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INTRODUCTORY NOTES

ON RICHARD THOMPSON' S GROUPS

by J. W. Cannon, W. J. Floyd, and W. R. Parry

The groups F, T, and V were defined by Richard Thompson in 1965.

McKenzie and Thompson used them in [McT] to construct finitely-presented

groups with unsolvable word problems. In unpublished notes [Tl], Thompson

proved that T and V are finitely-presented, infinité simple groups. Thompson
used V in [T2] in his proof that a finitely generated group has a solvable

word problem if and only if it can be embedded into a finitely generated

simple subgroup of a finitely presented group.

The group F was rediscovered by homotopy theorists in connection with

work on homotopy idempotents (see [Dyl], [Dy2], and [FrH]). F has a

universal conjugacy idempotent, and is an infinitely iterated HNN extension

([FrH], [BroG]). Brown and Geoghegan [BroG] proved that F is FP^ , thereby

giving the first example of a torsion-free infinite-dimensional FPqo group. They
also proved that T is of type FP^, H*(F,ZF) = 0, and //*(J,ZT) = 0. It

follows from [Mi] that F is simply connected at infinity, and hence F has no

homotopy at infinity. Brin and Squier [BriS] proved that F does not contain

a free group of rank greater than one and F does not satisfy any laws (thèse

are also proved in [FrH]).

Higman [H] generalized V to an infinité family of finitely presented simple

groups G, v - ; Brown [Brol] extended this to infinité families F
lhr C T

?hr C V
n , r9

and proved that each of the groups T is finitely presented, is of type FPqo
,

and has H*(r,ZT) = 0. Brown also obtained simplicity results; Scott [Se]

discusses thèse groups from that point of view. Stein [St] generalized thèse

families further, and obtained homology results and simplicity results.

This work was supported in part by NSF research grants and by The Geometry Center,
University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc.



This paper is largely expository, and much of the material in it is standard.

Thèse notes originated from our interest in the question of whether or not

F is amenable. They were expanded in order to make available Thompson's

unpublished proofs (from [Tl]) of the simplicity of T and V and Thurston's

interprétations of F and T as the groups of orientation-preserving, piecewise

intégral projective homeomorphisms of the unit interval and the circle.

In § 1 we deflne F as a group of piecewise linear homeomorphisms of

the unit interval [o,l], and then give some examples of éléments of F. In

§2 we represent éléments of F as tree diagrams, and give a normal form for

éléments of F. Two standard présentations for F are given in §3. In §4 we

prove several theorems about F ; thèse are partly motivated by the question
of whether F is an amenable group. In §5 we define T and give Thompson's

proof that T is simple. In §6 we deflne V and give Thompson's proof that V

is simple. In §7 we give W. Thurston's interprétations of F and T in terms

of piecewise intégral projective homeomorphisms.
The group that we are denoting F was originally denoted F in [Tl] and

*P' in [McT], and was denoted F in [T2]. It was denoted F in [BroG] in

1984, and it was also denoted F in [Bri], [BriS], [Brol], [Bro3], [Fo], [FrH],

[GhS], [Gre], [GreS], [GuS], and [St]. It is denoted G in [BieS].

The group that we are denoting T was originally denoted C in [Tl]. It was

denoted T in [Brol] in 1987 and was denoted T in [Bri] and [St]. However,

it was denoted G in [GhS] and [Gre]. It is denoted S in [BieS].

The group that we are denoting V was originally denoted V in [Tl] and

<£' in [McT], and was denoted Ft^l) in [T2]. It was denoted GG
2 ,\ in [H] in

1974, and was denoted G in [Brol], [Bro2], and [St].

We hâve not included hère ail of the known results about thèse groups,
but we hâve included in the bibliography those références of which we are

aware.

We thank the référée for supplying important références of which we were

unaware and helping to clarify the exposition. We also thank Ross Geoghegan

for helpful comments.

§1. Introduction to F

Let F be the set of piecewise linear homeomorphisms from the closed unit

interval [o, l] to itself that are differentiable except at finitely many dyadic

rational numbers and such that on intervais of differentiability the derivatives

are powers of 2. Since derivatives are positive where they exist, éléments of F



préserve orientation. Let /G F, and let o=ao <x\ <x2 < ••• < .v,, - 1 be

the points at which / is not differentiable. Then since /(0) = 0, /(.v) = ci\x

for x 0 <x < jci, where a x
is a power of 2. Likewise, since f(x\) is a

dyadic rational number, /(x) = a 2 x +b2 for .n <.v< a 2 ,
where a2a 2

is

a power of 2 and fc
2 is a dyadic rational number. It follows inductively

that

and /= 1, . . . ,/z, where a {
is a power of 2 and /?, is a dyadic rational

number. It easily follows that f~
l

G F and that / maps the set of dyadic

rational numbers bijectively to itself. From this it is easy to see that F is

closed under composition of functions. Thus F is a subgroup of the group

of ail homeomorphisms from [0. 1] to [0. I]. This group F is Thompson's

group F.

Example 1.1. Two functions in F are the functions A and B derined

below.

A useful notation for functions /in F will be described next. Construct

a rectangle with a top, which is viewed as the domain of /, and a bottom,

which is viewed as the range of /. For every point x on the top where / is

not differentiable, construct a line segment from x to /(.v) on the bottom. Call

the resuit the rectangle diagram of /. By juxtaposing the rectangle diagrams
of a pair of functions, it is easy to compute the rectangle diagram of their

composition. We learned about rectangle diagrams from W. Thurston in 1975;

they also appear in [BieS].

EXAMPLE 1.2. Figure 1 gives some examples of functions in F and their

rectangle diagrams.

Now define functions XO,X
0 ,X u X 2 ,... in F so that X o = A and

X
n = A- ( "- l) BA n - 1

for n > 1. From Example 1.2 it is easy to see that

the rectangle diagram of X
n

is as in Figure 2.



Figure 1

The rectangle diagrams of some éléments of F

Figure 2

The rectangle diagram of X n

§2. Tree diagrams

The notion of tree diagram is developed in this section. Tree diagrams

are useful for describing functions in F; we first encountered them in

[Brol].
Define an ordered rooted binary tree to be a tree S such that i) S has a

root vo, ii) if S consists of more than vo, then vq has valence 2, and iii)
if v is a vertex in S with valence greater than 1, then there are exactly two

edges e
V: i, e v^ which contain v and are not contained in the géodésie from

vq to v. The edge e VjL is called a left edge of S, and e
v^ R is called a right

edge of S
. Vertices with valence 0 (in case of the trivial tree) or 1 in S will

be called leaves of S. There is a canonical left-to-right linear ordering on the

leaves of S
. The right side of S is the maximal arc of right edges in S which

begins at the root of S. The left side of S is defined analogously.

An isomorphism of ordered rooted binary trees is an isomorphism of rooted

trees which takes left edges to left edges and right edges to right edges. An

ordered rooted binary subtree S' of an ordered rooted binary tree S is an



ordered rooted binary tree which is a subtree of S whose left edges are left

edges of S, whose right edges are right edges of S, but whose root need not

be the root of S.

Example 2.1. The right side of the ordered rooted binary tree in Figure 3

is highlighted. Its leaves are labeled 0, ... ,5 in order.

Figure 3

An ordered rooted binary tree with 6 leaves

Deflne a standard dyadic interval in [o, l] to be an interval of the form

[fr 5 »
where a, n are nonnegative integers with a < 2n2

n
— 1

.

There is a tree of standard dyadic intervais, T, which is defined as follows.

The vertices of T are the standard dyadic intervais in [o,l]. An edge of T

is a pair (/, /) of standard dyadic intervais / and J such that either / is the

left half of J, in which case (/,/) is a left edge, or / is the right half of J
,

in which case (/,/) is a right edge. It is easy to see that T is an ordered

rooted binary tree. The tree of standard dyadic intervais is shown in Figure 4.

Figure 4

The tree T of standard dyadic intervais

Define a T-treeT -tree to be a finite ordered rooted binary subtree of T with
root [o,l]. Call the T-tree with just one vertex the trivial T-tree. For every
nonnegative integer n, let % be the T-tree with n+ 1 leaves whose right
side has length n. % is shown in Figure 5.



Figure 5

The T-tree T3T
3

Define a caret to be an ordered rooted binary subtree of T with exactly two

edges. Every caret has the form of the rooted tree in Figure 6.

Figure 6

A caret

A partition o=xo <x\<x2 <•••<xn=lof [o, l] détermines intervais

[jCi_i,jc/] for /= 1, ... ,/î which are called the intervais of the partition. A

partition of [o,l] is called a standard dyadic partition if and only if the

intervais of the partition are standard dyadic intervais.

It is easy to see that the leaves of a T-tree are the intervais of a standard

dyadic partition. Conversely, the intervais of a standard dyadic partition
détermine finitely many vertices of T, and it is easy to see that thèse vertices

are the leaves of their convex hull, which is a T-tree. Thus there is a canonical

bijection between standard dyadic partitions and T-trees.

LEMMA 2.2. Let fGF. Then there exists a standard dyadic partition
0 = xo < x\ < X2 < •-- < x n = 1 such that f is linear on every interval of

the partition and 0= f(xçy) < f(x\) </fe) <••• <f(x n
) —1 is a standard

dyadic partition.

Proof Choose a partition P of [o, l] whose partition points are

dyadic rational numbers such that / is linear on every interval of P. Let

[a, b] be an interval of P. Suppose that the derivative of / on [a,b] is

2~ k
. Let mbean integer such that m>o,m+k>o, 2 m

a GZ,
2 m b GZ, 2 m+k f{a) GZ, and 22 m + k

f(b) GZ. Then a< a+± <a+£
< a + < ••• < b partitions [a, b] into standard dyadic intervais, and

f{a) < f(a) + 25PPF < fifl) + < fia) + < • • • < f(b) partitions

[f(a),f(b)] into standard dyadic intervais. This easily proves Lemma 2.2.



Formally, a tree diagram is an ordered pair (R,S) of T-trees such that R

and S hâve the same number of leaves. This is rendered diagrammatically as

follows :

The tree R is called the domain tree of the diagram, and S is called the

range tree of the diagram.

Suppose given / G F
. Lemma 2.2 shows that there exist standard dyadic

partitions P and Q such that / is linear on the intervais of P and maps them

to the intervais of Q. To / is associated the tree diagram (/?,5), where R is

the T-tree corresponding to P and S is the T-tree corresponding to Q.

Because P and Q are not unique, there are many tree diagrams associated

to /. Given one tree diagram (R,S) for /, another can be constructed by

adjoining carets to R and Sas follows. Let Ibe the n
ih leaf of R for some

positive integer n, and let /be the n
th leaf of S. Let I x ,

I2I
2 be the leaves

in order of the caret C with root I, and let 7i ,
/? be the leaves in order of

the caret D with root /. Because / is linear on I and /(/) = J, it follows

that /(/i) =7i and /(/ 2 ) = 72.7
2 . Thus (R',S f

) is a tree diagram for /, where

R' =RUC and S' = SUD.
In the other direction, if there exists a positive integer n such that the

n
lh and (/i + l) th leaves of R, respectively S, are the vertices of a caret C,

respectively Z), then deleting ail of C and D but the roots from R and S

leads to a new tree diagram for /. If there do not exist such carets C, D in

R, S, then the tree diagram (R.S) is said to be reduced.

In this paragraph it will be shown that there is exactly one reduced tree

diagram for /. Suppose that (JR,S) is a reduced tree diagram for /. It is easy

to see that if I is a standard dyadic interval which is either a leaf of R or not

in R
,

then /(/) is a standard dyadic interval and / is linear on I . Conversely,
if / is a standard dyadic interval such that /(/) is a standard dyadic interval
and / is linear on I, then I is either a leaf of R or not in R because (R,S)
is reduced. Thus R is the unique T-tree such that a standard dyadic interval
/ is either a leaf of R or not in R if and only if /(I) is a standard dyadic
interval and / is linear on /. This gives uniqueness of reduced tree diagrams.

Furthermore, if (R,S) is a tree diagram, then it is clear that there exists

/ G F such that / is linear on every leaf of R and / maps the leaves of R

to the leaves of S.

Thus there is a canonical bijection between F and the set of reduced tree

diagrams.



Example 2.3. Figure 7 shows the reduced tree diagrams for A and B.

Figure 7

The reduced tree diagrams for A and B

From Figure 2 it is not difficult to see that, for n > 0, the reduced tree

diagram for X
n

is the tree diagram in Figure 8.

Figure 8

The reduced tree diagram for X n

It is easy to see that if (Q.R) is a tree diagram for a fonction / in F and

(R.S) is a tree diagram for a function g in F, then (Q.S) is a tree diagram
for gf.

The following définition prépares for Theorem 2.5, which makes the

correspondence between fonctions in F and tree diagrams more précise. Define

the exponents of a T-tree S as follows. Let 10,...,I

0 ,...,I n
be the leaves of S

in order. For every integer k with 0 < k< n let a k be the length of the

maximal arc of left edges in S which begins at I k and which does not reach

the right side of S. Then a k is the k th
exportent of S.

Example 2.4. Let Sbe the T-tree shown in Figure 9.

The leaves of S are labeled 0, . . . ,

9 in order, and the exponents of S in

order are 2, 1, 0, 0, 1, 2, 0, 0, 0, 0.



Figure 9

The T-tree S

THEOREM 2.5. Let R, Sbe 7 -trees with n+\ leaves for some nonnegative

integer n. Let aç,,... ,a n
be the exponents of R, and let Z?o, ••• ->b n

be

the exponents of S. Then the function in F with tree diagram (R, S) is

X
b

JX\ x

X%- -- -X^X- a » •- -X- a2 X- ai X- a \ The tree diagram (R,S) is reduced

if and only if i) if the last two leaves of R lie in a caret, then the last two

leaves of S do not lie in a caret and ii) for every integer k with 0 < k < n,

if a k >0 and b k >0 then either a k+ \ >oor b k+ \ >0.

Proof To prove the fîrst statement of the theorem, by composing
functions it suffices to prove that the function with tree diagram (R,Tn

)

ic Y~ a " y-û2 V-ûl y-ûOIS A
n

-A2A
2 A 1

AQA
Q

The proof of this will proceed by induction on a = Y^=o a i- a = 0,

then R= Tn ,
and the resuit is clear. Now suppose that a> 0 and that the

resuit is true for smaller values of a. Let m be the smallest index such that

a m >0. Then there are ordered rooted binary sub trees R\ , R2, R3 of R such

that R has the form of the tree at the left of Figure 10.

Figure 10

The T -trees R and R'

Let R' be the T-tree shown at the right of Figure 10, where R[ ,
R'

2 ,
R'

3

are isomorphic with R
x ,

R 2 ,
R3 as ordered rooted binary trees. According

to Example 2.3, the function with tree diagram (/?,/?') is X~ l

. If a'
0 , . . . ,a'

n

are the exponents of R
f

,
then a'

m =am -1 and a'
k =ak if k m. Thus



the induction hypothesis applies to R f

,
and so the function with tree diagram

(R' \Tn
) is XX

n

a
" - •X^^-X^^Xq" 0

. Again by composing fonctions, it follows
that the function with tree diagram (R,Tn

) is X~ a * •• -X~ ai X~ ax X~ a \ as

desired.

The second statement of the theorem is now easy to prove.
This proves Theorem 2.5.

COROLLARY 2.6. Thompson's group F is generated by A and B.

COROLLARY-DEFINITION 2.7. Every nontrivial élément of F can be

expressed in unique normal form

where n^ao,... ,a n ,b§, . . . ,b n are nonnegative integers such that i) exactly

one of a n and b
n

is nonzero and ii) if a^ >0 and bk >0 for some integer
k with 0 < k < n, then a^+i > 0 or b^+i > 0. Furthermore, every such

normal form function in F is nontrivial.

The fonctions in F of the form X
b

Jx\ x X% • -XX b

n
» with b k > 0 for

k — 0, . . . ,n will be called positive. The positive éléments of F are exactly
those with tree diagrams having domain tree T

n for some nonnegative integer

n. Inverses of positive éléments will be called négative.

LEMMA 2.8. The set of positive éléments of F is closed under multipli
cation.

Proof Let / and g be positive éléments of F
. Let (Tm ,R), respectively

(Tn ,S), be tree diagrams for /, respectively g. If the right side of S has

length k, then it is easy to see that fg has a tree diagram with domain tree

• Thus fg is positive. This proves Lemma 2.8.

Fordham [Fo] gives a linear-time algorithm that takes as input the reduced

tree diagram representing an élément of Thompson's group F and gives as

output the minimal length of a word in generators A and B representing
that élément. The algorithm can be modifled to actually construct one, or ail,

minimal représentatives. Fordham assigns a type to each caret of the tree pair;
the minimal length is a simple function of the type séquences of the two trees.



§3. Presentations for F

Two présentations for F will be given in this section.

Now two groups F\ and F2F
2 will be defined by generators and relations.

The generators A,B,X O ,X u X 2 , . . . will be referred to as formai symbols, as

opposed to the fonctions defined above. Given éléments x, y in a group,

[x,y] =xyx~
l

y-
1

.

THEOREM 3.1. There exists a group isomorphism from F\ to F2F
2 which

maps A to Xq and B to X\.

Proof. There is a group homomorphism from the free group generated

by the formai symbols A and B to F2F
2 such that A maps to Xo and B

maps to X\ . This homomorphism is surjective because X
n = Xq~ X\Xq~

1

for n > 2. To see that the defining relations of F\ are in the kernel of this

homomorphism, note that

hence

hence

Thus to complète the proof of Theorem 3.1 it suffices to prove that there

exists a group homomorphism from F2F
2 to F\ which maps X o to A and X\ to

B. To prove this it in turn suffices, after setting Y o —A and Y
n — A~ {nn ~ Y) BA nn ~ x

for n> 1
,

to prove that

(3.2)

A closely related statement is that

(3.3)

Lines (3.2) and (3.3) will be proved in this paragraph. To see that line
(3.3) is true for m = 3 note that



The same argument gives line (3.3) for m = 4. The following équations show

that line (3.2) is true if line (3.3) is true for m = n — k + 2.

Thus line (3.2) is true for every positive integer n and k=n—l. In particular,

Y^
x

YaJï — Y5. Because line (3.3) is true for m = 3 and m — 4, it follows
that line (3.3) is true for m = 5. An obvious induction argument now gives

line (3.3) for every m > 3. This proves lines (3.2) and (3.3).

The proof of Theorem 3.1 is now complète.

THEOREM 3.4. There exist group isomorphisms from F\ and F \ to

F which map the formai symbols A,B i X0,X\,X2, . . . to the corresponding

functions in F.

Proof. Example 1.2 shows that the interior of the support of the function

AB~ l in F is disjoint from the supports of the functions A~ I
BA, A~ 2 BA 2 in

F
,

and so the functions A
,

B in F satisfy the defining relations of F\ . Thus

there exists a group homomorphism from F\ to F which map s the formai

symbols A, B to the corresponding functions in F
. Corollary 2.6 shows that

this group homomorphism is surjective. Theorem 3.1 shows that this surjective

group homomorphism induces a surjective group homomorphism from F \

to F which maps the formai symbols Xo,X u X 2 , . . . to the corresponding
functions in F. To prove Theorem 3.4 it suffices to prove that this latter

group homomorphism is injective.
It will be proved that this latter group homomorphism is injective in this

paragraph. The defining relations of F2F
2 imply that

It follows that every nontrivial élément x of F2 can be expressed as a positive
élément times a négative élément as in Corollary-Definition 2.7. If X k occurs

in both the positive and négative part of x but XX
k +\ occurs in neither, then

because XjçX n +iX^
1

=Xn for n>k, it is possible to simplify x by deleting

one occurrence of X k from both the positive and négative part of x and

replacing every occurrence of XX
n +\ in x by X

n
for n > k. Thus every

nontrivial élément of F2 can be put in normal form as in Corollary-Definition
2.7. It follows from Corollary-Definition 2.7 that every nontrivial élément of

F2F
2 maps to a nontrivial élément of F, as desired.

This proves Theorem 3.4.



§4. Further properties of F

Geoghegan discovered the interest in knowing whether or not F is

amenable; he conjectured in 1979 (see p. 549 of [GeS]) that F does not

contain a non-Abelian free subgroup and that F is not amenable. Brin and

Squier proved in [BriS] that F does not contain a non-Abelian free subgroup,

but it is still unknown whether or not F is amenable. We flrst deflne amenable,

and then discuss why the question of amenability of F is so interesting. For

further information, see [GriK], [P], or [W].

A discrète group G is amenable if there is a left-invariant measure \x on

G which is finitely additive and has total measure 1
. That is, G is amenable

if there is a function ji: {subsets of G} —» [o, l] such that

1) jj,(gA) = /i(A) for ail g G G and ail subsets A of G,

2) fj,(G) = 1
,

and

3) fjb(AUB) = fjb(A) + fi(B) if A and B are disjoint subsets of G.

It is clear from the définition that a finite group is amenable. We will

prove by contradiction that the free group K = (a,b) is not amenable.

Suppose otherwise, and let /i be a finitely additive, left invariant measure
on K with finite total measure. Then /x({l}) = 0 since K is infinité.
For each g G {a,b,aT l ,b- I

}, let g* = {h G K : h has a freely reduced

représentative beginning with g}. Then a~
l

(a*) = (è*) \J(a*)U(b~ l

*)\J {I},
so //(<z*) = fj,(b*) + /x(a*) + n{b~

1

*) and hence //(&*) = n(b~
1

*) =0.
Similarly, /j(a*) = fi(a~

1

*) =0. Since

fi(K) = 0

The idea of amenability arose from Banach's paper [Ban], in which he

proved that the Monotone Convergence Theorem does not follow from the
other axioms of Lebesgue measure. In [N], von Neumann defined amenability
(though the term amenable is due to Day [Da]). Von Neumann proved that
the free group of rank two is not amenable, and he made the connection
between Banach-Tarski paradoxes and nonamenability of the isometry groups.
He proved that the class of ail amenable groups contains ail Abelian groups
and ail finite groups, and is closed under quotients, subgroups, extensions,
and directed unions with respect to inclusion. We call a group an elementary
amenable group if it is in the smallest class of groups that contains ail Abelian



and finite groups and is closed under quotients, subgroups, extensions, and

directed unions with respect to inclusion.

Following [Da], let EG dénote the class of elementary amenable groups,
let AG dénote the class of amenable discrète groups, and let NF dénote the

class of groups that do not contain a free subgroup of rank two. Day noted in

[Da] that EG C AG and AG C NF (this follows from [N]), and added that it

is not known whether EG =AG or AG = NF .
The conjecture that AG =NF

is known as von Neumann's conjecture or Day 's conjecture; it is not stated

explicitly in [N] or in [Da].

Olshanskii (see [O]) proved that AG NF ; Gromov later gave an

independent proof in [Gro]. Grigorchuk [Gril] proved that EG AG. However,

none of their examples is finitely presented. There are no known finitely
presented groups that are in NF\AG or in AG\EG. Brin and Squier proved
in [BriS, Theorem 3.1] that F G NF (Corollary 4.9 hère). We prove in

Theorem 4.10 that F is not an elementary amenable group. If F is amenable,

then F is a finitely presented group in AG \ EG ; if F is not amenable, then

F is a finitely presented group in NF \ AG .

One approach to proving that F is not amenable would be to show that

H%(F, R) 7^ 0 for some positive integer n, where the subscript b indicates

bounded cohomology. This was suggested by Grigorchuk in [Gri2], which is

a référence for the results in this paragraph. If a group G is amenable, then

#JJ(G,R) = 0 for ail positive integers n by Trauber's theorem. Since it is true

for any group G that #g(G,R) = R and HH
l

b (G,R) = 0, the first nontrivial

case is n = 2. It follows from [DeV] that F' is uniformly perfect. This fact

can be used to show that H\ 2 (F, R) =0. Ghys and Sergiescu hâve observed

that, in fact, //g(F,R) = 0.

THEOREM 4.1. The commutator subgroup [F, F] of F consists of ail

éléments in F which are trivial in neighborhoods of 0 and 1. Furthermore,

F/[F,F]^ZeZ.
Proof There exists a group homomorphism ip: F — > Z©Z such that if

/eF, then cp(f) = (a,b), where the right derivative of / at ois 2a2
a and the

left derivative of /atlis 2
b

. Since cp(A) = (-1, 1) and <p(B) = (0, 1), y? is

surjective. It is easy to see that if K is a group generated by two éléments

and there exists a surjective group homomorphism from K to ZOZ, then the

kernel of that homomorphism is the commutator subgroup of K. Corollary
2.6 shows that Fis generated by A and B, and so [F, F] = ker(<^). This

proves Theorem 4.1.



Lemma 4.2. // 0 = x 0 < x { < x2x 2 < ••• < x n = 1 and 0 = y 0

<yi<yi<•''<yn —1 are partitions of [o, l] consisting of dyadic

rational numbers, then there exists fGF such that f (xi) =yi for i= 0, . . . ,n.

Furthermore, if x;_i = V/_i and x t = y t for some i with \ <i<n, then f

can be taken to be trivial on the interval [x;_ i ,
*/] .

Proof Let mbea positive integer such that 22 m
Xj GZ and 22 m

yt GZ for

i= 0, . . . ,n. Let 7? =sbe the T-tree whose leaves consist of the standard

dyadic intervais of length 2~ m
. Let Ibe the leaf of R whose right endpoint

is x\ ,
and let Jbe the leaf of S whose right endpoint is y x . By adjoining

carets to R with roots not right of / or adjoining carets to S with roots not

right of 7, it may be assumed that there are as many leaves in R left of

/ as there are in S left of J
. Continue in this way to enlarge R and S if

necessary so that the function / with tree diagram (R, S) maps x t to y t for

i= 0, . . . , n. This easily proves Lemma 4.2.

THEOREM 4.3. Every proper quotient group of F is Abelian.

Proof Let N be a nontrivial normal subgroup of F. It must be proved

that F/N is Abelian.

For this it will be shown in this paragraph that the center of F is trivial.
Let /bein the center of F . Since / commutes with B, f and f~ l stabilize
the fixed point set of B, namely, [0, \~\ U {I}. This implies that f{\) = \.
Because every élément of F commutes with /, every élément of F stabilizes
the fixed point set of /. This and Lemma 4.2 easily imply that the fixed point
set of / is [o, l]. Thus the center of F is trivial.

Because Af contains a nontrivial élément and the center of F is trivial, Af

contains a nontrivial commutator of F
. Let

be such an élément expressed in normal form. It is easy to see using the map
(p in the proof of Theorem 4.1 that a 0 = bO.b

0 . Let kbe the smallest index
such that a k b k . By replacing /by f~ l if necessary, it may be assumed
that bk > aj< . By replacing / by

it may be assumed that b 0 = ••• = = 0, a 0 = ••• =ak =0, and b k > 0.

By replacing / by XQ~
[

fX
[

00

~ k
it may be assumed that a Q = a x = b 0 = 0

and b
x > 0. In this case (X^fXoXX^fidy 1

=XX
b

2IX2

l X~ bl
. Hence N contains

X
{ \X I

2X^
y

)X\ =X\
b
X\ for some positive integer b. Hence TV contains



Thus F/N is Abelian.

This proves Theorem 4.3.

LEMMA 4.4. Let a, b be dyadic rational numbers with o<a<b<l
such that b — a is a power of 2. Then the subgroup of F consisting of

ail functions with support in [a, b] is isomorphic with F by means of the

straightforward linear conjugation.

Proof. Let ip\ [a,b] — > [o,l] be the linear homeomorphism de

finedby cp(x) = -^x — Then (p~
l

: [o,l] — > [a,b] is given by

(p~
l
(x) =(b— a)x +a. The isomorphism from lF to the subgroup in question

is defined so that for every / G F, / i-> (p~
l f(f. Where it exists, the deriva

tiveof tp~
l
ftp is ftp. The functions (p and cp~

l both map dyadic rational

numbers to dyadic rational numbers. Thus / is a function from [o,l] to [o,l]
whose points of nondifferentiability are dyadic rational numbers if and only if

(p~
I

f(p is a function from [a, b] to [a, b] whose points of nondifferentiability
are dyadic rational numbers. Lemma 4.4 easily follows. Q

THEOREM 4.5. The commutator subgroup [F, F] of F is a simple

group.

Proof Let TV be a normal subgroup of [F, F] containing a nontrivial
élément /. According to Theorem 4.1, / is trivial in a neighborhood of 0 and

a neighborhood of 1. Theorem 4.1 and Lemma 4.2 easily imply that there

exists g G [F, F] which maps neighborhoods of the intervais [0, |] and [|, 1]

into thèse neighborhoods of 0 and 1. Thus gfg~
l

is a nontrivial function in

N whose support lies in [|, |] . According to Lemma 4.4 the subgroup of ail

functions in F with support in [|, |] is isomorphic with F
. Now Theorem

4.3 shows that N contains the commutator subgroup of the subgroup of F

of ail functions with support in [|, |] . Thus TV contains ail functions in F

which are trivial in neighborhoods of the intervais [0, |] and [|, l] .
Just

as the above function / is conjugated by g into this set of functions, every
élément of [F, F] is [F, F] -conjugate to a function in this set.

This proves Theorem 4.5.

THEOREM 4.6. The submonoid of F generated by A, B, B l
is the free

product of the submonoid generated by A and the subgroup generated by B.



Proof. The proof will deal with reduced words in A, B, B l

. Given

such a reduced word w, let w dénote the corresponding élément in F. What

must be shown is that if w\ and w2w 2 are two reduced words in A, B, B~ l

with vôï = wï, then u>\ — w2w 2 •

Suppose that there exist reduced words W\, w2w 2 in A, 5, B
l with

rZJY" =wi and i^ 7^ k; 2 • Choose such words w\ and w2w 2 so that the sum of

their lengths is minimal. Suppose that one of w\ and w2w 2 ends (on the right)

with B and the other ends with B~ l
.

Then w\B = w 2 B, w\B w 2 B, and

the sum of the lengths of w\B and w 2 B is minimal. Thus by multiplying

w\ and w2w 2 on the right by an appropriate power of B, it may further be

assumed that w\ ends with A. Because the sum of the lengths of w\ and

w2w 2 is minimal, w2w 2 ends with either B or £ -1
.

There exists a group homomorphism :F—>Z such that y? (A) =1 and

(p(B) =0. Hence (^(û>T) = (fiwz) implies that the number of A 's which occur
in w\ equals the number of A's which occur in w 2 . Let n be this number

of A 's. Clearly n>o.
Now note that A(|) =\_ and moreover A/2(|)A

/2 (|) =2 n
. Because B and

B~ l
act trivially on the closed interval [0, \] ,

it follows that wï{l) = 2~ n
•

Suppose that w2w 2 ends with B. Then w2w 2 ends with AB m for some positive
integer m. Note that \ < B m {\) < |

,
and so \ < AB m {\) < \. Again

because B and B~ l

act trivially on the closed interval [0, \] ,
it follows that

wî{\) is not a P ower of 2, contrary to the fact that wï(l) = 2~ n
.

Thus w2w 2 ends with 81. Now note that |< 5~ !

(x) = A-1(x)A -1 (x) for every
xin the interval [|, l] . Because ûh{j) = 2~ n

,
it follows that w2w 2 = w3w 3 w 4 ,

where i^ 3 and w4w 4 are reduced words in A, 5, Z?"
1 with k; 4 (|) =| and

ends with either A or B
. If iu 3 ends with A

,
then the argument of the

penultimate paragraph shows that wï(\) = w^d) = 2~ n
'

,
where n

f is the

number of A 's in w 3 . But A occurs in w4w 4 because =|, and so

n' < n. This is impossible, and so w; 3 ends with 5. The argument of the

previous paragraph shows in this case that î^"(|) is not even a power of 2.

This contradiction complètes the proof of the theorem.

COROLLARY 4.7. Thompson s group F has exponential growth.

Theorem 4.8 and Corollary 4.9 were proved in [BriS] for the supergroup
of F of orientation-preserving, piecewise-linear homeomorphisms of R that
hâve slope 1 near —00 and 00.



THEOREM 4.8. Every non-Abelian subgroup of F conîains a free Abelian

subgroup of infinité rank.

Proof. Let Kbea subgroup of F generated by éléments /, g such that

\f.g] 1. Let /i,... .In be the closed intervais in [o,l] with nonempty
interiors such that for every integer k with 1 < k < n, if x is an endpoint
of I^

,
then f(x) = g(x) —x and if x is an interior point of /*.

,
then either

f(x) /x or g(x)

In this paragraph it will be shown for every integer k with 1 < k < n

that the endpoints of /* are cluster points of the K-orhii of every interior

point of ifc. Let x be an interior point of I^. Let y be the greatest

lower bound of the K-ovbil of x. If y is not the left endpoint of /#,

then either f(y) y or g (y) y. Suppose that f(y) y. Then either

f(y) < J or f~ l
(y) < >'• Hence there exists a neighborhood of y such

that every élément of its image under either / or f~
l is less than y.

Thus y is the left endpoint of /*. The same argument applies to least

upper bounds. This proves for every integer k with 1 < k < n that the

endpoints of /* are cluster points of the i^-orbit of every interior point
of h.

Let h\ = \f.g]. Just as commutators in F are trivial in neighborhoods of 0

and 1, h\ is trivial in neighborhoods of the endpoints of I\ .
The resuit of the

previous paragraph implies that h\ is conjugate in K to a function hi whose

support in I\ is disjoint from the support of h\ in I\ .
It easily follows that there

exists an infinité séquence of functions h\, h 2:
h3,...h

3 ,
. . .

in K whose supports in

/i are mutually disjoint. Thus [hi.hj] is trivial on I\ for ail positive integers

/, j. If [hj.hj] = 1 for ail positive integers i and j, then it is easy to see that

hi:hi: n 3: -•• form a basis of a free Abelian subgroup of X, as desired.

If [hi,hj] 1 for some positive integers i and j, then repeat the argument
of the previous paragraph with h\ replaced by this nontrivial commutator

[h[.hj] and I\ replaced by some interval I* on which [/i/,/z/] is not trivial.

This process eventually leads to an infinité séquence of functions h\, hi, h^. . . .

in K which form a basis of a free Abelian subgroup.

This proves Theorem 4.8.

COROLLARY 4.9. Thompson's group F does not contain a non-Abelian

free group.

The next resuit relies on the paper [C] by Ching Chou.



THEOREM 4.10. Thompson' s group F is noî an elementary amenable

group.

Proof. According to (a) of Chou's Proposition 2.2, it suffices to prove

that Ffi EG a for every ordinal a . Since EG 0 consists of finite groups and

Abelian groups, it is clear that Ffi EG 0 , so assume that a>o and that

F fi EGp for every ordinal (5 < a .

If a is a limit ordinal, then there is nothing to prove. Suppose that a

is not a limit ordinal. It must be shown that F cannot be constructed from

groups in £GG
a _i as a group extension or as a direct union.

First consider group extensions. Suppose that F contains a normal subgroup

N such that N, F/N G EG
a-\.a -\. Since F fi EG a - U N is nontrivial.

Theorem 4.3 implies that [F, F] c N. Now Theorem 4.1 and Lemma 4.4

easily imply that N contains a subgroup isomorphic with F. Proposition 2.1

of [C] states that subgroups of groups in EG a-\a -\ are also in EG
a-\.a -\. Thus

F G EG
a-\,a -\ , contrary to hypothesis. This proves that F cannot be constructed

from EG
a-\a -\ as a group extension.

Second consider direct unions. Suppose that F is a direct union of groups
in EG

a-\.a -\. This is clearly impossible because F is flnitely generated.

This proves Theorem 4.10.

We next show that F is a totally ordered group (this also follows from

[BriS]). Derme the set of order positive éléments of F to be the set P of

functions /GF such that there exists a subinterval [a,b] of [o, l] on which
the derivative of / is less than 1 and f(x) =x for 0 <x< a .

It is easy to

see that the positive éléments of F are indeed order positive. It is clear that
F = P~ l

u {1} UP. It is easy to see that P is closed under multiplication
and f~ l

Pf CP for every /GF. This proves Theorem 4.11.

THEOREM 4.11. Thompson' s group Fisa totally ordered group.

§5. Thompson's group T

The material in this section is mainly from unpublished notes of Thompson
[Tl].

Consider S
1

as the interval [o, l] with the endpoints identified. Then
T is the group of piecewise linear homeomorphisms from S

1

to itself that

map images of dyadic rational numbers to images of dyadic rational numbers



and that are differentiable except at finitely many images of dyadic rational

numbers and on intervais of differentiability the derivatives are powers of 2.

Just as we proved that F is a group, it is easy to see that T is indeed a

group.

While T is defined as a group of piecewise linear homeomorphisms of

Sl,S
1

, Ghys and Sergiescu [GhS] proved that there is a homeomorphism of S
1

that conjugates it to a group of C°° diffeomorphisms. (Thurston had proved
earlier that T has a représentation as a group of C°° diffeomorphisms of Sl.)S

1

.)

Example 5.1. The éléments A and BofF induce éléments of T, which

will still be denoted by A and B. A third élément of T is the function C

defined (on [0,1]) by

We can associate tree diagrams and unique reduced tree diagrams to

éléments of T almost exactly as we did to éléments of F '. The only différence

is the following. Eléments of F map leftmost leaves of domain trees to leftmost

leaves of range trees. When an élément of T does not do this, we dénote the

image in its range tree of the leftmost leaf of its domain tree with a small

circle. For example, the reduced tree diagram for C is in Figure 11.

Figure 11

The reduced tree diagram for C

LEMMA 5.2. The éléments A, B, and C generate T and saîisfy the

following relations :

1) [AB~\A~ I

BA] = 1,

2) [AB-\A~ 2 BA 2
] = 1,

3) C= B(A~
l
CB),

4) (A-
l CB)(A~

l
BA) = B(A~

2 CB 2
)

5) CA = (A-
X

CB)
2

,
and

6) C3C
3

= 1
.



Proof. Let Hbe the subgroup of T generated by {A, B, C} . Since {A, B}

is a generating set for F, F C H. Suppose f e T. Let [x] = /([o]). If

[x] = [o] ,
then feF and hence /G //. If [x] [o] ,

then there is an élément

hGF with /z(x) =|by Lemma 4.2. Then g= C~ l

hf fixes [o], so #GF.
Hence /= A^Q GH and =T. Thus A, 5, and C generate T.

Relations 1) and 2) are proved in Section 3.

Consider relation 3). It is équivalent to the relation CBC l =AB l

.
The

reduced tree diagram for CBC~ l
is computed in Figure 12, the notation being

straightforward.

Figure 12

Computing the reduced tree diagram for CBC~ ]

Referring to Figure 1 shows that AB 1

has the same reduced tree diagram
as CBC~ l

,
which complètes the vérification of relation 3).

Consider relation 4). It is équivalent to

where the term A
ICBl

CB hère corresponds to the same term in relation 4). We

compute a tree diagram for the left side of this équation in Figure 13.

Figure 13

Computing a tree diagram for (B~
l

C~ l

A)(AB~ l

)(A~
lCB)l

CB)

Referring to Figure 1 now complètes the vérification of relation 4).
Relation 6) is easily verified using the reduced tree diagram for C.



Finally consider relation 5). Use relation 6) and then relation 3) to

rewrite relation 5) : CA = A- I CBA~ I CB CA = A~ l C~ l
{C~ l BA~ l

CE) &
CA = A~ l C~ l

<^> {AC)
2

— 1
.

The reduced tree diagram for AC is computed
in Figure 14.

Figure 14

Computing the reduced tree diagram for AC

Hence AC acts on S
1

by translation by [^] ,
and so (AC)

2 =1, which gives

relation 5).

Let

LEMMA 5.3. There is a surjection T\ — > T that map s the formai symbols

A, B, and C to the functions A, B, and C in T.

Proof. This follows immediately since the functions A, 5, and C satisfy

the relations 1) - 6).

LEMMA 5.4. The subgroup of T\ generated by A and B is isomorphic
to F.

Proof. The results of Section 3 show that there exists a group homo

morphismfrom F to the subgroup of T\ generated by A and B whose

composition with the map from T\ to T is the identity map on F. This

proves Lemma 5.4.

It is easier at this point to prove that T is simple than to prove that T\

is simple. However, it is préférable to prove that T\ is simple, since then

Lemma 5.3 implies that T is isomorphic to T\ .

Derme the éléments X n , n>o,ofTx by X o =A and X n = A- {n - X) BA nn ~ l

for n>l. It follows from Theorem 3.4 and Lemma 5.4 that X
n

X k = X k X n+ \

if k<n. Deflne the éléments C
n , n>l, of T x by C

n = A~ {n - l) CB n - 1

. For

convenience we define Cq = 1
.



To gain some insight into thèse éléments C
n ,

in Figure 15 we calculate

reduced tree diagrams for the corresponding éléments, still called C
n ,

in T.

The reduced tree diagram for C\ is given in Figure 11, and the reduced

tree diagram for C2C
2 is given in Figure 13. This calculation shows that C

n

permutes the images of the n + 2 intervais

cyclically.
The rest of this section deals with the group T\ .

Figure 15

Inductively Computing the reduced tree diagram for C n with n>3

LEMMA 5.5. If k, n are positive integers and k <n, then

i) C
n — X

n
C

n +\,
ii) C

n X k =X k _iC n +\, and

iii) C
n

A = C*
+l .

Proof.

which proves i).

If k = 1, ii) follows from the définition. If k = n = 2, ii) follows from
relation 4). If k = 2 and n > 2, then by induction on n

If k>3, then by induction on k



Equation iii) follows by induction on n. If n = 1 then it is relation 5). If

n> 1
,

then

LEMMA 5.6. If n is a positive integer, m G {1,...,w+1}, and

r, sG {0, . . . ,/?}, £/z£ft

i)

H)

iii)

iv)

v)

Proof. The first line of i) follows from Lemma 5.5.ii). If r=o, the

second line is Lemma 5.5.iii); if r > 0

This proves i) if r > m — 1
.

which proves iii). If r<m—l, then

which finishes the proof for i).

The first line of ii) follows from i), with s = r+(n+2— m). The second line

of ii) follows from iii). The third line of ii) follows from i), with s = r - m.

Equation iv) follows from the second line of i). If t> 1
,

then

Since C\ =C3 =1, this proves v) and complètes the proof of Lemma 5.6.



Following the terminology for F, an élément of T\ which is a product

of nonnegative powers of the X/'s will be called positive and an inverse of a

positive élément will be called négative.

THEOREM 5.7. If g£Tu then g= pC%q
1

for some positive éléments

p, q and nonnegative integers m, n with m < n + 2.

Proof We first show that if i, j, k, and / are positive integers, then

there are positive éléments p and q and nonnegative integers m and n such

that C)C\ =pC™q~
l

. Suppose that i, j, k, and l are positive integers and

that g= C)C\. Since CJ
+2

= Cj +2 =Iby Lemma 5.6.v), we can assume

that i < j + 2 and k < l + 2. Let n > max{/,/}. By Lemma 5.6.iii) and

Lemma 5.6.iv), there is a positive integer r and there are positive éléments

p and q such that C) = pCn
and C* = CC r

n q~
l

. Hence qcf =pC^" 1

.

Let H = {g e T\ : g = pC%q
1

for some positive éléments p, g,

and nonnegative integers m, n with m < /? + 2}. Lemma 5.6.v) easily

implies that H is closed under inversion. To show that H is closed

under multiplication, suppose that g\,gi G H. Then g x = p\C-q\
x

and

2= p2C\q^
x

for some positive éléments p\ , /?2, ,
and and some

nonnegative integers /, j, k, and / with / < j + 2 and k < l + 2. By

Corollary 2.7, there are positive éléments /?3 and such that q~[
x

pi — P3qJ
l

•

Hence g\g 2 = p\C
l

fl\
l

p2C\q^
x

= piCfoq^Cfa^
1

. Lemma 5.6.iii) and

Lemma 2.8, which states that the set of positive éléments of F is closed

under multiplication, show that if i > 0 and j > 0, then we may replace O

byCj^ . Hence we may assume that if i>o, j>o, and Z r occurs in p^,
then j > r. We may likewise assume that if /c > 0, / > 0, and X

s occurs
in q 3 ,

then l>s. Now Lemmas 5. 6.1), 5.6.ii), and 2.8 show that there are

positive éléments p\ and q^ and nonnegative integers r, s, t, and m such

that g { g 2 = p4Cs
C[

( q^
1

. By the previous paragraph and Lemma 2.8, there are

positive éléments p$ and q$ and nonnegative integers m and n such that

g\g2 = psCZqJ
1

.
Since we can assume that m<n+2by Lemma 5.6.v),

g\g2 £H- Hence # is a subgroup of T\ . Since T\ is generated by A= Ko,X
o ,

5= Xi ,
and C= Ci ,

ail of which are in H, H= T Y .

THEOREM 5.8. T\ is simple.

Proof. Suppose TV is a nontrivial normal subgroup of T\, and let

9: T
x -> T\/N be the quotient homomorphism. Then there is an élément

geT{ with g \ and 0(g) =1. By Theorem 5.7, g= pC™q~
l for some

positive éléments p, q and nonnegative integers m, n with m < n + 2. Then



By Lemma 5.4, there is a homomorphism a: F — » T\/N defined on generators
by a(A) = 0(A) and a(B) = 0(B). If p~

l
q 1, then (p~

l
q) n+2 1, and so

a(F) is a proper quotient group of F
.

Since every proper quotient group of

Fis Abelian by Theorem 4.3, 9(AB) = 6(BA). If p~
l

q =1, then m,w >0
and 1= 0(C?)

5

-= v)
eiCZ+freçc- 1^) and hence fl^) = fl((C+/y +3 )

= S((C^) m+l ) = 6(1) = 1. It follows as before that 6>(A£) - 6(BA).
Hence = 6(B), so

!C)!

C) = 6(BA- 2
C) by relation 4). Hence

OCBA-
1

) =1, and so 6(B) =1 by relation 3). This implies that 6(A) =1.
It now follows from relation 5) that 0(C) =1. Thus N=TU and so T x is

simple.

COROLLARY 5.9. T\ is isomorphic to T.

§6. Thompson's group V

As with the previous section, the material in this section is mainly from

unpublished notes of Thompson [Tl]; [Tl] contains the statements of the

lemmas (except for Lemma 6.2) and the statement and proof of Theorem 6.9,

but does not contain the proof s of the lemmas.

Let V be the group of right-continuous bijections of S
1 that map images

of dyadic rational numbers to images of dyadic rational numbers, that are

differentiable except at fmitely many images of dyadic rational numbers, and

such that, on each maximal interval on which the function is differentiable,
the function is linear with derivative a power of 2. As before, it is easy to

prove that V is a group.

We can associate tree diagrams with éléments of V as we did for F and

T, except that now we need to label the leaves of the domain and range trees

to indicate the correspondence between the leaves. For example, reduced tree

diagrams for A, B, and C are given in Figure 16.

Using the identification of S
1

as the quotient of [o, l], define tt 0 :Sl—>Sl

by



Figure 16

Reduced tree diagrams for À, B, and C

We define éléments X n
and C

n
of V as before. That is, X o = A,

X n = A- nn + l BA n - 1 for an integer n> 1
,

and C
n = A-^CjS"- 1 for an integer

n > 1. Define tt*, h > 1, by tti = C~
171

7r 0 C 2 and ?r n = A- n+l -K\A n - 1 for

n>2. Reduced tree diagrams from ttq, tti , tt 2 ,
and tt 3 are given in Figure 17.

Figure 17

Reduced tree diagrams for 717, 0 < i < 3

It is easy to see for every positive integer n that tto, . . . , tt w _i generate a

subgroup of V isomorphic with the symmetric group of ail permutations of

the n+l intervais [0,1 -2" I

], [1 -2" 1

,! -2~ 2
], [1 - 2~ 2

,

1 - 2~ 3
], . . . ,

[1 - 2~ n

, 1- 2" (n+l) ]
. Furthermore tt 0 , . . . ,

7r n _i and C
n generate a subgroup

of V isomorphic with the symmetric group of ail permutations of the

n+2 intervais [0, 1 - 2" I
], [1 - 2~\ 1- 2~ 2

], [1 - 2~ 2

,

1 - 2" 3
],

[1 - 2-\ 1- 2- (n+l) ], [1 - 2~^ +1 \ 1] for every positive integer n.

LEMMA 6.1. 77z£ éléments A, B, C, and ttq generate V and satisfy the

following relations :

1) [AB-\X 2 ] =l;
2) [AB-\X 3 ] =l;
3) C, = BC 2 ;

4) C2C
2 X 2 = BC 3



5) dA = Cl;

6) C\ = l ;

7) tt? = 1 ;

8) 7T\7T2 = T^TTi ,'

9) (7T27T!)
3

= 1;

70J XX
3 7Ti = 7TiZ 3 ;

77J ttiX 2 = B-k 2 ti\ ;

72J 7i 2 fi = fi 7T
3 ;

73J 7î"iC3 = CC
3 7T2 ; an<i

14) (tt 1 C 2 )
3=3

= 1.

Proof. Let Hbe the subgroup of V generated by A, B, C, and tt 0 .
To

prove that H = V, it suffices to prove that if R and S are T-trees with n

leaves labeled by 1
. . . . ,n, then there is an élément of H with domain tree

R and range tree S which préserves labels. Since H is a group and A and

B generate the subgroup F of V, we can assume that R = S — TT
n -\ .

So

assume that R—S— TT
n -\ .

Each élément of the subgroup of V generated by

tto and CC
n -2 has a tree diagram with domain tree and range tree TT

n -\, and

this subgroup is isomorphic to the symmetric group Z
n , acting on the leaves

of 7^_i . Hence there is an élément of V with domain tree R and range tree

S which préserves labels, and H = V.

It follows from Lemma 5.2 that relations l)- are satisfied. Relations 7), 8),

9), 13), and 14) follow easily from the viewpoint of permutations. Relation 10)

is true because the supports of tï\ and X 3are disjoint. Relations 11) and 12)

can be established by verifying that the reduced tree diagrams for the two élé

mentsare the same; the tree diagrams are computed in Figures 18 and 19.

The group V\ will be deflned via generators and relators. There will be four

generators, A, B, C, and iïq. We introduce words X n ,
C

n ,
and i\ n as before.

That is, X o =A, X
n =A~ n+l ßA n - 1 for an integer n > 1, C

n = A~ nn + l
CB n - 1

for an integer n > 1
, tï\ = C2C

2

" 1

7roC 2 ,
and 7ï n = A~ nn + l

ir\A nn ~ l for

n>2.
Let



Figure 18

Reduced tree diagrams for tt\X2 and Bni^i

Figure 19

Reduced tree diagrams for itjß and Bttt,

We will prove that V\ is simple. Since there is a surjection from V\ to

V by Lemma 6.1, it will follow that V\ = V and V is simple.

Lemmas 6.3-6.8 contain the relations we need among the tt/'s, the X/'s,
and the C

t
's. Lemma 6.2 isolâtes some parts of them that will be needed in

the proof of Lemma 6.3.

LEMMA 6.2. Let i be a positive integer and let j be a integer.

i) If o<j <i, then tt/X ;
- = Xjiï i+X .

ii) Ifj>i + 2, then tt/X/ = X
; -tt/.

iii) If i >j > 0, then Citvj = 7r/_iC/.



Proof. We begin the proof of i) by proving that AB l commutes with X n

and 7T n for every integer n>2. For this let H be the centralizer of AB~ l in

Vi . Theorem 3.4 easily implies that H contains X n for every integer n > 2. We

prove that 7r n G H for every integer n > 2 by induction on n. For n= 2 we

hâve 7T 3

1?^,1

?^, and the relator Btï^iß)~ 1

gives tt 3 =B~ 1

tt 2 8. Hence

7T2 E H. Now let n be an integer with n>2, and suppose that 7r n eH. Since

# contains ?r n ,
X

n ,
and XX

n +\, AA n ~IHA~ 1 HA~ n+l contains tti , Xi ,
and X 2 .

Thus

the relator jßt^tt^tt^)" 1

easily gives tt2 GA' 1 " 1^"' 111
,

and so nn n +i G //.
This proves that AB~ l commutes with X n and 7r n for every integer n>2.

We now prove i) by induction on j. If j = 0, then i) is clear. Suppose

that 7=l and that / is an integer with / > 1. We hâve A~ I
ttîA = tt/+i ,

and the previous paragraph shows that AB~ I
HiBA~

x

= tt/. Thèse identities

imply that B~
1

7TîB = tt/ + i ,
which gives ii) when 7=l. Now suppose that

7 > 1 and that / is an integer with i >j. We hâve 7r;_/ + iXi = Xi7r/_/+2>
and so A^+V^+iA^U^+^iA^ 1

= A-J+ I XiA/- I A-J+ 1

Tr i-ji -j+ 2 A>-
1

. Hence

TT/Zy = Z/7T/+l . This proves i).

Since tt^ = X37ri , = A Vi^A = A
IX^tï\A1

X^tï\A = X^2- B^tviX^
— 7riZ 2 Z 4 = 7TiZ 3 Z2 = Z 3 7riZ2 = Z 3 Z?7r 2 7ri = BX^2^\ = B^X^iti ,

and so

ttiX 4 = XX 4 7Ti. If n > 4 and 7TiZ n = XX
n n\ ,

then X 3 7TiX n+ i = 7TiX 3 X w+ i

= 7TiX n Z 3 = Z n 7riZ 3 = X n X 3 7Ti = X3X
3 X

n +i7Ti ând so 7TiZ n+ i = Z n+ i7Ti . Hence

it follows by induction that n\Xj = Xjiri if 7 > 3. If ij are positive integers

and 7>z+2, 717 A} = A-^^iA^U-^^-f+iA 1 '" 1

- A-'+^iX/.i+iA 1"- 1

= A^^^y-z+iTTiA^" 1

=Xj7Ti. This proves ii).

We prove iii) by induction on 7 and /. We hâve CC
3 7r 2 = ttiC 3 . If

2 < / and C/7T2 = ttiQ, then Z/Q+itt2 = C/7T2 = ttiC/ = ttiZ/Q+i
= X/7TiQ + i and hence QQ + i7r 2 = 7TiQ + i. It follows by induction on /

that C/7T 2 = TriCi if / > 2. If 1 < j < i and C;7ry = ttj-iQ, then

G+iTTy+i = CC
h _ 1 £- I £tt /+1 = Q+ifi" l^ = A- I CiBB- I

TTjB = A^Qttjß
= A~ l

Kj-\CiB = A~
x

iTj-\AA~
I

CiB = 7T/C z

-

+ i. It follows by induction on 7

that Qttj = TTj-iCj if 1 <j < i.

To finish the proof of iii), it remains to show that C-{K\ = ttqCï if 1 < /.

Since tti = CC
2

~l7ro~ 1

7roC 2 ,
CC

2 7Ti = tt O C2. Suppose />2 and Qtti = tt O C/. Since

CiA = C?
+1

and ttiA = Att 2 ,
Cf

+171
7r 2 = C/Att 2 = QttiA = tt O C/A = ttoC?

+1 .

But 7riC| + i = C/+I7T2 ,so d- + i7TiC|+i = C?
+1 tt 2 = vroC^! and hence

C/+i7Ti = ttoC/_|_i. It follows by induction that Qtti = tt 0 Q if I</. D

LEMMA 6.3. If i is a nonnegative integer, then

i) tt? = 1,



ii) (7r /+ i7r,)
3

= 1, and

iii) TTiTTj = TTjlTj if j > /+2.

Proof. -n] =1 from the définition of V, ,
and since the tt/'s are conjugale

to each other, nj = 1 for / > 0
.

(ttitti) 3

= 1 is one of the defining relations. Lcmma 6.2.iii) shows

that 7T/+I7T/ is conjugate to 7t 2 7î { for every nonnegative integer /'. Hence

(7r, + i7r/)
3

= 1 for every nonnegative integer /. This proves ii).

We may likewise use Lemma 6.2.iii) to reduce the proof of iii) to the case

in which /= 1
. Since ttitt^ = tt^tt] , 772774 = A~

]

~\iT\A =A ]

~\7T\A ~4~:-

Since 7T\7Tt, = TT^TTi ,
TTjT^X^ = 7Ï}7Ï\X 2 , 7TiX2 7T4 = ~}X\ ~2~\ ' X\~ 2~\~.\2 ~\~.\

— XjT^TnTri = XiTnT^TTi ,
and hence 77)774 = ~^~\ .Ifn>4 and ~\~ n

~n-\~

n -\ ,

then X^7l\Tï nn j r \ = 7ï\X^'n nn J r \ = TTiTT,,^ = 77
/;

77 I X3 = ~
n X\~\ -- X;, 7T,, .. 1

7T
1 .It

follows by induction that ttj tt,- = tt/tti if 7>3. This proves iii).

LEMMA 6.4. //* / and j are nonnegative inte^ers, then

i) TïiXj = Xj7Tj if j> z + 2.

H) 7T/X/+ 1 —Xjn /_(_ [/!,-,

iii) TTjXi = X/_|_i7T/7r/ + i ,
and

iv) TTjXj = Xj7Tj+\ if 0 <j < i

Proof If / > 0. then i) is Lemma 6.2.ii). For / — 0 suppose that

n is an integer with j < n. Then ~oXjC n +\ = ~
() C

n
X

t .\ -- C'^Tri-Y, .
1

= C
n Xj + \iï\ — XjC n +\7T\ = Xj7ToC n+ \ by Lemmas 5.5.ii), 6. 2. iii), and 6.2.ii).

Hence ttqXj = Xjttq if j > 2. This proves i).

For ii), the case / = 1 is one of the defining relations. Since ~\X2 — B~z~\ ,

Lemmas 5.5.ii) and 6. 2. iii) give that tîqßCi = -OC2X2 = C2-\C
2 -\X 2 = C 2 B~ 2-\2 -\

= ACittjtï] = AttitvqCt,. This implies that 7T ()
Z? = Att\- {) , which gives ii) when

/=o.lf/>l, then conjugating the relation tt\X 2 = X\~ 2 ~\ by A
1 '

gives

tt/X/_|_i = X/7T/ + i7T/. This proves ii).

iii) follows immediately from ii) since each tt, has order 2.

iv) is Lemma 6.2.i).

LEMMA 6.5. Let n and k be positive integers with n>k. Then

i) CnTXk = 7Tk-\C n ,

ii) CC
n 7TQ = TTq -• 7T,,_ iC~

iii) Qttq = 7t,,_i • • • ttqC,,, cz/zJ

ZVj CC
3

7T 0 = 7T
/? _iC*.



Proof. i) is Lemma 6.2.iii).
We prove ii) by induction. Since (ttiC 2 )

3 =1, (C 2 7Ti)
3 =1. This implies

that C 2 7riC 2 = ttiC^tti, and hence that C^ttiC^
1

= QttiCtViC 2
, by

Lemma 5.6.v). Hence CC
2 tt 0 = C^C^xC^

1

) = (QTriCrViCi = 7r O 7nCf ,

which proves ii) when n—2. Suppose that n>2 and CC
n 7r 0 = tt 0 ••• 7r n _iC 2

.

Then

and hence C n+ i7ro = ttq • • • 7r n
C

2+l.2

+1 . ii) now follows by induction.

iii) follows from ii) :

SO CC
2

7T 0 = (TTo ••• 7T
n _i)

!!

C
W = 7T

n _i ••• 7T 0 C
n

iv) follows from i), ii), and iii) :

LEMMA 6.6. Let k, m, and n be integers with 0 < m < n+2 and

0 <k<n. Then

i) if m<k, C™<K k = 7r k - m C™,

ii) ifm = k+l, C™7T k = 7TO • • • 7T n _iC^ +1
,

zzïj if m=k+2, C>* = 7r n _i ••• ttqC^-
1

,
anJ

zvj z/ m > k+2, C^tt^ = 7T£_|_ (n+2 _ m )C^.

Proof. i) follows from Lemma 6.5. i) by induction.

Now consider ii). If n > 2 and m = k+l, then by Lemmas 6.6.i)

and 6.5.ii) C>* = C
n Cfa k = CC

n 7r 0 C
k

n
= tt 0

• • • 7r n _i C^C* = tt 0
• • • tt^iC"* 1

,

which proves ii) if n>2.By Lemmas 5.6.i), 6.3.i), and 6.5.iv), C
2 B =C\

— — tti^tto. Hence C2stC
2 5tt 0 = ttiC^ = ttottottiC^ = 7r o C 2 7r0C 2

= 7r 0 C
2 7ri by Lemmas 6.3.i), 6.5.ii), and 6.5.i). Hence C

2
Z?7r 0 7ri = ttoC

2

,
and

so CC
2

tt 0 A = 7r O CA by Lemmas 6.4.iii) and 5.5.iii). This gives CC
2

ttq = tt O C,

and hence Ctt 0 = C(7r O C)C~
l

= C(C
2t2

tt 0 )C~
1

= tt 0 C 2
.

This complètes the

proof of ii).



If n = 1, then the assumptions of iii) imply that k = 0 and m = 2,

and so iii) becomes C\hq = tt O Ci ,
hence CC

2
tt 0 = tt O C

.
This was proved

in the above paragraph. If n > 2 and m = k + 2, then by Lemmas 6.6.i)

and 6.5.iii) Cy k = CC
2

n
C k

n
ir k = C\^C k

n
= nn-in

n -i •• 7v 0 C
n

C
k

= nn n -\ ••• KoC™~
1

,

which proves iii).

To prove iv), suppose that m > k + 2. Then by Lemmas 6.6.i) and

6.5.1V) C>, = Cr*- 3 C3C*7T* = C-*- 3 C>oC* = (T-*- 3^-!^ 3

=

7r w _i_ (m _ik_3)C^, which proves iv). D

For each positive integer n, let n(n) be the subgroup of V\ generated by

{tt 0 ,
. . . ,tt 77 _i}, and let II = U wGN n(n).

Let Z be the group of permutations of N with finite support. Then

Furthermore, in every proper quotient group of X, the image of s 0s 0 is the

image of s\. Since II is a quotient group of S and tto 7^ tti in V, n is

isomorphic to E.

Following the terminology for F, an élément of Vi which is a product
of nonnegative powers of the X; 's will be called positive and an inverse of a

positive élément will be called négative.

LEMMA 6.7. 7f /? is a positive élément of V\ and vr Gn, then np = p'ir'
for some positive élément p' and some n' G n.

Proof Lemma 6.7 follows from Lemma 6.4.

Lemma 6.8.

i) If m, n are positive integers with m < n + 2 a«d //" tt G Il(«), r/z^n

CJ^tt = Tr^lf /or tt
7

G U(ri) and some positive integer m! with
m! < n + 2.

zï) For eac/z nGN, the subgroup of V\ generated by U(n) and C
n

is

finite.

Proof. i) follows from Lemmas 6.6 and 5.6.v). ii) follows from i) and

Lemma 5.6.v).



THEOREM 6.9. Vi is simple.

Proof. Suppose N is a nontrivial normal subgroup of V\, and let

6: V\ —> V\/N be the quotient homomorphism. Then there is an élément

g e Vi with g 1 and 6{g) = 1
. By Lemmas 5.6.iii), 5.6.iv), 6.7,

6.8.i) and Theorem 5.7 we hâve g= pirC™q~
l for some positive éléments

p and q, some integers m,« with 0 < m < n + 2, and some élément

7T G n(rc). Then = 6(p~
l

q). Lemma 6.8.ii) implies that ttC™ has

finite order, say, k. Furthermore the subgroup of V\ generated by A and B

is torsion-free because it maps injectively to F Ç V by Theorem 3.4. Hence

either (p"^) fc

7^ 1 and 0((p- l
q)

k
) =lor ttC™ 1 and 6>(ttC™) =1.

Suppose that ttC™ 1 and 6>(ttC™) =I.lfm=o, then tt 7^ 1 and

0(tt) = 1. This implies that #(tto) = o(tti), and hence by Lemma 6.5 that

0(7r 0 C 2 ) = 6 > (C 2 tti) = 6>(C 2 7r0) = O^-KiCl) . But then o(ttiC 2 ) =I,sowe may

assume that m > 0. Next suppose that m > 0. Then ttC^ = 7rX n+ i_ m C^ +1

by Lemma 5.6.iii). Lemma 6.4 implies that there exists a nonnegative integer
z and tï' e U(n +1) such that ttC^ = Xiir'C%+l . Thus we are in the above

case in which (p~
l

q)
k /1 and 0((p~ l

q)
k

) =1.
In each case there is an élément hGV\ such that h7^l, 6^(/z) =1, and /z

can be represented as a word in A ±l
,

B ±l
,

and C±l.C
±1

. Let a: T\ -* V\/N be

the homomorphism deflned by a(A) = 6{A), a(B) = 0(B), and a(C) = 0(C).
Then there is an élément h! e T\ with h! 1 and a(/z

7

) = 1. Since

T\ is simple by Theorem 5.8, 0(A) = 6{E) = 6(C) = 1. Because 717 and

ttj are conjugate via a power of A, 6>(tt;) = 71 }) f° r ai l nonnegative

integers / and j. By Lemma 6.6.11) with k = 1, m = 2 and n = 2,

o(tti) = 6>(C^7Ti) = 6»(7r O 7riC^) = 0(7r O 7Ti), and hence 6>(7r 0 ) =1. This implies
that the quotient group is trivial.

§7. Piecewise integral projective structures

The définition of piecewise intégral projective structures is due to

W. Thurston. Thèse structures arise naturally on the boundaries of Teichmuller

spaces of surfaces. The interprétations of F and T as groups of piecewise

intégral projective homeomorphisms are also due to Thurston; we learned this

from him in 1975. Greenberg [Gr] used this interprétation in his study of

thèse groups.

Fix a positive integer n.



The symbol A n
dénotes the n-simplex {(x v . . . ,

x n +\) G Rn+lR n+1
:

T!i=i x i =l and x i ° for all 0- The A n
is an orientable n

manifoldwith boundary. A rational point of A n
is a point (xi, . . . ,x n+ \) GAn

with each x/GQ.
Set R';+1 = {(x 15 ... ,jc n+ i) G R" +1 :*,>o for i= 1,... ,n+ I}.

One defines p: R7R
7

;+1 \ {0} - A
n using the projective structure of Rn+lR n+1

;

that is, p(x) =fr where \x\ = £?=/ M • Let UC A
n .

A function

/: [/ -> A
n

is intégral projective if there exists A G GL(n + I,Z) such

that [/c{xGA«: A(x) G R+
+1

} and /=po A^. It is easily seen that an

intégral projective map is a homeomorphism onto its image.

A rational subsimplex of A
n

is a subsimplex of A
n

in which each vertex

is a rational point; a rational subdivision of A n
is a simplicial subdivision in

which each n-simplex is a rational subsimplex. An intégral subsimplex of A n

is a subsimplex of A
n which is homeomorphic to A

n by an intégral projective

map. Similarly, an intégral subdivision of A n
is a simplicial subdivision of

A n
in which each n-simplex is an intégral subsimplex of A n .

A piecewise intégral projective (PIP) homeomorphism of A
n

is a home

omorphism/: A
n -» A

n
such that there is an intégral subdivision S of

A
n with /| intégral projective for each simplex a of S

.
Derme PIP(A n

)

to be the set of ail PIP homeomorphisms of A
n .

We wish to prove that

PIP(A n
) is a group by proving that it is closed under inversion and com

position.It is easy to see that PIP(A n ) is closed under inversion. It is

not immediately obvious that the composition of two PIP homeomorphisms
is a PIP homeomorphism. The stumbling block is whether two intégral

subdivisions of A
n hâve a common refinement which is an intégral sub

division.According to Exercise 5 on page 15 of [RS] their intersection
is a cell complex which is a common refinement of both, and it is easy

to see that the cells of this intersection complex hâve rational points as

vertices. Proposition 2.9 of [RS] states that such a cell complex can be

subdivided to a simplicial complex without introducing any new vertices.

Hence to prove that PIP(A n
) is a group it suffices to prove the following

theorem.

THEOREM 7.1. Every rational subdivision of A
n

has a refinement that is

an intégral subdivision.

Proof. We derme the lift of a rational point x in A n to be the unique
point le in Zn+lZ n+l HR^+1 such that p(x) =x and the greatest common divisor
of the coordinates of ï is 1

.
We derme the index of an n -dimensional



rational subsimplex aofAn as follows. Let v\, . . . ,^+l be the vertices of

a. Then the subgroup of Zn+lZ n+l generated by v\,... ,
ïï

w +i has finite index

in Zn+l.Z n+l
. The index ind(cr) of a is by définition this index. Equivalently,

ind(cr) = |det(ïïi,... ,ïï n+ i)|, the absolute value of the déterminant of the

matrix whose columns are v u . . . ,ïï n+ i .
It is easy to see that ind(cr) =lif

and only if a is intégral.

The argument will proceed as follows. Let S be a rational subdivision of

A n . Suppose that aisan n -simplex in S with ind(cr) >I.A rational point
v in g will be suitably chosen. We will let 1Z be the simplicial complex
obtained from S by starring at v as on page 15 of [RS]. If r is an n -simplex
in 1Z which does not contain v, then r G <S. If r is an n -simplex in 7£

which contains v ,
then we will prove that ind(r) is less than the index of the

?2 -simplex in S which contains r. From this it easily follows that performing

finitely many such starring subdivisions yields a rational subdivision of A n

ail of whose hâve index 1, and so this subdivision is intégral, as

desired.

So let sbea rational subdivision of A n ,
and let abean n -simplex in

S with ind(cr) > 1
. Let the vertices of a be v\, . . . ,

vv
n +\ . Since ind(cr) > 1

,

there exists uG Zn+lZ n+1 and an integer m>l such that mu lies in the subgroup
of Zn+lZ n+1 generated by ïïi,... ,v n+ \ but u does not. Let «i,... ,a n+ i be

integers such that mw = SÏi fl i^i •
F° r every integer / with I</<n+l

let Z?/ be an integer such that 0 <ai+ m/?/ <m. Then

Because mis not in the subgroup of Zn+lZ n+1 generated by v\,... ,^ n +i, it is

impossible that a t + =0 for /= 1
, . . . ,w+l. Reindex if necessary so

that ai + mbi if 1 < k and a; + ra£>; = 0 if i > k for some integer k with
1 < k < n+l. The vector w = u+ s a positive rational linear

combination of ïïi
,

. . . , Vk ,
and so v= p(w) is a rational point of A

n which

lies in the open simplex with vertices v\, . . . , Vk- Since wG Zn+lZ n+1 flß^_
+1

,

is a positive integer mulitple of v. It follows that ïï = S/=i o^/' or rational

numbers ci , . . . , c^ with 0 < Cj < 1
.

Now let 7Z be the simplicial complex obtained from S by starring at v.

Let r be an n -simplex in 1Z which contains v. Let a' be the n -simplex in

S which contains r .. Then v\ , . . . ,Vk are vertices of al,a
1

,
and so the vertices

of a' hâve the form v\ , . . . , +1 , . . . ,
v'

n+l . Hence the vertices of r hâve

the form v\ , . . . ,
S/, . . . v^ v'

k+1 , . . . , i^ +1 ,
î; for some /G {!,... , k} . Thus



In the last expression we hâve a linear combination of k déterminants of

which ail but one are 0 because the corresponding matrices hâve two equal

columns. Hence ind(r) = QindO') < ind(o-'). This complètes the proof of

Theorem 7.1.

We dénote by P/P + (A, T
) the subset of PIP(A n

) of orientation-preserving

piecewise intégral projective homeomorphisms of A, 7 . Then PIP + (A n
) is a

group, and is a subgroup of PIP(A n
) of index 2.

We next investigate P/P + (Ai). Let A[ be the 1-simplex in R2R
2

consisting

of points (r, 1) with t in the closed interval [0, I]. The linear automorphism of

R2R
2 which maps (1,0) to (1, 1) and (0, 1) to (0, 1) induces a homeomorphism

from Ai to A[. This linear automorphism is given by a matrix in 5L(2,Z).
Thus we can "conjugate" the above discussion leading to the définition of

P/P +
( Ai) to A[ : we get a group PIP+(A[) which is isomorphic to

PIP + (Ai). In so doing, p is replaced by the map p
r that sends (x,y)

to (-.1) if y 0 and to (0, 1) if y=o.An intégral projective map for A[
is the composition of p' and a function induced by a matrix in GL(2, Z). An

intégral subsimplex of A[ is a subsimplex of A[ which is homeomorphic to

A[ by a A[ -intégral projective map.

Now we identify [o,l] with A^ via the map t \—> (£, 1). Let a be a

nonnegative integer and let b,c,d be positive integers such that a < b and

c < d. Then gcd(<z,fc) = 1 = gcd(c,d), § < §, and [|,^] is an intégral

subsimplex of [o, l] if and only if ad —bc— — 1. Suppose a,b,c,d are as

above such that [|, is an intégral subsimplex of [o, l]. By définition the

left part of [|, §] is [|, f±§] and the n^^rf of [f ,
§] is [|±§,§]. The

left and right parts of [|, §] are intégral subsimplices of [o,l]. The tree

of intégral subsimplices of [o, l] is the tree T' with vertices the intégral
subsimplices of [o,l] and with edges the pairs (/,/) where / and J are

intégral subsimplices of [o, l] and /is either the left part of /or the right
part of J. An edge (7,7) of T' is a left edge if / is the left part of J and

is a right edge if / is the right part of /. If we replace each vertex [|,



of T 1

by the Farey mediant g±£ of | and -
d

and keep the same incidence

relation, then T7T
7 becomes the Farey tree.

To see that T is connected, let a ht a. nonnegative integer and let b,c,d
be positive integers such that gcd(a,b) =1= gcd(c, a 7),a

7

), [f,§] [o,l],
and [|, is an intégral subsimplex of [o, l]. First suppose that a<c. Let

r = c—a and let s = d—b. Then —1 = ad —bc = <z(&+,s) — b(a +r) = as — br,

so as = ar +(b — a)r — 1, which implies that s > r. Furthermore, [f , j]
is an intégral subsimplex of [o,l] and [f,§] is the left part of [§,~].
Now suppose that a > c. Let r = a — c and let s = b — d. Then

—1 = ad —6c = (c + r)d —(d + s)c —dr— es, so as = r<i + 1 and s > r .

Furthermore, [£, §] is an intégral subsimplex of [o, l] and [f ,
§] is the right

part of [£, .Ifa=c, then a=c=l, Z? =d+l, and [g, is the right

part of [y, .It follows that T' is connected and hence T' is an ordered

rooted binary tree.

Figure 20

The tree T ; of intégral subsimplices of [0, 1]

Now we consider intégral projective maps for [o, l]. It is easy to see that

they are given by linear fractional transformations corresponding to matrices in

GL(2,Z). Let [j, and [§, be intégral subsimplices of [o, l] as above.

There is a unique intégral projective map /: [J, j] -* [f ,
§] with /(|) = f

and /(^) = § •
The function / is defined by



as a linear fractional transformation and is given by the matrix

Since

it follows that /(f±f) = §±§, and hence / ([f , f±f]) = [f , f±§] and

fffîii 2l) = |"f±§,sl. This shows that an intégral projective map

/ : [f ,
J] -» [g, §] restricts to intégral projective maps

The converse is also true; if

are intégral projective maps, then they are the restrictions of an intégral

projective map g : [f,^] — [g
,

§] .
It follows as in §2 that there is a

bijection between P/P + ( Ai) and the set of reduced tree diagrams.

Suppose f,g G P/P + (Ai), and let (P, Q) and (fI,S) be reduced tree

diagrams for / and g . Let Qb e a T7T
7 -tree such that Q C Q' and R <z Ql.Q

1

.

Then there are T'-trees P7P
7 and such that PC P f

, SC S', (P',Q f
) is

a tree diagram for / and (Q
f

,S
f

) is a tree diagram for g. Then (P',S f
) is

a tree diagram for 5/". This implies that the group structure for P/P +
( Ai)

can be determined by the tree diagrams. Since the tree T of standard dyadic
intervais is isomorphic, as an ordered rooted binary tree, to the tree T'

,
this

proves the following.

Theorem 7.2. F P/P+(Ai).

We still view S
{

as [o, l] with the endpoints identified. Apiecewise intégral
projective (PIP) homeomorphism of S

1

is a homeomorphism /: S
1

— > S 1S

1

such

that there is an intégral subdivision Sof [o, l] with f\ intégral projective
for each simplex a of S. We dénote by PIP + (S

l
) the group of orientation

preservingPIP homeomorphisms of Sl.S
1

.
The proof of Theorem 7.2 also

proves Theorem 7.3.



Theorem 7.3. T= PIP+(S l
).

The three fonctions in PIP + (S
l

) corresponding to A, B, and C are the

following.
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