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This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet
defined by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring (AC)
code introduced by Bontemps (2011) is adaptive with respect to the collection of such classes. The analysis builds on
the tight characterization of universal redundancy rate in terms of metric entropy by Haussler and Opper (1997) and
on a careful analysis of the performance of the AC-coding algorithm. The latter relies on non-asymptotic bounds for
maxima of samples from discrete distributions with finite and non-decreasing hazard rate.
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1 Introduction
The aim of lossless data compression is to encode a sequence of symbols –the message– into a hope-
fully short sequence of bits –the codeword–. An encoding algorithm has not only to be one-to-one: the
message should be recoverable from the codeword, it has also to be non-ambiguous, any sequence of
messages should be recoverable from the corresponding sequence of codewords, this is warranted if no
codeword is a strict prefix of any other codeword. Such a code is called a prefix code. Data compres-
sion is as old as digital communications and computers (See Cover and Thomas 1991, for references),
and efficient lossless data compression algorithms can be found on any laptop either as stand-alone ap-
plications like gzip,bzip2 or as embedded algorithms like Huffmann coders or arithmetic coders in
jpeg,jpeg2000 processing algorithms.

There are several ways of thinking about the cost of a data compression algorithm. The number of
computational steps needed to encode/decode a message of n symbols may be the most obvious one
for somebody familiar with algorithm analysis (?), quantifying the computational cost of the Burroughs-
Wheeler transform (an essential ingredient in bzip2) is an example of such a question. In this text,
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we are interested in another aspect of the performance of data compression algorithms: redundancy. In
words, if `(X1:n) denotes the length of the codeword for message X1:n under some coding scheme, the
redundancy of that coding scheme under some probability distribution P on the set of messages of length
n over the finite or countable alphabet X is the difference between E[`(X1:n)] and the minimal expected
length of codewords amongst all non-ambiguous codes.

Shannon first source coding theorem (Cover and Thomas 1991) asserts that this minimum is at least
as large as the Shannon (binary) entropy of the probability distribution P: H(Pn) = EP[− logP(X1:n)]
– throughout this paper, log x denotes the base 2 logarithm of x while lnx denotes its natural logarithm
–. If P is known, it is possible to design an encoding algorithm that achieves average codelength at
most H(Pn) + 1. A construction by Shannon, Fano and Elias called arithmetic coding shows that it is
always possible to choose codeword length not larger than − logP{X1:n} + 1. This is why the quantity
− logP{X1:n} is called the ideal codeword length of message X1:n under probability P. The Kraft-
McMillan inequality asserts that for any non-ambiguous encoding algorithm, the collection (2−`(x1:n))x1:n

defines a sub-probability over messages of length n (Cover and Thomas 1991). Therefore, in the sequel,
we will identify encoding algorithms and probability distributions.

If an encoding algorithm tailored to probability distribution Q (that is with coding length b− logQ(x1:n)c+
1) is used against probability distribution P, the average difference between the coding length and the
Shannon entropy of P is called the redundancy of the encoding. Up to an additive constant 1, the re-
dundancy of the coding probability Q with respect to P coincides with the Kullback-Leibler divergence
between P and Q: D(P | Q) = EP[logP(X1:n)/Q(X1:n)] . A universal coding algorithm attempts to
minimize redundancy with respect to a collection of probability distributions.The richer the collection,
the more challenging is the universal coding problem. The analysis of the redundancy of many useful
coding algorithms like gzip, bzip2, zip, ctw, etc against very large or not so large collec-
tions of probability distribution has been carried out (See Szpankowski 2001, and references therein).
Most results so far deal with coding over finite, known alphabets.

Here, we are interested in coding over a countable alphabet X (say the set of positive integers N+ or the
set of integers N). Sources over alphabetX are probability distributions on the setXN of infinite sequences
of symbols from X and Λ will denote various collections of sources on alphabet X . The symbols emitted
by a source are denoted by a sequence X of X -valued random variable X = (Xn)n≥1 . If P is the
distribution of X, Pn denotes the distribution of the first n symbols X1:n = (X1, ..., Xn), and we let
Λn = {Pn : P ∈ Λ}. Finally, for any countable set X , let M1(X ) be the set of all probability distributions
over X .

Since Pn ∈ Λn is usually not known, universal coding looks like a statistical problem even though the
problem of estimating the source is best avoided. Universal coding rather attempts to develop sequences of
coding probabilities (Qn)n so as to minimize the redundancy over a whole class of sources. The maximal
redundancy of Qn with respect to Λ is defined by:

R+(Qn,Λn) = sup
P∈Λ

D(Pn, Qn) .

The infimum of R+(Qn,Λn) is called the minimax redundancy with respect to Λ:

R+(Λn) = inf
Qn∈M1(Xn)

R+(Qn,Λn).

Classical results by Kieffer (1978), Gyorfi, Pali, and van der Meulen (1993, 1994) show that finite
minimax redundancy is not a trivial property when the alphabet is infinite even for classes of memoryless
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sources. This observation contrasts with what we know about the finite alphabet setting where coding
probabilities asymptotically achieving minimax redundancies have been described (Barron et al. 1998,
Yang and Barron 1998, Clarke and Barron 1994).

Universal coding against a countable alphabet is not the same thing as universal coding against a finite
alphabet of unknown size which is much larger than the message length. Note that delicate asymptotic
results for coding over large finite alphabets with unknown size have started to appear (Szpankowski and
Weinberger 2010).

Investigating minimax redundancy and developing efficient coding algorithms achieving that minimax
redundancy over (relatively) small classes of sources is not enough. A more ambitious goal consists of
developing adaptive coding algorithms, that is coding algorithms that asymptotically achieve minimax
redundancy simultaneously over large collections of sources classes. Adaptivity is a pivotal concept in
non-parametric statistics (See Catoni 2004, for a thorough account of the interplay between statistics
and data compression). Formally, a sequence (Qn)n of coding probabilities is said to be asymptotically
adaptive with respect to a collection (Λm)m∈M of source classes if for all m ∈M:

R+(Qn,Λnm) = sup
P∈Λm

D(Pn, Qn) ≤ (1 + o(1))R+(Λnm)

as n tends to infinity. In the finite alphabet context, the context-tree weighting method (See Catoni
2004, and references therein) has for example been shown to be adaptive with respect to large collec-
tions of class of sources defined by Markovian constraints, while Lempel-Ziv coders like gzip, zip,
compress,... are not (?).

In this paper we consider the AC-coding algorithm introduced by Bontemps (2011).
The AC-code encodes a sequence x1:n = x1, . . . , xn of symbols from N+ = N \ {0} on the basis of

the following idea: large symbols are few, and can be encoded separately. In practice a symbol is great if
it is greater than all symbols seen so far. Large symbols are encoded using Elias penultimate code (Elias
1975), which is a prefix code over N+ (the length of Eilas encoding of n is larger than log n + log log n
and smaller than log n+2 log log n). For small(er) symbols are handled by an arithmetic coder tailored to
Krichevsky-Trofimov mixtures (See Cesa-Bianchi and Lugosi 2006, Catoni 2004, and references therein).
The AC-encoding algorithm progressively enlarges the alphabet of the Krichevsky-Trofimov mixtures so
as to accomodate the symbols met so far. The next paragraph describes the AC-encoding in technical
terms.

For i : 1 ≤ i ≤ n, let mi = max1≤j≤i xj . The ith symbol is a record if mi 6= mi−1. Let n0
i be the

number of records up to index i. The jth record is denoted by m̃j . From the definitions, m̃n0
i

= mi

for all i. Let m̃0 = 0 and let m̃ be the sequence of differences between records terminated by a 1,
m̃ = (m̃i − m̃i−1 + 1)1≤i≤n0

n
1 (the last 1 in the sequence serves as a terminating symbol). The symbols

in m̃ are encoded using Elias penultimate code. This sequence of codewords forms CE .
The sequence of censored symbols x̃1:n is defined by x̃i = xiIxi≤mi−1

. The binary string CM is obtained
by arithmetic encoding of x̃1:n0. The coding probability used to (arithmetically) encode x̃1:n0 is

Qn+1(x̃1:n0) = Qn+1(0 | x1:n)

n−1∏
i=0

Qi+1(x̃i+1 | x1:i)
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with

Qi+1(X̃i+1 = j|X1:i = x1:i) =
nji + 1

2

i+ mi+1
2

if 1 ≤ j ≤ mi,

Qi+1(X̃i+1 = 0|X1:i = x1:i) =
1/2

i+ mi+1
2

,

where nji is the number of occurrences of symbol j amongst the first i symbols (in x1:i). We agree on
nj0 = 0 for all j > 0. Note that 0 is always encoded as a new symbol: if xi+1 = j > mi, the AC-code
encodes a 0 just as if it were is the first occurrence of symbol 0, meanwhile the counter nji is incremented.

Bontemps (2011) describes a nice way of interleaving the Elias codewords CE and the mixture code
CM in order to perform online encoding and decoding.

When turning to classes of memoryless sources over a countable alphabet, we consider the simplest
possible ones, classes defined by an envelope function.

Definition 1 Let f be a mapping from N+ to [0, 1], with 1 <
∑
j>0 f(j) < ∞. The envelope class Λf

defined by the function f is the collection of stationary memoryless sources with first marginal distribution
dominated by f : Λf =

{
P : ∀x ∈ N, P1{x} ≤ f(x) and P is stationary and memoryless.

}
. The

associated envelope distribution has lower endpoint lf = max{k :
∑
j≥k f(j) ≥ 1}. The envelope

distribution F is defined by F (k) = 0 for k < lf , and F (k) = 1 −
∑
j>k f(j) for k ≥ lf . The tail

function F is defined by F = 1−F . The associated probability mass function coincides with f for u > lf
and is equal to F (lf ) ≤ f(lf ) at u = lf .

This envelope probability distribution plays a special role in the analysis of the minimax redundancy
R+(Λnf ). Boucheron, Garivier, and Gassiat (2009) related the summability of the envelope function and
the minimax redundancy of the envelope class. They proved almost matching upper and lower bounds
on minimax redundancy for envelope classes as for example: R+(Λnf ) ≤ infu≤n

[
n log(1 + F (u)) +

u−1
2 log n

]
+ 2. The minimax redundancy of classes defined by exponentially vanishing envelopes was

fully characterized by Bontemps (2011) using arguments borrowed from Haussler and Opper (1997), it
avers that the minimax redundancy is half the upper bound obtained by choosing u so as F (u) ≈ 1/n in
the above-stated inequality. This suggested the possibility of describing the minimax redundancy as a sim-
ple functional of the envelope distribution without referring to the precise form of the envelope function.
Bontemps proved that the AC-code is adaptive over the union of classes of sources with exponentially de-
creasing envelopes. As the AC-code does not benefit from side information concerning the envelope, it is
natural to ask whether it is adaptive to a larger class of sources. That kind of question has been addressed
in data compression over finite alphabets by Garivier (2006), who proved that Context-Tree-Weighting
(Willems 1998, Catoni 2004) is adaptive over Renewal sources while it had been designed to compress
sources with bounded memory. In a broader context, investigating the situations where an appealing pro-
cedure is minimax motivates the maxiset approach pioneered in (Cohen et al. 2001, Kerkyacharian and
Picard 2002).

Haussler and Opper (1997) characterize the minimax redundancy of a collection of sources using the
metric entropy of the class of marginal distributions, when the class is not too large. Intuition suggests that
an envelope class is not too large when the envelope decreases fast enough. On the other hand, a bird’s
eye-view at the AC-code shows that it uses mixture coding over the observed alphabet in a sequential way.
Intuition suggests that adaptivity depends on the fact that the observed alphabet does not grow too fast.
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We prove that if the envelope distribution function has finite and non decreasing hazard rate (defined
in Section 2): an explicit formula connects the minimax redundancy and the envelope distribution; the
AC-code achieves the minimax redundancy, that is the AC-code is adaptive with respect to the collection
of envelope classes with finite and non decreasing hazard rate.

The paper is organized as follows. Section 2 provides notation and definitions concerning hazard rates.
The main result concerning the adaptivity of the AC-code over classes with envelopes with finite and
non-decreasing hazard rate is stated in Section 3. The minimax redundancy of source classes defined by
envelopes with finite and non-decreasing hazard rate is characterized in Section 4. Section 5 is dedicated
to the characterization of the redundancy of the AC-code over source classes defined by envelopes with
finite and non-decreasing hazard rate. Proofs are given in the Appendix.

2 Definitions and notation
Following Anderson (1970), it proves convenient to define a continuous distribution function Fc starting
from the envelope distribution function F . The distribution function is characterized by its hazard function
hc : [lf−1,∞)→ R+, defined by hc(n) = − lnF (n) for n ∈ N, and hc(t) = hc(btc)+(t−btc)(hc(btc+
1) − hc(btc)) for t ≥ lf − 1. The tail function of Fc is F c(t) = exp(−hc(t)) for t ≥ lf − 1. For all
integers n, F c(n) = F (n). The hazard rate h′c is piecewise constant, it equals

hc(btc+ 1)− hc(btc) = ln(F (btc)/F (btc+ 1))

= ln
(
1 + f(btc+ 1)/F (btc+ 1)

)
if t ≥ lf , and − lnF (lf ) if t ∈ (lf − 1, lf ). Notice that the hazard rate is finite on (lf − 1,∞) if and
only if f has infinite support. Henceforth, given an envelope function f , F, Fc, F , F c will be defined
accordingly. We will also consistently define U,Uc : (1,∞)→ R by

U(t) = inf{x : F (x) ≥ 1− 1/t} = inf{x : 1/F (x) ≥ t}

and Uc(t) = inf{x : 1/F c(x) ≥ t}. The last two functions prove illuminating in extreme value theory.
If the hazard rate is finite, then U(n) → ∞ and Uc(n) → ∞ as n tends to infinity. Note that if F is the
envelope distribution defined by f , then Fc(t) = 0 for t ≤ lf −1. Recall that ifX is distributed according
to Fc then bXc+ 1 is distributed according to F or equivalently that U(t) = bUc(t)c+ 1 for t > 1.

In this paper, abusing notation, an envelope function f is said to have finite and non-decreasing hazard
rate if the associated continuous distribution function Fc has finite and non-decreasing hazard rate. In this
case, the essential infimum of the hazard rate is b = − lnF (lf ) > 0. The envelopes introduced in the next
definition provide examples of such envelopes. Poisson distributions offer other examples.

Definition 2 The sub-exponential envelope class with parameters α ≥ 1 (shape), β > 0 (scale) and
γ > 1 is the set Λ(α, β, γ) of probability mass functions (p(k))k≥1 on the positive integers such that

∀k ≥ 1, p(k) ≤ f(k), where f(k) = γe
−
(
k
β

)α
.

Exponentially vanishing envelopes (Boucheron et al. 2009) are obtained by fixing α = 1.
To define source classes small enough so that the metric entropy of the class of marginal distributions

characterizes the minimax redundancy, Haussler and Opper (1997) introduce functions with properties we
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set below. We shall see that source classes defined by envelopes with finite and non-decreasing hazard
rate are small enough in that respect. Recall that a measurable function h : (0,∞)→ [0,∞) is said to be
slowly varying at infinity if for all κ > 0, limx→+∞

h(κx)
h(x) = 1 (See Bingham et al. 1989).

Definition 3 A continuous, non decreasing function h : (0,∞)→ [0,∞) is said to be very slowly varying
at infinity if for all η ≥ 0 and κ > 0,

lim
x→+∞

h(κx(h(x))η)

h(x)
= 1 and lim

x→+∞

h(κx(lnx)η)

h(x)
= 1.

The next proposition, proved in the appendice (Section A), allows to check that source classes defined
by envelopes with finite and non-decreasing hazard rate are indeed small.

Proposition 1 Let f be an envelope function with finite and non-decreasing hazard rate. Then

(i) Uc is slowly varying at infinity;

(ii) Uc ◦ exp is a concave function, and its derivative is equal to F c(Uc(exp(t)))/fc(Uc(exp(t)));

(iii) The function h̃ : [1,∞)→ R, h̃(t) =
∫ t2

1
Uc(x)

2x dx is very slowly varying;

(iv)

lim
t→+∞

Uc(t) lnUc(t)∫ t
1
Uc(x)
x dx

= 0.

3 Main result
Theorem 1 The AC-code is adaptive with respect to source classes defined by envelopes with finite and
non-decreasing hazard rate.

Let Qn be the coding probability associated with the AC-code, then if f is an envelope with non-
decreasing hazard rate,

R+(Qn; Λnf ) ≤ (1 + o(1))(log e)

∫ n

1

Uc(x)

2x
dx

while

R+(Λnf ) = (1 + o(1))(log e)

∫ n

1

Uc(x)

2x
dx

as n tends to infinity.

The following corollary provides the bridge with Bontemps’s work.

Corollary 1 The AC-code is adaptive with respect to sub-exponential envelope classes: ∪α≥1,β>0,γ>1Λ(α, β, γ).
Let Qn be the coding probability associated with the AC-code, then

R+(Qn; Λn(α, β, γ)) ≤ (1 + o(1))R+(Λn(α, β, γ))

as n tends to infinity.
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Bontemps (2011) showed that the AC-code is adaptive over exponentially decreasing envelopes, that is
over ∪β>0,γ>1Λ(1, β, γ). Corollary 1 shows that the AC-code is adaptive to both the scale and the shape
parameter.

The next equation helps in understanding the relation between the redundancy of the AC-code and the
metric entropy: ∫ t

1

Uc(x)

2x
dx =

∫ Uc(t)

0

ln(tF c(x))

2
dx . (1)

The elementary proof is given at the end of the appendix. The left-hand-side of the equation appears
(almost) naturally in the derivation of the redundancy of the AC-code. The right-hand-side or rather
an equivalent of it, appears during the computation of the minimax redundancy of the envelope classes
considered in this paper.

The proof of Theorem 1 is organized in two parts : Proposition 3 from Section 4 describes the minimax
redundancy of source classes defined by envelopes with finite and non-decreasing hazard rate.

The redundancy of the AC-coding probability Qn with respect to Pn ∈ Λn(f) is analyzed in Section 5.
The pointwise redundancy is decomposed in the following way:

− logQn(X1:n) + logPn(X1:n) = `(CE)︸ ︷︷ ︸
I

+ `(CM ) + logPn(X1:n)︸ ︷︷ ︸
II

.

Proposition 8 asserts that (I) is negligible with respect to R+(Λnf ), uniformly for P ∈ Λf , and Propo-
sition 9 asserts that the expected value of (II) is bounded, uniformly for P ∈ Λf , by a term which is
equivalent to R+(Λnf ).

4 Minimax redundancies
The minimax redundancy of source classes defined by envelopes f with finite and non-decreasing hazard
rate is characterized using Theorem 5 from (Haussler and Opper 1997). This theorem relates the minimax
redundancy to the metric entropy of the class of marginal distributions with respect to Hellinger distance.
Recall that the Hellinger distance between two probability distributions P1 and P2 on N, defined by the
corresponding probability mass functions p1 and p2, is

(∑
k∈N

(√
p1(k)−

√
p2(k)

)2)1/2
. If probability

distributions over N are parametrized by the square root of their probability mass function, the Hellinger
metric is just the `2 distance between parameters. For a source class Λ, LetHε(Λ) be the ε-entropy of Λ1

with respect to the Hellinger metric. That is, Hε(Λ) = lnDε(Λ) where Dε(Λ) is the cardinality of the
smallest finite partition of Λ1 into sets of diameter at most ε when such a finite partition exists.

Theorem 2 (Haussler and Opper 1997, Theorem 5) Let Λ be a class of stationary memoryless sources.
Assume there exists a very slowly varying function h such that:

Hε(Λ) = h
(

1
ε

)
(1 + o(1)) as ε tends to 0.

Then
R+ (Λn) = (log e)h(

√
n) (1 + o(1)) as n tends to +∞.

This theorem tightly characterizes the asymptotic redundancy of small source classes. Notice that the def-
inition of redundancy uses base 2 logarithms while ε-entropy is usually defined using natural logarithms.
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Proposition 2 (Entropy of envelope classes with finite and non-decreasing hazard rate.) Let f be an
envelope function with finite and non-decreasing hazard rate, then

Hε(Λf ) = (1 + o(1))

∫ 1/ε2

0

Uc(x)

2x
dx as ε tends to 0 .

The proof follows the approach of (Bontemps 2011). It is stated in the appendix.
The characterization of R+(Λnf ) follows from a direct application of Theorem 2 and Proposition 1 (iii):

Proposition 3 (Minimax redundancy of envelope classes with finite and non-decreasing hazard rate.) Let
f be an envelope function with finite and non-decreasing hazard rate, then

R+(Λnf ) = (1 + o(1))(log e)

∫ n

1

Uc(x)

2x
dx as n tends to +∞ .

A concrete corollary follows easily.

Proposition 4 The minimax redundancy of the sub-exponential envelope class with parameters (α, β, γ)
satisfies

R+(Λn(α, β, γ)) =
α

2(α+ 1)
β (ln(2))

1/α
(log n)

1+1/α
(1 + o(1)) as n tends to +∞ .

Proof: Indeed, if f is a sub-exponential envelope function with parameters (α, β, γ) one has, for t > 1,

β (ln (γt))
1/α − 1 ≤ Uc(t) ≤ β (ln (κγt))

1/α − 1

where κ = 1/(1− exp(−α/βα)).
The lower bound follows from F (k) ≥ f(k + 1) = γ exp(−((k + 1)/β)α) which entails F (k) ≤

1/t⇒ k + 1 ≥ β(ln(γt))1/α.

The upper bound follows from

F (k) ≤
∑
j≥0

γ exp
(
−
(
k+1
β

)α
− jα (k+1)α−1

βα

)
≤ f(k + 1)

1− exp
(
− α(k + 1)α−1/βα

) ≤ f(k + 1)

κ

for α ≥ 1. 2

5 Redundancy of the AC-encoding algorithm
The length of the AC-encoding of x1:n, is the sum of the length of the Elias encoding CE of the sequence
of differences between records m̃ and of the length of the mixture encoding CM of the censored sequence
x̃1:n0. In order to establish Theorem 1, we first establish an upper bound on the average length of CE
(Proposition 8).
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5.1 Maximal inequalities
Bounds on the codeword length of Elias encoding and on the redundancy of the mixture code essentially
rely on bounds on the expectation of the largest symbol max(X1, . . . , Xn) collected in the next proposi-
tions. In the sequel, Hn denotes the nth harmonic number ln(n) ≤ Hn =

∑n
i=1

1
i ≤ ln(n) + 1 .

Proposition 5 Let Y1, . . . , Yn be independently identically distributed according to an absolutely contin-
uous distribution function F with density f = F ′ with support included in [1,∞) and non-decreasing
hazard rate f/F . Let b be the infimum of the hazard rate. Let U(t) = inf{x : F (x) ≥ 1 − 1/t} and
Y1,n ≤ . . . ≤ Yn,n be the order statistics. Then,

E[Yn,n] ≤ U(exp(Hn))

E[Yn,n ln(Yn,n)] ≤ (EYn,n) ln(EYn,n)) + 2/b2 .

The proof relies on a quantile coupling argument and on a sequence of computational steps inspired by
extreme value theory (de Haan and Fereira 2006) and concentration of measure theory (Ledoux 2001).
The proof also takes advantage of the Rényi representation of order statistics (See de Haan and Fereira
2006, Chapter 2). The next theorem rephrases this classical result.

Theorem 3 (RÉNYI’S REPRESENTATION) Let (X1,n, . . . , Xn,n) denote the order statistics of an inde-
pendent sample picked according to a distribution function F . Then (X1,n, . . . , Xn,n) is distributed
as (U(exp(E1,n)), . . . , U(exp(En,n))) where U : (1,∞) → R is defined by U(t) = inf{x : F (x) ≥
1− 1/t} and (E1,n, . . . , En,n) are the order statistics of an n-sample of the exponential distribution with
scale parameter 1. Agreeing on E0,n = 0, (Ei,n − Ei−1,n)1≤i≤n are independent and exponentially
distributed with scale parameter 1/(n+ 1− i).

We will also use the following general relations on moments of maxima of independent random vari-
ables, proved below.

Proposition 6 Let (Y1,n, . . . , Yn,n) denote the order statistics of an independent sample picked according
to a common probability distribution with support included in (0,∞), then

E [Yn,n lnYn,n] ≤ EYn,n ln(EYn,n) + E
[

(Yn,n − Yn−1,n)2

Yn−1,n

]
.

The proof of the next theorem, can be found in (Ledoux 2001) .

Theorem 4 (SUB-ADDITIVITY OF ENTROPY.) LetX1, . . . , Xn be independent random variables and let
Z = f(X) be a non-negative function of X = (X1, . . . , Xn). For each 1 ≤ i ≤ n, let Zi be non-negative
function of (X1, . . . , Xi−1, Xi+1, Xn) . Then

E [Z ln(Z)]− EZ ln(EZ) ≤
n∑
i=1

E
[
Z ln

(
Z

Zi

)
− (Z − Zi)

]
.

Proof of Proposition 6: Note that Z = Yn,n is a function of the n independent random variables
Y1, . . . , Yn. Choose the Zi as the maximum of Y1, . . . , Yi−1, Yi+1, . . . , Yn, that is Yn,n if Yi < Yn,n and
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Yn−1,n otherwise. We have Zi = Z except possibly when Xi = Z, and Zi = Yn−1,n otherwise. Using
the sub-additivity of entropy,

E [Yn,n lnYn,n]− EYn,n ln(EYn,n) ≤ E
[
Yn,n ln

Yn,n
Yn−1,n

− (Yn,n − Yn−1,n)

]
≤ E

[
Yn,n ln

(
1 +

Yn,n − Yn−1,n

Yn−1,n

)
− (Yn,n − Yn−1,n)

]
≤ E

[
(Yn,n − Yn−1,n)2

Yn−1,n

]
as ln(1 + u) ≤ u for u > −1.

2

Proof of Proposition 5: Thanks to Rényi’s representation of order statistics, E[Yn,n] = E[U(exp(En,n))].
The first statement follows from the concavity of t 7→ U(exp(t)) (Proposition 1, ii).

By Proposition 6,

E[Yn,n ln(Yn,n)] ≤ (EYn,n) ln(EYn,n)) + E
[

(Yn,n − Yn−1,n)2

Yn−1,n

]
.

Thanks to Rényi’s representation, Yn,n − Yn−1,n is distributed like U(exp(En,n)) − U(exp(En−1,n)).
Thanks to the concavity of U ◦ exp, this difference is upper-bounded by

U(exp(En,n))− U(exp(En−1,n)) ≤ F (U(exp(En−1,n)))

f(U(exp(En−1,n)))
(En,n − En−1,n)

and the two factors on the right-hand-side are independent. Meanwhile E[(En,n − En−1,n)2] = 2,
F (U(exp(En−1,n)))
f(U(exp(En−1,n))) ≤

1
b .

2

When handling envelopes classes with finite and non decreasing hazard rate, Proposition 5 provides
a handy way to upper bound the various statistics that are used to characterize the redundancy of the
AC-code. If the source belongs to Λf , let Y1, . . . , Yn be identically independently distributed according
to the probability distribution with tail function F c. The quantile coupling argument ensures that there
exists a probability space with random variables (X ′1, . . . , X

′
n) distributed like (X1, . . . , Xn) and random

variables (Y ′1 , . . . , Y
′
n) distributed like (Y1, . . . , Yn) and X ′i ≤ Y ′i + 1 for all i ≤ n almost surely.

Let Y(1) ≤ . . . ≤ Y(n) denote the order statistics of Y1, . . . , Yn, and let Mn denote the maximum of
X1, . . . , Xn. Then for any non-decreasing function g, E[g(Mn)] ≤ E[g(Y(n) + 1)]. Using Proposition 5
one gets the following.

Proposition 7 Let X1, . . . , Xn be independently identically distributed according to P ∈ Λ1
f , let Mn =

max(X1, . . . , Xn), then,

EMn ≤ Uc(en) + 1

E[Mn logMn] ≤ [Uc(en) + 1] ln[Uc(en) + 1] + 2/b2.
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5.2 Elias encoding
The average length of the Elias encoding for sources from a class defined by an envelope with non-
decreasing hazard rate is O(Uc(n)). It does not grow as fast as the minimax redundancy and contributes
in a negligible way to the total redundancy. Indeed, Uc(en) = o

( ∫ n
1
Uc(x)

2x dx
)

thanks to Proposition 1.

Proposition 8 Let f be an envelope function with associated non-decreasing hazard rate. Then, for all
P ∈ Λf , the expected length of the Elias encoding of the sequence of record increments amongst the first
n symbols is upper-bounded by

E [`(CE)] ≤ (2 log(e) + ρ)(Uc(exp(Hn)) + 1)

where ρ is a universal constant (which may be chosen as ρ = 2).

Proof of Proposition 8: The length of the Elias codewords used to encode the sequence of record
differences m̃ is readily upper-bounded:

`(CE) ≤
n0
n∑

i=1

(2 log (1 + m̃i − m̃i−1) + ρ) ≤
n0
n∑

i=1

2 log(e) (m̃i − m̃i−1) + ρn0
n ≤ (2 log(e) + ρ)Mn

for some universal constant ρ. The bound on the length of the Elias encoding follows from Proposition 7.
2

5.3 Adaptive mixture coding
The next proposition compares the length of the mixture encoding CM with the ideal codeword length of
X1:n.

Proposition 9 Let f : N+ → [0, 1] be an envelope with finite and non-decreasing hazard rate. The
expected difference between the mixture encoding of the censored sequence X̃1:n and the ideal codeword
length of X1:n is upper-bounded as

E [`(CM ) + logP(X1:n)] ≤ log(e)

∫ n

1

Uc(x)

2x
dx (1 + o(1))

as n tends to infinity.

The proof of Proposition 9 is organized in two steps. The first step consists in establishing a pointwise
upper bound on the difference between the ideal codeword length and codeword length of the AC-code
(Proposition 10 below). This upper-bound consists of three summands. The expected value of the three
summands is then upper-bounded under the assumption that the source belongs to an envelope class with
non-decreasing hazard rate.

Proposition 10 (POINTWISE BOUND) Let i0 be the random integer defined by: i0 = 1 ∨ bMn/4c, then,

− lnQn(X̃1:n) + lnPn(X1:n) ≤ Mn(ln(Mn) + 10)

2
+

lnn

2︸ ︷︷ ︸
(A.I)

+

n−1∑
i=i0

(
Mi

2i+ 1

)
︸ ︷︷ ︸

(A.II)
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Proof: The pointwise redundancy can be decomposed into

− lnQn(X̃1:n) + lnPn(X1:n) = − ln KTMn+1(X̃1:n) + lnPn(X1:n)︸ ︷︷ ︸
(A)

− lnQn(X̃1:n) + ln KTMn+1(X̃1:n)︸ ︷︷ ︸
(B)

where KTMn+1 is the Krichevsky-Trofimov mixture coding probability over an alphabet of cardinality
Mn + 1. Summand (A) may be upper bounded thanks to the next bound, the proof of which can be found
in (Boucheron, Garivier, and Gassiat 2009),

(A) = − ln(KTMn+1(X̃1:n)) + ln(Pn(X1:n)) ≤ Mn + 1

2
ln(n) + 2 ln(2) .

The second summand (B) is negative, this is the codelength the AC-code pockets by progressively enlarg-
ing the alphabet rather than using {0, . . . ,Mn} as the alphabet. Bontemps (2011, in the proof of Proposi-
tion 4) points out a simple and useful connexion between the coding lengths under Qn and KTMn+1:

(B) = − lnQn(X̃1:n) + ln KTMn+1(X̃1:n) = −
n−1∑
i=1

ln

(
2i+ 1 +Mn

2i+ 1 +Mi

)
.

The difference between the codelengths can be further upper bounded.

−
n−1∑
i=1

ln

(
2i+ 1 +Mn

2i+ 1 +Mi

)
= −

n−1∑
i=1

ln

(
1 +

Mn −Mi

2i+ 1 +Mi

)

≤ −
n−1∑
i=i0

(
Mn −Mi

2i+ 1 +Mi

)
+

1

2

n−1∑
i=i0

(
Mn −Mi

2i+ 1 +Mi

)2

as ln(1 + x) ≥ x− x2/2 for x ≥ 0

=

n−1∑
i=i0

(
−Mn

2i+ 1 +Mi

)
︸ ︷︷ ︸

(B.I)

+

n−1∑
i=i0

(
Mi

2i+ 1 +Mi

)
︸ ︷︷ ︸

(B.II)

+
1

2

n−1∑
i=i0

(
Mn −Mi

2i+ 1 +Mi

)2

︸ ︷︷ ︸
(B.III)

.

The upper bound on (A) can be used to build an upper bound on (A)+(B.I).

(A) + (B.I) ≤Mn

(
ln(n)

2
−
n−1∑
i=i0

1

2i+ 1 +Mi

)
+

lnn

2

= Mn

(
n−1∑
i=i0

(
1

2i
− 1

2i+ 1 +Mi

)
+

ln(n)

2
−
n−1∑
i=i0

1

2i

)
+

lnn

2

≤Mn

(
n−1∑
i=i0

Mi + 1

(2i+ 1 +Mi)(2i)
+
Hi0

2
+

1

2n

)
+

lnn

2

≤Mn

n−1∑
i=i0

Mi + 1

(2i+ 1)(2i)
+
Mn(ln(Mn) + 2)

2
+

lnn

2
.
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Adding (B.III) to the first summand in the last expression,

Mn

n−1∑
i=i0

Mi + 1

(2i+ 1)(2i)
+ (B.III) ≤Mn

n−1∑
i=i0

Mi

(2i+ 1)2(2i)
+Mn

n−1∑
i=i0

1

(2i+ 1)(2i)
+

1

2

n−1∑
i=i0

M2
n +M2

i

(2i+ 1)2

≤M2
n

∑
i≥i0

(
1

2i(2i+ 1)2
+

1

(2i+ 1)2

)
+
Mn

2i0

≤Mn

(
Mn

2i0
+

1

2i0

)
≤ 4Mn .

2

Proof of Proposition 9: First recall that `(CM ) = b− logQn+1(X̃1:n0)c+1 ≤ 1+log(2n+Mn+1)−
logQn(X̃1:n). Therefore, using Proposition 7 and Proposition 10, the average redundancy of the mixture
code is upper bounded by

3 + Uc(en) + log(e)

(
lnn+ E

[Mn(ln(Mn) + 10)

2
+

lnn

2︸ ︷︷ ︸
(A.I)

]
+ E

[ n−1∑
i=i0

(
Mi

2i+ 1

)
︸ ︷︷ ︸

(A.II)

])
.

We may now use the maximal inequalities from Proposition 7.

n−1∑
i=1

EMi

2i+ 1
≤
n−1∑
i=1

Uc(exp(Hi)) + 1

2i+ 1

≤
n−1∑
i=1

Uc(ei) + 1

2i+ 1

≤
∫ n

1

Uc(ex)

2x
dx+

Uc(e)

3
+

ln(n)

2
.

Meanwhile, letting b be the infimum of the hazard rate of the envelope,

E
[Mn(ln(Mn) + 10)

2
+

lnn

2

]
≤ (Uc(en) + 1)(ln(Uc(en) + 1) + 10)

2
+

2

b2
+

lnn

2
.

Now using Proposition 1 (i) and (iv) and the fact that Uc tends to infinity at infinity one gets that

lnn+ Uc(n) lnUc(n) = o

(∫ n

1

Uc(ex)

2x
dx

)
as n tends to infinity and the result follows.

2
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A Proof of Proposition 1

Proof: (i) The inverse of the hazard rate h′c is a positive non increasing function, thus its derivative
converges to 0 at infinity, and (i) follows from Theorem 1.2.6 in de Haan and Fereira (2006).
(ii) Recall that h′c(t) = fc(t)/F c(t). Since the hazard rate is non-decreasing, the derivative of Uc ◦ exp is
non-increasing.
To prove (iii), notice first that since the hazard rate is finite, Uc tends to infinity at infinity. Uc is non
decreasing, so that for large enough t,

3 ln t ≤ h̃(t) ≤ Uc(t2) ln t. (2)

Thus, it is enough to prove that for all η ≥ 0 and κ > 0,

lim
x→+∞

h̃(κx(h̃(x))η)

h̃(x)
= 1.

Let g : R+ → R+ be defined by g(t) = ln(h̃(exp(t))) = ln
( ∫ t

0
Uc(exp(2x))dx

)
. It is enough to check

that
lim
t→∞

g(t+ ηg(t) + z)− g(t) = 0

for z ∈ R, η > 0. But,

g(t+ ηg(t) + z)− g(t) = ln

(
1 +

∫ t+ηg(t)+z
t

Uc(exp(2x))dx∫ t
0
Uc(exp(2x))dx

)
.

For large enough t, ηg(t) + z > 0, and by concavity of Uc ◦ exp,∫ t+ηg(t)+z

t

Uc(exp(2x))dx ≤ (z + ηg(t))Uc
(
exp

(
2t+ ηg(t) + z

))
≤ (z + ηg(t))Uc (exp(2t)) +

F c (Uc (exp(2t)))

fc (Uc (exp(2t)))
(z + ηg(t))2 .
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Letting b be the infimum of the hazard rate,

g(t+ ηg(t) + z)− g(t) ≤ (z + ηg(t))g′(t) +
1

b

(z + ηg(t))2

exp(g(t))
.

The second summand tends to 0 as t tends to infinity. Since g(t) tends to infinity at infinity, there remains
to prove that g(t)g′(t) tends to 0 at infinity, that is to establish that Uc(u2) ln h̃(u)/eh̃(u) tends to 0

at infinity. But as Uc(x)/x is regularly varying with index −1, t 7→
∫ t

0
Uc(x)/xdx is slowly varying

(regularly varying with index 0) (See de Haan and Fereira 2006, Proposition B.1.9, Point 4) and so is
t 7→ h̃(t) =

∫ t2
0
Uc(x)/xdx, this follows from Karamata integral representation Theorem (de Haan and

Fereira 2006, Theorem B.1.6). So that using (2),

Uc(u
2) ln h̃(u)

eh̃(u)
≤ Uc(u

2)

u2

ln h̃(u)

ln(u)

ln(u)

u

now, by (de Haan and Fereira 2006, Proposition B.1.9, Point 1), the first two factors tend to 0 as u tends
to infinity, and (iii) follows.
To prove (iv), note that∫ t

1

Uc(x)

x
dx =

∫ ln t

0

Uc(exp(s))ds ≥ ln(t)

2
Uc(t) , by concavity of Uc ◦ exp.

Plugging this upper bound leads to:

Uc(t) ln(Uc(t))∫ t
1
Uc(x)
x dx

≤ 2
Uc(t) ln(Uc(t))

Uc(t) ln(t)
= 2

ln(Uc(t))

ln(t)

which tend to 0 as t tends to infinity (Again by de Haan and Fereira 2006, Proposition B.1.9, Point 1). 2

B Proof of Proposition 2
In order to alleviate notation Hε is used as a shorthand for Hε(Λf ). Upper and lower bounds for Hε
follow by adapting the “flat concentration argument” in Bontemps (2011). The cardinality Dε of the
smallest partition of Λ1

f into subsets of diameter less than ε is not larger than the smallest cardinality
of a covering by Hellinger balls of radius smaller than ε/2. Recall that Λ1

f endowed with the Hellinger

distance may be considered as a subset of `N+

2 :

C =
{

(xi)i>0 :
∑
i>0

x2
i = 1

}⋂{
(xi)i>0 : ∀i > 0, 0 ≤ xi ≤

√
f(i)

}
.

Let Nε = U( 16
ε2 ) (Nε is the 1− ε2/16 quantile of the envelop distribution). Let D be the projection of C

on the subspace generated by the first Nε vectors of the canonical basis. Any element of C is at distance
at most ε/4 ofD. Any ε/4-cover forD is an ε/2-cover for C. NowD is included in the intersection of the
unit ball of a Nε-dimensional Euclidian space and of an hyper-rectangle

∏Nε
i=1[0,

√
f(k)]. An ε/4-cover
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for D can be extracted from any maximal ε/4-packing of points from D. From such a maximal packing,
a collection of pairwise disjoint balls of radius ε/8 can be extracted that fits into ε/8-blowup of D. Let
Bm be the m-dimensional Euclidean unit ball (Vol(Bm) = Γ(1/2)m/Γ(m + 1/2) with Γ(1/2) =

√
π).

By volume comparison, Dε × (ε/8)N(ε)Vol(BNε) ≤
∏Nε
i=1

(√
f(k) + ε/4

)
, or

Hε ≤
Nε∑
k=1

ln
(√

f(k) + ε/4
)
− ln Vol(BNε) +Nε ln

8

ε
.

Let l = U(1) (l = lf + 1). For k ≥ l, f(k) = F (k − 1)(1− F (k)/F (k − 1)). As the hazard rate of the
envelope distribution is assumed to be non-decreasing, denoting the essential infimum of the hazard rate
by b, F (k − 1)(1− e−b) ≤ f(k) ≤ F (k − 1). Hence, for l ≤ k ≤ Nε,

√
f(k) ≥ ε/4

√
1− e−b. Thus

Hε ≤
lf∑
k=1

ln
(√

f(k) + ε/4
)

+

Nε∑
k=l

ln(
√
f(k))− ln Vol(BNε) +

Nε − lf√
1− e−b

+Nε ln
8

ε

≤
Nε∑
k=l

1

2
ln

(
64F (k − 1)

ε2

)
− ln Vol(BNε) +

Nε − lf√
1− e−b

+ lf ln
8

ε
+

lf∑
k=1

ln
(√

f(k) + ε/4
)
. (3)

Following Bontemps (2011), a lower bound is derived by another volume comparison argument. From
any partition into sets of diameter smaller than ε, one can extract a covering by balls of radius ε. Then for

any positive integer m, Dε ≥
∏lf+m

k=l

√
f(k)

εmVol(Bm) . Hence, choosing m = Nε − lf

Hε ≥
Nε∑
k=l

ln
√
f(k)− ln Vol(BNε−lf ) + (Nε − lf ) ln

1

ε

≥
Nε∑
k=l

1

2
ln

(
F (k − 1)(1− e−b)

ε2

)
− ln Vol(BNε−lf ) . (4)

Now,

ln Vol(BNε) = [Nε lnNε] (1 + o(1)) =

[
Uc

(
16

ε2

)
lnUc

(
16

ε2

)]
(1 + o(1))

as ε tends to 0. Since Nε →∞, we have also ln Vol(BNε−lf ) = [Nε lnNε] (1 + o(1)), as ε tends to 0.

Now, the term
∑Nε
k=l

1
2 ln

(
F (k−1)
ε2

)
in (3) and (4) is treated by (1). The desired result follows from the

fact that Uc and hence Uc ln(Uc) are slowly varying (Proposition 1 (i)) and from Proposition 1 (iv).

C Proof of equation (1)
Making the change of variable y = Uc(x) (x = 1/F c(y), dx

dy = fc(y)

(F c(y))2
),∫ t

1

Uc(x)

2x
dx =

∫ Uc(t)

lf−1

yfc(y)

2F c(y)
dy =

Uc(t)

2
ln(t) +

∫ Uc(t)

0

ln(F c(y))

2
dy =

∫ Uc(t)

0

ln(tF c(x))

2
dx,

where the second equation follows by integration by parts.
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