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Coding on countably infinite alphabets
Stéphane Boucheron, Aurélien Garivier and Elisabeth Gassiat

Abstract

This paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets.

Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks

for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-

bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper

bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the

infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-

Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching

for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost)

adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing

envelopes. Those results extend our knowledge concerning universal coding to contexts where the key tools from

parametric inference are known to fail.

keywords: NML; countable alphabets; redundancy; adaptive compression; minimax;

I. INTRODUCTION

This paper is concerned with the problem of universal coding on a countably infinite alphabet X (say the set

of positive integers N+ or the set of integers N ) as described for example by Orlitsky and Santhanam (2004).

Throughout this paper, a source on the countable alphabet X is a probability distribution on the set XN of infinite

sequences of symbols from X (this set is endowed with the σ-algebra generated by sets of the form
∏n

i=1{xi}×XN

where all xi ∈ X and n ∈ N). The symbol Λ will be used to denote various classes of sources on the countably

infinite alphabet X . The sequence of symbols emitted by a source is denoted by the XN-valued random variable

X = (Xn)n∈N . If P denotes the distribution of X, Pn denotes the distribution of X1:n = X1, ..., Xn, and we let

Λn = {Pn : P ∈ Λ}. For any countable set X , let M1(X ) be the set of all probability measures on X .

From Shannon noiseless coding Theorem (see Cover and Thomas, 1991), the binary entropy of Pn, H(X1:n) =

EP n [− logP (X1:n)] provides a tight lower bound on the expected number of binary symbols needed to en-

code outcomes of Pn. Throughout the paper, logarithms are in base 2. In the following, we shall only consider

finite entropy sources on countable alphabets, and we implicitly assume that H(X1:n) < ∞. The expected

redundancy of any distribution Qn ∈ M1(Xn), defined as the difference between the expected code length

EP [− logQn(X1:n)] and H(X1:n), is equal to the Kullback-Leibler divergence (or relative entropy) D(Pn, Qn) =∑
x∈Xn Pn{x} log P n(x)

Qn(x) = EP n

[
log P n(X1:n)

Qn(X1:n)

]
.

Universal coding attempts to develop sequences of coding probabilities (Qn)n so as to minimize expected

redundancy over a whole class of sources. Technically speaking, several distinct notions of universality have been

January 4, 2008 DRAFT



2

considered in the literature. A positive, real-valued function ρ(n) is said to be a strong (respectively weak) universal

redundancy rate for a class of sources Λ if there exists a sequence of coding probabilities (Qn)n such that for all

n, R+(Qn,Λn) = supP∈ΛD(Pn, Qn) ≤ ρ(n) (respectively for all P ∈ Λ, there exists a constant C(P ) such that

for all n, D(Pn, Qn) ≤ C(P )ρ(n)). A redundancy rate ρ(n) is said to be non-trivial if limn
1
nρ(n) = 0. Finally

a class Λ of sources will be said to be feebly universal if there exists a single sequence of coding probabilities

(Qn)n such that supP∈Λ limn
1
nD(Pn, Qn) = 0 (Note that this notion of feeble universality is usually called weak

universality, (see Kieffer, 1978, Györfi et al., 1994), we deviate from the tradition, in order to avoid confusion with

the notion of weak universal redundancy rate).

The maximal redundancy of Qn with respect to Λ is defined by:

R+(Qn,Λn) = sup
P∈Λ

D(Pn, Qn) .

The infimum of R+(Qn,Λn) is called the minimax redundancy with respect to Λ:

R+(Λn) = inf
Qn∈M1(Xn)

R+(Qn,Λn).

It is the smallest strong universal redundancy rate for Λ. When finite, it is often called the information radius of Λn.

As far as finite alphabets are concerned, it is well-known that the class of stationary ergodic sources is feebly

universal. This is witnessed by the performance of Lempel-Ziv codes (see Cover and Thomas, 1991). It is also

known that the class of stationary ergodic sources over a finite alphabet does not admit any non-trivial weak

universal redundancy rate (Shields, 1993). On the other hand, fairly large classes of sources admitting strong

universal redundancy rates and non-trivial weak universal redundancy rates have been exhibited (see Barron et al.,

1998, Catoni, 2004, and references therein). In this paper, we will mostly focus on strong universal redundancy

rates for classes of sources over infinite alphabets. Note that in the latter setting, even feeble universality should

not be taken for granted: the class of memoryless processes on N+ is not feebly universal.

Kieffer (1978) characterized feebly universal classes, and the argument was simplified by Györfi et al. (1994),

Gyorfi et al. (1993). Recall that the entropy rate H(P ) of a stationary source is defined as limnH(Pn)/n. This

result may be phrased in the following way.

Proposition 1: A class Λ of stationary sources over a countable alphabet X is feebly universal if and only if

there exists a probability distribution Q ∈ M1(X ) such that for every P ∈ Λ with finite entropy rate, Q satisfies

EP log 1
Q(X1)

<∞ or equivalently D(P 1, Q) <∞.

Assume that Λ is parameterized by Θ and that Θ can be equipped with (prior) probability distributions W in

such a way that θ 7→ Pn
θ {A} is a random variable (a measurable mapping) for every A ⊆ Xn. A convenient way

to derive lower bounds on R+(Λn) consists in using the relation EW [D(Pn
θ , Q

n)] ≤ R+(Qn,Λn).

The sharpest lower bound is obtained by optimizing the prior probability distributions, it is called the maximin

bound

sup
W∈M1(Θ)

inf
Qn∈M1(Xn)

EW [D(Pn
θ , Q

n)].

DRAFT January 4, 2008



3

It has been proved in a series of papers (Gallager, 1968, Davisson, 1973, Haussler, 1997) (and could also have

been derived from a general minimax theorem by Sion, 1958) that such a lower bound is tight.

Theorem 1: Let Λ denote a class of sources over some finite or countably infinite alphabet. For each n, the

minimax redundancy over Λ coincides with

R+(Λn) = sup
Θ,W∈M1(Θ)

inf
Qn∈M1(Xn)

EW [D(Pn
θ , Q

n)] ,

where Θ runs over all parameterizations of countable subsets of Λ.

If the set Λn = {Pn : P ∈ Λ} is not pre-compact with respect to the topology of weak convergence, then both

sides are infinite. A thorough account of topological issues on sets of probability measures can be found in (Dudley,

2002). For the purpose of this paper, it is enough to recall that: first, a subset of a metric space is pre-compact if for

any ε > 0, it can be covered by a finite number of open balls with radius at most ε > 0; second, a sequence (Qn)n

of probability distributions converges with respect to the topology of weak convergence toward the probability

distribution Q if and only if for any bounded continuous function h over the support of Qn’s, EQn
h→ EQh. This

topology can be metrized using the Lévy-Prokhorov distance.

Otherwise the maximin and minimax average redundancies are finite and coincide; moreover, the minimax

redundancy is achieved by the mixture coding distribution Qn(.) =
∫
Θ
Pn

θ (.)W (dθ) where W is the least favorable

prior.

Another approach to universal coding considers individual sequences (see Feder et al., 1992, Cesa-Bianchi and

Lugosi, 2006, and references therein). Let the regret of a coding distribution Qn on string x ∈ Nn
+ with respect

to Λ be supP n∈Λ logPn(x)/Qn(x). Taking the maximum with respect to x ∈ Nn
+, and then optimizing over the

choice of Qn, we get the minimax regret:

R∗(Λn) = inf
Qn∈M1(Xn)

max
x∈Nn

+

sup
P∈Λ

log
Pn(x)
Qn(x)

.

In order to provide proper insight, let us recall the precise asymptotic bounds on minimax redundancy and regret

for memoryless sources over finite alphabets (see Clarke and Barron, 1990; 1994, Barron et al., 1998, Xie and

Barron, 1997; 2000, Orlitsky and Santhanam, 2004, Catoni, 2004, Szpankowski, 1998, Drmota and Szpankowski,

2004, and references therein).

Theorem 2: Let X be an alphabet of m symbols, and Λ denote the class of memoryless processes on X then

lim
n

{
R+(Λn)− m− 1

2
log

n

2πe

}
= log

(
Γ(1/2)m

Γ(m/2)

)
lim
n

{
R∗(Λn)− m− 1

2
log

n

2π

}
= log

(
Γ(1/2)m

Γ(m/2)

)
.

For all n ≥ 2:

R∗(Λn) ≤ m− 1
2

log n+ 2 .

The last inequality is checked in the Appendix .

Remark 1: The phenomenon pointed out in Theorem 2 holds not only for the class of memoryless sources over
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a finite alphabet but also for classes of sources that are smoothly parameterized by finite dimensional sets (see

again Clarke and Barron, 1990; 1994, Barron et al., 1998, Xie and Barron, 1997; 2000, Orlitsky and Santhanam,

2004, Catoni, 2004).

The minimax regret deserves further attention. For a source class Λ, for every x ∈ Xn, let the maximum

likelihood p̂(x) be defined as supP∈Λ P
n(x). If

∑
x∈Nn

+
p̂(x) < ∞, the Normalized Maximum Likelihood coding

probability is well-defined and given by

Qn
NML(x) =

p̂(x)∑
x∈Nn

+
p̂(x)

.

Shtarkov (1987) showed that the Normalized Maximum Likelihood coding probability achieves the same regret over

all strings of length n and that this regret coincides with the minimax regret:

R∗(Λn) = log
∑

x∈Nn
+

p̂(x).

Memoryless sources over finite alphabets are special cases of envelope classes. The latter will be of primary

interest.

Definition 1: Let f be a mapping from N+ to [0, 1]. The envelope class Λf defined by function f is the collection

of stationary memoryless sources with first marginal distribution dominated by f :

Λf =
{
P : ∀x ∈ N, P 1{x} ≤ f(x) , and P is stationary and memoryless.

}
.

We will be concerned with the following topics.

1) Understanding general structural properties of minimax redundancy and minimax regret.

2) Characterizing those source classes that have finite minimax regret.

3) Quantitative relations between minimax redundancy or regret and integrability of the envelope function.

4) Developing effective coding techniques for source classes with known non-trivial minimax redundancy rate.

5) Developing adaptive coding schemes for collections of source classes that are too large to enjoy even a weak

redundancy rate.

The paper is organized as follows. Section II describes some structural properties of minimax redundancies and

regrets for classes of stationary memoryless sources. Those properties include monotonicity and sub-additivity.

Proposition 5 characterizes those source classes that admit finite regret. This characterization emphasizes the role

of Shtarkov Normalized Maximum Likelihood coding probability. Proposition 6 describes a simple source class for

which the minimax regret is infinite, while the minimax redundancy is finite. Finally Proposition 3 asserts that such

a contrast is not possible for the so-called envelope classes.

In Section III, Theorems 4 and 5 provide quantitative relations between the summability properties of the envelope

function and minimax regrets and redundancies. Those results build on the non-asymptotic bounds on minimax

redundancy derived by Xie and Barron (1997).

Section IV focuses on two kinds of envelope classes. This section serves as a benchmark for the two main
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results from the preceding section. In Subsection IV-A, lower-bounds on minimax redundancy and upper-bounds on

minimax regret for classes defined by envelope function k 7→ 1 ∧ Ck−α are described. Up to a factor log n those

bounds are matching. In Subsection IV-B, lower-bounds on minimax redundancy and upper-bounds on minimax

regret for classes defined by envelope function k 7→ 1 ∧ C exp−αk are described. Up to a multiplicative constant,

those bounds coincide and grow like log2 n.

In Sections V and VI, we turn to effective coding techniques geared toward source classes defined by power-law

envelopes. In Section V, we elaborate on the ideas embodied in Proposition 4 from Section II, and combine mixture

coding and Elias penultimate code (Elias, 1975) to match the upper-bounds on minimax redundancy described in

Section IV. One of the messages from Section IV is that the union of envelope classes defined by power laws,

does not admit a weak redundancy rate that grows at a rate slower than n1/β for any β > 1. In Section VI, we

finally develop an adaptive coding scheme for the union of envelope classes defined by power laws. This adaptive

coding scheme combines the censoring coding technique developed in the preceding subsection and an estimation

of tail-heaviness. It shows that the union of envelope classes defined by power laws is feebly universal.

II. STRUCTURAL PROPERTIES OF THE MINIMAX REDUNDANCY AND MINIMAX REGRET

Propositions 2,3 and 4 below are sanity-check statements: they state that when minimax redundancies and regrets

are finite, as functions of word-length, they are non-decreasing and sub-additive. In order to prove them, we start

by the following proposition which emphasizes the role of the NML coder with respect to the minimax regret. At

best, it is a comment on Shtarkov’s original work (Shtarkov, 1987, Haussler and Opper, 1997).

Proposition 2: Let Λ be a class of stationary memoryless sources over a countably infinite alphabet, the minimax

regret with respect to Λn, R∗(Λn) is finite if and only if the normalized maximum likelihood (Shtarkov) coding

probability Qn
NML is well-defined and given by

Qn
NML(x) =

p̂(x)∑
y∈Xn p̂(y)

for x ∈ Xn

where p̂(x) = supP∈Λ P
n(x).

Note that the definition of Qn
NML does not assume either that the maximum likelihood is achieved on Λ or that

it is uniquely defined.

Proof: The fact that if Qn
NML is well-defined, the minimax regret is finite and equal to

log

 ∑
y∈Xn

p̂(y)


is the fundamental observation of Shtarkov (1987).

On the other hand, if R∗(Λn) <∞, there exists a probability distribution Qn on Xn and a finite number r such

that for all x ∈ Xn,

p̂(x) ≤ r ×Qn(x) ,
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summing over x gives ∑
x∈Xn

p̂(x) ≤ r <∞ .

Proposition 3: Let Λ denote a class of sources, then the minimax redundancy R+(Λn) and the minimax regret

R∗(Λn) are non-decreasing functions of n.

Proof: As far as R+ is concerned, by Theorem 1, it is enough to check that the maximin (mutual information)

lower bound is non-decreasing.

For any prior distribution W on a parameter set Θ (recall that {Pθ : θ ∈ Θ} ⊆ Λ, and that the mixture coding

probability Qn is defined by Qn(A) = EW [Pn
θ (A)])

EW

[
D(Pn+1

θ , Qn+1)
]

= I(θ;X1:n+1) = I (θ; (X1:n, Xn+1)) ≥ I(θ;X1:n) = EW [D(Pn
θ , Q

n)] .

Let us now consider the minimax regret. It is enough to consider the case where R∗(Λn) is finite. Thus we may

rely on Proposition 2. Let n and m be two positive integers. Let ε be a small positive real. For any string x ∈ Xn,

let Px ∈ Λ, be such that Px{x} ≥ p̂(x)(1− ε). Then

p̂(xx′) ≥ Px(x)× Px(x′ | x)

≥ p̂(x)(1− ε)× Px(x′ | x) .

Summing over all possible x′ ∈ X we get ∑
x′

p̂(xx′) ≥ p̂(x)(1− ε) .

Summing now over all x ∈ Xn and x′ ∈ X ,∑
x∈Xn,x′∈X

p̂(xx′) ≥
∑

x∈Xn

p̂(x)(1− ε) .

So that by letting ε tend to 0, ∑
x∈Xn+1

p̂(x) ≥
∑

x∈Xn

p̂(x) .

Note that the proposition holds even though Λ is not a collection of memoryless sources. This Proposition can be

easily completed when dealing with memoryless sources.

Proposition 4: If Λ is a class of stationary memoryless sources, then the functions n 7→ R+(Λn) and n 7→ R∗(Λn)

are either infinite or sub-additive.

Proof: Assume that R+(Λn) <∞. Here again, given Theorem 1, in order to establish sub-additivity for R+,

it is enough to check the property for the maximin lower bound. Let n,m be two positive integers, and W be any

prior on Θ (with {Pθ : θ ∈ Θ} ⊆ Λ). As sources from Λ are memoryless, X1:n and Xn+1:n+m are independent
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conditionally on θ and thus

I (Xn+1:n+m; θ|X1:n)

= H (Xn+1:n+m|X1:n)−H (Xn+1:n+m|X1:n, θ)

= H (Xn+1:n+m|X1:n)−H (Xn+1:n+m|θ)

≤ H (Xn+1:n+m)−H (Xn+1:n+m|θ)

= I (Xn+1:n+m; θ) .

Hence, using the fact that under each Pθ, the process (Xn)n∈N+ is stationary:

I (X1:n+m; θ) = I (X1:n; θ) + I (Xn+1:n+m; θ|X1:n)

≤ I (X1:n; θ) + I (Xn+1:n+m; θ)

= I (X1:n; θ) + I (X1:m; θ) .

Let us now check the sub-additivity of the minimax regret. Suppose that R∗(Λ1) is finite. For any ε > 0, for

x ∈ Xn+m, let P ∈ Λ be such that (1 − ε)p̂(x) ≤ Pn+m(x). As for x ∈ Xn and x′ ∈ Xm, Pn+m(xx′) =

Pn(x)× Pm(x′), we have for any ε > 0, and any x ∈ Xn,x′ ∈ Xm

(1− ε)p̂(xx′) ≤ p̂(x)× p̂(x′) .

Hence, letting ε tend to 0, and summing over all x ∈ Xn+m:

R∗
(
Λn+m

)
= log

∑
x∈Xnx′∈Xm

p̂ (xx′)

≤ log
∑

x∈Xn

p̂(x) + log
∑

x∈Xm

p̂ (x′)

= R∗ (Λn) +R∗ (Λm) .

Remark 2: Counter-examples witness the fact that subadditivity of redundancies does not hold in full generality.

The Fekete Lemma (see Dembo and Zeitouni, 1998) leads to:

Corollary 1: Let Λ denote a class of stationary memoryless sources over a countable alphabet. For both minimax

redundancy R+ and minimax regret R∗,

lim
n→∞

R+ (Λn)
n

= inf
n∈N+

R+ (Λn)
n

≤ R+
(
Λ1
)
,

and

lim
n→∞

R∗ (Λn)
n

= inf
n∈N+

R∗ (Λn)
n

≤ R∗
(
Λ1
)
.
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Hence, in order to prove that R+ (Λn) <∞ (respectively R∗ (Λn) <∞), it is enough to check that R+
(
Λ1
)
<∞

(respectively R∗
(
Λ1
)
<∞).

The following Proposition combines Propositions 2, 3 and 4. It can be rephrased as follows: a class of memoryless

sources admits a non-trivial strong minimax regret if and only if Shtarkov NML coding probability is well-defined

for n = 1.

Proposition 5: Let Λ be a class of stationary memoryless sources over a countably infinite alphabet. Let p̂ be

defined by p̂(x) = supP∈Λ P{x}. The minimax regret with respect to Λn is finite if and only if the normalized

maximum likelihood (Shtarkov) coding probability is well-defined and :

R∗(Λn) <∞⇔
∑

x∈N+

p̂(x) <∞.

Proof: The direct part follows from Proposition 2.

For the converse part, if
∑

x∈N+
p̂(x) =∞, then R∗(Λ1) =∞ and from Proposition 3, R∗(Λn) =∞ for every

positive integer n.

When dealing with smoothly parameterized classes of sources over finite alphabets (see Barron et al., 1998, Xie

and Barron, 2000) or even with the massive classes defined by renewal sources (Csiszár and Shields, 1996), the

minimax regret and minimax redundancy are usually of the same order of magnitude (see Theorem 2 and comments

in the Introduction). This can not be taken for granted when dealing with classes of stationary memoryless sources

over a countable alphabet.

Proposition 6: Let f be a positive, strictly decreasing function defined on N such that f(1) < 1. For k ∈ N, let

pk be the probability mass function on N defined by:

pk(l) =


1− f(k) if l = 0;

f(k) if l = k;

0 otherwise.

Let Λ1 = {p1, p2, . . .}, let Λ be the class of stationary memoryless sources with first marginal Λ1. The finiteness

of the minimax redundancy with respect to Λn depends on the limiting behavior of f(k) log k: for every positive

integer n:

f(k) log k →k→∞ ∞⇔ R+ (Λn) =∞ .
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Remark 3: When f(k) = 1
log k , the minimax redundancy R+(Λn) is finite for all n. Note, however that this does

not warrant the existence of a non-trivial strong universal redundancy rate. However, as
∑

k f(k) = ∞, minimax

regret is infinite by Proposition 5.

A similar result appears in the discussion of Theorem 3 in (Haussler and Opper, 1997) where classes with finite

minimax redundancy and infinite minimax regret are called irregular.

We will be able to refine those observations after the statement of Corollary 2.

Proof: Let us first prove the direct part. Assume that f(k) log k →k→∞ ∞. In order to check that R+(Λ1) =

∞, we resort to the mutual information lower bound (Theorem 1) and describe an appropriate collection of Bayesian

games.

Let m be a positive integer and let θ be uniformly distributed over {1, 2, . . . ,m}. Let X be distributed according

to pk conditionally on θ = k. Let Z be the random variable equal to 1 if X = θ and equal to 0 otherwise. Obviously,

H(θ|X,Z = 1) = 0; moreover, as f is assumed to be non-increasing, P (Z = 0|θ = k) = 1 − f(k) ≤ 1 − f(m)

and thus:

H(θ|X) = H(Z|X) +H(θ|Z,X)

≤ 1 + P (Z = 0)H(θ|X,Z = 0)

+P (Z = 1)H(θ|X,Z = 1)

≤ 1 + (1− f(m)) logm.

Hence,

R+(Λ1) ≥ I(θ,X)

≥ logm− (1− f(m)) logm

= f(m) logm

which grows to infinity with m, so that as announced R+(Λ1) =∞.

Let us now prove the converse part. Assume that the sequence (f(k) log k)k∈N+ is upper-bounded by some

constant C. In order to check that R+(Λn) <∞, for all n, by Proposition 4, it is enough to check that R+(Λ1
f ) <∞,

and thus, it is enough to exhibit a probability distribution Q over X = N such that supP∈Λ1 D(P,Q) <∞.

Let Q be defined by Q(k) = A/((1∨ (k(log k)2)) for k ≥ 2, Q(0), Q(1) > 0 where A is a normalizing constant

that ensures that Q is a probability distribution over X .
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Then for any k ≥ 3 (which warrants k(log k)2 > 1), letting Pk be the probability defined by the probability

mass function pk:

D(Pk, Q)

= (1− f(k)) log
(1− f(k))
Q(0)

+ f(k) log
(
f(k)k(log k)2

A

)
≤ − logQ(0) + C + f(k)

(
2 log(2)(k)− log(A)

)
≤ C + log

C2

AQ(0)
.

This is enough to conclude that

R+(Λ1) ≤
(
C + log

C2

AQ(0)

)
∨D(P1, Q) ∨D(P2, Q) <∞ .

Remark 4: Note that the coding probability used in the proof of the converse part of the proposition corresponds

to one of the simplest prefix codes for integers proposed by Elias (1975).

The following theorem shows that, as far as envelope classes are concerned (see Definition 1), minimax redun-

dancy and minimax regret are either both finite of both infinite. This is indeed much less precise than the relation

stated in Theorem 2 about classes of sources on finite alphabets.

Theorem 3: Let f be a non-negative function from N+ to [0, 1], let Λf be the class of stationary memoryless

sources defined by envelope f. Then

R+
(
Λn

f

)
<∞⇔ R∗

(
Λn

f

)
<∞ .

Remark 5: We will refine this result after the statement of Corollary 2.

Recall from Proposition 5 that R∗
(
Λn

f

)
<∞⇔

∑
k∈N+

f(k) <∞.

Proof:

In order to check that ∑
k∈N+

f(k) =∞⇒ R+
(
Λn

f

)
=∞ ,

it is enough to check that if
∑

k∈N+
f(k) = ∞, the envelope class contains an infinite collection of mutually

singular sources.

Let the infinite sequence of integers (hi)i∈N be defined recursively by h0 = 0 and

hi+1 = min

{
h :

h∑
k=hi+1

f(k) > 1

}
.
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The memoryless source Pi is defined by its first marginal P 1
i which is given by

P 1
i (m) =

f(m)∑hi+1
k=hi+1 f(k)

for m ∈ {pi + 1, ..., pi+1} .

Taking any prior with infinite Shannon entropy over the {P 1
i ; i ∈ N+} shows that

R+
(
{P 1

i ; i ∈ N+}
)

=∞ .

III. ENVELOPE CLASSES

The next two theorems establish quantitative relations between minimax redundancy and regrets and the shape

of the envelope function. Even though the two theorems deal with general envelope functions, the reader might

appreciate to have two concrete examples of envelope in mind: exponentially decreasing envelopes of the form

Ce−αk for appropriate α and C, and power-laws of the form Ck−α again for appropriate α and C. The former

family of envelope classes extends the class of sources over finite (but unknown) alphabets. The first theorem holds

for any class of memoryless sources.

Theorem 4: If Λ is a class of memoryless sources, let the tail function F̄Λ1 be defined by F̄Λ1(u) =
∑

k>u p̂(k),

then:

R∗(Λn) ≤ inf
u:u≤n

[
nF̄Λ1(u) log e+

u− 1
2

log n
]

+ 2 .

Choosing a sequence (un)n of positive integers in such a way that un → ∞ while (un log n)/n → 0, this

theorem allows to complete Proposition 5.

Corollary 2: Let Λ denote a class of memoryless sources, then the following holds:

R∗(Λn) <∞⇔ R∗(Λn) = o(n) and R+(Λn) = o(n) .

Remark 6: We may now have a second look at Proposition 6 and Theorem 3. In the setting of Proposition 6,

this Corollary asserts that if
∑

k f(k) <∞, for the source class defined by f , a non-trivial strong redundancy rate

exists.

On the other hand, this corollary complements Theorem 3 by asserting that envelope classes have either non-trivial

strong redundancy rates or infinite minimax redundancies.

Remark 7: Again, this statement has to be connected with related propositions from Haussler and Opper (1997).

The last paper establishes bounds on minimax redundancy using geometric properties of the source class under
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Hellinger metric. For example, Theorem 4 in (Haussler and Opper, 1997) relates minimax redundancy and the metric

dimension of the set Λn with respect to the Hellinger metric (which coincides with L2 metric between the square

roots of densities) under the implicit assumption that sources lying in small Hellinger balls have finite relative

entropy (so that upper bounds in Lemma 7 there are finite). Envelope classes may not satisfy this assumption.

Hence, there is no easy way to connect Theorem 4 and results from (Haussler and Opper, 1997).

Proof: (Theorem 4.) Any integer u defines a decomposition of a string x ∈ Nn
+ into two non-contiguous

substrings: a substring z made of the m symbols from x that are larger than u, and one substring y made of the

n−m symbols that are smaller than u.∑
x∈Nn

+

p̂(x)

(a)
=

n∑
m=0

(
n

m

) ∑
z∈{u+1,...}m

∑
y∈{1,2,...,u}n−m

p̂ (zy)

(b)

≤
n∑

m=0

(
n

m

) ∑
z∈{u+1,...}m

m∏
i=1

p̂ (zi)
∑

y∈{1,2,...,u}n−m

p̂ (y)

(c)

≤

(
n∑

m=0

(
n

m

)
F̄Λ1(u)m

) ∑
y∈{1,2,...,u}n

p̂ (y)


(d)

≤
(
1 + F̄Λ1(u)

)n 2
u−1

2 log n+2 .

Equation (a) is obtained by reordering the symbols in the strings, Inequalities (b) and (c) follow respectively from

Proposition 4 and Proposition 3. Inequality (d) is a direct consequence of the last inequality in Theorem 2.

Hence,

R∗(Λn) ≤ n log
(
1 + F̄Λ1(u)

)
+
u− 1

2
log n+ 2

≤ nF̄Λ1(u) log e+
u− 1

2
log n+ 2

The next theorem complements the upper-bound on minimax regret for envelope classes (Theorem 4). It describes

a general lower bound on minimax redundancy for envelope classes.

Theorem 5: Let f denote a non-increasing, summable envelope function. For any integer p, let c(p) =
∑p

k=1 f(2k).

Let c(∞) =
∑

k≥1 f(2k). Assume furthermore that c(∞) > 1. Let p ∈ N+ be such that c(p) > 1. Let n ∈ N+,

ε > 0 and λ ∈]0, 1[ be such that n > c(p)
f(2p)

10
ε(1−λ) . Then

R+(Λn
f ) ≥ C(p, n, λ, ε)

p∑
i=1

(
1
2

log
n (1− λ)πf(2i)

2c(p)e
− ε
)
,

where C(p, n, λ, ε) = 1

1+
c(p)

λ2nf(2p)

(
1− 4

π

√
5c(p)

(1−λ)εnf(2p)

)
.
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Before proceeding to the proof, let us mention the following non-asymptotic bound from Xie and Barron (1997).

Let m∗
n denote the Krichevsky-Trofimov distribution over {0, 1}n. That is, for any x ∈ {0, 1}n, such that n1 =∑n

i=1 xi and n0 = n− n1

m∗
n (x) =

1
π

∫
[0,1]

θn1−1/2(1− θ)n0−1/2dθ.

Lemma 1: (Xie and Barron, 1997, Lemma 1) For any ε > 0, there exists a c(ε) such that for n > 2c(ε) the

following holds uniformly over θ ∈ [c(ε)/n, 1− c(ε)/n]:∣∣∣∣D (pn
θ ,m

∗
n)− 1

2
log

n

2πe
− log π

∣∣∣∣ 6 ε.

The bound c(ε) can be chosen as small as 5/ε.

Proof: The proof is organized in the following way. A prior probability distribution is first designed in such

a way that it is supported by probability distributions that satisfy the envelope condition, have support equal to

{1, , . . . , 2p}, and most importantly enjoys the following property. Letting N be the random vector from N
p defined

by Ni(x) = |{j : xj ∈ {2i− 1, 2i}}|, where x ∈ Xn, letting Q∗ be the mixture distribution over Xn defined by

the prior, then for any P in the support of the prior, Pn/Q∗ = Pn{. | N}/Q∗{. | N}. This property will provide

a handy way to bound the capacity of the channel.

Let f, n, p, ε and λ be as in the statement of the theorem. Let us first define a prior probability on Λ1
f . For each

integer i between 1 and p, let µi be defined as

µi =
f(2i)
c(p)

.

This ensures that the sequence (µi)i≤p defines a probability mass function over {1, . . . , p}. Let θ = (θi)1≤i≤p

be a collection of independent random variables each distributed according to a Beta distribution with parameters

(1/2, 1/2). The prior probability W = ⊗p
i=1Wi for θ on [0, 1]p has thus density w given by

w(θ) =
1
πp

p∏
i=1

(
θ
−1/2
i (1− θi)−1/2

)
.

The memoryless source parameterized by θ is defined by the probability mass function pθ(2i − 1) = θi µi and

pθ(2i) = (1− θi)µi for i : 1 ≤ i ≤ p and pθ(j) = 0 for j > 2i. Thanks to the condition c(p) > 1, this probability

mass function satisfies the envelope condition.

For i ≤ p, let the random variable Ni (resp. N0
i ) be defined as the number of occurrences of {2i− 1, 2i} (resp.

2i−1) in the sequence x. Let N (resp. N0) denote the random vector N1, . . . , Np (resp. N0
1 , . . . , N

0
p ). If a sequence

x from {1, . . . , 2p}n contains ni = Ni(x) symbols from {2i− 1, 2i} for each i ∈ {1, . . . , p}, and if for each such

i, the sequence contains n0
i = N0

i (x) (n1
i ) symbols equal to 2i− 1 (resp. 2i) then

Pn
θ (x) =

p∏
i=1

(
µni

i θ
n0

i
i (1− θi)n1

i

)
.
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Note that when the source θ is picked according to the prior W and the sequence X1:n picked according to Pn
θ ,

the random vector N is multinomially distributed with parameters n and (µ1, µ2, . . . , µp), so the distribution of N

does not depend on the outcome of θ. Moreover, conditionally on N, the conditional probability Pn
θ {· | N} is a

product distribution:

Pn
θ (x | N) =

p∏
i=1

(
θ

n0
i

i (1− θi)n1
i

)
.

In statistical parlance, the random vectors N and N0 form a sufficient statistic for θ.

Let Q∗ denote the mixture distribution on Nn
+ induced by W :

Q∗(x) = EW [Pn
θ (x)] ,

and, for each n, let m∗
n denote the Krichevsky-Trofimov mixture over {0, 1}n, then

Q∗(x) =
p∏

i=1

(
µni

i m∗
ni

(0n0
i 1n1

i )
)
.

For a given value of N, the conditional probability Q∗ {· | N} is also a product distribution:

Q∗ (x | N) =
p∏

i=1

m∗
Ni

(0n0
i 1n1

i ) ,

so, we will be able to rely on:
Pn

θ (x)
Q∗(x)

=
Pn

θ (x | N)
Q∗(x | N)

.

Now, the average redundancy of Q∗ with respect to Pn
θ can be rewritten in a handy way.

EW [D (Pn
θ , Q

∗)] = EW

[
EP n

θ

[
log

Pn
θ (X1:n | N)
Q∗(X1:n | N)

]]
from the last equation,

= EW

[
EP n

θ

[
EP n

θ

[
log

Pn
θ (X1:n | N)
Q∗(X1:n | N)

∣∣N]]]
= EW

[
EP n

θ
[D (Pn

θ (· | N), Q∗n(· | N))]
]

= EW [EN [D (Pn
θ (· | N), Q∗(· | N))]]

as the distribution of N does not depend on θ,

= EN [EW [D (Pn
θ (· | N), Q∗(· | N))]]

by Fubini’s Theorem.
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We may develop D (Pn
θ (· | N), Q∗(· | N)) for a given value of N = (n1, n2, . . . , np). As both Pn

θ (· | N) and

Q∗(· | N) are product distributions on
∏p

i=1 ({2i− 1, 2i}ni) , we have

EW [D (Pn
θ (· | N), Q∗(· | N))] = EW

[
p∑

i=1

D
(
Pni

θi
,m∗

ni

)]

=
p∑

i=1

EWi

[
D
(
Pni

θi
,m∗

ni

)]
.

The minimal average redundancy of Λn
f with respect to the mixing distribution W is thus finally given by:

EW [D (Pn
θ , Q

∗)] = EN

[
p∑

i=1

EWi

[
D
(
Pni

θi
,m∗

ni

)]]

=
p∑

i=1

EN

[
EWi

[
D
(
Pni

θi
,m∗

ni

)]]
=

p∑
i=1

n∑
ni=0

(
n

ni

)
µni

i (1− µi)n−niEWi

[
D
(
Pni

θi
,m∗

ni

)]
. (1)

Hence, the minimal redundancy of Λn
f with respect to prior probability W is a weighted average of redundancies

of Krichevsky-Trofimov mixtures over binary strings with different lengths.

At some place, we will use the Chebychef-Cantelli inequality (see Devroye et al., 1996) which asserts that for

a square-integrable random variable:

Pr {X ≤ E[X]− t} ≤ Var(X)
Var(X) + t2

.

Besides, note that for all ε < 1
2 , ∫ 1−ε

ε

dx
π
√
x(1− x)

> 1− 4
π

√
ε. (2)
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Now, the proposition is derived by processing the right-hand-side of Equation (1).

Under condition (1− λ)n f(2p)
c(p) > 10

ε , we have 5
niε

< 1
2 for all i ≤ p such that ni ≥ (1− λ)nµi. Hence,

EW [D (Pn
θ , Q

∗)]

≥
p∑

i=1

n∑
ni≥(1−λ)nµi

(
n

ni

)
µni

i (1− µi)n−ni

∫ 1

0

D
(
Pni

θi
,m∗

ni

)√
θi(1− θi)

dθi

≥
p∑

i=1

n∑
ni≥(1−λ)nµi

(
n

ni

)
µni

i (1− µi)n−ni

∫ 1− 5
ni ε

5
ni ε

1
2 log ni

2πe + log π − ε
π
√
θi(1− θi)

dθi

by Proposition 1 from Xie and Barron (1997)

≥
p∑

i=1

n∑
ni≥(1−λ)nµi

(
n

ni

)
µni

i (1− µi)n−ni

(
1− 4

π

√
5
niε

)(
1
2

log
ni

2πe
+ log π − ε

)
from (2)

≥
p∑

i=1

n∑
ni≥(1−λ)nµi

(
n

ni

)
µni

i (1− µi)n−ni

(
1− 4

π

√
5

(1− λ)nµiε

)(
1
2

log
n(1− λ)µi

2πe
+ log π − ε

)
using monotonicity of x log x

≥
p∑

i=1

1
1 + 1−µi

n µi λ2

(
1− 4

π

√
5

(1− λ)nµiε

)(
1
2

log
n(1− λ)µi

2πe
+ log π − ε

)
invoking the Chebychef-Cantelli inequality,

≥ 1

1 + c(p)
λ2nf(2p)

(
1− 4

π

√
5c(p)

(1− λ) εnf(2p)

)
p∑

i=1

(
1
2

log
n(1− λ)f(2i)

2c(p)πe
+ log π − ε

)
using monotonicity assumption on f .

IV. EXAMPLES OF ENVELOPE CLASSES

Theorems 3, 4 and 5 assert that the summability of the envelope defining a class of memoryless sources

characterizes the (strong) universal compressibility of that class. However, it is not easy to figure out whether

the bounds provided by the last two theorems are close to each other or not. In this Section, we investigate the case

of envelopes which decline either like power laws or exponentially fast. In both cases, upper-bounds on minimax

regret will follow directly from Theorem 4 and a straightforward optimization. Specific lower bounds on minimax

redundancies are derived by mimicking the proof of Theorem 5, either faithfully as in the case of exponential

envelopes or by developing an alternative prior as in the case of power-law envelopes.

A. Power-law envelope classes

Let us first agree on the classical notation: ζ(α) =
∑

k≥1
1

kα , for α > 1 .

Theorem 6: Let α denote a real number larger than 1, and C be such that Cζ(α) ≥ 2α. The source class ΛC ·−α

is the envelope class associated with the decreasing function fα,C : x 7→ 1 ∧ C
xα for C > 1 and α > 1.

Then:
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1)

n1/αA(α) log
⌊
(Cζ(α))1/α

⌋
≤ R+(Λn

C ·−α)

where

A(α) =
1
α

∫ ∞

1

1
u1−1/α

(
1− e−1/(ζ(α)u)

)
du .

2)

R∗(Λn
C ·−α) ≤

(
2Cn
α− 1

)1/α

(log n)1−1/α +O(1) .

Remark 8: The gap between the lower-bound and the upper-bound is of order (log n)1−
1
α . We are not in a

position to claim that one of the two bounds is tight, let alone which one is tight. Note however that as α → ∞

and C = Hα, class ΛC ·−α converges to the class of memoryless sources on alphabet {1, . . . ,H} for which the

minimax regret is H−1
2 log n. This is (up to a factor 2) what we obtain by taking the limits in our upper-bound of

R∗(Λn
C ·−α). On the other side, the limit of our lower-bound when α goes to 1 is infinite, which is also satisfying

since it agrees with Theorem 3.

Remark 9: In contrast with various lower bounds derived using a similar methodology, the proof given here

relies on a single prior probability distribution on the parameter space and works for all values of n.

Note that the lower bound that can be derived from Theorem 5 is of the same order of magnitude O(n1/α) as

the lower bound stated here (see Appendix II). The proof given here is completely elementary and does not rely

on the subtle computations described in Xie and Barron (1997).

Proof: For the upper-bound on minimax regret, note that

F̄α,C(u) =
∑
k>u

1 ∧ C

kα
≤ C

(α− 1)uα−1
.

Hence, choosing un =
(

2Cn
(α−1) log n

) 1
α

, resorting to Theorem 4, we get:

R∗(Λn
C ·−α) ≤

(
2Cn
α− 1

)1/α

(log n)1−1/α +O(1).

Let us now turn to the lower bound. We first define a finite set Θ of parameters such that Pn
θ ∈ Λn

α,C for any

θ ∈ Θ and then we use the mutual information lower bound on redundancy.

Let m be a positive integer such that mα ≤ Cζ(α) .

The set {Pθ,θ ∈ Θ} consists of memoryless sources over the finite alphabet N+. Each parameter θ is a

sequence of integers θ = (θ1, θ2, . . . , ). We take a prior distribution on Θ such that (θk)k is a sequence of

independent identically distributed random variables with uniform distribution on {1, . . . ,m}. For any such θ, P 1
θ

is a probability distribution on N+ with support ∪k≥1{(k − 1)m+ θk}, namely:

Pθ((k − 1)m+ θk) =
1

ζ(α)kα
=

mα

ζ(α)
· 1
(km)α

for k ≥ 1. (3)

The condition mα ≤ Cζ(α) ensures that P 1
θ ∈ Λ1

α,C .

January 4, 2008 DRAFT



18

Now, the mutual information between parameter θ and source output X1:n is

I (θ, X1:n) =
∑
k≥1

I (θk, X1:n)

Let Nk (x) = 1 if there exists some index i ∈ {1, . . . , n} such that xi ∈ [(k − 1)m + 1, km], and 0 otherwise.

Note that the distribution of Nk does not depend on the value of θ. Thus we can write:

I (θk, X1:n) = I (θk, X1:n|Nk = 0)P (Nk = 0) + I (θk, X1:n|Nk = 1)P (Nk = 1) .

But, conditionally on Nk = 0, θk and X1:n are independent. Moreover, conditionally on Nk = 1 we have

I (θk, X1:n | Nk = 1) = E
[
log

P (θk = j|X1:n)
P (θk = j)

|Nk = 1
]

= logm.

Hence,

I (θ, X1:n) =
∑
k≥1

P (Nk = 1) logm

= EPθ
[Zn] logm,

where Zn(x) denotes the number of distinct symbols in string x (note that its distribution does not depend on the

value of θ.) As Zn =
∑

k≥1 1Nk(x)=1, the expectation translates into a sum

Eθ [Zn] =
∞∑

k=1

(
1−

(
1− 1

ζ(α)kα

)n)
which leads to:

R+(Λn
α,C) ≥

( ∞∑
k=1

(
1−

(
1− 1

ζ(α)kα

)n))
× logm.

Now:

∞∑
k=1

(
1−

(
1− 1

ζ(α)kα

)n)

≥
∞∑

k=1

(
1− exp

(
− n

ζ(α) kα

))
as 1− x ≤ exp(−x)

≥
∫ ∞

1

(
1− exp

(
− n

ζ(α)xα

))
dx

≥ n
1
α

α

∫ ∞

1

1
u1− 1

α

(
1− exp

(
− 1
ζ(α)u

))
du .

In order to optimize the bound we choose the largest possible m which is m = b(Cζ(α))1/αc .

For an alternative derivation of a similar lower-bound using Theorem 5, see Appendix II.
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B. Exponential envelope classes

Theorems 4 and 5 provide almost matching bounds on the minimax redundancy for source classes defined by

exponentially vanishing envelopes.

Theorem 7: Let C and α denote positive real numbers satisfying C > e2α. The class ΛCe−α· is the envelope

class associated with function fα : x 7→ 1 ∧ Ce−αx. Then

1
8α

log2 n (1− o(1)) ≤ R+(Λn
Ce−α·) ≤ R∗(Λn

Ce−α·) ≤
1
2α

log2 n+O(1)

Proof: For the upper-bound, note that

F̄α(u) =
∑
k>u

1 ∧ Ce−αk ≤ C

1− e−α
e−α(u+1) .

Hence, by choosing the optimal value un = 1
α log n in Theorem 4 we get:

R∗(Λn
Ce−α·) ≤

1
2α

log2 n+O(1).

We will now prove the lower bound using Theorem 5. The constraint C > e2α warrants that the sequence

c(p) =
∑p

k=1 f(2k) ≥ Ce−2α 1−e−2αp

1−e−2α is larger than 1 for all p.

If we choose p =
⌊

1
2α (log n− log log n)

⌋
, then nf(2p) > Cne− log n+log log n−2α goes to infinity with n. For

ε = λ = 1
2 , we get C(p, n, λ, ε) = 1− o(1). Besides,

p∑
i=1

(
1
2

log
n(1− λ)Cπe−2αi

2c(p)e
− ε
)

=
p

2

(
log n+ log

(1− λ)Cπ
2c(p)e

− 2ε
)
− α

p∑
i=1

i

=
(

1
4α

log2 n− α

2
1

4α2
log2 n

)
(1 + o(1))

=
1
8α

log2 n (1 + o(1)) .

V. A CENSORING CODE FOR ENVELOPE CLASSES

The proof of Theorem 4 suggests to handle separately small and large (allegedly infrequent) symbols. Such an

algorithm should perform quite well as soon as the tail behavior of the envelope provides an adequate description

of the sources in the class. The coding algorithm suggested by the proof of Theorem 4, which are based on the

Shtarkov NML coder, are not computationally attractive. The design of the next algorithm (CensoringCode) is

again guided by the proof of Theorem 4: it is parameterized by a sequence of cutoffs (Ki)i∈N and handles the

ith symbol of the sequence to be encoded differently according to whether it is smaller or larger than cutoff Ki,

in the latter situation, the symbol is said to be censored. The CensoringCode algorithm uses Elias penultimate

code (Elias, 1975) to encode censored symbols and Krichevsky-Trofimov mixtures (Krichevsky and Trofimov,

1981) to encode the sequence of non-censored symbols padded with markers (zeros) to witness acts of censorship.

The performance of this algorithm is evaluated on the power-law envelope class ΛC·−α , already investigated in
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Section IV. In this section, the parameters α and C are assumed to be known.

Let us first describe the algorithm more precisely. Given a non-decreasing sequence of cutoffs (Ki)i≤n, a string

x from Nn
+ defines two strings x̃ and x̌ in the following way. The ith symbol xi of x is censored if xi > ki. String

x̃ has length n and belongs to
∏n

i=1 Xi, where Xi = {0, . . .Ki}:

x̃i =

xi if xi ≤ Ki

0 otherwise (the symbol is censored).

Symbol 0 serves as an escape symbol. Meanwhile, string x̌ is the subsequence of censored symbols, that is

(xi)xi>Ki,i≤n.

The algorithm encodes x as a pair of binary strings C1 and C2. The first one (C1) is obtained by applying Elias

penultimate code to each symbol from x̌, that is to each censored symbol. The second string (C2) is built by

applying arithmetic coding to x̃ using side-information from x̌. Decoding C2 can be sequentially carried out using

information obtained from decoding C1.

In order to describe the coding probability used to encode x̃, we need a few more counters. For j > 0, let nj
i be

the number of occurrences of symbol j in x1:i and let n0
i be the number of symbols larger than Ki+1 in x1:i (note

that this not larger than the number of censored symbols in x1:i, and that the counters n·i can be recovered from

x̃1:i and x̌). The conditional coding probability over alphabet Xi+1 = {0, . . . ,Ki+1} given x̃1:i and x̌ is derived

from the Krichevsky-Trofimov mixture over Xi+1. It is the posterior distribution corresponding to Jeffrey’s prior

on the 1 +Ki+1-dimensional probability simplex and counts nj
i for j running from 0 to Ki+1:

Q(X̃i+1 = j | X̃1:i = x̃1:i, X̌ = x̌) =
nj

i + 1
2

i+ Ki+1+1
2

.

The length of C2(x) is (up to a quantity smaller than 1) given by

−
n−1∑
i=0

logQ(x̃i+1 | x1:i, x̌) = − logQ(x̃ | x̌) .

The following description of the coding probability will prove useful when upper-bounding redundancy. For 1 ≤

j ≤ Kn, let sj be the number of censored occurrences of symbol j. Let nj serve as a shorthand for nj
n. Let i(j)

be n if Kn < j or the largest integer i such that Ki is smaller than j, then sj = nj
i(j). The following holds

Q(x̃ | x̌) =

Kn∏
j=1

Γ(nj + 1/2)
Γ(sj + 1/2)

( ∏
i:x̃i=0

(n0
i−1 + 1/2)

)(
n−1∏
i=0

1

i+ Ki+1+1
2

)

Note that the sequence (n0
i )i≤n is not necessarily non-decreasing.

A technical description of algorithm CensoringCode is given below. The procedure EliasCode takes as

input an integer j and outputs a binary encoding of j using exactly `(j) bits where ` is defined by: `(j) =

blog j + 2 log (1 + log j) + 1c . The procedure ArithCode builds on the arithmetic coding methodology (Rissanen

and Langdon, 1979). It is enough to remember that an arithmetic coder takes advantage of the fact that a coding
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probability Q is completely defined by the sequence of conditional distributions of the i + 1th symbol given the

past up to time i.

The proof of the upper-bound in Theorem 6, prompts us to choose Ki = λi
1
α , it will become clear afterward

that a reasonable choice is λ =
(

4C
α−1

) 1
α

.

Algorithm 1 CensoringCode
K ← 0
counts← [1/2, 1/2, . . .]
for i from 1 to n do

cutoff←
⌊(

4 Ci
α−1

)1/α
⌋

if cutoff > K then
for j ← K + 1 to cutoff do

counts[0]← counts[0]− counts[j] + 1/2
end for
K ← cutoff

end if
if x[i] ≤ cutoff then

ArithCode(x[i], counts[0 : cutoff])
else

ArithCode(0, counts[0 : cutoff])
C1←C1·EliasCode(x[i])
counts[0]← counts[0] + 1

end if
counts[x[i]]← counts[x[i]] + 1

end for
C2← ArithCode()
C1 · C2

Theorem 8: Let C and α be positive reals. Let the sequence of cutoffs (Ki)i≤n be given by

Ki =
⌊( 4Ci

α− 1

)1/α ⌋
.

The expected redundancy of procedure CensoringCode on the envelope class ΛC·−α is not larger than(
4Cn
α− 1

) 1
α

log n (1 + o(1)) .

Remark 10: The redundancy upper-bound in this Theorem is within a factor log n from the lower bound O(n1/α)

from Theorem 6 .

The proof of the Theorem builds on the next two lemmas. The first lemma compares the length of C2(x) with

a tractable quantity. The second lemma upper-bounds the average length of C1(x) by a quantity which is of the

same order of magnitude as the upper-bound on redundancy we are looking for.

We need a few more definitions. Let y be the string of length n over alphabet Xn defined by:

yi =

xi if xi ≤ Kn;

0 else.
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For 0 ≤ j ≤ Kn, note that the previously defined shorthand nj is the number of occurrences of symbol j in y.

The string y is obtained from x in the same way as x̃ using the constant cutoff Kn.

Let m∗
n be the Krichevsky-Trofimov mixture over alphabet {0, . . . ,Kn}:

m∗
n(y) =

Kn∏
j=0

Γ(nj + 1
2 )

Γ(1/2)

 Γ(Kn+1
2 )

Γ
(
n+ Kn+1

2

) .
String x̃ seems easier to encode than y since it is possible to recover x̃ from y. This observation does not however

warrant automatically that the length of C2(x) is not significantly larger than any reasonable codeword length for

y. Such a guarantee is provided by the following lemma.

Lemma 2: For every string x ∈ Nn
+, the length of the C2(x) is not larger than − logm∗

n(y).

Proof: [Lemma 2] Let s0 be the number of occurrences of 0 in y, that is the number of symbols in x that are

larger than Kn. Let

T0 =
n∏

i=1,x̃i=0

(n0
i−1 + 1/2) .

Then, the following holds:

T0
(a)
=

 n∏
i=1,yi=0

(n0
i−1 + 1/2)

 Kn∏
j=1

 i(j)∏
i=1,yi=j

(n0
i−1 + 1/2)


(b)

≥
(

Γ(s0 + 1/2)
Γ(1/2)

) Kn∏
j=1

(
Γ(sj + 1/2)

Γ(1/2)

)
,

where (a) follows from the fact symbol xi is censored either because xi > Kn (that is yi = 0) or because

xi = j ≤ Kn and i ≤ i(j); (b) follows from the fact that for each i ≤ n such that yi = 0, n0
i−1 ≥

∑
i′<i 1xi′>Kn

while for each j, 0 < j ≤ Kn, for each i ≤ i(j), n0
i−1 ≥ n

j
i−1.

From the last inequality, it follows that

Q(x̃ | x̌) ≥

Kn∏
j=1

Γ(nj + 1/2)
Γ(sj + 1/2)

 Γ(s0 + 1/2)
Γ(1/2)

Kn∏
j=1

Γ(sj + 1/2)
Γ(1/2)

(
n−1∏
i=0

1

i+ Ki+1+1
2

)

≥

Kn∏
j=1

Γ(nj + 1/2)
Γ(sj + 1/2)

 Γ(s0 + 1/2)
Γ(1/2)

Kn∏
j=1

Γ(sj + 1/2)
Γ(1/2)

(
n−1∏
i=0

1
i+ Kn+1

2

)
= m∗

n(y) ,

where the last inequality holds since (Ki)i is a non-decreasing sequence.

The next lemma shows that the expected length of C1(X1:n) is not larger than the upper-bound we are looking

for.

Lemma 3: For every source P ∈ ΛC·−α , the expected length of the encoding of the censored symbols (C1(X1:n))

satisfies:

EP

[
|C1 (X1:n)|

]
≤ 2C

(α− 1)λα−1
n

1
α log n (1 + o(1)) .
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Proof: [Lemma 3] Let 1 ≤ a < b and β > 0 but β 6= 1. Recall that we use binary logarithms and note that:∫ b

a

1
xβ

dx =
[

1
(1− β)xβ−1

]b

a

, (4)

∫ b

a

log x
xβ

dx =

[
log x− log e

1−β

(1− β)xβ−1

]b

a

. (5)

The expected length of the Elias encoding of censored symbols (C1(Xn
1 ))is:

E
[
|C1 (Xn

1 ) |
]

= E

 n∑
j=1

`(Xj)1Xj>Kj


=

n∑
j=1

∞∑
x=Kj+1

`(x)P (x)

≤
n∑

j=1

∞∑
x=Kj+1

`(x)
C

xα

≤ C
n∑

j=1

∞∑
x=Kj+1

log(x) + 2 log (1 + log x) + 1
xα

.

Note that for x ≥ 27

log x ≥ 2 log(1 + log x) + 1,

so that the last sum is upper-bounded by

C
n∑

j=1

∞∑
x=Kj+1

2
log x
xα

+ C
∑

j:Kj<27

27∑
x=1

2 log(1 + log x) + 1− log x
xα

.

Using the expressions for the integrals above, we get:

∞∑
x=Kj+1

log x
xα
≤
∫ ∞

Kj

log x
xα

dx

≤
logKj + log e

α−1

(α− 1)Kα−1
j

.

Thus, as Kj = λj1/α, let us denote by Dλ the expression

∑
j:j<(27/λ)α

27∑
x=1

2 log(1 + log x) + 1− log x
xα

.
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Now, we substitute β by 1− 1
α in Equations (4) and (5) to obtain:

E
[
|C1 (Xn

1 ) |
]
≤ CDλ +

2C
α− 1

n∑
j=1

logKj + log e
α−1

Kα−1
j

≤ CDλ +
2C
α− 1

n∑
j=1

1
α log j + log λ+ log e

α−1

λα−1j1−
1
α

≤ CDλ +
2C

α(α− 1)λα−1

C +
∫ n+1

x=2

(
log x+ α log λ+ α log e

α−1

)
x1− 1

α

dx


=

2C
(α− 1)λα−1

n
1
α log n (1 + o(1)) .

We may now complete the proof of Theorem 8.

Proof: Remember that Xn = {0, . . . ,Kn}. If p is a probability mass function over alphabet X , let p⊗n be

the probability mass function over Xn defined by p⊗n(x) =
∏n

i=1 p(xi). Note that for every string x ∈ Nn
+,

max
p∈M1(Xn)

p⊗n(y) ≥ max
p∈M1(N+)

p⊗n(x) ≥ max
P∈ΛC·−α

Pn(x) = p̂(x) .

Together with Lemma 2 and the bounds on the redundancy of the Krichevsky-Trofimov mixture (See Krichevsky

and Trofimov, 1981), this implies:

|C2 (x) | ≤ − log p̂ (x) +
Kn

2
log n+O(1).

Let L(x) be the length of the code produced by algorithm CensoringCode on the input string x, then

sup
P∈ΛC·−α

EP [L(X1:n)− log 1/Pn(X1:n)]

≤ sup
P∈ΛC·−α

EP [L(X1:n)− log 1/p̂(X1:n)]

≤ sup
P∈Λn

C·−α

EP [|C2 (X1:n)|+ log p̂ (X1:n) + |C1 (X1:n)|]

≤ sup
x

(|C2 (x)|+ log p̂ (x)) + sup
P∈Λn

C·−α

EP [|C1 (X1:n)|]

≤ λn
1
α

2
log n+

2C
(α− 1)λα−1

n
1
α log n (1 + o(1)) .

The optimal value is λ =
(

4C
α−1

) 1
α

, for which we get:

R+(Qn,Λn
C·−α) ≤

(
4Cn
α− 1

) 1
α

log n (1 + o(1)) .

DRAFT January 4, 2008



25

VI. ADAPTIVE ALGORITHMS

The performance of CensoringCode depends on the fit of the cutoffs sequence to the tail behavior of the

envelope. From the proof of Theorem 8, it should be clear that if CensoringCode is fed with a source which

marginal is light-tailed, it will be unable to take advantage of this, and will suffer from excessive redundancy.

In this section, a sequence (Qn)n of coding probabilities is said to be approximately asymptotically adaptive with

respect to a collection (Λm)m∈M of source classes if for each P ∈ ∪m∈MΛm, for each Λm such that P ∈ Λm:

D(Pn, Qn)/R+(Λn
m) ∈ O(log n) .

Such a definition makes sense, since we are considering massive source classes which minimax redundancies are

large but still o( n
log n ). If each class Λm admits a non-trivial redundancy rate such that R+(Λn

m) = o( n
log n ), the

existence of an approximately asymptotically adaptive sequence of coding probabilities means that ∪mΛm is feebly

universal (see the Introduction for a definition).

A. Pattern coding

First, the use of pattern coding Orlitsky et al. (2004), Shamir (2006) leads to an almost minimax adaptive

procedure for small values of α, that is heavy-tailed distributions. Let us introduce the notion of pattern using the

example of string x = “abracadabra”, which is made of n = 11 characters. The information it conveys can be

separated in two blocks:

1) a dictionary ∆ = ∆(x): the sequence of distinct symbols occurring in x in order of appearance (in the

example, ∆ = (a, b, r, c, d)).

2) a pattern ψ = ψ(x) where ψi is the rank of xi in the dictionary ∆ (here, ψ = 1231415123).

Now, consider the algorithm coding message x by transmitting successively:

1) the dictionary ∆n = ∆ (x) (by concatenating the Elias codes for successive symbols);

2) and the pattern Ψn = ψ (x), using a minimax procedure for coding patterns as suggested by Orlitsky et al.

(2004) or Shamir (2006). Henceforth, the latter procedure is called pattern coding.

Theorem 9: Let Qn denote the coding probability associated with the coding algorithm which consists in applying

Elias penultimate coding to the dictionary ∆(x) of a string x from Nn
+ and then pattern coding to the pattern ψ(x).

Then for any α such that 1 < α ≤ 5/2, there exists a constant K depending on α and C such that

R+(Qn,Λn
C·−α) ≤ Kn1/α log n

Proof: For a given value of C and α, the Elias encoding of the dictionary uses on average

E [|∆n|] = K ′n
1
α log n

bits (as proved in Appendix IV), for some constant K ′ depending on α and C.
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If our pattern coder reaches (approximately) the minimax pattern redundancy

R+
Ψ (Ψ1:n) = inf

q∈M1(Nn
+)

sup
P∈M1(N+)

EP

[
log

P⊗n(Ψ1:n)
q(Ψ1:n)

]
,

the encoding of the pattern uses on average

H(Ψ1:n) +R+
Ψ (Ψ1:n) ≤ H(X1:n) +R+

Ψ (Ψ1:n) bits.

But in Orlitsky et al. (2004), the authors show that R+
Ψ (Ψ1:n) is upper-bounded by O (

√
n) and even O

(
n

2
5

)
according to Shamir (2004) (actually, these bounds are even satisfied by the minimax individual pattern redundancy).

This remarkably simple method is however expected to have a poor performance when α is large. Indeed, it is

proved in Garivier (2006) that R+
Ψ (Ψ1:n) is lower-bounded by 1.84

(
n

log n

) 1
3

(see also Shamir (2006) and references

therein), which indicates that pattern coding is probably suboptimal as soon as α is larger than 3.

B. An approximately asymptotically adaptive censoring code

Given the limited scope of the pattern coding method, we will attempt to turn the censoring code into an adaptive

method, that is to tune the cutoff sequence so as to model the source statistics. As the cutoffs are chosen in such a

way that they model the tail-heaviness of the source, we are facing a tail-heaviness estimation problem . In order to

focus on the most important issues we do not attempt to develop a sequential algorithm. The n+ 1th cutoff Kn+1

is chosen according to the number of distinct symbols Zn(x) in x.

This is a reasonable method if the probability mass function defining the source statistics P 1 actually decays like
1

kα . Unfortunately, sparse distributions consistent with Λ·−α may lead this project astray. If, for example, (Yn)n is

a sequence of geometrically distributed random variables, and if Xn =
⌊
2

Yn
α

⌋
, then the distribution of the Xn just

fits in ΛC·−α but obviously Zn(X1:n) = Zn (Y1:n) = O (log n).

Thus, rather than attempting to handle ∪α>0Λ·−α , we focus on subclasses ∪α>0Wα, where

Wα =
{
P : P ∈ Λ·−α , 0 < lim inf

k
kαP 1(k) ≤ lim sup

k
kαP 1(k) <∞

}
.

The rationale for tuning cutoff Kn using Zn comes from the following two propositions.

Proposition 7: For every memoryless source P ∈ Wα, there exist constants c1 and c2 such that for all positive

integer n,

c1n
1/α ≤ E[Zn] ≤ c2n1/α.

Proposition 8: The number of distinct symbols Zn output by a memoryless source satisfies a Bernstein inequality:

P

{
Zn ≤

1
2
E[Zn]

}
≤ e−

E[Zn]
8 . (6)

Proof: Note that Zn is a function of n independent random variables. Moreover, Zn is a configuration

function as defined defined by Talagrand (1995) since Zn(x) is the size of a maximum subsequence of x satisfying
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an hereditary property (all its symbols are pairwise distinct). Using the main theorem in Boucheron et al. (2000),

this is enough to conclude.

Noting that Zn ≥ 1, we can derive the following inequality that will prove useful later on:

E
[

1
Zα−1

n

]
= E

[
1

Zα−1
n

1Zn> 1
2 E[Zn]

]
+ E

[
1

Zα−1
n

1Zn≤ 1
2 E[Zn]

]
≤ 1(

1
2E[Zn]

)α−1 + P

(
Zn ≤

1
2

E[Zn]
)
. (7)

We consider here a modified version of CensoringCode that operates similarly, except that

1) the string x is first scanned completely to determine Zn (x);

2) the constant cutoff K̂n = µZn is used for all symbols xi, 1 ≤ i ≤ n, where µ is some positive constant.

3) the value of Kn is encoded using Elias penultimate code and transmitted before C1 and C2.

Note that this version of the algorithm is not sequential because of the initial scanning.

Algorithm 2 AdaptiveCensoringCode
cutoff← µZn(x) {Determination of the constant cutoff}
counts← [1/2, 1/2, . . .]
for i from 1 to n do

if x[i] ≤ cutoff then
ArithCode(x[i], counts[0 : cutoff])

else
ArithCode(0, counts[0 : cutoff])
C1←C1·EliasCode(x[i])
counts[0]← counts[0] + 1

end if
counts[x[i]]← counts[x[i]] + 1

end for
C2← ArithCode()
C1 · C2

We may now assert.

Theorem 10: The algorithm AdaptiveCensoringCode is approximately asymptotically adaptive with respect

to
⋃

α>0Wα.

Proof: Let us again denote by C1(x) and C2(x) the two parts of the code-string associated with x.

Let L̂ be the codelength of the output of algorithm AdaptiveCensoringCode.

For any source P :

EP

[
L̂ (X1:n)

]
−H(X1:n) = EP

[
`(K̂n) + |C1 (X1:n)|+ |C2 (X1:n)|

]
− n

∞∑
k=1

P 1(k) log
1

P1(k)

≤ EP

[
`(K̂n)

]
+ EP [|C1 (X1:n)|] + EP

|C2 (X1:n)| − n
K̂n∑
k=1

P 1(k) log
1

P1(k)

 .
As function ` is increasing and equivalent to log at infinity, the first summand is obviously o

(
EP

[
`(K̂n)

])
.

January 4, 2008 DRAFT



28

Moreover, if P ∈ Wα there exists C such that P 1(k) ≤ C
kα and the second summand satisfies:

EP [|C1 (X1:n)|] = EP

 ∑
k≥K̂n+1

P 1(k)`(k)


≤ nCEP

[∫ ∞

K̂n

` (x)
xα

dx
]

= nCEP

 1
K̂α−1

n

∫ ∞

1

`
(
K̂nu

)
uα

du


≤ nCEP

[
1

K̂α−1
n

] ∫ ∞

1

log (u)
uα

du (1 + o(1))

= O
(
n

1
α log n

)
by Proposition (7) and Inequality (7).

By Theorem 2, every string x ∈ Nn
+ satisfies

|C2 (x)| − n
K̂n∑
k=1

P 1(k) log
1

P1(k)
≤ K̂n

2
log n+ 2.

Hence, the third summand is upper-bounded as:

EP

|C2 (X1:n)| − n
K̂n∑
k=1

P 1(k) log
1

P1(k)

 ≤ EP

[
K̂n

]
2

log n+ 2

= O
(
n

1
α log n

)
which finishes to prove the theorem.
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APPENDIX I

UPPER-BOUND ON MINIMAX REGRET

This sections contains the proof of the last inequality in Theorem 2.

The minimax regret is not larger than the maximum regret of the Krichevsky-Trofimov mixture over m-ary

alphabet over strings of length n. The latter is classically upper-bounded by

log
(

Γ(n+ m
2 )Γ( 1

2 )
Γ(n+ 1

2 )Γ(m
2 )

)
,

as proved for example in (Csiszár, 1990).

Now the Stirling approximation to the Gamma function (See Whittaker and Watson, 1996, Chapter XII) asserts

that for any x > 0, there exists β ∈ [0, 1] such that

Γ(x) = xx− 1
2 e−x

√
2πe

β
12x .
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Hence,

log
(

Γ(n+ m
2 )Γ( 1

2 )
Γ(n+ 1

2 )Γ(m
2 )

)
=
(
n+

m− 1
2

)
log
(
n+

m

2

)
− n log

(
n+

1
2

)
− m− 1

2
log

m

2
(8)

−
(
n+

m

2

)
+ n+

1
2

+
m

2
(9)

− log
√

2π + log
√

2π + log
√

2π − log
√
π (10)

+
β1

12
(
n+ m

2

) − β2

12
(
n+ 1

2

) − β3

6m
(11)

for some β1, β2, β3 ∈ [0, 1]. Now, (9)+(10)+(11) is smaller than 1
2 + log

√
2 + 1

12(n+ m
2 ) ≤ 2, and (8) equals:

m− 1
2

log n+
(
n log

n+ m
2

n+ 1
2

− m− 1
2

log e
)

+
(
m− 1

2
log

n+ m
2

m
2

+
m− 1

2
log e− m− 1

2
log n

)
But

n log
n+ m

2

n+ 1
2

= n log
(

1 +
m−1

2

n+ 1
2

)
≤ n

m−1
2

n+ 1
2

log e ≤ m− 1
2

log e,

and

m− 1
2

log
n+ m

2
m
2

+
m− 1

2
log e− m− 1

2
log n =

m− 1
2

log

(
n+ m

2

)
e

nm
2

≤ 0

if
(
n+ m

2

)
e ≤ nm

2 , that is 2
m + 1

n ≤
1
e , which is satisfied as soon as m and n are both at least equal to 9. For the

smaller values of m,n ∈ {2, . . . , 8} the result can be checked directly.

APPENDIX II

LOWER BOUND ON REDUNDANCY FOR POWER-LAW ENVELOPES

In this appendix we derive a lower-bound for power-law envelopes using Theorem 5. Let α denote a real larger

than 1. Let C be such that C1/α > 4. As the envelope function is defined by f(i) = 1 ∧ C/iα, the constant

c(∞) =
∑

i≥1 f(2i) satisfies

α

α− 1
C1/α

2
− 1 ≤ c(∞) ≤ C1/α

2
+

C

(α− 1)2α

(
C1/α

2

)1−α

.

The condition on C and α warrants that, for sufficiently large p, we have c(p) > 1 (this is indeed true for p > C1/α).

We choose p = an
1
α for a small enough to have

(1− λ)Cε

(2a)
1
α c(∞)

> 10,

so that condition (1− λ)n f(2p)
c(p) > 10

ε is satisfied for n large enough. Then

R+(Λn
f ) ≥ C(p, n, λ, ε)

p∑
i=1

(
1
2

log
n (1− λ)πf(2i)

2c(p)e
− ε
)
,
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where C(p, n, λ, ε) = 1

1+
(2a)αc(∞)

Cλ2

(
1− 4

π

√
5c(∞)(2a)α

(1−λ)Cε

)
, and

p∑
i=1

(
1
2

log
n (1− λ)πf(2i)

2c(p)e
− ε
)
≤ p

2
log n− α

2

p∑
i=1

log i+
(

1
2

log
(1− λ)πC
21+αc(∞)e

− ε
)
p

=
p

2
log n− α

2
(p log p− p+ o(p)) +

(
1
2

log
(1− λ)πC
21+αc(∞)e

− ε
)
p

=
an

1
α

2
log n− α

2

(
an

1
α log a+

a

α
n

1
α log n− an 1

α + o
(
n

1
α

))
+
(

1
2

log
(1− λ)πC
21+αc(∞)e

− ε
)
an

1
α

=
(
α

2
(1− log a) +

1
2

log
(1− λ)πC
21+αc(∞)e

− ε+ o(1)
)
an

1
α .

For a small enough, this gives the existence of a positive constant η such that R+(Λn
f ) ≥ ηn 1

α .

APPENDIX III

PROOF OF PROPOSITION 7

Suppose that there exist k0, c and C such that for all k ≥ k0,
c

kα ≤ pk ≤ C
kα .

For 0 ≤ x ≤ 1
2 , it holds that −(2 log 2)x ≤ log(1− x) ≤ −x and thus

e−(2 log 2)nx ≤ (1− x)n ≤ e−nx.

Hence (as pk ≤ 1
2 for all k ≥ 2) :

∞∑
k=k0

(
1−

(
1− c

kα

)n)
≤ E[Zn] ≤

∞∑
k=1

(
1−

(
1− C

kα

)n)
∞∑

k=k0

(
1− e− cn

kα
)
≤ E[Zn] ≤ 1 +

∞∑
k=2

(
1− e−

(2 log 2)Cn
kα

)
∫ ∞

k0

(
1− e− cn

xα
)

dx ≤ E[Zn] ≤ 1 +
∫ ∞

1

(
1− e−

(2 log 2)Cn
xα

)
dx.

But, for any t,K > 0, it holds that∫ ∞

t

(
1− e−Kn

xα

)
dx =

(Kn)1/α

α

∫ Kn
tα

0

1− e−u

u1+1/α
du.

Thus, by noting that integral

A(α) =
∫ ∞

0

1− e−u

u1+1/α
du,

is finite, we get

c1/αA(α)
α

n1/α (1− o(1)) ≤ E[Zn] ≤ ((2 log 2)C)1/α
A(α)

α
n1/α.
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APPENDIX IV

EXPECTED SIZE OF DICTIONARY ENCODING

Assume that the probability mass function (pk) satisfies pk ≤ C
kα for C > 0 and all k ≥ 0. Then, using Elias

penultimate code for the first occurrence of each symbol in X1:n, the expected length of the binary encoding of

the dictionary can be upper-bounded in the following way. Let Uk be equal to 1 if symbol k occurs in X1:n, and

equal to 0 otherwise.

E [|∆n|] = E

[ ∞∑
k=1

Uk`(k)

]

=
∞∑

k=1

E [Uk`(k)]

≤
∞∑

k=1

(
1−

(
1− C

kα

)n)
`(k)

≤ 2

(
1 +

∞∑
k=2

(
1− e−

(2 log 2)Cn
kα

)
log k

)

≤ 2
(

1 +
∫ ∞

1

(
1− e−

(2 log 2)Cn
xα

)
log x dx

)
≤ 2

(
((2 log 2)Cn)1/α

α2

∫ (2 log 2)Cn

0

1− e−u

u1+1/α
log
(

(2 log 2)Cn
u

)
du

)

≤ T ((2 log 2)Cn)1/α

α2
log n

∫ ∞

0

1− e−u

u1+1/α
du

for some positive constant T .
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