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The van Trees inequality
in the spirit of Hájek and Le Cam
Elisabeth Gassiat and Gilles Stoltz

Abstract. In honor of the 100th birth anniversary of Lucien Le Cam (Novem-
ber 18, 1924 – April 24, 2000), we work out a version of the van Trees
inequality in a Hájek–Le Cam spirit, i.e., under minimal assumptions that,
in particular, involve no direct pointwise regularity assumptions on densi-
ties but rather almost-everywhere differentiability in quadratic mean of the
model. Surprisingly, it suffices that the latter differentiability holds along
canonical directions—not along all directions. Also, we identify a (slightly
stronger) version of the van Trees inequality as a very instance of a Cramér–
Rao bound, i.e., the van Trees inequality is not just a Bayesian analog of the
Cramér–Rao bound. We provide, as an illustration, an elementary proof of
the local asymptotic minimax theorem for quadratic loss functions, again as-
suming differentiability in quadratic mean only along canonical directions.

Key words and phrases: van Trees inequality, Cramér–Rao bound, Differen-
tiability in quadratic mean, Local asymptotic minimax theorem.

1. INTRODUCTION

Every statistician knows about the Cramér–Rao in-
equality but fewer knew about the van Trees inequality
(van Trees, 1968, page 72) before Gill and Levit (1995)
drew attention to some of its statistical uses. In their land-
mark article, they present the van Trees inequality as of-
fering a Bayesian Cramér–Rao bound, to be applied in
cases involving convergence of experiments to bypass the
beautiful but sophisticated Hájek–Le Cam theory of con-
vergence of experiments. Gill and Levit (1995) derived
the van Trees inequality under precise analytic conditions,
involving, in particular, smoothness assumptions on the
densities; so did also later contributions, including the
ones by Lenstra (2005), Jupp (2010), and Letac (2022).
However, as summarized by Pollard (2001; 2005), who in
turn refers to Bickel et al. (1993, page 12) and Lehmann
and Romano (2005, Chapter 12), Le Cam and Hájek ad-
vocated resorting rather to conditions that are intrinsic;
of particular interest, is the concept of differentiability in
quadratic mean of a statistical model.

We provide a version of the van Trees inequality in
the spirit promoted by Le Cam and Hájek, and aim for
the weakest possible assumptions. In the one-dimensional
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case (Section 2.1), on top of the assumptions merely en-
suring the existence of the quantities involved in the in-
equality (which includes the almost-everywhere differen-
tiability of the model), we only require that the prior van-
ishes at finite boundary points of the parameter space Θ
(which is an arbitrary, not necessarily bounded, open
subset of R), together with some technical condition on
the model that is weaker than its differentiability ev-
erywhere. We discuss these extremely mild assumptions
(Section 2.2) by comparing them to the classic regular-
ity assumptions proposed by Gill and Levit (1995). Our
proof (Section 2.3) also exploits the same separation of x
and θ variables as in Gill and Levit (1995), but we per-
form integrations in the reverse order, first over x then
over θ, thus effectively avoiding pointwise regularity as-
sumptions on densities. It turns out (Section 2.4) that the
van Trees inequality is not only a Bayesian analog of the
Cramér–Rao bound, as pointed out by van Trees (1968,
page 72) and Gill and Levit (1995), but that it is exactly, at
least in a slightly stronger form, an instance of a Cramér–
Rao bound for a suitably chosen location model.

The rest of this contribution focuses on a multivari-
ate version of the van Trees inequality. We provide (Sec-
tion 3) weak conditions that only involve differentiabil-
ity in quadratic mean of the model along canonical di-
rections, not all directions. We illustrate (Section 4) the
application of this multivariate version to establish a local
asymptotic minimax theorem for quadratic loss functions.
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2. ONE-DIMENSIONAL VERSION

We consider a statistical model P = (Pθ)θ∈Θ, defined
on a measurable space (X ,F) and indexed by an open
subset Θ of R (not necessarily an interval). We assume
that P is dominated by a σ–finite measure µ, with densi-
ties fθ = dPθ/dµ such that (θ,x) 7→ fθ(x) is measurable.
Let ξθ =

√
fθ ∈ L2(µ) be the square roots of these densi-

ties.
In the sequel, ∥ · ∥µ refers to the Euclidean norm in

L2(µ), i.e., for a function g :X →R in L2(µ),

∥g∥µ =

√∫
X
g2 dµ .

DEFINITION 1 (Differentiability in L2). The µ–domi-
nated statistical model P is differentiable in L2(µ) at θ0 ∈
Θ if there exists a function ξ̇θ0 ∈ L2(µ), called the L2(µ)-
derivative of the model at θ0, such thatwwξθ − ξθ0 − (θ− θ0)ξ̇θ0

ww
µ
= o
(
∥θ− θ0∥

)
as θ→ θ0 .

The Fisher information IP(θ0) of the model at θ0 is then
defined as

IP(θ0) = 4

∫
X

(
ξ̇θ0
)2

dµ .

DEFINITION 2 (Well-behaved prior). We call a prob-
ability measure Q that concentrates on the open set Θ⊆R
a well-behaved prior if Q has a density q with respect to
the Lebesgue measure on Θ that is absolutely continuous
on Θ, with almost-sure derivative q′ satisfying

IQ
def
=

∫
Θ

(
q′(θ)

)2 1{q(θ)>0}

q(θ)
dθ <∞ .

We denote by Supp(q) = {q > 0} the open support of q.

A standard result (see, e.g., Lehmann and Romano,
2005, Corollary 12.2.1) states that a location model based
on a well-behaved prior Q is differentiable in L2(λ),
where λ denotes the Lebesgue measure, with derivative
at 0 equal to q′1{q>0}/

(
2
√
q
)
, and hence, with Fisher in-

formation IQ.

2.1 Statement

The van Trees inequality lower bounds the Bayesian
squared error of any, possibly biased, statistic S : X →R
for the estimation of a functional ψ(θ), where we as-
sume that ψ is an absolutely continuous function, with
almost-everywhere derivative denoted by ψ′. More pre-
cisely, denoting by Eθ the expectation under Pθ , the one-
dimensional version of the van Trees inequality reads
(vT1)∫

Θ

Eθ

[(
S −ψ(θ)

)2]
dQ(θ)⩾

(∫
Θ
ψ′(θ)dQ(θ)

)2
IQ +

∫
Θ
IP(θ)dQ(θ)

.

Our version of the van Trees inequality requires two series
of assumptions. The first series, stated in Assumption 3
merely ensures that all quantities involved are defined and
that the inequality has a meaning. The second series of
assumptions are “real” assumptions and may be found in
Theorem 4.

ASSUMPTION 3 (ensuring definitions and meaning).
The set Θ is any open subset of R. The probability mea-
sure Q is a well-behaved prior on Θ. The statistical model
P = (Pθ)θ∈Θ is dominated by a σ–finite measure µ, with
densities fθ = dPθ/dµ such that (θ,x) 7→ fθ(x) is mea-
surable. The model P is differentiable in L2(µ) almost
everywhere on Θ ∩ Supp(q). The function ψ : Θ→ R is
absolutely continuous. Both ψ2 and ψ′ are Q–integrable
and∫

Θ
Eθ

[
S2
]
dQ(θ)<+∞ ,

∫
Θ
IP(θ)dQ(θ)<+∞ .

THEOREM 4. The one-dimensional van Trees in-
equality (vT1) holds with IQ > 0 under Assumption 3
and the following additional assumptions:

• for all A ∈ F , the functions θ ∈ Θ ∩ Supp(q) 7→
Pθ(A) are absolutely continuous;

• q(θ)→ 0 as θ approaches any finite boundary point
of Θ.

The first assumption holds in particular if the model P is
differentiable in L2(µ) at all points of Θ ∩ Supp(q), not
just almost everywhere.

2.2 Comparison to classic regularity assumptions

We compare Theorem 4 to the version under classic
regularity assumptions by Gill and Levit (1995) based on
van Trees (1968). With no loss of generality (on the con-
trary) and no change in their proof, we only replace their
closed interval Θ by any open set Θ, possibly intersected
with Supp(q). The key additional assumption required is
stated next.

ASSUMPTION 5 (main regularity assumption). In
the µ–dominated model P , the densities fθ = dPθ/dµ
are such that for µ–almost all x, the function θ ∈ Θ ∩
Supp(q) 7→ fθ(x) is absolutely continuous, with almost-
everywhere derivative denoted by f ′θ(x).

In that setting with classic regularity assumptions,
the Fisher information is defined, where f ′θ exists, i.e.,
almost-everywhere, by

ĨP(θ) =

∫
X

(
f ′θ
fθ

)2
dPθ =

∫
X

(f ′θ)
2

fθ
1{fθ>0} dµ .

A finite denominator in the right-hand side of the van
Trees inequality entails (see the argument in the last lines
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of Section 2.3.5) that ĨP is locally integrable around
each θ ∈ Θ ∩ Supp(q), and thus, that almost all points
of Θ ∩ Supp(q) are Lebesgue points for ĨP . Based on
this and on Assumption 5, we apply a slight extension
of Bickel et al. (1993, Proposition 1) or Lehmann and
Romano (2005, Theorem 12.2.1), whose proofs show
that continuity of ĨP is actually not required and that a
Lebesgue-point assumption is sufficient; we obtain that
the model P is differentiable in L2(µ) almost every-
where on Θ ∩ Supp(q), with L2(µ)–derivatives given by
ξ̇θ = f ′θ1{fθ>0}/

√
fθ . We also have ĨP = IP almost ev-

erywhere on Θ∩ Supp(q).
Now, Gill and Levit (1995) prove the van Trees inequal-

ity under the boundary conditions on q and qψ stated in
Theorem 4, under Assumption 5 and all of Assumption 3
except the almost everywhere L2(µ)–differentiability of
P . The other condition in Theorem 4, namely, that for
all A ∈ F , the function θ ∈Θ ∩ Supp(q) 7→ Pθ(A) is ab-
solutely continuous, is a direct consequence of Assump-
tion 5, by the Fubini–Tonelli theorem and the character-
ization of absolute continuity in terms of equality to the
integral of the derivative. We therefore proved the follow-
ing fact.

FACT. The regularity assumptions considered by Gill
and Levit (1995) to prove the one-dimensional van Trees
inequality (vT1) are more stringent than the Hájek–Le
Cam-type assumptions considered in Theorem 4.

2.3 Proof of Theorem 4

The key lemma for our approach and its proof are ex-
tracted from the lecture notes by Pollard (2001; 2005),
who adapted a result by Ibragimov and Has’minskii
(1981, Lemma 7.2, page 67). The lemma stated in Pol-
lard (2001; 2005) is actually stronger as it only requires
local boundedness of T in L2(Pθ) around θ0.

LEMMA 6 (Pollard, 2001; 2005). Let the µ–dominated
model P = (Pθ)θ∈Θ be differentiable in L2(µ) at θ0. Con-
sider a uniformly bounded statistic T :X →R, i.e., there
exists M > 0 with |T | ⩽M µ–a.s. Then, γT : θ ∈ Θ 7→
Eθ[T ] is differentiable at θ0, with derivative

γ′T (θ0) = 2

∫
X
ξ̇θ0ξθ0T dµ .

PROOF. Let rθ = ξθ − ξθ0 − (θ− θ0)ξ̇θ0 , so that

= ξ2θ =fθ︷ ︸︸ ︷(
ξθ0 + (θ− θ0)ξ̇θ0 + rθ

)2−ξ2θ0 − 2(θ− θ0)ξ̇θ0ξθ0

= (θ− θ0)
2ξ̇2θ0 + r2θ + 2rθξθ0 + 2(θ− θ0)ξ̇θ0rθ

The L1(µ)–norms of the first two terms in the right-hand
side is of order (θ − θ0)

2. The L1(µ)–norms of the last

two terms above are (by the Cauchy–Schwarz inquality)
of order ∥rθ∥µ, thus are o

(
|θ − θ0|

)
. Multiplying both

sides of the display above by the bounded T and inte-
grating over µ, we obtain

γT (θ)−γT (θ0)−2(θ−θ0)
∫
X
ξ̇θ0ξθ0T dµ= o

(
|θ−θ0|

)
.

2.3.1 Overview of the proof. We introduce

∆ : (x, θ) 7−→ q′(θ)
1{q(θ)>0}

2
√
q(θ)

ξθ(x) +
√
q(θ) ξ̇θ(x) ,

which is well-defined for almost all θ ∈ Θ ∩ Supp(q),
and vanishes for θ ̸∈ Supp(q). Let m denote the Lebesgue
measure. We will show that

2

∫
Θ×X

∆(x, θ)
√
q(θ) ξθ(x)

(
S(x)−ψ(θ)

)
dθdµ(x)

=

∫
Θ
ψ′(θ)dQ(θ) .(2.1)

We prove the equality (2.1) above in a direct way, and
the van Trees inequality then follows by an application
of the Cauchy–Schwarz inequality. Section 2.4 explains
that (2.1) can actually be interpreted, under stronger as-
sumptions, as a consequence of Lemma 6 with T (x, θ) =
S(x)−ψ(θ) and a well-chosen location model. Actually,
a close look at the proof by Gill and Levit (1995, page 61)
shows that they also exactly prove (2.1), though under
additional regularity assumptions, like the θ 7→ fθ(x) be-
ing absolutely continuous, and by first integrating in the
left-hand side over θ then over x. We take the reverse or-
der and first integrate over x, thanks to applications of
Lemma 6, and then over θ.

2.3.2 Preparations. It suffices to prove (vT1) for statis-
tics S given by finite linear combinations of indicator
functions, the case of general statistics following by tak-
ing limits given the bounded second moment stated in
Assumption 3. Similarly, the sequence of absolutely con-
tinuous functions ψn = max

{
−n,min{ψ,n}

}
satisfies

ψn → ψ and ψ′
n → ψ′ almost-surely; by dominated con-

vergence, it also suffices to prove (vT1) for bounded ψ
with bounded derivatives.

The first assumption of Theorem 4 ensures that the
function γS is absolutely continuous on Θ∩ Supp. In ad-
dition, Lemma 6, based on the fact that P is differentiable
at almost all θ ∈ Θ ∩ Supp(q) and that S is in particu-
lar uniformly bounded, provides a closed-form expression
for the almost-everywhere derivative γ′S .

Finally, all integrands below belong to L1(m ⊗ µ),
as follows from applications of the Cauchy–Schwarz in-
equality. Hence, integrals of sums equal sums of integrals
and Fubini’s theorem may be applied to exchange orders
of integration. We use the short-hand notation µ[f ] for the
expectation of a function f :X →R under µ.
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2.3.3 Proof of (2.1). Let Θq = Θ ∩ Supp(q). The in-
tegrals in (2.1) may be equivalently taken over Θ or Θq .
The left-hand side of (2.1) consists of four terms, namely,∫

Θq

q′(θ)µ
[
fθS

]
dθ =

∫
Θq

q′(θ)γS(θ)dθ

−
∫
Θq

ψ(θ) q′(θ)µ
[
fθ
]
dθ =−

∫
Θq

ψ(θ) q′(θ)dθ ,

2

∫
Θq

q(θ)µ
[
ξ̇θξθS

]
dθ =

∫
Θq

q(θ)γ′S(θ)dθ ,

−2

∫
Θq

ψ(θ) q(θ)µ
[
ξ̇θξθ

]
dθ = 0 .

The fourth equality follows from Lemma 6 with T ≡ 1,
which entails that µ

[
ξ̇θξθ

]
= 0 for almost all θ ∈ Θq .

Now, the functions γS , q and ψ are absolutely continu-
ous on Θq , so that an integration by parts (Titchmarsh,
1939, page 375, §12.11) ensures that on any compact sub-
interval [c, d]⊂Θq ,∫

[c,d]

(
q′(θ)γS(θ) + q(θ)γ′S(θ)

)
dθ =

[
q(θ)γS(θ)

]d
c
,∫

[c,d]
ψ(θ) q′(θ)dθ =

[
ψ(θ) q(θ)

]d
c
−
∫
[c,d]

ψ′(θ) q(θ)dθ .

We write Θq = Θ ∩ Supp(q) as a countable union of
disjoint intervals (aτ , bτ ), indexed by τ ∈ T . Each finite
boundary point of Θq is either a finite boundary point of
Θ, or lies in the interior of Θ and is a finite boundary
point of Supp(q); in the latter case, by continuity, ψ is
bounded and q vanishes thereat. Therefore, by bounded-
ness of γS and ψ and by the Θ–boundary assumptions
on q, the quantities γS(θ) q(θ) and ψ(θ) q(θ) vanish as
θ approaches any finite boundary point aτ or bτ of Θq .
When ±∞ is a boundary point of Θq , given that q is inte-
grable over Θ, the liminf of q(θ) is null as θ tends to ±∞.
Therefore, by boundedness of γS and ψ again, for each τ ,
by letting c→ aτ and d→ bτ in a suitable manner and by
dominated convergence, we have∫

(aτ ,bτ )

(
q′(θ)γS(θ) + q(θ)γ′S(θ)

)
dθ = 0 ,∫

(aτ ,bτ )
ψ(θ) q′(θ)dθ =−

∫
(aτ ,bτ )

ψ′(θ) q(θ)dθ .

By dominated convergence, summing these inequalities
over τ ∈ T yields (2.1).

2.3.4 Conclusion by a Cauchy–Schwarz inequality.
The van Trees inequality (vT1) follows by applying the
Cauchy–Schwarz inequality to (2.1) together with the fact
that

4

∫
Θ×X

∆(x, θ)2 dθdµ(x) = IQ +

∫
Θ
IP(θ)dQ(θ) .

The equality above follows from the definitions of Fisher
information (for the integrals of square terms) and the
fact that the following integral (corresponding to the cross
term) is null, since µ

[
ξ̇θξθ

]
= 0 for almost all θ, as already

noted above:∫
Θ×X

q′(θ)1{q(θ)>0} ξ̇θ(x)ξθ(x)dθdµ(x) = 0 .

That IQ > 0 follows from the impossibility of q to be
a uniform distribution, because of the vanishing-at-the-
border constraints. This concludes the proof of the first
part of Theorem 4 and we now move to its last statement.

2.3.5 Special case. We finally show that when the
model P is L2(µ)–differentiable at all points of Θq , not
just almost everywhere, the first assumption of Theorem 4
holds, namely, that for all events A ∈ F , the functions
γA : θ 7→ Pθ(A) are absolutely continuous on Θq . Indeed,
by Titchmarsh (1939, page 368, §11.83), it suffices to note
that γA is differentiable everywhere on Θq (by Lemma 6
together with the assumption that the model P is L2(µ)–
differentiable everywhere), with a derivative γ′A that is
finite everywhere and locally integrable on Θq: by the
Cauchy–Schwarz inequality,∣∣γ′A(θ)∣∣= ∣∣∣∣2∫

X
ξ̇θξθ1A dµ

∣∣∣∣⩽√IP(θ)<+∞ .

The claimed local integrability follows from the bound
above, the local integrability of IP q (by Assumption 3),
and the fact that by absolute continuity, q ⩾ δ for some
δ > 0 on any open interval (a, b)⊆Θq .

2.4 The van Trees inequality as a Cramér–Rao bound

The Cramér–Rao bound (for possibly biased statis-
tics T ) is obtained as a corollary of Lemma 6. By applying
the Cauchy–Schwarz inequality to the equality

γ′T (θ0) = 2

∫
X
ξ̇θ0ξθ0T dµ ,

we get indeed, when IP(θ0)> 0,

Eθ0

[
T 2
]
⩾

(
γ′T (θ0)

)2
IP(θ0)

.

Actually, replacing in the argument above T by T − c,
with c= Eθ0 [T ], yields the desired Cramér–Rao bound:

Varθ0(T ) = Eθ0

[
(T − c)2

]
⩾

(
γ′T (θ0)

)2
IP(θ0)

.

Now, the van Trees inequality was obtained in Sec-
tion 2.3 by an application of the Cauchy–Schwarz in-
equality to the equality (2.1), which was claimed to be
a consequence of Lemma 6; this indicates that the van
Trees inequality is exactly an instance of a Cramér–Rao
bound (for the location model M described below), at
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least in the (slightly stronger) form of Corollary 7 below.
The latter is an automatic improvement of Theorem 4,
as its proof merely consists of applying Theorem 4 with
S − c and ψ (or, alternatively, with S and ψ + c) for a
well-chosen c.

COROLLARY 7. Under the assumptions of Theo-
rem 4, we actually have the stronger lower bound∫

Θ

Eθ

[(
S −ψ(θ)

)2]
dQ(θ)⩾

(∫
Θ

Eθ

[
S −ψ(θ)

]
dQ(θ)

)2
+

(∫
Θ
ψ′(θ)dQ(θ)

)2
IQ +

∫
Θ
IP(θ)dQ(θ)

.

Put differently, the van Trees inequality of Corollary 7
is not (only) to be understood as a Bayesian Cramér–Rao
bound, as advocated by Gill and Levit (1995), it is ex-
actly a Cramér–Rao bound. Similarly, van Trees (1968,
page 72) underlines that he mimics the derivation of the
Cramér–Rao bound to obtain his inequality, but does not
see the latter as a very instance of the former.

We conclude this section by detailing our claim that
the equality (2.1) may be seen, under suitable conditions
(not required for our direct proof of Theorem 4), as a
consequence of Lemma 6. We assume, in particular, that
the support of q is δ–away from the border of Θ, i.e.,
that for all θ ∈ Θ with q(θ) > 0 and all x ∈ [−δ, δ], one
has θ + x ∈ Θ. This assumption ensures that the loca-
tion model M = (Mα)α∈(−δ,δ) is well defined, where
Mα is the distribution over Θ×X with density (x, θ) 7→
q(θ + α)fθ+α(x) with respect to µ ⊗ m. Under suitable
conditions (not detailed), we may apply the same theo-
rem as in Section 2.2 (Bickel et al., 1993, Proposition 1
or Lehmann and Romano, 2005, Theorem 12.2.1) estab-
lishing the L2(µ⊗m)–differentiability of Mα at α0 = 0
and identifying its L2(µ⊗m)–derivative at α0 = 0, which
we denote by ∆, with the pointwise derivative of (x, θ) 7→√
q(θ+ α)fθ+α(x) at α0 = 0:

∆ : (x, θ) 7−→ q′(θ)
1{q(θ)>0}

2
√
q(θ)

ξθ(x) +
√
q(θ) ξ̇θ(x) .

For a bounded statistic S and an absolutely continuous
and bounded target function ψ, whose derivative ψ′ is also
bounded, we consider the statistic J(x, θ) = S(x)−ψ(θ).
Its expectation under some Mα equals

γJ(α) = EMα
[J ]

=

∫
X×Θ

(
S(x)−ψ(θ)

)
q(θ+ α)fθ+α(x)dµ(x)dθ

=

∫
Θ
Eθ[S] q(θ)dθ−

∫
Θ
ψ(θ− α) q(θ)dθ .

Differentiating the above equality at α0 = 0, we obtain, as
claimed, the equality (2.1), whose left-hand side may be
identified to γ′J(α) thanks to Lemma 6, and whose right-
hand side is obtained by differentiating under the integral
sign.

3. MULTIVARIATE VERSION

There exist several ways to extend the van Trees in-
equality for multivariate estimation; see Gill and Levit
(1995), who in turn refer to van Trees (1968) and Bo-
brovsky, Mayer-Wolf and Zakai (1987). We focus here on
the elegant matrix-wise version by Letac (2022).

Let the statistical model P = (Pθ)θ∈Θ be indexed by an
open set Θ⊆Rp, where p⩾ 2. The estimation target will
be some ψ(θ), where ψ : Θ→Rs, and we consider some
statistic S :X →Rs to that end. We still assume that P is
dominated by a σ–finite measure µ, with densities fθ =
dPθ/dµ such that (θ,x) 7→ fθ(x) is measurable. In the
sequel, ∥·∥ refers to the Euclidean norm in some Rd space
(with d = p or d = s), and ∥ · ∥µ denotes the Euclidean
norm in L2(µ), i.e., for a function g :X →Rd in L2(µ),

∥g∥µ =

√∫
X
∥g∥2 dµ .

3.1 Comparison to classic regularity assumptions

Both Gill and Levit (1995) and Letac (2022) assume
some smoothness on the functions θ 7→ fθ(x), for µ–
almost all x, and also possibly on the border of Θ. These
assumptions are useful to extend the integrations by parts
performed in Section 2.3.3 to the multivariate case, via
Stokes’ theorem. More precisely, Letac (2022) assumes
(this is what he calls a “regular Fisher model”) that the
functions θ 7→ fθ(x) are evenC1–smooth but does not put
any constraint on the boundary of Θ. Gill and Levit (1995)
assume, in particular, that Θ is compact with a piecewise-
C1–smooth boundary; as for the functions θ 7→ fθ(x),
they assume that they are “nice” for µ–almost all x in
the sense of Definition 8 (which is actually a property
that Sobolev functions enjoy, see Evans and Gariepy,
1992, Section 4.9). For u = (u1, . . . , ud) ∈ Rd and i ∈
{1, . . . , d}, we let u−i denote the (d − 1)–dimensional
vector of all components of u but the i–th one, so that,
by an abuse of notation, u = (ui, u−i). We introduce the
projection of a subset D ⊆ Rd ignoring the i–th coordi-
nates:

D−i =
{
u−i ∈Rd−1 : ∃ui ∈R s.t. (ui, u−i) ∈D

}
.

DEFINITION 8 (nice functions). Let D ⊆ Rd be an
open domain, where d ⩾ 2. A function φ : D → R is
nice if for all i ∈ {1, . . . , d}, for almost all u−i ∈ D−i,
the functions ui 7→ φ(ui, u−i) are absolutely continuous
in the classic one-dimensional sense on the open domain
D(u−i) =

{
ui ∈R : (ui, u−i) ∈D

}
.
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In particular, a function φ :D→R that is nice admits at
almost all u ∈D partial derivatives along canonical direc-
tions, which we denote by ∂1φ, . . . , ∂dφ. By an abuse of
notation, we denote by ∇φ = (∂1φ, . . . , ∂dφ) the vector
of partial derivatives.

A vector-valued function is nice if each of its compo-
nent is nice.

As in Section 2.3.3, we avoid issuing regularity as-
sumptions on the functions θ 7→ fθ(x) and replace them
by L2(µ)–differentiability assumptions. Our version of
the van Trees inequality only requires such an L2(µ)–
differentiability to hold along canonical directions, not all
directions. For the sake of a simpler exposition, and as in
the second part of Theorem 4, we restrict our attention
to a model that is L2(µ)–differentiable along canonical
directions at all points. We denote by u ⊗ v = uvT the
outer product of two vectors u and v (possibly of differ-
ent lengths).

DEFINITION 9 (Differentiability in L2 along canoni-
cal directions). The µ–dominated statistical model P
indexed by an open subset Θ ⊆ Rp is differentiable in
L2(µ) at θ0 ∈ Θ along canonical directions if there ex-
ist scalar functions ξ̇θ0,1, . . . , ξ̇θ0,p ∈ L2(µ), called the
L2(µ)–partial derivatives of the model at θ0, such that,
for all i ∈ {1, . . . , p}, as θi → θ0,i,wwξ(θi, θ0,−i) − ξθ0 − (θi − θ0,i)ξ̇θ0,i

ww
µ
= o
(
|θi − θ0,i|

)
.

Let ξ̇θ0 = (ξ̇θ0,1, . . . , ξ̇θ0,p). The Fisher information IP(θ0)
of the model at θ0 is then defined as the p× p matrix

IP(θ0) = 4

∫
X
ξ̇θ0 ⊗ ξ̇θ0 dµ .

While we avoid at all costs direct regularity assump-
tions on the functions θ 7→ fθ(x), as we have no control
on the model P , we may be more lenient when it comes to
the prior Q, which the statistician chooses. Gill and Levit
(1995) impose, among others, the following assumption
on Q, which generalizes Definition 2.

DEFINITION 10 (Well-behaved prior, multivariate ver-
sion). We call a probability measure Q that concentrates
on the open set Θ ⊆ Rp a well-behaved prior if Q has a
density q with respect to the Lebesgue measure on Θ that
is nice on Θ, and whose vector of partial derivatives ∇q
is such that ∥∇q∥22 1{q>0}/q is Lebesgue-integrable. We
define

IQ
def
=

∫
Θ
∇q(θ)⊗∇q(θ)

1{q(θ)>0}

q(θ)
dθ .

3.2 Statement

The multivariate version of the van Trees inequality
proposed by Letac (2022), as well as a consequence
thereof (in terms of Schur complement) is stated in (vTm).
Therein, where M ≽ 0 and M ≻ 0 denote the fact that a
symmetric matrixM is positive semi-definite and positive
definite, respectively. Also, ∇ψ(θ) denotes the p× s ma-
trix whose component (i, j) equals ∇ψ(θ)i,j = ∂iψj(θ).

The multivariate counterpart of Assumption 3 is stated
next. It does not target generality and aims to ease exposi-
tion: as a consequence, it requires differentiability of the
model at all points of Θ∩Supp(q), not just almost every-
where, and also imposes that the density q is continuous
(which does not follow from Definition 8).

ASSUMPTION 11 (for the multivariate case). The
set Θ is any open subset of Rp. The probability measure Q
is a well-behaved prior on Θ, with a continuous density q.
The statistical model P = (Pθ)θ∈Θ is dominated by a σ–
finite measure µ, with densities fθ = dPθ/dµ such that
(θ,x) 7→ fθ(x) is measurable. The model P is differen-
tiable in L2(µ) along canonical dimensions at all points
of on Θ∩Supp(q). The function ψ : Θ→Rs is nice. Both
∥ψ∥2 and ∥∇ψ∥ are Q–integrable and both∫

Θ
Eθ

[
∥S∥2

]
dQ(θ) ,

∫
Θ
Tr
(
IP(θ)

)
dQ(θ)<+∞ ,

where Tr denotes the trace.

THEOREM 12. The multivariate van Trees inequal-
ity (vTm) holds with IQ ≻ 0 under Assumption 11 and the
fact that q(θ)→ 0 as θ approaches any boundary point of
Θ with finite norm along some canonical direction.

3.3 Proof of Theorem 12

Up to resorting to dominated-convergence arguments
(as in Section 2.3.2), we may restrict our attention to
statistics S and to target functions ψ that are uniformly
bounded.

3.3.1 Elements to perform integration by parts. The
key to extend the univariate proof to a multivariate set-
ting is the following lemma of integration by parts, which
follows from a version of Stokes’ theorem tailored to our
needs. Its proof and some comments may be found in ap-
pendix.

LEMMA 13. Let D ⊆ Rd be an open domain, where
d⩾ 2, and let f, g :D→R be two functions that are nice
on D, with g also being continuous, such that, for some
i ∈ {1, . . . , d},∫

D
|f g|dm<+∞ and

∫
D
|∂if g+ f ∂ig|dm<+∞ ,
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(vTm)


∫
Θ
Eθ

[(
S −ψ(θ)

)
⊗
(
S −ψ(θ)

)]
dQ(θ)

(∫
Θ
∇ψ(θ)dQ(θ)

)T

∫
Θ
∇ψ(θ)dQ(θ) IQ +

∫
Θ
IP (θ)dQ(θ)

≽ 0 ,

thus, whenever IQ ≻ 0,∫
Θ
Eθ

[(
S −ψ(θ)

)
⊗
(
S −ψ(θ)

)]
dQ(θ)−

(∫
Θ
∇ψ(θ)dQ(θ)

)T (
IQ +

∫
Θ
IP (θ)dQ(θ)

)−1(∫
Θ
∇ψ(θ)dQ(θ)

)
≽ 0 .

and f(u)g(u)→ 0 as u approaches any boundary point
of D with finite norm along the i–th canonical direction.
Then ∫

D∩{g ̸=0}
(∂if g+ f ∂ig)dm= 0 .

Denote by ψ = (ψ1, . . . ,ψs) and S = (S1, . . . , Ss) the
components of ψ and S. Given the assumptions of Theo-
rem 12 and the boundedness of ψ, we may directly apply
Lemma 13 to D = Θ and the pairs f = ψj and g = q,
where j ∈ {1, . . . , s}.

We wish to also do so with D =Θ ∩ Supp(q) and the
f = γSj

, where γSj
: θ ∈ Θ 7→ Eθ[Sj ]. The boundary of

Θ ∩ Supp(q) is included in the union of the boundaries
of Θ and Supp(q), and q vanishes when it approaches
any of them. Together with the uniform boundedness of
Sj , the boundary assumption of Lemma 13 is satisfied on
D = Θ ∩ Supp(q). It only remains to show that f = γSj

is nice. To do so, we mimic and adapt arguments used
in Section 2.3.5. Given that Sj is uniformly bounded,
and given the L2(µ)–differentiability assumptions on the
model, we may apply Lemma 6 along any canonical di-
rection and get that the γSj

are differentiable in the i–th
coordinate at all θ ∈D, with partial derivatives given by

(3.1) ∂iγSj
(θ) = 2

∫
ξ̇θ,i ξθ,i Sj dµ .

Denoting by B a uniform bound on the Sj , the Cauchy–
Schwarz inequality guarantees that∣∣∂iγSj

(θ)
∣∣⩽B

√
Tr
(
IP(θ)

)
⩽B

(
1 +Tr

(
IP(θ)

))
.

Given the final integrability condition in Assumption 11
and the fact that q is nice, by Fubini’s theorem, at almost
all θ−i, the function

θi ∈D 7→Tr
(
IP(θi, θ−i)

)
q(θi, θ−i)

is integrable and θi ∈ D 7→ q(θi, θ−i) is (absolutely)
continuous, thus locally larger than some δ > 0; recall
indeed that D = Θ ∩ Supp(q) here. Thus, θi ∈ D 7→
Tr
(
IP(θi, θ−i)

)
is locally integrable. Therefore, at these

θ−i, the function θi ∈D(θ−i) 7→ γSj
(θi, θ−i) is differen-

tiable everywhere, with a derivative that is finite every-
where and locally integrable, thus (see again Titchmarsh,
1939, page 368, §11.83), it is absolutely continuous. This
exactly corresponds to the fact that γSj

is nice on D.

3.3.2 Brief rest of proof of Theorem 12. We follow the
same methodology as in Section 2.3, and introduce

∆(x, θ) =∇q(θ)
1{q(θ)>0}

2
√
q(θ)

ξθ(x) +
√
q(θ) ξ̇θ(x) .

All integrands in the sequel belong to L1(m⊗ µ), as fol-
lows from applications of the Cauchy–Schwarz inequal-
ity. Hence, integrals of sums equal sums of integrals and
Fubini’s theorem may be applied to exchange orders of
integration. We use again the short-hand notation µ[f ] for
the expectation of a function f :X →Rd under µ.

We show below that the multivariate van Trees inequal-
ity (vTm) corresponds to∫

X×Θ

(
V (x, θ)⊗ V (x, θ)

)
dµ(x)dθ ≽ 0 ,

where V (x, θ) =

[(
S(x)−ψ(θ)

)
ξθ(x)

√
q(θ)

2∆(x, θ)

]
.

We start with the cross-products. As explained above,
Lemma 6 may be applied along all canonical directions
i ∈ {1, . . . , p} to yield (3.1) as well as µ

[
ξ̇θ,i ξθ,i

]
= 0

for all θ ∈ Θ ∩ Supp(q). We therefore obtain the fol-
lowing extension of the four equalities of the beginning
of Section 2.3.3: with the short-hand notation Θq = Θ ∩
Supp(q),

2

∫
X×Θ

(
∆(x, θ)⊗

(
S(x)−ψ(θ)

))
ξθ(x)

√
q(θ)dµ(x)dθ

=

∫
Θq

∇q(θ)⊗ γS(θ)dθ+

∫
Θq

∇γS(θ) q(θ)dθ

−
∫
Θq

∇q(θ)⊗ψ(θ)dθ+ (0, . . . ,0)T ,

where γS = (γSj
)1⩽j⩽s and ∇γS(θ) is the p × s ma-

trix whose component (i, j) equals ∇γS(θ)i,j = ∂iγSj
(θ).

The results of Section 3.3.1 hold for all pairs (i, j) and
thus guarantee that∫

Θq

∇q(θ)⊗ γS(θ)dθ =−
∫
Θq

∇γS(θ) q(θ)dθ ,

−
∫
Θq

∇q(θ)⊗ψ(θ)dθ =

∫
Θq

∇ψ(θ) q(θ)dθ .
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On the other hand, using again that µ
[
ξ̇θ,i ξθ,i

]
= 0 for

all θ ∈Θq , we have that∫
Θ
∇q(θ)⊗ µ

[
ξθ ξ̇θ

]
1{q(θ)>0} dθ = (0, . . . ,0)T ,

so that the bottom-right term in the multivariate van Trees
inequality (vTm) corresponds to

4

∫
X×Θ

(
∆(x, θ)⊗∆(x, θ)

)
dµ(x)dθ

=

∫
Θ

∇q(θ)⊗∇q(θ)
q(θ)

1{q(θ)>0} µ[fθ] dθ

+

∫
Θ
4µ[ξ̇θ ⊗ ξ̇θ] q(θ)dθ

= IQ +

∫
Θ
IP(θ) q(θ)dθ ,

where IQ ≻ 0 as q cannot be a uniform density due to the
boundary conditions.

4. DIRECT PROOF OF LAM LOWER BOUNDS

Gill and Levit (1995, Section 3) provide a derivation
of a version of the the Hájek–Le Cam convolution theo-
rem (Hájek, 1970) based on the van Trees inequality. In
the exact same vein, including the same techniques, we
propose a version of the Hájek–Le Cam local asymptotic
minimax [LAM] theorem (Hájek, 1972): see Theorem 16
below. We state it in a Hájek–Le Cam spirit, avoiding any
classic regularity assumption (contrary to Gill and Levit,
1995, Section 3).

Its derivation is elementary and bypasses the typical ar-
guments of the Hájek–Le Cam theory of convergence of
experiments. However, our version requires, on many as-
pects, stronger assumptions than the original references,
except for the differentiability of the model, which we
only require along canonical directions (and not in all di-
rections). See the comments after the statement of Theo-
rem 16 for more detail.

Setting. We still consider an open subset Θ ⊆ Rp. For
n ⩾ 1, we denote by P⊗n

θ the law of a n–sample of ob-
servations based on some Pθ , and P⊗n = (P⊗n

θ )θ∈Θ the
associated statistical product model. When the base sta-
tistical model P is differentiable in L2(µ) at some θ0 ∈Θ
along canonical directions, then so is P⊗n, with a vector
of L2(µ)-partial derivatives given by

(x1, . . . , xn) ∈ X n 7→

 n∑
k=1

ξ̇θ0,i(xk)
∏
k′ ̸=k

ξθ0(xk′)


1⩽i⩽p

.

In particular, the Fisher information of the product model
P⊗n at θ0 equals IP⊗n(θ0) = nIP(θ0).

Consider some sequence of statistics Sn :X n →Rs and
fix for now some vector U ∈ Rs. We assume the follow-
ing.

ASSUMPTION 14. For a neighborhood N of θ0 ∈Θ,
on the one hand, P is differentiable in L2(µ) along canon-
ical directions at all θ ∈N , and on the other hand, the Rs–
valued target function ψ is nice and bounded on N , with
∇ψ also bounded on N .

Derivation. For any distribution H on Rp, we denote
by Qθ0,r the distribution of θ0 + rH , where H is a ran-
dom variable with distribution H. There exist sufficiently
regular priors H on Rp, with support in the unit ball B,
so that, for all c > 0, all assumptions of Theorem 12 are
satisfied with Q = Qθ0,c/

√
n, at least for n large enough

(depending on H and c), except maybe the finiteness of
the two integrals stated in Assumption 11 (without which
the inequality holds also but is pointless). Also, the Fisher
information of Qθ0,c/

√
n equals (n/c2) times the Fisher

information IQθ0,1
of Qθ0,1.

Therefore, for such priors and for n large enough,∫
B

E⊗n
θ0+ch/

√
n

(U T

(
Sn −ψ

(
θ0 + ch/

√
n
)))2dH(h)

⩾
1

n
U TG(θ0, c, n)

T I(θ0, c, n)
−1G(θ0, c, n)U ,

where we introduced the p× s and p× p matrices

G(θ0, c, n) =

∫
B
∇ψ
(
θ0 + ch/

√
n
)
dH(h) ,

I(θ0, c, n) =
1

c2
IQθ0,1

+

∫
B
IP
(
θ0 + ch/

√
n
)
dH(h) .

Now, any positive quadratic form ℓ : Rs → [0,+∞)
can be decomposed as follows: there exists an orthogo-
nal basis U1, . . . ,Us of Rs and nonnegative real numbers
λ1, . . . , λs ⩾ 0 such that for all v ∈Rs,

ℓ(v) =

s∑
k=1

λk
(
U T
k v
)2

=

s∑
k=1

λkU
T
k v v

T Uk .

This decomposition entails that for all s × s symmetric
positive semi-definite matrices Γ, denoting by N

(
[0],Γ

)
the Gaussian distribution over Rs centered at [0] =
(0, . . . ,0)T and with covariance matrix Γ,∫

Rs

ℓ(v)dN
(
[0],Γ

)
(v) =

s∑
k=1

λkU
T
k ΓUk .

Linear combinations of the applications above of the van
Trees inequality thus yield∫

B

E⊗n
θ0+ch/

√
n

[
ℓ

(
√
n

(
Sn −ψ

(
θ0 + ch/

√
n
)))]

dH(h)

⩾
∫
Rs

ℓ(v)dN
(
[0],Γθ0,c,n

)
(v) ,
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where Γθ0,c,n = G(θ0, c, n)
T I(θ0, c, n)

−1G(θ0, c, n). By
lower bounding a supremum by an integral, we obtain the
desired LAM lower bound (4.1) below as soon as Γθ0,c,n

converges in the following sense. We recall that we do
not aim for minimal assumptions in this section, but for
elementary arguments.

ASSUMPTION 15. We have the component-wise con-
vergence

lim
c→∞

lim
n→∞

Γθ0,c,n =∇ψ(θ0)TIP(θ0)−1∇ψ(θ0) .

It holds, in particular, as soon as ∇ψ and IP are continu-
ous at θ0, with IP(θ0) being nonsingular.

THEOREM 16. Under Assumptions 14 and 15, for all
positive quadratic forms ℓ : Rs → [0,+∞), for all se-
quences of statistics Sn :X n →Rs,

(4.1)

lim inf
c→+∞

lim inf
n→+∞

sup
θ:
√
n∥θ−θ0∥⩽c

E⊗n
θ

[
ℓ
(√

n
(
Sn−ψ(θ)

))]
⩾
∫
Rs

ℓ(v)dN
(
[0],∇ψ(θ0)TIP(θ0)−1∇ψ(θ0)

)
(v) .

Comments. van der Vaart (1998, Theorem 8.11) states
the lower bound (4.1) for so-called bowl-shaped loss
functions (not just quadratic forms), under the L2(µ)–
differentiability of P at θ0 (only, not on a neighborhood
thereof) in all directions (while Theorem 16 considered
canonical directions only), and for ψ differentiable at θ0
(in sharp contrast with the continuity and boundedness
assumptions on ψ and IP in Theorem 16). That Theo-
rem 4.1 may only deal with quadratic forms is unsurpris-
ing, given the quadratic nature of the van Trees inequality;
but it came to us as a surprise that the results of Section 3,
and thus Theorem 4.1, hold for differentiability assumed
only along canonical directions. Takatsu and Kuchibhotla
(2024) explore further local (asymptotic, or not) minimax
bounds based, among others, on the van Trees inequality,
and relax the regularity conditions both on the model and
on the target function ψ.

REMARK 17. The non-singularity of IP(θ0) in As-
sumption 15 is actually not required to get a meaningful
LAM bound from the van Trees inequality. We consider,
for instance, the case of ψ(θ) = θ and only assume that
IP is continuous at θ0: the I(θ0, c, n) still converge to
IP(θ), which may however be singular. Now, the proof
above reveals that if U ∈Rp is in the kernel of IP(θ), then
the LAM lower bound in (4.1) with ℓ(v) = (U T v)2 equals
+∞. Conversely, still under the continuity assumption of
IP at θ0, if there exists an estimator having a finite local
asymptotic maximum in quadratic risk ℓ(v) = ∥v∥2, as in

the left-hand side of (4.1), then IP(θ0) is non singular.
This can be used to get a simple proof of the non singu-
larity of the efficient Fisher information in semiparamet-
ric estimation problems: such an argument has been used
in Gassiat, Rousseau and Vernet (2018, for multidimen-
sional mixtures) and in Moss and Rousseau (2024, for
hidden Markov models) by applying a preliminary ver-
sion of the proof of Theorem 16.

APPENDIX: PROOF OF LEMMA 13

We consider the following version of Stokes’ theo-
rem, where we use again the notation of Definition 8.
Lemma 13 follows from it by considering the set S =
{g ̸= 0} and the product φ = fg, which is nice as ab-
solute continuity in the classical sense is itself stable by
products (Titchmarsh, 1939, page 375, §12.11). By conti-
nuity of g, the set S is open and g vanishes at its bound-
ary, while f (because it is nice) is such that f( · , u−i) is
locally bounded for almost all u−i ∈D−i.

LEMMA 18. Let D ⊆ Rd be an open domain. Fix a
nice function φ : Θ→R and i ∈ {1, . . . , d} such that∫

D
|φ|dm<+∞ and

∫
D
|∂iφ|dm<+∞ ,

and such that φ(u) tends to 0 as u approaches any bound-
ary point of D with finite norm along the i–th canonical
direction. Consider an open subset S such that for almost
all u−i ∈D−i, one has φ(ui, u−i)→ 0 as ui approaches
a boundary point of S located in the interior of D(u−i).
Then, ∫

D∩S
∂iφdm= 0 .

PROOF. We introduce G = D ∩ S . By Fubini’s theo-
rem, it suffices to show that for almost all u−i ∈G−i,∫

G(u−i)
∂iφ(ui, u−i)dui = 0 .

Now almost all u−i ∈ D−i are such that the following
holds: as φ is nice on D, φ( · , u−i) is absolutely continu-
ous on the open domainsD(u−i) andG(u−i); by Fubini’s
theorem, ∫

D(u−i)

∣∣φ(ui, u−i)
∣∣dui <+∞

and
∫
D(u−i)

∣∣∂iφ(ui, u−i)
∣∣dui <+∞ ;

by the S boundary assumption, φ(ui, u−i)→ 0 as ui ap-
proaches a boundary point of S located in the interior of
D(u−i). We consider such a point u−i ∈G−i and mimic
the one-dimensional arguments located in the second part
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of Section 2.3.3. Namely, we writeG(u−i) as an (at most)
countable disjoint union of open intervals,

G(u−i) =
⊔
n⩾1

(
an(u−i), bn(u−i)

)
,

where an(u−i) ∈ R ∪ {−∞} and bn(u−i) ∈ R ∪ {+∞}.
By absolute continuity in the classical sense, for all n⩾ 1,
for all real numbers a > an(u−i) and b < bn(u−i),∫ b

a
∂iφ(ui, u−i)dui = φ(b, u−i)−φ(a,u−i) .

The boundary of G is included in union of the bound-
aries of D and S . The D and S boundary assumptions
on φ ensure φ(a,u−i) → 0 and φ(b, u−i) → 0 as a →
an(u−i) and b → bn(u−i), except maybe in the cases
where an(u−i) = −∞ or bn(u−i) = +∞. In the lat-
ter cases, we use that by integrability of φ( · , u−i) over
D(u−i), the liminf of this function must be null and let
a→ an(u−i) or b→ bn(u−i) in a careful way. In all cases,∫ bn(u−i)

an(u−i)
∂iφ(ui, u−i)dui = 0

and may sum the obtained equalities over n⩾ 1, by dom-
inated convergence, to get the equality claimed at the be-
ginning of this proof.
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