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Abstract. Hyper-Kähler manifolds have been studied in the past in many contexts, from an
arithmetic, algebraic, geometric point of view, and in applications to physics and dynamics.
The compact theory in dimension two, namely K3 surfaces, is well understood. The aim of this
note is to give an informal introduction to the theory of compact hyper-Kähler manifolds in
higher dimension, from a point of view of their classification; in particular, about the existence
of Lagrangian fibrations. We present some results in dimension four, obtained recently in
collaboration with Olivier Debarre, Daniel Huybrechts and Claire Voisin.

This note originated from the author’s lecture at the “Colloquio De Giorgi”, held at Scuola
Normale Superiore, Pisa, February 11, 2022.
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1. Introduction

Compact hyper-Kähler (HK) manifolds, often also called irreducible holomorphic sym-
plectic manifolds, can be thought of either as compact Riemannian manifolds (M, g) with
holonomy group Sp(n) or as compact Kähler manifolds X with a unique holomorphic sym-
plectic form. The passage between the two viewpoints is made possible by Yau’s celebrated
solution of the Calabi conjecture. Together with complex tori and Calabi–Yau varieties, HK
manifolds provide one of the three building blocks of all Ricci-flat Kähler manifolds, a class of
geometric objects that occupies a central place in differential and algebraic geometry as well
as in mathematical physics.

The history of compact HK manifolds is quite extraordinary. The theory in two com-
plex dimensions, that is of K3 surfaces, is one of the gems of algebraic geometry, with its
interplay between lattice theory and geometry in Weil’s program and in the global Torelli
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theorem [B1]. Naturally, mathematicians became curious about higher dimensions. The first
two series examples were discovered by Beauville [B2], Hilbert schemes of points on K3 sur-
faces and generalized Kummer varieties associated to abelian surfaces. After that, with the
work of Mukai [Mu1], it seemed that moduli spaces of sheaves on K3 surfaces would provide
more examples in abundance. However, while proving that they often are indeed hyperkähler,
Huybrechts [H1], O’Grady [O’G1], and Yoshioka [Y1] showed that they are topologically all
equivalent to one of Beauville’s series. Besides the two further sporadic families constructed
by O’Grady [O’G2, O’G3], no further examples have been found until this day. At this point,
HK manifolds seem, from several perspectives, richer and more interesting than abelian vari-
eties, but not as uncontrollable as Calabi–Yau varieties for which tens of thousands of different
topologies are known already in dimension three. The topological classification of HK manifolds
is one of the central open questions in the area. In comparison, the topological classification of
complex tori is trivial whereas for Calabi–Yau manifolds it seems unreasonable to expect any.

The goal of this note is to present the first steps towards the classification of HK fourfolds.
In [DHMV], we show a conjecture by O’Grady: if a HK manifold of dimension 4 has the same
cohomology ring as a Hilbert square of a K3 surface, then it is actually in the same deformation
class. This can be thought as the 4-dimensional analogue of Kodaira’s theorem [Ko] that all
K3 surfaces are deformation equivalent.

The proof, based on deep ideas by O’Grady in [O’G4], builds on all the theory devel-
oped for HK fourfolds in the past decades: Verbitsky’s global Torelli theorem [V, H3, M1],
Markman’s results on monodromy operators and prime exceptional divisors [M2], Salamon–
Guan topological constraints [S, G], results on the base of Lagrangian fibrations by Ou and
Huybrechts-Xu [O, HX], and birational geometry results by Fujino–Kawamata [F, K], Fukuda
[Fu], and Wierzba–Wisniewsky [W, WW]. It is hard to imagine to generalize this proof either
in dimension 6 or above, or to complete the classification of HK fourfolds, where other inputs
are needed.

The structure of this note is as follows. In Section 2, we will present K3 surfaces and
Kodaira’s theorem (Theorem 2.3). In Section 3, we discuss Lagrangian fibrations and the
main conjecture (Conjecture 3.4) regarding their existence for HK. Proving such conjecture in
dimension 4 is the new ingredient in the proof of O’Grady’s conjecture (the main theorem of
the paper, Theorem 4.2): the two statements are actually closely related to each other, and
we will prove both at the same time. The main theorem is explained in Section 4 and a rough
idea of the proof is in Section 5.

Acknowledgements. I would like to thank Olivier Debarre, Daniel Huybrechts and Claire
Voisin for the “Thursday discussions” out of which the paper [DHMV] was written, and Andrea
Malchiodi and Angelo Vistoli for the invitation to the “Colloquio De Giorgi”, held at Scuola
Normale Superiore, Pisa, where these results have been presented.

2. K3 surfaces

Let us denote by X a compact complex manifold, namely a compact manifold locally
homeomorphic to open subsets of Cm with holomorphic transition functions. For simplicity,
in this note we will consider projective manifolds, namely we will assume that X has a closed
embedding in the complex projective space PN ; by Chow’s theorem, this means that X is
defined by algebraic equations. Moreover, it carries a Kähler metric, by using the induced
Fubini–Study metric from PN .
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Definition 2.1 (Calabi, Hitchin). Say that X is irreducible holomorphic symplectic if

(i) X is simply connected;
(ii) there exists a unique holomorphic symplectic form η, up to multiplicative constants.

As common use in the literature, we will use the imprecise name compact hyper-Kähler
(HK); though important in the theory, in this note we will never explicitly use the actual
hyper-Kähler metric. Since X is holomorphic symplectic, its complex dimension is even: we
will denote it by 2n, n ≥ 1. HK manifolds in dimension 2 are called K3 surfaces. Basic
references for HK manifolds are [H2, D]; the literature on K3 surfaces is quite rich and we
mention the books [BB+, H4].

Example 2.2. Let S be a compact surface with a closed embedding in P3 as a hypersurface of
degree 4, a quartic surface. Namely, it is given as the 0-locus of a homogeneous polynomial f
of degree 4 in 4 variables x0, . . . , x3. Then:

(i) by Bott’s version of the Lefschetz hyperplane theorem, S is simply connected;
(ii) by the Poincaré residue theorem, the holomorphic 2-form

η := Res

(∑3
i=0 xidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dx3

f

)
is a symplectic form. Hence, every quartic surface in P3 is a K3 surface.

The first fundamental result in the theory of K3 surfaces is the following (see [Ko, Theo-
rem 13]), showing in particular, by Ehresmann’s lemma, that all K3 surfaces are diffeomorphic.

Theorem 2.3 (Kodaira). Every K3 surface is a smooth complex deformation of a non-singular
quartic surface, namely all K3 surfaces are in the same deformation class.

Explicitly, Kodaira’s theorem means that, for all K3 surface S, there exists a smooth
proper morphism S → D, from a smooth complex manifold S to a complex disk D, such
that S |0 = S and S |1 is a quartic surface as in Example 2.2. For a quartic surface, the family
S simply means to vary the coefficients in the defining polynomial f .

The proof of Kodaira’s theorem is based on two important points. The first one is
deformation theory: the deformation space of a K3 surface is smooth of the expected dimension
(equal to h1(X,TX); for K3 surfaces, it is 20-dimensional) and the local Torelli theorem holds.
One of the starting point for the theory of HK manifolds is that, by the Bogomolov–Tian–
Todorov theorem, this is true for all HK manifolds. The second point in the proof of Kodaira’s
theorem is to be able to recognize a quartic K3 surface numerically (and they are dense), namely
from the second singular cohomology group H2(S,Z) (together with its Hodge structure). For
K3 surfaces this can be done effectively by using the theory of linear systems (see [BB+, Exposé
VI]). In higher dimension, this is more complicate, since the theory of linear systems is not
yet so precise. O’Grady’s approach to show Theorem 4.2 below was indeed to try to recognize
numerically HK fourfolds of degree 2. Our approach in [DHMV] was instead to use Lagrangian
fibrations as intermediate step; in some sense this was used as well in Kodaira’s original proof,
by using elliptic K3 surfaces.

The basic example of elliptic K3 surface is the following.

Example 2.4. Let S ⊂ P3 be a quartic K3 surface as in Example 2.2. We can deform S, namely
vary the coefficients of the defining polynomial f , in such a way that S contains a line `. For
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example, we can take the polynomial

f = x40 − x41 + x42 − x43,

the line being x0 − x1 = x2 − x3 = 0.

We can perform the following elementary projective geometry construction. We project
S from ` to another line `′ such that ` ∩ `′ = ∅. Explicitly, this means for a point x ∈ S r `,
we consider the plane generated by ` and x and denote by π(x) the unique intersection point
of this plane with `′. This gives a morphism π : S r `→ `′ ' P1 and it is easy to see that this
extends to an actual morphism

π : S −→ P1.

The fiber of π over a point x′ ∈ `′ is given by the intersection of the plane generated by ` and
x′ with the quartic surface S. This gives a planar quartic curve containing the line `, namely
the fiber is nothing but the residual planar cubic curve. For a generic x′, this is a smooth
cubic curve, namely an elliptic curve, topologically a compact complex 1-dimensional torus.
By dimension reasons the symplectic form η on S restricts trivially on all fibers: the morphism
π is a Lagrangian fibration.

Every K3 surface can be deformed to an elliptic one as in Example 2.4; moreover, these
can be recognized numerically from the second cohomology group (and its Hodge structure).
The first question in the theory of HK manifolds is if this generalizes to higher dimensions: can
we always deform a HK manifold to a fibration in complex Lagrangian tori? We will discuss
this in Section 3, where we will present an explicit version for this question, Conjecture 3.4. The
next question is then to understand how this helps in the classification problem for HK: this
can be seen in the fourfold case, under certain assumptions. We will sketch this in Section 5.

3. Lagrangian fibrations

Let X be a projective HK manifold, dim(X) = 2n; let us denote by η the holomorphic
symplectic form.

Definition 3.1. Let π : X → B morphism. We say that π is a

(a) fibration, if
• B normal projective variety
• π is surjective with connected fibers
• 0 < dim(B) < 2n.

(b) Lagrangian fibration if π is a fibration and
• η|π−1(b) ≡ 0, for all π−1(b) smooth fiber
• dim(B) = n (or equivalently, dim(π−1(b)) = n for b ∈ B general point).

Note that, by the Liouville–Arnold theorem, the smooth fibers of a Lagrangian fibration
are abelian varieties of dimension n, namely complex compact tori which are projective as
well. The basic fact about HK manifolds is that they are quite rigid objects with respect to
morphisms, as one can see from the following result [Ma1].

Theorem 3.2 (Matsushita). Let π : X → B be a fibration. Then π is a Lagrangian fibration
with equidimensional fibers.
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In the definition of Lagrangian fibration, we allow B to be singular: a general expectation
is that B is actually always a smooth projective manifold. The following result gives a quite
striking consequence for this expectation [Hw, O, HX].

Theorem 3.3. Let π : X → B be a Lagrangian fibration.

(a) (Hwang) If B is smooth, then B ' Pn.
(b) (Ou, Huybrechts–Xu) If dim(X) = 4, then B is always smooth (and thus B ' P2).

We can now state the main conjecture about existence of Lagrangian fibrations on HK
manifolds. To understand the statement, let us recall that on the singular cohomology group
H2(X,Z) we have the intersection pairing

(1) α ∈ H2(X,Z) 7→
∫
X

α2n ∈ Z.

If π : X → B is a fibration, then since B is projective, we have a non-zero class αB ∈ H2(B,Z)
representing an ample divisor1 on B. Let us denote by l := π∗αB ∈ H2(X,Z). Then we have
that:

• l is “algebraic”, namely there exists a line bundle L on X such that c1(L) = l,
•
∫
X
l2n = 0,

• l is nef, namely for all closed complex curve C ↪→ X,
∫
C
l ≥ 0.

The main conjecture, giving a “numerical characterization” for the existence of a Lagrangian
fibration, says that these conditions are also necessary. Recall that an element in a finite free
abelian group is primitive if it is non-zero and the quotient by the subgroup generated by that
element is also free.

Conjecture 3.4 (SYZ conjecture for HK manifolds, strong version). Let X be a HK manifold,
dim(X) = 2n. Let L be a line bundle on X and let l := c1(L). Assume that:

•
∫
X
l2n = 0,

• l is nef and primitive.

Then there exists a Lagrangian fibration π : X → Pn such that l = π∗h, where h denotes the
class of a hyperplane.

There are weaker forms for this conjecture, by allowing the base B of the fibration to be
singular, as in Definition 3.1, and by simply asking that there is a constant k ≥ 1 such that
kl = π∗αB, for the class αB of an ample divisor on B. In this weaker form, Conjecture 3.4 is
the HK version of Kawamata’s famous abundance conjecture.

The main evidence for the stronger version of the conjecture is that it holds on all known
deformation classes of HK manifolds [Ma2, M3, BM, Y2, MR, MO]:

Theorem 3.5. Let X be a HK manifold of either K3[n], generalized Kummer, OG10, or OG6
deformation type. Then Conjecture 3.4 holds for X.

This is the key example of Theorem 3.5 for K3[2] deformation type.

Example 3.6 (Fujiki, Beauville, Mukai). Let S → P2 be a 2-1 cover ramified over a smooth
planar curve of degree 6. Explicitly, given f6 a polynomial of degree 6 in two variables2, S is

1Namely the class of a hyperplane section.
2In this example, we will always assume that the polynomial f6 is chosen sufficiently general.
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given as the smooth minimal compactification of the complex surface in the affine 3-dimensional
space C3 (with coordinates x, y, z) given by the equation:

z2 = f6(x, y).

It is not too difficult to see that S is a K3 surface.

We now consider the Hilbert square Hilb2(S) of S.3 Intuitively, this parametrizes pairs of
unordered points on S: when they collide, we want to remember further the direction. More
precisely, we consider first the product S × S. This is a smooth projective manifold, simply
connected, but with two symplectic forms. To fix this, we take the quotient by the involution
switching the two factors. The resulting space Sym2(S) has now a unique symplectic form,
but it is a singular variety. The singular locus is the diagonal, where locally the space looks
like C2 ×Q, where Q is the quadric cone z2 = xy, singular at the vertex 0. We then blow-up
the singular locus C2 × {0}, and obtain a new space Hilb2(S). Locally, this corresponds to
the following geometric construction: we take the product C2× T ∗P1 of the cotangent bundle
T ∗P1 of P1 and we contract the 0-section C2 ×P1 to a point

C2 × T ∗P1 −→ C2 ×Q.
Intuitively, Hilb2(S) has a unique symplectic form, since we did not modify it outside the
diagonal and on the diagonal we have replaced it with a cotangent bundle, which always
carries the Liouville symplectic form. Moreover this operation does not change the topology.
We deduce, Hilb2(S) becomes a smooth projective HK manifold.4

Given a general point in Hilb2(S), namely two general points in S, we can associate to it
the unique line passing through their image in P2 (if we choose the points in S general, their
images are distinct). This gives a map

π1 : Hilb2(S) 99K P̌2 ' P2.

This map is not defined everywhere: there is a copy of P2 in P ⊂ Hilb2(S) given by the
preimage of a point in P2 by the 2-1 cover. Locally, Hilb2(S) near P looks like T ∗P2. We
can cut this locus and replace it with the cotangent T ∗P̌2 of the dual projective plane. This
operation gives another projective HK manifold X1, which is a deformation5 of Hilb2(S) with
an actual morphism

π1 : X1 → P2.

This is a Lagrangian fibration, by Matsushita’s theorem. Its general fibers can be explicitly
described: by the Abel–Jacobi theorem, they can be identified naturally with the Jacobian
Jac(C) of the hyperelliptic curve C in S given as preminage of a line in P2. Hence, X1 is the
(compactified) relative Jacobian over the linear system of curves which are pre-images of lines.

Finally, we can twist this construction, by considering line bundles on C of degree 1; these
are parametrized by the abelian surface Pic1(C), which is still isomorphic to the Jacobian, but
varying the curve it gives globally a different HK manifold X2, which is a torsor over X1, still
deformation equivalent to the Hilbert square and with a Lagrangian fibration

π2 : X2 → P2.

3This sketch of construction works for any K3 surface and any number of points.
4Note that, by Kodaira’s theorem, all Hilbert schemes of K3 surfaces are deformation equivalent: this

explains why we talk about K3[n] deformation type.
5This can be checked directly in this example; it is a general theorem of Huybrechts [H1] that this is actually

always the case for birational maps of HK manifolds.
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This last example has an advantage. Namely, the Θ-divisors on the Jacobian do patch together
to define a global unique Θ-divisor E on X2. If we let, as above, l := π∗2h and m := c1(E ⊗L),
we have the following relations:

(2)

∫
X

l4 =

∫
X

m4 = 0 and
1

2

∫
X

l2m2 = 1.

This example is the starting point of our main result, which we will describe in the next section.

4. O’Grady’s conjecture

With the aim at starting classifying HK manifolds in lower dimension, with a view to
Kodaira’s theorem for K3 surfaces, O’Grady [O’G4] conjectured the following.

Conjecture 4.1 (O’Grady). Let X be a HK fourfold. Assume that X has the same cohomology
ring6 as the Hilbert square of a K3 surface. Then X is deformation equivalent to the Hilbert
square of a K3 surface.

In [DHMV] we prove a slightly more general version of O’Grady’s conjecture, motivated
by the situation in Example 3.6, equation (2).

Theorem 4.2 (Debarre–Huybrechts–Macr̀ı–Voisin). Let X be a HK fourfold. Assume that
there exist two classes l,m ∈ H2(X,Z) such that∫

X

l4 =

∫
X

m4 = 0 and
1

2

∫
X

l2m2 = 1.

Then X is deformation equivalent to the Hilbert square of a K3 surface.

Theorem 4.2 gives a cohomological characterization of HK manifolds of K3[2] deformation
type. As mentioned, there are other known examples of HK fourfolds: generalized Kummer
fourfolds. In this case, their cohomology still has two isotropic classes l and m such that

1

2

∫
X

l2m2 = 3.

The next question, towards classification of smooth HK fourfolds, is to understand if a similar
result as Theorem 4.2 holds in such a situation and then if these cover all possible cases.

5. Ideas from the proof

In this section we give a few ideas from the proof of Theorem 4.2. Let X be a HK fourfold
and let l,m ∈ H2(X,Z) satisfying the assumptions in the theorem (equation (2)). The first
step is to use deformation theory. We can deform X in such a way that the two classes l and
m are both algebraic and they generate the R-vector space of all algebraic classes. We can
further assume that l is nef and that m is in the boundary of the positive cone. Let us denote
by L and M the corresponding line bundles on X.

The second step is to use results by Salamon and Guan [S, G] on constraints on Betti
numbers of HK fourfolds to be able to compute the dimension of the space of sections of tensor
products L⊗a ⊗M⊗b, for a, b > 0. The key result, an algebraic consequence of our topological
assumptions, is that they do behave as in the Hilbert square case.

6With respect to the intersection product (1).
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The third step of the proof is to establish Conjecture 3.4, under our assumptions. Note
that, by Theorem 3.5, HK manifolds deformation equivalent to Hilbert schemes on K3 surfaces
do satisfy the SYZ conjecture. In our approach, the SYZ conjecture is a step towards the main
theorem, the precise logical relationships being as follows. A study of the effective cone of X
shows that there are two cases. The first case is when L and M are both nef and thus L⊗M
is ample. In this case,

• either, after possibly permuting L and M , the SYZ conjecture holds; this uses results
by Fujino–Kawamata [F, K] and Fukuda [Fu]. But this is impossible, since a general
argument shows that L and M cannot be both nef if either of the two induces a
Lagrangian fibration in the strongest form of Conjecture 3.4.
• or any divisor in the linear system |L⊗M | is irreducible and the image of the rational

map ϕL⊗M : X 99K P5 is rationally connected. This is the hardest part of the proof,
which uses the algebraic structure of the space of sections of the line bundles L ⊗M ,
L⊗2 ⊗M , and L⊗3 ⊗M⊗2, which we can compute thanks to Step 2. A fundamental
theorem by Voisin [Vo], extending a previous result by O’Grady [O’G4] shows that this
situation cannot happen.

So this case in fact does not arise.

The second case is when X admits a divisorial contraction and M is not nef. The
existence of the divisorial contraction follows by results of Wierzba–Wísniewski [WW] and
Markman [M2]. We then analyse the divisorial contraction, by using [W]. This allows us to
prove first the SYZ conjecture for L and to use this to have an explicit description of the
exceptional divisor of the divisorial contraction: by using a result by Mukai [Mu2], this is the
same as the global Θ divisor E = M ⊗ L∨ in the last case X2 treated in Example 3.6. Then,
both X and X2 are birational to the relative Albanese variety, and thus they are isomorphic,
concluding the proof of Theorem 4.2.
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