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Abstract

Quantizing machine learning models has demon-
strated its effectiveness in lowering memory and
inference costs while maintaining performance
levels comparable to the original models. In this
work, we investigate the impact of quantization
procedures on the privacy of data-driven mod-
els, specifically focusing on their vulnerability
to membership inference attacks. We derive an
asymptotic theoretical analysis of Membership
Inference Security (MIS), characterizing the pri-
vacy implications of quantized algorithm weights
against the most powerful (and possibly unknown)
attacks. Building on these theoretical insights, we
propose a novel methodology to empirically as-
sess and rank the privacy levels of various quanti-
zation procedures. Using synthetic datasets, we
demonstrate the effectiveness of our approach in
assessing the MIS of different quantizers. Further-
more, we explore the trade-off between privacy
and performance using real-world data and mod-
els in the context of molecular modeling.

1. Introduction
Reducing the computational and memory costs of machine
learning models is a critical aspect of their deployment,
particularly on edge devices and resource-constrained en-
vironments. Quantization stands out among the various
methods available to enhance inference efficiency in neural
networks, such as knowledge distillation and pruning, due
to its distinct advantages and proven practical success (Gho-
lami et al., 2022). One key benefit is that the storage and
latency improvements achieved through quantization are
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deterministically defined by the chosen quantization level
(e.g., using 8-bit integers instead of 32-bit floating-point
numbers). Moreover, uniform quantization is inherently
hardware-friendly, facilitating the practical realization of
theoretical efficiency gains.

While quantization effectively improves efficiency, its im-
pact on the privacy of machine learning models remains
largely under-explored. A particularly intriguing question
is whether quantization can also strengthen a model’s re-
silience against adversarial threats, such as the extraction
of sensitive information. By reducing the precision of a
model’s parameters, quantization naturally discards some
information (Villard & Piantanida, 2013), which leads to
the hypothesis that this process could potentially reduce the
risk of recovering the model’s training data or other private
information. However, to our knowledge, the security of
quantized models against such privacy attacks has not yet
been theoretically investigated.

In this paper, we explore the effect of quantization on the
Membership Inference vulnerability of machine learning
models. We propose a novel privacy metric, based upon
the Membership Inference Security (MIS) (Aubinais et al.,
2023) and derive asymptotic bounds—relative to the train-
ing sample size—to quantify the privacy implications of
model quantization. Using these theoretical insights, we
present a systematic framework for evaluating and compar-
ing fundamental quantization techniques, with a focus on
the observed loss values. This methodology provides a thor-
ough analysis of how different quantization methods strike a
balance between privacy (against the most powerful attacks)
and performance. To validate our approach, we compare it
against an established baseline technique, showing consis-
tent rankings of quantization methods based on their ability
to preserve privacy.

1.1. Our contributions

Our contributions can be summarized as follows:

• We show that, for a fixed model and quantization pro-
cedure, as the size of the training dataset increases
towards infinity, the MIS of the learning algorithm is
fully determined by the distribution of the loss per sam-
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ple for the quantized models (Theorem 3.1). Building
upon this result, we further show that when the model
architecture and/or quantization procedure adapts to
the training set size, a similar dependency persists (The-
orem 3.3), although with a more precise dependence
on the covariance structure of the loss per sample.

• Building on the result of Theorem 3.3, whose direct
estimation is computationally prohibitive, we propose a
methodology (subsection 4.1) enabling the comparison
of quantizers in terms of privacy.

• We apply our methodology to several Post-Training
Quantization techniques on both synthetic data
(see Figure 5) and real-world data (see subsection 5.2).
We show that the rankings provided by our method con-
sistently correlates with the ones obtained with a base-
line estimation of the MIS (see subsubsection 5.1.2),
and study the privacy-performance trade-off of quanti-
zation on molecular property prediction tasks (see sub-
subsection 5.2.2).

Our work is dedicated to providing a theoretically grounded
methodology to compare different quantization procedures
in the context of MIS evaluation.

1.2. Related work

Quantization of neural networks. With the deployment
of neural networks on edge devices (Yuan et al., 2024; Lin
et al., 2024), where inference should be time and memory
efficient, several quantization procedures have been stud-
ied and employed. Quantization usually answers this task
by reducing the (bit-)precision of the parameters of the
neural networks, demonstrating effectiveness in Large Lan-
guage Models (Gong et al., 2024; Zhu et al., 2024) even
when the quantization is as strong as 1-bit precision quan-
tization (Wang et al., 2023; Ma et al., 2024a), 1.58-bits
precision quantization (Ma et al., 2024b), arbitrary bits pre-
cision (Zeng et al., 2024). The most adopted framework
of quantization is Post-Training Quantization (PTQ) (Ja-
cob et al., 2018; Nagel et al., 2019; Gholami et al., 2022)
which provides simple training-free implementation. PTQ
is usually adopted over Quantization-Aware Training (QAT)
(Bengio et al., 2013; Banner et al., 2018; Nagel et al., 2021;
2022; Pang et al., 2024) due to their limitations to scale up
to larger models (Gholami et al., 2022; Lin et al., 2024).
Additionally, some lines of work study ”hardware-aware”
quantization procedures (Wang et al., 2024; Balaskas et al.,
2024) where optimization is made directly on the hardware.
During our experiments, we will focus on PTQ.

Membership Inference Attacks. Membership Inference
Attacks (MIAs) can reveal sensible information (Shokri
et al., 2017; Song et al., 2017; Carlini et al., 2022; 2023)
about one’s data by leveraging the information stored in the

parameters of the ML model (Hartley & Tsaftaris, 2022;
Del Grosso et al., 2023). An extensive line of work has
developed in the past decade to construct ever so powerful
MIAs in embedding models (Song & Raghunathan, 2020),
regression models (Gupta et al., 2021) or generative mod-
els (Hayes et al.), systematically summarized in (Hu et al.,
2022). Recent works have leveraged the predictive power of
LLMs to construct new MIAs (Staab et al., 2023; Wang et al.,
2025). While few works have delved into the theoretical
intricacies of MIAs (Sablayrolles et al., 2019; Del Grosso
et al., 2023; Aubinais et al., 2023), several Privacy bench-
marks have been developed to audit the privacy risks of ML
models (Murakonda & Shokri, 2020; Liu et al., 2022b) by
evaluating state-of-the-art MIAs on the target model. Al-
though these benchmarks offer valuable insights into the
privacy leakage of an ML model, a single MIA alone can-
not provide a comprehensive assessment of an algorithm’s
overall privacy resilience against various attacks. We briefly
discuss it in subsection 2.3.

Quantization and Privacy. Various strategies to protect
models from attacks like MIAs have been proposed. In
federated learning, the effects of input and gradient quanti-
zation have been analyzed through the lens of differential
privacy (Youn et al., 2023; Yan et al., 2024; Chaudhuri
et al., 2022). However, the impact of model quantization
on security has been primarily assessed through empirical
evaluations of MIAs, with no existing theoretical analy-
sis (Kowalski et al., 2022; Famili & Lao, 2023). Our work
aims to fill this gap by providing a rigorous theoretical eval-
uation of the security implications of model quantization.

2. Background and Notations
2.1. Predictive tasks

Throughout the article, we consider a dataset Dn :=
{z1, · · · , zn} of n independent and identically distributed
(i.i.d.) data drawn from a common distribution P over a
space Z . We assume that our goal is to infer a predictive
function Ψ̂ from a set of predictors F := {Ψθ : θ ∈ Θ}
indexed by some space Θ ⊆ Rd. We define a (learning)
algorithm as a function A :

⋃
n≥1Zn → P(Θ), where

P(Θ) is the space of all probability measures on Θ. By
denoting θ̂n ∼ A(z1, · · · , zn) ∈ Θ, we systematically set
Ψ̂ = Ψθ̂n . This definition of a learning algorithm includes
all (stochastic) algorithms. We will assume in the follow-
ing that the algorithm can be written as a function of the
empirical distribution of the data. More specifically, this
means that there exists a function G and a random variable
ξ such that A (z1, · · · , zn) = G(P̂n, ξ), where P̂n is the
empirical distribution of the training dataset. In this case,
the random variable ξ encompasses the stochasticity of the
algorithm. This assumption is especially satisfied for algo-
rithms minimizing an empirical loss θ 7→ 1

n

∑n
j=1 ℓ(θ, zj)
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where ℓ : Θ×Z → R+ is the loss function.
Example 2.1. Classification. For a classification task, we
may note Z := X × Y where Y = {1, · · · , |Y|} is the
number of classes and X is the input space. F can be the
set of all neural networks, where θ ∈ Θ then represents the
parameters of such predictors. The algorithm A can be any
(stochastic) optimizing procedure (e.g., Adam optimizer) on
any adequate loss function (e.g., the cross-entropy loss).

2.2. Quantization

We define a quantizer (Gersho & Gray, 1992) as any mea-
surable function Q : Θ→ Θ̄ ⊆ Θ for some discrete space
Θ̄ := {θ̄1, · · · , θ̄K}. A quantizer canonically induces a
quantized algorithm AQ, and a loss function ℓQ, which
we simply write ℓ, as long as there is no ambiguity. For
any θ ∈ Θ, we denote by mθ = E [ℓ(θ, z)] the expected
loss evaluated on θ, where z is a random variable with dis-
tribution P . Additionally, for a given quantizer Q, we will
assume without loss of generality that mθ̄1 ≤ · · · ≤ mθ̄K .
In the following, we introduce two specific examples to
illustrate particular quantization methods.
Example 2.2 (Binarized Neural Networks (Wang et al.,
2023).). Let F be a set of neural networks with fixed ar-
chitecture. The set Θ then represents the parameters of
the neural network. A scalar quantizer Q maps coordinate-
wise the parameters to its sign, namely Q(θ) = (θj/|θj |)j .
Here, for 1−layer unbiased neural networks with width
d (number of parameters), the set Θ̄ would consist of all
d−dimensional vectors in {−1,+1}d where K = 2d. Usu-
ally, computers store parameters in a 32-bits (or 64-bits)
format. Low-precision quantization procedures, e.g. 2−bits
(or q−bits in general) quantization, reduce the number of
bits required from 32 (or 64) to 2 (or q in general).
Example 2.3 (Vector Quantization). Another quantization
procedure, albeit under-used in practice, is vector quanti-
zation. A codebook Θ̄ is usually pre-computed, which the
vector quantizer Q maps θ onto, usually performed by a
nearest neighbor algorithm, which makes it efficient and
memory-friendly. The constant K here corresponds to the
number of values stored in the codebook.

2.3. Privacy assessment

In the present work, we evaluate the privacy of an algorithm
A trained on a task P through Membership Inference At-
tacks (MIAs). Particularly, in a scenario where Dn consists
of sensible data and the model Ψ̂ has been shared (such as a
sold product), MIAs are known to pose a notable threat to
the privacy of the dataset. MIAs aim at inferring member-
ship of a test sample z̃ to the dataset Dn by observing θ̂n.
MIAs can be defined as follows.

Definition 2.4 (Membership Inference Attack - MIA). Any
measurable map ϕ : Θ×Z → {member, non-member} is

considered to be a Membership Inference Attack.

The existence of successful MIAs constitute a major threat
against the privacy of personal data by revealing sensible
information. However, for most algorithms, there may al-
ways exist pathological datasets for which models trained on
would be highly attackable by MIAs. Specifically, although
individual MIAs can reveal information leakage, it is alone
insufficient to disclose a complete overview on the privacy
level of a machine learning model. To adequately tackle
down the question of privacy of an algorithm, it is compul-
sory to address all possibilities of attacks. We then will say
that an algorithm is private if it usually produces parameters
θ̂n that are private against most MIAs. We use the notion
of accuracy of an MIA, defined as the probability of suc-
cessfully guessing the membership of the test point. Letting
T ∈ {member, non-member} encode the membership of a
test point z̃, we define the accuracy as follows.
Definition 2.5 (Accuracy of a given MIA). The accuracy
of an MIA ϕ is defined as

Accn(ϕ;P,A) := P
(
ϕ(θ̂n, z̃) = T

)
, (1)

where the probability is considered over all sources of ran-
domness inherent in the underlying training model and the
data used for both training and evaluation.
Definition 2.6 (MIS). The Membership Inference Security
(MIS) of an algorithm A is defined as

MISn(P,A) := 2

(
1− sup

ϕ
Accn(ϕ;P,A)

)
, (2)

where the sup is taken over all MIAs and thus,
MISn(P,A) ≤ 2(1− Accn(ϕ;P,A)) for all MIAs ϕ.

We notice that MIAs with an accuracy of at least 1
2 always

exist (e.g., constant MIAs). As a result, the MIS metric
ranges from 0 (completely non-private) to 1 (fully private).
Remark 2.7. The presence of the supremum makes the MIS
a metric encompassing all possible MIAs, including all state-
of-the-art MIAs, and most importantly, all unknown MIAs.
Indeed, even though state-of-the-art MIAs provide a strong
indicator on the security of ML models, more powerful
MIAs are likely to emerge in the future, beating the state-of-
the-art MIAs. Consequently, it is of paramount importance
to consider all attacks when designing privacy metrics.

3. Theoretical Results
We provide in this section the main theoretical results on
the MIS of quantized algorithms. For the results of sec-
tion 3 and section 4 to hold, it is mandatory to give a proper
mathematical setting, although not required for the reader
to pursue. We therefore refer to subsection A.1 for a formal
mathematical setting.
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3.1. Fixed Quantizer

We start off by giving a simple result. Let Q be a fixed
quantizer, then under mild additional assumptions presented
in subsection A.2, the following result holds.
Theorem 3.1. There exists a constant C1

P > 0 satisfying

lim
n→∞

− 1

n
log (1−MISn(P,AQ)) ≥ C1

P . (3)

Importantly, the constant C1
P depends solely on the distri-

bution of ℓ(θ, z) for all θ ∈ Θ̄, where z has for distribution
P . The detailed formulation of the theorem can be found in
Theorem C.1. This theorem establishes that the MIS is of
order 1 − e−nC

1
P (1+o(1)) for some constant C1

P > 0 for a
given algorithm. The result suggests that the approximation
holds as the dataset size approaches infinity, assuming the
architecture size remains fixed. However, in practice, when
developing machine learning models, it is common to adjust
the architecture based on the dataset, particularly its size.

3.2. Size-Adaptive Quantizers

As an example, it is common to over-parameterize mod-
els relative to the dataset size, as seen in the case of LLMs.
Therefore, Theorem 3.1 may not provide an accurate approx-
imation for very large datasets. We now let our quantizer
Qn (and therefore the number of quantized values Kn and
Θ̄n := {θ̄1, · · · , θ̄Kn}) be Size-Adaptive, i.e. depends on
the sample size. Let δnk := mθ̄nk

−mθ̄n1
be the loss gaps and

(σnk )
2
= Var

(
ℓ
(
θ̄nk , z

)
−ℓ
(
θ̄n1 , z

) )
be the loss variabilities,

which corresponds to the variance of the difference of the
losses between θ̄nk and θ̄n1 .

The dependence of Qn on the dataset size n formalizes
at least two scenarios: either the quantization procedure
remains the same, but the architecture size adapts to the
training dataset, or the architecture size is fixed while the
quantization procedure changes. Specifically, the first inter-
pretation can be seen as the common practice in machine
learning to scale models to the dataset size.
Example 3.2 (Scaling Architecture). Let the number of pa-
rameters of our original models follow a scaling law (Hoff-
mann et al., 2022; Kaplan et al., 2020) f such that its number
of parameters is: f(n). Let the quantization method be fixed
to a 1-bit quantization (mapping each parameter to its sign
for instance). Then, following Example 2.2, for a dataset
size n, the size of Θ̄n is Kn = 2f(n).

Under some mild assumptions outlined in Appendix A.3,
we obtain the following result.
Theorem 3.3. Assume that

√
nδn2 →

n→∞
∞ and δn2 →

n→∞
0.

Then, we have

lim
n→∞

− 1

n (δn2 )
2 log

(
1−MISn(P,AQn

)
)
≥ 1

2σ2
, (4)

where σ2 = max
k

lim
n→∞

(δn2 /δ
n
k )

2
(σnk )

2.

For a size-adaptive Quantizer Q := (Qn), let rnQ :=

(δn2 )
2
/(2σ2) be the constant of Theorem 3.3 multiplied by

the square of the minimal loss gap. Theorem 3.3 then stipu-
lates that the MIS of a quantized algorithm, whose quantiza-
tionQ is Size-Adaptive, is of order 1−e−nrnQ(1+o(1)) which
by hypothesis converges to 1 as n grows to infinity, ensuring
asymptotic security. Furthermore, Theorem 3.3 suggests
that for two size-adaptive Quantizers Q and R, rnQ ≥ rnR
implies that AQ produces more secure parameters than AR
(asymptotically). Theorem 3.3 then proposes to use rnQ as a
measure to compare different quantizers. Most importantly,
this quantity wholly relies upon the asymptotic expectations
and variances of the random variables ℓ(θ̄nk , z)− ℓ(θ̄n1 , z).
Remark 3.4. The theoretical setting of subsection 3.2 encom-
passes modern architectures and habits of machine learning
designs. This setting enables us to explicit the quantity rnQ
controlling the asymptotic MIS of a quantized algorithm.
The most vital point of Theorem 3.3 is that this result holds
for all attacks, including currently unknown (and possibly
more powerful) attacks. The following sections focus on em-
pirically demonstrating that the estimate of rnQ is adequate
to rank quantizers by their privacy level.

4. Estimating Quantized Algorithm Privacy
4.1. Measuring the privacy of quantized models

To estimate the security of an algorithm AQ using Theo-
rem 3.3, we must compute the loss gaps δnk between the best
quantized model and all possible quantizers in Θ̄. However,
this is computationally infeasible, as even a simple quan-
tizer like 1-bit quantization leads to an exponentially large
Θ̄ with respect to the number of parameters. We address
this intractability by observing that only a few quantizers
dominate the estimation of rnQ. Specifically, rnQ depends on:

• The two lowest average quantized losses mθ̄1 and mθ̄2 .

• The values lim
n→∞

(δn2 /δ
n
k )

2
(σnk )

2 which measure the
trade-off between the mean loss gap and the per-sample
variance of quantized models.

Crucially, maxk lim
n→∞

(δn2 /δ
n
k )

2
(σnk )

2 is empirically domi-
nated by low-loss quantizers (see subsection F.3), suggesting
that exploring the entire set Θ̄ is unnecessary, as focusing
on low-loss quantizers is sufficient to estimate rnQ.

We thus propose estimating using quantized models derived
from the training trajectory of θ̂n. Since θ̂n is optimized
to minimize ℓ, the quantizers with the lowest loss likely
reside near this trajectory. This justifies our focus on the
training trajectory, which efficiently captures critical quan-
tizers. The complete procedure is outlined in Algorithm 1.

4
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We propose an implementation of Algorithm 1 as a wrapper
of Pytorch Lightning’s “LightningModule” class (Falcon &
The PyTorch Lightning team, 2019), as well as the code to
replicate all experiments.1

Algorithm 1 Estimation of rnQ
1: Input: A training dataset Dn, a validation dataset Dval,

a learning algorithm A, a quantizer Q, an initialized
model θ, a number of epochs K.

2: Output: An estimate of rnQ.
3: Initialization: Set the list of all quantized loss Lval =
{}, of all average quantized losses mval = {}, and of
all variances σ2

val = {}.
4: for k = 1 to K do
5: θ ← A(θ,Dn).
6: θ̄ ← Q(θ).
7: Lk ← {ℓ(θ̄, z) : z ∈ Dval}.
8: mk ← 1

|Dval|
∑

z∈Dval
ℓ(θ̄, z).

9: Lval[k]← Lk.
10: end for
11: idx← argsort(mval).
12: mval ← mval[idx].
13: Lval ← Lval[idx].
14: for k = 2 to K do
15: σ2

val[k]← Var (Lval[k]− Lval[1]).
16: end for

17: rQ ← 1
2

[
max

2≤k≤K

(
σ2

val[k]×
(
mval[2]−mval[1]
mval[k]−mval[1]

)2)]−1

.

18: return rnQ = rQ (mval[2]−mval[1])
2.

4.2. Baseline estimation of the MIS

Inferring membership of z̃ by an MIA can naturally be
considered as a statistical test,{

H0 : “z̃ belongs to the training dataset”.
H1 : “z̃ does not belong to the training dataset”.

Under the mathematical setting presented in Appendix A.1,
these hypotheses can be apprehended as deciding whether
θ̂n is independent or not to z̃. Specifically, testing H0 against
H1 is equivalent to testing H ′

0 against H ′
1, where{

H ′
0 : (θ̂n, z̃) ∼ P(θ̂n,z1).

H ′
1 : (θ̂n, z̃) ∼ Pθ̂n ⊗ P.

(5)

For any dominating measure ζ on P(θ̂n,z1) (and Pθ̂n ⊗ P ),
denoting by f (resp. g) the density of P(θ̂n,z1) (resp.
Pθ̂n ⊗ P ) with respect to ζ, we have that ϕ∗(θ, z) =

1https://anonymous.4open.science/r/Mol_
Downstream-B3DB/README.md

1

{
f(θ,z)
g(θ,z) ≥ 1

}
satisfies:

sup
ϕ

Accn(ϕ;P,A) = Accn(ϕ∗;P,A). (6)

The function ϕ∗ is the Neyman-Pearson test for H ′
0 against

H ′
1. This suggests that evaluating empirically the MIS of

an algorithm amounts down to training a discriminator, and
evaluate it. The baseline approach therefore consists in train-
ing a binary classifier gψ : Θ× Rd × R→ [0, 1] to distin-
guish between samples z sampled from the training set of a
given θ̂n and sampled from the product distribution Pθ̂n⊗P ,
and evaluate its accuracy. For a sample z = (x, y) ∼ P ,
where x ∈ Rd is the input and y its corresponding label,
and a model θ̂n, the discriminator minimizes the binary
cross-entropy loss:

ℓDISC(θ̂n, z) = BinaryCE
(
gψ(θ̂n, x, y),1z∈Dtrain(θ̂n)

)
,

where Dtrain(θ̂n) is the training set of θ̂n.

The discriminator is implemented as a feed-forward neural
network that takes as input: x the input data, the flattened
parameters of θ̂n and the loss of the model θ̂n on x, y. For
instance, if the model θ̂n is a binary classifier, gψ is a neural
network with input x ∈ Rd, θ̂n and the binary cross-entropy
loss of θ̂n on (x, y).

We train the discriminator using a set of models,
{θ̂ni}i∈{1,...,krun} where each θ̂ni is trained on an indepen-
dent dataset {zi,1, . . . , zi,n} ∼ P of n i.i.d. samples. To
generate negative samples, we independently sample addi-
tional sets, zneg

i,1 , . . . , z
neg
i,n ∼ P , ensuring no overlap with the

training sets of any models, or between the negative samples
of different models. This independence between datasets
is critical for preventing information leakage but may be
restrictive in practice due to high data requirements.

A key drawback of this approach arises when θ̂n contains
multiple layers. Different permutations of the weights of
the hidden units can represent identical models, but the
discriminator gψ, which relies on flattened parameters, is
not invariant to such permutations.

5. Numerical Experiments
As we focus solely on ranking quantization procedures (The-
orem 3.3 being asymptotic and potentially containing irrel-
evant constants), we omit specific rnQ values in the figures
for clarity and readability.

5.1. Synthetic experiments

To confirm that our estimation of rnQ enables the ranking of
quantization methods according to their level of privacy, we
compare this ranking to the one obtained using the baseline

5
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Figure 1: Stability of Privacy rankings. To obtain reliable estimates of rnQ, we average its value over multiple runs krun
(number of classifiers trained). The central plot illustrates how the rankings of quantizers, based on rnQ, evolve with the
number of runs. Each column of pie charts represents the proportion of quantizers predicted at each rank (across 100
different subsets of krun runs) with connecting lines showing shifts in predicted rankings. As the number of runs increases,
the rankings stabilize, and when averaged over 50 runs, each quantizer is ranked at its final position 90% of the time (except
for the 2 bits and 1.58b 33% quantizers). The top figure shows the evolution of the average Spearman correlation
between rnQ (resp. the baseline’s estimation of the MIS) when evaluated over krun ≤ 100 and krun = 300. The confusion
matrices on the right compare rankings estimated using 300 runs to those obtained with 20 and 50 runs.

rn

sp=0.83

kmodes = 6
sp=0.90

kmodes = 8
sp=0.93  = 1.5

kmodes = 16

rn

sp=0.98 sp=0.93 sp=0.83  = 2

0.50 0.75
MIS

rn

sp=0.86

0.50 0.75
MIS

sp=0.86

0.50 0.75
MIS

sp=0.62  = 3

Figure 2: Relationship between rnQ and the MIS. Each
sub-plot displays the estimated values of rnQ and the MIS for
each quantizer under varying experimental configurations,
with their corresponding Spearman correlation (ρsp). The
strong correlations confirm that our method enables the
comparison of different quantization techniques’ security.

estimation of the MIS. To perform this comparison, we rely
on synthetic experiments, where we can train and evaluate
a large number of classifiers, and ensure the independence
between each classifier’s training set to train gψ .

5.1.1. EXPERIMENTAL SETUP

Datasets. We generate data points sampled from R128

using kmodes ∈ {6, 8, 16} isotropic Gaussian distributions
with standard deviation σ ∈ {1.5, 2, 3}, where each cluster
is assigned a label in {0, 1}.

Classifiers. As mentioned above, the baseline estimation
method is limited to models consisting of a single layer.
Consequently, all classifiers in our experiments are single-
layer fully connected networks. To increase the expressivity
of these networks, the input features are augmented with x2

(element-wise squared features). Each classifier is trained
on n = 128 samples for 3000 epochs using the Adam
optimizer with a learning rate of 10−4. To evaluate our
approach, we train krun = 300 classifiers (θ) on each distri-
bution, with each run involving new i.i.d. samples, and we
investigate in Figure 1 the impact of krun on our evaluation
of the quantizers’ privacy.

Quantization. For our experiments, we consider a range
of different quantization methods, including: 1bit quanti-
zation by taking the sign of the weights (Sign), 1.58 bits

6
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quantization with different sparsity levels (1.58b {x}%
where x% of the weights with the smallest magnitude are
set to zero, and the rest to their sign), and quantization on 2,
3, 4, and 5 bits. A detailed description of the quantization
methods is provided in Appendix D.

5.1.2. VALIDATION OF THE APPROACH

Estimation of the privacy guarantees. Figure 2 illus-
trates the correlation between our proposed metric rnQ and
the MIS baseline. We observe that our metric effectively
quantifies the privacy of quantized models: higher values
correspond to greater MIS. We report the Spearman corre-
lation between both metrics (the correlation between the
rankings induced by both metrics), and as expected, quan-
tizers with more bits of information, such as 5 bits and 4
bits, are the least private across all datasets. In contrast,
the 1.58b 90% quantizer, which introduces 90% sparsity
by setting weights to zero, achieves the highest privacy. In-
terestingly, the Sign method, which quantizes weights to 1
bit, is less private than the 1.58b 33% quantizer, despite
using fewer bits. This behavior aligns with observations
from the baseline method, suggesting that sparsity plays
a more significant role in privacy than the number of bits
alone. Overall, the rankings produced by rnQ closely match
those of the baseline method, with an average Spearman
correlation of ρsp = 0.86, demonstrating that rnQ reliably
ranks quantization methods by their privacy levels.

Quantizer ranking stability. While our experiments com-
pute rnQ by averaging over 300 runs, such extensive com-
putation may be impractical for real-world deployment due
to resource constraints. Figure 1 shows how the stability
of rnQ-based rankings improves as the number of runs in-
creases. Critically, the ranking of the most and least private
quantizers stabilizes early: after just 20 runs, the 5 bits
quantizer is consistently ranked least private, followed by 4
bits and 3 bits, while 1.58b 90% (highest sparsity)
remains the most private, followed by 1.58b 50%.

Computational cost. All experiments were conducted on
NVIDIA A6000 GPUs with 48GB of memory. The esti-
mation of rnQ introduces a small computational overhead
during model training, as it requires computing the quan-
tized model’s loss at each validation step, often for multiple
quantization processes, adding approximately 1s to the train-
ing time of one θ̂n (4m total). In contrast, the baseline MIS
estimation requires training multiple classifiers (θ̂n) to train
the discriminator gψ, which can also be sensitive to the hy-
perparameter choice, resulting in significant computational
and data demands. The top figure of Figure 1 shows that
the rankings obtained with the rnQ-based approach stabilizes
close to the final ranking after only 20 runs, as demonstrated
with Spearman correlations over 0.95, while the MIS’s base-

line estimation does not reach this threshold until 150 runs.
As a result, ranking quantizers using rnQ (≈1h) is signifi-
cantly faster than using the baseline MIS method (≈10h).

5.2. Experiments on molecular datasets

5.2.1. EXPERIMENTAL SETUP

In our second experimental setting, we analyze a real-world
application: molecular modeling. In the field of drug dis-
covery, data is an invaluable and highly sensitive asset, and
determining whether predictive models might inadvertently
leak proprietary data is therefore highly valuable.

Pretrained Embedders. To generate one-dimensional
molecular embeddings, we evaluate four pretrained mod-
els from the representation learning literature: Graph-
MVP (Liu et al., 2022a) and 3D-Infomax (Stärk et al., 2021)
(3D-2D mutual information maximization), MolR (Wang
et al., 2022) (reaction-aware pretraining), and ChemBERTa-
MTR (Ahmad et al., 2022) (multitask regression with
SMILES tokenization). The embeddings are passed to small
feed-forward networks for downstream tasks, and we quan-
tify the privacy impact of each embedder in Appendix F.

Downstream tasks. We evaluate and train the models on
various property prediction tasks from the Therapeutic Data
Commons (TDC) platform (Huang et al., 2021), focusing on
ADMET properties (Absorption, Distribution, Metabolism,
Excretion, and Toxicity). These tasks encompass both bi-
nary classification and regression problems with datasets of
varying sizes and complexities. For classification tasks, we
report the AUC-ROC scores, and for regression tasks, we
report R2 scores (coefficient of determination). For both
metrics, higher values indicate better performance, with 1
being the maximum value for both metrics. For the regres-
sion tasks, the R2 score can be negative, indicating that the
model performs worse than a simple mean prediction.

Task models. For each downstream task, we train fully
connected networks (two layers, hidden dimension 128) for
500 epochs. To ensure robust estimation of rnQ, we allocate
40% of the dataset to the validation set. Each experiment is
repeated 10 times, with 90% of the training set randomly
subsampled in each run to ensure different training trajec-
tories are used. We quantify the impact of quantization
on performance measuring the relative performance of the
quantized model to the original: for a metric m (AUROC
or R2): rval

m = mval
quantized/m

val
original. Full results, including

performance-privacy trade-offs grouped by embedders, are
available in Appendix F.
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Figure 3: Impact of quantization on classification tasks. Evolution of the privacy of each downstream model rnQ along
with relative performances of the quantized models compared to the original on classification task.
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Figure 4: Impact of quantization on regression tasks.
Evolution of the privacy of each downstream model rnQ
along with relative performances of the quantized models
compared to the original on regression task.

5.2.2. PRIVACY-PERFORMANCE TRADE-OFF

Classification tasks. Figure 3 illustrates the trade-off
between privacy (rnQ) and relative performance (rval

AUROC)
for classification tasks. We identify two regimes: (1) for
high values of rnQ, the quantized models achieve high pri-
vacy (e.g., 1.58b 90%), but the performances are signif-
icantly lower than the original models (rval

AUROC ≈ 90%),
in particular on ClinTox (Gayvert et al., 2016) (toxicity
prediction) and PAMPA NCATS (Siramshetty et al., 2021)
(membrane permeability) where rval

AUROC goes down to 80%.
(2) Low-privacy quantizers (2 - 5 bits) preserve near-
original performance but are consistently ranked least pri-
vate. Across almost all datasets, the 1.58b 90% quantizer
appears to be the most secure, while obtaining better per-
formance than other sparse quantizers, notably on ClinTox,
Carcinogens Lagunin (Lagunin et al., 2009), and CYP2C9
substrate classification (Carbon-Mangels & Hutter, 2011).

Regression tasks. For regression tasks (see Figure 4),
quantization introduces a stark privacy-performance imbal-
ance. Unlike classification, even moderately aggressive
quantization (e.g., 2 bits) results in negative R2 scores,
indicating worse-than-baseline predictions (even though the
direct predictions are not accurate, we show in the subsec-
tion F.1 the ordering of the predictions is preserved). Only
non-private quantizers (4 - 5 bits) achieve R2 scores
comparable to original models. This disparity arises be-
cause regression requires precise weight values to estimate
continuous targets, whereas classification relies on decision
boundaries that are more robust to quantization. Conse-
quently, regression tasks lack a viable privacy-performance
trade-off: quantizers either degrade performance catastroph-
ically or retain performance at the cost of privacy. This
underscores the need for novel quantization strategies tai-
lored to regression.

6. Discussions and Limitations
In this work, we investigated the privacy of quantization
procedures for machine learning models, particularly their
vulnerability to data leakage. We established a theoreti-
cal foundation by proving that, for both fixed and adaptive
model-quantization procedures, the Membership Inference
Security (MIS) of the learning algorithm is asymptotically
determined by the distribution of the quantized models’ loss
per sample. We introduced a methodology for comparing
quantization procedures in terms of privacy, with limited
computational cost. Through extensive experiments on both
synthetic and real-world datasets, we validated the effective-
ness of our approach and explored the privacy-performance
trade-offs of quantization in molecular property prediction,
highlighting the practical implications of our findings.

Our study has some limitations. Since our analysis focuses
on evaluating a training procedure rather than individual
trained models, it does not directly predict the security of a
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specific trained model. Additionally, due to computational
constraints, we concentrated on Post-Training Quantization
(PTQ) and did not examine Quantization-Aware Training
(QAT), which presents a potential direction for future re-
search. Specifically, we aim to explore QAT, where rnQ
could be jointly optimized with the loss function.
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7. Impact Statement
Our work focuses on the evaluation of the privacy of quan-
tization procedures, which could help secure these mod-
els, thereby making it possible to share them more broadly
while mitigating privacy risks for users and data contribu-
tors. More generally, this paper presents work whose goal is
to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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Araujo, A. and Giné, E. The central limit theorem for real
and banach valued random variables. (No Title), 1980.

Aubinais, E., Gassiat, E., and Piantanida, P. Fundamen-
tal limits of membership inference attacks on machine
learning models. arXiv preprint arXiv:2310.13786, 2023.

Balaskas, K., Karatzas, A., Sad, C., Siozios, K., Anagnos-
topoulos, I., Zervakis, G., and Henkel, J. Hardware-aware
dnn compression via diverse pruning and mixed-precision
quantization. IEEE Transactions on Emerging Topics in
Computing, 12(4):1079–1092, 2024.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scalable
methods for 8-bit training of neural networks. Advances
in neural information processing systems, 31, 2018.
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A. Additional Assumptions and Notations
A.1. Mathematical Setting

We give here the mathematical setting for the theoretical results of section 3 and section 4 to hold. Specifically, we use the
mathematical setting of (Aubinais et al., 2023). We redefine an MIA as follows.

Definition A.1 (MIA). Any measurable map ϕ : Θ×Z → {0, 1} is considered to be a Membership Inference Attack.

Here we have encoded member by 1. We define a test point z̃ as follows. Let T ∈ {0, 1} be a Bernoulli random variable
with parameter 1/2. Let z0 ∼ P and U be a random variable whose distribution is P̂n conditionally to the training dataset
Dn, where T, z0 and U are independent. Additionally, z0 and T are independent of Dn. We define the test point by,

z̃ := TU + (1− T )z0. (7)

This definition is a formalization of the fact that a test point is either a member of the training dataset (T = 1) or not a
member (T = 0). The random variable z0 is used as a placeholder to represent the non-member property of the test point.
With this framework, the following relation holds,

Theorem A.2 ((Aubinais et al., 2023)). For any distribution P and any algorithm A, we have

MISn(P,A) = 1− ∥P(θ̂n,z1)
− Pθ̂n ⊗ P∥TV, (8)

where ∥ν1 − ν2∥TV is the total variation distance between the distributions ν1 and ν2.

A.2. Fixed Quantizer

We denote by Lk,j := ℓ(θ̄k, zj)− ℓ(θ̄1, zj) the random loss gap between θ̄k and θ̄1 evaluated on zj , whose expectation is
δk := E [Lk,j ]. We additionally denote by D := diag

(
(δk)k>1

)
the diagonal loss gaps matrix. We give the additional

hypotheses for Theorem 3.1.

• H1.1. We have E
[
e<t,D

−1[Lk,1−δk]k>1
>
]
<∞ for all t in a neighborhood of 0 ∈ RK−1.

• H1.2. The minimal loss gap satisfies δ2 > 0.

A sufficient (albeit non-necessary) condition for H1.1 to hold is that the loss function l is bounded. Specifically, the hypothesis
H1.1 is sufficient for the constant of Theorem 3.1 to be strictly positive. If for all t ̸= 0 we have E

[
e<t,D

−1[Lk,1−δk]k>1
>
]
=

∞, then the theorem becomes trivial as we would have C1
P = 0. The hypothesis H1.2 implies that the loss gaps matrix D is

invertible.

A.3. Size-Adaptive Quantizers

We give here additional notations and hypotheses for Theorem 3.3. Let Θ̄n := {θ̄n1 , · · · , θ̄nKn
} be the image of the

Size-Adaptive Quantizer Qn, where Kn may or may not depend on n. Based on the assumptions given in Theorem 3.3,
assume without loss of generality that for all n ∈ N, mθ̄n1

< · · · < mθ̄nKn
. We recall that the loss gaps are defined

as δnk = mθ̄nk
− mθ̄n1

and the loss variabilities as (σnk )
2 := Var

(
Lnk,1

)
where Lnk,j := ℓ(θ̄nk , zj) − ℓ(θ̄n1 , zj). We set

Dn := diag
(
(δnk )k>1

)
. We will use the following hypotheses

• H2.1. The limits σ2
k = lim

n→∞
Var(Lnk,1) and ck = lim

n→∞
δn2
δnk

exist.

• H2.2. We have sup
n

E
[
exp

(
t

∥∥∥∥( δn2δnk Lnk,1)1<k≤Kn

∥∥∥∥
2

)]
<∞, for all t > 0.

• H2.3. There exists K <∞ such that for all k > K, c2kσ
2
k = 0.

13
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• H2.4. The sequence of random variables
((

δn2
δnk
Lnk,1

)
1<k≤Kn

)
n

is tight when canonically seen as a sequence in l2(R).

By definition, for all k, we have δn2 /δ
n
k ∈ [0, 1]. If the loss function ℓ is bounded, then the loss variabilities (σnk )

2 are
bounded as well. The hypothesis H2.1 is then only a light hypothesis.

A sufficient condition for H2.3 to hold is that there exists (asymptotically) finitely many global minima of the function
l. Indeed, if there exists (asymptotically) finitely many global minima of the function ℓ, say K, this means that for all
k > K, we have δnk ̸→

n→∞
0, whereas δn2 →

n→∞
0 resulting in ck = 0 and H2.3. The value K − 1 corresponds to the intrisic

dimension of the asymptotic random variables ((δn2 /δ
n
k )L

n
k,1)1<k≤Kn

.

The hypotheses presented in Theorem 3.3, i.e.
√
nδn2 →

n→∞
∞ and δn2 →

n→∞
0, ensure that the loss gaps matrix Dn is

invertible.

B. Preliminary Results
We give here preliminary results for the proof of the main theorem.

Lemma B.1. Let K ≥ 2, a, b ∈ (0, 1). Let P and Q be two distributions over {1, . . . ,K} satisfying P (1) = 1 − a and
Q(1) = 1− b. Then, we have

|a− b| ≤ ∥P −Q∥TV ≤
|a− b|+ a+ b

2
.

Lemma B.2. Let M be a J × J square matrix and j ∈ {1, . . . , J}. Assume that M−j,−j and
Mj,j −Mj,−j [M−j,−j ]

−1
M−j,j are invertible, where M−j,−j is the sub-matrix of M consisting of all entries except

the jth row and column and M−j,j is the jth column of M except its jth entry. Then we have

(
M−1

)
j,j

=
(
Mj,j −Mj,−j [M−j,−j ]

−1
M−j,j

)−1

Proof of Lemma B.1. By definition, we have

∥P −Q∥TV =
1

2

K∑
j=1

|pj − qj |

=
1

2
|a− b|+ 1

2

K∑
j=2

|pj − qj |.

By construction, we have
∑K
j=2 pj = a and

∑K
j=2 qj = b. It is easy to see check that

min

K∑
j=2

|pj − qj | = |a− b|,

max

K∑
j=2

|pj − qj | = a+ b,

where the minimum and the maximum are taken over all distributions satisfying the condition over p1 and q1, which
concludes the proof.

14
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Proof of Lemma B.2. First note that if M is designed by block as follows,

M =

(
A B
C D

)
,

then we have

M−1 =

((
A−BD−1C

)−1 ∗
∗ ∗

)
, (9)

as long as C and A−BD−1C are invertible. Let Pj and Qj be J × J matrices defined for all j such that PjM permutes
the first and the jth rows of M , and QjM permutes the (j − 1)th and the jth rows of M . For instance, if J = 4 and j = 3
then we have

P3 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , Q3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Note that we have (Pj)
−1 = Pj and (Qj)

−1 = Qj . Let R = Q3Q4 · · ·QjPjMPjQj · · ·Q4Q3. Developing the formula,
we get

R =

(
Mj,j Mj,−j
M−j,j M−j,−j

)
. (10)

On one hand, using Equation 9 and Equation 10, we have R−1 =

((
Mj,j −Mj,−j [M−j,−j ]

−1
M−j,j

)−1

⋆

⋆ ⋆

)
. On the

other hand, distributing the inverse operator on the product of matrices and using again Equation 9, we have

R−1 = Q3Q4 · · ·QjPjM
−1PjQj · · ·Q4Q3

=

((
M−1

)
j,j

⋆

⋆ ⋆

)
,

which concludes the proof.

C. Main Theorems
This section is dedicated to the proof of the following theorems. Let denote by ∆n (P,AQ) := 1−MISn(P,AQ) the quantity
of interest for which Theorem 3.1 and Theorem 3.3 give asymptotic results. From Equation 8, we restate Theorem 3.1 and
Theorem 3.3 as follows.

Theorem C.1 (Theorem 3.1). Let Q be a fixed quantizer. We assume H1.1 and H1.2. Then, we have

lim
n→∞

1

n
log ∆n(P,AQ) ≤ − inf

x∈Ωc
K−1

sup
t∈RK−1

[
< t, x > − log E

[
e<t,D

−1[Lk,j−δk]k>1
>
]]

< 0, (11)

where ΩK−1 = [−1,∞)K−1.
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Theorem C.2 (Theorem 3.3). Let Qn be a Size-Adaptive quantizer. We assume H2.1, H2.2, H2.3 and H2.4. Assuming that
lim
n→∞

δn2 = 0 and lim
n→∞

√
nδn2 =∞, we have

lim
n→∞

1

n (δn2 )
2 log ∆n(P,AQn) ≤ −1/2σ2. (12)

We start by giving the proof of Theorem C.2 before Theorem C.1.

C.1. Proof of Theorem C.2

The proof of Theorem C.2 is immediate from Propositions C.3 and C.4 given below.

Proposition C.3. In the context of Theorem C.2, we have

lim
n→∞

1

n (δn2 )
2 log∆n(P,AQn

) ≤ − inf
x∈Ωc

xTΛ+x

2
, (13)

where Λ is defined as

Λ :=

 σ2
2,2c

2
2 · · · σ2

2,Jc2cK
...

. . .
...

σ2
K,2cKc2 · · · σ2

K,Kc2K

 ,

where σ2
k,l = lim

n→∞
Cov(Lnk,1, L

n
l,1). The matrix Λ+ is the Moore-Penrose pseudo-inverse Λ. Note that we have σ2

k,k = σ2
k.

The set Ω is given by Ω := [−1,∞)K−1.

Proposition C.4. In the context of Proposition C.3, we have

inf
x∈Ωc

xTΛ+x

2
= 1/2σ2. (14)

Proof of Proposition C.3. Recall that θ̂n ∼ AQn (z1, · · · , zn). Note that from Equation 8 we have

∆n(P,AQn
) = E

[
∥L
(
θ̂n

)
− L

(
θ̂n | z1

)
∥TV

]
, (15)

where L(X) is the probability law of X , and the expectation is taken over z1. Letting Znk = P
(
θ̂n = θ̄nk | z1

)
and

pnk = P
(
θ̂n = θ̄nk

)
, we have

∆n(P,AQn
) =

1

2

Kn∑
k=1

E [|pnk − Znk |]

≤ E [|pn1 − Zn1 |] + 2− E [pn1 + Zn1 ]

2

=
E [|pn1 − Zn1 |] + 2 (1− pn1 )

2

≤ 2 (1− pn1 ) + 2 (1− pn1 )

2
= 2 (1− pn1 ) ,

16



Membership Inference Risks in Quantized Models: A Theoretical and Empirical Study

where the first inequality comes from Lemma B.1. By construction, AQn
minimizes the empirical loss. Letting ΩK−1 =

[−1,∞)K−1, we then have

pn1 = P

1 = argmin
k

 1

n

n∑
j=1

ℓ
(
θ̄nk , zj

)


= P

∀k > 1,
1

n

n∑
j=1

[
ℓ
(
θ̄nk , zj

)
− ℓ

(
θ̄n1 , zj

)]
≥ 0


= P

∀k > 1,
1

n

n∑
j=1

[
Lnk,j − δnk

]
≥ −δnk


= P

 1

n

n∑
j=1

[
Lnk,j − δnk

]
k>1
∈ DnΩK−1

 (16)

= P

 1

nδn2

n∑
j=1

[
(δn2 )

−1
Dn
]−1 [

Lnk,j − δnk
]
k>1
∈ ΩK−1

 ,

which gives

1− pn1 = P

 1

nδn2

n∑
j=1

[
(δn2 )

−1
Dn
]−1 [

Lnk,j − δnk
]
k>1
∈ ΩcK−1

 .

By H2.3,
[
(δn2 )

−1
Dn
]−1 [

Lnk,j − δnk

]
k>1

lives (asymptotically) in a (K − 1)-dimensional euclidean sub-

space. By H2.2 and H2.4, as we live in an Hilbert space, using (Araujo & Giné, 1980), we have

L
(

1√
n

∑n
j=1

[
(δn2 )

−1
Dn
]−1 [

Lnk,j − δnk

]
k>1

)
→

n→∞
γ := NK−1 (0,Λ), where NK−1 is the (K − 1)-dimensional

Gaussian distribution. Now, using the fact that E
[
Lnk,j

]
= δnk , H2.2, H2.4 and convergence to a Gaussian measure, using

Theorem 2.2 of (De Acosta, 1992), we get

lim
n→∞

1

n (δn2 )
2 log (1− pn1 ) = − inf

x∈Ωc
K−1

{
xTΛ+x

2 , if x ∈ Hγ

∞ , otherwise

= − inf
x∈Ωc

xTΛ+x

2
,

where Hγ is the Hilbert space associated with γ (see (De Acosta, 1992)). Hence the result.

Proof of Proposition C.4. Let M = Λ+. Note that Ωc = {x ∈ RK−1 : ∃j, xj < −1}, giving

inf
x∈Ωc

xTMx = min
j

inf
x−j∈RK−1

inf
xj<−1

xTMx,

where we write x−j equals x where we omit its jth entry. We then shall write

xTMx = x2
jMj,j + 2xjx

T
−jM−j,j + xT−jM−j,−jx−j .

17
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The infimum must be reached on the frontier of the set, i.e. such that xj = −1 for some j. Indeed assuming x in the interior
of Ωc, we have that xj > −1 for some j. Then for any 1 < α < |xj |, xj/α < −1 meaning that x/α still belongs to the
interior of Ωc. However, (x/α)TM(x/α) = 1

α2x
TMx < xTMx, which shows that x was not optimal. For an optimal x,

we then have

xTMx = Mj,j − 2xT−jM−j,j + xT−jM−j,−jx−j .

It is then sufficient to study the optimization problem over x−j , which amounts down to the optimization of a quadratic
function, whose minimum is then reached for x−j satisfying

∇x−j

(
−2xT−jM−j,j + xT−jM−j,−jx−j

)
= 0

⇐⇒ x−j = (M−j,−j)
−1

M−j,j ,

giving

inf
x−j∈RJ−1

inf
xj<−1

xTMx = Mj,j −Mj,−j (M−j,−j)
−1

M−j,j .

Applying Lemma B.2 concludes the proof.

C.2. Proof of Theorem C.1

We give here the proof of Theorem C.1.

Proof of Theorem C.1. Following the same steps of the proof of Theorem C.2 up to Equation 16, we have by removing the
superscripts n where needed,

p1 = P

 1

n

n∑
j=1

[Lk,j − δk]k>1 ∈ DΩK−1


= P

 1

n

n∑
j=1

D−1 [Lk,j − δk]k>1 ∈ ΩK−1

 ,

giving

1− p1 = P

 1

n

n∑
j=1

D−1 [Lk,j − δk]k>1 ∈ ΩcK−1

 .

From H1.1 , the result follows immediately using Corollary 6.1.6 of (Dembo, 2009).

D. Quantizations
In this section, we provide additional details on the quantization procedures used in our experiments. Table 1 summarizes
the quantizers used in the experiments, and Figure 5 illustrates how the different functions used quantize the interval [−1, 1].
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Figure 5: Illustration of the quantization functions used on the interval [−1, 1].

Table 1: Description of the quantizers used in the experiments.

quantizer Q(θj)

Sign Q(θj) = θj
|θj |

1.58b 33% Q(θj) =

{
θj
|θj | , if |θj | < q(|θ|, 0.33)
0, otherwise

1.58b 50% Q(θj) =

{
θj
|θj | , if |θj | < q(|θ|, 0.5)
0, otherwise

1.58b 90% Q(θj) =

{
θj
|θj | , if |θj | < q(|θ|, 0.9)
0, otherwise

2 bits Q(θj) = θj
|θj |

α
2 × int

(
1 + clip( 2θjα , 0, 2)

)
, α = 2round(log2(max |θ|))

3 bit Q(θj) = θj
|θj |

α
4 × int

(
1 + clip( 4θjα , 0, 4)

)
, α = 2round(log2(max |θ|))

4 bits Q(θj) = θj
|θj |

α
8 × int

(
1 + clip( 8θjα , 0, 8)

)
, α = 2round(log2(max |θ|))

5 bits Q(θj) = θj
|θj |

α
16 × int

(
1 + clip( 16θjα , 0, 16)

)
, α = 2round(log2(max |θ|))
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E. Synthetic experiments
E.1. Trade-off between privacy and performance
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Figure 6: Evolution of rnQ with the quantized model’s performance
as the ratio of the original model’s training accuracy (line) for
various quantizers in our synthetic setup.

In this section, we provide additional details on the
synthetic experiments conducted to evaluate the trade-
off between privacy and performance of quantized
models. This trade-off is illustrated in Figure 6, where
we plot the evolution of the quantification certificate
rnQ with the model’s performance as the ratio of the
original model’s training accuracy. We find that the
trade-off between privacy and performance is less pro-
nounced compared to the real-world experiments. In
particular, while the least private quantizers do pre-
serve most of the original performance, the more pri-
vate quantizers seem to achieve similar performances
on some data distribution (in particular, when σ = 3).
This could be explained by the low performances of
the trained models on such distribtuions as illustrated
in Table 2. Furthermore, simple mixture of Gaus-
sians might not be relevant to capture the complexity
of real-world data distributions, and we therefore de-
cided to focus our analysis of the performance-privacy
trade-off on real-world applications.

E.2. Stability and Computational Complexity

As explained in subsection 4.2, the baseline approach
consists in training a discriminator to distinguish be-
tween samples from the training set of a given θ̂n and
samples from the product distribution Pθ̂n ⊗ P . Sim-
ilarly the rnQ-based approach relies on the traing of
multiple models to average the values of rnQ obtained.

The computational overhead induced by the rnQ-based
approach, namely computing the validation loss of the quantized models, is negligible compared to the total training time
(1s against 4m). Similarly, the training of the discriminator takes only about 40m.

As a result, training multiple models θ̂n over multiple runs is the computational bottleneck of our privacy evaluations. To

Table 2: Description of the quantizers used in the synthetic experiments.
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σ nmodes

1.5
6 0.954 (95%) 0.980 (98%) 0.981 (98%) 0.986 (99%) 0.938 (94%) 0.993 (99%) 0.995 (99%) 0.995 (100%) 0.996 (100%)

8 0.904 (92%) 0.946 (96%) 0.953 (97%) 0.958 (97%) 0.897 (91%) 0.973 (99%) 0.978 (99%) 0.980 (99%) 0.981 (100%)

16 0.825 (89%) 0.870 (94%) 0.878 (94%) 0.889 (96%) 0.805 (87%) 0.912 (98%) 0.920 (99%) 0.923 (99%) 0.925 (100%)

2
6 0.822 (86%) 0.876 (92%) 0.892 (93%) 0.894 (94%) 0.890 (93%) 0.928 (97%) 0.941 (99%) 0.945 (99%) 0.950 (100%)

8 0.760 (84%) 0.811 (90%) 0.833 (92%) 0.831 (92%) 0.833 (92%) 0.869 (96%) 0.885 (98%) 0.892 (99%) 0.897 (100%)

16 0.681 (85%) 0.724 (90%) 0.737 (92%) 0.741 (92%) 0.729 (91%) 0.772 (96%) 0.787 (98%) 0.793 (99%) 0.798 (100%)

3
6 0.625 (81%) 0.662 (86%) 0.681 (88%) 0.684 (89%) 0.779 (101%) 0.724 (94%) 0.746 (97%) 0.757 (98%) 0.767 (100%)

8 0.595 (84%) 0.622 (88%) 0.639 (90%) 0.636 (90%) 0.716 (101%) 0.670 (94%) 0.689 (97%) 0.697 (98%) 0.706 (100%)

16 0.555 (88%) 0.575 (91%) 0.585 (93%) 0.581 (92%) 0.635 (101%) 0.604 (96%) 0.616 (98%) 0.622 (99%) 0.628 (100%)
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(a) Baseline MIS
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(b) rnQ

Figure 7: Correlation between the rankings obtained with the baseline MIS method (resp. rnQ) at a given number of run,
with the ranking obtained with the baseline MIS method (resp. rnQ) at 300 runs.

properly evaluate the time required to obtain both rankings, one would have to answer the following question: ’How many
runs do i need to launch to ensure the ranking I obtained is stable?’

Figure 7 shows how after 15 runs, the rankings obtained with rnQ are already highly correlated with the rankings obtained
with 300 runs, while the rankings obtained with the baseline MIS method require 150 runs to reach the same level of
correlation. As a result, the time required to obtain stable rankings with rnQ is significantly lower (≈ 1h) than with the
baseline MIS method (≈ 10h).

E.3. Visualization of the datasets

We provide in Figure 8 a visualization of the synthetic datasets used in the experiments, through a PCA projection in
dimension 2. This visualization helps understand how different data distribution might result in different empirical results,
as some datasets are more challenging than others, such as the dataset with ncluster = 6 and σ = 1.5, for whom the labels of
the datapoints are easily separable, while ncluster = 16 and σ = 3 provides a more challenging dataset, with overlapping
clusters.
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(a) ncluster = 6, σ = 1.5 (b) ncluster = 6, σ = 2 (c) ncluster = 6, σ = 3

(d) ncluster = 8, σ = 1.5 (e) ncluster = 8, σ = 2 (f) ncluster = 8, σ = 3

(g) ncluster = 16, σ = 1.5 (h) ncluster = 16, σ = 2 (i) ncluster = 16, σ = 3

Figure 8: Visualization of the synthetic datasets used in the experiments, through a PCA projection in dimension 2 (the
original space is R128).

F. Molecular experiments
F.1. Comprehensive results

We show in Table 3 and Table 4 the comprehensive results of the quantized models on the classification and regression tasks,
respectively.

We observe that while the quantized models are generally less accurate than the original models, they still achieve reasonable
performance on the classification tasks. On regression examples, the quantized models’ performances are significantly
lower than the original models. In particular, when the quantization quantizes on less than 4 bits, the prediction of the
molecular properties are almost consistently lower than a simple mean prediction. As explained in subsection 5.2, this result
is expected, as while classification tasks relies on the definition of boundary between classes, regression tasks require a
fine-grained prediction of the target value.

However, while the direct predictions of the quantized models do not provide a good estimate of the target value, the ordering
of the predictions is still preserved, as shown by the Spearman correlation between the quantized models’ predictions and
the labels in Table 5.
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Table 3: AUROC performance of the quantized models on the classification tasks, averaged over all embedders.

Si
gn

1.
58

b
33

%

1.
58

b
50

%

1.
58

b
90

%

2
bi

ts

3
bi

ts

4
bi

ts

5
bi

ts

or
ig

in
al

dataset

AMES 0.773 (89%) 0.781 (90%) 0.784 (90%) 0.748 (86%) 0.843 (97%) 0.853 (98%) 0.859 (99%) 0.861 (99%) 0.862 (100%)

BBB Martins 0.800 (89%) 0.803 (89%) 0.807 (90%) 0.804 (89%) 0.890 (99%) 0.895 (99%) 0.895 (99%) 0.896 (100%) 0.896 (100%)

Bioavailability Ma 0.586 (94%) 0.588 (94%) 0.590 (95%) 0.579 (93%) 0.619 (99%) 0.622 (100%) 0.622 (100%) 0.623 (100%) 0.622 (100%)

CYP2C9 Substrate CarbonMangels 0.558 (86%) 0.557 (86%) 0.561 (86%) 0.589 (90%) 0.642 (99%) 0.646 (99%) 0.647 (99%) 0.647 (99%) 0.648 (100%)

CYP2C9 Veith 0.787 (89%) 0.793 (90%) 0.799 (91%) 0.827 (94%) 0.868 (99%) 0.873 (99%) 0.876 (99%) 0.877 (99%) 0.877 (100%)

Carcinogens Lagunin 0.766 (91%) 0.765 (91%) 0.772 (92%) 0.791 (94%) 0.824 (98%) 0.830 (99%) 0.831 (99%) 0.832 (99%) 0.833 (100%)

ClinTox 0.561 (80%) 0.555 (79%) 0.557 (79%) 0.589 (84%) 0.698 (98%) 0.702 (99%) 0.704 (99%) 0.706 (99%) 0.707 (100%)

DILI 0.827 (92%) 0.830 (93%) 0.831 (93%) 0.843 (94%) 0.888 (99%) 0.891 (99%) 0.892 (99%) 0.892 (99%) 0.892 (100%)

HIA Hou 0.805 (91%) 0.805 (91%) 0.804 (91%) 0.790 (89%) 0.882 (99%) 0.883 (99%) 0.883 (99%) 0.883 (100%) 0.883 (100%)

PAMPA NCATS 0.585 (81%) 0.583 (81%) 0.584 (81%) 0.583 (81%) 0.708 (99%) 0.711 (99%) 0.713 (99%) 0.714 (99%) 0.714 (100%)

Pgp Broccatelli 0.856 (92%) 0.858 (92%) 0.859 (92%) 0.864 (93%) 0.921 (99%) 0.924 (99%) 0.924 (100%) 0.924 (100%) 0.925 (100%)

Skin Reaction 0.664 (89%) 0.667 (89%) 0.668 (90%) 0.670 (90%) 0.735 (99%) 0.740 (99%) 0.741 (99%) 0.742 (99%) 0.743 (100%)

hERG 0.728 (91%) 0.726 (91%) 0.726 (91%) 0.739 (92%) 0.793 (99%) 0.795 (99%) 0.796 (99%) 0.797 (99%) 0.797 (100%)

hERG (k) 0.767 (88%) 0.783 (90%) 0.789 (91%) 0.757 (87%) 0.819 (94%) 0.837 (96%) 0.855 (98%) 0.862 (99%) 0.866 (100%)

Table 4: R2 performance of the quantized models on the regression tasks, averaged over all embedders. If the R2 score is
lesser than −1, we display −inf for clarity.
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Caco2 Wang -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-364%) 0.008 (1%) 0.458 (75%) 0.567 (93%) 0.609 (100%)

HydrationFreeEnergy FreeSolv -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -0.466 (-70%) 0.412 (55%) 0.669 (91%) 0.715 (98%) 0.725 (100%)

LD50 Zhu -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-578%) -0.129 (-25%) 0.339 (67%) 0.454 (89%) 0.505 (100%)

Lipophilicity (az) -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-539%) -0.037 (-7%) 0.404 (72%) 0.508 (91%) 0.552 (100%)

PPBR AZ -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -0.480 (-233%) 0.022 (2%) 0.156 (65%) 0.229 (100%)

Solubility AqSolDB -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-792%) -0.081 (-10%) 0.575 (72%) 0.740 (93%) 0.792 (100%)

VDss Lombardo -inf (-inf%) -inf (-inf%) -inf (-inf%) -inf (-inf%) -0.859 (-287%) -0.010 (6%) 0.175 (73%) 0.224 (91%) 0.248 (100%)

Table 5: Spearman correlations between the labels and the predictions of the quantized models on the regression tasks,
averaged over all embedders.
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Caco2 Wang 0.673 (89%) 0.713 (95%) 0.720 (95%) 0.679 (90%) 0.690 (92%) 0.733 (97%) 0.745 (99%) 0.748 (99%) 0.750 (100%)

HydrationFreeEnergy FreeSolv 0.905 (98%) 0.907 (99%) 0.906 (98%) 0.893 (97%) 0.910 (99%) 0.913 (99%) 0.915 (99%) 0.916 (99%) 0.916 (100%)

LD50 Zhu 0.572 (83%) 0.611 (89%) 0.618 (90%) 0.533 (77%) 0.596 (87%) 0.636 (92%) 0.669 (97%) 0.679 (99%) 0.685 (100%)

Lipophilicity (az) 0.658 (87%) 0.700 (92%) 0.705 (93%) 0.637 (84%) 0.669 (88%) 0.713 (94%) 0.741 (98%) 0.749 (99%) 0.754 (100%)

PPBR AZ 0.561 (98%) 0.563 (98%) 0.564 (99%) 0.555 (97%) 0.565 (99%) 0.568 (99%) 0.569 (99%) 0.570 (99%) 0.570 (100%)

Solubility AqSolDB 0.838 (94%) 0.853 (96%) 0.852 (96%) 0.756 (85%) 0.842 (94%) 0.864 (97%) 0.879 (99%) 0.884 (99%) 0.887 (100%)

VDss Lombardo 0.570 (99%) 0.572 (99%) 0.572 (99%) 0.560 (97%) 0.572 (99%) 0.573 (99%) 0.575 (99%) 0.575 (99%) 0.576 (100%)
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Figure 9: Evolution of the privacy of each downstream model rnQ along with relative performances of the quantized models
compared to the original for each pretrained embedder. As the privacy of the model decreases, the performances of the
quantized model increase, showing the trade-off between security and downstream performance.

F.2. Embedder privacy

Figure 9 shows the evolution of the privacy of each downstream model rnQ along with relative performances of the quantized
models compared to the original for each pretrained embedder. For every pretrained embedder, we see no significative
difference in the quantizers’ privacy ranking, or in the trade-off between security and downstream performance.

F.3. Details on the evaluation of the quantizers’ privacy

Our hypothesis in the estimation of rnQ is that the quantized weights with the lowest average loss dominate the maximum
value of λk = Λk,k = lim

n→∞
(δn2 /δ

n
k )

2
(σnk )

2. We show in Figure 10 the evolution of Λk,k with the k, where the indexes
are sorted with decreasing values of average loss, and the histogram of the index of the maximum value of Λk,k for each
quantizer, on 4 different datasets (trained on 500 epochs, hence k ≤ 500). The maximum value of Λk,k is indeed consistently
reached on low k values, which seems to confirm our hypothesis, validating our sampling strategy for the estimation of rnQ.
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Figure 10: Evolution of Λk,k with the k, where the indexes are sorted with decreasing values of average loss, and the
histogram of the index of the maximum value of Λk,k for each quantizer.
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