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Abstract

Understanding what kind of noise in the observations allow to recover low dimensional
structures of a signal is of interest in statistical learning, as a first step to build efficient
dimension reduction procedures. In this work we give a new contribution on the type of
noise which can affect the data without preventing to build consistent estimators of the
support and distribution of the signal. We focus on the situation where the observations
are corrupted with additive and independent noise. We prove that for general classes of
supports, it is possible to recover both the support and the distribution of the signal with-
out knowing the noise distribution and with no sample of the noise. We exhibit classes
of distributions over which we prove adaptive minimax rates (up to a log log factor) for
the estimation of the support in Hausdorff distance. Moreover, for the class of distribu-
tions with compact support, we provide estimators of the unknown (in general singular)
distribution and prove maximum rates in Wasserstein distance. We also prove an almost
matching lower bound on the associated minimax risk.

1 Introduction

1.1 Context and aim

It is a common observation that high dimensional data has a low intrinsic dimension. The com-
putational geometry point of view gave rise to a number of interesting algorithms (see [BCY18]
and references therein) for the reconstruction of a non linear shape from a point cloud, and
in the statistical community, past years have seen increasing interest for manifold estimation.
The case of non noisy data, that is when the observations are sampled on the unknown man-
ifold, is by now relatively well understood. When the loss is measured using the Hausdorff
distance, minimax rates for manifold estimation are known and have been proved recently.
The rates depend on the intrinsic dimension of the manifold and differ when the manifold has
a boundary or does not have a boundary, due to the particular way points accumulate near
boundaries (see [AAL23] for the most recent results, together with an overview of the subject
and references). When considering the estimation of a distribution with unknown non linear
low dimensional support, one has to choose a loss function. The Wasserstein distance allows
to compare distributions that can be mutually singular, and is thus useful to compare distri-
butions having possibly different supports. Moreover, approximating an unknown probability
distribution µ by a good estimator µ̂ with respect to the Wasserstein metric allows to infer
the topology of the support of µ, see [CCSM11]. When using non noisy data, one can look
at [Div22] and [NWB22] for the most recent results and for an overview of the references.

However, despite these fruitful developments, geometric inference from noisy data remains a
theoretical and practical widely open problem. In this paper, we are interested in the estimation
of possibly low dimensional supports, and of distributions supported on such supports, when
the observations are corrupted with unknown noise. We aim at giving a new contribution on
the type of noise which can affect the data without preventing to build consistent estimators
of the support and of the law of the noisy signal.
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1.2 Previous works: estimation of the support with noisy data

Some of the geometric ideas that have been developed to handle non noisy data can be applied,
or adapted, to handle noisy data and build estimators with controlled risk. These works
generally consider a noise that is normal to the unknown manifold, in which case the amplitude
of the noise has to be bounded by the reach of the manifold (the reach is some regularity
parameter of a manifold, see [Fed59] for a precise definition). The upper bound on the risk
contains a term depending on the amplitude of noise. Thus, the upper bound on the estimation
risk is meaningful only when the bound on the noise is small, and the estimator is consistent
when the noise tends to 0 with the amount of data tending to infinity. See [AL19], [AAL23],
[DF19], [GTSAY19], see also [PS22] in which the noise can be non orthogonal to the manifold.
In [AS21], the noise is not normal to the manifold but the data is uniformly sampled on a
tubular neighborhood of the unknown manifold, which allows to take advantage of the fact
that the manifold lies in the middle of the observations. The magnitude of the noise also has
to be upper bounded by the reach. When the noise is not assumed very small, results are known
in the specific setting of clutter noise, see [Gen+12], that is the situation where a proportion
of data is uniformly sampled from a known compact set, and the remaining data is noiseless.
The authors propose a clever idea to remove noise by comparing the way the empirical data
concentrate near any regular shape, and they find a consistent estimator with upper bounded
risk.

When we accept to consider noise with known distribution, a popular model for noisy data
is the deconvolution model, in which the low dimensional data are corrupted with independent
additive noise. In such models, all estimation procedures are roughly based on the fact that it
is possible to get an estimator of the characteristic function of the non noisy data by dividing
an estimator of the characteristic function of the noisy data by that (known) of the noise.
In the deconvolution setting, the authors of [Gen+12] consider data corrupted with Gaussian
noise, and propose as estimator of the manifold an upper level set of an estimator of a kernel
smoothing density of the unknown distribution. With the truncated Hausdorff loss, the authors
prove that their estimator achieves a maximum risk (over some class of distributions) upper
bounded by (

√
log n)−1+δ for any positive δ, and prove a lower bound of order (log n)−1+δ for

the minimax risk. Taking an upper level set of an estimated density had been earlier proposed
to estimate a support based on non noisy data in [CF97]. In the context of full dimensional
convex support and with additive Gaussian noise, [BKY21] proposes an estimation procedure
using convexity ideas. The authors prove an upper bound of order log log n/

√
log n and a lower

bound of order (log n)−2/τ for the minimax Hausdorff risk, for any τ ∈ (0, 1). Earlier work
with known noise and with full dimensional support is [Mei06], where the author first builds an
estimator of the unknown density using deconvolution ideas, then samples from this estimated
density and takes a union of balls centered on the sampled points, such as in [DW80].

1.3 Previous works: estimation of the distribution with noisy data

The case of unknown but small (and orthogonal to the unknown manifold) noise is handled
in [Div22], the author proposes a kernel estimator and proves that it is minimax. The rate de-
pends on the upper bound of the noise. Non parametric Bayesian methods have been explored
in [BRR22] for observations on a tubular neighborhood of the unknown manifold, that is again
for bounded noise.

In the deconvolution problem, with known Gaussian noise, the authors of [DM13] prove
matching upper and lower bounds for the minimax risk of the estimation of the unknown
distribution using the Wasserstein distance. Results for other known noises, but limited to one
dimensional observations, can be found in [DFM15].

1.4 Contribution and main results

In this work, we focus on the situation where the observations are corrupted with additive and
independent noise. It has been proved recently [GLCL22a] that, under very mild assumptions,
it is possible to solve the deconvolution problem without knowing the noise distribution and
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with no sample of the noise. In that work, the authors consider the density estimation problem.
Here, we are faced with the more general situation where the underlying non noisy data may
have a distribution with a possibly lower dimensional support than the ambient space, thus
having no density with respect to Lebesgue measure. The intuition behind our work is that
certain geometrical properties of the signal support induce sufficient structure for the decon-
volution problem to be solvable without knowledge of the noise distribution, and that in such
situations the identifiability theory of [GLCL22a] applies.

Our main contributions are as follows.

• We are able to propose estimators (based on observations corrupted with totally unknown
noise) achieving adaptive minimax rates (up to a log log factor) for the estimation of the
support in Hausdorff distance. The minimax rates are investigated over well chosen
classes of distributions, see Theorem 2, Theorem 3 and Theorem 4. Specifically, the
minimax risk for the Hausdorff distance is upper bounded by (log log n)L/(log n)κ for
some L, where κ ∈ (1/2, 1] is a parameter depending on the tail of the distribution of
the signal (κ = 1 corresponds to compactly supported distributions, and κ = 1/2 to
sub-Gaussian distributions), while the minimax risk is lower bounded by 1/(log n)κ if
κ ∈ (1/2, 1) and 1/(log n)1−δ if κ = 1, δ being any (small) positive number. Adaptation
is with respect to κ. In some sense, exhibiting these classes of distributions allows to fill
the gap between the upper and lower bounds in [Gen+12], together with the extension
to totally unknown noise.

• We consider the estimation of the unknown (in general singular) distribution of the
hidden non noisy data itself when it has a compact support. We prove almost matching
upper and lower bounds of order 1/(log n) for the estimation risk of the distribution in
Wasserstein distance, see Theorem 5 and Theorem 6.

• We give a precise outline to the intuitions of structure which make it possible to get
our estimation results. We exhibit simple geometric properties of a support so that,
whatever the distribution on such an (unknown) support (provided it does not have too
heavy tails), the deconvolution problem can be solved without any knowledge regarding
the noise, see Theorem 8 and Theorem 9.

Although we exhibit estimators, let us insist on the fact that our goal is mainly theoretical. We
do not pretend to propose easy to compute estimation procedures, but to give precise answers
about minimax adaptive rates for support and distribution estimation with noisy data in a
very general deconvolution setting, where the noise is unknown and can have any distribution.

1.5 Organisation of the paper

In Section 2 we precise the setting and provide a general overview of the estimation procedure.
We focus on support estimation in Section 3. Section 4 is devoted to the estimation of the
distribution when it is compactly supported. We then exhibit in Section 5 geometric conditions
under which the identifiability theory of [GLCL22a] applies. Genericity of such conditions is
discussed in the supplementary material Section C. We discuss possible improvements and open
questions in Section 6. Detailed proofs are given in Section D of the supplementary material.
We gather in Section A a summary of notations defined along the paper.

1.6 Notations

The Euclidean norm (in any dimension) will be denoted ∥ · ∥2. If A is a subset of RD, we write
d(x,A) = inf{∥x − y∥2 | y ∈ A}. For any r > 0, we write Br = (−r, r). For any measurable
function f on BDr , we write ∥f∥∞,r the essential supremum of f over BDr and ∥f∥2,r the norm
of f in L2(BDr ).

3



2 The identifiability Theorem and estimation procedures

In this section, we recall the general identifiability Theorem proved in [GLCL22a] and we
provide an overview of the ideas underlying our estimation procedures.

2.1 Setting

We consider independent and identically distributed observations Yi, i = 1, . . . , n coming from
the model

Y = X + ε, (1)

in which the signal X and the noise ε are independent random variables. We assume that the
observation has dimension at least two, and that its coordinates can be partitioned in such a
way that the corresponding blocks of noise variables are independently distributed, that is

Y =

(
Y (1)

Y (2)

)
=

(
X(1)

X(2)

)
+

(
ε(1)

ε(2)

)
= X + ε (2)

in which Y (1), X(1), ε(1) ∈ Rd1 and Y (2), X(2), ε(2) ∈ Rd2 , for d1, d2 ⩾ 1 with d1 + d2 = D, and
we assume that the noise components ε(1) and ε(2) are independent random variables. We write
G the distribution of X and MG its support. For i ∈ {1, 2}, we write Q(i) the distribution of
ε(i), so that Q = Q(1) ⊗Q(2) is the distribution of ε.

We shall not make any more assumption on the distribution of the noise ε, and we shall
not assume that its distribution is known. Indeed in [GLCL22a], it is proved that under very
mild conditions on the distribution of the signal X, model (2) is fully identifiable, that is one
can recover G, and thus its support, and Q from the convolution G ∗Q.

2.2 Identifiability Theorem

Let us introduce the assumptions on the distribution of the signal we shall use. To state the
first assumption, we let ρ be a positive real number.

A(ρ) There exist a, b > 0 such that for all λ ∈ RD, E
[
exp

(
λ⊤X

)]
⩽ a exp (b∥λ∥ρ2).

Assumption A(ρ) is about the tail of G as the following proposition shows.

Proposition 1. • A random variable X satisfies A(1) if and only if its support is compact.

• A random variable X satisfies A(ρ) for ρ > 1 if and only if there exist constants c, d > 0
such that for any t ⩾ 0,

P(∥X∥2 ⩾ t) ⩽ c exp(−dtρ/(ρ−1)).

The proof of Proposition 1 is detailed in Section B.1.
Under A(ρ), the characteristic function of the signal can be extended into the multivariate

analytic function

ΦX : Cd1 × Cd2 −→ C

(z1, z2) 7−→ E
[
exp

(
iz⊤1 X

(1) + iz⊤2 X
(2)
)]
.

The second assumption is the following.

(Adep) For any z0 ∈ Cd1 , z 7→ ΦX(z0, z) is not the null function and for any z0 ∈ Cd2 ,
z 7→ ΦX(z, z0) is not the null function.

It has been shown in [GLCL22a] that several models satisfy this assumption, such as the re-
peated measurements submodel (see Corollary 2.3 in [GLCL22a]) or the noisy independent
component analysis submodel (see Corollary 2.2 in [GLCL22a]). In particular, it follows di-
rectly from Corollary 2.4 of [GLCL22a] and the inverse function Theorem that the errors in
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variable regression model (in which X(2) = g(X(1)) for some function g) satisfies assumption
(Adep) when the regression function is a non-constant differentiable function. In this paper, we
are interested in identifying supports of distributions and we will provide geometrical conditions
so that Assumption (Adep) is verified, see Section 5.

Obviously, if no centering constraint is put on the signal or on the noise, it is possible to
translate the signal by a fixed vector m ∈ RD and the noise by −m without changing the
observation. The model can thus be identifiable only up to translation.

Theorem 1 (from [GLCL22a]). If the distribution of the signal satisfies A(ρ) and (Adep), then
the distribution of the signal and the distribution of the noise can be recovered up to translation
from the distribution of the observations.

The proof of this theorem is based on recovering ΦX for which the structure provided
by (Adep) is crucial. The arguments show that knowing the characteristic function of the
observations in a neighborhood of the origin allows to recover ΦX in a neighborhood of the
origin, and then over the whole multidimensional complex plane.

2.3 Overview of the estimation procedures

The identifiability result above is the base upon which our estimators are built. A key part
of its proof is the following result: if a multivariate analytic function ϕ satisfies ϕ(0) = 1,
ϕ(t) = ϕ(−t) for all t, as well as assumptions A(ρ) for some ρ < 2, (Adep) and

ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2) = ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)

for all (t1, t2) in a neighborhood of zero in Rd1 ×Rd2 , then ϕ = ΦX . In particular, fixing some
νest > 0, the only function ϕ such that∫
B

d1
νest×B

d2
νest

|ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2)−ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2|Φε(1)(t1)Φε(2)(t2)|2dt1dt2 = 0

is ΦX . Indeed the characteristic functions of the noises Φε(i) , i ∈ {1, 2}, are continuous and
equal to 1 in zero. Moreover, the introduction of these characteristic functions allow to combine
them with the characteristic functions ΦX of the signal to get the characteristic functions of
the observations, so that we are able to construct an empirical criterion Mn that estimates the
above integral (see Equation (4)).

Following the usual so-called M -estimation procedure, we then construct an estimator ϕ̂
of ΦX by minimizing Mn over multivariate analytic functions satisfying A(ρ) and such that
ϕ(0) = 1 and ϕ(t) = ϕ(−t) for all t, satisfying (Adep), and having a finite polynomial expansion
of degree m. The degree m must be well chosen and we use m = ⌈4 logn

log logn⌉. Proposition 2

shows that with high probability, for some ν ∈ (0, νest] such that the Fourier transform of the
noise ε does not vanish on [−ν, ν]D,

∥ϕ̂− ΦX∥22,ν = O

(
1

n1−δ

)
for some δ > 0 arbitrarily small.This control is obtained uniformly over a range of values of ρ,
to be used further for adaptation in the parameter ρ.

While it may not be possible to directly recover the distribution G of X from ΦX by inverse
Fourier transform since G could be singular, it is possible to recover the convolution function
G ∗Ψ of G by Ψ for any properly chosen kernel Ψ. Moreover, when Ψ is an approximation of
the unity, the support of G can be approximated by an upper level set of G ∗Ψ. Intuitively, if
Ψ were the density of a random variable Z, G ∗ Ψ would be the density of X + Z. When Ψ
is an approximation of the unity, the distribution of Z will be close to the Dirac in zero, thus
X+Z will concentrate close to the support of X. Figure 1 illustrates this idea. In Section 3.2,
we propose an estimator of the support as an upper-level set of an estimated density following
ideas of [Gen+12], the main difference being with the smoothing kernel we choose. Indeed,
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Figure 1: In red, the support of the signal distribution MG, the blue hatched area represents
the set {ḡ ⩾ λn + ∥ḡ − ĝn∥∞} and the gray area represents the set {ḡ ⩽ λn − ∥ḡ − ĝn∥∞}, so
that the estimator of the support lies in between the gray and the blue areas.

with this kernel, no prior knowledge on the intrinsic dimension is needed to build the estimator.
The precise choice of Ψ is non trivial and is given in Section 3.2.

Proposition 2 directly ensures that the estimator

ĝ := F−1
[
ϕ̂ · F [Ψ]

]
is close to ḡ := F−1 [ΦX · F [Ψ]] = G ∗ Ψ, whose upper level sets are close to MG. Here, for
any integrable function f from RD to R, we denote by F [f ] (resp. F−1[f ]) the (resp. inverse)
Fourier transform of f defined, for all y ∈ Rd, by

F [f ](y) =

∫
eit

⊤yf(t)dt and F−1[f ](y) = (
1

2π
)D
∫
e−it

⊤yf(t)dt.

Our estimator is thus taken as

M̂ = {y : ĝ(y) > λ},

where λ has to be well chosen. To obtain the best possible rates requires a further polynomial
truncation of ϕ̂ before Fourier inversion, depending on the parameter ρ. We then provide a
model choice procedure to adapt in ρ and get adaptive rates. Estimation of the distribution
starts from the estimation of the support and follows similar ideas.

3 Estimation of the support

In Section 3.1, we describe the estimator of the characteristic function used in all our proce-
dures, and we give its properties. In Section 3.2, we provide an estimator of the support of
the signal when ρ is known, and prove an upper bound for the maximum risk in Hausdorff
distance. Section 3.3 is devoted to the construction of an adaptive estimator of the support for
unknown ρ. In Section 3.4, we prove a lower bound which shows that our estimator is minimax
up to some power of log log n for all ρ ∈ (1, 2) and up to any small power of log n for ρ = 1.

3.1 Estimation of the characteristic function

We shall need sets of multivariate analytic functions for which A(ρ) and (Adep) hold. For
any S > 0, let Υρ,S be the subset of multivariate analytic functions from CD to C defined as
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follows.

Υρ,S =

{
ϕ analytic s.t. ∀z ∈ RD, ϕ(z) = ϕ(−z), ϕ(0) = 1 and ∀i ∈ ND \ {0},

∣∣∣∣∣ ∂iϕ(0)∏d
a=1 ia!

∣∣∣∣∣ ⩽ S∥i∥1

∥i∥∥i∥1/ρ
1

}
(3)

where ∥i∥1 =
∑D
a=1 ia. If the distribution of X satisfies A(ρ), then there exists S such that

ΦX ∈ Υρ,S , and the converse also holds, see Lemma 3.1 in [GLCL22a].
Let Φε(i) be the characteristic function of ε(i), i = 1, 2, and define for all ϕ ∈ Υρ,S and any

ν > 0,

M(ϕ; ν|ΦX) =

∫
B

d1
ν ×Bd2

ν

|ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2)−ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2|Φε(1)(t1)Φε(2)(t2)|2dt1dt2.

Fix some νest > 0, and define Mn for any ϕ as follows

Mn(ϕ) =

∫
B

d1
νest×B

d2
νest

|ϕ(t1, t2)ϕ̃n(t1, 0)ϕ̃n(0, t2)− ϕ̃n(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2dt1dt2, (4)

where for all (t1, t2) ∈ Rd1 × Rd2 ,

ϕ̃n(t1, t2) =
1

n

n∑
ℓ=1

exp
{
it⊤1 Y

(1)
ℓ + it⊤2 Y

(2)
ℓ

}
.

By the law of large numbers, Mn(ϕ) is a consistent estimator of M(ϕ; νest|ΦX). As usual in
M-estimation to get consistency of the estimator, we need to minimize Mn over a closed set
of functions over which ΦX is the only minimizer of M(·; νest|ΦX). We thus introduce H a
subset of functions CD → CD such that all elements of H satisfy (Adep) and such that the set
of the restrictions to BDνest of functions in H is closed in L2(BDνest). Indeed we shall consider
consistency of the estimator in L2(BDνest), see Proposition 2 below. For instance, H can be
defined using submodels such as errors in variable regression with regression functions in a
closed set of smooth functions when it is believed that the signal X belongs to this submodel.
H can also be defined using geometric constraints such as those described in Section 5, as soon
as it is believed that the support of X satisfies those constraints since we need ΦX ∈ H. Let
also Cm[X] be the set of polynomial functions of degreem in D indeterminates. For any integer

m and any ρ > 1, we define Φ̂n,m,ρ be a (up to 1/n) measurable minimizer of the functional
ϕ 7→Mn(ϕ) over Υρ,S ∩H ∩ Cm[X], that is

Mn(Φ̂n,m,ρ) ⩽ inf
ϕ∈Υρ,S∩H∩Cm[X]

Mn(ϕ) +
1

n
.

For good choices of m, Φ̂n,m,ρ is a consistent estimator of ΦX in L2(BDν ) at almost parametric
rate. The constants will depend on the signal through ρ and S, and on the noise through its
second moment and the following quantity:

cν = inf{|Φε(1)(t)|, t ∈ Bd1ν } ∧ inf{|Φε(2)(t)|, t ∈ Bd2ν }. (5)

Note that for any noise distribution, for small enough ν, cν is a positive real number. For any
ν > 0, c(ν) > 0, E > 0, define Q(D)(ν, c(ν), E) the set of distributions Q = ⊗2

j=1Qj on RD
such that cν ⩾ c(ν) and

∫
RD ∥x∥2dQ(x) ⩽ E.

Proposition 2 (Variant of Proposition 1 in [CMG23]). For all ρ0 < 2, ν ∈ (0, νest], S, c(ν), E, C >
0 and δ, δ′, δ′′ ∈ (0, 1) with δ′ > δ, there exist positive constants c′ and n0 such that the follow-
ing holds: let ρ ∈ [1, ρ0], for all ΦX ∈ Υρ,S ∩ H and Q ∈ Q(D)(ν, c(ν), E), for all n ⩾ n0 and

s ∈ [1, n1−δ
′
], with probability at least 1− 2e−s,

sup
ρ′∈[ρ,ρ0], m∈[2ρ′ log n

log log n ,C
log n

log log n ]

∫
B

d1
ν ×Bd2

ν

|Φ̂n,m,ρ′(t)− ΦX(t)|2dt ⩽ c′
( s

n1−δ

)1−δ′′
.
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Note that the constants c and n0 do not depend on the distribution of X or ε. The proof
of Proposition 2 is based on results in [CMG23] and [GLCL22a] and is detailed in Section D.1.

For sake of simplicity, we denote Φ̂n,ρ the estimator Φ̂n,m,ρ in which m = ⌈4 logn
log logn⌉. Note that

with this value of m, we may apply the inequality in Proposition 2 uniformly for ρ′ ∈ [ρ, ρ0]
whatever ρ0 ∈ [1, 2) and ρ ∈ [1, ρ0).

3.2 Estimation of the support: upper bound

We shall consider the minimax risk in Hausdorff distance, which is defined, for A1 and A2

subsets of RD, as
dH(A1, A2) = sup

x∈A1∪A2

|d(x,A1)− d(x,A2)|.

When ρ > 1, the support of G is not compact. Since we allow the support to be a non-compact
set, we define a truncated loss function as in [Gen+12]. We fix K a compact subset of RD
(which can be arbitrarily large) and for any S1, S2 subsets of RD, the truncated loss function
is

HK(S1, S2) = dH(S1 ∩ K, S2 ∩ K).

We now define the class over which we will prove an upper bound for the maximum risk in
Hausdorff distance. As in [GLCL22a], it will be convenient to use κ = 1/ρ. Since consistency

of Φ̂n,m,ρ is obtained for X such that ΦX ∈ H ∩Υ1/κ,S we summarize L(κ, S,H) as the set of
distributions G such that, if X is a random variable with distribution G, then ΦX ∈ H∩Υ1/κ,S .
Moreover, for any positive constants a, d and r0, we define StK(a, d, r0) as the set of positive
measures G such that for all x ∈ MG ∩ K, for all r ⩽ r0, G(B(x, r)) ⩾ ard. The distributions
in StK(a, d, r0) are called (a, d)-standard. Such a class of distributions is commonly used for
inferring topological information, see for instance [BCY18].

Remark 1. • If a measure µ (for instance the d-dimensional Hausdorff measure on a
manifold) is (a, d′)-standard for some positive constants a and d′, and if G admits a
density g with respect to µ such that g is lower bounded by c > 0, then G is (ac, d′)-
standard.

• We do not make any assumption on the reach of the support of G (see [Fed59]) since it
is not necessary here, although it provides a convenient way to check the (a, d)-standard
assumption: if MG is a Riemannian manifold of dimension d with reach(MG) ⩾ τmin >
0, then the d-dimensional Hausdorff measure restricted to MG is (a, d)-standard for some
a > 0 (see Lemma 32 of [Gen+12]).

We now introduce the kernel we shall use for our construction. For any A > 0, define, for
all y ∈ R,

uA(y) = exp

{
− 1

(1− 2y)A
− 1

(1 + 2y)A

}
1|[− 1

2 ,
1
2 ]
(y)

and for all y ∈ RD,

ψA(y) = I(A) F−1[uA ∗ uA](∥y∥2) with I(A) =
1∫

F−1[uA ∗ uA](∥x∥2)dx
.

For h > 0 and x ∈ RD, we write ψA,h(x) = h−DψA(x/h), hence F [ψA,h](t) = F [ψA](th). The
following properties of ψA and F [ψA] hold

(I) The support of F [ψA] is the unit ball {y ∈ RD : ∥y∥2 ⩽ 1}.

(II) ψA > 0 and F [ψA] ⩾ 0.

(III) There exist constants cA > 0 and dA > 0 such that for all x ∈ {y ∈ RD : ∥y∥2 ⩽ cA},
ψA(x) ⩾ dA.

(IV) ψA and ψA,h are probability densities on RD.
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(V) (Lemma in [Tla22]) For all A > 0, there exists βA > 0 such that

lim
∥t∥2→∞

exp {βA∥t∥
A

A+1

2 }ψA(t) = 0 (6)

(VI) It holds

∥ψA,h∥2 =
I(A)

hD/2
∥uA ∗ uA∥2. (7)

Fix A > 0 and define the function ḡ by

∀y ∈ RD, ḡ(y) =
(

1

2π

)D ∫
e−it

⊤yF [ψA](ht) ΦX(t)dt,

which may be rewritten using usual Fourier calculus, for all y ∈ RD, as

ḡ(y) = (ψA,h ∗G)(y) =
1

hD

∫
RD

ψA

(
∥y − u∥2

h

)
dG(u).

The density ḡ is a kernel smoothing of the distribution G. The bandwidth parameter h will be
chosen appropriately in Theorem 2 below. We now construct an estimator of ḡ by truncating
Φ̂n,1/κ depending on κ. Adaptation with respect to κ is handled in Section 3.3. For some
integer mκ > 0 to be chosen later, let

∀y ∈ RD, ĝn,κ(y) =
(

1

2π

)D ∫
e−it

⊤yF [ψA](ht) Tmκ
Φ̂n,1/κ(t)dt,

in which for any multivariate analytic function ϕ defined in a neighborhood of 0 in CD as
ϕ : x 7→

∑
(i1,...,iD)∈ND ci

∏D
a=1 x

ia
a , its truncation on Cm[X] for any integer m is

Tmϕ : x 7→
∑

(i1,...,iD)∈ND i1+···+iD⩽m

ci

D∏
a=1

xiaa .

Since for all t ∈ RD, TmκΦ̂n,1/κ(−t) = TmκΦ̂n,1/κ(t), the function ĝn,κ is real valued. Finally,
define an estimator of the support of the signal as the upper level set

M̂κ =
{
y ∈ RD | ĝn,κ(y) > λn,κ

}
,

for some λn,κ. The main theorem of this section gives an upper bound of the maximum risk.

Theorem 2. Let κ ∈ (1/2, 1], a > 0 , d ⩽ D, r0 > 0. For ch ⩾ exp (2D + 2) and ℓ ∈ (0, 1),
define mκ and h as

mκ =

⌊
1

4κ

log(n)

log log(n)

⌋
, h = chSm

−κ
κ

and λn,κ depending whether d < D or d = D as

• if d < D,

λn,κ =

(
1

h

)ℓ
,

• if d = D,

λn,κ =
1

4
acDAdA.

Then for any κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0 S > 0, there exists n0 and C > 0
such that for all n ⩾ n0,

sup
κ∈[κ0,1]

sup
G∈StK(a,d,r0)∩L(κ,S,H)

Q∈Q(D)(ν,c(ν),E)

log(n)κ

log(log(n))κ+
A+1
A

E(G∗Q)⊗n [HK(MG,M̂κ)] ⩽ C.
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Remark 2. • We prove in the next section a nearly matching lower bound. Thus, the
minimax rate of convergence of the support in truncated Hausdorff distance depends on κ,
that is on the way the distribution of the signal behaves at infinity. This rate deteriorates
when the distribution of the signal has heavier tails. Indeed, since the distribution of the
noise is unknown, taking into account distant observation points to build the estimator
of the support becomes more difficult.

• When d < D, thanks to the use of the kernel ψA, our estimator does not require the
knowledge of d, which has to be compared with the estimator in [Gen+12] where prior
knowledge of d is needed.

• In [Gen+12], the upper bound on the rate is of order 1/
√
log n. Here we get a bound of

order 1/(log n)κ depending on the tail of the distribution of the signal. We do not need
to know the distribution of the noise, contrarily to [Gen+12] where the distribution of the
noise is used in the construction of the estimator, as usual in the classical deconvolution
literature.

• It may be seen from the proof of Theorem 2 that the choice λn,κ = 1
4ac

D
AdA is valid for

any d. However, this requires the knowledge of a.

• Note that there are two truncation steps: the first one is implicit in the construction of
Φ̂n,1/κ (chosen at the end of Section 3.1) and the second one appears in the definition

of ĝn,κ. This second truncation is necessary to control the error of Φ̂n,1/κ on BD1/h (see

Lemma 3, compared to the error on BDν in Proposition 2), and the degree mκ in the
second truncation is always smaller than the degree m used in the construction of Φ̂n,1/κ.

• The constant ℓ can be chosen arbitrarily between 0 and 1.

The proof of Theorem 2 is detailed in Section D.5. As in [Gen+12], the idea is to lower
bound ḡ on the support MG when the bandwidth parameter h becomes small, and to upper
bound it on every points further than a small distance (depending on h) from that support,
see Lemmas 1 and 2 below.

Lemma 1. Assume G ∈ StK(a, d, r0), then for any h ⩽ r0/cA,

inf
y∈MG∩K

ḡ(y) ⩾ acdAdA

(
1

h

)D−d

.

The proof of Lemma 1 is detailed in Section D.2.

Lemma 2. For any C1 > 0, there exists h0 > 0 depending only on C1, D and A such that for
any h ⩽ h0,

sup

{
ḡ(y) | y ∈ K, d(y,MG) > h

[
D

βA
log

(
1

h

)]A+1
A

}
⩽ C1.

The proof of Lemma 2 is detailed in Section D.3.
The last ingredient is to control the difference between the convoluted density and its

estimator, defined as Γn,κ = ∥ĝn,κ − ḡ∥∞ = supy∈RD |ĝn,κ(y) − ḡ(y)|. We first relate it to

∥Tmκ
Φ̂n,1/κ − ΦX∥2,1/h.

Lemma 3. Let h > 0 and m > 0. For any A > 0,

Γn,κ ⩽ I(A)
∥uA ∗ uA∥2

hD/2
∥Tmκ

Φ̂n,1/κ − ΦX∥2,1/h.

The proof of Lemma 3 is detailed in Section D.4. The parameters mκ and h are chosen so
that Γn,κ tends to 0 with high probability, and the threshold λn,κ is chosen using Lemmas 1
and 2.

10



3.3 Adaptation to unknown κ

We now propose a data-driven model selection procedure to select κ such that the resulting
estimator has the right rate of convergence. As usual, the idea is to perform a bias-variance
trade off. Although we have an upper bound for the variance term, the bias is not easily
accessible. We will use Goldenshluger and Lepski’s method, see [GL08]. The variance bound
is given as follows:

σn(κ) = cσ
(log log n)κ+

A+1
A

(log n)κ
.

Fix some κ0 > 1/2. The bias proxy is defined as

Bn(κ) = 0 ∨ sup
κ′∈[κ0,κ]

(
HK(M̂κ,M̂κ′)− σn(κ

′)
)
.

The estimator of κ is now given by

κ̂n ∈ arg min {Bn(κ) + σn(κ), κ ∈ [κ0, 1]} ,

and the estimator of the support of the signal is M̂κ̂n
. The following theorem states that this

estimator is rate adaptive.

Theorem 3. For any κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0 S > 0, a > 0, d ⩽ D, there
exists cσ > 0 such that

lim sup
n→+∞

sup
κ∈[κ0,1]

sup
G∈StK(a,d)∩L(κ,S,H)

Q∈Q(D)(ν,c(ν),E)

log(n)κ

log(log(n))κ+
A+1
A

E(G∗Q)⊗n [HK(MG,M̂κ̂n
)] < +∞.

The proof of Theorem 3 is detailed in Section D.6.

3.4 Lower bound

The aim of this subsection is to prove a lower bound for the minimax risk of the estimation
of MG using the distance HK as loss function. The proof of Theorem 4 is based on Le Cam’s
two-points method, see [Yu97], one of the most widespread technique to derive lower bounds.
Note that we can not use the lower bound proved in [Gen+12] since the two distributions they
use for the signal X in their two-points proof have Gaussian tails, for which κ = 1/2.

Theorem 4. For any κ ∈ (1/2, 1), there exists Sκ > 0, aκ > 0 and H⋆
κ a set of complex

functions satisfying (Adep) such that the set of the restrictions of its elements to [−ν, ν]D is
closed in L2([−ν, ν]D) for any ν > 0, and such that for all S ⩾ Sκ, a ⩽ aκ, d ⩾ 1, 0 < r0 < 1,
E > 0 and ν ∈ (0, νest] such that c(ν) > 0, there exists C > 0 depending only on a, D, S, E
and ν, and there exists n0, such that for all n ⩾ n0,

inf
M̂

sup
G∈StK(a,d,r0)∩L(κ,S,H⋆

κ)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG,M̂)] ⩾
C

log(n)κ
, (8)

and for any δ ∈ (0, 1), there exists C > 0 depending only on a, D, S, E, ν and δ, and there
exists n0, such that for all n ⩾ n0,

inf
M̂

sup
G∈StK(a,d,r0)∩L(1,S,H⋆

1)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG,M̂)] ⩾
C

log(n)1+δ
, (9)

where the infimum in (8) and (9) is taken over all possible estimators M̂ of MG.

Remark 3. • The lower bound in Theorem 4 almost matches the upper bound for the
maximum risk of our estimator in Theorem 2. Thus our work identifies the main factor
in the minimax rate for the estimation of the support in Hausdorff loss. Notice that (9)
is weaker than (8) with κ = 1, but we were not able to find a fκsuitable to prove (8) with
κ = 1, see Lemma 4 below.
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• In [Gen+12], the lower bound does not match the upper bound by a larger power in the
rate (almost twice).

• The sets of supports we consider are not the same as that considered in [Gen+12].
In [Gen+12], the authors assume that the support is a regular manifold with lower bounded
reach. We do not assume regularity, we only assume that the distribution of the signal is
(a, d)-standard.

The proof of Theorem 4 is detailed in Section D.11. As usual for the two-points method,
the idea is to find two distributions having support as far as possible in HK-distance, and a
noise such that the joint distributions of the observations have total variation distance upper
bounded by some C < 1. We shall consider the noise as in [GLCL22a], with independent
identically distributed coordinates having density q defined as

q : x ∈ R 7−→ cq
1 + cos(cx)

(π2 − (cx)2)2

for some c > 0, where cq is such that q is a probability density, and with characteristic function

F [q] : t 7→ cq

[(
1−

∣∣∣∣ tc
∣∣∣∣) cos

(
π
t

c

)
+

1

π
sin

(
π

∣∣∣∣ tc
∣∣∣∣)]1−c⩽t⩽c.

Let us now define the two distributions to apply the two-points method. For any κ ∈ (1/2, 1],
we first choose a density function fκ according to the following Lemma.

Lemma 4. For any κ ∈ (1/2, 1), p ⩾ 1, there exists a continuous density function fκ : R → R
in Lp(R), positive everywhere, and positive constants A,B such that for all u ∈ R,

|F [fκ](u)| ⩽ A exp(−B|u| 1κ ) and |F [fκ]
′(u)| ⩽ A exp(−B|u| 1κ ).

For any δ ∈ (0, 1), there exists a continuous compactly supported density function f1 : [−1, 1] →
R positive everywhere such that

|F [f1](u)| ⩽ A exp(−B|u|δ) and |F [f1]
′(u)| ⩽ A exp(−B|u|δ).

The proof of Lemma 4 is detailed in Section D.7.
Then, inspired by [Gen+12], for all γ ∈ (0, 1], define g̃γ : R → R and gγ : R → RD−d for all

x ∈ R as

g̃γ(x) = cos

(
x

γ

)
and gγ(x) = (g̃γ(x), 0, . . . , 0)

⊤
.

Let M0(γ) = {(u, γgγ(u)) : u ∈ R}, M1(γ) = {(u,−γgγ(u)) : u ∈ R}, and let J ∈ RD×D be the
matrix

J =


1 0 0 . . . 0
1 1/2 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

For any κ ∈ (1/2, 1], let U(κ) be the random variable in R having density fκ defined in
Lemma 4 and let S0(κ) = (U(κ), γgγ(U(κ))), S1(κ) = (U(κ),−γgγ(U(κ))). For i ∈ {0, 1}, we
shall denote Ti(κ) the distribution of Si(κ). Finally we define Xi(κ) = JSi(κ), i = 0, 1 and
Gi(κ) the distribution of Xi(κ). When κ < 1, the supports of Si(κ) and Xi(κ) do not depend
on κ. They are illustrated in Figure 2. The transformation J is such that the the support
of Xi is the graph of a bijective function, which makes it easy to satisfy (Adep) through for
instance assumptions (H1), (H2) and Theorem 7 from Section 5.

Lemma 5. For any i ∈ {0, 1} and κ ∈ (1/2, 1], Xi(κ) satisfies A(1/κ).

The proof of Lemma 5 is detailed in Section D.8.
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Figure 2: Left: support of S0 and S1 when γ = 1. Right: support of X0 and X1 when γ = 1.

Lemma 6. There exists a0 > 0 such that for i ∈ {0, 1}, for any d ⩾ 1, r0 < 1 and a ⩽ a0,
Gi(κ) ∈ StK(a, d, r0).

The proof of Lemma 6 is detailed in Section D.9.

Lemma 7. For any i ∈ {0, 1} and κ ∈ (1/2, 1], ΦXi(κ) satisfy (Adep)

The proof of Lemma 7 is detailed in Section D.10.
We finally set H⋆

κ = {ΦX0(κ),ΦX1(κ)}. As a finite set, it is closed in L2([−ν, ν]D).
Let us comment on dimensionnality. The distributions used here are distributions with

support of dimension 1. This is not an issue since the d in the definition of StK(a, d, r0) is
an upper bound on the dimension of the support. We could also have used supports with
dimension d by adding to Xi(κ) an independent uniform distribution on a Euclidean ball of a
linear space of dimension d.

The support of Gi(κ) is JMi(γ), and the following lemma follows easily from the fact that
for i ∈ {0, 1}, JMi(γ) = γJMi(1).

Lemma 8. For any γ > 0,

HK(JM0(γ), JM1(γ)) = γHK(JM0(1), JM1(1)). (10)

To obtain the lower bound, the parameter γ will be chosen as large as possible while making
sure that the joint distributions of the observations have total variation distance smaller than
some C < 1.

4 Estimation of the distribution of the signal

In this section, we assume that the support MG of G is a compact subset of RD. For any
η > 0 and A ⊂ RD, Aη will denote the η-offset of A, that is the set of all points x in RD such
that d(x,A) ⩽ η.

To estimate G, we shall consider the probability density ḡ defined in Section 3.2 and define
the probability distribution PψA,hn

on RD such that, for any O borelian set of RD,

PψA,hn
(O) =

∫
O
ḡ(y)dy.

We then estimate PψA,hn
using the estimation of ḡ defined in Section 3.2 for κ = 1, ĝn := ĝn,1.

Since ĝn can be non positive, we use ĝ+n = max {0, ĝn} and renormalize it to get a probability

13



distribution. We shall also estimate PψA,hn
with a probability distribution having support on

a (small) offset of the estimated support M̂ restricted to the closed euclidean ball B̄(0, Rn),

for some radius Rn that grows to infinity with n. Thus we fix some η > 0 and define P̂n,η such
that, for any O borelian set of RD,

P̂n,η(O) =
1∫

(M̂∩B̄(0,Rn))η
ĝ+n (y)dy

∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy = cn

∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy.

4.1 Upper bound for the Wasserstein risk

The aim of this subsection is to give an upper bound of the Wasserstein maximum risk for the
estimation of G. For any p ∈ [1,+∞) and any two probability measures µ and ν on RD, we
write Wp(µ, ν) the Wasserstein distance of order p between µ and ν, that is

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
RD×RD

∥x− y∥p2dπ(x, y)
)1/p

,

where Π(µ, ν) is the set of probability measures on RD × RD that have marginals µ and ν.

Theorem 5. For all ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0, η > 0, a > 0 , r0 > 0,
d ⩽ D, p ∈ [1,+∞), define mn, hn and λn as in Theorem 2 for κ = 1. Assume that
limn→+∞Rn = +∞ and that there exists δ ∈ (0, 12 ) such that Rn ⩽ exp(n1/2−δ). Then there
exist n0 and C > 0 such that for all n ⩾ n0,

sup
G∈StK(a,d,r0)∩L(1,S,H)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [Wp(G, P̂n,η)] ⩽ C
log log(n)

log(n)
.

The proof of Theorem 5 is detailed in Section D.12. Note that the magnitude of η does
not appear to be crucial when looking at the proof, at least in an asymptotic perspective.
Considering an offset of size η of M̂ is meant to control the variance of the estimator P̂n,η.

Remark 4. • The lower bound in Theorem 6 almost matches the upper bound for the
maximum risk of our estimator in Theorem 5. Thus our work identifies the main factor
in the minimax rate for the estimation of the distribution in Wasserstein loss.

• Comparison with earlier results in the deconvolution setting [DM13] or [DFM15] with
known noise is not easy since the classes of signals they consider is much different than
the ones we consider.

4.2 Lower bound for the Wasserstein risk

The aim of this subsection is to establish a lower bound for the minimax Wasserstein risk
of order p for any p ⩾ 1. Again, we can not use previous lower bounds proved in [DM13]
or [DFM15] since they use in the two-points method signals with distributions having too
heavy tails.

Theorem 6. For any p ⩾ 1, there exists S1 > 0, a1 > 0 and H⋆
1 a set of complex functions

satisfying (Adep) such that the set of the restrictions of its elements to [−ν, ν]D is closed in
L2([−ν, ν]D) for any ν > 0, and such that for all S ⩾ S1, a ⩽ a1, d ⩾ 1, 0 < r0 < 1, E > 0
and ν ∈ (0, νest] such that c(ν) > 0, there exists C > 0 depending only on a, D, S, E and ν,
and there exists n0, such that for all n ⩾ n0,

inf
P̂n

sup
G∈StK(a,d,r0)∩L(1,S,H⋆

1)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [Wp(G, P̂n)] ⩾ C
1

log(n)1+δ
,

where the infimum is taken on all possible estimate P̂n of G.
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As for Theorem 4, we use Le Cam’s two-points method with the same two distribu-
tions G0(1) and G1(1). The proof essentially consists in showing that there exists a con-
stant C > 0 independent of γ such that Wp(G0(1), G1(1)) ⩾ CHK(M0(γ),M1(γ)), that is
Wp(G0(1), G1(1)) ⩾ Cγ for a constant C > 0. Once such an equality is established, the lower
bound follows from taking γ as for Theorem 4.

The rest of the proof is detailed in Section D.13.

5 Sufficient geometrical conditions for (Adep) to hold

Throughout the paper, we assume (Adep) to be able to solve the deconvolution problem. In
this section, we provide very general conditions on the support of a random variable which
are sufficient for (Adep) to hold. In what follows we shall say that a random variable satisfies
(Adep) when its characteristic function does. We first provide simple but useful properties.
For any dimension d > 0, we denote GLd(C) the general linear group with coefficient in C.

Proposition 3. The following holds.

(i) Let U and V independent random variables satisfying A(ρ). Then U and V satisfy (Adep)
if and only if U + V satisfies (Adep).

(ii) Let U =

(
U (1)

U (2)

)
be a random variable such that U (1) ∈ Rd1 and U (2) ∈ Rd2 . Let

A ∈ GLd1(C), B ∈ GLd2(C), m1 ∈ Cd1 and m2 ∈ Cd2 . Define V =

(
A 0
0 B

)(
U (1)

U (2)

)
+(

m1

m2

)
. Then U satisfies A(ρ) if and only if V satisfies A(ρ). Moreover, U satisfies A(ρ)

and (Adep) if and only if V satisfies A(ρ) and (Adep).

(iii) Let U (1) and U (2) be two independent random variables in Rd1 and Rd2 respectively that

satisfy A(ρ) for some ρ ⩾ 1, then U =

(
U (1)

U (2)

)
satisfies (Adep) if and only if U (1) and

U (2) are Gaussian or Dirac random variables.

The proof of Proposition 3 is detailed in section B.2.
Point (i) of Proposition 3 makes it possible to transfer a proof of (Adep) for a support with

full dimension D to a support with dimension d < D. Indeed, if U is a random variable with
support of dimension d < D, by introducing an independent random variable V with support
of full dimension D, proving that U + V (whose support has full dimension) satisfies (Adep)
ensures that U satisfies (Adep) as well. For instance, Theorem 7 below shows that a random
variable having support the centered Euclidean ball with radius η > 0 satisfies A(1) and (Adep).
Thus geometric conditions such as those proposed in this section can be transposed from one
dimension to another.

Point (ii) shows that the fact that A(ρ) and (Adep) hold is not modified by linear trans-
formations of each component of the signal.

Finally, Point (iii) shows that to verify (Adep), outside of trivial cases, the two signal
components can not be independent. Even further, combined with Point (i), this shows that it
is not possible to write the signal as the sum of two independent signals where one of them has
independent components: such independent sub-signals with independent components must
be part of the noise.

In [CMG23], the authors prove that (Adep) holds for random variables supported on a
sphere. In such a context, they prove that the radius of the sphere can be estimated at almost
parametric rate. Here we give much more general conditions on the support of a random
variable that are sufficient for (Adep) to hold.

We define the following assumptions (H1) and (H2). Here, if A is a subset of RD, we write
Diam(A) its diameter sup{∥x− y∥2 | x, y ∈ A}.
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(H1) There exist (A∆)∆>0 and (B∆)∆>0 such that A∆ ⊂ Rd2 , B∆ ⊂ Rd1 , (B∆)∆>0 is an
increasing sequence, P(X(2) ∈ A∆) > 0, lim∆→0 Diam(B∆) = 0 and P(X(1) ∈ B∆ |X(2) ∈
A∆) = 1.

(H2) There exist (A∆)∆>0 and (B∆)∆>0 such that A∆ ⊂ Rd1 , B∆ ⊂ Rd2 , (B∆)∆>0 is an
increasing sequence, P(X(1) ∈ A∆) > 0, lim∆→0 Diam(B∆) = 0 and P(X(2) ∈ B∆ |X(1) ∈
A∆) = 1.

We prove that these assumptions are sufficient to ensure identifiability provided that A(ρ)
is satisfied.

Theorem 7. Assume that the distribution of X satisfies A(ρ), (H1) and (H2). Then X
satisfies A(ρ) and (Adep).

The proof of Theorem 7 is detailed in Section B.3.
One can interpret the assumptions (H1) and (H2) geometrically as shown in Figure 3. In

essence, it means that there exists a slice (along the first d1, resp. last d2, coordinates, with
base A∆) such that the random variable belongs to this slice with positive probability and such
that on this slice, the support of the distribution is contained in an orthogonal slice (along the
last d2, resp. first d1, coordinates) of diameter smaller than ∆.

Figure 3: Left: Assumption (H1). Right: Assumption (H2).

A reformulation of (H1) and (H2) based on the support of the signal is as follows. Let

A1(∆, ε) = {M ⊂ RD | There exists x = (x1, x2) ∈ M

such that Diam

(
π(1:d1)

[
M∩ (Rd1 × B̄(x2, ε))

])
< ∆}

and

A2(∆, ε) = {M ⊂ RD | There exists x = (x1, x2) ∈ M

such that Diam

(
π(d1+1:D)

[
M∩ (B̄(x1, ε)× Rd2)

])
< ∆}.

The proof of the following theorem is straightforward.

Theorem 8. Let M ∈ (∩∆>0 ∪ε>0 A1(∆, ε)) ∩ (∩∆>0 ∪ε>0 A2(∆, ε)). Then any random
variable with support M satisfies (H1) and (H2).
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We now propose sets of compact subsets of RD for which Theorem 8 holds. Define the sets
B1 and B2 as

B1 = {M ⊂ RD compact | ∃x1 ∈ Rd1 ,Card(({x1} × Rd2) ∩M) = 1},

and
B2 = {M ⊂ RD compact | ∃x2 ∈ Rd2 ,Card((Rd1 × {x2}) ∩M) = 1}.

Theorem 9. Let M be a subset of RD such that M ∈ B1 ∩ B2. If X is a random variable
with support M, then X satisfies A(1), (H1) and (H2).

The proof of Theorem 9 is detailed in Section B.4.
For instance, any closed Euclidean ball, and more generally any strictly convex compact

set in RD, is in B1 ∩ B2. To see this, consider the points of the set with maximal first (resp.
last) coordinate: they are unique by strict convexity, which ensures that the set is in B1 (resp.
B2). The same holds for the boundary of any strictly convex compact set.

For the interested reader, we present some considerations on the genericity of (Adep) in
Section C of the supplementary material. Mainly, as a consequence of Theorems 8 and 7,
(Adep) is generically satisfied in the sense that there exists a Gδ-dense set of subsets of RD
for the topology induced by the Hausdorff distance such that (Adep) holds for all distributions
with support in this set.

6 Discussion and further work

In this paper, we propose a very general setting in which for signal data corrupted with additive,
independent and unknown noise, it is possible to recover the support and the distribution of the
signal. We were able to obtain almost minimax rates over very general classes of distributions.
We provided general geometrical assumptions of the support for which our results apply.

The fundamental assumptions of this work are twofold. The first one is A(ρ) about the
tail of the distribution of the signal, the second fundamental assumption is (Adep). The
identifiability proof uses A(ρ) for ρ < 2. In [Hä+21], the authors extend to ρ < 3 but assume
that the signal has no Gaussian component. In the particular setting of repeated observations,
we were able to relax the assumption to any finite ρ, see [CMGL24]. Understanding whether
identifiability holds for larger ρ in other general settings remain as an open question.

An estimation method requires to fix a setting in which the identifiability assumptions hold.
In this work, this is done by estimating the characteristic function as an element of Υκ,S and
H. The choice of H has to reflect some prior knowledge of what about the distribution of the
signal makes (Adep) hold. This can be done using submodels or geometrical considerations,
see the simulation experiments in [CMG23] for signals supported on a sphere and in [CMGL24]
for repeated observations in which this precise estimation method is put in action.

Building stable and numerically efficient algorithms remains an important and open prob-
lem. However, we believe our work opens the way to new estimation ideas. Using priors having
similar properties as the one described in Section C could be a starting point to propose al-
gorithms for Bayesian estimation methods. We plan to investigate such Bayesian methods in
further work.

As usual in deconvolution settings, the minimax rates are very slow. It has been proved in
the repeated measurements model that it is possible to adapt to ordinary smooth noises and
get polynomial rates of convergence, see [CMGL24]. Getting adaptivity to ordinary smooth
noises in a general setting is an important question, with the subsidiary (still more difficult)
question to find whether polynomial rates with exponents depending on the intrinsic dimension
of the support are attainable.
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A Summary of notations

To help the reader, this section gathers the notations introduced in this paper, along with
where they are defined.

• For any r > 0, we write Br = (−r, r) and for any measurable function f on BDr , we
write ∥f∥∞,r the essential supremum of f over BDr and ∥f∥2,r = (

∫
BD

r
|f(u)|2du)1/2.

Section 1.6.

• ΦX : the characteristic function ofX, Φε(i) : the characteristic function of ε(i). Section 2.2.

• Assumption A(ρ): There exist a, b > 0 such that for all λ ∈ RD, E
[
exp

(
λ⊤X

)]
⩽

a exp (b∥λ∥ρ2). Section 2.2.

• Assumption (Adep): For any z0 ∈ Cd1 , z 7→ ΦX(z0, z) is not the null function and for
any z0 ∈ Cd2 , z 7→ ΦX(z, z0) is not the null function. Section 2.2.

• MG: support of the distribution G. Section 2.2.

• For all (t1, t2) ∈ Rd1 × Rd2 , ϕ̃n(t1, t2) = 1
n

∑n
ℓ=1 exp

{
it⊤1 Y

(1)
ℓ + it⊤2 Y

(2)
ℓ

}
. Section 3.1.

• M(ϕ; ν|ΦX) and Mn(ϕ), Section 3.1:

M(ϕ; ν|ΦX) =

∫
B

d1
ν ×Bd2

ν

|ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2)− ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2

× |Φε(1)(t1)Φε(2)(t2)|2dt1dt2,

Mn(ϕ) =

∫
B

d1
νest×B

d2
νest

|ϕ(t1, t2)ϕ̃n(t1, 0)ϕ̃n(0, t2)− ϕ̃n(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2dt1dt2.

• For S > 0 and ρ > 0, Υρ,S = {ϕ analytic s.t. ∀z ∈ RD, ϕ(z) = ϕ(−z), ϕ(0) = 1 and ∀i ∈
ND \ {0},

∣∣∣ ∂iϕ(0)∏d
a=1 ia!

∣∣∣ ⩽ S∥i∥1

∥i∥∥i∥1/ρ
1

}. Section 3.1.

• H: a subset of functions CD → CD such that all elements of H satisfy (Adep) and
such that the set of the restrictions to [−νest, νest]D of functions in H is closed in
L2([−νest, νest]D). Section 3.1.

• For any integer m and any ρ > 1, Φ̂n,m,ρ is a (up to 1/n) measurable minimizer of the
functional ϕ 7→Mn(Tmϕ) over Υρ,S ∩H. Section 3.1.

• cν = inf{|Φε(1)(t)|, t ∈ [−ν, ν]d1} ∧ inf{|Φε(2)(t)|, t ∈ [−ν, ν]d2}. Section 3.1.

• For any ν > 0, c(ν) > 0, E > 0, Q(D)(ν, c(ν), E) is the set of distributions Q = ⊗2
j=1Qj

on RD such that cν ⩾ c(ν) and
∫
RD ∥x∥2dQ(x) ⩽ E. Section 3.1.

• κ = 1/ρ. Section 3.2.

• dH(A1, A2) is the Hausdorff distance between A1 and A2 subsets of RD. Section 3.2.

• K: a compact subset of RD (which can be arbitrarily large). Section 3.2.

• For all S1, S2 subsets of RD, HK(S1, S2) = dH(S1 ∩ K, S2 ∩ K). Section 3.2.

• StK(a, d, r0): set of positive measures G such that for all x ∈ MG ∩ K, for all r ⩽ r0,
G(B(x, r)) ⩾ ard. The distributions in StK(a, d, r0) are called (a, d)-standard. Sec-
tion 3.2.
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• L(κ, S,H): set of distributions G such that, if X is a random variable with distribution
G, then ΦX ∈ H ∩Υ1/κ,S . Section 3.2.

• Fourier and inverse Fourier transform : when f is an integrable function from RD to R,
for all y ∈ RD, F [f ](y) =

∫
eit

⊤yf(t)dt and F−1[f ](y) = ( 1
2π )

D
∫
e−it

⊤yf(t)dt. End of
Section 2.3.

• For any A > 0, for all y ∈ R uA(y) = exp
{
− 1

(1−2y)A
− 1

(1+2y)A

}
1|[− 1

2 ,
1
2 ]
(y). Section 3.2.

• For anyA > 0 and y ∈ RD, ψA(y) = I(A) F−1[uA∗uA](∥y∥2) with I(A) = 1∫
F−1[uA∗uA](∥x∥2)dx

and ψA,h(x) = h−DψA(x/h). Section 3.2.

• The constants cA > 0 and dA > 0: for all x ∈ {y ∈ RD : ∥y∥2 ⩽ cA}, ψA(x) ⩾ dA.
Section 3.2.

• For all y ∈ RD, ḡ(y) = ( 1
2π )

D
∫
e−it

⊤yF [ψA](ht) ΦX(t)dt. Section 3.2.

• For all y ∈ Rd, ĝn,κ(y) =
(

1
2π

)D ∫
e−it

⊤yF [ψA](ht) Tmκ
Φ̂n,1/κ(t)dt. Section 3.2.

• M̂κ =
{
y ∈ RD | ĝn,κ(y) > λn,κ

}
. Section 3.2.

• Γn,κ = ∥ĝn,κ − ḡ∥∞ = supy∈RD |ĝn,κ(y)− ḡ(y)|. Section 3.2.

• For any η > 0, Aη denotes the η-offset of A. Section 4.

• For any borelian set O of RD, PψA,hn
(O) =

∫
O ḡ(y)dy. Section 4.

• ĝn := ĝn,1 and ĝ+n = max {0, ĝn}. Section 4.

• For any borelian set O of RD, P̂n,η(O) = 1∫
(M̂∩B̄(0,Rn))η

ĝ+n (y)dy

∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy =

cn
∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy.

• For any p ∈ [1,+∞) and any two probability measures µ and ν on RD, Wp(µ, ν) is the
Wasserstein distance of order p between µ and ν. Section 4.1.

• For k, l ∈ {1, . . . , D} with k ⩽ l, π(k:l) : (x1, . . . , xD) ∈ RD 7→ (xk, . . . , xl) ∈ Rl−k+1 and
π(k) = π(k:k). Section 5.

B Proofs

B.1 Proof of Proposition 1

Case ρ = 1 It is clear that any compactly supported distribution satisfies A(1). Conversely,
if E[e⟨λ,X⟩] ⩽ a exp(b∥λ∥2), then for any µ > 0, we get, for any b′ > b, if we denote (ej)1⩽j⩽D
the canonical basis of RD,

P(∥X∥2 ⩾ Db′) ⩽
D∑
j=1

P(|Xj | ⩾ b′)

=

D∑
j=1

{P(Xj ⩾ b′) + P(Xj ⩽ −b′)}

=

D∑
j=1

{P(⟨µej , X⟩ ⩾ µb′) + P(−⟨µej , X⟩ ⩾ µb′)}

⩽
D∑
j=1

{
E [exp(⟨µej , X⟩)]

exp(b′µ)
+

E [exp(−⟨µej , X⟩)]
exp(b′µ)

}
by Markov inequality

⩽ 2D
a exp(bµ)

exp(b′µ)
−→

µ→+∞
0,
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and hence ∥X∥2 ⩽ Db almost surely.

Case ρ > 1 Assume that for any λ ∈ RD, E[e⟨λ,X⟩] ⩽ a exp(b∥λ∥ρ2) for some a, b > 0. Then
by using the same directional method as for ρ = 1, we get that for any µ, t ⩾ 0,

P(∥X∥2 ⩾ t) ⩽ 2Da exp(bµρ − µt)

= 2Da exp

(
−
(ρ
b

) 1
ρ−1
(
1− ρ−

ρ+1
ρ−1

)
t

ρ
ρ−1

)
by taking µ =

(
t

bρ

) 1
ρ−1

.

Observe that since ρ > 1,
(
1− ρ−

ρ+1
ρ−1

)
> 0 to get the result.

Now, assume that for any t ⩾ 0, P(∥X∥2 ⩾ t) ⩽ c exp(−dtρ/(ρ−1)) for some c, d > 0, then
by the Cauchy-Schwarz inequality, for any λ ∈ RD,

E[e⟨λ,X⟩] ⩽ E[e∥λ∥2∥X∥2 ].

Then, using that for any nonnegative random variable Y , E[Y ] =
∫
t⩾0

P(Y ⩾ t)dt,

E[e⟨λ,X⟩] ⩽ 1 +

∫
t⩾1

P(e∥λ∥2∥X∥2 ⩾ t)dt

⩽ 1 +

∫
s⩾0

P(∥X∥2 ⩾ s)∥λ∥2 exp(∥λ∥2s)ds with t = e∥λ∥2s

⩽ 1 + c∥λ∥2
∫
s⩾0

exp(−ds
ρ

ρ−1 + ∥λ∥2s)ds

⩽ 1 + c∥λ∥ρ2
∫
s′⩾0

exp(∥λ∥ρ2(−ds
′ ρ
ρ−1 + s′))ds′ with s = s′∥λ∥ρ−1

2 .

Note that −ds′
ρ

ρ−1 + s′ ⩽ 1
ρ (
ρ−1
ρd )ρ−1 for any s′ ⩾ 0, and −ds′

ρ
ρ−1 + s′ ⩽ −s′ when s′ ⩾ ( 2d )

ρ−1.
In particular,

E[e⟨λ,X⟩] ⩽ 1 + c∥λ∥ρ2
∫ ( 2

d )
ρ−1

s′=0

exp(∥λ∥ρ2(−ds
′ ρ
ρ−1 + s′))ds′

+ c∥λ∥ρ2
∫
s′⩾( 2

d )
ρ−1

exp(∥λ∥ρ2(−ds
′ ρ
ρ−1 + s′))ds′

⩽ 1 + c∥λ∥ρ2
(
2

d

)ρ−1

exp

(
∥λ∥ρ2
ρ

(
ρ− 1

ρd

)ρ−1
)

+ c exp

(
−∥λ∥ρ2

(
2

d

)ρ−1
)
,

which proves that A(ρ) holds.

B.2 Proof of Proposition 3

First, note that if U and V are independent random variables satisfying A(ρ) then U + V
satisfies also A(ρ) with the same constant ρ.

(i) If U and V are independent, then for all (z1, z2) ∈ Cd1 × Cd2 ,

ΦU+V (z1, z2) = ΦU (z1, z2)ΦV (z1, z2). (11)

Assume first that U and V satisfy (Adep). Suppose that there exists z0 ∈ Cd1 such that
for all z ∈ Cd2 , ΦU+V (z0, z) = 0. Then for all z ∈ Cd2 ,

ΦU (z0, z)ΦV (z0, z) = 0.

If Z
(1)
U (z0) = {z ∈ Cd2 |ΦX(z0, z) = 0} and Z

(1)
V (z0) = {z ∈ Cd2 |ΦY (z0, z) = 0},

Z
(1)
U (z0)∪Z(1)

V (z0) = Cd2 . Since ΦU (z0, ·) and ΦV (z0, ·) are not the null functions, Corol-
lary 10 of [GR09], p. 9, implies that Z

(1)
U (z0) ∪ Z(1)

V (z0) has zero 2d2-Lebesgue measure,
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which contradicts the fact that Z
(1)
U (z0) ∪ Z

(1)
V (z0) = Cd2 . If instead we suppose that

there exists z0 ∈ Cd2 such that for all z ∈ Cd1 , ΦU+V (z, z0) = 0, analogous arguments
lead to a contradiction. Thus U + V satisfies (Adep).

Assume now that U + V satisfies (Adep). Then (11) implies that ΦU (z1, ·), ΦV (z1, ·),
ΦU (·, z2), ΦV (·, z2) can not be the null function, so that U and V both satisfy (Adep).

(ii) First, we remind the definition of the operator norm, let M ∈ RD×D, then, ∥M∥op =

sup∥x∥2 ̸=0
∥Mx∥2

∥x∥2
. Assume that U satisfies A(ρ) with constants a and b. Then, for any

λ ∈ RD,

E
[
exp (λ⊤V )

]
= E

[
exp

(
λ⊤
(
A 0
0 B

)(
U (1)

U (2)

)
+ λ⊤

(
m1

m2

))]
⩽ a exp

(
b

∥∥∥∥λ⊤(A 0
0 B

)∥∥∥∥ρ
2

+ ∥λ∥2
∥∥∥∥(m1

m2

)∥∥∥∥
2

)
⩽ a exp

(
b

∥∥∥∥(A 0
0 B

)∥∥∥∥ρ
op

∥λ∥ρ2 + ∥λ∥2
∥∥∥∥(m1

m2

)∥∥∥∥
2

)
.

Since ρ ⩾ 1, ∥λ∥2 ⩽ ∥λ∥ρ2 for ∥λ∥2 ⩾ 1, so that if U satisfies A(ρ) with constants a and b,

then V satisfies A(ρ) with constants a exp

(∥∥∥∥(m1

m2

)∥∥∥∥
2

)
and b

∥∥∥∥(A 0
0 B

)∥∥∥∥ρ
op

+

∥∥∥∥(m1

m2

)∥∥∥∥
2

.

The converse follows from applying the direct proof to V with −
(
A−1 0
0 B−1

)(
m1

m2

)
and

(
A−1 0
0 B−1

)
.

Now, for all (z1, z2) ∈ Cd1 × Cd2 ,

ΦV (z1, z2) = exp

(
λ⊤
(
m1

m2

))
ΦU (A

⊤z1, B
⊤z2)

and

ΦU (z1, z2) = exp

(
−λ⊤

(
A−1 0
0 B−1

)(
m1

m2

))
ΦV ((A

−1)⊤z1, (B
−1)⊤z2),

so that U verifies (Adep) if and only if V verifies (Adep).

(iii) Since U (1) and U (2) are independent, for all z1 ∈ Cd1 and z2 ∈ Cd2 , ΦU (z1, z2) =
ΦU(1)(z1)ΦU(2)(z2). Thus if U

(1) and U (2) are deterministic or Gaussian random variables,
U satisfies (Adep). Conversely, if U satisfies (Adep), then neither ΦU(1) nor ΦU(2) have
any zeros. By Hadamard’s factorization Theorem (See [SS03], Chapter 5, Theorem 5.1)
together with A(ρ), reasoning variable by variable we obtain that ΦU(1) = exp(P1) and
ΦU(2) = exp(P2) for some polynomials P1 and P2 with degree bounded by ρ in each
variable. Now, for j = 1, 2, for any λ ∈ Rdj , t 7→ ΦU(j)(tλ) is the characteristic of the
random variable ⟨λ,X(j)⟩ and writes exp(Pj(tλ)). But by Marcinkiewicz’s theorem 2bis
in [Mar39], this implies that t 7→ Pj(tλ) is of degree at most two. Since this is true for
any λ, we get that P1 and P2 are polynomials with total degree at most two. Thus the
polynomials P1 and P2 are of the form i⟨A,X⟩ − 1

2X
⊤BX for some symmetric matrix

B since characteristic functions are equal to 1 at zero and ΦU(j)(−z) = ΦU(j)(z) for all
z ∈ Rdj for j = 1, 2. Therefore the distribution of U1 (resp. U2) is a (possibly singular)
Gaussian distribution.

B.3 Proof of Theorem 7

Consider a random variable X satisfying A(ρ). Theorem 7 is a direct consequence of the
following Lemma 9. Indeed, for any z0 ∈ Cd1 and z ∈ Cd2 ,

E
[
exp

(
iz⊤0 X

(1) + iz⊤X(2)
)]

= E
[
E
[
exp

(
iz⊤0 X

(1)
)
|X(2)

]
exp

(
iz⊤X(2)

)]
,
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and we easily show that z 7→ E[exp(iz⊤0 X(1) + iz⊤X(2))] is the null function if and only if
E[exp(iz⊤0 X(1)) |X(2)] is zero PX(2)-a.s. Define h the measurable function such that

E
[
exp

(
iz⊤0 X

(1)
)
|X(2)

]
= h

(
X(2)

)
PX(2) − a.s.,

and assume that for all z ∈ Cd2 , E
[
h
(
X(2)

)
exp

(
iz⊤X(2)

)]
= 0. Denote for all x ∈ Rd2 ,

h+(x) = max {h(x), 0} and h−(x) = max {−h(x), 0}. We get for all z ∈ Cd2 ,

E
[
h+

(
X(2)

)
exp

(
iz⊤X(2)

)]
= E

[
h−

(
X(2)

)
exp

(
iz⊤X(2)

)]
.

In particular, the probability distributions having density h+ and h− with respect to PX(2)

(up to the same normalizing constant) have equal characteristic functions, thus are the same
probability distributions, so that h+

(
X(2)

)
= h−

(
X(2)

)
, PX(2)-a.s., which implies h

(
X(2)

)
=

0, PX(2)-a.s.
Likewise, for any z0 ∈ Cd2 , z 7→ E[exp(iz⊤X(1) + iz⊤0 X

(2))] is the null function if and only
if E[exp(iz⊤0 X(2)) |X(1)] is zero PX(1)-a.s.

Lemma 9. Assume (H1) and (H2). Then, for all z ∈ Cd1 , E[exp (iz⊤X(1)) |X(2)] is not PX(2)-
a.s. the null random variable and for all z ∈ Cd2 , E[exp (iz⊤X(2)) |X(1)] is not PX(1)-a.s. the
null random variable

Proof of Lemma 9 To begin with, by Proposition 3, we may assume without loss of gener-
ality that 0 ∈ B∆ in (H1) and (H2) (up to translation of X).

Let z ∈ Cd1 be such that E[exp (iz⊤X(1))|X(2)] is PX(2)-a.s. the null random variable.
Then for any ∆ > 0, if we denote A∆ a set given by (H1), E[exp (iz⊤X(1))|X(2)]1|X(2)∈A∆

= 0
P
X

(2)
1

a.s., and taking the real part of this equation shows that

E[cos(Re(z)⊤X(1)) exp (−Im(z)⊤X(1))|X(2)]1|X(2)∈A∆
= 0 PX(2)a.s. (12)

Using (H1), we can fix ∆ > 0 small enough such that if x ∈ B∆, cos(Re(z)⊤x) > 0.
But for such ∆, Equation (12) can not hold since P(X(1) ∈ B∆ |X(2) ∈ A∆) = 1. Thus
E[exp (iz⊤X(1))|X(2)] is not PX(2)-a.s. the null random variable.

The proof of the other part of Lemma 9 is analogous using (H2).

B.4 Proof of Theorem 9

Let M be a compact subset of RD. Let us first prove that the function u 7−→ Diam({u} ×
Rd2 ∩M) is upper semi-continuous.

Let u ∈ Rd1 . Since M is compact, there exist sequences un → u and (xn, yn) in
({un}×Rd2 ∩M) such that ∥xn− yn∥2 = Diam({un}×Rd2 ∩M) and limn→+∞ ∥xn− yn∥2 =
lim supv→uDiam({v} × Rd2 ∩ M). Moreover, we may assume that there exists (x, y) in
({u} × Rd2 ∩ M) such that xn → x and yn → y. Taking the limit along those sequences
shows that Diam({u} ×Rd2 ∩M) ⩾ ∥x− y∥ = lim supv→uDiam({v} ×Rd2 ∩M), proving the
claimed upper-semi continuity.

Now, since M is compact, there exists R > 0 such that M ⊂ B̄(0, R). If moreover M ∈ B1,
there exists x1 ∈ Rd1 such that Diam({x1} × Rd2 ∩M) = 0. Using the upper semi-continuity
shows that M ∈ ∩n⩾1A2(1/n,R). Likewise, if M ∈ B2, there exists x2 ∈ Rd2 such that
Diam(Rd1 × {x2} ∩M) = 0 and M ∈ ∩n⩾1A1(1/n,R).

The end of the proof follows from Theorem 8 and the fact that any random variable with
compact support satisfies A(1).

C Genericity of (H1) and (H2)

C.1 Genericity results

The main purpose of this subsection is to show that hypotheses (H1) and (H2) are verified
generically.
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First, we show that while the set of supports satisfying Theorem 8 is dense in the set of
closed sets of RD, its complement is also dense.

Proposition 4. The set A = (∩∆>0 ∪ε>0 A1(∆, ε))
⋂

(∩∆>0 ∪ε>0 A2(∆, ε)) and its comple-
ment are dense in the set of closed subsets of RD endowed with the Hausdorff distance.

The proof of Proposition 4 is detailed in Section C.2.
This proposition shows that any support M can be altered by a small perturbation to

produce both supports that satisfy (H1) and (H2) and supports that satisfy neither. A fortiori,
the same is true for (Adep), as on one hand (H1), (H2) and A(ρ) ensure (Adep) by Theorem 7
and on the other hand a small perturbation of the signal is enough to no longer satisfy (Adep)
by Point (i) of Proposition 3.

Topological genericity The sets ∪ε>0A1(∆, ε) are open with respect to the Hausdorff dis-
tance, and are increasing in ∆. Therefore, A is a Gδ set, and by the Proposition above, it is also
dense. Equivalently, this means that the complement of A is a meagre set, and therefore the
set of all supports satisfying (H1) and (H2) is comeagre, so these assumptions hold generically
in the comeagre or Gδ-dense sense.

Measure theoretical genericity Similarly to how “almost everywhere” (with respect to
the Lebesgue measure) is another possible notion of genericity in RD, we construct a random
and small perturbation of RD such that any compact set is almost surely transformed into a
compact set in B1 ∩ B2.

More precisely, for any ε > 0, we define a (random) continuous bijection f : RD −→ RD
such that almost surely, |f(x) − x| ⩽ ε for all x ∈ RD, and such that if M is compact, then
f(M) is in B1 ∩ B2 almost surely. This random bijection does not depend on which support
M is considered, and can for instance be seen as a modeling of the imperfections of “realistic”
supports, or as a way to introduce a Bayesian prior on the support. In that sense, compact
supports are almost surely in B1 ∩B2, and thus compactly supported random variables almost
surely satisfy (Adep).

There is no canonical way to define a random perturbation of RD. Our approach is to tile
the space with simplices, then add a small perturbation to each vertex of the tiling, keeping the
transformation linear inside each simplex. Visually, this results in a small, random crumpling
of the Euclidean space.

Simplicial tiling of RD Let us recall a few definitions about simplicial complexes. For any
k ∈ {0, . . . , D}, a k-simplex of RD is the convex hull of (k + 1) affinely independent points of
RD. A simplicial complex P is a set of simplices such that every face of a simplex from P is
also in P, and the non-empty intersection of any two simplices F1, F2 ∈ P is a face of both
F1 and F2. P is a homogeneous simplicial D-complex if each simplex of dimension less than
D of P is the face of a D-simplex of of P. For any simplex F , we write relint(F ) its relative
interior. Finally, a homogeneous simplicial D-complex P is called a simplicial tiling of A ⊂ RD
if the relative interior of its simplices form a partition of A. Note that the facets of P, that
is, its D-simplices, do not necessarily form a partition of A: two facets can have a non-empty
intersection when they share a face.

First, consider a finite simplicial tiling of the hypercube [0, 1]D, and extend it to RD by
mirroring it along the hyperplanes orthogonal to the canonical axes crossing them at integer
coordinates. Formally, for any k = (k1, . . . , kD) ∈ ZD, the hypercube

∏D
i=1[ki, ki + 1] contains

the tiling of [0, 1]D, mirrored along axis i if and only if ki is odd. The faces of the hypercubes
defined in this way match, as each pair of hypercubes sharing a face are mirrors of each other
with respect to that face. Thus, the resulting tiling P is a simplicial tiling of RD.

Let (xn)n∈N be the sequence of vertices of the simplicial tiling P (i.e. its 0-simplices). We
identify each simplex F ∈ P with the set of its 0-dimensional faces {xi}i∈I , and write FI in
that case. Note that the set I is unique for any given simplex F and characterizes F .
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Perturbation of the tiling Fix a small r > 0. Let (εn)n∈N be a sequence of i.i.d. uniform
variables on [−r, r]D, and define Pε the simplicial complex defined by

Pε = {{xi + εi}i∈I : {xi}i∈I ∈ P}.

Note that since the original tiling of [0, 1]D was finite, there exists r0 > 0 such that for any
(εn)n∈N ∈ ([−r0, r0]D)N, the vertices of any simplex in P are still affinely independent after
being moved according to ε and any two simplices F, F ′ ∈ P sharing a face F ′′ (resp. with no
intersection) are transformed into two simplices of Pε that share exactly the transformation
of F ′′ (resp. with no intersection), so that Pε is indeed a simplicial complex. Finally, Pε still
covers RD (as seen when moving each vertex in [−1, 2]D one after the other along a continuous
path, showing that no hole is created in the covering of [0, 1]D at any point in time), so for any
r ∈ (0, r0], Pε is almost surely a simplicial tiling of RD.

Since the relative interiors of the simplices of P define a partition of RD, for each z ∈
RD, there exists exactly one face FI ∈ P such that z ∈ relint(FI). Writing z =

∑
i∈I αixi

(for α ∈ (0, 1]|I| such that
∑
i∈I αi = 1), we define the image of z by the perturbation as

fε(z) =
∑
i∈I αi(xi + εi). In other words, each simplex is deformed according to the linear

transformation given by the perturbation of its vertices.
The mapping fε is a (random) bijective and continuous transformation of RD that is

“small”, in the sense that almost surely, supz∈RD ∥z − fε(z)∥ ⩽ r.
Note that the transformation fε can be made with arbitrarily small granularity: the same

approach works when considering tilings of [0, δ]D for any δ > 0 instead of [0, 1]D (up to

changing r). We may also iterate several random independent transformations fε
(1) ◦· · ·◦fε(m)

for m ⩾ 1, and the transformation of M will still almost surely belong to B1 ∩ B2.

Theorem 10. Let r ∈ (0, r0] with r0 as above, ε = (εn)n∈N be a sequence of i.i.d. uniform
r.v. on [−r, r]D, δ > 0, and fε be the bijective transformation of RD defined above.

Then for any (random) continuous mapping H : RD → RD that is independent of ε, the

mapping F : z 7−→ δfε(H(z)
δ ) satisfies: for any compact set M ⊂ RD, F (M) ∈ B1 ∩ B2 a.s..

The proof of Theorem 10 is detailed in Section C.3.
This shows that for any compact set M ∈ RD, a small change into the set F (M) where F

is a transformation of RD of the type described in the Theorem almost surely results in a set
in B1 ∩ B2.

C.2 Proof of Proposition 4

First, let us show that the set

A := (∩∆>0 ∪ε>0 A1(∆, ε))
⋂

(∩∆>0 ∪ε>0 A2(∆, ε))

is dense.
Let δ > 0 and let M be a closed subset of RD, we show that there exists a closed M′ in

∩∆>0(A1(∆, δ) ∩ A2(∆, δ)) (and thus in A) such that dH(M,M′) ⩽ 8δ.
For k, l ∈ {1, . . . , D} with k ⩽ l, write π(k:l) the projection π(k:l) : (x1, . . . , xD) ∈ RD 7→

(xk, . . . , xl) ∈ Rl−k+1 and π(k) = π(k:k).
Let z = (z1, z2) ∈ M with z1 = π(1:d1)(z) and z2 = π(d1+1:D)(z), M′ is defined by cutting

the space in half through z orthogonally to the space of the first d1 cooordinates and spreading
the two halves apart, connecting them by a single segment to ensure it is in A2(∆, δ), then cut
and connect again orthogonally to the (d1 + 1)-th axis to be in A1(∆, δ).

Formally, define M′ as the union of:

• {y | y = (y1, y2) ∈ M, π(1)(y1) ⩽ π(1)(z1) and π
(1)(y2) ⩽ π(1)(z2)},

• {(y1 + 4δ(1, 0, . . . , 0), y2) | y = (y1, y2) ∈ M, π(1)(y1) ⩾ π(1)(z1) and π
(1)(y2) ⩽ π(1)(z2)},

• {(y1, y2 + 4δ(1, 0, . . . , 0)) | y = (y1, y2) ∈ M, π(1)(y1) ⩽ π(1)(z1) and π
(1)(y2) ⩾ π(1)(z2)},
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• {(y1+4δ(1, 0, . . . , 0), y2+4δ(1, 0, . . . , 0)) | y = (y1, y2) ∈ M, π(1)(y1) ⩾ π(1)(z1) and π
(1)(y2) ⩾

π(1)(z2)},

• the segments between z and (z1+4δ(1, 0, . . . , 0), z2) and between z and (z1, z2+4δ(1, 0, . . . , 0)).

An illustration of this construction is given in Figure 4.

Figure 4: Transforming M into a set M′ ∈ B1 ∩ B2

By construction, the Hausdorff distance between this set M′ and M is smaller than 8δ (the
points in the first four sets have moved at most 8δ and the segments are at distance at most 8δ of
z). M′ is also closed, and taking x = (z1+2δ(1, 0, . . . , 0), z2) and x2 = (z1, z2+2δ(1, 0, . . . , 0))
in the definition of A1(∆, δ) and A2(∆, δ) is enough to check that M′ ∈ A1(∆, δ) ∩ A2(∆, δ)
for any ∆ > 0.

To show that the complement of A is dense, let M be a closed subset of RD and η > 0,
and let M′ = {x + y |x ∈ M, y ∈ [−η, η]D}. Then dH(M,M′) ⩽ η

√
D by construction, and

for any ∆ ⩽ 2η and ε > 0, M′ /∈ A1(∆, ε), and thus M′ ∈ A∁ where A∁ is the complement of
the set A.

Note that if M is the support of a random variable X, then M′ is the support of X + Y ,
where Y is a uniform random variable on [−η, η]D that is independent of X. In that case, by
Proposition 3 (i), X + Y is a small perturbation of X that does not satisfy (Adep).

C.3 Proof of Theorem 10

Let M be a compact set of RD. Since ε and H are independent, and thus fε and H(M) are
independent, writing µH the distribution of H(M):

P(F (M) ∈ B1 ∩ B2) =

∫
P
(
fε(

h

δ
) ∈ B1 ∩ B2

)
dµH(h) = 1,

provided that for any compact set M′ ∈ RD, fε(M′) ∈ B1 ∩ B2 a.s..
Thus, it suffices to show that for any compact set M ∈ RD, almost surely, fε(M) is in the

set B1 from Theorem 9. The proof for B2 is identical.
We will show that Card(arg maxz∈fε(M) π

(1)(z)) = 1, where π(1)(z) is the first coordinate of
z. First, since M is compact and fε is continuous, fε(M) is compact, therefore the supremum
of π(1) is reached at least at one point.

Lemma 10. The two following properties hold almost surely.

1. Let F ′
I , F

′
J ∈ Pε be two different simplices, then at least one of the two following points

holds:

• supx∈fε(M)∩relint(F ′
I)
π(1)(x) ̸= supx∈fε(M)∩relint(F ′

J )
π(1)(x)

• π(1) does not reach its maximum on fε(M)∩ relint(F ′
I) or does not reach its maxi-

mum on fε(M) ∩ relint(F ′
J).
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2. Let F ′
I ∈ Pε, then the supremum of π(1) on fε(M)∩ relint(F ′

I) is reached at at most one
point of relint(F ′

I).

A consequence of this lemma is that almost surely, the maximizer of π(1) on fε(M) is
unique, as all maximizers of π(1) on fε(M) belong to the relative interior of one simplex of
Pε, which shows that fε(M) is almost surely in B1.

Proof of Lemma 10. The following functions will be of use in the proof. For any finite J ⊂ N
such that F ′

J = {xi + εi}i∈J ∈ Pε, for any j ∈ J and α ∈ (0, 1], let

uα,J : e ∈ R 7−→ sup

{
α(π(1)(xj) + e) +

∑
k∈J\{j}

αkπ
(1)(xk + εk), where

z = αxj +
∑

k∈J\{j}

αkxk ∈ M, αk ∈ (0, 1] and α+
∑
k

αk = 1

}
.

In other words, uαJ
is the supremum of π(1) on the slice of fε(M) ∩ relint(F ′

J) that gives
weight α to the vertex (xj + εj). To simplify the notations, let wk : z 7−→ αk be the “weight”
functions. It is straightforward to check that

1. the function uα,J is linear with slope α,

2. supx∈fε(M)∩relint(F ′
J )
π(1)(x) = supα∈(0,1] uα,J(π

(1)(εj)),

3. the function h : π(1)(εj) 7−→ supx∈fε(M)∩relint(F ′
J )
π(1)(x) (all coordinates of all εk other

than π(1)(εj) being fixed) is convex,

4. if the supremum of π(1) on the closure of fε(M) ∩ relint(F ′
J) is reached at some point

z ∈ F ′
J when π(1)(εj) = e, then wj(z) is a sub-gradient of h at e,

5. since the number of points where the sub-gradient of a convex function on R is not unique
is at most countable, almost surely (whether all coordinates of all εk other than π(1)(εj)
are fixed or not), h has a unique sub-gradient at π(1)(εj).

Let us now prove the first point of the lemma. Let F ′
I = {xi+ εi}i∈I and F ′

J = {xi+ εi}i∈J
be two different simplices of Pε, and let j ∈ J \ I (by exchanging the two simplices, we may
assume without loss of generality that J is not a subset of I).

Consider the following, conditionally to (εn)n ̸=j and π
(2:D)(εj). Assume that h(π(1)(εj)) =

supx∈fε(M)∩relint(F ′
I)
π(1)(x) (otherwise we are in the first case of the first point of the lemma).

We may assume without loss of generality (by point 5 above) that the sub-gradient of h at
π(1)(εj) is unique. Two cases are possible:

• the sub-gradient of h at π(1)(εj) is 0. Then π
(1) does not reach its maximum on fε(M)∩

relint(F ′
J), since if z is a maximizer of π(1), then wj(z) = 0 by point 4,

• the sub-gradient of h at π(1)(εj) is positive, so there exists a single point e such that
h(e) = supx∈fε(M)∩relint(F ′

I)
π(1)(x). Since π(1)(εj) is uniform on [−r, r] by construction,

we almost surely have π(1)(εj) ̸= e, and thus this second case almost surely never happens.

For the second point of the lemma, by points 4 and 5, if the set of maximizers of π(1) on
fε(M) ∩ relint(F ′

J) is a non-empty set Z, then for any j ∈ J , almost surely, wj is constant
on Z. Since every point z ∈ F ′

J is characterized by the vector (wj(z))j∈J , this shows that Z
contains a single point, which concludes the proof.
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D Proofs

D.1 Proof of Proposition 2

For any ν > 0 and ζ ∈ L2([−ν, ν]D) (resp. L∞([−ν, ν]D)), write ∥ζ∥2,ν (resp. ∥ζ∥∞,ν) its L
2

(resp. L∞) norm.
Let ρ0 ∈ [1, 2). Let us start with some preliminary results.
From [CMG23], Section 7.1, for all ν > 0, there exists b > 0, η > 0, cM > 0 and cZ > 0

such that, writing ϵ(u) = b/ log log(1/u), the following properties hold for any ρ′ ∈ [1, ρ0].

• For all ϕ ∈ Υρ′,S and for all ζ ∈ L2([−ν, ν]D) such that ϕ+ ζ ∈ Υρ′,S and ∥ζ∥2,ν ⩽ η,

M(ϕ+ ζ; ν|ϕ) ⩾ c4ν∥ζ∥
2+2ϵ(∥ζ∥2,ν)
2,ν . (13)

• For all n ⩾ 1, writing Zn(t, ϕ) =
√
n(ϕ̃n(t) − ϕ(t)Φε(1)(t1)Φε(2)(t2)), one has for all

ϕ ∈ Υρ′,S and h ∈ L2([−ν, ν]D) such that ϕ+ ζ ∈ Υρ′,S ,

|Mn(ϕ+ζ)−M(ϕ+ζ; νest|ϕ)−(Mn(ϕ)−M(ϕ; νest|ϕ))| ⩽ cM
∥Zn(·, ϕ)∥∞,νest√

n
∥ζ∥1−ϵ(∥ζ∥2,νest )

2,νest
.

(14)

• For all s ∈ [1, n],
P(∥Zn(·,ΦX)∥∞,νest ⩾ cZ

√
s) ⩽ e−s. (15)

Moreover, from Lemma H.3 of [GLCL22b], there exists a constant cT > 0 such that for all
ρ′ ∈ [1, ρ0], m ⩾ ρ′D and ϕ ∈ Υρ′,S ,

∥ϕ− Tmϕ∥∞,νest ⩽ cT (Sνest)
mm−m/ρ′+D.

Let ρ′ ∈ [1, ρ0] and assume that m ⩾ 2ρ′ logn
log logn , then this equation becomes ∥ϕ−Tmϕ∥∞,νest =

O(n−2+on(1)), where on(1) denotes a sequence tending to 0 when n tends to infinity. In
particular, there exists n0 such that for all n ⩾ n0,

sup
ρ′∈[1,ρ0]

sup
ν∈(0,νest]

sup
m⩾2ρ′ log n

log log n

sup
ϕ∈Υρ′,S

∥ϕ− Tmϕ∥2,ν ⩽
1

n
(16)

and

sup
ρ′∈[1,ρ0]

sup
m⩾2ρ′ log n

log log n

sup
ϕ∈Υρ′,S

|Mn(ϕ)−Mn(Tmϕ)| ⩽ c∥ϕ− Tmϕ∥∞,νest ⩽
1

n
(17)

for some c > 0 that depends only on νest, ρ0 and S, using that supϕ∈Υρ0,S
∥ϕ∥∞,νest < +∞.

Finally, following the proof of equation (25) of Section A.3 of [GLCL22a], for any ν′ ⩾ ν, m ⩾ 1
and ϕ ∈ Cm[X]

∥ϕ∥2,ν′ ⩽ mD/2(4
ν′

ν
)m+D/2∥ϕ∥2,ν . (18)

Let us now prove the proposition. Let ρ ∈ [1, ρ0] such that ΦX ∈ Υρ,S ∩H. By definition, for

any m ⩾ 1 and ρ′ ∈ [ρ, ρ0], Φ̂n,m,ρ′ is such that Φ̂n,m,ρ′ ∈ Υρ′,S ∩H and

Mn(TmΦ̂n,m,ρ′) ⩽ inf
ϕ∈Υρ′,S∩H

Mn(Tmϕ) +
1

n

⩽ inf
ϕ∈Υρ,S∩H

Mn(Tmϕ) +
1

n

⩽Mn(TmΦX) +
1

n

and thus, by (17),

sup
ρ′∈[ρ,ρ0]

sup
m⩾2ρ′ log n

log log n

Mn(Φ̂n,m,ρ′) ⩽Mn(ΦX) +
3

n
. (19)
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Therefore, by (14), for any ν ∈ (0, νest], writing ζm,ρ′ = Φ̂n,m,ρ′ − ΦX ,

M(Φ̂n,m,ρ′ ; ν|ΦX) ⩽M(Φ̂n,m,ρ′ ; νest|ΦX)

⩽ cM
∥Zn(·,ΦX)∥∞,νest√

n
∥ζm,ρ′∥

1−ϵ(∥ζm,ρ′∥2,νest )

2,νest
+

3

n
. (20)

Let us show that we may apply (13). Combining (19) with Lemma A.1 of [GLCL22a] shows
that for any δ > 0, there exist cη > 0 and n0 (which do not depend on ρ) such that for all
n ⩾ n0, with probability at least 1− 4e−cηn,

sup
ρ′∈[ρ,ρ0]

sup
m⩾2ρ log n

log log n

M(Φ̂n,m,ρ′ ; νest|ΦX) ⩽ δ.

In addition, since Υρ0,S ∩ H is compact in L2([−νest, νest]D), ϕ 7→ M(ϕ; νest|ΦX) is continu-
ous on L2([−νest, νest]D), and M(ϕ; νest|ΦX) = 0 implies ϕ = ΦX for all ϕ ∈ H ∩ Υρ0,S by
Theorem 1, there exists δ > 0 such that

inf
ϕ∈Υρ0,S∩H s.t. ∥ϕ−ΦX∥2,νest⩾η

M(ϕ; νest|ΦX) > δ.

Therefore, there exist cη > 0 and n0 (which do not depend on ρ) such that for all n ⩾ n0, with
probability at least 1− 4e−cηn,

sup
ρ′∈[ρ,ρ0]

sup
m⩾2ρ log n

log log n

∥ζm,ρ′∥2,νest ⩽ η, (21)

which is what we need to apply (13).
Fix now ν ∈ (0, νest], c(ν) > 0 and E > 0 such that Q ∈ Q(D)(ν, c(ν), E). In particular,

cν ⩾ c(ν) > 0. Then, by (13) and (20),

∥ζm,ρ′∥
2+2ϵ(∥ζm,ρ′∥2,ν)

2,ν ⩽
2

c(ν)4
max

(
cM

∥Zn(·,ΦX)∥∞,νest√
n

∥ζm,ρ′∥
1−ϵ(∥ζm,ρ′∥2,νest )

2,νest
,
3

n

)
. (22)

By (16) and (18), assuming m ∈ [2ρ′ logn
log logn , C

logn
log logn ] in the following series of inequalities

(for some fixed C > 2ρ′),

∥ζm,ρ′∥2,νest ⩽ 2max(∥Tmζm,ρ′∥2,νest ,
3

n
) by (16)

⩽ 2max

(
∥Tmζm,ρ′∥2,νm

D
2 (4

νest
ν

)m+D
2 ,

3

n

)
by (18)

⩽ 4max

(
∥ζm,ρ′∥2,νm

D
2 (4

νest
ν

)m+D
2 ,

3m
D
2 (4νestν )m+D

2

n

)
by (16)

⩽ nϵ(1/n) max

(
∥ζm,ρ′∥2,ν ,

1

n

)
, (23)

up to increasing the constant b in the definition of u 7→ ϵ(u), which can be done without loss of
generality. Together with (22) and (15), one gets for all s ∈ [1, cηn] (assuming cη ⩽ 1 without
loss of generality), with probability at least 1− 4e−cηn − e−s ⩾ 1− 5e−s (on the event where
∥Z(·,ΦX)∥∞,νest ⩽ cZ

√
s and (21) holds) that for all ρ′ ∈ [ρ, ρ0] andm ∈ [2ρ′ logn

log logn , C
logn

log logn ],

∥ζm,ρ′∥
2+2ϵ(∥ζm,ρ′∥2,ν)

2,ν ⩽ cmax

(√
s

n
nϵ(1/n)

(
∥ζm,ρ′∥2,ν ∨

1

n

)1−ϵ(∥ζm,ρ′∥2,νest )

,
1

n

)

for some constant c > 0 that does not depend on ρ, ρ′ or m. Since ϵ is increasing, recalling
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that ∥ζm,ρ′∥2,νest ⩽ η on the event considered, by (23),

ϵ(∥ζm,ρ′∥2,νest) ⩽

{
max(ϵ(∥ζm,ρ′∥2,νnϵ(1/n)), ϵ(n−1+ϵ(1/n))) if ∥ζm,ρ′∥2,ν ⩽ n−2ϵ(1/n),

ϵ(η) always,

⩽

{
2ϵ(1/n) if ∥ζm,ρ′∥2,ν ⩽ n−2ϵ(1/n),

ϵ(η) always,

⩽ [ϵ(η) or 2ϵ(1/n)]

for n large enough (depending on b), up to decreasing η, where for compactness of notations,
[A or B] means min(A,B) if ∥ζm,ρ′∥2,ν ⩽ n−2ϵ(1/n) and A otherwise in the following. Gather-
ing the two previous equations shows that either

∥ζm,ρ′∥1+3[ϵ(η) or 2ϵ(1/n)]
2,ν ⩽ c

√
s

n1−2ϵ(1/n)

or
∥ζm,ρ′∥2+2[ϵ(η) or 2ϵ(1/n)]

2,ν ⩽
c

n
.

Therefore, assuming 3ϵ(η) ⩽ 1 without loss of generality, ∥ζm,ρ′∥2,ν ⩽ n−ϵ(1/n) as soon as
s ⩽ n1−10ϵ(1/n)/c2 and thus, up to changing the constant c, for n large enough and for all
s ∈ [1, n1−10ϵ(1/n)/c2], with probability at least 1 − 4e−cηn − e−s, for all ρ′ ∈ [ρ, ρ0] and
m ∈ [2ρ′ logn

log logn , C
logn

log logn ],

∥ζm,ρ′∥22,ν ⩽ c
( s

n1−2ϵ(1/n)

)1−6ϵ(1/n)

.

Finally, note that 4e−cηnen
1−10ϵ(1/n) −→ 0, so that the probability that the last equation holds

is larger than 1 − 2e−s for n large enough, which concludes the proof for the version with
Φ̂n,m,ρ′ . The version for TmΦ̂n,m,ρ′ follows from this and (16).

D.2 Proof of Lemma 1

Let y ∈ MG ∩ K. By property (III) of ψA,

ḡ(y) =
1

hD

∫
ψA

(
∥y − u∥

h

)
dG(u)

⩾
1

hD

∫
∥u−y∥2⩽cAh

ψA(
∥y − u∥

h
)dG(u)

⩾
1

hD
dAG(B(y, cAh))

⩾
1

hD
dAa(cAh)

d.

D.3 Proof of Lemma 2

Recall the definition of ḡ: for all y ∈ RD,

ḡ(y) =
1

hD

∫
ψA(

∥y − u∥
h

)dG(u).

Let C1 > 0 and ϵ > 0. By Property (V) of ψA and (6), there exists T > 0 (depending on
A and C1) such that for any t ⩾ T , ψA(t) ⩽ C1 exp(−βAtA/(A+1)). Take y ∈ RD such that

d(y,MG) > ( ε
βA

)
A+1
A h log( 1h )

A+1
A , then for all u ∈ MG,

∥y−u∥
h ⩾ (β−1

A log( 1
hε ))

A+1
A , therefore

there exists h0 > 0 depending only on ε, D, A and T (thus C1 such that h ⩽ h0 implies
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∥y−u∥
h ⩾ T and thus

ψA(
∥y − u∥

h
) ⩽ C1 exp {−βA(

∥y − u∥
h

)A/(A+1)}

⩽ C1 exp {− log(
1

hε
)}

= C1h
ε,

and finally ḡ(y) ⩽ C1(
1
h )
D−ε since G is a probability distribution. Lemma 2 follows by taking

ε = D.

D.4 Proof of Lemma 3

For y ∈ RD,

ĝn,κ(y)− ḡ(y) = (
1

2π
)D
∫
e−it

⊤yF [ψA](th)(TmκΦ̂n,1/κ(t)− ΦX(t))dt.

Since F [ψA](th) is 0 for ∥t∥2 > 1/h,

ĝn,κ(y)− ḡ(y) = (
1

2π
)D
∫
e−it

⊤yF [ψA](th)(Tmκ
Φ̂n,1/κ(t)− ΦX(t))1|∥t∥2⩽1/hdt

= F−1[F [ψh]{(Tmκ
Φ̂n,1/κ − ΦX)1|∥t∥2⩽1/h}](y)

= F−1[F [ψA,h]] ∗ F−1[(Tmκ
Φ̂n,1/κ − ΦX)1|∥t∥2⩽1/h](y). (24)

By Young’s convolution inequality,

∥ĝn,κ − ḡ∥∞ ⩽ ∥F−1[F [ψA,h]]∥2∥F−1[(TmκΦ̂n,1/κ − ΦX)1|∥t∥2⩽1/h]∥2.

Finally, using Parseval’s equality and the fact that F−1[F [ψA,h]] = ψA,h,

∥ĝn,κ − ḡ∥∞ ⩽ ∥ψA,h∥2∥Tmκ
Φ̂n,1/κ − ΦX∥2,1/h,

and use (7) to conclude the proof.

D.5 Proof of Theorem 2

Let κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0 and C > 0. Let κ ∈ [κ0, 1],
Q ∈ Q(D)(ν, c(ν), E) and G ∈ StK(a, d, r0) ∩ L(κ, S,H).

Using inequalities analogous to (28)-(29) p.17 of [GLCL22a], we get that for all κ′ ∈ [κ0, κ]
and all integer m,

∥TmΦ̂n,1/κ′ − ΦX∥22,1/h ⩽ 4U(h) + 4mD(2 + 2
1

hν
)2m+D

(
2V (ν) + ∥Φ̂n,1/κ′ − ΦX∥22,ν

)
, (25)

where

U(h) = ch−D−2m−2/κ′
S2mm−2κ′m+2D exp(2κ′(S/h)1/κ

′
)

and V (ν) = c(Sν)2m+2/κ′
m−2κ′m+2D.

Thus, applying Lemma 3 and using h = chSm
−κ′

κ′ , there exists C > 0 such that on the event
where (25) holds:

Γ2
n,κ′ ⩽ C(chS)

−2D−2mκ′−2/κ′
m

2D(κ′+1)+2
κ′ S2mκ′ exp(2κ′c

−1/κ′

h mκ′)

+ Cm
D(1+κ′)
κ′ (2 + 2

mκ′

κ′

chSν
)2mκ′+D

(
(Sν)2mκ′+2/κ′

m
−2κ′mκ′+2D
κ′ + ∥Φ̂n,1/κ′ − ΦX∥22,ν

)
. (26)
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The first term of the upper bound is upper bounded as follows.

(chS)
−2D−2mκ′−2/κ′

m
2D(κ′+1)+2
κ′ S2mκ′ exp(2κ′c

−1/κ′

h mκ′)

= S−2D−2/κ′
exp {(−2D − 2mκ′ − 2/κ′) log(ch) + (2D(κ′ + 1) + 2) log(mκ′) + 2κ′c

−1/κ′

h mκ′}
⩽ C exp {(−2 log(ch) + 1)mκ′ + 2(D(κ′ + 1) + 1) log(mκ′)} (27)

⩽ C exp {(−2 log(ch) + 3 + 2D(κ′ + 1))mκ′}, (28)

for another constant C > 0, where inequality (27) holds because 2κc
1/κ
h > 1 and inequality (28)

holds because log(mκ) ⩽ mκ. The second term of the upper bound is upper bounded by

m
D(1+κ′)
κ′ (2 + 2

mκ′

κ′

chSν
)2mκ′+D

(
(Sν)2mκ′+2/κ′

m
−2κ′mκ′+2D
κ′ + ∥Φ̂n,1/κ′ − ΦX∥22,ν

)
⩽ C m

D(1+2κ′)
κ′ (2κ′mκ′)2κ

′mκ′ (2κ′)−2κ′mκ′ (chSν)
−2mκ′−D

×

(
(Sν)2mκ′+2/κ′

m
−2κ′mκ′+2D
κ′ + ∥Φ̂n,1/κ′ − ΦX∥22,ν

)

⩽ C

(
exp

{
(−2 log(ch) + (3D + 2κ′))mκ′

}

+ (2κ′mκ′)2κ
′mκ′ exp

{
(−2 log(ch) +D(1 + 2κ′))mκ′

}
∥Φ̂n,1/κ′ − ΦX∥22,ν

)
for another constant C > 0. Putting all together, we get that for yet another constant C > 0,

Γ2
n,κ′ ⩽ Cmax

(
exp

{
(−2 log(ch) + 3 + 2D(κ′ + 1))mκ′

}
, exp

{
(−2 log(ch) + (3D + 2κ′))mκ′

}
,

(2κ′mκ′)2κ
′mκ′ exp

{
(−2 log(ch) +D(1 + 2κ′))mκ′

}
∥Φ̂n,1/κ′ − ΦX∥22,ν

)
.

Choosing ch ⩾ exp {2D + 2} and mκ′ = 1
4κ′

logn
log logn for some γ ∈ (0, 1), it follows that

Γ2
n,κ′ ⩽ Ce−mκ′

[
1 ∨ n1/2∥Φ̂n,1/κ′ − ΦX∥22,ν

]
. (29)

By Proposition 2, taking s = log n and δ, δ′′ such that (1 − δ)(1 − δ′′) > 1/2, we obtain that
with probability at least 1 − 2/n, for all κ′ ⩽ κ, Γ2

n,κ′ ⩽ Ce−mκ′ −→ 0. Note that we could

also take s = n1/2−δ
′′′

for any δ′′′ > 0 and still have Γ2
n,κ′ ⩽ Ce−mκ′ with probability at least

1− 2e−s, up to changing the constant C, by picking δ and δ′′ small enough in Proposition 2.
Now, by Lemma 1, for any h ⩽ (r0/cA) ∧ 1,

inf
y∈MG∩K

ĝn,κ′(y) ⩾ inf
y∈MG∩K

ḡ(y)− Γn,κ′

⩾ cdAdAa

(
1

h

)D−d

− Γn,κ′

⩾
cdAdAa

2

(
1

h

)D−d

as soon as Γn,κ′ ⩽ cdAdAa
2 , and this lower bound is strictly larger than λn,κ for any d. This

implies that on the event where Γn,κ′ ⩽ cdAdAa
2 , MG ∩ K ⊂ M̂κ′ ∩ K. Next,

sup

y∈K,d(y,MG)⩾h
[

D
βA

log( 1
h )

]A+1
A

ĝn,κ′(y) ⩽ sup

y∈K,d(y,MG)⩾h
[

D
βA

log( 1
h )

]A+1
A

ḡ(y) + Γn,κ′ .
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Choosing C1 =
cdAdAa

16 and applying Lemma 2 we get that, on the event where Γn,κ′ ⩽ cdAdAa
16 ,

sup

y∈K,d(y,MG)⩾h
[

D
βA

log( 1
h )

]A+1
A

ĝ(y) ⩽ 2C1

for n large enough, and this upper bound is strictly less than λn,κ′ for any d. This implies that{
y : y ∈ K, d(y,MG) > h

[
D

βA
log

(
1

h

)]A+1
A

}
∩ M̂κ′ = ∅.

We may now take h as in the statement of the Theorem. As a result, we have proved that:
for all κ0 ∈ (1/2, 1], S > 0, a > 0 d ⩽ D, ν ∈ (0, νest], c(ν) > 0 and E > 0, there exist
c′ > 0 and n0 such that for all n ⩾ n0, for all κ ∈ [κ0, 1], G ∈ StK(a, d, r0) ∩ L(κ, S,H) and
Q ∈ Q(D)(ν, c(ν), E), with (G ∗Q)⊗n-probability at least 1− 2

n ,

sup
κ′∈[κ0,κ]

log(n)κ
′

log(log(n))κ
′+A+1

A

HK(MG,M̂κ′) ⩽ c′. (30)

Using the fact that HK(MG,M̂κ) is uniformly upper bounded, the theorem follows.

D.6 Proof of Theorem 3

Fix κ0 ∈ (1/2, 1], S > 0, a > 0 d ⩽ D, ν ∈ (0, νest], c(ν) > 0 E > 0. Using the end of the proof
of Theorem 2, there exist n0 and c

′ such that for all κ ∈ [κ0, 1], all G ∈ StK(a, d, r0)∩L(κ, S,H)
and all Q ∈ Q(D)(ν, c(ν), E), with (G ∗Q)⊗n-probability at least 1− 2

n , (30) holds. Let us now
choose cσ = c′ and consider the event where (30) holds. By the triangular inequality, for any
κ ∈ [κ0, 1],

HK(MG,M̂κ̂n
) ⩽ HK(MG,M̂κ) +HK(M̂κ,M̂κ̂n

)

⩽ σn(κ) +HK(M̂κ,M̂κ̂n
).

Now, using the definition of Bn(·), if κ ⩽ κ̂n, then

HK(M̂κ,M̂κ̂n
) ⩽ Bn(κ̂n) + σn(κ)

while if κ ⩾ κ̂n, then
HK(M̂κ,M̂κ̂n

) ⩽ Bn(κ) + σn(κ̂n)

so that in all cases,

HK(M̂κ,M̂κ̂n
) ⩽ Bn(κ̂n) + σn(κ) +Bn(κ) + σn(κ̂n)

⩽ 2Bn(κ) + 2σn(κ)

using the definition of κ̂n, and therefore

HK(MG,M̂κ̂n
) ⩽ 2Bn(κ) + 3σn(κ).

By the triangular inequality and the definition of Bn(·),

Bn(κ) ⩽ 0 ∨ sup
κ′∈[κ0,κ]

{
HK(M̂κ,MG) +HK(MG,M̂κ′)− σn(κ

′)
}

⩽ HK(M̂κ,MG) + 0 ∨ sup
κ′∈[κ0,κ]

{
HK(MG,M̂κ′)− σn(κ

′)
}

⩽ σn(κ).

Thus, for all κ ∈ [κ0, 1], all G ∈ StK(a, d, r0) ∩ L(κ, S,H) and all Q ∈ Q(D)(ν, c(ν), E), with
(G ∗Q)⊗n-probability at least 1− 2

n ,

HK(MG,M̂κ̂n
) ⩽ 5σn(κ),

and using the fact that HK(MG,M̂κ̂) ⩽ supx,x′∈K d(x, x
′) on the event of probability at most

2/n where this does not hold, Theorem 3 follows.
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D.7 Proof of Lemma 4

Case κ ̸= 1 This case is based on [Mor34]. In the following, we will note constants that
can change with upper case A, B and C. In [Mor34], Theorem 2, the author defines for any
positive constants µ > 0, q > 1 and a > 0 a function ζq,µ,a, such that for x ∈ R,

ζq,µ,a(x) = −i
∫
C
zµ exp(zq − qax2z)dz,

where C is a curve in the complex plane so that the maximum of |zµ exp(zq− qax2z)| for z ∈ C
is attained on the positive real line. The author shows that ζq,µ,a and ζ2q,µ,a are integrable
functions.

The author uses the saddle-point integration method to show that there exist A > 0 and
B > 0 which depend on q, µ and a such that

|F [ζq,µ,a](t)| ⩽ A exp(−Bx
2q

q+1 ). (31)

Finally, for κ ∈ (1/2, 1), fix µ > 0, a > 0, and define

fκ = cfκRe[ζ 1
2κ−1 ,µ,a

]2 ∗ u1,

where u1 : x ∈ R 7→ exp(− 1
1−4x2 )1|(−1/2,1/2)(x) and cfκ is a constant that ensures that fκ is a

density.
Let us first prove that there existA > 0 andB > 0 positive constants such that |F [Re[ζq,µ,a]

2](t)| ⩽
A exp(−B|t|1/κ).

|F [Re[ζ 1
2κ−1 ,µ,a

]2](t)| = |F [Re[ζ 1
2κ−1 ,µ,a

]] ∗ F [Re[ζ 1
2κ−1 ,µ,a

]](t)|

⩽ A

∫
R
exp(−B|x− y|1/κ −B|y|1/κ)dy

=

∫
|y−x|⩾|x|/2

exp(−B|x− y|1/κ −B|y|1/κ)dy

+

∫
|y−x|<|x|/2

exp(−B|x− y|1/κ −B|y|1/κ)dy

⩽ A exp(−B|x|1/κ). (32)

Finally, for all t ∈ R, using that |F [u1](t)| ⩽ 1,

|F [fκ](t)| = |F [Re[ζ 1
2κ−1 ,µ,a

]2](t)| |F [u1](t)|

⩽ cfκA exp(−B|x| 1κ ).

For x ∈ R, F [fκ(x)]
′ = F [x 7→ xfκ(x)] and

xfκ(x) = cfκv ∗ Re[ζ 1
2κ−1 ,µ,a

]2(x) + cfκu1 ∗ ζ̃(x),

where v : x ∈ R 7→ xu1(x) and ζ̃ : x ∈ R 7→ xRe[ζ 1
2κ−1 ,µ,a

]2(x).

Following the same proof as Theorem 2 of [Mor34], there exists A > 0 and B > 0 such that
for all t ∈ R, |F [x 7→ xRe[ζ 1

2κ−1 ,µ,a
](t)]| ⩽ A exp(−B|t|1/κ), so that, following the proof of (32),

|F [ζ̃]|(t) ⩽ A exp(−B|t|1/κ). Hence, there exists A > 0 and B > 0 such that |F [fκ]
′(t)| ⩽

A exp(−B|t|1/κ).
Finally, note that fκ is continuous as a convolution of an integrable function with a smooth

function, and that for all x ∈ R, fκ(x) > 0 since Re[ζ 1
2κ−1 ,µ,a

] and u are not the null function

almost everywhere.
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Case κ = 1 Let δ ∈ (0, 1) and define f1 : x ∈ R 7→ cf1(u 1
1−δ

∗ u 1
1−δ

)(x), where cf1 is a

constant that ensures that f1 is a probability density.
There exist A > 0 and B > 0 such that F [f1](x) ⩽ A exp(−B|x|δ), see Lemma in [Tla22].

Moreover, F [f1]
′(x) = 2cf1F [u 1

1−δ
](x)F [u 1

1−δ
]′(x) ⩽ A∥x 7→ xu 1

1−δ
(x)∥1 exp(−B|x|δ).

Finally, note that f1 is continuous and does not vanish on its support.

D.8 Proof of Lemma 5

First, by Lemma 4, for any κ ∈ (1/2, 1], U(κ) satisfies A(1/κ).
Let i ∈ {0, 1}. For any λ = (λ1, . . . , λD) ∈ RD,

E[exp(λ⊤Xi(κ))] = E
[
exp

((
λ1 +

1

2
λ2

)
U(κ) + (−1)iγλ2

1

2
cos

(
U(κ)

γ

))]
⩽ eγ

1
2 |λ2|E

[
exp

((
λ1 +

1

2
λ2

)
U(κ)

)]
. (33)

Since U(κ) satisfies A(1/κ), there exist positive constants A > 0 and B > 0 such that for all

λ = (λ1, . . . , λD) ∈ RD, E[exp(λ⊤Xi(κ))] ⩽ A exp(B|λ| 1κ ). Applying this in (33),

E[exp(λ⊤Xi(κ))] ⩽ A exp

(
γ
1

2
|λ2|+B

∣∣∣∣(λ1 + 1

2
λ2

)∣∣∣∣ 1κ
)

⩽ A′ exp(B′|λ| 1κ )

for some other constants A′ and B′ since 1 ⩽ κ, so that Xi(κ) satisfies A(1/κ).

D.9 Proof of Lemma 6

The proof is done in five steps.

1. We show that γgγ is 1-lipschitz.

2. For i ∈ {0, 1} and κ ∈ ( 12 , 1], we compute the density pi of Ti(κ) with respect to the
1-dimensional Hausdorff measure µH and we show that for any compact set K, there
exists b(κ,K) > 0 such that, for all u ∈Mi(γ) ∩ K, |pi(u)| ⩾ b(κ,K).

3. We show that for i ∈ {0, 1}, µH(· ∩Mi(γ)) is in StK(2, d, r0).

4. We deduce that for i ∈ {0, 1} and d ⩾ 1, Ti is in StK(2b(κ,K), d, r0).

5. Finally, we show that for i ∈ {0, 1}, d ⩾ 1 and a small enough, Gi(κ) ∈ StK(a, d, r0).

Proof of 1 For all x ∈ R, |γg̃′γ(x)| = | sin(xγ )| ⩽ 1, which implies that γgγ is 1-Lipschitz.

Proof of 2 Let us first compute the density pi of Ti(κ) with respect to µH . For i ∈ {0, 1},
denote ζi : x ∈ R 7→ (x, (−1)iγgγ(x)). Let B be an open subset of RD. For any κ ∈ ( 12 , 1],

Ti(κ)(B) = P[ζi(U(κ)) ∈ B] = P[U(κ) ∈ ζ−1
i (B)] =

∫
ζ−1
i (B)

fκ(u)du.

Let Jac ζi : u ∈ R 7→
√
1 + γ2g̃γ(u)2 be the Jacobian of ζi. By the Area Formula (see equation

(2.47) in [AFP00]),

si(κ)(B) =
∫
ζ−1
i (B)

fκ(u)

Jac ζi(u)
Jac ζi(u)du =

∫
B∩Mi(γ)

fκ(π
(1)(u))

Jac ζi(π(1)(u))
dµH(u).

We then have that for all x ∈ RD,
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pi(x) =
fκ(π

(1)(x))

Jac ζi(π(1)(x))
1|Mi(γ)(x).

Since fκ is continuous and does not vanish on its support, for any compact set K, Mi(γ) ∩ K
is a compact subset of the support of fκ. Thus, since fκ is continuous and does not vanish on
its support, for any compact set K, there exists c(κ,K) > 0 such that for all u ∈ Mi(γ) ∩ K,
fκ(u) ⩾ c(κ,K). Moreover, for i ∈ {0, 1}, Jac ζi(u) ⩽

√
2. Therefore, for all x ∈ Mi(γ) ∩ K,

|pi(x)| ⩾ c(κ,K)√
2

.

Proof of 3 Recall that the 1-dimensional Hausdorff measure µH is defined as the limit
limη→0 µ

η
H , where for any set Z

µηH(Z) = inf

{∑
i∈N

Diam(Ai) : X ⊂
⋃
i

Ai and ∀i,Diam(Ai) ⩽ η

}
.

For any z ∈Mi(γ), there exists x0 ∈ R such that z = (x0, (−1)iγgγ(x0)) and, for any r > 0,

B(z, r) ∩Mi(γ) ⊃ {(x, (−1)iγgγ(x)), x ∈ B(x0, r)}

since |x− x0| ⩽ r implies ∥γgγ(x)− γgγ(x0)∥∞ ⩽ r.
Let (Ai)i∈N be a covering of {(x, (−1)iγgγ(x)), x ∈ B(x0, r)}, and Bi = π(1)(Ai), then Bi

is a covering of B(x0, r). For all η > 0,

µηH({(x, (−1)iγgγ(x)), x ∈ B(x0, r)}) ⩾ µηH(B(x0, r)),

thus µH(B(z, r) ∩Mi(γ)) ⩾ µH(B(x0, r)) = 2r. If r0 ⩽ 1, then for any r ⩽ r0,

µH(B(z, r) ∩Mi(γ)) ⩾ 2rd,

which proves 3.

Proof of 4 Let xi ∈Mi(γ) ∩ K and r0 < 1. Then for all r ⩽ r0,

Ti(B(xi, r)∩Mi(γ)) =

∫
B(xi,r)∩Mi(γ)

pi(u)dµH(u) ⩾ b(κ,K)µH(B(xi, r)∩Mi(γ)) ⩾ 2b(κ,K)rd.

Proof of 5 For i ∈ {0, 1}, let xi ∈ JMi(γ) ∩ K, r0 < 1, and take K̃ such that J−1K ⊂ K̃.
For all r ⩽ r0,

Gi(κ)(B(xi, r)) = P[JSi(κ) ∈ B(xi, r)] ⩾ P
[
Si(κ) ∈ B

(
J−1xi,

r

∥J∥op

)]
⩾

2b(κ, J−1K)

∥J∥op
r

⩾
2b(κ, K̃)

∥J∥op
r,

so that for some a0 and all a ⩽ a0, Gi(κ)(B(xi, r)) ⩾ ard.

D.10 Proof of Lemma 7

Let us write mi,γ(x) = (x + (−1)i γ2 cos(xγ ), 0, . . . , 0), so that Xi(κ) = (U(κ),mi,γ(U(κ)). For

i ∈ {0, 1}, let wi,κ,γ be the density of the first coordinate of mi,γ(U(κ)), then

Mκ = sup
x∈R,γ∈[0,1],i∈{0,1}

{wi,κ,γ(x) ∨ fκ(x)}
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is an upper bound of the density of Xi(κ)
(1) and of the first coordinate of Xi(κ)

(2) with respect
to the Lebesgue measure. Let us show that Mκ is finite. First, note that mi,γ is one-to-one
from R to R × {0}D−2 and m−1

i,γ is Lipschitz with Lipschitz constant upper bounded by 1/2.
One can easily check that for all x ∈ R,

wi,κ,γ(x) = fκ((mi,γ)1(x, 0, . . . , 0))
1

(mi,γ)′1(m
−1
i,γ (x, 0, . . . , 0))

,

where (mi,γ)1(x) is the first coordinate of mi,γ(x). Since (mi,γ)
′
1 is lower bounded by 1/2,

Mκ ⩽ supx∈R fκ(x), which is finite.
For any ∆ > 0, define the sets:

A
(1)
∆ = [−∆,∆] and B

(2)
∆ = B̄

(
0, (

1

2
+ 2)∆

)
∩ (R× {0}D−2),

A
(2)
∆ = [−∆,∆]× {0}D−2 and B

(1)
∆ = B̄(0,∆) ∩ R.

Define c∆,κ = P[U(κ) ∈ A
(1)
∆ ] ∧ infγ∈[0,1],i∈{0,1} P[mi,γ(U(κ)) ∈ A

(2)
∆ ], and let us prove that

c∆,κ > 0.

First, P[U(κ) ∈ A
(1)
∆ ] > 0 since the density of U(κ) is positive everywhere on its support.

Then, for i ∈ {0, 1},

P[mi,γ(U(κ)) ∈ A
(2)
∆ ] = P

(
U(κ) + (−1)i

1

2
γ cos

(
U(κ)

γ

)
∈ [−∆,∆]

)
⩾ P

(
U(κ) ∈ [−∆/2,∆/2], (−1)i

1

2
γ cos

(
U(κ)

γ

)
∈ [−∆/2,∆/2]

)
⩾ P

(
U(κ) ∈ [−∆/2,∆/2], cos

(
U(κ)

γ

)
∈ [−∆/γ,∆/γ]

)
⩾ P

(
U(κ) ∈

[
−∆

2
,
∆

2

]
∩ [arccos(∆), π − arccos(∆)]

)
,

which is positive.

For any ∆ > 0 define B
(1)
∆,i,γ = m−1

i,γ (A
(2)
∆ ). Then

Diam(B
(1)
∆,i,γ) = sup

x,y∈B(1)
∆,i,γ

|x− y|

= sup
x,y∈A(2)

∆

|m−1
i,γ (x)−m−1

i,γ (y)|

⩽
1

2
sup

x,y∈A(2)
∆

∥x− y∥ ⩽ ∆.

Thus, B
(1)
∆,i,γ ⊂ B

(1)
∆ , and

P[(Xi(κ))
(1) ∈ B

(1)
∆,i|(Xi(κ))

(2) ∈ A
(2)
∆ ] ⩾ P[(Xi(κ))

(1) ∈ B
(1)
∆,i,γ |(Xi(κ))

(2) ∈ A
(2)
∆ ] = 1.

Similarly, define B
(2)
∆,i,γ = mi,γ(A

(1)
∆ ) = {(x+ (−1)iγ 1

2 cos(
x
γ ), 0, . . . , 0) , x ∈ [−∆,∆]}, then

Diam(B
(2)
∆,i,γ) = sup

x,y∈A(1)
∆

∣∣∣∣x+ (−1)iγ
1

2
cos

(
x

γ

)
− y − (−1)iγ

1

2
cos

(
y

γ

)∣∣∣∣
⩽ 2∆ + γ

1

2

∣∣∣∣cos(xγ
)
− cos

(
y

γ

)∣∣∣∣
⩽

(
1

2
+ 2

)
∆.
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Thus, B
(2)
∆,i,γ ⊂ B

(2)
∆,i, and

P[(Xi(κ))
(2) ∈ B

(2)
∆,i|(Xi(κ))

(1) ∈ A
(1)
∆ ] ⩾ P[(Xi(κ))

(2) ∈ B
(2)
∆,i,γ |(Xi(κ))

(1) ∈ A
(1)
∆ ] = 1.

Thus, the distribution of Xi(κ) satisfies (H1) and (H2). Lemma 7 follows from Lemma 5 and
Theorem 7.

D.11 Proof of Theorem 4

In the following, we will write A, B, C (with upper case letters) positive constants that can
change from line to line. As in [GLCL22a] and [Gen+12], we use the upper bound:

∥(G0(κ) ∗Q)⊗n − (G1(κ) ∗Q)⊗n∥TV ⩽ 1− (1− ∥(G0(κ) ∗Q)− (G1(κ) ∗Q)∥TV )n ,

where ∥ · − · ∥TV denotes the total variation distance. Using Le Cam’s two-points method, the
minimax rate will be lower bounded by H(JM0(γ), JM1(γ)), that is γ, (see Lemma 8) provided
that there exists a constant C > 0 such that ∥(G0(κ) ∗Q)⊗n − (G1(κ) ∗Q)⊗n∥TV ⩽ C < 1, so
that we only need to find C > 0 such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C

n
.

Since Q has a density q over RD, G0(κ) ∗ Q and G1(κ) ∗ Q also have a density over RD. We
first prove that for i ∈ {0, 1},∫

RD

D∏
j=1

x2j

∣∣∣∣d(Gi(κ) ∗Q)

dx
(x)

∣∣∣∣2 dx < +∞. (34)

Indeed,∫
RD

D∏
j=1

x2j

∣∣∣∣d(Gi(κ) ∗Q)

dx
(x)

∣∣∣∣2 dx ⩽

∥∥∥∥d(Gi(κ) ∗Q)

dx

∥∥∥∥
∞

∫
RD

D∏
j=1

x2jd(Gi(κ) ∗Q)(x).

First,
∥∥∥d(Gi(κ)∗Q)

dx

∥∥∥
∞

⩽ ∥q∥D∞ <∞. Moreover, for k ∈ {1, . . . , D}, writing Xi(κ)
[k] and ε[k] for

the k-th coordinate of Xi(κ) and ε,∫
RD

D∏
j=1

x2j |d(Gi(κ) ∗Q)(x)| = E[
D∏
k=1

(Xi(κ)
[k] + ε[k]))2]

= E[(Xi(κ)
[1] + ε[1])2(Xi(κ)

[2] + ε[2])2]

D∏
k=3

E[(ε[k])2]. (35)

We have that (Xi(κ)
[2]+ ε[2])2 ⩽ a2(Xi(κ)

[1])2+2γXi(κ)
[1]+2Xi(κ)

[1]ε[2]+(1+γ)(ε[2])2+γ2,
using (35) and the fact that ε[2] is independent of all other variables and that, for k ∈ {1, 2},
X

[1]
i is independent of ε[k], we finally get that

∫ ∏D
j=1 x

2
j |d(Gi(κ) ∗Q)(x)| is upper bounded by

product and sum of expectation of ((ε[j])2)j∈{1,...,D}, (Xi(κ)
[1])2, (Xi(κ)

[1])3 and (Xi(κ)
[1])4

which are all finite thanks to Lemma 4.
By the Cauchy-Schwarz inequality,∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)|

⩽ πD/2

∫ D∏
j=1

(1 + x2j )

∣∣∣∣d((G0(κ)−G1(κ)) ∗Q)

dx
(x)

∣∣∣∣2 dx
1/2

. (36)
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By Parseval’s identity, for all η ∈ {0, 1}D,

∫
RD

D∏
j=1

x
2ηj
j

∣∣∣∣d((G0(κ)−G1(κ)) ∗Q)

dx
(x)

∣∣∣∣2 dx =

∫
RD

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [G0(κ)]−F [G1(κ)])(t)F [Q](t)

∣∣∣∣∣∣
2

dt

=

∫
[−c,c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [G0(κ)]−F [G1(κ)])(t)F [Q](t)

∣∣∣∣∣∣
2

dt,

since F [Q] and for η ∈ {0, 1}D, ∂ηF [Q] are supported on [−c, c]D. Moreover, they are bounded
functions, so that there exists a constant C (depending only on D) such that

∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C
∑

η∈{0,1}D

∫
[−c,c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [G0(κ)]−F [G1(κ)])(t)

∣∣∣∣∣∣
2

dt

=
∑

η∈{0,1}D

∫
[−c,c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (t 7→ F [S0]−F [S1])(A
⊤
a t)

∣∣∣∣∣∣
2

dt.

Using the change of variable u = A⊤t, and noticing that {A⊤t ; t ∈ [−c, c]D} ⊂ [−2c, 2c]D,
there exists a constant C > 0 depending on D and a such that

∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C
∑

η∈{0,1}D

∫
[−2c,2c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [S0]−F [S1])(u)

∣∣∣∣∣∣
2

du.

For all t = (t1, . . . , tD) ∈ RD, for i ∈ {0, 1}, F [Ti](t) = F [T̃i](t1, t2), where T̃i is the distribution
of the 2 first coordinates of Si(κ) under Ti. There exists a constant C > 0 such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)|

⩽ C
∑

η∈{0,1}2

∫
[−2c,2c]2

∣∣∣∣∣∣
 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣
2

dt. (37)

Following the same approach as [Gen+12], we get that for all t = (t1, t2) ∈ R2,

(F [T̃0]−F [T̃1])(t) =

∫
R
{eit1u+iγt2g̃γ(u) − eit1u−iγt2g̃γ(u)}fκ(u)du

= 2i

∫
R
eit1u sin(t2γg̃γ(u))fκ(u)du

= 2i

∫
R
eit1u

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
g̃2k+1
γ (u)fκ(u)du.

Since
∑∞
k=0

∫
R

|t2|2k+1γ2k+1

(2k+1)! |g̃2k+1
γ (u)|fκ(u)du is finite, we can switch integral and sum thanks

to Fubini Theorem, so that

(F [T̃0]−F [T̃1])(t) = 2i

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!

∫
R
eit1ug̃2k+1

γ (u)fκ(u)du

= 2i

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
mk(t1),

with for all u ∈ R,

mk(u) = F [g̃2k+1fκ](u) = (F [g̃] ∗ F [g̃] ∗ . . . ∗ F [g̃]︸ ︷︷ ︸
2k+1 times

∗F [fκ])(u). (38)
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Since

F [x 7→ cos(
x

γ
)] =

1

2
δ− 1

γ
+

1

2
δ 1

γ
,

for all u ∈ R,

(F [g̃] ∗ F [g̃] ∗ . . . ∗ F [g̃]︸ ︷︷ ︸
2k+1 times

)(u) = F [cos(
·
γ
)] ∗ . . . ∗ F [cos(

·
γ
)]︸ ︷︷ ︸

2k+1 times

=

(
1

2

)2k+1 2k+1∑
j=1

(
2k + 1

j

)
δaj ,

where aj = (2j − 2k − 1)/γ. By (38),

mk(u) =

(
1

2

)2k+1 2k+1∑
j=0

(
2k + 1

j

)
F [fκ](u− aj).

Therefore,

sup
|t|⩽c

|mk(t)| ⩽ sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]

(
t− 2j − 2k − 1

γ

)∣∣∣∣
and

sup
|t|⩽c

|m′
k(t)| ⩽ sup

|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]
′
(
t− 2j − 2k − 1

γ

)∣∣∣∣ .
Assume first that κ ∈ (1/2, 1) For γ that satisfies γ ⩽ 1

2c , by Lemma 4, there exist two
constants A, B independent of γ and k such that

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]

(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ− 1
κ )

and

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]
′
(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ− 1
κ ).

Thus,
sup
|t|⩽c

|mk(t)| ⩽ A exp(−Bγ− 1
κ ), (39)

and
sup
|t|⩽c

|m′
k(t)| ⩽ A exp(−Bγ− 1

κ ). (40)

For all η ∈ {0, 1}2, and t ∈ [−c, c]2, 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t) =

2∏
j=1

∂
ηj
tj

[
2i

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
mk(t1)

]

= 2iη2

∞∑
k=0

(−1)kt2k2 γ
2k+1

(2k)!
∂η1t1 mk(t1) + 2i(1− η2)

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
∂η1t1 mk(t1),

so that ∣∣∣∣∣∣
 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣
⩽ 2

∞∑
k=0

|t2|2kγ2k+1

(2k)!
|∂η1t1 mk(t1)|+ 2

∞∑
k=0

|t2|2k+1γ2k+1

(2k + 1)!
|∂η1t1 mk(t1)|.
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By (39) and (40), there exists a constant C > 0 which depends only on D and A such that 2∏
j=1

∂
ηj
tj

 (F [S̃0]−F [S̃1])(t) ⩽ C exp(−Bγ− 1
κ ) sup

|t2|⩽c

(
γ cosh(|t2|γ) + sinh(|t2|γ)

)
.

For γ small enough, there exists a constant C1 > 0 which depends only on D, A > 0 and C > 0
such that ∣∣∣∣∣∣

 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣ ⩽ C exp(−Bγ− 1
κ ).

Finally, using (37), there exist constants C > 0 and B > 0 which depend only on D such that∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C exp(−Bγ− 1
κ ).

Taking γ = cγ(log n)
−κ with cγ ⩽ Bκ1 shows that there exists C > 0 such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C

n
.

Let us now consider the case κ = 1 For γ that satisfies γ ⩽ 1
2c , by Lemma 4, for all

δ ∈ (0, 1), there exist two constants A > 0, B > 0 independent of γ and k such that

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [f1]

(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ−δ),

and

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [f1]
′
(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ−δ).

Thus, there exist constants A > 0 and B > 0 independent of γ and k such that

sup
|t|⩽c

|mk(t)| ⩽ A exp(−Bγ−δ), (41)

and
sup
|t|⩽c

|m′
k(t)| ⩽ A exp(−Bγ−δ). (42)

Doing the same computation as in the case κ ∈ (1/2, 1) shows that for all η ∈ {0, 1}2 and
t ∈ [−c, c]2, ∣∣∣∣∣∣

 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣
⩽ 2

∞∑
k=0

|t2|2kγ2k+1

(2k)!
|∂η1t1 mk(t1)|+ 2

∞∑
k=0

|t2|2k+1γ2k+1

(2k + 1)!
|∂η1t1 mk(t1)|.

By (41) and (42), there exist constants C > 0 and B > 0 which depend only on D such that 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t) ⩽ C exp(−Bγ−δ) sup
|t2|⩽c

(
γ cosh(|t2|γ) + sinh(|t2|γ)

)
.

For γ small enough, there exists a constant C > 0 which depends only on D such that∣∣∣∣∣∣
 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣ ⩽ C exp(−Bγ−δ).
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Finally, using (37), there exists a constant C > 0 which depends only on D such that∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C exp(−Bγ−δ).

Taking γ = cγ(log n)
− 1

δ with cγ ⩽ B
1

δ+1 shows that there exists C > 0 such that∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C

n
.

D.12 Proof of Theorem 5

We shall need two technical lemmas. The following one is easily proved following the arguments
at the end of the proof of Theorem 2.

Lemma 11. Let G be a probability measure with compact support MG. Assume G ∈ StMG
(a, d, r0)

for some constants a > 0, d > 0 and r0 > 0. Recall that Γn := Γn,1 = ∥ĝn − ḡ∥∞. Then

(1) For any C1 > 0 and c > 0, there exists h0 > 0 such that if hn ⩽ h0, on the event where

C1 + Γn < λn < acdAdA(
1

hn
)D−d − Γn,

it holds
MG ⊂ M̂ ⊂ (MG)c.

(2) For mn, hn, λn chosen as in Theorem 2, for all C1 ∈ (0, acdAdA) and δ′ > 0, there exist

C > 0 and n0 ⩾ 0 such that for all n ⩾ n0, with probability at least 1− 2 exp(−n1/2−δ′),

Γ2
n ⩽ Ce−mn and C1 + Γn < λn < acdAdA(

1

hn
)D−d − Γn.

and in particular, for all c > 0 and δ′ > 0, there exists n′0 ⩾ 0 such that for all n ⩾ n′0,
with probability at least 1− 2 exp(−n1/2−δ′),

MG ⊂ M̂ ⊂ (MG)c.

In particular, since Rn −→ +∞ and MG is compact, up to increasing n0, on this event,

MG ⊂ M̂ ∩ B̄(0, Rn) ⊂ (MG)c.

In the rest of the proof of the Theorem, we lighten the notation M̂ ∩ B̄(0, Rn) into M̂
(equivalently, we redefine the estimator M̂ as the intersection of the estimator of Section 3.2
with the closed euclidean ball of radius Rn).

Lemma 12. Let G be a probability measure with compact support MG. Assume G ∈ StMG
(a, d, r0)

for some constants a > 0, d > 0 and r0 > 0. Then for any α > 0, c > 0 and p ∈ [1,+∞),
there exists C(α, c) > 0 such that, on the event where

MG ⊂ M̂ ⊂ (MG)c,

it holds

∥ḡ∥
L1(RD\(M̂)c)

⩽ C(α, c)hαn and

∫
RD\(M̂)c

∥x∥p|ḡ(x)|dx ⩽ C(α, c)hαn.

Proof. By definition,

∥ḡ∥
L1(RD\(M̂)c)

=
1

hDn

∫
x∈MG

∫
y∈RD\(M̂)c

ψA

(
∥y − x∥2

hn

)
dydG(x).
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By (6), for any A > 0, there exists C > 0 such that for any x ∈ MG and y ∈ RD \ (M̂)c,

ψA

(
∥y − x∥2

hn

)
⩽ C exp

(
−βA

∥y − x∥A/(A+1)
2

h
A/(A+1)
n

)
⩽ C exp

(
−βA

d(y,MG)
A/(A+1)

h
A/(A+1)
n

)
.

Since MG ⊂ M̂, for all y ∈ RD \ (M̂)c, d(y,MG) ⩾ c, so for any α > 0, there exists a constant
C̃ > 0 such that

C exp

(
−βA

d(y,MG)
A/(A+1)

h
A/(A+1)
n

)
⩽ C̃

hD+α
n

d(y,MG)D+α
.

Moreover, since MG is compact, Diam(MG) is finite, so that on the event where MG ⊂ M̂,∫
RD\(M̂)c

1

d(y,MG)D+α
dy ⩽

∫
RD\(MG)c

1

d(y,MG)D+α
dy <∞.

⩽
∫
RD

(
1

c ∨ (∥y∥ −Diam(MG)/2)

)D+α

dy <∞.

Therefore, for all c > 0 and α > 0, there exists C depending on A, D, c, α and Diam(MG)
such that

∥ḡ∥
L1(RD\(M̂)c)

⩽ Chαn.

The proof that the same holds for
∫
RD\(M̂)c

∥x∥pḡ(x)dx is similar.

Let G ∈ StMG
(a, d, r0) be such that if X ∼ G, then ΦX ∈ H ∩Υ1,S . Fix p ∈ [1,+∞). We

use a bias-variance decomposition of Wp(G, P̂n,η) through the triangle inequality

Wp(G, P̂n,η) ⩽Wp(G,PψA,h
) +Wp(PψA,h

, P̂n,η).

The proof is done is several steps :

(1) We first show that there exists C > 0 depending only on A and D such that the bias
satisfies

Wp(G,PψA,hn
) ⩽ Chn.

(2) We prove that for any α ⩾ 1, on the event where

MG ⊂ M̂ ⊂ (MG)c,

there exists C ′ > 0 such that

Wp(PψA,hn
, P̂n,η) ⩽ C ′(hαn + Γn).

(3) We show that the choice of the parameters mn, hn and λn gives the result.

Proof of (1) Let Yψ be a random variable with density ψA,hn
and independent of X, so that

the distribution of X + Yψ is PψA,hn
. By definition of Wp,

W p
p (G,PψA,hn

) ⩽ E(∥X + Yψ −X∥p2) = E(∥Yψ∥p2) = hpn

∫
RD

∥u∥pψA,1(u)du,

and the integral is finite by point (V) of the properties of ψA.
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Proof of (2) If ν and µ are probability measures on RD having respective densities f and
g with respect to the Lebesgue measure, letting ω be the measure with density min(f, g) with
respect to the Lebesgue measure, a ∈ RD, and δa the Dirac measure in a, by convexity of
x 7→ xp,

W p
p (µ, ν) ⩽ 2p−1

(
W p
p (µ, ω + (1− ω(RD))δa) +W p

p (ν, ω + (1− ω(RD))δa)
)

⩽ 2p−1

∫
RD

∥x− a∥p(f(x)− g(x)− 2min(f(x), g(x)))dx

= 2p−1

∫
RD

∥x− a∥p|f(x)− g(x)|dx,

so that

W p
p (µ, ν) ⩽ 2p−1 min

a∈RD

∫
RD

∥x− a∥p|f(x)− g(x)|dx. (43)

This entails

W p
p (PψA,hn

, P̂n,η) ⩽ 2p−1 min
a∈RD

∫
RD

∥x− a∥p|ḡ(x)− cnĝ
+
n (x)1|(M̂)η

)(x)|dx

⩽ 2p−1

∫
(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx+ 2p−1

∫
RD\(M̂)η

∥x∥pḡ(x)dx. (44)

For S compact subset of RD, write MS = supx∈S ∥x∥p and Vol(S) for the Lebesgue measure
of S, then∫

(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx ⩽M

(M̂)η

∫
(M̂)η

|ĝ+n (x)− ḡ(x)|dx+M
(M̂)η

|cn − 1|
cn

⩽M
(M̂)η

Vol((M̂)η)Γn +M
(M̂)η

|cn − 1|
cn

.

We also have

|cn − 1|
cn

=

∣∣∣∣ 1cn − 1

∣∣∣∣ =
∣∣∣∣∣
∫
(M̂)η

(ĝ+n (y)− ḡ(y))dy −
∫
RD\(M̂)η

ḡ(y)dy

∣∣∣∣∣
⩽ ∥ĝn − ḡ∥

L1((M̂)η)
+ ∥ḡ∥

L1(RD\(M̂)η)
.

Using Hölder’s inequality,

∥ĝn − ḡ∥
L1((M̂)η)

⩽ Vol((M̂)η)Γn.

By Lemma 12, for any α > 0, there exists C such that∫
(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx ⩽ 2M

(M̂)η
Vol((M̂)η)Γn +M

(M̂)η
Chαn.

For any c > 0, when M̂ ⊂ (MG)c, one has (M̂)η ⊂ (MG)η+c. This inclusion entails M
(M̂)η

⩽

M(MG)η+c
and Vol((M̂)η) ⩽ Vol((MG)η+c). Therefore, for any c > 0,∫

(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx ⩽ 2M(MG)η+c

Vol((MG)η+c)Γn +M(MG)η+c
Chαn. (45)

Again by Lemma 12, on the event where MG ⊂ M̂ ⊂ (MG)η,∫
RD\(M̂)η

∥x∥p|ḡ(x)|dx ⩽ C ′hαn. (46)

Finally, using (44), (45) and (46), for any α ⩾ 1, there exists C > 0 such that

W p
p (PψA,hn

, P̂n,η) ⩽ C(hαn + Γn).

43



Proof of (3) Using (1) and (2), for sequences hn, mn and λn satisfying the assumptions of

Theorem 5, on the event where MG ⊂ M̂ ⊂ (MG)η, for any α ⩾ p, there exists C > 0 such
that

Wp(G, P̂n,η) ⩽ C(hn + (hαn + Γn)
1/p) ⩽ 2C(hn + Γ1/p

n ).

We may assume hn ⩽ 1 for all n without loss of generality. As stated in Lemma 11, for any δ′ >
0, there exist C ′ and n0 such that for all n ⩾ n0, with probability at least 1− 2 exp(−n1/2−δ′),
Γ
1/p
n ⩽ C ′e−mn/(2p) and MG ⊂ M̂ ⊂ (MG)η, and therefore

Wp(G, P̂n,η⋆) ⩽ Cm−1
n

on this event, up to changing the constant C.
On the event of probability at most 2 exp(−n1/2−δ′) where this does not hold, since the

support of P̂n,η⋆ is a subset of B̄(0, Rn), Wp(G, P̂n,η⋆) ⩽ 2Rn.
Therefore, taking δ′ < δ where δ is as defined in the statement of the Theorem, there exists

C > 0 such that for n ⩾ n0,

E(G∗Q)⊗n [Wp(G, P̂n,η⋆)] ⩽ Cm−1
n ,

which concludes the proof.

D.13 Proof of Theorem 6

Let P̂n be an estimator of G. According to [Yu97],

sup
G∈StK(a,d,r0)∩L(1,S,H⋆

1)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [Wp(G, P̂n)] ⩾
1

2
Wp(G0(1), G1(1))(1−∥G0(1)∗Q)−G1(1)∗Q∥1)n.

Using the same two distributions G0(1), G1(1) and the same set H⋆
1 as in Theorem 4. We have

shown in Theorem 4 that there exists a constant C > 0 such that

∥G0(1) ∗Q−G1(1) ∗Q∥TV ⩽
C

n
,

taking γ of the form c log(n)−1−δ for any δ > 0 and c small enough, which implies that the
minimax risk is lower bounded by Wp(G0(1), G1(1)). We show that there exist constants c > 0
and n0 > 0 such that for n ⩾ n0

Wp(G0(1), G1(1)) ⩾ cγ.

Let Uγ be the set of u ∈ R such that | cos(uγ )| ⩾ 1/2, that is Uγ =
⋃
k∈Z[kπγ − πγ

3 , kπγ + πγ
3 ].

For each k ∈ Z, let Ik,γ := [kπγ − πγ
2 , kπγ +

πγ
2 ]. Let us also define, for any two sets A and B

of Rd, d(A,B) = infx∈A,y∈B ∥x− y∥2. We first show that

d(M0(γ) ∩ (Uγ × RD−1),M1(γ)) ⩾ γ(
1

4
√
2
∧ π

6
).

Let x ∈M0(γ)∩ (Uγ×RD−1) and y ∈M1(γ). There exists k ∈ Z such that x ∈M0(γ)∩ ((Uγ ∩
Ik,γ) × RD−1). If y ∈ Ik,γ × RD−1 (that is, if the first coordinate of x and y are in the same
interval Ik,γ), then

∥x− y∥2 ⩾ d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),M1(γ) ∩ (Ik,γ × RD−1)).

All points of M0(γ) are of the form (u, u + 1
2γ cos(

u
γ ), 0, . . . 0)

⊤ and the distance between

(u, u + 1
2γ cos(

u
γ ), 0, . . . , 0)

⊤ and the diagonal defined by D := {(u, u, 0, . . . , 0)⊤ : u ∈ R} is
1

4
√
2
γ| cos(uγ )|. Since the sets M0(γ) ∩ ((Uγ ∩ Ik,γ)×RD−1) and M1(γ) ∩ (Ik,γ ×RD−1) are on

opposite sides of the diagonal D,

d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),M1(γ) ∩ (Ik,γ × RD−1)) ⩾ d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),D)

=
1

4
√
2
γ,
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so that ∥x− y∥2 ⩾ 1
4
√
2
γ. If now y /∈ Ik,γ × RD−1,

d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),M1(γ) ∩ ((R \ Ik,γ)× RD−1)) ⩾ d(Uγ ∩ Ik,γ ,R \ Ik,γ)

=
πγ

6
,

so that ∥x− y∥2 ⩾ πγ
6 , and thus d(M0(γ) ∩ (Uγ × RD−1),M1(γ)) ⩾ γ( 1

4
√
2
∧ π

6 ).

Now, let us show that Wp(G0(1), G1(1)) ⩾ γ( 1
8
√
2
∧ π

12 ). Let π be a transport plan between

G0(1) and G1(1), then∫
M0(γ)×M1(γ)

∥x− y∥p2dπ(x, y) ⩾
∫
M0(γ)∩(Uγ×RD−1)×M1(γ)

∥x− y∥p2dπ(x, y)

⩾ d(M0(γ) ∩ (Uγ × RD−1),M1(γ))
p π(M0(γ) ∩ (Uγ × RD−1)×M1(γ))

= d(M0(γ) ∩ (Uγ × RD−1),M1(γ))
p G0(1)(M0(γ) ∩ (Uγ × RD−1))

= d(M0(γ) ∩ (Uγ × RD−1),M1(γ))
p P[U(1) ∈ Uγ ]

since G1(1) has support M1(γ) and by definition of G0(1). Therefore, by taking the infimum
on all transport plans between G0(1) and G1(1),

Wp(G0(1), G1(1)) ⩾ γ(
1

4
√
2
∧ π

6
)P[U(1) ∈ Uγ ]1/p.

U(1) admits a density f1 with respect to Lebesgue measure that is supported on [−1, 1] and
continuous. Let us write ω one of its modulus of continuity. We have

P[U(1) ∈ Uγ ] =
∫
[−1,1]

f1(x)1|Uγ
(x)dx

=
∑

k∈[−1/(πγ),1/(πγ)]

∫
[kπγ−πγ

3 ,kπγ+
πγ
3 ]

f1(x)dx

⩽
∑

k∈[−1/(πγ),1/(πγ)]

(∫
[kπγ−πγ

3 ,kπγ+
πγ
3 ]

f1(kπγ)dx+
2πγ

3
ω(πγ/3)

)

⩽
∑

k∈[−1/(πγ),1/(πγ)]

2

3

∫
[kπγ−πγ

2 ,kπγ+
πγ
2 ]

f1(kπγ)dx+
3

πγ

2πγ

3
ω(πγ/3)

⩽
∑

k∈[−1/(πγ),1/(πγ)]

2

3

∫
[kπγ−πγ

2 ,kπγ+
πγ
2 ]

f1(x)dx+
3

πγ

(
2πγ

3
ω(πγ/3) + πγω(πγ/2)

)

⩽
2

3

∫
[−1,1]

f1(x)dx+ 3

(
2

3
ω(πγ/3) + ω(πγ/2)

)
−→
γ→0

2

3

∫
[−1,1]

f1(x)dx =
2

3
.

Therefore, there exists n0 such that for all n ⩾ n0, Wp(G0(1), G1(1)) ⩾ γ( 1
8
√
2
∧ π

12 ).
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