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In this talk, I reported on the study of fixed loci of antisymplectic involutions on
projective hyper-Kähler manifolds, induced by an ample class of square 2 in the
Beauville-Bogomolov-Fujiki lattice. I presented results on how to determine the
number of connected components of the fixed loci and how to study their geometry
in lower dimensions.

Let X be a projective hyper-Kähler (HK) manifold, namely X is simply con-
nected and H0(X,Ω2

X) = C · η, where η is a non-degenerate symplectic form.

Definition 1. Let τ : X
∼=−! X be an involution, τ2 = id. We say that τ is

antisymplectic if τ∗η = −η.

An immediate observation is that if τ is an antisymplectic involution, then its
fixed locus Fix(τ) ⊂ X is a closed lagrangian submanifold.

The goal is to understand the geometry of Fix(τ); see [1, 14]. The motiva-
tion comes from several viewpoint in the theory of HK manifolds, including un-
derstanding the correspondence with Fano manifolds (currently only observed in
special examples [2, 4, 5, 6]) and in the existence of covering families of lagrangian
submanifolds and applications to the study of Chow groups [16]. The rich geom-
etry of these fixed loci can be already observed in the lower dimensional case; for
example, EPW sextics [15] and cubic fourfolds [12].

Notice also that for symplectic involutions, namely if τ∗η = η, the fixed loci are
well understood for two of the main families of examples of HK manifolds [11]:
their connected components are symplectic submanifolds in that case.

Let (X,λ) be a polarized hyper-Kähler manifold of dimension 2n. We assume

that X is of K3[n]-type, namely it is deformation equivalent to the Hilbert scheme
of n points on a K3 surface.

Let qX denote the Beauville-Bogomolov-Fujiki quadratic form on H2(X;Z).
We assume that the polarization λ satisfies qX(λ) = 2. If we denote by div(λ) the
positive generator of the ideal {q(λ,w) : w ∈ H2(X;Z)} ⊂ Z, the divisibility of
λ, then we must have div(λ) ∈ {1, 2}; moreover, if div(λ) = 2, then 4 |n.

By the Global Torelli Theorem [17, 13, 10], to such polarization λ we can
associate an antisymplectic involution

τλ : X
∼=−−! X

which acts on H2(X;Z) as reflection at λ:

τλ,∗(x) = −x+ qX(λ, x), x ∈ H2(X;Z)).
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Equivalently, we are looking at involutions τ for which the invariant part of the
action on H2(X;Z) is of rank 1, generated by an ample class of square 2.

The main result in [8] determines the number of connected components of
Fix(τλ):

Theorem 2. The fixed locus Fix(τλ) has exactly div(λ) connected components.

We can then start looking at the geometry of such fixed loci in lower dimension.
We start with the divisibility 1 case; by Theorem 2 the fixed locus F := Fix(τλ) is
connected in this case. The case n = 2 is now well-known: the general (X,λ) in the
moduli space is a double EPW sextic, with the double cover involution coinciding
with the involution τλ. Then F is a surface of general type, whose invariants are all
known; see [7]. In the cases n = 3 and n = 4 we do expect a similar behavior: the
fixed locus F should be of general-type with an explicit formula for its canonical
bundle in terms of λ|F .

In the divisibility 2 case, again by Theorem 2 the fixed locus Fix(τλ) has ex-
actly two connected components. The first case n = 4 is already not completely
clear: all (X,λ) in the moduli spaces are isomorphic to the Lehn-Lehn-Sorger-van
Straten HK 8-fold associated to a cubic fourfold (not containing a plane), with
the involution coinciding with the involution coming from realizing X as moduli
space of equivalence classes of twisted cubic curves in the cubic Y ; see [12] and [3,
Appendix B]. One component to the fixed locus is then isomorphic to the cubic
fourfold Y itself. The second component is the closure of the locus parameteriz-
ing twisted cubics contained in a cubic surface with four A1-singularities, but the
global geometry of this component is still unknown (although we suspect it being
of general type).

The main result in [9] deals with the next case n = 8.

Theorem 3. Let n = 8 and let (X,λ) be a polarized HK manifold of K3[8]-type
such that qX(λ) = 2 and div(λ) = 2. Then one connected component Y of Fix(τλ)
is a prime Fano manifold of dimension 8 and index 3.

The odd cohomology of Y vanishes and its Hodge diamond is

H8(Y ;C) : 1 22 253 22 1
H6(Y ;C) : 1 22 1
H4(Y ;C) : 1 22 1
H2(Y ;C) : 1
H0(Y ;C) : 1

Some of the arguments in our proofs work for any n. In divisibility 2, we can
always isolate a special component Y , by using the choice of a linearization of the
action of the involution on the line bundle OX(λ). Theorem 3 would then hold in
any dimension, if we would be able to establish normality of a certain degeneration
of the fixed component Y .
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