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Abstract

Recent advances have demonstrated the possibility of solving the deconvolution prob-
lem without prior knowledge of the noise distribution. In this paper, we study the re-
peated measurements model, where information is derived from multiple measurements
of X perturbed independently by additive errors. Our contributions include establishing
identifiability without any assumption on the noise except for coordinate independence.
We propose an estimator of the density of the signal for which we provide rates of con-
vergence, and prove that it reaches the minimax rate in the case where the support of
the signal is compact. Additionally, we propose a model selection procedure for adaptive
estimation. Numerical simulations demonstrate the effectiveness of our approach even
with limited sample sizes.

1 Introduction

Density deconvolution is one of the classical topics in nonparametric statistics and has gar-
nered significant attention over the past decades. The aim is to identify the density of some
random variable X, the signal, which cannot be observed directly, but is contaminated by
some additive error e, the noise, independent of X. Most of the literature on the deconvo-
lution problem considers the situation where the distribution of the noise is perfectly known,
see [CH88|, [Fan91], [SCI0], [Ste90], for early references, see also the book [Mei09]. However,
knowledge of the noise distribution is unrealistic in practice. In some situations, it is possible
to get a pure noise sample so that the noise distribution may be estimated separately and
plugged into methods that assume the noise distribution known, see [Joh09], [Neu97]. It has
been proved recently [GLCL22] that, under very mild assumptions, it is possible to solve the
deconvolution problem without knowing the noise distribution and with no sample of the noise,
for multivariate signals.

In the present work, we are interested in the case where information can be drawn from
repeated measurements of X, so that the multivariate signal is the repetition of X. This
framework is known as model of repeated measurements. The observations are

Yviyj:Xj'FEi’j N izl,...,p; j:].,...,’n

where the random variables X; and ;;, j = 1,...,p, ¢ = 1,...,n are independently dis-
tributed.

By making substractions of the coordinates of the observations, it is possible to estimate
the noise distribution consistently when it is assumed to be symmetric, and consequently es-
timate the signal density, see [CSS14], [DHMO08] and [KM14]. The symmetry assumption can
be dropped using Kotlarski’s identity [Kot67]. Further works use this identity to propose es-
timation strategies not relying on the symmetry assumption, see [LV98], [CK15] and [KO22].
However, all these works require that the characteristic function of the signal and the charac-
teristic function of the noise vanish nowhere. The identifiability result of [Neu07] relaxes this
non vanishing assumption, although it still prevents the characteristic function from vanishing
on open non empty sets.



The aim of our work is to prove that it is not needed to assume non vanishing of the
characteristic functions to be able to estimate the signal and the noise distributions. Our main
contributions are as follows.

e We first prove an identifiability result in general settings, see Theorem 1. Our only
assumption on the noise is that its coordinates are independently distributed. We do
not assume anything on its characteristic function, which may vanish anywhere. Our
assumption on the signal is that its Laplace transform is finite everywhere and grows at
most as the exponential of a power function, and is equivalent to an assumption on the
tails of the distribution of the signal. We also do not assume anything on its characteristic
function.

e We propose an estimation procedure for the density of the signal X in R%. We prove
in Theorem 2 that the integrated quadratic risk of our estimator is upper bounded by
(loglog(n)/log(n))?/? where 3 is a regularity parameter and p > 1 is a parameter that
depends on the tail of the distribution (p = 1 corresponds to a compactly supported
distribution, and p = 2 to a sub-Gaussian distribution). In the compact case (p = 1), we
show in Theorem 4 that this rate is minimax.

e We propose a model selection procedure to obtain an adaptive estimator with the same
rate of convergence as the estimator with a known tail parameter p, see Theorem 3. To
cover situations in which the estimation rate may be improved when the characteristic
function of the noise does not vanish and is ordinary smooth, we construct a data-driven
combination of our estimator f and of the estimator f¥ built in [CK15]. We prove in
Theorem 6 that this combination achieves the best rate of convergence among the two,
even if we do not know that the noise is ordinary smooth.

e Finally, we present numerical simulations in Section 6. In various settings for the signal
distribution and for the noise distribution, we find that our estimator has surprisingly
good behaviour even with a small sample size (n = 500). We compare our results with the
experiments of [CK15] and find that in most of the examples, our estimator outperforms
the one from [CK15]. Moreover, our simulations indicate that our procedure performs
well even when the tails of the distribution of the signal are too heavy for our theoretical
results to apply. Finally, we discuss the choice of the hyperparameters involved in our
procedure and propose a data-driven method to select them.

Possible further works are discussed in Section 7. Detailed proofs can be found in Section 8.

2 Setting and identifiability Theorem

Consider the repeated measurements model with 2 repetitions:

M L)
y = (;2)) - @) + <5(2)> —r(X) +5, 1)

in which, for i € {1,2}, Y X ¢ ¢ R and r : x € R? = (z,2) € R? x RY. We assume that
the random variables X and e are independent, and we consider independent and identically
distributed observations Y;, j = 1,...,n, following model (1).

We shall not assume that the distribution of the noise ¢ is known, instead the only assump-
tion we will make on the noise is the following.

(H1) ¢ and £® are independent random variables.
Let us now introduce our assumption on the Laplace transform of X.

(H2) There exists p > 0, a > 0 and b > 0 such that for all A € R? E [exp ()\TX)} <
aexp (b]|A]|?), where || - || denotes the Euclidean norm.



Note that by Chernoft’s bound, this is equivalent to assuming that the tails of the distribution
of X satisfy P(|| X || > t) = O(exp(ct'T/(»=1))) when p > 1, X a.s. bounded when p = 1, and
X =0 when p < 1.

Under (H2), the characteristic function of the signal X can be extended into a multivariate
analytic function denoted by

Py : (Cd — C
z > E[exp (izTX)]

Obviously, if no centering constraint is put on the signal or on the noise, it is possible to
translate the signal by a fixed vector m € R? and the noise by —m without changing the
observation. The model can thus be identifiable only up to translation. We prove the following
identifiability theorem.

Theorem 1. Assume that X and X' satisfy (H2) and ¢ ~ Q, & ~ Q satisfy (H1). Then
Prx) * Q =P x) x Q implies Px = Px/ and Q = Q up to translation.

The proof of Theorem 1 is detailed in Section 8.1. It may be seen as starting similarly as
the proof of Theorem 2.1 in [GLCL22] and then taking into account the particular form of the
characteristic function of the observations in model (1).

Our result improves on earlier results concerning the assumption on the noise distribution.
Indeed, the identifiability result of [Kot67] (further used in [LV9S8], [CK15] and [KO22]) requires
that the characteristic functions of both the noise and the signal vanish nowhere. Our approach
differs from the identifiability Lemma 2.1 of [Neu07] in the sense that they do not make any
assumption on the tails of the distribution of the signal but use some intricate assumption on
the non zero sets of the characteristic functions of the noise and the signal, which excludes
noise characteristic functions vanishing on non empty open subsets of R.

3 Estimation procedure

From now on, we assume that the distribution Px of the signal has a density f with respect
to the Lebesgue measure on R%. We shall assume that X satisfies (H2), and we also assume
that an upper bound pg is known on p, where p is given by (H2).

The first step in the estimation procedure is the estimation of the characteristic function
of the signal by a method inspired by the proof of the identifiability theorem. A key step in
the proof of Theorem 1 is the fact that, if a multivariate analytic function ¢ has growth as

in (H2), is such that ¢(0) = 1, for all t € R?, ¢(t) = ¢(—t), and satisfies, for all ¢, to, in a
neighborhood of 0 in R¢,

Pt +12)Px (t1)Px (t2) = Px(t1 + t2)d(t1)9(t2),

then ¢ = ®x up to translation, that is up to multiplication by a factor exp(ic't) for some
constant vector ¢ € R?. In other words, if we define, for v > 0,

M(¢;v|Px) = / |6(t1 + t2) ®x (t1)Px (t2) — Px (t1 + t2)p(t1)p(t2)|

[—v,v]dx[—v,v]d

|1y (1) P2 (t2) |2dt1dt2,

then ®x is the only minimizer (up to translation) of M(:;v|®x) over a well chosen set of
multivariate analytic functions. We will construct an estimator of the criterion M (-;v|®x)
based on the observations and minimize it to get an estimator of the characteristic function of
the signal. Let us now describe the details of this procedure.



For any S > 0, let T, s be the subset of multivariate analytic functions from C? to C
defined as follows.

T,s= {gb analytic s.t. Vz € R?, ¢(2) = ¢(—2),¢(0) = 1

and Vj € N4\ {0},

3]¢(0)‘ . SHJH} }
| S e |
where j! = szl jo! and &7 = 7" ... jSld. By Lemma 3.1 in [GLCL22], the family of sets T, g,
S > 0, summarizes Assumption (H2) with parameter p, so that for large enough S, ®x is the
only minimizer (up to translation) of M(-;v|®x) over T, s. Fix some constant ves > 0 and
define M, as, for all ¢ € T 54,

M, (¢) = /[ o ] |p(t1 + t2)Pn (t1,0)Hn (0, t2) — G (tr, ta)P(t1)d(t2)|*dtrdta,

where for all (¢1,t2) € C? x 4,
~ 1 n ‘ ‘
(bn(tla t2) = I Zexp {ZtlTYg(l) + Zt;YZ@)} )
(=1

As n tends to infinity, M, (¢) converges a.s. to M(¢; Vest|Px). We shall minimize M,, over
multivariate polynomials. We thus introduce, for all m € N, the set C,,[X7, ..., X4] of multi-
variate polynomials in d variables with total degree at most m and coefficients in C. For any
integer m and real p > 0, define ®,, ,,, , as a (up to 1/n) measurable minimizer of the functional
¢ — My, () over C,,[X1,...,Xq]NT, 5,4, that is,

~

(I)n,m,p S (C’rn[Xla R ,Xd] N Tp,S,d

and
~ 1
Vﬁb S (Cm[Xla cee 7Xd] N Tp,S,d7 Mn(q)n,m,p) g Mn(¢) + E

We shall prove in Proposition 1 that for well chosen m and small enough v, ZI\)n,m p converges
to ®x in L?([~v,v]) at almost parametric rate-when m is well chosen—, uniformly over p for p

in the compact set [1, pg]. The well chosen m will be set to m = {Zp()%

a priori upper bound on p. For the sake of simplicity, we denote ®,, , the estimator ®,, ,, , in

—‘ , where pg is the

which m = [on 7102’%&2)

convergence rate, see Proposition 1 below.

To define our estimator of the density of X, we truncate the polynomial expansion further.
Let us introduce the truncation operator 7}, as follows. If ¢ is a multivariate analytic function
defined in a neighborhood of 0 in CP written as ¢ : x Z(il,...,id)eNd & szl xle . define

—‘, which is a valid choice of m to get this uniform almost parametric

D

T : x> Z cinﬁf.

(i1,..,ip)ENP i1+, +ig<m a=1

We finally define the estimator of the density of the signal as follows. Fix some integer my, ,
and positive real number h,, ,. Then for all t € R?,

N 1 ~
fn,p(t) - W /[vhnvpyhn’p]d eXp(—itTu) Tmnﬁp@mp(u)du. (2)
We prove in Theorem 2 that a good choice of m,, , and h,, , allows to control the integrated
quadratic risk over regularity classes of densities, and construct an estimator that is adaptive in
p in Theorem 3. The rates are shown to be minimax optimal for compactly supported signals
in Theorem 4.



4 Rates of convergence

The first step to control the quadratic risk of the estimated density is to control the quadratic
risk of the estimator of the characteristic function over some small set in R¢. The constants
in the proposition below depend on the signal through p and S, and on the noise through its
second moment and the quantity

¢, = Inf{|®.) (t)], t € [—v, u]d, i=1,2}, (3)

provided it is positive, which holds for any noise distribution for small enough v by continuity
of the characteristic function. For any v > 0, c(v) > 0, E > 0, define Q@9 (v, ¢(v), E) the set
of distributions Q = ®3_,Q; on R*® such that ¢, > ¢(v) and [5., [|z?dQ(z) < E.

Proposition 1. For allv € (0,v.s] and po = 1, S,c(v), E > 0 and §,¢',6"” € (0,1) with §' > 6,
there exist positive constants ¢ and ng such that the following holds. For any p € [1, po], for
all®x € Ty 54 and Q € QD (v, ¢(v), E), for alln > ng and x € [1,n1*5/}, with probability at
least 1 — 2e™7,

p'€[p,po]

. ) T 1-5"
sup /[—g,g}d@n’pl(t)_q)X(t) dtéc(m) .

The proof of Proposition 1 is adapted from the proof of Proposition 2 of [CMGL23] and is
detailed in Section 8.2.

4.1 Upper bound

The aim of this section is to give an upper bound of the maximum Lo (R%)-risk for the estimation
of f. We shall denote || - |2 the norm in Lo(R?). For all p > 1, 3> 0, S > 0, ¢ > 0, we denote
WU(p, S, B,cp) the set of distributions Px with a density f on R? such that the characteristic
function ®x is in Tg , 4 and satisfies

[ ex@P(+ fulP)du < s
R4

Theorem 2. For ¢, < exp(—(5d + 3)/2), define for any p > 1

1/p

p log(n) M, p

o= | BB\ el
Minsp Lﬂog log(n)J 0T TG

Then for any v € (0,Veq), c(v) >0, E >0, 5 >0, 8> 0 and cg > 0, there exists ng and
C > 0 such that for all n > ng,

log(n) )” > 2
sup sup —=—= | E@p_onlfn,— fll3] <C.
pell po] Px€W(p,5,5,cs) (loglog(”) (Proxy*@ g ’
QeQCd (v,c(v),E)

The proof of Theorem 2 is detailed in Section 8.3.

Let us compare this upper bound with the previous results in the literature. The best
rates of convergence without the symmetry assumption on the noise are obtained in [CK15],
who improve upon the results in [LV98] regarding both the assumptions on the noise and
signal distributions and the rates of convergence. Though the earlier work [Neu07] has weaker
assumptions than [CK15], the author only proves consistency of his estimator but does not
provide rates of convergence.

The rates in [CK15] depend on the tail of the characteristic function of the signal and on
the tail of the characteristic function of the noise, as is usual in the deconvolution literature.
The authors prove polynomial rates of convergence when the noise is ordinary smooth (that
is with a characteristic function decreasing as a power function), up to a power of log n factor
when the signal is not ordinary smooth but supersmooth. For supersmooth errors the rate is a
power of log n. Our assumptions are not an exact generalization of the ones in [CK15], as they



do not need assumptions on the tails of the distribution of the signal, and instead assume that
both the characteristic function of the signal and the characteristic function of the noise do
not vanish anywhere and have some controlled behaviour near infinity. In contrast, the class
upon which our upper bound applies includes both ordinary smooth and supersmooth noises,
and allows the characteristic functions to vanish, even on open sets. We propose in Section 5
a method to choose between our estimator and the one proposed in [CK15] to get the best of
both worlds.

Although we were not able to prove it, we believe it should be possible to adapt our
estimation procedure to the tails of the characteristic functions by selecting the parameter
Vest based on the observations to obtain improved rates on the classes where the characteristic
functions do not vanish and are ordinary smooth. Our simulations indicate that this idea seems
relevant, see Section 6. We discuss this point in Section 7.

4.2 Adaptivity in p

The construction of the estimator above assumes the tail parameter p known. Unfortunately,
this tail parameter is typically unknown in practice. We now propose a data-driven model
selection procedure to choose p and we prove that the resulting estimator has a rate of con-
vergence corresponding to the smallest p such that ®x € T, g for some S > 0. Our strategy
is based on Goldenshluger and Lepski’s methodology [GLO8] and on the adaptivity in p in
[GLCL22]. As usual, the idea is to perform a bias-variance trade off. Although we have an
upper bound for the variance term, the bias is not easily accessible. The variance bound is

oulp) = o <11g1g(i()n)> z

for all p € [1, po] and for some constant ¢, > 0. The proxy of the bias is defined for all p € [1, po]
as

An(p) =0V sup {[[fap = Fuplla = on(p))}-

p'€[p.po]

Finally, the estimator of p is

pn € arg min{A,(p) + on(p), p € [1,p0]},

and the estimator of the density of the signal is f/';’ﬁn. The following theorem states that this
estimator is rate adaptive.

Theorem 3. For any v € (0,ves], 5 >0, cg>0 c(v) >0, E >0, S > 0, there exists c, > 0
and C > 0 such that

limsup sup sup
n—+00 p€[l,po] Px€¥(p,S,8,cp)
QeQC (v,c(v),E)

The proof follows the same lines as that of Theorem 3.5 of [GLCL22], taking p = 1/x and H
as the set of multivariate analytic functions g : C2¢ — C such that there exists G : C¢ — C
such that for all (tl,tg) e C?x (Cd, g(tl,tg) = G(tl + tz).

< log(n)

28
b —~

E «0)@n ~ —fl3 <.

loglog(n)) (Prx) Q)® [”f",/)n f||2] C

4.3 Lower bound

In this section, we provide a lower bound of the minimax risk in the case p = 1, that is
for compactly supported signals. The lower bound in Theorem 4 matches the rate given in
Theorem 2 for our estimator, proving that our estimator, together with its adaptive version,
achieve the minimax adaptive rate in this case.

Theorem 4. For all S >0, § > 1/2, ¢cg > 0, and v > 0, there exists a constant ¢ > 0 such
that



log log(n) ) °0

. - f 3
inf sup E(R«X)*Q)®"[||f —flla] = ¢ ( log(n)

f IP’XE‘I/(l,S,ﬁ,cﬁ)
QeQCD (v,e(v),E)

where the infimum is taken over all the estimators f, that is all measurable functions of
Yi,..., Y.

The proof of Theorem 4 is detailed in Section 8.4. It is based on Le Cam’s method, also
known as the two-points method (see [LC86]), one of the most widespread technique to derive
lower bounds, and adapts ideas from [GLCL22] to the repeated measurements setting.

5 Adaptativity to unknown noise regularity

In this section, we propose a method to choose between our estimator and the one developed
in [CK15]. We thus consider the same setting as [CK15] and assume that d = 1, that is,
observations are in one dimension. We also assume that both coordinates of the noise have the
same distribution, with density f-.

Let us first recall results from [CK15]. For positive constants Cy, Cs, ¢, 8 and n, we denote
by F*“(Cy,Ca, ¢, 8,n) the class of square integrable probability densities f whose characteristic
function @ satisfies

Vu,w €RY, w30 = |0 < Colo(v)| (4)

and ’
Vu € R, [@(u)] < (14 Cyluf?) 7 emell”,

We denote F'(Cy, Oy, ¢, 3,1m) the class of square integrable probability densities for which the
condition (4) holds and

Vu e R, |B(u)| > (14 Cyluf?) 7 eelvl”.

For C3 > 0, we denote F(Cs5,p) the class of pairs (fx, fe) of square integrable probability
densities for which the following conditions are met:

(2% @ +E[*]@x Del1 + | @5 D 3)” + E[IX +¢|*] < Cs,
and (log(®x®.)’) is square integrable with
[ log(®x ®.)'[|2” < Cs.
Finally, we use the notation
FuH X, e,p) = [F“(Crx,Cox,cx, Bx,nx) X F(C1,e, Cac, e, Be,ne)] N F(Cs,p).

In the following, we say that the noise is ordinary smooth when f. € F*(Cy ¢, Ca.,0, e, ne)
(that is with ¢. = 0) and the signal is supersmooth if its density f isin F*(C1 x,C2 x, ¢z, Bx,1x)
with ¢x > 0. The authors of [CK15] prove the following theorem.

Theorem 5. (Case III in [CK15]) Let p > 2, there exists fCK such that, in the case of
supersmooth signal and ordinary smooth errors,

~, D PY1+72
sup By [IFF = 13 = 0 (n” 77 (log(n)) ¥ )
(fife)€F™1(X,e,p)

where v1 = —4fx + 1 — nx and v = max{max{p(48x + 40 + 1 —nx),0} + 1 — nx,0}.



We build a new estimator by combining the estimator fCK and fmp as follows:

28
CK - N TCK |12 loglog(n) \ »

o LI i1 =TI < Cono (M5557)
T N7 I log 1 a
frp A [ fnp — FEEN3 > Cadapt ( Oigo(%f)n))

for some constant Coqqpe. The idea is that either (f, f.) € F* l(X g, p) in which case both
fCK and fn .p will be close to f and thus to each other, so that fA fCK, which has better
rates of convergence in this case, or (f, fc) ¢ F“ l(X €,p), in which case we have no control
over fCK , and fA cannot perform worse than fn - A good choice is Cogepr = 4C,, for C,
given in the following proposition.

Proposition 2. For allp > 1, v € (0,ves), 8 >0, cg >0, ¢c(v) >0, E >0, S >0, there
exists C, > 0 such that

- 26/p
sup @mm*@@"“nm—fxz>c%(b@%ﬁ”) ]:0(1>.

Px €T (p,S,8,c5) log(n n
QeQCd (v,c(v),E)

The proof of Proposition 2 is detailed in section 8.5.

We denote by F“!(X,e,p,p,S,v,c(v), E) the set of pairs of densities (fx, f.) such that
(fx, fe) € F»'(X,e,p), the probability distribution with density f is in ¥(p, S, 8x,cg), and
the probability distribution with two i.i.d. coordinates with density f. is in Q(Q)(I/, c(v), E).
The following theorem proves that the estimator f4 inherits the best rate of convergence.
Theorem 6. For allp>2, p>1, v € (0,veq, 8 >0, cgso c(v) >0, E>0, S >0, for all
Cadapt > 4Cp7

P Py1+73
sup Eqp [IF = £I3] = 0 (n7 77 Qog(m)) 5005 ) (5)
(f,fo)eFwl(X,e,p,p,S,v,c(v),E)

where where y1 = —48x + 1 — nx and y2 = max{max{p(46x + 45 + 1 —nx),0} +1 —nx,0}

while 25
-~ loglog(n) r

sup Ee -0en | [|F2 = 3] =0 ( . 6

Px €¥(p,S,B,c5) (Frix)*@) {” ”2} log(n) (6)

QeQCd (v,c(v),E)

Proof. We first consider the case where Q € Q%9 (v, c(v), E) and Px € ¥(p, S, 3,c5). The
difference f4 — f can be written as

J?A -f= (J?CK - fn,p)”fA;fCK + (fmﬂ - f)v
so that
1F* = F15 < 20 fnp = FI5 + 2P = Fap) U pazgerc |3

log log(n) ) 26/

< 2”me - f”% + Cadapt ( log(n)

and (6) follows from Theorem 2. On the other hand,

IF~ = £I3 = 1% - f||§1‘fA:fCK + 1 fnp — f”%l‘ff‘:fn,a’

Since R ’t‘ -
1 Frp = FOXNE < 20 Fnp — FI3 + 2179 = £13,

~ ~ ~ 28/p
the event f4 = f, , can only be achieved if either we have || f, ,— f||3 = C, (loﬁ; :(i()" )) or if

~ 28/p ~ . 28/p
we have simultaneously || f¢% — f|13 > C, (loig)(%gl)> and || fn,— fl3 < C, (10{,_3,0?5;1()71)) ,

Under this second possibility, an,p —fl3 < HJ?CK — flI3, so that



~A ~ ~
||f - f”g < 2Hf K - fH% + Hfmp - f”gl"lﬁzyﬁp_‘fl@}Cp(101%101%(’"))25/‘)

Tog(n)

<2 f9% = fI15 + diam(Y,,5)°1]

[ o= FIIZ=Cp (Bl

B/
log(n) )2 !

and (5) follows from Theorem 5 and Proposition 2. O

Note that Proposition 2 does not provide an explicit formula for C, and thus for Cuqqpt-

Theorem 6 proves that for a large enough Cygqpt, the estimator ]?A adapts to the best of the
two estimators. To use the methodology in practice would require a method to choose Cagapt
based on the observations, for instance one based on the cross-validation approach discussed
in Section 6.4.

6 Simulations

The aim of this section is to assess the performance of our method on synthetic datasets.

Although good theoretical values for the parameters m and h are given in Theorem 2, in
practice, other values may produce much better results. As such, a practical implementation
of our method consists of two steps: constructing an estimator for several possible parameters
(m, Vest, h), and then selecting the “best” parameters (77, Dest, il), in the hope that the result-
ing estimator performs comparably to the best parameter. Devising a data-driven selection
procedure for the parameters (m, Vest, i) is outside the scope of this numerical study, although
we discuss ways to do it in Section 6.4. For the rest of this section, we select the parameters
(M, Vest, h) ourselves, to get an idea of how the method performs when the best, or at least
good, parameters are selected.

This section is divided into three parts: the first part (Sections 6.1 and 6.2) explains how
the estimator of the characteristic function and the target density of the signal are computed,
introduces six synthetic datasets on which our method is assessed and the graphs of the resulting
estimators. The second part (Section 6.3) compares the empirical risk of our estimator with
the empirical risk of the estimator defined in [CK15] on four other synthetic datasets covering
several smoothness scenarios. Finally, we discuss how to select the parameters (m, vegst, ) in
Section 6.4.

All simulation codes are available in Python at https://sites.google.com/view/jcapitaominiconi

6.1 Procedure

We consider real-valued signals, that is d = 1. For each dataset, we may consider several set
of parameters (m, Vest, h). For each of them, the estimators are computed as follows.

For any integer m > 0, ¢ € T, s and t € C, Ty, ¢(t) = 1+ > L, ¢t", where the coefficients
satisfy ¢ € R when k is even and i¢, € R when & is odd, due to the fact that for all p € T, g

and t € R, ¢(t) = p(—t).

For any polynomial T}, ¢ with coefficients as above, the integral M, (T,,¢) is approximated
by a Riemann sum over a regular grid with 8000x8000 points. We minimize M, (T},¢) as a
function of the coefficients (¢r)1<r<m With the function optimize.minimize from the package
scipy, starting at the projection of the characteristic function of the signal T,,Px, with oth-
erwise default parameters (for Python version 3.8.10 and scipy version 1.10.1). Choosing this
initialization is not doable in practical scenarios, but for a proof of concept of our method,
it alleviates most known issues of approximate minimization algorithms such as getting stuck
in suboptimal minima. The estimator max(0, f,,) is computed using (2) over a regular grid
with 8000 points, whose bounds depend on the distribution of the signal: [—5;5] for Gaussian
signals in Section 6.2 and [—3;3] in Section 6.3, [—1;2] for 8(2,2) signal, [—5;10] for Gamma
signal and [—5; 5] for bigamma signal.

In Section 6.3, we then compute the Ly loss || max(0, fn) — f|13, where f is the target density,
through a Riemann sum on the aforementioned regular grid. Note that taking max(0, ﬁL) as our



estimator instead of fn has almost no computational cost and can only improve the quadratic
loss. Indeed, the loss || max(0, f,,) — f||3 is upper bounded by the loss || f,, — f||3 since max(0, f,,)
is the projection of fn on the convex set of nonnegative functions. Note that the projection of
Jn on the set of probability densities, which is convex, would reduce the quadratic loss even
further, but computing it is more involved and the result depends on the tails of f,.

6.2 Some examples

In the following, we write 5(2,2) the beta distribution with density fs(t) = ¢t(1 — ¢) for
t € (0,1) where ¢ is a constant such that f3 is a density. We write £(0) the Laplace distribution
with mean equal to 0 and scale 1, that is, the distribution with density fz(o)(t) = 3 exp (—[t]).
The uniform distribution on (—1,3) is denoted by U(—1,3) and the Dirac distribution with
point mass at —1 by d(_y).

The six synthetic dataset we consider are composed of n = 500 i.i.d. observations of model
(1), one for each of the following settings:

(1) X ~N(0,1), for i € {1,2}, e® ~ N(0,1),
(I) X ~ N(0,1), for i € {1,2}, e® ~ £(0),

)
)
(III) X ~ N(0,1), for i € {1,2}, e ~ 254y + 3U(-1,3),
(IV) X ~ B(2,2), for i € {1,2}, e ~ N(0,1),
(V) X ~ B(2,2), for i € {1,2}, e ~ £(0),
(VI) X ~ B(2,2), for i € {1,2}, e® ~ 151y + 3U(-1,3).

Note that in the settings (IIT) and (VI), the noise is not symmetric and its characteristic
function vanishes on infinitely many points on the real line, which which is outside of the scope
of [DHMO08] and [CK15].

We computed the estimator with m = 15, vy = 2 and three different values of h. In the
case of a Gaussian signal, we choose h € {1,2,3}, and for the a signal with beta distribution,
we choose h € {5,7,9}. Results for (I) are displayed in Figure 6, for (II) in Figure 5, for (III)
in Figure 1, for (IV) in Figure 8, for (V) in Figure 9, for (VI) in Figure 2. Since Figures 6, 5,
and 1, as well as Figures 8, 9, and 2 are similar, we only show in this section Figures 1 and 2,
Figures 5, 6, 9 and 8 can be found in Appendix A.1.

We note several things: on the one hand, the noise seems to only have a very minor influence
on the result of the estimation procedure. Indeed, Figures 6, 5, and 1, as well as Figures 8§,
9, and 2 are very similar even though the noise distributions are very different. On the other
hand, the choice of h has a significant impact on the estimated densities. Finally, even with
a small amount of data (n = 500), our estimator manages to recover the density of the signal
accurately, provided that h and v.g are chosen correctly.

10



(a) Characteristic functions estimation

Figure 1: X ~ N(0,1), for i € {1,2}, ¢
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(b) Density estimation

Figure 2: X ~ 3(2,2), for i € {1,2}, e ~ 15_1) + 3U(-1,3)

6.3 Comparison with the estimator of [CK15]

In the following, we compare our estimator with the density estimator presented in [CK15].

We denote T'(«, 8) the gamma distribution with density f(z) = %xa_le_mlko,oo)(x). We

also denote bI'(a, 8,7, 0) the bilateral Gamma distribution with parameters «, 3, 7, 6 which
is the distribution of U — V where U and V are independent random variables such that U
has distribution I'(«, 8) and V has distribution I'(y,d). We use the same target densities and
errors than in [CK15], that is:

1. X has distribution I'(4,2) and ¢ has distribution bI'(2, 2, 3, 3).

2. X has distribution dI'(1,1,2,2) and € + 2 has distribution ~ I'(4,2) (the location shift

ensure that E[e] = 0.)

3. X has a standard normal distribution, X ~ N(0,1) and ¢ ~ bI'(2, 2,3, 3).

4. X has a standard normal distribution and ¢ is the mixture of two normal distributions
with parameters (—2,1) and (2,2) and equal weights 1/2. We use the notation & ~

mN(=2,1,2,2).

These four scenarios cover three of the possible cases for the smoothness of the signal and

11

noise distributions: the first and second ones have ordinary smooth signal and noise, the third



one supersmooth signal and ordinary smooth noise, and the last one supersmooth signal and
noise.
To compare our estimator with the one of [CK15] we sample 500 i.i.d. repetitions of

n = 1000 observations, producing estimators f( , 1 <4 <500, and compute the empirical risk
500
"= 50 Zl\max 0, £\7) = £II3. (7)

Table 1 shows the comparison to the empirical risk of the oracle estimator of [CK15], denoted
Tok in what follows, reported in their Table 4 (column 7°%).

Computing our estimator requires choosing the parameters (m, Vest, h). This is done as fol-
lows. We consider the following range of parameters: m € {3;4;5;...;15}, h € {0.25;0.5;0.75; 1; 1.25; 1.5; 1.75; 2}
and vest € {0.33;0.5;1;1.5;2;2.5;3;3.5;4;4.5}. For each possible set of parameters and each
scenario, we sample one set of n = 1000 observations, compute our estimator ﬁL with these
parameters, and compute the loss || max(0, f,) — f]|3.

The resulting losses are given in Tables 2 to 21 in Appendix A.2. Examination of the tables
allows to find a value of the parameters (m, Vest, k) for which the error is minimum. We call this
value the oracle value of (m, vest, h). Of course, this oracle value depends on the observations:
it may change when sampling a new set of observations.

Ideally, comparison with the oracle values in [CK15] should be done by computing 7 using
the oracle value of the parameters (m, vest, h) for each repetition. Unfortunately, computing
the loss for each of the 1040 possible sets of parameters (m, Vest, h) and for each of the 500
repetitions is very time consuming. Instead, for each scenario, once Tables 2 to 21 have been
computed, we retain only four sets of parameters, given by four of the smallest losses, to run
the 500 repetitions, while keeping these parameters distinct enough to retain some variety and
ideally robustness. The four sets of parameters for each dataset are indicated in the last column
of Table 1. This produces estimators ﬁ(f’]), 1 <4<500, ;€ {1,2,3,4}. Finally, for each i,
:(,,z) is taken as the one with the lowest loss among these four. This provides an—hopefully
close—upper bound of the empirical risk of the oracle estimator, for a considerably reduced
computational cost.

| | 1007 | C.I for 100E[7] | 1007c | (M, Vess, h) |

X ~T(4,2), 0.863 | (0.856,0.873) | 0.34 (15,1,2), (13,1,2),
e ~0I(2,2,3,3) (14,1,2), (11,1,2)

X ~b0(1,1,2,2), | 0.990 | (0.978,1.002) | 0.27 (15,1,2), (14,1,2),

e~T(4,2) =2 (13,1,2), (15,1,1.75)

X ~ N(0,1), 0.061 | (0.060,0.062) | 0.19 | (14,3,2), (13,2.5,2),

e~ bI'(2,2,3,3) (13,1.5,2), (14,3.5,2)

X ~N(0,1), 0.064 | (0.064,0.065) | 1.18 | (13,4,2), (15,3.5,2),

e~ mN(=2,1,2,2) (14,3.5,2), (14,4,2)

Table 1: Comparison of the empirical risks of our estimator, defined in (7), and of the oracle
estimator of [CK15], with 95% confidence interval for 100E[r], in each scenario. The last
column contains the four sets of parameters used to compute our estimator.

Our procedure outperforms the estimator of [CK15] for the two last lines of Table 1, corre-
sponding to a Gaussian signal. For the first two lines, in the case of I'(4, 2) signal or bI'(1, 1, 2, 2)
signal, even though our theory does not apply because the signals have sub-exponential tails,
it should be noted that our procedure still works in practice. We illustrate this fact with the
graphs of the different densities and their estimates calculated on the dataset used to compute
Tables 2 to 21 (thus ensuring the best selection of the parameters (m, vest, b)), presented in
Figures 3a, 3b, 4a and 4b.

The question of how to select the set of parameters (m, vest, h) in a data-driven manner is
considered in Section 6.4.
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(a) X ~T(4,2), Vi € {1,2}, e ~bI'(2,2,3,3) and (b) X ~bI'(1,1,2,2), Vi € {1,2}, e ~T(4,2) — 2 and
(m, vest, h) = (15,1, 2). (m, Vess, h) = (15,1, 2).

Figure 3: Plot of the target density (red) and the estimated density (blue).
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(a) X ~N(0,1), Vi € {1,2}, e® ~0'(2,2,3,3) and  (b) X ~N(0,1), Vi € {1,2}, e ~ mN(-2,1,2,2) and
(f,n7 Z/EStyh) = (147372) (m,yest,h) = (13,47 2)

Figure 4: Plot of the target density (red) and the estimated density (blue).

6.4 Data-driven selection of the parameters (m, Vest, 1)

Theorem 2 states that m has to be chosen of the order of log(n)/log(log(n)) when n is large
enough, with a constant depending on p. In practice, and especially for small values of n, such
a choice might not produce the best results, and thus we need a way to select a value of m
based on the observations themselves. For instance, for n = 1000, Theorem 2 gives m ~ p,
but the algorithm works better when we significantly increase the value of m. This is why we
choose to consider values of m between 3 and 15.

Considering the illustrations of Section 6.2, we also note that, given a fixed value of vest,
the value of h that works best corresponds to the value of the point where T, ¢ starts diverging
from ®x. Finally, we believe that there exists an optimal ves; to approximate the characteristic
function ®x, in the sense that there exists a 1%, which minimizes the distance ||®x =T, d|2,ve. »
as can be seen in Figure 7 in Appendix A.1, where we took m = 4.

Considering Tables 2 - 21, we note that for a Gaussian signal, the values of the loss remain
relatively stable when varying the parameters (m, vest, h). We computed Tables 22-26 using
another sample in the case X ~ N(0,1), e ~ bI'(2,2,3,3). This also illustrates the variability
of the oracle set of parameters, as the set of parameters chosen based on Table 1 is not the
best ones for this new sample, instead it is (m, vest, h) = (15,3.5, 2).

In contrast, for a signal following a I" or bI" distribution, Tables 7 - 16 show that a careless

13



choice of parameters can result in the loss exploding, for instance when taking large values of
m. However, we have observed when computing Table 1 that the oracle losses remain fairly
stable across different samples for a I" or bI" signal, as can be seen from the relative size of the
confidence intervals.

Thus, there is a need for a data driven choice of (m, vess, h). Here is a proposition. For
each set of parameters H = (m, Vest, 1), compute an estimator of the Fourier transform of the
distribution of X given by ) H, obtained by minimizing M, (T,,¢) with M, defined using ve,
and truncated to O for [¢| > h. This is what is used to compute fH. Then, considering now
the noise as the unknown signal, one can use the methodology proposed in [CL11] to estimate
the density of the noise. We denote ¢ the parameter m in the procedure of [CL11], which also
needs to be chosen based on the data. Let gg 4,1 be the estimator of the density of the noise
() using the first coordinate of the observations, and Jr,q,2 be the estimator of the density
of the noise £ using the second coordinate of the observations. This provides estimators
DPH,g1 = fu * Gr,g1 of the density of the first coordinate of the observations and pr g2 =
Fu *GH,q,2 of the density of the second coordinate of the observations. Here, Fur *GH q,i denotes
the convolution of the functions fH and g 4. Now, by partitioning the set of observations
in three blocks with indices respectively in Fy, Fo and T, one can compute the estimator fH
using the observations with indices in F4, compute the estimators Gm,q1 and g 41 using the
observations with indices in Fs, and then compute a cross-validation criterion

OV (H,q) = Y (1og a1 (V") + log 2 ().
i€l

Finally, we choose H maximizing H — max{CV (H,q),q € {k/4w, k € N*, k < n'/*}}.

7 Discussion and perspectives

In this paper, we considered the repeated measurements model with two repetitions of the
unknown signal, and we proposed a new estimation procedure for the distribution of the signal.
Our estimator is consistent without any assumption on the noise distribution provided the noise
has independent components, and for signals having a Laplace transform at A\ with growth at
most exp(b||A]|?) for some p > 0. We provided theoretical results about minimax rates and
adaptation procedures and presented simulation experiments.

In the case where more repetitions are available, it is possible to extend our procedure to
take the additional information into accounts. We have investigated the possibility of using the
sum of elementary criteria built using only groups of two repetitions as criterion to estimate
the characteristic function of the signal. With this approach, taking p > 2 repetitions does not
improve the rates of convergence of the estimators, only the constants. What could change the
rates would be to take p,, — +oo together with n; depending on the relationship between n
and p,, we expect a transition to occur between our regime (which has logarithmic rates in n)
and the limit where p,, is considerably larger than n (p, > n® for some large enough a > 0),
where the signal can be recovered by simple average and the problem devolves into standard
density estimation (which has polynomial rates in n).

One important result of our findings is the surprisingly good behaviour of our estimator in
simulations. These findings open up new avenues of research, based on the following questions:

e Is it possible to extend the identifiability result to nonparametric classes of distributions
having heavier tails?

e Is it possible to adapt the choice of (m, vest, h) on classes of distributions involving or-
dinary smooth distributions for the noise and/or for the signal, when the decay of the
characteristic function is known? In particular, slower decay should allow one to take
larger values of vt and h. Can this adaptation be done using data-driven choices of the
hyperparameters (m, Vest, h)?
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e How to design a computationally efficient implementation of the procedure? In partic-
ular, a data driven choice of the parameters such as the one in Section 6.4 requires the
computation of the estimator for each set of parameters to be done.

8 Proofs
8.1 Proof of Theorem 1

In the following, we will write ¢; (resp. ¢;) the characteristic function of £(7) (resp (7)) for
i € {1,2}. Since the distribution of ¥ is the same under P,x) * Q and P,(x/) * Q, for any
(t17t2) € Rd X Rda

Dx(t1 + ta)d1(t1)pa(ta) = Dx/ (1 + ta) 1 (t1)da(ta), (8)
and by taking to = 0, and ¢; = 0 in (8), also
Ox (1)1 (t) = Dx(t1)dr(t1), (9)
and
Dx (t2)da(ta) = Px/(t2)da(ta). (10)

There exists a neighborhood V' of 0 in R? x R such that for all (¢1,t2) € R x RY, ¢y (t1) # 0,
@1(t1) # 0, Pa(tz) # 0 and ¢a(t2) # 0, so that, equations (8), (9) and (10) imply that for any
(tl,tg) ev,

Ox(t1 +t2)Px(t1)Px(t2) = Cx/(t1 + t2)Px (1) Px (t2).

Since (z1,22) € C4 x C¥ = ®x (21 + 22)Px/(21)Pxs(22) — Pxr(21 + 22)Px (21)Px(22) is a
multivariate analytic function which is zero on a purely real neighborhood of 0, then it is the
null function on the whole multivariate complex space, see Lemma 25 in [GLCL22], so that,
for any 21, 2o in C¢,

(I)X(Zl + ZQ)(I)X/(Zl)(I)X/(ZQ) = CI)X/(Zl + ZQ)@X(Z:[)@X(ZQ). (].1)
Taking z; = —z1, since ®x(0) =1 and ®x(—2;) = ®x(21), we get that, for all z € C?,
|Px/(2)| = [@x(2)]. (12)

We set R(z) = |®x/(2)| = |®x(2)| and define O(z) € (—m,7] and O(z) € (—m, 7] such that
Dx(z) = R(z)exp (iO(z)) and ®x/(z) = R(z)exp (i©(z)). The functions R, § and © are
continuous on the open set where R(z) # 0, which includes a neighborhood of 0 since R(0) = 1.
Note that ©(0) = 0 and ©(0) = 0. Thus there exists § such that 0 < § < 7/6, such that there
there exist a neighborhood As of 0 in C¢, such that for all (21,20) € A% and all z € As,

R(z # 0, R(z1 + 2z2) # 0, and also O(z) € (—4,9), O(z) € (—4,9), O(z1 + 22) € (—0,9), and

O(z1 + 22) € (—6,0). Using equations (11) and (12), we get that for all z; € As and z; € A,
exp{i(O(z1 + z2) + O(21) + O(22))} = exp{i(O(21 + 22) + O(21) + O(22))},
which gives
exp{i(O(z1 + 22) + O(21) + O(22)) — i(O(21 + 22) + O(21) + O(2))} = 1. (13)
But since for all z1 € A5 and 29 € As,
—6e < O(21 4 22) — O(21 + 22) + O(21) — O(21) + O(22) — O(22) < 6¢,

(13) implies that for all z; € As and 22 € Aj,

O(z1 + 2) — O(21 + 23) = O(21) — O(21) + O(22) — O(z).
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Now using Theorem 2 in [Acz66] we get that there exists o € R? such that for all z € A5 "R,
O(z) = O(2) + 2. Thus, for all z € As NRY ®x(z) — Px/(2)exp (i’ z) = 0. Since the
function z € C% — ®x (2) — ®x/(2) exp (ia ' z) is a multivariate analytic function of d variables
which is zero on a purely real neighborhood of 0, then it is the null function on the whole
multivariate complex space, that is,

VzeCl Ox(z) = Dxi(2)exp (ia' 2) = Pxrial(z)

which ends the proof.

8.2 Proof of Proposition 1

First, note that all arguments of the proof of Proposition 6 in [CMGL23] go through with
unbounded pg as soon as identifiability holds. We choose H as the set of multivariate analytic
functions f : C2¢ — C such that there exists F': C¢ — C such that forall (t1,t5) € C% x C¢,
f(t1,t2) = F(t1 + ta), for which identifiability holds without any bound on p as our Theorem
1 proves. Also, the restrictions to R?? of functions in H is a closed subset of Lo ([—v,v]??). We
then apply Proposition 6 in [CMGL23] with this set H after noticing that

~ 1 =
/ | (8) = Px ()Pt < o / (@ (b1 + t2) = (1 + 1) Pdtrdty.
(- d (2v) [~ v]dx[—v,v]?

5,51

8.3 Proof of Theorem 2

In the following, for any positive real number o, we write ||f||3, = S 1 f(w)]?du. We can
easily show that

- 1 ~ 1
1oy — FI2 < e T By — BB, + i / By (u)du
P 2 (47’1’2)d s 14 2,hn,p (47.‘.2)61 RN [—hin.p him

1 ~ 1 c
<— T, B, —dy? 8
(471_2)d || n,p 3P X ||27hn,p + (47T2)d (1 + h7217p)5

1 ~ 1 c
<2max<{ ——— T @, — Px||? , s .
{<4w2>d” o ®re = Pz, gy <1+h%;,p>ﬁ}

The end of the proof follows the proof of Theorem 3.2 of [GLCL22], after noticing that all
arguments go through with unbounded py.

8.4 Proof of Theorem 4

Before to give the proof of Theoreme 4, let us set the framework.
Assume that the coordinate of £ are independent identically distributed with density

1+ cos(cx)

g:x»—)cgm

for some ¢ > 0, where ¢, is such that g is a probability density with characteristic function

Flg] :t— [(1 — ‘Z )cos(wé) + %sin(

z ‘)‘| 1[—0,(:] (t)

With an adequate choice of ¢, Q@ € QP (v,¢(v),E). Let fy and f, be the two different
probability densities of X and Q the distribution of the noise . We write Py and P, the
distribution of r(X) for X having probability density fo and f,. Then, the minimax risk is
lower bounded by

1 1
10— Full e [ 1= 311(Bo 5 Q" = (B @7, o0 (1)
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Let us now provide the chosen densities fo and f,,. Let u: @ € R = ¢y exp (=1/(1 — 22))1(_1,1)(x)
with ¢, constant such that u is a probability density. For all b > 0 and = € R, define uy(x) =
bu(bz). For z € R and a sequence (K,),, define (g = up(x) and ¢, (z) = (o(x)+an Pk, *up)(z)
where for k > 0 and Py, is the Legendre polynomial of order & in (—1,1). Note that ¢, is non-
negative as soon as oy, < 1/|| Pk, ||co- Moreover, (y has integral equal to 1 and since P, is
orthogonal to Py (which is a constant function) in Lo(R) the integral of Pk # uy is zero, then
(, is a probability density. now define, for all z € R?,

d d

fo(z) = H Co(z;) and fr(2) = Cu(21) H Co(zj)-

Jj=1 Jj=2

Let us recall some useful properties that can be found in [GLCL22] and [Mei07].

First, fo and f, are probability densities with characteristic function in Y, g4 (see Lemma
14 in [GLCL22]). Since for i € {0,1}, t = (t1,t2) € RY x R4, F[P;|(t) = F[fi](t1 + t2), Py
and IP,, are probability distribution with characteristic function in Y, g24. Then, noticing that
SUD (¢, 1,)erd xra | FLu](t1 + t2)|* (1 + [[t1 + £2]|*)? is finite, the same proof as that of Theorem 2
in [Mei07] gives that, for all 8 > 0, ¢g > 0, there exists g > 0 and Cy > 0 such that F[Py]
and F[P,] belong to ¥(1,T, 5, cg) as soon as the two following assumptions are met

o < Cob KM% and a, < 1/|| P, || o- (15)

Finally, as it is used in [GLCL22], we have

1 1 n
1= JIB0* @)% = (B = @,y > (1= 1B 5 Q) = (B + Do)

Thus, using (14), if (ap)n, (by)n and (K, ), are chosen such that

[, 1@ - @ 0wl =0 1) (16

with (14), the minimax risk based on n observations is lower bounded by c|| fo — fu| £, ®e) for
some constant ¢ > 0. We prove in Lemma 1 below that a good choice of K,, makes (16) hold
true. Then we have

2(d—1
Ifo = Fall? ey = 021160075 160 = Goll? (2 (17)

so that using HCOHi(Qd(EQ)l) =1 and the end of proof of Theorem 2 in [Mei07], ||¢, — C0||2L2(R) >
K;QB by choosing b, = ¢, K,, and «,, = Cob;BK}/Q for ¢; small enough. (17) leads to to

loglog(n) 28
)

e —28 _
1fo = fallL,@a) = K™ = C( log(n

for some constant C' > 0. The condition «, < 1/||Pk,, ||c corresponds to 5 > 1/2.

Lemma 1. Let

log(n)
K= 6o <1g1g<>> (18)

then, for an, <1 and b, > 1,

L1+ @)0) - @ @las =0 ()

Proof. Following the proof of Lemma 16 of [GLCL22], we have for all n € {0,1}2¢,
1/2

2d
/R R+ Q(@) - EBuxQ@)ldr < | Y- /R N < 11 85-“’) (FIPo] — FIPL)FIQI)(¢) dt

0<n’'<n
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Since for z = (z1,22) € R?*? with 1 € R? and x5 € R?, we have F[Po|(z) = F|fo](x1 + x2)
and F[P,(z) = Flfn](x1 + 22),

2d
Py L. (Hf)?j)((fwo]—f[Pnbf[@D(det
Z /]R dxRd (Ha’b) FIAD 1 + t2) FQ)(t1, t2)|*d(t1, t2).

o<n’'<n Jj=1

Since F|g] and F[g]’ are supported on [—c, c], we have for all n € {0,1}24,

2 /R xR <H anj> FIAN (G + t2) FIQ)(t, t2)Pd(t1, t2)

o<n’<n 7j=1

cdz/

0<n'<n c,c]dx

_Cdz/

o<n’<n

d

y <H8"1> [Cn X1 +$d+1 H Co T; +$]+d)| dx
c,c >< -:
d

=ca ) / |(FlGo] = FICa) M H7a0) () + g H (ol i) (2 + w54) [P
Oén/gn [—C,C]dx[—c,c]d

Finally, there exists a constant ¢4 such that

[ IBo < Q@) — (P + Q@)lde < ( [ Gl = FlG) @+ )Py

1/2
+ / [(FCo] = Fl¢a)) (z + y)*dady + / [(FlCo] = Fl¢a)) (z + y>|2dxdy> :
[—c,c]? [—c,c]?

By making the change of variables u = x +y and v = y, we get that there exists a constant ¢},
such that

/ |<Po*@><w>—(Pn*@><x>|dx<c;< / (FlGo) — FlGal) (@) du
R2d [—2¢,2¢]

1/2
+ /[_QC,QC} |(F[Co] = FlCa]) (u)*du + /[_267261 (F¢o] = Fléa]) ()] du) _

Using that for all u € R, F[(o]—F[Cn])(u) = anF[Pr, 1(—1,1)](u) Flup, | (u) = an}'[PKn1(_1,1)](u)]:[u](ﬁ),
we have that for b, large enough, there exists a constant ¢ such that

[ 120« @)@) - B < Q)@)ldo < c;’an< [ 17w
R2d [—2¢,2(]

1/2
v [ AP Wi | |f[PKn]”<u>|2du>
[—2¢,2¢] [—2¢,2¢]

Following [Mei07] proof of Theorem 2, we have the following bounds, for constants ¢ > 0
and C' >0

Cu\ X" Cu \*7
<cl=— ()] <
|]:[PK7L](’U/)|\C<K71) ’ ‘]:[PKn} (u)|\c(Kn—1) ’

FIPk,)" ()] < ( Cu )K

K, —2

and
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Finally, we get that there exists ¢’ such that for K, large enough,

/de |(Po * Q)(z) — (P, % Q) (z)|dz < dap, <Knc2)xn_2

Then (16) holds if o, < 1 and K, is chosen, for some large constant C’, as
K, —c (tos(m)
log log(n)

8.5 Proof of Proposition 2

Following the proof of Theorem 3.2 of [GLCL22], after noticing that all arguments go through
with unbounded pg, there exists constants C' > 0 and ng such that for all n > ng,

1Fnp = f*113 < Cmax { exp(~1np), (2 /)27 exp(=110,) | B — ‘1>||§,g,mﬁ,iﬁ/p}~

By Proposition 1, taking and §,§” such that (1 —0)(1 —¢"”) > 1/2 and x = log(n), we obtain

that up to changing the constant C, with probability at least 1 — 2n =1,

- m log(n)\"™" _
”f - f H% < Cmax { eXp(_mn,p)v (2mn,p/p)2 melP eXp(_mnvl)) (nl_(;// 7mn,2pﬁ/p :
(19)

By definition, m,, , < %mfiﬁl)’ so that on the event where (19) is true, there exists ng such

that for n > ng,

N 1 1-96
IF = 7113 < € max { exp(—1mn) [1 Vol () ] ,mn,'ifw}. (20)

Therefore, given the choice of m,, ,,

- 2

sup  Pe,yeon My Ta — S > O <

Px€¥(p,S,8,cs) n
QeQd (v,c(v),E)

and the Proposition follows.
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A Appendix

A.1 Graphs of the estimators of the characteristic function and den-

sity of the signal
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Figure 5: X ~ N(0,1), for i € {1,2}, e ~ £(0)
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Figure 6: X ~ N(0,1), for
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(b) Density estimation

i€ {1,2}, €% ~ N(0,1)
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Figure 9: X ~ 3(2,2), for i € {1,2}, e ~ £(0)

A.2 Loss tables
The following tables 2-21 are used to find the oracle triplet (m, Vest, h). They contain the

loss || max(fn,O) — fl%, and are used to compute the oracle triplet (m,ves,h). The tables

are read as follows: the values of m are on the y-axis, and the values of v are on the x-
axis. For each pair (m, vest), there is a sub table that contains the values of the Ly norm for
h €{0.25,0.5,0.75,1,1.25,1.5,1.75, 2} as follows.

e ]

m || h=0.25
h=0.5
h =0.75
h=1
h=1.25
h=15
h=1.75
h=2
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