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SEMIPARAMETRIC REGRESSION ESTIMATION USING NOISY NONLINEAR
NON INVERTIBLE FUNCTIONS OF THE SIGNAL

Élisabeth Gassiat1 and Benôıt Landelle1, 2

Abstract. We investigate a semiparametric regression model where one gets noisy non linear non
invertible functions of the signal. We focus on the application to bearings-only tracking. We first
investigate the least squares estimator and prove its consistency and asymptotic normality under mild
assumptions. We study the semiparametric likelihood process and prove local asymptotic normality of
the model. This allows to define the efficient Fisher information as a lower bound for the asymptotic
variance of regular estimators and to prove that the maximum likelihood estimator is regular and
asymptotically efficient. Simulations are presented to illustrate our results.

Résumé. On s’intéresse à un modèle de régression semi-paramétrique à partir de fonctions bruitées
non-linéaires non-inversibles du signal. On détaille l’application à la trajectographie passive. On étudie
d’abord l’estimateur des moindres carrés dont on prouve la consistance et la normalité asymptotique
sous des hypothèses raisonnables. On s’intéresse ensuite à l’étude de la vraisemblance dans le cadre
semi-paramétrique et on prouve la normalité asymptotique locale de ce modèle. Ceci permet de définir
l’information de Fisher efficace comme borne inférieure de la variance asymptotique d’estimateurs
réguliers et de prouver que l’estimateur du maximum de vraisemblance est régulier et asymptotiquement
efficace. Des simulations illustrent ces résultats.

1991 Mathematics Subject Classification. 62J02, 62F12, 62F25, 62P30.

...

1. Introduction

In bearings-only tracking (BOT), one gets information about the trajectory of a target only via bearing
measurements obtained by a moving observer. This is a highly ill-posed problem which requires, so that one be
able to propose solutions, the choice of a trajectory model. The literature on the subject is very large, and many
algorithms have been proposed to track the target, see for instance [3], [5], [2], [13]. All these algorithms are
designed for particular classes of models for the trajectory of the target. In [8], it is proven that the least squares
estimator may be very sensitive to some small deterministic perturbations, in which case the algorithms are
highly non robust. However, it has been also claimed in [8] that stochastic perturbations do not essentially alter
the performances of the estimator. The aim of this paper is to develop an estimation theory for a semiparametric
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Figure 1. Angle function

model that applies to BOT. The model we study is the following :
{

Xk = Sθ(tk) + ζk ,

Yk = Ψ(Xk, tk) + εk ,
(1)

where (t, θ) 7→ Sθ(t) is a known map from [0, 1]×Θ to Rs and Θ is the parameter set (in general, a subset of a
finite dimensional euclidian space), the map (x, t) 7→ Ψ(x, t) is a known function from Rs × [0, 1] to R and, in
general, for a fixed t in [0,1], the map x 7→ Ψ(x, t) is non invertible, {tk}k≥0 is the known sequence of observation
times in [0, 1], {ζk}k≥0 is a sequence of random variables taking values in Rs, {εk}k≥0 is a sequence of centered
i.i.d. random variables with known density g with respect to Lebesgue measure on R, with known variance σ2

and independent of the sequence {ζk}k≥0. The process {Xk}k≥0 is referred to as the signal process and is not
observed while {Yk}k≥0 is the observation process. We aim at estimating θ using only the observations {Yk}k≥0.

In case of BOT, the signal {Xk}k≥0 is the trajectory of the target, given by its euclidian coordinates (s = 2)
at times {tk}k≥0, Sθ is the parametric trajectory the target is assumed to follow up to some parameter θ,
for instance uniform linear motion, or a sequence of uniform linear and circular motions, {ζk}k≥0 is a noise
sequence to take into account the fact that the model is only an idealization of the true trajectory and to
allow stochastic departures of the trajectory model and {εk}k≥0 is the observation noise. Since the observer is
moving, if O = {O(t)}t∈[0,1] is its trajectory, the function (x, t) 7→ Ψ(x, t) is the angle, with respect to some
fixed direction, of x−O(t) that is, for x = (x1, x2) different from O(t),

Ψ(x, t) = angle[x1 −O1(t), x2 −O2(t)] , (2)

where the angle function is defined, see figure 1, by

angle(x, y) def=





arctan(x/y) + π × sgn(x) · 1y<0 if x 6= 0 and y 6= 0,
π
2 × sgn(x) if x 6= 0 and y = 0,
π
2 × [1− sgn(y)] if x = 0 and y 6= 0,

In such a case, for any z and fixed t, the set {x : Ψ(x, t) = z} is infinite. Our aim here is to understand how it
is possible to estimate the parameter θ in model (1), what are the limitations in the statistical performances, to
propose estimation procedures, to build confidence regions for θ and to discuss their optimality under the weakest



TITLE WILL BE SET BY THE PUBLISHER 3

possible assumptions on the sequence {ζk}k≥0. Indeed, we would like to apply the results to BOT under realistic
assumptions, for which it is not a strong assumption to assume that the observation noise {εk}k≥0 consists of
i.i.d. random variables with known distribution, but the trajectory noise {ζk}k≥0 may be quite complicated
and unknown. To begin with, we will assume that the variables {ζk}k≥0 are i.i.d. with unknown distribution.

As such, the model may be viewed as a regression model with two variables, in which one of the variables
is random, is not observed and follows itself a regression model. One could think that it looks like an inverse
problem, or that the model may be understood as a state space model, or a mixed effects model, but in a
nonstandard way, so that we have not been able to find results in the literature that apply to this setting.
Throughout the paper, observations {Yk}k≥0 are assumed to follow model (1) with true (unknown) parameter
θ∗ and the observation times are tk = k/n with k ∈ {1, . . . , n}. All norms ‖ · ‖ are euclidian norms.

In Section 2, we consider least squares estimation and prove consistency and asymptotic normality in this
setting, see Theorems 1 and 2. This allows to introduce basic considerations and set some assumptions. We
prove that the results apply to BOT for linear observable trajectory models and when the trajectory noise
has an isotropic distribution, see Theorem 3. Then, in Section 3 we study the likelihood process to set local
asymptotic normality and efficiency in the parametric setting where the density of the noise {ζk}k≥0 is known,
and define the efficient Fisher information in the semiparametric setting where the density of the noise {ζk}k≥0

is unknown. This also gives an estimation criterion which may be used even if the trajectory noise is correlated.
In Section 4, we propose strategies for semiparametric estimation and discuss possible extension of the results
to possibly dependent trajectory noise {ζk}k≥0. Section 5 is devoted to simulations. In each section, particular
attention is given to the application of the results to BOT.

2. Least squares estimation

In sections 2 and 3, we will use :

Assumption 1. {ζk}k≥0 is a sequence of i.i.d. random variables.

To be able to obtain a consistent estimator of θ, we require that, in the absence of noise (both observation
noise and trajectory noise), the observation at all times is sufficient to retrieve the parameter. This is the
observability assumption :

Assumption 2. If θ ∈ Θ is such that Ψ[Sθ(t), t] = Ψ[Sθ∗(t), t] a.e. for all t ∈ [0, 1], then θ = θ∗.

If the observation noise is centered, in the absence of trajectory noise, the fact that only Ψ[Sθ(t), t] is observed
with additive noise is not an obstacle to the estimation of θ under Assumption 2. But with trajectory noise,
only the distribution of Ψ[Sθ(t) + ζ1, t] may be retrieved from noisy data. In case the marginal distribution of
the ζk’s is known, this may be enough, but in case it is unknown, one has to be aware of some link between the
distribution of Ψ[Sθ(t) + ζ1, t] and θ. We thus introduce the following assumption, which will be proved to hold
in some BOT situations.

Assumption 3. For all t in [0, 1], let us assume that

E{Ψ[Sθ∗(t) + ζ1, t]} = Ψ[Sθ∗(t), t] .

Let us now define the least squares criterion and the least squares estimator (LSE) by

Mn(θ) def= n−1
n∑

k=1

{Yk −Ψ[Sθ(tk), tk]}2 , θ̄n
def= arg min

θ∈Θ
Mn(θ),

where arg minθ∈Θ Mn(θ) is any minimizer of Mn.
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2.1. Consistency

We assume that Θ is a compact subset of Rd and we will use :

Assumption 4. The maps t 7→ E
{
Ψ[Sθ∗(t) + ζ1, t]2

}
and (t, θ) 7→ Ψ[Sθ(t), t] define finite continuous functions

on respectively [0, 1] and [0, 1]×Θ. Moreover,

lim
M→∞

sup
t∈[0,1]

E
(
Ψ[Sθ∗(t) + ζ1, t]21

{
Ψ[Sθ∗(t) + ζ1, t]2 > M

})
= 0 .

Theorem 1. Under assumptions 1 , 2, 3 and 4, θ̄n converges in probability to θ∗ as n tends to infinity.

The proof is a consequence of general results in M -estimation. We begin with a simple Lemma:

Lemma 1. Under Assumption 1, if F is a real function on Rs × [0, 1] such that

sup
t∈[0,1]

E|F (ζ1, t)| < ∞ , lim
M→∞

sup
t∈[0,1]

E{|F (ζ1, t)|1|F (ζ1,t)|>M} = 0 ,

and E[F (ζ1, ·)] is Riemann-integrable, then

n−1
n∑

k=1

F (ζk, tk) =
∫ 1

0

E[F (ζ1, t)] dt + oP(1) .

Proof. First of all, by the integrability assumption,

lim
n→∞

n−1
n∑

k=1

E[F (ζk, tk)] =
∫ 1

0

E[F (ζ1, t)] dt .

Then

n−1
n∑

k=1

{F (ζk, tk)− E[F (ζk, tk)]}

= n−1
n∑

k=1

{
F (ζk, tk)1|F (ζk,tk)|>M − E [

F (ζk, tk)1|F (ζk,tk)|>M

]}

+ n−1
n∑

k=1

{
F (ζk, tk)1|F (ζk,tk)|≤M − E [

F (ζk, tk)1|F (ζk,tk)|≤M

]}
.

The variance of the second term is upper bounded by 2M2/n so that the second term tends to 0 in prob-
ability as n tends to infinity and the absolute value of the first term has expectation upper bounded by
2 supt∈[0,1] E

[|F (ζ1, t)|1|F (ζ1,t)|>M

]
, which may be made smaller than any positive ε for big enough M , which

proves the lemma. ¤

Proof of Theorem 1. Let us define

M(θ) def=
∫ 1

0

E {Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ(t), t]}2 dt + σ2 .



TITLE WILL BE SET BY THE PUBLISHER 5

Direct calculations yield

M(θ)−M(θ∗)

=
∫ 1

0

E
(
{Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ(t), t]}2 − {Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ∗(t), t]}2

)
dt ,

=
∫ 1

0

{Ψ[Sθ∗(t), t]−Ψ[Sθ(t), t]} × {2E (Ψ[Sθ∗(t) + ζ1, t])−Ψ[Sθ∗(t), t]−Ψ[Sθ(t), t]} dt.

By Assumption 3, it follows that

M(θ)−M(θ∗) =
∫ 1

0

{Ψ[Sθ(t), t]−Ψ[Sθ∗(t), t]}2 dt ,

so that M(θ) has a unique minimum at θ∗ by Assumption 2. Also, under Assumption 4, the map θ 7→ M(θ) is
uniformly continuous from Θ to R. Now, for any θ ∈ Θ,

Mn(θ) = n−1
n∑

k=1

ε2
k + 2n−1

n∑

k=1

εk {Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]}

+ n−1
n∑

k=1

{Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]}2 . (3)

It follows, by law of large numbers, that n−1
∑n

k=1 ε2
k = σ2 + oPθ∗ (1). The variance of the second expression in

the right-hand side of (3) is given by

V

(
n−1

n∑

k=1

εk {Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]}
)

= σ2n−2
n∑

k=1

E {Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]}2 ,

and converges to 0, so that, by Tchebychev’s inequality,

2n−1
n∑

k=1

εk {Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]} = oPθ∗ (1) .

Applying Lemma 1 yields

n−1
n∑

k=1

{Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]}2 =
∫ 1

0

E {Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ(t), t]}2 dt + oPθ∗ (1) .

Thus for any θ ∈ Θ, Mn(θ) converges in probability to M(θ). Using the compacity of Θ and the second part of
Assumption 4, it is possible to strengthen this pointwise convergence to a uniform one:

sup
θ∈Θ

|Mn(θ)−M(θ)| = oPθ∗ (1). (4)
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Indeed, for any θ and θ′ in Θ,

Mn(θ)−Mn(θ′) = 2n−1
n∑

k=1

εk {Ψ[Sθ′(tk), tk]−Ψ[Sθ(tk), tk]}

+ n−1
n∑

k=1

{2Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ(tk), tk]−Ψ[Sθ′(tk), tk]} {Ψ[Sθ′(tk), tk]−Ψ[Sθ(tk), tk]} ,

so that, for any δ > 0,

sup
(θ,θ′)∈Θ2

‖θ−θ′‖≤δ

|Mn(θ)−Mn(θ′)| ≤ ω(δ) n−1
n∑

k=1

{
2|Ψ[Sθ∗(tk) + ζk, tk]|+ 2 sup

(θ,t)∈Θ×[0,1]

|Ψ[Sθ(t), t]|+ 2|εk|
}

,

where ω(·) is the uniform modulus of continuity of (t, θ) 7→ Ψ[Sθ(t), t]. The right-hand side of the inequality
converges in probability by Lemma 1 to a constant times ω(δ), so that equation (4) follows from compacity of
Θ. Theorem 1 now follows from [14, Theorem 5.7]. ¤

2.2. Asymptotic normality

Asymptotic normality of the least squares estimator will follow using usual arguments under further regularity
assumptions.

Assumption 5. There exists a neighborhood U of θ∗ such that for all t ∈ [0, 1], the map θ 7→ Ψ[Sθ(t), t]
possesses two derivatives on U that are continuous as functions of (θ, t) over U × [0, 1].

Let us define, for θ in U ,

IR(θ) def=
∫ 1

0

∇θΨ[Sθ(t), t]∇θΨ[Sθ(t), t]T dt ,

IΨ(θ) def=
∫ 1

0

E
(
{Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ(t), t]}2

)
∇θΨ[Sθ(t), t]∇θΨ[Sθ(t), t]T dt .

Then :

Theorem 2. Under Assumptions 1 , 2, 3, 4 and 5, if IR(θ∗) is non singular,

√
n

(
θ̄n − θ∗

)
= I−1

R (θ∗)n−1/2
n∑

k=1

{Ψ[Sθ∗(tk) + ζk, tk]−Ψ[Sθ∗(tk), tk] + εk}∇θΨ[Sθ∗(tk), tk] + oPθ∗ (1) .

In particular,
√

n
(
θ̄n − θ∗

)
converges in distribution, as n →∞, to N (

0, I−1
M (θ∗)

)
where

I−1
M (θ∗) = I−1

R (θ∗)
[
IΨ(θ∗) + σ2IR(θ∗)

]
I−1
R (θ∗) .

Let us notice that, for a null sequence {ζk}k≥0, we retrieve the usual Fisher information matrix for the
parametric regression model.

Proof. The proof follows Wald’s arguments. On the set
{
θ̄n ∈ U

}
which can be assumed to be convex and

which has probability tending to 1 according to Theorem 1,

∇θMn(θ̄n) = 0 = ∇θMn(θ∗) +
∫ 1

0

∇2
θMn[θ∗ + s(θ̄n − θ∗)] ds (θ̄n − θ∗) .
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Direct calculations yield, for any θ ∈ U ,

∇θMn(θ) = −2n−1
n∑

k=1

{Ψ[Sθ∗(tk) + ζk, tk] + εk −Ψ[Sθ(tk), tk]}∇θΨ[Sθ(tk), tk] ,

and

∇2
θMn(θ) = 2n−1

n∑

k=1

∇θΨ[Sθ(tk), tk]∇θΨ[Sθ(tk), tk]T

− 2n−1
n∑

k=1

{Ψ[Sθ∗(tk) + ζk, tk] + εk −Ψ[Sθ(tk), tk]}∇2
θΨ[Sθ(tk), tk] . (5)

Notice that, using Assumption 3, ∇θMn(θ∗) is a centered random variable, and that, using Assumptions 4, 5,
the variance of ∇θMn(θ∗) converges to 4

[
IΨ(θ∗) + σ2IR(θ∗)

]
as n → ∞. Also using Assumptions 3, 4, 5, and

applying Lemma 1, ∇2
θMn(θ) converges in probability to 2IR(θ) as n → ∞. Using Assumption 5, there exists

an increasing function ω satisfying limδ→0 ω(δ) = 0 such that, for all θ and θ′ in U with ‖θ − θ′‖ ≤ δ,

∥∥∇2
θMn(θ)−∇2

θMn(θ′)
∥∥ ≤ ω(δ)× n−1

n∑

k=1

{|Ψ[Sθ∗(tk) + ζk, tk] + εk|+ 2} .

It follows that, on the set
{
θ̄n ∈ U

}
, for all s in [0, 1],

∥∥∇2
θMn[θ∗ + s(θ̄n − θ∗)]−∇2

θMn(θ∗)
∥∥ ≤ ω

(‖θ̄n − θ∗‖)× n−1
n∑

k=1

{|Ψ[Sθ∗(tk) + ζk, tk] + εk|+ 2} .

By Lemma 1, n−1
∑n

k=1 |Ψ[Sθ∗(tk) + ζk, tk] + εk| = OPθ∗ (1) so that, using the consistency of θ̄n, Lemma 1 and
Assumption 5, ∫ 1

0

∇2
θMn[θ∗ + s(θ̄n − θ∗)] ds = 2IR(θ∗) + oPθ∗ (1) .

Finally, we obtain

[IR(θ∗) + oPθ∗ (1)]
√

n
(
θ̄n − θ∗

)
= n−1/2

n∑

k=1

{Ψ[Sθ∗(tk)+ ζk, tk]+ εk−Ψ[Sθ∗(tk), tk]}∇θΨ[Sθ∗(tk), tk]+oPθ∗ (1) .

Using Assumption 5, the convergence in distribution to N (
0, I−1

M (θ∗)
)

is a consequence of the Lindeberg-Feller
Theorem and Slutzky’s Lemma. ¤

Notice that, if ÎM is a consistent estimator of IM (θ∗), by Slutsky’s Lemma, n1/2Î
1/2
M

(
θ̄n − θ∗

)
converges in

distribution to the centered standard gaussian distribution in Rd, which allows to build confidence regions with
asymptotic known level. If the distribution of the trajectory noise {ζk}k≥0 is known, one may use ÎM = IM

(
θ̄n

)
.

If the distribution of the noise is unknown, one could use bootstrap procedures to build confidence regions based
on the empirical distribution of θ̄n using bootstrap replicates.

Another possibility occurs if one has a majoration

E
(
{Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ∗(t), t]}2

)
≤ A2, (6)

where A denotes a known constant. Indeed, in such a case, IΨ(θ∗) is upper bounded (in the natural ordering of
positive symetric matrices) by A2IR(θ∗), so that I−1

M (θ∗) is upper bounded by (A2 + σ2)I−1
R (θ∗), and one may

use (A2 + σ2)I−1
R

(
θ̄n

)
as variance matrix to obtain conservative confidence regions.
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2.3. Application to BOT

To apply the results to BOT, one has to see whether Assumptions 1, 2, 3, 4 and 5 hold and if IR(θ∗) is non
singular. If y > 0, the angle measure is given by

angle(x, y) = arctan(x/y) . (7)

To ensure that the angle measure is given by (7), we will use the following hypothesis :

Assumption 6. For all θ in Θ and t in [0, 1],

Sθ,2(t)−O2(t) > 0 .

This hypothesis is usually made in BOT litterature. Under assumption 6, the observation is given by

Ψ(x, t) = arctan[x1 −O1(t)]/[x2 −O2(t)] . (8)

The bearing exact measurements of the non noisy possible trajectory stay inside an interval with length π. This
may be seen as an assumption on the manoeuvres of the observer. Assumption 2 is the observability assumption
which holds for models such as uniform linear motion if the observer does not move itself along uniform linear
motion, or a sequence of uniform linear and circular motions, if the observer does not move along uniform linear
motion or circular motion in the same time intervals as the target. Various observability properties are proved
in [7]. Assumptions 4 and 5 hold as soon as the trajectory model Sθ(t) is twice differentiable for all t in [0, 1]
as a function of θ and the denominator in (8) may not be 0.The fact that IR(θ∗) is non singular is equivalent
to the observability assumptions for linear models. Let us introduce such models.

Let (e1, . . . , ep) be a family of continuous functions on [0, 1], θ = (a1, . . . , ap, b1, . . . , bp) in Θ a subset of R2p

and

Sθ = (Sθ,1, Sθ,2) =

(
p∑

k=1

akek,

p∑

k=1

bkek

)
. (9)

Then

Proposition 1. Under model (9) satisfying Assumption 6, Assumption 2 holds if and only if IR(θ∗) is non
singular.

Proof. Let θ∗ = (a∗1, . . . , a
∗
p, b

∗
1, . . . , b

∗
p). For t in [0, 1], let

m(θ, t) = [Sθ,1(t)−O1(t)]/[Sθ,2(t)−O2(t)] .

Thanks to Assumption 6, simple algebra gives that Ψ[Sθ(t), t] = Ψ[S∗θ (t), t] if and only if

p∑

k=1

(ak − a∗k)ek(t)−
p∑

k=1

(bk − b∗k)ek(t)m(θ∗, t) = 0 ,

so that Assumption 2 holds if and only if the family of functions
(
e1, . . . , ep, e1 ×m(θ∗, ·), . . . , ep ×m(θ∗, ·)) is

linearly independent in the space of continuous functions on [0, 1]. Also, for i in {1, . . . , p} and t in [0, 1], it
follows by direct calculations

∂

∂ai
arctan m(θ∗, t) = −{

[1 + m(θ∗, t)2][Sθ,1(t)−O1(t)]
}−1

ei(t)m(θ∗, t) ,

and
∂

∂bi
arctan m(θ∗, t) =

{
[1 + m(θ∗, t)2][Sθ,1(t)−O1(t)]

}−1
ei(t) ,
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so that IR(θ∗) is non singular if and only if the family of functions
(
e1, . . . , ep, e1 ×m(θ∗, ·), . . . , ep ×m(θ∗, ·))

is linearly independent in the space of continuous functions on [0, 1], which ends the proof. ¤
Thus under model (9), if the trajectory of the observer is such that Assumptions 2 and Assumption 6 hold,

then Assumptions 4 and 5 hold and IR(θ∗) is non singular.

What remains to be seen is whether Assumption 3 holds and it is the case under a simple assumption on the
distribution of the trajectory noise :

Assumption 7. ζ1 has an isotropic distribution in R2 and a density with compact support such that, for all
t ∈ [0, 1],

Sθ∗,2(t) + ζ1,2 −O2(t) > 0 .

We introduce some prior knowledge on the trajectory and on the variance of the trajectory noise to be able
to obtain conservative confidence regions.

Assumption 8. The trajectory t 7→ Sθ∗(t) is such that, for all t ∈ [0, 1],

‖Sθ∗(t)−O(t)‖ ≥ Rmin ,

and a constant number A2 such that

π2
(
1 + π−2/3

)3 E
(‖ζ1‖2

)

R2
min

≤ A2

is known.

This condition makes sense since in the context of passive tracking one usually assumes that the distance
between target and observer is quite large. Let us denote by Cα a region with coverage 1− α for the standard
gaussian distribution in Rd.

Theorem 3. If the trajectory model (t, θ) 7→ Sθ(t) and the move of the observer are such that Assumptions
2, 4, 5 and 8 hold and IR(θ∗) is non singular, or if the trajectory model is (9) satisfying Assumption 6 and
Assumption 2 holds, if moreover Assumption 1 and 7 hold, then, for any α > 0,

lim inf
n→∞

Pθ∗
[√

n(A2 + σ2)−1/2I
1/2
R

(
θ̄n

) (
θ̄n − θ∗

) ∈ Cα

]
≥ 1− α .

Proof. Under Assumption 7, let the density of ζ1 be F (‖ζ1‖). Recall that the trajectory of the observer is
{O(t)}t∈[0,1]. Let β(t) = Ψ[S∗θ (t), t] = arctan[Sθ∗,1(t) − O1(t)]/[Sθ∗,2(t) − O2(t)]. It follows by trigonometric
considerations, see figure 2, that

E{Ψ[Sθ∗(t) + ζ1, t]}

=
∫∫

R×(−π,π)

arctan
{

Sθ∗,1(t)−O1(t) + r sinα

Sθ∗,2(t)−O2(t) + r cos α

}
F (r) r dr dα ,

= β(t) +
∫∫

R×(−π,π)

arctan
{

r sin[α− β(t)]
‖Sθ∗(t)−O(t)‖+ r cos[α− β(t)]

}
F (r) r dr dα .

Let

Gθ∗,t(r, α) = arctan
{

r sin α

‖Sθ∗(t)−O(t)‖+ r cos α

}
.

Then,

E{Ψ[Sθ∗(t) + ζ1, t]} = Ψ[Sθ∗(t), t] +
∫∫

R×(−π,π)

Gθ∗,t(r, α)F (r) r dr dα .
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O(t)

β(t)

S(t)

αr

Target

Platform

Figure 2. Isotropic noise

But for any r > 0, for any α ∈ (−π, π), Gθ∗,t(r,−α) = Gθ∗,t(r, α) so that

E{Ψ[Sθ∗(t) + ζ1, t]} = Ψ[Sθ∗(t), t] .

Now,

Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ∗(t), t] =
∫ 1

0

∇xΨ[Sθ∗(t) + hζ1, t]Tζ1 dh ,

and direct calculations provide ‖∇xΨ[x, t]‖ = ‖x−O(t)‖−1. Thus, for any a ∈]0, 1[,

E
(
{Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ∗(t), t]}2

)

≤ π2P (‖ζ1‖ ≥ a‖Ψ[Sθ∗(t), t]−O(t)‖) +
E

(‖ζ1‖2
)

(1− a)2‖Ψ[Sθ∗(t)−O(t)‖2 ,

≤ π2P (‖ζ1‖ ≥ aRmin) +
E

(‖ζ1‖2
)

(1− a)2R2
min

,

since |Ψ(u) − Ψ(v)| ≤ π for any real numbers u and v and by using the triangular inequality and Assumption
8. But Tchebychev’s inequality leads to

E
(
{Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ∗(t), t]}2

)
≤ E

(‖ζ1‖2
)

R2
min

(
π2

a2
+

1
(1− a)2

)
, (10)

which is minimum for a = 1
1+π−2/3 leading to

(
π2

a2 + 1
(1−a)2

)
= π2

(
1 + π−2/3

)3
and

E
(
{Ψ[Sθ∗(t) + ζ1, t]−Ψ[Sθ∗(t), t]}2

)
≤ A2 .

To conclude one may apply the concluding remark of Section 2.2 to obtain asymptotic conservative confidence
regions for θ. ¤
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3. Likelihood and efficiency

Let F be the set of probability densities f on Rs such that for all t in [0, 1], for all θ in Θ,

∫

Rs

Ψ[Sθ(t) + ζ, t]f(ζ) dζ = Ψ[Sθ(t), t] . (11)

We will replace Assumptions 1 and 3 by :

Assumption 9. {ζk}k≥0 is a sequence of i.i.d. random variables with density f∗ ∈ F .

The normalized log-likelihood is the function on Θ×F given by

Jn(θ, f) def= n−1
n∑

k=1

log
(∫

Rs

g {Yk −Ψ[Sθ(tk) + u, tk]} f(u) du

)
. (12)

Define

G [(ζ, ε), t; θ] def= log
(∫

Rs

g {Ψ[Sθ∗(t) + ζ, t] + ε−Ψ[Sθ(t) + u, t]} f(u) du

)
.

As soon as for any (θ, f) in Θ×F , it is possible to apply Lemma 1 to G [(·), ·; θ] with the sequence {ζk, εk}k≥0,
Jn(θ, f) converges in probability to

J(θ, f) =
∫ 1

0

∫

Rs

∫

R
log

(∫

Rs

g {Ψ[Sθ∗(t) + ζ, t] + ε−Ψ[Sθ(t) + u, t]} f(u) du

)
g(ε)f∗(ζ) dεdζ dt. (13)

Let

p(θ,f) (z, t) def=
∫

Rs

g {z −Ψ[Sθ(t) + u, t]} f(u) du

be the density, for fixed t, of the random variable

Z
def= Ψ[Sθ(t) + U, t] + V ,

where U is a random variable in Rs with density f independent of the real-valued random variable V with density
g. Thus, p(θ∗,f∗) (·, tk) is the probability density of Yk. Then, the change of variable z = Ψ[Sθ∗(t) + ζ, t] + ε in

∫

R
log

(∫

Rs

g {Ψ[Sθ∗(t) + ζ, t] + ε−Ψ[Sθ(t) + u, t]} f(u) du

)
g(ε) dε

leads to

J(θ, f) =
∫∫

R×(0,1)

p(θ∗,f∗) (z, t) log p(θ,f) (z, t) dz dt .

Thus, for any (θ, f) in Θ×F ,
J(θ∗, f∗) ≥ J(θ, f),

and J(θ∗, f∗) = J(θ, f) if and only if p(θ,f) (z, t) = p(θ∗,f∗) (z, t) (t, z)-a.e., that is the probability distribution
of Z = Ψ[Sθ(t) + U, t] + V is the same as that of Ψ[Sθ∗(t) + U∗, t] + V , where U∗ is a random variable in Rs

with density f∗ independent of the random variable V . But if f ∈ F and f∗ ∈ F , taking expectations leads to
the fact that, t-a.e., Ψ[Sθ(t), t] = Ψ[Sθ∗(t), t], so that θ = θ∗ if Assumption 2 holds. In other words, J(θ, f) is
maximum only for θ = θ∗.
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Following the same lines as for the LSE, we may thus easily obtain that, if the probability density f∗ is
known, the parametric maximum likelihood estimator is consistent and asymptotically gaussian. Define the
parametric maximum likelihood estimator as

θ̃n
def= arg max

θ∈Θ
Jn(θ, f∗) ,

where arg maxθ∈Θ Jn(θ, f∗) is any maximizer of Jn(·, f∗). If for any θ in Θ, there exists a small open ball
containing θ such that Lemma 1 applies to supθ∈U G [(·), ·; θ], it is possible, as in [14, Theorem 5.14], to strengthen
the convergence of Jn(θ, f∗) to J(θ, f∗) in a uniforme one. The consistency of θ̃n follows :

Theorem 4. Under assumptions 2 and 9, if moreover Lemma 1 applies to supθ∈U G [(·), ·; θ], then the estimator
θ̃n is consistent.

We will use the notation Yt for
Yt

def= Ψ[Sθ∗(t) + ζ1, t] + ε1 ,

to simplify the writing of some integrals. We shall introduce the assumptions we need to prove the asymptotic
distribution of θ̃n:

Assumption 10. The following conditions are assumed :

• For all (z, t) in R× [0, 1], the function θ 7→ p(θ,f∗) (z, t) is twice continuously differentiable;

• For any θ in Θ, t 7→ E
{∥∥∇θ log p(θ,f∗)(Yt, t)

∥∥2
}

is finite and continuous;

• There exists a neighborhood U of θ∗ such that, for all θ in U ,

– t 7→ E
{∇2

θ log p(θ,f∗)(Yt, t)
}

is finite and continuous;

– Lemma 1 applies to log p(θ,f)(Yt, t), to
∥∥∇θ log p(θ,f∗)(Yt, t)

∥∥2 and to all components of
∇2

θ log p(θ,f∗)(Yt, t).

Introduce the parametric Fisher information matrix :

I(θ) def=
∫ 1

0

E

{
∇θp(θ,f∗)

p(θ,f∗)
(Yt, t)

∇θp(θ,f∗)

p(θ,f∗)

T

(Yt, t)

}
dt .

Theorem 5. Under assumptions 2, 9 and 10, θ̃n converges in probability to θ∗ as n tends to infinity.
Moreover, if I(θ∗) is non singular,

√
n
(
θ̃n − θ∗

)
= I−1(θ∗)

1√
n

n∑

k=1

∇θp(θ∗,f∗)

p(θ∗,f∗)
(Yk, tk) + oPθ∗ (1) ,

and
√

n
(
θ̃n − θ∗

)
converges in distribution, as n →∞, to N (

0, I−1(θ∗)
)
.

The proof follows the same lines as that of Theorems 1 and 2 and is left to the reader.
Notice that under the same assumptions, it is easy to prove that the parametric model is locally asymptotically
normal in the sense of Le Cam (see [9]) so that if I(θ∗) is singular, there exists no regular estimator of θ which
is
√

n-consistent. Thus if IR(θ∗) is non singular and the assumptions in Theorem 2 hold, in which case the LSE
is regular

√
n-consistent, then I(θ∗) is also non singular.

To investigate the optimality of possible estimators in the semiparametric situation, with f∗ unknown but
known to belong to F , we use Le Cam’s theory as developed for non i.i.d. observations by Mc Neney and
Wellner [10]. Introduce the set B of integrable functions b on Rs such that :
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•
∫

Rs

b(ζ) dζ = 0 and there exists δ > 0 such that f∗ + δb ≥ 0;

• for all t in [0, 1], for all θ in Θ,
∫

Rs

Ψ [Sθ(t) + ζ, t] b(ζ) dζ = 0;

•
∫ 1

0

E

{(
p(θ∗,b)

p(θ∗,f∗)
(Yt, t)

)2
}

dt < ∞.

Let H = Rd × B be endowed with the inner product :

〈(a, b), (a′, b′)〉H
def=

∫ 1

0

E

{(
∇θp(θ∗,f∗)

T

p(θ∗,f∗)
(Yt, t) · a +

p(θ∗,b)

p(θ∗,f∗)
(Yt, t)

)(
∇θp(θ∗,f∗)

T

p(θ∗,f∗)
(Yt, t) · a′ +

p(θ∗,b′)

p(θ∗,f∗)
(Yt, t)

)}
dt .

We will need only local smoothness, so we introduce :

Assumption 11. There exists a neighborhood U of θ∗ such that for θ in U :

• for all (z, t) in R× [0, 1], the function θ 7→ p(θ,f∗)(z, t) is twice continuously differentiable;

• The maps t 7→ E
{‖∇θ log p(θ,f∗)(Yt, t)‖2

}
and t 7→ E

{∇2
θ log p(θ,f∗)(Yt, t)

}
are finite and continuous;

• For any b in B, for all (z, t) in R × [0, 1], the map θ 7→ p(θ,b)(z, t) is continuously differentiable and

t 7→ E
{∥∥∥∥p(θ∗,f∗)[Yt, t]−1 · ∇θ

∫
g {Yt −Ψ [Sθ(t) + u, t]} b(u) du

∥∥∥∥
}

is finite and continuous;

• Lemma 1 applies to
∥∥∇θ log p(θ,f∗)[Yt, t]

∥∥2, all components of ∇2
θ log p(θ,f∗)[Yt, t] and to∥∥p(θ∗,f∗)(Yt, t)−1 · ∇θp(θ,b)(Yt, t)

∥∥ for θ in U .

Let Pn,(θ,f) be the distribution of Y1, . . . , Yn when the parameter is θ and the density of the trajectory noise
is f . For (θ, f) in Θ×F , let

Λn(θ, f) def= log
[

dPn,(θ,f)(Y1, . . . , Yn)
dPn,(θ∗,f∗)(Y1, . . . , Yn)

]
= n[Jn(θ, f)− Jn(θ∗, f∗)] .

Proposition 2. Assume that Assumption 11 holds. Then the sequence of statistical models
(
Pn,(θ,f)

)
(θ,f)∈Θ×F

is locally asymptotically normal with tangent space H, that is, for (a, b) in H,

Λn

(
θ∗ +

a√
n

, f∗ +
b√
n

)
= Wn (a, b)− 1

2
‖(a, b)‖2H + oPθ∗ (1) ,

where

Wn (a, b) =
1√
n

n∑

k=1

[
∇θp(θ∗,f∗)

T

p(θ∗,f∗)
(Yk, tk) · a +

p(θ∗,b)

p(θ∗,f∗)
(Yk, tk)

]
,

and for any finite subset h1, . . . , hq ∈ H, the random vector (Wn(h1), . . . , Wn(hq)) converges in distribution to
the centered Gaussian vector with covariance 〈hi, hj〉H.

Proof.

Λn

(
θ∗ +

a√
n

, f∗ +
b√
n

)
=

n∑

k=1

log
[
1 +

p(θ∗+ a√
n

,f∗) − p(θ∗,f∗)

p(θ∗,f∗)
(Yk, tk) +

1√
n

p(θ∗+ a√
n

,b)

p(θ∗,f∗)
(Yk, tk)

]

= Wn(a, b)− 1
2
‖(a, b)‖2H + oPθ∗ (1) ,
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by using Taylor expansion till second order of u 7→ log(1 + u), Taylor expansion till second order of θ 7→
p(θ,f∗)(z, t) and Taylor expansion till first order of θ 7→ p(θ,b)(z, t), which gives the first order term Wn(a, b), and
then applying Lemma 1 to the second order terms to get 1

2‖(a, b)‖2H+oPθ∗ (1). The convergence of (Wn(h))h∈H
to the isonormal process on H comes from Lindeberg Theorem applied to finite dimensional marginals. ¤

The interest of Proposition 2 is that it gives indications on the limitations on the estimation of θ∗ when f∗

is unknown. Indeed, the efficient Fisher information I∗ is given by

inf
b∈B

‖(a, b)‖2H = aTI∗a ,

and if I∗ is non singular, any regular estimator θ̂n that converges at speed
√

n has asymptotic covariance Σ
which is lower bounded (in the sense of positive definite matrices) by (I∗)−1. In case IR(θ∗) is non singular and
the assumptions in Theorem 2 hold, one may deduce that I∗ is non singular.

3.1. Application to BOT

As seen in Section 2.3, the set of isotropic densities with some compact support is a subset of F . If g is
twice differentiable, positive and upper bounded, if the trajectory model θ 7→ Sθ(t) is twice differentiable for
all t ∈ [0, 1], then Assumptions 10 and 11 hold under almost any trajectory of the observer. Indeed, one may
apply Lebesgue’s Theorem to obtain derivatives of integrals, and use the fact that the function z 7→ arctan z is
infinitely differentiable, has vanishing derivatives at infinity, is bounded and has two bounded derivatives.

Moreover, as seen again in Section 2.3, if the trajectory model is (9) and satisfies Assumption 2, then IR(θ∗)
is non singular, so that the efficient Fisher information I∗ is non singular, and all results of Section 3 apply.

4. Further considerations

It would be of great interest to have a more explicit general expression of I∗ and of greater interest to
exhibit an asymptotically regular and efficient estimator θ̂n. If one could approximate the profile likelihood
supf∈F Jn(θ, f), one could hope that the maximizer θ̂n of it be a good candidate.

Another possibility would be to use Bayesian estimators. Indeed, in the parametric context, the Bernstein-
von Mises Theorem tells us that asymptotically, the posterior distribution of the parameter is gaussian, centered
at the maximum likelihood estimator and with variance the inverse of Fisher information (see [14] for a nice
presentation). Extensions to semiparametric situations are now available, see [4]. To obtain semiparametric
Bernstein-von Mises Theorems, one has to verify assumptions relating the particular model and the choice of
the non parametric prior. This could be the object of further work. Then, with an adequate choice of the prior
on Θ×F , taking advantage of MCMC computations, one could propose bayesian methods to estimate θ∗ (mean
posterior, maximum posterior, median posterior for example).

To extend the results of the preceding sections in the case where the trajectory noise is no longer a sequence
of i.i.d. random variables, one needs to prove laws of large numbers and central limit theorems for empirical
sums such as n−1

∑n
k=1 F (εk, tk), we prove some below for stationary weakly dependent sequences {ζk}k≥0. In

such a case, if M(θ) and J(θ, f∗) are still the limits of Mn(θ) and Jn(θ, f∗) respectively, then asymptotics for
θ̄n and θ̃n could be obtained. Here, Jn(θ, f∗) is no longer the normalized log-likelihood, rather the marginal
normalized log-likelihood, but J(θ, f∗) is still a contrast function.

Since the convergence of the expectation relies on purely deterministic arguments (Rieman integrability), we
focus on centered functions. We assume in this section that :

Assumption 12. {ζk}k≥0 is a stationary sequence of random variables such that, for all t in [0, 1],

E[F (ζ1, t)] = 0 .
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Denote by {αk}k≥0 the strong mixing coefficients of the sequence {ζk}k≥0 defined as in [12], that is, for k ≥ 1,

αk
def= 2 sup

`∈N, A∈σ(ζi:i≤`), B∈σ(ζi:i≥k+`)

|P(A ∩B)− P(A)P(B)| ,

and α0 = 1/2. Notice that they are also an upper bound for the strong mixing coefficients of the sequence
{F (ζk, tk)}k≥0 for any sequence {tk}k≥0 of real numbers in [0, 1].

Proposition 3. Under Assumption 12, if αk tends to 0 as k → ∞, if supt∈[0,1] E|F (ζ1, t)| is finite and
supt∈[0,1] E{|F (ζ1, t)|1|F (ζ1,t)|>M} tends to 0 as M →∞, then, as n →∞,

n−1
n∑

k=1

F (ζk, tk) = oP(1) .

Proof. Using Ibragimov’s inequality [6], for any M > 0,

V

(
n−1

n∑

k=1

F (ζk, tk)1|F (ζk,tk)|≤M

)

= n−2
n∑

i=1

n∑

j=1

Cov
[
F (ζi, ti)1|F (ζi,ti)|≤M , F (ζj , tj)1|F (ζj ,tj)|≤M

]
,

≤ 2M2n−2
n∑

i=1

n∑

j=1

α|i−j| ,

≤ 2M2n−1
n−1∑

k=0

αk ,

which tends to 0 by Cesaro’s lemma as n →∞. The end of the proof is similar to that of Lemma 1. ¤

Define now
α−1 (u) def= inf {k ∈ N : αk ≤ u} =

∑

i≥0

1u<αi .

Define also, for any t in [0, 1],

Qt(u) def= inf {x ∈ R : P [|F (ζ1, t)| > x] ≤ u} ,

and
Q(u) def= sup

t∈[0,1]

Qt (u) .

We shall assume that :

Assumption 13.
∫ 1

0

α−1 (u)Q2 (u) du < ∞ .

This condition is the same as the convergence of the series
∑

k≥0

∫ αk

0

Q2 (u) du .

Applying [12, Theorem 1.1], one gets, for any t in [0, 1] and k ≥ 0,

|Cov[F (ζ0, t), F (ζk, t)]| ≤ 2
∫ αk

0

Q2(u) du ,
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so that if Assumption 13 holds, one may define

γ2 def=
∫ 1

0

V[F (ζ0, t)] dt + 2
+∞∑

k=1

∫ 1

0

Cov[F (ζ0, t), F (ζk, t)] dt . (14)

Now :

Proposition 4. Under Assumptions 12 and 13, if σ2 > 0 and if for any integer k, the real function (t, u) 7→
Cov[F (ζ0, t), F (ζk, u)] is continuous on [0, 1]2, then

n−1/2
n∑

k=1

F (εk, tk) Ã N (0, γ2) ,

as n →∞.

Proof. Let Sn =
∑n

k=1 F (ζk, tk). First of all, let us prove that n−1V(Sn) converges to σ2 as n →∞.

n−1V(Sn) = n−1
n∑

i=1

n∑

j=1

Cov[F (ζi, ti), F (ζj , tj)] ,

= n−1
n−1∑

k=1−n

n∧(n−k)∑

i=1∨(1−k)

Cov[F (ζ0, ti), F (ζk, ti+kt)] .

For any K ≥ 1, using again [12, Theorem 1.1],
∣∣∣∣∣∣
n−1

∑

K≤|k|≤n−1

n∧(n−k)∑

i=1∨(1−k)

Cov[F (ζ0, ti), F (ζk, ti+k)]

∣∣∣∣∣∣
≤ 2

∑

k≥K

∫ αk

0

Q2(u) du ,

which is smaller than any positive ε for big enough K under Assumption 13. Now, for any fixed integer k,
∣∣∣∣∣∣
n−1

n∧(n−k)∑

i=1∨(1−k)

Cov[F (ζ0, ti), F (ζk, ti+k)]−
∫ 1

0

Cov[F (ζ0, t), F (ζk, t)] dt

∣∣∣∣∣∣
≤ sup

(t,u)∈[0,1]2, |t−u|≤k/n

|Cov[F (ζ0, t), F (ζk, t + u)]− Cov[F (ζ0, t), F (ζk, t)]|

+
k

n
sup

t∈[0,1]

|Cov[F (ζ0, t), F (ζk, t)]| ,

which goes to 0 as n →∞ under the continuity assumption. The convergence of n−1V(Sn) to σ2 follows. The
end of the proof is a direct application of [11, Corollary 1]. ¤

5. Simulations

The simulations have been realized using Matlab. The minimisation is made with the function searchmin
by setting to 2000 the options MaxFunEvals and MaxIter, so that the method reaches the minimum.

For all the simulations, the observation time is of 20 s. The trajectory of the observer has a speed with constant
norm

∥∥∥dO(t)
dt

∥∥∥equal to 0.25 km/s and makes maneuvers with norm of acceleration
∥∥∥d2O(t)

dt2

∥∥∥ of approximatively

50m/s2. The trajectory is mainly composed of uniform linear motions and circular uniform motions. The
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different sequences of the trajectory of the platform are described in the following table. The null values of
acceleration correspond to uniform linear motions and the others to uniform circular motion.

time interval (s) 0− 6 7− 10 11− 14 15− 20
norm of acceleration(m/s2) 50 0 −55 0

The positive and negative values for norm of acceleration correspond respectively to anticlockwise and clockwise
circular motion. The transition sequences between circular motion and linear motion which are the time intervals
[6, 7], [10, 11], and [14, 15] are such that the whole trajectory is C∞.

The assumed parametric model is a uniform linear motion with a speed of 0.27 km/s. The parameter θ is
defined by

θ = (x0, y0, vx, vy) .

where (x0, y0) denotes the initial position and (vx, vy) the speed vector. The parametric trajectory is then
defined by

Sθ(t) = (x0 + vxt, y0 + vyt) .

The observation noise is a sequence of i.i.d centered Gaussian variables with variance σ = 10−3 rad. The plat-
form receives 2000 observations.

For the first simulation, we consider a sequence {ζk}k≥0 of i.i.d Gaussian centered random variables with
variance σ2

X × I2 and σX = 10 m1. The figure 3 shows the trajectory of the platform with a realization of a
trajectory of the target and the parametric trajectory with parameter θ̄n and also the confidence area with level
of 95% for the position at final time. The figure 6 presents the same for the maximum likelihood estimator
(MLE) θ̃n.

By using Monte-Carlo methods with 1000 experiments, histograms of the coordinates of
√

n
(
θ̄n − θ∗

)
are

presented on figure 4 with the marginal probability densities of the asymptotic law N (
0, I−1

M (θ∗)
)

in dotted
line. The empirical cumulative distribution functions of the coordinates of

√
n

(
θ̄n − θ∗

)
are presented on figure

5 juxtaposed to the marginal cumulative distributions of law N (
0, I−1

M (θ∗)
)
. These two figures illustrate the

convergence in distribution given by Theorem 2, since the sequence {ζk}k≥0 is an i.i.d. sequence of isotropic
random variables. The figure 7 present the histograms of the coordinates of

√
n
(
θ̃n − θ∗

)
with the marginal

probability densities of the asymptotic law N (
0, I−1(θ∗)

)
in dotted line. Empirical cumulative distribution

functions of the coordinates of
√

n
(
θ̃n − θ∗

)
and marginal cumulative distributions of law N (

0, I−1(θ∗)
)

are
presented on figure 8. These two figures illustrate the convergence in distribution given by Theorem 5. Con-
fidence intervals for coordinates of θ∗ with level of 95% are detailed in table 1 for θ̄n and in table 3 for θ̃n and
are respectively denoted by IC1

(
θ̄n

)
and IC3

(
θ̃n

)
. We also present in table 2 conservative confidence intervals

denoted by IC2

(
θ̄n

)
built on the result provided by Theorem 3 with Rmin = 6km. The choice of σX and Rmin is

a prior knowledge on the experiment and is made according to the knowledge of the tactical situation of BOT.
Note that the majoration obtained in (10) shows that the accuracy of the conservative confidence intervals is
proportional to the ratio E(‖ζ1‖2)/R2

min. This result is very interesting in practice since it shows that for high
values of relative distance between target and observer and small values of state noise variance, conservative
confidence intervals are of high accuracy.

For these simulations, one needs to calculate IΨ

(
θ̄n

)
, IΨ(θ∗), I

(
θ̃n

)
and I(θ∗) which involve expectations of

functions of the r.v. ε1 with law N (O, σ2
X × I2). All integrals of this type has been calculated using quadrature

formula with 12 points. Abscissas and weight factors are given in [1]. Let us detail the numerical values of
IΨ

(
θ̄n

)
and σ2 × IR

(
θ̄n

)
for one experiment used to build the estimators θ̄n and θ̃n. These numerical values

1The variance is small enough to make assumption 7 valid, even if the noise is Gaussian.
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Figure 3. Trajectories with confidence area for BLSE at final position
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Figure 4. Histograms for BLSE
with iid Gaussian isotropic se-
quence
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Figure 5. Cumulative distribu-
tion functions for BLSE with iid
Gaussian isotropic sequence

illustrate that the contributions of state noise and observation noise are of the same level.

IΨ

(
θ̄n

)
= 10−6 ×




0.0010 −0.0014 0.0049 −0.0094
−0.0014 0.0024 −0.0094 0.0220

0.0049 −0.0094 0.0400 −0.0950
−0.0094 0.0220 −0.0950 0.2709


 ,
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Figure 6. Trajectories with confidence area for MLE at final position
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Figure 7. Histograms for MLE
with iid Gaussian isotropic se-
quence
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Figure 8. Cumulative distribu-
tion functions for MLE with iid
Gaussian isotropic sequence

σ2 × IR

(
θ̄n

)
= 10−6 ×




0.0015 −0.0023 0.0082 −0.0169
−0.0023 0.0043 −0.0169 0.0428

0.0082 −0.0169 0.0728 −0.1853
−0.0169 0.0428 −0.1853 0.5639


 .
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IC1

(
θ̄n,i

) ∣∣IC1

(
θ̄n,i

)∣∣
7.3128 7.5747 0.2619
0.8017 0.8456 0.0439
0.2253 0.2316 0.0063
-0.1558 -0.1503 0.0055

Table 1. Confidence intervals for
BLSE at level 95%

IC2

(
θ̄n,i

) ∣∣IC2

(
θ̄n,i

)∣∣
6.0645 8.8230 2.7586
0.5917 1.0557 0.4640
0.1949 0.2619 0.0669
-0.1818 -0.1242 0.0576

Table 2. Conservative confidence
intervals for BLSE at level 95%

IC3

(
θ̃n,i

) ∣∣IC3

(
θ̃n,i

)∣∣
7.1842 7.4430 0.2588
0.7815 0.8249 0.0434
0.2222 0.2285 0.0063
-0.1529 -0.1475 0.0054

Table 3. Confidence intervals for MLE at level 95%

Let us now precise the values of variance matrices. We have

I−1
M

(
θ̄n

)
=




3.4917 3.8949 0.1560 −0.1399
3.8949 4.3496 0.1752 −0.1561
0.1560 0.1752 0.0074 −0.0062

−0.1399 −0.1561 −0.0062 0.0056


 ,

and

I−1
(
θ̃n

)
=




3.3918 3.7884 0.1526 −0.1359
3.7884 4.2362 0.1715 −0.1518
0.1526 0.1715 0.0072 −0.0061

−0.1359 −0.1518 −0.0061 0.0055


 .

The true parameter θ∗ is

θ∗ = (2.8, 3.8, 0.225,−0.15) ,

and values of estimators θ̄n and θ̃n, used to calculate variance matrices, are

θ̄n = (2.8753, 3.8841, 0.2284,−0.1530) , θ̃n = (2.8067, 3.8077, 0.2253,−0.1502) ,

with initial coordinates x0, y0 given in km and vx, vy given in km/s and the position at final time is (7.3, 0.8).
It appears that the maximum likelihood estimator θ̃n is a bit more accurate than θ̄n. It is not surprising since
the MLE is designed specifically for the model, and takes into account the state noise. Nevertheless, because of
the high calculation cost for the MLE, the BLSE is in practice a very useful alternative.

For the second simulation, we consider the case of a sequence {ζk}k≥0 of i.i.d Gaussian centered random

variables with variance σ2
X ×

(
62 0
0 1

)
and σX = 10 m. It seems that the results given by Theorems 2 and 5

still hold, even though the sequence {ζk}k≥0 does not have an isotropic distribution, see Figures 9, 10, 11 and
12. The estimators values are

θ̄n = (2.8383, 3.8440, 0.2264,−0.1516) , θ̃n = (2.7984, 3.7999, 0.2253,−0.1499) .
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Figure 9. Histograms for BLSE
with iid Gaussian non-isotropic se-
quence
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Figure 10. Cumulative distribu-
tion functions for BLSE with iid
Gaussian non-isotropic sequence
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Figure 11. Histograms for MLE
with iid Gaussian non-isotropic se-
quence
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Figure 12. Cumulative distribu-
tion functions for MLE with iid
Gaussian non-isotropic sequence

The values of variance matrices for the two estimators are

I−1
M

(
θ̄n

)
=




15.4505 17.0122 0.6174 −0.6253
17.0122 18.7661 0.6863 −0.6889
0.6174 0.6863 0.0263 −0.0250

−0.6253 −0.6889 −0.0250 0.0253


 ,

and

I−1
(
θ̃n

)
=




12.9538 14.0399 0.4766 −0.5214
14.0399 15.2720 0.5262 −0.5661
0.4766 0.5262 0.0197 −0.0192

−0.5214 −0.5661 −0.0192 0.0210


 .
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IC1

(
θ̄n,i

) ∣∣IC1

(
θ̄n,i

)∣∣
7.1040 7.6275 0.5235
0.7698 0.8552 0.0854
0.2204 0.2323 0.0119
-0.1574 -0.1457 0.0117

Table 4. Confidence intervals for
BLSE at level 95%

IC2

(
θ̄n,i

) ∣∣IC2

(
θ̄n,i

)∣∣
1.5049 13.2266 11.7218
-0.1740 1.7990 1.9730
0.0842 0.3686 0.2844
-0.2740 -0.0291 0.2449

Table 5. Conservative confidence
intervals for BLSE at level 95%

IC3

(
θ̃n,i

) ∣∣IC3

(
θ̃n,i

)∣∣
7.0721 7.5366 0.4645
0.7643 0.8388 0.0746
0.2201 0.2305 0.0103
-0.1552 -0.1446 0.0107

Table 6. Confidence intervals for MLE at level 95%

The confidence intervals detailed in table 4 and table 6 show that the maximum likelihood estimator θ̃n is
significantly more accurate than the BLSE. Comparing to the first simulation where the difference is not so
large, the higher accuracy of θ̃n can be understood because of the higher level state noise in this simulation.
Then, taking into account this state noise for estimating the parameter provides a significantly better result.
The conservative intervals for Rmin = 6 km described in table 5 are quite large compared to those obtained for
the first simulation. This inaccuracy results directly from the large value of E

(‖ζ1‖2
)

chosen for the state noise.

For the third and last simulation, the sequence {ζk}k≥0 is an AR(1) series such that, for all k integer,

ζk+1 = Φζk + ηk ,

where Φ = 0.6 and {ηk}k≥0 is a sequence of i.i.d. random variables with law N (0, σ2
η) and ση = 8m. Thus,

the sequence of state noise {ζk}k≥0 is a dependent stationary sequence such that the mixing coefficient αk

tends exponentially fast to zero as k tends to infinity. Then, we observe the predicted behavior described by
Proposition 4. Indeed, by drawing the densities and cumulative distribution functions of the centered Gaussian
law with the empirical variance, we observe a very good adequacy to the Gaussian behavior, see figures 13 and
14.

The authors want to thank Jerôme Dedecker for helpful discussions about dependent sequences of random variables.
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