depends on the
very nature of the large deviation principles (LDPs) satisfied
by the relevant log-likelihood processes. The touchstone is
whether the rate function of the LDP admits a full information-
theoretical interpretation (as defined above) or not.

In the case of memoryless sources (see [21] and references
therein) and the case of Markov order estimation [31], the
fundamental role of the information-theoretical interpreta-
tion of the LDP rate function is hidden by type-theoretical
arguments and by the fact that the existence of a finite-
dimensional sufficient statistics makes the argument relatively
straightforward. The importance of the information-theoretical
interpretation of the LDP rate function (satisfied by the log-
likelihood processes) becomes obvious when dealing with hid-
den Markov models. In the case of hidden Markov models on
finite alphabets and finite hidden state spaces, it took nearly ten
years to check that the non-trivial error exponents established
in [43] actually match the upper bounds derived from the
Stein argument [33]. When dealing with memoryless sources
over general alphabets, not all models may be considered as
exponential models (multinomial), and analyzing maximum
likelihood estimation often has to rely on empirical processes
techniques [47]. In that case, under weak integrability con-
straints on the likelihood process indexed by the models (weak
Cramer conditions), the rate function of the LDP satisfied by
the log-likelihood processes only admits partial information-
theoretical interpretations (see [42]). Nevertheless, non-trivial
error exponents are established by resorting to those partial
information-theoretical representation properties of the LDP
rate function [17] but the achievability of the Stein upper
bounds on error exponents is still an open question.

D. Error exponents for stationary Gaussian hypotheses testing

When dealing with AR order testing, variants of generalized
likelihood ratio testing may be investigated according to two
directions. The first one attempts to take advantage of the
fact that, just like in the case of Markov chains over finite
alphabets, the parameters of the sampled AR processes remain
identifiable when model dimension is over-estimated (see
[15]). Moreover, there exists consistent estimators like the
Yule-Walker estimator that rely on finite-dimensional statistics
which large deviations properties can be investigated (see [9]
for AR(1) processes).

The second line of investigation proceeds according to
the approach described in [33]: analyze the large deviations
properties of the log-likelihood processes indexed by the
competing models. We will see at the end of Section II that the



3

two approaches may coincide. However, the ability to work
with finite-dimensional (asymptotically consistent) statistics
does not provide us with a safeguard.

Whatever the approach, the main difficulty consists of
coping with the absence of an information-theoretical inter-
pretation of the large deviation rate functions. This difficulty
is due to the lack of steepness of the limiting logarithmic
moment generating function of the log-likelihood vectors (see
again [16], [9] and references therein for other examples of
this phenomenon). Despite this impediment, we prove that
when testing the order of auto-regressive processes, a variant
of GLRT achieves non-trivial under-estimation exponents. This
result is obtained by showing that even though the rate function
governing the LDP of the log-likelihood process does not
enjoy a full information-theoretical representation property,
it does enjoy a partial information-theoretical representation
property. This pattern of proof should be put into the perspec-
tive of [17].

E. Organization of the paper

The paper is organized as follows. Some concepts pertaining
to the theory of Gaussian time series (like spectral density,
prediction error, Levinson-Durbin recursion) are introduced
in Section II. In Section III, limit theorems concerning log-
likelihood ratios between stationary Gaussian processes are
recalled. The interplay between prediction error and relative
entropy allows to characterize the information divergence rate
between an AR process of order exactly r and processes of
lower order in Theorem 2. At the end of Section III, the
Stein argument is carried out in order to check that there are
no non-trivial over-estimation exponents in AR order testing,
and to derive non-trivial upper-bounds on under-estimation
exponents. The main results of this paper (non-triviality of
under-estimation exponents) are stated in Section IV. It is also
checked that in some non-trivial situations the Stein upper-
bounds are achievable. The rest of the paper is devoted to the
proof of the main results. LDPs for vectors of log-likelihoods
are derived in Section V. In Section VI, we try to overcome
the fact that, unlike the rate functions underlying the classical
Sanov Theorem [29], the rate functions underlying the LDPs
stated in Section V are not known to be representable as
information divergence rates. In order to fill the gap, the
rate function of the LDP exhibited in Section V is (weakly)
related to information divergence rates through corollary 2.
This relationship is then exploited in Section VII where the
main result of the paper (Theorem 6) is finally proved.

II. CONVENTIONS

Background, motivations and a broader perspective on the
material gathered in this Section can be found in [15] and [1].

As pointed out in the introduction, a Gaussian AR process
is completely defined by the prediction filter and the variance
of the innovation process.

Henceforth Θr denotes the (bounded) set of vectors a ∈ Rr

such that the polynomial z 7→ 1 +
∑r

i=1 aiz
i has no roots

inside the complex unit disc. The set AR(r) of AR processes

of order r may be parametrized by pairs (σ,a) ∈ R+ × Θr.
Note that this is a full parametrization [10].

If (Yn)n∈Z is a stationary Gaussian process, then it is
completely defined by its covariance sequence (γ(k))k∈Z
defined as γ(k) = E [YnYn+k] . Under some mild summability
conditions (that are always satisfied by AR processes), the co-
variance sequence defines a function on the torus T = [0, 2π]
that captures many of the information-theoretical properties of
the process.

Definition 2: [SPECTRAL DENSITY] The covariance se-
quence of a stationary Gaussian process is the Fourier series
of the spectral density f of the process:

f(ω) =
∑
k∈Z

γ(k)e
√
−1ωk ,

where ω belongs to the torus T = [0, 2π).
The spectral density of a stationary process is non negative

on the torus T. The spectral factorization theorem [15] asserts
that f is the spectral density of a regular stationary process if
and only if there exists a sequence (dn) in l2(Z) such that

f(ω) =

∣∣∣∣∣∑
n∈Z

dne−
√
−1nω

∣∣∣∣∣
2

.

The function f is the spectral density of a regular AR process
of order r if and only if there exists an innovation variance
σ2, and a prediction filter a ∈ Rr such that

f(ω) =
σ2∣∣1 +

∑r
i=1 aie−

√
−1ω

∣∣2 . (3)

Let Mr denote the set of spectral densities of form (3)
where a ∈ Θr, and Fr its subset of spectral densities for
which σ = 1. Note that a function f ∈ Mr belongs to Fr if
and only if 1

2π

∫
T log f = 0.

A function f on T defines a sequence of n × n Toeplitz
matrices (Tn(f))n∈Z

Tn(f)[i, j] =
1
2π

∫
T

f(ω)e
√
−1(i−j)ωdω for i, j ∈ {0, n−1} .

The function f is called the symbol of the Toeplitz ma-
trix. If f is the spectral density of some stationary process,
then Tn(f) is the covariance matrix of the random vector
(Ym+1, Ym+2, . . . , Ym+n) for any m ∈ N.

In the sequel, if A denotes a matrix A† denotes the
transposed matrix.

The log-likelihood of a sequence of observations Y =
Y1, . . . , Yn (interpreted as a column-vector) with respect to
the spectral density σ2f where f ∈ Fr will be denoted by
`n

(
σ2, f,Y

)
:

`n

(
σ2, f,Y

)
= − 1

2n
log
(
σ2ndet(Tn(f))

)
− 1

2nσ2
Y†T−1

n (f)Y

A Theorem due to Szegö (see [11]) asserts that as n
tends to infinity, 1

n log det(det(Tn(f))) → 1
2π

∫
T log f which

is null if f ∈ Fr. Another Theorem by Szegö motivates
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the approximation of T−1
n (f) by Tn

(
1
f

)
. The quasi-Whittle

criterion is now defined as:

¯̀
n

(
σ

2
, f,Y

)
= −1

2
log σ2 − 1

2nσ2
Y†Tn

(
1
f

)
Y .

The following test will be considered throughout the paper.
Definition 3: [PENALIZED WHITTLE ORDER TESTING] Let

pen(n, p) be a sequence indexed by N × N. Assume that
pen(n, p) is increasing with respect to the second variable.
The penalized Whittle order test φW,r

n accepts H0(r) if and
only if

sup
σ,f∈Fp

{¯̀
n(σ2, f,Y)− pen(n, p)

}
is maximum for some p < r. Let αW,r

n (·) be its level function
and 1− βW,r

n (·) its power function.

At that point, it seems that we have to deal with R+×Θr as
a parameter space. As R+ is not bounded, this does not seem
suitable for discretization of the parameter space. Fortunately,
the following proposition shows that as far as order testing is
concerned, we can disregard the variance of innovations σ2

and focus on the prediction filter a.
Proposition 1: [VARIANCE OF INNOVATION] The quasi-

Whittle criterion is maximized by choosing σ2 =
inff∈Fr

Y†Tn(1/f)Y
n , the maximal value of the criterion equals

−1
2

log inf
f∈Fr

Y†Tn( 1
f )Y

n
− 1

2
.

This prompts us to define modified criteria. In order to test
whether the observed process is of order exactly r or r − 1,
we will compare

inf
f∈Fr

Y†Tn

(
1
f

)
Y and inf

f∈Fr−1
Y†Tn

(
1
f

)
Y .

Finally, we will repeatedly need to understand how an
AR process of order exactly r can be approximated by an AR
process of order at most r − 1. This will be facilitated by an
algorithm that has proved to be of fundamental importance in
AR modeling (see [15] for more details).

Definition 4: [INVERSE LEVINSON-DURBIN RECURSION]
Let (1,a) with a ∈ Rr define the prediction filter of an
AR Gaussian process with innovation variance σ2. Then the
inverse Levinson-Durbin recursion defines the innovation vari-
ance σ′2 and the prediction filter (1,b) with b ∈ Rr−1 of a
regular AR process of order r − 1 in the following way:

bi =
ai + arar+1−i

1− a2
r

for i ∈ {1, . . . , r − 1},

σ′2 =
σ2

1 + a2
r

.

The Levinson-Durbin algorithm has not been designed in
order to solve information-theoretical problems but rather in
order to solve least-square prediction problems (its range
of applications goes far beyond Gaussian processes). But in
the Gaussian setting, least-square prediction and information-
theoretical issues overlap. This will be illustrated in the
following section.

III. INFORMATION DIVERGENCE RATES

Information divergence rates characterize the limiting
behavior of log-likelihood ratio between process distributions.
As the AR processes under consideration in this paper are
stationary ergodic and even Markovian of some finite order,
information divergence rates between AR processes are
characterized by the Shannon-Breiman-McMillan Theorem
(see [20], [5], [25]).

Theorem 1: [SHANNON-BREIMAN-MCMILLAN] If P and
Q denote the distribution of two stationary centered Gaussian
sequences with bounded spectral densities g and f that remain
bounded away from 0, letting Pn and Qn denote the image
of P and Q by the first n coordinate projections, then the
information divergence rate between P and Q, limn

1
nK(Pn |

Qn) exists and is denoted by K∞(g | f) or K∞(P | Q) . The
following holds P-almost-surely and also in L2(P):

1
n

log
P{Y1:n}
Q{Y1:n}

→ K∞(g | f).

The information divergence rate can be computed either from
the spectral densities or from the prediction errors:

K∞(g | f)

=
1
4π

∫
T

(
g

f
− 1− log

g

f

)
dλ (4)

=
1
2

{
log

σ2
f

σ2
g

− 1 + Eg

[
(Y0 − Ef [Y0 | Y−∞:−1])

2

σ2
f

]}
.(5)

where σ2
g and σ2

f represent the variance of innovations asso-
ciated with P and Q (log σ2

f = 1
2π

∫
T log fdω and log σ2

g =
1
2π

∫
T log gdω).

Derivations of (4) can be found in [1],[25] or [15]. Equa-
tion (5) follows from the definition of Gaussian conditional
expectations and from [5].

Equation (4) corresponds to the traditional description of the
information divergence rate between two stationary Gaussian
processes. Although, it does not look as explicit, Equation
(5) emphasizes the already mentioned interplay between least-
square prediction and information. It will prove very useful
when characterizing the minimal information divergence rate
between AR-processes of order r − 1 and an AR-process of
order exactly r.

The following class of functions will show up several times
in the sequel.

Definition 5: [Definition of H] Let H denote the set of non-
negative self-conjugated polynomials h on the torus T, that is
of form

h(ω) = a0+
p∑

i=1

ai

(
e−
√
−1iω + e

√
−1iω

)
= a0+2

p∑
i=1

ai cos(iω)

for real numbers a0, a1, . . . , ap such that a0 +
2
∑p

i=1 ai cos(iω) ≥ 0 for all ω

Notice that if h ∈ H has degree p, then it may be written
as the square of the modulus of a polynomial of degree p on
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the torus, that is there exists real numbers b0, b1, . . . , bp such
that

h(ω) =

∣∣∣∣∣b0 +
p∑

i=1

bie
−
√
−1iω

∣∣∣∣∣
2

.

Indeed, h is a spectral density associated with a covariance
sequence (γ(k))k which is zero for |k| > p, that is the
covariance sequence of a moving-average process of order
p. It is also the inverse of the spectral density of an AR process.

Corollary 1: Let g denote the spectral density of a station-
ary regular Gaussian process. If 1/f ∈ H and K∞ (f | g) <
∞ then f defines a stable AR process.

The next Theorem identifies the minimal information di-
vergence rate between g ∈ Mr and spectral densities from
Mr−1. The pivotal role of that kind of result in the analysis
of composite hypothesis testing procedures is outlined in [41],
[21]. Theorem 2 is an analog of similar Theorems from [41],
[43] or Lemma 6 and 7 from [33] (see also [14]). But, thanks to
the special relationship between log-likelihood and prediction
error in the Gaussian setting, Theorem 2 provides the exact
value of the infimum and the precise point where it is achieved
in parameter space.

Theorem 2: [I-PROJECTION ON LOWER ORDER AR PRO-
CESSES] If P is the distribution of a regular AR process of
order exactly r with spectral density g, prediction filter a and
innovation variance σ2, then

inf
f∈Mr−1

K∞(f | g) =
1
2

log
(
1 + ar

2
)

.

The infimum is achieved by a stable AR process of order r−1
for which the prediction filter and variance of innovations are
obtained by the inverse Levinson-Durbin recursion.

Henceforth, we will overload the classical notations: the
spectral density of the AR process of order r− 1 that realizes
the infimum in inff∈Mr−1 K∞(f | g) will be called the I-
projection of g on the set Mr−1, it will be denoted by f(g).

Proof: Any spectral density of stable auto-regressive
process r−1, may be defined by a prediction filter b ∈ Θr−1

and an innovation variance σ′2.

inf
f∈Mr−1

K∞ (f | g)

= inf
f∈Mr−1

[
1
2
Ef

[
log

σ2

σ′2

+
(Y0 − Eg[Y0 | Y−∞:−1])

2

σ2
− 1

]]

= inf
b∈Θr−1,σ′

[
1
2
Eb,σ′

[
log

σ2

σ′2

+

(
X0 −

∑r−1
i=1 (bi − ai)Y−i + arY−r

)2

σ2
− 1




= inf
b∈Θr−1,σ′

[
1
2

[
log

σ2

σ′2

+
Eb,σ′

[(∑r−1
i=1 (bi − ai)Y−i − arY−r

)2
]

σ2

+
σ′2

σ2
− 1
]]

.

Note that

Eb,σ′

(r−1∑
i=1

(bi − ai)
ar

Y−i − Y−r

)2


= Eb,σ′

(r−1∑
i=1

(bi − ai)
ar

Y−r+(r−i) − Y−r

)2


cannot be smaller than the backward one-step prediction error
of order r − 1 of the process defined by f . The latter is the
one-step prediction error of the stationary process obtained
by time reversing the process (Yn)n∈N. As the time-reversed
process has the same covariance structure, it also has the same
spectral density as the initial process. Hence backward one-
step prediction error of order r − 1 equals σ′2.

This lower bound is achieved if the filter
([(bi − ai)] /ar)i=1,...,r−1 coincides with the backward
prediction filter associated with the spectral density f. The
coefficients of the backward prediction filter coincide with
the coefficients of the forward prediction filter. Hence the
lower bound is achieved if and only if

bi − ai = arbr−i for all i, 1 ≤ i < r ,

that, is for the result of the inverse Levinson recursion. Hence
the infimum is achieved by choosing

σ′2 =
σ2

1 + a2
r

and it equals
1
2

log
(
1 + a2

r

)
.

A similar theorem characterizes the information divergence
rate between g and Mr−1.



6

Theorem 3: [LOWER ORDER AR PROCESSES] Let g denote
the spectral density of a regular Gaussian auto-regressive
process of order r. Then

inf
f∈Mr−1

K∞(g | f) = −1
2

log
(
1− a2

r

)
,

and the infimum is achieved by the spectral density defined
which is defined by the prediction filter resulting from the
inverse Levinson-Durbin recursion and with variance of in-
novations equal to the forward-error prediction of this last
prediction filter.

The proof of Theorem 3 parallels the proof of Theorem 2
and is omitted.

The following Theorems provide upper-bounds on
achievable error exponents. Their proof is similar to the proof
of Stein’s Lemma concerning the efficiency of likelihood
ratio testing for simple hypotheses (see [29]) . For the sake
of self-reference, it is included in the Appendix.

Theorem 4: [TRIVIALITY OF OVER-ESTIMATION EXPO-
NENT] Let αr

n(·) denote the level function of a sequence φr
n of

tests of H0(r) against H1(r). If the asymptotic power function
is every-where positive in Mr, then for any auto-regressive
process of order r − 1 and distribution P ,

lim
n→+∞

1
n

log αr
n(P ) = 0 .

The next theorem provides a challenging statement and will
motivate the rest of the paper.

Theorem 5: [STEIN UNDER-ESTIMATION EXPONENT] Let
αr

n(·) denote the level function of a sequence φr
n of tests of

H0(r) against H1(r). Let (1−βr
n(·))n denote its power func-

tion. If the asymptotic level function is everywhere bounded
away from 1 in Mr−1, then for any auto-regressive process of
order exactly r, distribution P and spectral density g ∈Mr,

lim inf
n→+∞

1
n

log βr
n(P ) ≥ − inf

f∈Mr−1
K∞ (f | g) .

Remark: It should be noted that thanks to Theorem 2,
the Stein under-estimation exponent is non-trivial and that it
does not depend on the variance of innovations 1

2π

∫
T gdω.

Remark: Theorem 5 helps us in understanding the dif-
ference between error exponents as used in information the-
ory and Bahadur efficiencies used in mathematical statistics.
Bahadur efficiency is best defined by considering tests that
reject say M0 for large values of some statistic Tn. Assume
P ∈ M1 \M0, and assume that on some sample y1, . . . , yn

collected according to P, Tn(y1, . . . , yn) = t. Define the “level
attained” as

Ln = sup
P ′∈M0

P ′{Tn > t} .

The Bahadur slope at P (if it exists) is defined as the P -almost
sure limit of −2n−1 log Ln. If the tests consist of comparing
the logarithm of the ratio of the maximum likelihoods in
models M0 and M1 with thresholds, then P -almost surely,
Tn converges to infP ′∈M0 K∞ (P | P ′) .

The distinction between error exponents and Bahadur
slopes is exemplified by the fact that the quantity
infP ′∈Mr−1 K∞ (P | P ′) that shows up in Theorem 3 coin-
cides with the Stein upper-bound on the Bahadur slope of
GLRT at P ∈M1 (see [46, Theorem 8.2.9] and [48, Theorem
16.12]).

In [46], Taniguchi and Kakizawa characterize the Bahadur
slopes of some testing procedures among stationary Gaussian
processes. Their results (Theorems 8.2.14, 8.2.15, 8.2.16)
concern models indexed by compact intervals on R and do
not seem to be easily extensible to the order testing problem
considered here.

Although the techniques used in this paper do not allow
us to prove that the Stein under-estimation exponents are ev-
erywhere achievable, it is worth mentioning that for the order
testing procedures under consideration, the under-estimation
exponents do not depend on the variance of innovations.

Proposition 2: [SCALE-INVARIANCE OF EXPONENTS] Let
a ∈ Θr \ Θr−1 denote a prediction filter of order exactly r.
For all σ > 0, let Pσ denote the probability distribution of an
AR process of order r parametrized by (σ,a).

If, for any integer p, pen(n, p)/n tends to 0 as n tends
to infinity, the under-estimation exponent of the penalized
Whittle tests do not depend on the variance of innovations:

lim sup
n→+∞

1
n

log βW,r
n (Pσ). = lim sup

n→+∞

1
n

log βW,r
n (P1).

The proof of this proposition is given in the Appendix.
At that point, it is relevant to provide an alternative view

at the quasi-Whittle criterion. Minimizing Y†Tn(1/f)Y over
f ∈ Fr turns out to be equivalent to minimize the forward
prediction error

n∑
t=1

(
Yt +

r∑
i=1

aiYt−i

)2

with respect to a ∈ Θr, assuming that Yt = 0 for all t ≤
0. The solution of the latter problem is known as the Yule-
Walker estimate of the prediction filter of order r on the sample
Y (see [15]). It can be computed efficiently thanks to the
(direct) Levinson-Durbin algorithm. Moreover, if ar denotes
the r-th coefficient of the prediction filter of order r output by
the Levinson-Durbin algorithm on the data Y, an interesting
aspect of the analysis of the Levinson-Durbin algorithm is the
following relation:

inff∈Fr Y†Tn

(
1
f

)
Y

inff∈Fr−1 Y†Tn

(
1
f

)
Y

= 1− a2
r .

Hence, comparing of Whittle approximations of log-
likelihoods boils down to comparing the absolute value of r-th
reflection coefficient ar, with a threshold. This is all the more
interesting as the first r reflection coefficients only depend on
the first r + 1 empirical correlations

∑n
t=i+1 YtYt−i, that is

on a finite dimensional-statistic.
However, the possibility to approximate GLRT while relying

on finite dimensional statistics does not seem to be of great
help as far as investigating error exponents is concerned
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(see [30] for more background on the interplay between the
availability of finite-dimensional sufficient statistics and error
exponents).

IV. MAIN THEOREMS

From now on, P is the distribution of an auto-regressive
Gaussian process of order exactly r, and spectral den-
sity g ∈ Fr. Our goal is to prove that at least
lim supn→∞

1
n log βW,r

n (P ) > 0 and whenever possible
that lim supn→∞

1
n log βW,r

n (P ) can be compared with some
information-theoretical quantities.

Recall that f(g) denotes the spectral density of the I-
projection of g on the set Mr−1 of spectral densities of AR
processes of order r − 1.

The following subset of Mr shows up in the analysis of
the under-estimation exponent at g.

Definition 6: Let F (g) be defined as the subset of spectral
densities f of AR(r) processes such that for all n sufficiently
large

Tn (1/f) + T−1
n (g)− Tn (1/g)

is positive definite.
As T−1

n (g) − Tn (1/g) is non-positive (see Proposition 5),
F (g) defines a non-trivial subset of Mr. In some special
cases the triviality or non-triviality of F (g) may be checked
thoroughly. For example, if g is the spectral density of an
AR(1) process, then f(g) is the spectral density of an AR(0),
and computations relying on Lemma 4, allow to check that
f(g) ∈ F. As soon as we deal with processes of order 2,
things get more complicated, as demonstrated by the following
proposition.

Proposition 3: Let g be the spectral density of an auto-
regressive process of order 2, with prediction filter (a1, a2).
Then

f(g) ∈ F (g) ⇐⇒ (1 + a2)
2

> a2
1

(
1 + a2

2

)
.

The proof of Proposition 3 is given in the Appendix.
In the sequel, as g remains a fixed element of Fr, we

will often omit to make the dependence on g explicit, and
abbreviate F (g) to F.

The main result of this paper is the following Theorem.
Theorem 6: [UNDER-ESTIMATION EXPONENT]

Let g denote the spectral density of an AR process of order
exactly r and let F (g) be defined as above. Let L(g) be defined
by

L(g) = inf
f∈Mr−1

[
K∞ (f | g)− inf

h∈F (g)
K∞ (f | h)

]
.

The followings hold:
a) L(g) > 0.
b) If, for any integer p, pen(n, p) tends to 0 as n tends
to infinity, penalized Whittle tests have non trivial under-
estimation exponents:

lim sup
n→+∞

1
n

log βW,r
n (P ) ≤ −L(g) .

The quantity L(g) may or may not coincide with the
Stein under-estimation exponent described in Theorem 5. For

example, elementary computations reveal that L(g) coincides
with the Stein upper-bound when g is an AR(1) process. Note
that, using the the connection between the Whittle test and
tests concerning the Yule-Walker estimate pointed out after
Proposition 2, and building on results from [9], it is possible
to check directly that the Whittle test for AR(1) processes
achieves the Stein under-exponent.

V. LDP FOR VECTORS OF QUADRATIC FORMS

In this section, f1, . . . , fd denote a collection of spectral
densities of stable AR(r) processes (fi ∈Mr). This collection
defines a vector of quadratic forms

(
Y†Tn(1/fi)Y

)
i=1,d

.
The basic concepts of large deviation theory were recalled

in the introduction (see Subsection I-B).
Our goal is to prove a LDP upper bound for the tuple of

quadratic forms
(
Y†Tn(1/fi)Y

)
i=1,d

, when the time series
Y1, . . . , Yn, . . . is distributed as an AR(r) process with spectral
density g. As under-estimation events correspond to large
deviations of the log-likelihood process indexed by Fr (this
qualitative statement will be turned into a formal one thanks to
Definition 12 in Section VIII below) we aim at identifying the
under-estimation exponents with the value of the rate function,
or rather with a limit of values of the rate function evaluated at
some well-chosen points. This goal will be achieved through
Lemma 9.

The search for LDP for Toeplitz quadratic forms of Gaus-
sian sequences has received deserved attention during the
last fifteen years (see [2], [4], [28], [16], [9], [32] and early
references in [18], [19], [13], [12]). Those papers, except [32],
describe the large deviations of a single quadratic form while
just assuming that the underlying time series is a regular
stationary Gaussian process. The results described in those
references need to be completed to fit our purposes.

The basic scheme of analysis in those papers remains quite
stable: the logarithmic moment generating function of the
quadratic form is related to the spectrum of a product of
Toeplitz matrices. The limiting behavior of the spectrum is
characterized using the asymptotic theory of Toeplitz matrices
developed by Szegö and Widom (see [11] for a modern
account). The main difficulty lies in the fact that understanding
the limiting behavior of the spectrum of the Toeplitz matrices
is not enough.

Definition 7: Λn is the logarithmic moment generating
function of

(
Y†Tn

(
1
f1

)
Y, . . . ,Y†Tn

(
1
fd

)
Y
)

.

For any λ ∈ Rd,

Λn(λ) = log E

[
exp

(
d∑

i=1

λiY†Tn

(
1
fi

)
Y

)]
.

For any λ ∈ Rd, Λ̄(λ),

Λ̄(λ) = lim sup
n→+∞

1
n

Λn(λ).

The function Ī is the Fenchel-Legendre transform of Λ̄ : for
any y ∈ Rd,

Ī(y) = sup
λ∈Rd

(
〈λ,y〉 − Λ̄(λ)

)
.
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Definition 8: A point y ∈ Rd is said to be an exposed point
of Ī with exposing hyper-plane λ ∈ Rd if and only if for all
y′ ∈ Rd:

Ī(y′) > Ī(y) + 〈λ,y′ − y〉 .

Note that by the very definition of convexity, the existence
of a vector λ that satisfies Ī(y′) ≥ Ī(y) + 〈λ,y′ − y〉
can be taken for granted. The strict inequality makes the
definition interesting. Note that as a point-wise limit of convex
lower-semi-continuous functions, Λ̄, is convex and lower-
semi-continuous.

Theorem 7: Let f1, . . . , fd denote a collection of spectral
densities of stable AR(r) processes.
a) The sequence of tuples of quadratic forms
1
n

(
Y†Tn(1/fi)Y

)
i=1,d

, satisfies a LDP upper-bound
with good rate function Ī .
b) The sequence of quadratic forms satisfies a LDP lower
bound with rate function Ī(y) if y is an exposed point of Ī
with exposing hyperplane λ such that limn

1
nΛn(λ) exists

and is finite, and infinity otherwise.

This Theorem is a direct application of Baldi’s generaliza-
tion of the Gärtner-Ellis Theorem (see [29], Chapter 4, Section
5). As stated, it is of little utility since we know next to nothing
about Λ̄. In the next section, we will check that Ī is non-trivial
and that the set of exposed points is non-empty.

VI. REPRESENTATION FORMULAE OF RATE FUNCTION

This section unveils the structure of Λ̄ and Ī . It prepares the
derivation of the partial information-theoretical interpretation
of the LDP upper bound stated in Theorem 7. Lemma 1
provides with a characterization of Λ̄(λ) when it is finite.
This characterization only depends on the spectral densities
(fi)i=1,d , and g, through the convex function Λ defined in
Definition 9. The Fenchel-Legendre transform I(·) of this
function Λ(·) is a leverage in the analysis of the rate function
Ī . As a matter of fact, for any z ∈ Rd, such that I(z) < ∞,
I(z) may be identified as an information divergence rate
between a carefully chosen AR-(r) process and the process
with spectral density g, (see Lemma 2). Lemma 3 states that
the supremum in the definition of Ī is achieved whenever Ī(·)
is finite. Moreover, an important consequence of Lemmas 2
and 3 is that although they differ, Ī(·) and I(·) have the same
effective domain (Corollary 2).

Definition 9: [DEFINITION OF Λ.] For λ ∈ Rd, let

Λ(λ) = − 1
4π

∫
T

log

(
1− 2g

d∑
i=1

λi

fi

)
dω .

The function Λ is strictly convex, lower-semi-continuous on

DΛ =

{
λ : 1− 2g

∑
i

λi

fi
is non-negative on T

}
,

and finite on λ’s in DΛ such that 1/g− 2
∑

i λi/fi is not the
null function. This follows from the fact that for such λ’s,
1/g− 2

∑
i λi/fi belongs to the set H (see Definition 5), has

isolated zeros, and log ω is integrable at 0.

Lemma 1: [CHARACTERIZATION OF Λ̄.] Λ̄ coincides with
Λ on the set DΛ̄ where it is finite. Moreover, if for any λ in
DΛ, fλ is defined as a function on T by

1/fλ(ω) = 1/g(ω)− 2
d∑

i=1

λi

fi (ω)
,

then λ ∈ DΛ̄ if and only if fλ ∈ F (g).
Recall that F (g) is defined at the beginning of Section IV.
Proof: From a well-known elementary result (the Cochran
Theorem, see [16, Lemma 1]), it follows that for any integer n
and any λ ∈ Rd,

Λn (λ)

=


− 1

2 log det
(
In − 2Tn(g)Tn

(∑d
i=1

λi

fi

))
if T−1

n (g)− Tn

(
1
g

)
+ Tn (1/fλ)

is definite positive.
+∞ otherwise.

Now

In − 2Tn(g)Tn

(
d∑

i=1

λi

fi

)

= Tn(g)
(

Tn

(
1
fλ

)
+ T−1

n (g)− Tn

(
1
g

))
.

As Tn(g) is definite positive for all n, if fλ 6∈ F,
lim supn

1
nΛn(λ) = ∞.

On the other hand, if fλ ∈ F, we may use the following
factorization:

In − 2Tn(g)Tn

(
d∑

i=1

λi

fi

)

= Tn(g)Tn

(
1
fλ

)
(

In + T−1
n

(
1
fλ

)(
T−1

n (g)− Tn

(
1
g

)))
.

The limits of − 1
2n log det(Tn(g)) and − 1

2n log det(Tn(1/fλ))
are readily identified as

− 1
4π

∫
T

log g dω and − 1
4π

∫
T

log
1
fλ

dω

thanks to Szegö’s limit theorem (see [11, Theorem 5.2, page
124 ]). As

Λ(λ) = − 1
4π

∫
T

log
g

fλ
dω ,

it remains to check that

lim
n

1
n

log det
(

In + T−1
n

(
1
fλ

)(
T−1

n (g)− Tn

(
1
g

)))
= 0 .

Recall that Tn

(
1
g

)
− T−1

n (g) is the sum of two matri-
ces of rank r, that it is non-negative and that the sum
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of its eigenvalues is upper-bounded by 2r
(
1 +

∑r
j=1 a2

j

)
where a ∈ Θr is the prediction filter associated with
g (see Proposition 5 in the Appendix). This proves that
T−1

n (1/fλ)
(
T−1

n (g)− Tn

(
1
g

))
has at most 2r non null

(actually negative but larger than −1) eigenvalues, and their
sum is uniformly lower-bounded. This is enough to prove that
det
(
In + T−1

n (1/fλ)
(
T−1

n (g)− Tn

(
1
g

)))
is smaller than

1 but remains bounded away from 0 and that the desired limit
is actually null.

Definition 10: Let I be the Fenchel-Legendre transform of
Λ : for any y ∈ Rd,

I(y) = sup
λ∈Rd

(〈λ,y〉 − Λ(λ)) .

Lemma 2: [REPRESENTATION FORMULA FOR I]
a) For all y ∈ Rd,

I(y) = inf
f∈Mr

{
K∞ (f | g) : yi =

1
2π

∫
T

f

fi
dω for all i

}
,

where the right-hand is infinite when the infimum is taken over
the empty set.
b) When I(y) is finite, the infimum is attained at some fλ

and this fλ is the spectral density of an AR(r) process:

1
fλ

=
1
g
− 2

d∑
i=1

λi

fi
(6)

for some λ ∈ D◦Λ such that

I(y) = 〈λ,y〉 − Λ(λ) .

The proof of Lemma 2, consists of checking that the convex
function Λ is essentially smooth according to definition 2.3.5
in [29].

Proof: [Lemma 2] Let us first check that if (λm)m∈N is a
sequence of vectors from D◦Λ that converges to λ ∈ DΛ \D◦Λ,
then (‖5Λ (λm)‖)m∈N converges to infinity.

For any λm ∈ D◦Λ, by Lebesgue differentiation Theorem

∂iΛ|λm =
1
2π

∫
T

g/fi

1− 2g
∑d

j=1 λm
j /fj

dω ,

and the following polynomial

1
g
1− 2

d∑
j=1

λm
j /fj

is positive everywhere on T.

Now as λ ∈ DΛ \ D◦Λ, we have 1
g − 2

∑d
j=1 λj/fj ≥ 0 on

T. Either the polynomial 1
g − 2

∑d
j=1 λj/fj = 0 on T, or it

vanishes on at least one and at most finitely many points on
T. Hence in all cases

1
2π

∫
T

g/fi

1− 2g
∑d

j=1 λj/fj

dω = ∞ .

By Fatou’s Lemma

lim inf
m

∂iΛ|λm

≥ 1
2π

∫
T

lim inf
m

g/fi

1− 2g
∑d

j=1 λm
j /fj

dω

=
1
2π

∫
T

g/fi

1− 2g
∑d

j=1 λj/fj

dω = ∞ .

Thus
(
∂iΛ|λm

)
m∈N tends to infinity for each i ∈ {1, . . . , d}.

Let y be such that I(y) < ∞. Let us now show that there
exists some λ such that

I(y) = 〈λ,y〉 − Λ (λ) .

There exists a sequence (λm)m∈N where λ ∈ D◦Λ, such that

I(y) = lim
m
〈λm,y〉 − Λ (λm) .

If the sequence (λm)m is bounded, it has an accumulation
point λ in DΛ since DΛ is closed (see Definition 9). Then by
lower-semi-continuity of Λ:

I(y) = 〈λ,y〉 − Λ (λ) .

Moreover λ ∈ D◦Λ and

y = 5Λ|λ .

Let us check now that (λm)m is indeed bounded. Assume the
contrary for a while. If the sequence (λm)m is not bounded,
then the sequence (λm/ ‖λm‖)m , has an accumulation point
η on the unit sphere of Rd. For each m such that ‖λm‖ ≥ 1,
λm/ ‖λm‖ ∈ D◦Λ since 0 ∈ D◦Λ. Hence we may assume that
η ∈ DΛ.

For every ω ∈ T, 2g(ω)
∑d

i=1 ηi/fi(ω) < 0,

The sub-sequence (〈λm,y〉 − Λ (λm))m is equivalent to(
1
2 (‖λm‖ 〈η,y〉 − log ‖λm‖)

)
m

. Hence, this subsequence
converges to ∞, which contradicts the assumption I(y) < ∞.

Hence, for any y ∈ Rd, such that I(y) < +∞, there exists
some λ ∈ D◦Λ such that

I(y) = 〈λ,y〉 − Λ (λ) .

From the very definition of I and Λ, for every λ′ ∈ DΛ,

Λ
(
λ′
)
≥ Λ (λ) + 〈λ′ − λ,y〉 ,

which entails y = 5Λ (λ) . Now define fλ using equation (6),
then fλ ∈Mr, for each i ∈ {1, . . . , d}, yi = 1

2π

∫
T fλ/fi dω,

and I(y) = K∞ (fλ | g) . This proves that if I(y) ≤ ∞, then

I(y) ≥ inf
f∈Mr

{
K∞ (f | g) : yi =

1
2π

∫
T

f

fi
dω for all i

}
.

We will now check that if the set f, f ∈ Mr with
yi = 1

2π

∫
T

f
fi

dω, for i ≤ d is non-empty, then I(y) is
upper-bounded by information-divergence rates between g and
elements of this set.
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Let f ∈ Mr be such that for all i ∈ {1, . . . , d}, yi =
1
2π

∫
T

f
fi

dω, then for any λ ∈ DΛ

K∞ (f | g)− 〈λ,y〉+ Λ (λ)

=
1
4π

∫
T

(
f

(
1
g
− 2

d∑
i=1

λi

fi

)

−1− log

(
f

(
1
g
− 2

d∑
i=1

λi

fi

)))
dω

≥ 0 .

This proves that

I(y) ≤ inf
f∈Mr

{
K∞ (f | g) : yi =

1
2π

∫
T

f

fi
dω for all i

}
.

Lemma 3: [REPRESENTATION FORMULA FOR Ī] For any
y ∈ Rd, if Ī(y) < ∞, there exists λ ∈ DΛ̄ such that Ī(y) =
〈λ,y〉 − Λ̄(λ).

Corollary 2: For any y ∈ Rd, Ī(y) < ∞ if and only if
I(y) < ∞.

Proof: Λ̄ ≥ Λ, so that Ī ≤ I . This proves that if
I(y) < ∞ then Ī(y) < ∞.
If now I(y) = +∞, there exists a sequence λm in D◦Λ such
that 〈λm,y〉 − Λ(λm) tends to infinity. Since Λ is either
continuous and finite on the boundary of DΛ, or tends to −∞
on this boundary, ‖ λm ‖ tends to infinity. Now, let u be an
accumulation point of λm/‖λm‖. For any m, any ω ∈ T,

1
g(ω)

− 2
d∑

i=1

λm
i

fi(ω)
≥ 0

so that, since ‖ λm ‖ tends to infinity and all fi are positive,

d∑
i=1

um
i

fi(ω)
≤ 0.

But by Lemma 1, this implies that u ∈ DΛ̄, and also that for
any positive M , Mu ∈ DΛ̄. Now, as m tends to infinity,

Λ(λm) ∼ −1/2 log ‖ λm ‖

so that 〈λm,y〉 ≥ 0 for large enough m, leading to 〈u,y〉 ≥ 0.
This implies that, for large enough M ,

〈Mu,y〉 − Λ̄(Mu) ≥ 1
3

log M

so that Ī(y) = +∞.

VII. TOOLS

When Ī(·) and I(·) do not coincide, it is not possible to
get a full analog of Lemma 2, that is to identify Ī() with an
information divergence rate between an AR process and the
AR process defined by g, nevertheless, thanks to Lemma 2
and 3, it is possible to get a partial information-theoretical
interpretation of Ī(·).

Lemma 4: Let y denote an element of DI ⊆ Rd, let λ̄ be
defined by Ī (y) =

〈
λ̄,y

〉
− Λ̄(λ̄) and λy be defined as the

solution of I (y) = 〈λy,y〉 − Λ(λy). For any λ, let fλ be
defined by

1
fλ

=
1
g
− 2

d∑
i=1

λi

fi
.

Then

Ī (y)
= I (y)−K∞

(
fλy | fλ̄

)
= K∞

(
fλy | g

)
−K∞

(
fλy | fλ̄

)
= K∞

(
fλy | g

)
− inf

λ∈DΛ̄

K∞
(
fλy | fλ

)
.

The corrective term infλ∈DΛ̄
K∞

(
fλy | fλ

)
is the price to

be paid for the lack of steepness of Λ̄.

Proof: We first check that Ī (y) = K∞
(
fλy | g

)
−

K∞
(
fλy | fλ̄

)
.

K∞
(
fλy | g

)
−K∞

(
fλy | fλ̄

)
=

1
4π

∫
T

2
d∑

i=1

fλy

λ̄i

fi
+ log

g

fλ̄

dω

=
d∑

i=1

λ̄iyi +
1
4π

∫
T

log
g

fλ̄

dω

= 〈λ̄,y〉+
1
4π

∫
T

log

(
1− 2g

d∑
i=1

λ̄i

fi

)
dω

= 〈λ̄,y〉 − Λ̄
(
λ̄
)

= Ī (y) .

Now, for any λ ∈ DΛ̄, 〈λ,y〉 − Λ
(
λ̄
)
≤ Ī (y). But again,

〈λ,y〉 − Λ̄ (λ) = K∞
(
fλy | g

)
−K∞

(
fλy | fλ

)
, leading to

K∞
(
fλy | fλ

)
≥ K∞

(
fλy | fλ̄

)
.

Remark: If d = 2, f1 = g and λ2 = −λ1 with λ1 < 0,
the quadratic form under consideration is the stochastic part
of the quasi-log-likelihood ratio between f2 and g. The LDP
satisfied by this log-likelihood ratio is well-understood thanks
to Proposition 7 in [9] and Proposition 5.1 in [8]. It actually
admits an information-theoretical representation property.

Lemma 5: Let y denote an element of DI ⊆ Rd, let λ̄ be
such that Ī (y) =

〈
λ̄,y

〉
− Λ̄(λ̄), let ȳ be such that I (ȳ) =〈

λ̄, ȳ
〉
− Λ(λ̄), then

Ī (y) ≥ I (ȳ) .

Proof: From the definitions of λ̄ and ȳ, it follows that

Ī (y)− I (ȳ) ≥ 〈λ̄,y − ȳ〉 .

For any λ, we have

〈λ,y〉 − Λ̄(λ) ≤
〈
λ̄,y

〉
− Λ̄(λ̄).

Now for any ε ∈ [0, 1], (1 − ε)λ̄ ∈ D◦
Λ̄

, since both 0 and λ̄
belong to D◦

Λ̄
. Substituting (1 − ε)λ̄ for λ in the preceding

inequality, and rearranging leads to:
1
ε

(
Λ̄((1− ε)λ̄)− Λ̄(λ̄)

)
≤
〈
λ̄,y

〉
.
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Letting ε tend to 0, and recalling that ∇Λ̄(λ) = ȳ:〈
λ̄, ȳ

〉
≤
〈
λ̄,y

〉
.

The following lemma relates the shape of DΛ and the shape
of DΛ̄ (clause a) of the Lemma), as a byproduct, we also get
a relation between Ī(y) and a relative entropy with respect to
g.

Lemma 6: Let ρ be defined as

min
ω∈T

g(ω)/(2 max
ω∈T

g (ω)).

Let (hi)i=1,d denote a sequence of functions from H. Let I

and Ī denote the rate functions associated with the sequence
(hi)i=1,d. Let y denote and element of DI ⊆ Rd. Let λ ∈ DΛ

satisfy I (y) = 〈λ,y〉 − Λ(λ). Let fλ be defined by

1
fλ

=
1
g
− 2

d∑
i=1

λihi .

Then the followings hold
a) ρλ ∈ DΛ̄,
b) ρK∞ (fλ | g) ≤ Ī (y) .

Proof: Let µ be such that 0 < µ < 1 and µλ ∈ DΛ̄.
Note that

1
fµλ

=
µ

fλ
+

1− µ

g
.

Then by the convexity of K∞ (fλ | ·):

K∞ (fλ | fµλ) ≤ (1− µ)K∞ (fλ | g) .

Now, let ρ be defined as in the statement of the Lemma. Then,
for all tuples of functions hi from H, as λ ∈ DΛ, for all
ω ∈ T:

1
minT g(ω)

≥ 2
d∑

i=1

λihi(ω),

which entails −2ρ
∑d

i=1 λihi ≥ −1/ maxT g(ω). Hence, the
largest eigenvalue of

Tn

(
2ρ

d∑
i=1

λihi

)
is larger than −1/ maxT g(ω), while the smallest eigenvalue of
T−1

n (g) is not smaller than 1/ maxT g(ω). This finally entails
that for all n

T−1
n (g)−Tn

(
2ρ

d∑
i=1

λihi

)
= Tn

(
1

fρλ

)
+T−1

n (g)−Tn

(
1
g

)
is definite positive, which implies that fρλ ∈ F.

Then

ρK∞ (fλ | g) ≤ K∞ (fλ | g)−K∞ (fλ | fρλ)
≤ Ī (y) .

by Lemma 4.
The following partial information-theoretical interpretation

of Ī is now an easy consequence of Lemma 2 and Lemma 4.

Lemma 7: Let y belong to DĪ , let fy be defined as the
spectral density that minimizes K∞ (· | g) among the solutions
of

1
2π

∫
T

fy

fi
= yi ,

then
Ī (y) ≤ K∞ (fy | g)− inf

h∈F
K∞ (fy | h) .

Proof: From the representation formula for I().

VIII. UNDER-ESTIMATION EXPONENTS

Throughout this section, g denotes the spectral density of
the AR process of order r > 0 that generates the observations.
Henceforth, K∞ (Mr−1 | g) denotes the minimum informa-
tion divergence rate between AR-processes of order r− 1 and
the AR process with density g (K∞ (Mr−1 | g) is the Stein
under-estimation exponent associated with g, see Theorem 5).

Sieve approximations allow to handle the large deviations of
the log-likelihood processes indexed by Fp or equivalently by
Θp using the LDPs for vectors of quadratic forms exhibited in
Section V. Thanks to the sieve approximation Lemma (Lemma
8) and to the LDP upper-bound for vectors of quadratic forms
7, Lemma 3 provides a lower bound on order under-estimation
exponent. This lower bound is defined as a limit of infima
of large deviation rate functions. Such a definition does not
preclude the triviality of the lower bound. The rest of this
section is devoted to the identification of this limit with the
expression given in the statement of Theorem 6 (Lemma 11)
and to checking that the latter expression is non-trivial (Lemma
12).

Definition 11: [SIEVE] For any integer p, any positive α,
an α-sieve for the set Fp of spectral densities of stable AR(p)-
processes with innovation variance equal to 1 is a finite subset
N (α) of Fp, such that for any f ∈ Fp, there exists f̂ ∈ N (α)
such that

‖ af − af̂ ‖2≤ α,

where af (resp. af̂ ) is the prediction filter associated with f

in Θp (resp. f̂ in Fp).

Upper bounds on the size of α-sieves for Fp or Θp can
be checked by the following argument. If a ∈ Θp, then the
complex polynomial 1 +

∑p
i=1 aiz

i has no roots inside the
open complex unit disc. Let us denote by (zi)

p
i=1 its p complex

roots,

1 +
d∑

i=1

aiz
i =

p∏
i=1

(1− z/zi) .

This implies that for all i ∈ {1, . . . , p}, |ai| ≤
(
p
i

)
. Hence

we get the following rough upper-bound on the minimal
cardinality of an α-sieve for Θp:(√

p

α

)p p∏
i=1

(
p

i

)
≤
(

2p

α

)p

.

Henceforth N(α) denotes the index set the sieve N (α), by
definition, we have:

N (α) = {fi ; fi ∈ Fr, i ∈ N(α)} .
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In the sequel, J(·) is the rate function for the LDP satisfied
by
(

1
n

∑n
t=1 Y 2

t

)
n∈N when Yt is generated by a Gaussian AR-

(r) process with spectral density g, (we refer to [16] for a full
presentation of this LDP and to the Appendix for an explicit
definition of J(·)).

Lemma 8: [SIEVE APPROXIMATION] For each α > 0, let
N (α) denote an α-sieve for Fp according to Definition 11.
N(α) denotes the index set for N (α):

N (α) = {fi : fi ∈ Fp, i ∈ N(α)} .

For any positive M , any integer p, for any ε > 0, if α > 0
satisfies

ε ≥ α(2r + 1)2r+1J−1 (M) ,

then

lim sup
n→+∞

1
n

log P

(
sup

f∈Fp

inf
i∈N(α)

∣∣∣∣ 1nY†
[
Tn

(
1
f

)
− Tn

(
1
fi

)]
Y
∣∣∣∣ ≥ ε

)
≤ −M

where N(α) denotes the index sets for α-sieves of Fp.

The proof of the sieve approximation Lemma is given in
the Appendix (Part c). The next definition is concerned with
the sets of values for vectors of quadratic forms indexed by
sieves for Fr that correspond to order under-estimation events.

Definition 12: For any α > 0, let N(α) and N ′(α) denote
respectively the index sets of α-sieves of Fr−1 and Fr. The set
Cα is the closed set of real vectors indexed by N(α)×N ′(α)
defined by:

Cα =
{
y : inf

i∈N(α)
yi

≤ α(2r + 1)2r+1J−1 (K∞ (Mr−1 | g))

+eα × inf
j∈N ′(α)

yj

}
and yα is an element of Cα that minimizes Ī:

yα such that Ī (yα) = inf
y∈Cα

Ī (y) .

Notations Ī and I have been intentionally overloaded. For
every index set N(α) × N ′(α), they denote specific rate
functions.

The existence of yα is ensured by the fact that Ī is lower-
semi-continuous and Cα is closed.

Lemma 9: For each positive α, let yα be defined according
to Definition 12, then

lim sup
n→+∞

1
n

log βW,r
n (P ) ≤ − lim

α↘0
Ī (yα) .

Proof: [Proof of Lemma 9]

βW,r
n (P )

≤ P

(
∃p < r : sup

σ,f∈Fp

{¯̀
n(σ2, f,Y)− pen(n, p)

}
≥ sup

σ,f∈Fr

{¯̀
n(σ2, f,Y)− pen(n, r)

})

= P

(
∃p < r : inf

f∈Fp

{
1
n
Y†Tn

(
1
f

)
Y
}

≤ inf
f∈Fr

{
1
n
Y†Tn

(
1
f

)
Y
}

× exp [2 (pen(n, p)− pen(n, r))]
)

.

The second step follows from Proposition 1. Let ε be defined
as α(2r + 1)2r+1J−1 (K∞ (Mr−1 | g)) . For any α > 0, for
large enough n, pen(n, p)− pen(n, r) < α.

βW,r
n (P )

≤ P

(
∃p < r : inf

f∈Fp

{
1
n
Y†Tn

(
1
f

)
Y
}

≤ inf
f∈Fr

{
1
n
Y†Tn

(
1
f

)
Y
}

expα

)
= P

(
inf

f∈Fr−1

{
1
n
Y†Tn

(
1
f

)
Y
}

≤ inf
f∈Fr

{
1
n
Y†Tn

(
1
f

)
Y
}

expα

)
≤ P

(
inf

i∈N(α)

{
1
n
Y†Tn

(
1
fi

)
Y
}

≤ ε + inf
i∈N ′(α)

{
1
n
Y†Tn

(
1
fi

)
Y
}

expα

)
+P

(
sup

f∈Fr

inf
i∈N(α)∣∣∣∣ 1nY†
[
Tn

(
1
f

)
− Tn

(
1
fi

)]
Y
∣∣∣∣ ≥ ε

)
.

The first summand on the right-hand-side is handled using
the large deviations theorem (Theorem 7), while the second
summand is handled using the sieve approximation lemma
(Lemma 8). Altogether, this implies

lim sup
n→+∞

1
n

log βML,r
n (P )

≤ max
{
− inf

y∈Cα

Ī (y) ;

lim sup
n→+∞

1
n

log P

(
sup

f∈Fr

inf
i∈N(α)∣∣∣∣ 1nY† [T−1

n (f)− T−1
n (fi)

]
Y
∣∣∣∣ ≥ ε

)}
≤ max

{
− inf

y∈Cα

Ī (y) ;−K∞ (Mr−1 | g)
}

.



13

But Theorem 5 (Stein upper-bound) imply that for small
enough α,

max
{
− inf

y∈Cα

Ī (y) ;−K∞ (Mr−1 | g)
}

= − inf
y∈Cα

Ī (y) ,

and the Lemma follows by letting α tend to 0.

The next corollary follows from Theorem 5 (Stein upper-
bound) and Lemma 9.

Corollary 3: Let yα be defined according to Definition 12,
then

lim
α↘0

Ī (yα) ≤ inf
f∈Mr−1

K∞ (f | g) .

Lemma 10: Let yα be defined according to Definition 12,
let λα ∈ DΛ be such that

I (yα) = 〈yα,λα〉 − Λ (λα) .

Let σα be the innovation variance of (fλα)α and aα its
prediction filter in Θr. For any accumulation point (σ̃, ã) ∈
(0,∞)×Θr, then 0 < σ̃ < ∞, and if f̃ is the spectral density
with innovation variance σ̃ and prediction filter ã, then f̃ is
the spectral density of a stable AR (r) process.

Proof: [Proof of Lemma 10] Let ρ = minT g
2 maxT g , from

Lemma 6, it follows that for any α,

ρK∞ (fλα | g) ≤ Ī (yα) .

But taking α to 0 and applying Corollary 3 leads to the fact
that σ̃ cannot be 0 or +∞, so that one obtains

K∞

(
f̃ | g

)
≤ 1

ρ
min

f∈Mr−1
K∞ (f | g) .

This implies that f̃ defines a stable AR(r) process.

Combining the next lemma with Lemma 3 proves Part b)
of Theorem 6.

Lemma 11: Let yα be defined according to Definition 12,
then

lim
α↘0

Ī (yα) ≥ inf
f∈Mr−1

[
K∞ (f | g)− inf

h∈F
K∞ (f | h)

]
.

Proof: [Proof of Lemma 11] According to Lemma 4,
there exists λα ∈ DΛ such that fλα is the spectral density of
an AR-(r) process satisfying

Ī(yα) = K∞ (fλα | g)− inf
λ∈DΛ̄

K∞ (fλα | fλ)

and
yα

i =
1
2π

∫
T

fλα

fi
for i ∈ I ∪ J

which, since yα ∈ Cα and all fis verify
∫

T log fi = 0, leads
to

min
i∈I

(
1
2π

∫
T

fλα

fi

)
≤ eα ×min

i∈J

(
1
2π

∫
T

fλα

fi

)
. (7)

Let σ̃, ã, f̃ be defined as in the statement of Lemma 10. There
exists m > 0 and M such that, for small enough α, we have
m ≤ fλα ≤ M on T, which, together with (7) leads to

inf
f∈Fr−1

(
1
2π

∫
T

f̃

f

)
≤ inf

f∈Fr

(
1
2π

∫
T

f̃

f

)
and then to

inf
f∈Mr−1

K∞

(
f̃ | f

)
≤ inf

f∈Mr

K∞

(
f̃ | f

)
.

This implies by Theorem 3 that f̃ is the spectral density of a
stable AR (r − 1) process.

The Lemma will thus be proved as soon as the following
is established:

lim
α↘0

Ī (yα) ≥ K∞

(
f̃ | g

)
− inf

h∈F
K∞

(
f̃ | h

)
. (8)

Define Fα as the set of spectral densities

fλ =
g

1− 2
∑N(α)

i=1 λig/fi

with λ ∈ DΛ̄ (the dimension of λ’s depends on the size of
the sieve N (α), but for any α, Fα is a subset of F ). Then for
any h ∈ Fα,

Ī (yα) ≥ K∞ (fλα | g)−K∞ (fλα | h) .

Without loss of generality, we may assume that the sieves
N (α) are nested (α > α′ implies N (α) ⊆ N (α′)). Hence for
any α′, for any h ∈ Fα′

lim
α↘0

Ī (yα) ≥ K∞

(
f̃ | g

)
−K∞

(
f̃ | h

)
.

But for any h in F , with associated innovation variance σ2
h

and prediction filter ah, there exists some i ∈ N(α) such that
hα ∈ Fα has innovation variance σ2

h and prediction filter ai

such that ‖ ah − ai ‖≤ α, so that limα→0 K∞

(
f̃ | hα

)
=

K∞

(
f̃ | h

)
. Thus for any h ∈ F , one has

lim
α↘0

Ī (yα) ≥ K∞

(
f̃ | g

)
−K∞

(
f̃ | h

)
,

which leads to (8).

Part a) of Theorem 6 follows from the next lemma.

Lemma 12: [NON TRIVIALITY OF UNDER-ESTIMATION
EXPONENT]

inf
f∈Mr−1

[
K∞ (f | g)− inf

h∈F
K∞ (f | h)

]
> 0.
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Proof: [Proof of Lemma 12] Let h be the spectral
density of a stable AR(r) process. For any real a such that
a > − infT h/ supT g, define ha by

1
ha

=
1
g

+
a

h
.

Thus ha is positive on T and is the spectral density of an
AR(r) process. Moreover, the smallest eigenvalue of

Tn

(
1
ha

)
+ T−1

n (g)− Tn

(
1
g

)
= a + T−1

n (g)

is positive, so that ha ∈ F . One has

inf
f∈Mr−1

[
K∞ (f | g)− inf

h∈F
K∞ (f | h)

]
≥ inf

f∈Mr−1
[K∞ (f | g)−K∞ (f | ha)] ,

and the infimum on the right-hand side is attained. Now, let
f̃ be such that

inf
f∈Mr−1

[
K∞ (f | g)− inf

h∈F
K∞ (f | h)

]
≥ L(a) = K∞

(
f̃ | g

)
−K∞

(
f̃ | ha

)
.

But L(a) satisfies the following equation:

L(a) =
1
4π

∫
T

[
log
(
1 + a

g

h

)
− a

f̃

h

]
dω .

Hence L() is a concave function, with L(0) = 0 and
L′(0) = 1

4π

∫
T

g−f̃
h dω. Now, f̃ 6= g since f̃ has order

≤ r − 1 and g has order r, and it is possible to choose h
such that L′(0) 6= 0. Indeed, if this were not the case, we
would get

∫ 2π

0
g(ω) cos(kω) dω =

∫ 2π

0
f̃(ω) cos(kω) dω for

k = 0, . . . , r. But the spectral density of an AR(r) processes
is determined by covariances with lags less than r. So, this
would lead to g = f̃ and contradict the fact that f̃ ∈ Fr−1.
Let h be such that L′(0) 6= 0. Then there exists a (a < 0
in case L′(0) < 0 and a > 0 in case L′(0) > 0) such that
L(a) > 0.

Acknowledgments. The authors would like to thank Jean
Coursol and Thomas Duquesne for fruitful discussions.

REFERENCES

[1] R. Azencott and D. Dacunha-Castelle. Séries d’observations
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[12] M. Bouaziz. Inégalités de trace pour des matrices de Toeplitz et
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APPENDIX

a) Stein exponents:

Proof: [Proof of triviality of over-estimation exponent]
Let g ∈ Mr−1 denote the spectral density of an AR-process
of order r − 1. Let P denote the distribution of the process.

Now let Q denote the probability distribution of an AR-
process of order exactly r. The finite-dimensional projections
Qn of Q are absolutely continuous with respect to the finite-
dimensional projections Pn of P . Let ε be positive and smaller
than limn βr

n(Q).. Let Aε
n denote the event

Aε
n =

{
y : y ∈ Rn,

1
n

log
dQn

dPn
(y) ≤ K∞ (Q | P ) + ε

}
.

By the Shannon-Breiman-McMillan Theorem (Theorem 1), for
n large enough,

Q {Aε
n} ≥ 1− ε . (9)

αr
n(P ) = EP [φr

n]

= EQ

[
dPn

dQn
φr

n

]
≥ EQ

[
1Aε

n

dPn

dQn
φr

n

]
≥ exp (−n(K∞ (Q | P ) + ε)) (EQ [φr

n]− ε)
≥ exp (−n(K∞ (Q | P ) + ε)) (βr

n(Q)− ε) .

Taking the limit of logarithms with respect to n, as
limn βr

n(Q) > 0:

lim
n

1
n

log αr
n(P ) ≥ −K∞ (Q | P )− ε . (10)

Let σ2 denote the variance of innovations associated to
g (σ2 = 1/(2π)

∫
T g dω), and b ∈ Θr−1 the associated

prediction filter. Let P denote the probability distribution
associated with g.

Now, let (an)n∈N denote a sequence of elements of Θr such
that for all n, an

r 6= 0

r−1∑
i=1

(an
i − bi)2 ↘ 0 and an

r ↘ 0 .

Let Pn denote the probability distribution of the AR-
process of order exactly r parameterized by (σ,an). Then
limn K∞ (Pn | P ) = 0.

Proof: [Proof of Stein under-estimation exponent]
Let P denote the probability distribution of an AR-process of
order exactly r.

Now let Q denote the probability distribution of an AR-
process of order r − 1. The finite-dimensional projections
Qn of Q are absolutely continuous with respect to the finite-
dimensional projections Pn of P . Let ε be positive and smaller
than limn 1− αr

n(Q). Let Aε
n denote the event

Aε
n =

{
y : y ∈ Rn,

1
n

log
dQn

dPn
(y) ≤ K∞ (Q | P ) + ε

}
.

By the Shannon-Breiman-McMillan Theorem (Theorem 1), for
n large enough,

Q {Aε
n} ≥ 1− ε . (11)

βr
n(P ) = EP [(1− φr

n)]
≥ EP

[
1Aε

n
(1− φr

n)
]

= EQ

[
1Aε

n

dPn

dQn
(1− φr

n)
]

≥ exp (−n(K∞ (Q | P ) + ε)) (EQ [1− φr
n]− ε)

≥ exp (−n(K∞ (Q | P ) + ε)) (1− αr
n(Q)− ε) .

Taking the limit of logarithms with respect to n, as
limn αr

n(Q) < 1:

lim
n

1
n

log βr
n(P ) ≥ −K∞ (Q | P )− ε . (12)

Optimizing with respect to Q leads to the Theorem.

Proof: [Scale invariance of error exponents] Let a ∈ Θr \
Θr−1 denote a prediction filter of order exactly r. For all σ >
0, let Pσ denote the probability distribution of an AR process
of order r parameterized by (σ,a).

Note that the Rn-valued random variable Y is distributed
according to Pσ if and only if 1/σY is distributed according
to P1 and that f ∈Mr if and only if f/σ2 ∈Mr.
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The probability that the quasi-ML order testing procedure
under-estimates the order on a random sample Y of length n
is

Pσ

{
e−pen(n,r) inf

f∈Mr

Y†T−1
n (f)Y

≤ e−pen(n,r−1) inf
f∈Mr−1

Y†T−1
n (f)Y

}
= P1

{
e−pen(n,r) inf

f∈Mr

1
σ
Y†T−1

n (f)
1
σ
Y

≤ e−pen(n,r−1) inf
f∈Mr−1

1
σ
Y†T−1

n (f)
1
σ
Y
}

= P1

{
e−pen(n,r) inf

f∈Mr

Y†T−1
n (

f

σ2
)Y

≤ e−pen(n,r−1) inf
f∈Mr−1

Y†T−1
n (

f

σ2
)Y
}

= P1

{
e−pen(n,r) inf

f∈Mr

Y†T−1
n (f)Y

≤ e−pen(n,r−1) inf
f∈Mr−1

Y†T−1
n (f)Y

}
.

This is enough to conclude that

lim sup
n→∞

1
n

log βML,r
n (Pσ)

= lim sup
n→∞

1
n

log βML,r
n (P1) .

The same line of reasoning works for the quasi-Whittle
testing procedure and for the maximum likelihood testing
procedure.

b) Inverses of Toeplitz matrices associated with AR
processes:
The next proposition provides with a quantitative assessment
of the Whittle approximation when the symbol is the spectral
density of an AR process.

Proposition 4: Let f denote the spectral density of an AR(r)
process with unit innovation variance (f ∈ Mr). Let a ∈ Θr

denote the associated prediction filter f(z) = 1

|1+Pr
i=1 aizi|2 ,

let a0 = 1. For n ≥ 2r, the inverse of the Toeplitz matrix
Tn(f) is given by:

T−1
n (f)[i, i + k]

=



0 if |k| > r∑r−|k|
j=0 ajaj+|k| if |k| ≤ r and i ∧ i + k > r

and n− r ≥ i ∨ i + k∑(i∧i+k)−1
j=0 ajaj+|k| if |k| ≤ r and i ∧ i + k ≤ r∑n−(k+i∨i)
j=0 ajaj+|k| if |k| ≤ r and i ∨ i + k > n− r

(13)

The Toeplitz matrix associated with 1/f is given by:

Tn (1/f) [i, i + k] =

{∑r−|k|
j=0 ajaj+|k| if |k| ≤ r

0 otherwise .
(14)

Proof: Assume (Yi)i∈N is an AR(r) process with spectral
density f.The log-likelihood of a vector y ∈ Rn can be written
in two different ways:

− 1
2

log
1

(2π)ndet(Tn(f))
− 1

2
y†T−1

n (f)y

and

− 1
2

log
1

(2π)ndet(Tn(f))
− 1

2
y†1:rT

−1
r (f)y1:r

− 1
2

n∑
t=r+1

(
yt +

r∑
i=1

aiyt−i

)2

.

Note that T−1
n (f) is symmetric with respect to its two di-

agonals. Identifying coefficients of ytysin the two preceding
expressions leads to Equation (13).

Equation (14) follows immediately from the definition of
Tn and 1/f .

Proposition 5: Let f denote the spectral density of an AR-
(r) process with unit innovation variance, let a denote the
associated prediction filter, let a0 = 1, then:
a) Tn (1/f)− T−1

n (f) is non-negative of rank at most 2r.
b)

y†
[
Tn (1/f)− T−1

n (f)
]
y ≤ r ‖a‖22

(
r∑

t=1

y2
t +

n∑
t=n−r+1

y2
t

)
.

(15)

Proof: The following equation follows from Proposition 4:

y†
[
Tn

(
1
f

)
− T−1

n (f)
]
y

=
r∑

j=1


 r∑

i=j

aiyn+j−i

2

+

 r∑
i=j

aiyi+1−j

2
 (16)

Then Proposition 5 follows from Cauchy-Schwarz inequality.

c) Proof of the sieve approximation lemma 8 :
Proof: [Sieve approximation] As both

(
T−1

n (f)− T−1
n (fi)

)
and Tn

(
1
f −

1
fi

)
are band-limited matrices, let us first get a

general upper-bound on

y†Ay

where A is a n × n symmetric matrix such A[i; i + k] =
0 whenever |k| > r. Agreeing on the fact that A[i; j] = 0
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whenever either i or j does not belong to {1, . . . , n}, we get:

y†Ay

=
n∑

i=1

r∑
k=−r

yiyi+kA[i; i + k]

=
n∑

i=1

(
yi

r∑
k=−r

yi+kA[i; i + k]

)

≤

(
n∑

i=1

y2
i

)1/2
 n∑

i=1

(
r∑

k=−r

yi+kA[i; i + k]

)2
1/2

≤ ‖y‖

(
n∑

i=1

(
r∑

k=−r

A2[i; i + k]

)(
r∑

k=−r

y2
i+k

))1/2

≤ ‖y‖ max
i

(
r∑

k=−r

A2[i; i + k]

)1/2( n∑
i=1

(
r∑

k=−r

y2
i+k

))1/2

≤ ‖y‖ max
i

(
r∑

k=−r

A2[i; i + k]

)1/2√
2r + 1

(
n∑

i=1

y2
i

)1/2

≤ max
i∈{1,...,n}

(
r∑

k=−r

A2[i; i + k]

)1/2√
2r + 1‖y‖2 .

Now from Proposition 4, it follows that if a and b denote
the prediction filters associated with f and fi from Fr:(

T−1
n (f)[l; l + k]− T−1

n (fi)[l; l + k]
)2

≤

r−|k|∑
l=0

alal+k − blbl+k

2

≤ 2


r−|k|∑

l=0

al(al+k − bl+k)

2

+

r−|k|∑
l=0

bl+k(al − bl)

2


≤ 2

(
r∑

l=0

(al − bl)2
) (

‖a‖2 ∨ ‖b‖2
)

≤ 22r+1α2 .

Plugging this bound in the preceding inequality, we get

sup
f∈Fr

inf
i∈N(α)

1
n

∣∣Y† (T−1
n (f)− T−1

n (fi)
)
Y
∣∣

≤ 1
n

α(2r + 1)2r+1 ‖Y‖2 .

In a similar way, we also get:

sup
f∈Fr

inf
i∈N(α)

1
n

∣∣∣∣Y†Tn

(
1
f
− 1

fi

)
Y
∣∣∣∣

≤ 1
n

α(2r + 1)2r+1 ‖Y‖2 .

Hence it remains to check that for any positive M , there exists

an integer t such that

lim sup
n→∞

1
n

log P

{
1
n

n∑
i=1

Y 2
i ≥

1
t

}
≤ −M

From Theorem 2 in [16], it follows that, 1
n

∑n
t=1 Y 2

t satisfies
a LDP with rate function

J(y) = sup
λ∈(−∞,1/2‖g‖∞]

{λy − L(λ)}

where

L(λ) = − 1
4π

∫
T

log det (1− 2λg(ω)) dω .

Now in order to terminate the proof of Lemma 8, it is enough
to choose α in such a way that

J

(
ε2−(r+1)
α(2r + 1)

)
≥ M .

d) Non-triviality of F (g) for AR-processes of order 2:

Proof: [Proposition 3] Let g denote the spectral density
of an auto-regressive process of order 2 with prediction filter
(a1, a2) then

f(g) ∈ F ⇔ (1 + a2)2 > a2
1(1 + a2

2).

Let g ∈ F2 be defined by the prediction filter a = (a1, a2).
Let us agree on the following notations

b0 =
√

1 + a2
2

b1 =
√

1 + a2
2

a1

1 + a2

Pa(z) = 1 + a1z + a2z
2.

The I-projection f(g) of g on M1 is the spectral density
1/|b0 + b1z|2.

If |z| 6 1, then Pa(z) 6= 0. Hence Pa(x) is non-negative on
[−1, 1]. Moreover Pa(1) > 0 and Pa(−1) > 0. This implies

−(1 + a2) < a1 < 1 + a2

which entails |b1| < b0.
The matrix Tn(1/f(g))+T−1

n (g)−Tn(1/g) coincides with

Mn =



d1 e 0 0
e d2 c 0
0 c d c

0 c
. . . . . .

0
. . . . . . . . . . . .

. . .
. . . d c 0
. . . c d2 e

0 0 e d1
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where 
d = b2

0 + b2
1

d2 = b2
0 + b2

1 − a2
2

d1 = b2
0 + b2

1 − a2
1 − a2

2

c = b0b1

e = b0b1 − a1a2.

Mn is definite positive if all determinants of its “main minors”
are positive. Let Ek denote the determinant of the sub-matrix
formed by the last k rows and columns of Mn.

1) If k 6 n− 2 and k > 3. Then Ek = dEk−1 − c2Ek−2.

The polynomial z2 − dz + c2 has roots d±(b20−b21)
2 . This

entails
Ek = αb2k

0 + βb2k
1

with {
αb2

0 + βb2
1 = d1

αb4
0 + βb4

1 = d1d2 − e2

Note that

d1 =
(1 + a2)2 − 2a2a

2
1

(1 + a2)2

and that the condition d1 > 0 may not be satisfied, for
example if a2 = r2, a1 = −2r and r ∼ 1− ε. Note that
e = a1(1 − a2)/(1 + a2) and d2 = 1 + b2

1.
In order to have Ek > 0 for all k, it is necessary that
α > 0, hence d1d2 − e2 − d1b

2
1 > 0 and d2 − b2

1 = 1,
that is d1 − e2 > 0.
This finally entails the necessary condition

(1 + a2)2 > a2
1(1 + a2

2).

2) The case k = n−1, boils down to the following relation

En−1 = d2En−2 − c2En−3

= (d2b
2
0 − c2)αb

2(n−3)
0 + (d2b

2
1 − c2)βb

2(n−3)
1

= αb
2(n−3)
0 + (1− b2

1(b
2
0 − b2

1)βb
2(n−3)
1 )

> 0.

3) Finally the case k = n is dealt with by

En = d1En−1 − e2En−2

= (d1d2 − e2)En−2 − d1c
2En−3

=
[
(d1d2 − e2)b2

0 − d1c
2
]
αb

2(n−3)
0

+
[
(d1d2 − e2)b2

1 − d1c
2
]
βb

2(n−3)
1

> 0
for sufficiently large n

as soon as (d1d2 − e2)b2
0 − d1c

2 > 0

But

(d1d2 − e2)b2
0 − d1c

2

= b2
0

[
d1d2 − e2 − d1b

2
1

]
= b2

0

[
d1(d2 − b2

1)− e2
]

= b2
0(d

2
1 − e2) since d2 = 1 + b2

1.

Hence, f(g) ∈ F (g) if and only if (1 + a2)2 > a2
1(1 + a2

2).
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