
LECTURES ON APPROXIMATE GROUPS

EMMANUEL BREUILLARD

Abstract. These notes are based on a series of lectures given at Clermont-
Ferrand in June 2010 and at IHP (Paris) in February-March 2011. They give

an introduction to the theory of approximate groups.
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Part 1. Tools from combinatorics

In this first chapter, we introduce the basic combinatorial machinery that will be
used in later chapters and give the general properties that hold for all approximate
groups.

1. Approximate groups: introduction and definition

The notion of an approximate subgroup of an ambient group was defined by T.
Tao in [29] as follows:

Definition 1.1. Let K > 1. A finite subset A of an ambient group G is said to be
a K-approximate subgroup of G if the following conditions hold
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• A contains id and is symmetric (i.e. A−1 = A), and
• there exists a subset X in G such that AA ⊂ AX and |X| 6 K.

Here AA denotes the product set AA = {xy|x, y ∈ A} and |X| the cardinality
of the subset X. Note that AA ⊂ AX is equivalent to AA ⊂ X−1A since A is
assumed symmetric. By a slight abuse of language, we talk about an “approximate
group”, when we really mean a K-approximate subgroup of some ambient group.

This definition suggests that approximate groups are finite subsets of G that are
almost closed under multiplication. As the reader will easily check, when K = 1
we recover subgroups, i.e. 1-approximate subgroups are the same thing as finite
subgroups of G. So approximate groups can be thought of as a way to quantify
how close a finite subset of a group is to be a genuine subgroup. Here K is thought
of as a fixed parameter and A is a potentially huge subset of G.

Note that we always assume that approximate groups are subsets of an ambient
group.1

Example. [arithmetic progressions] The archetypal example of an approximate
group that is far from being a subgroup is the interval A = [−N,N ] = {x ∈
Z,−N 6 x 6 N} in the ambient group Z. Clearly AA = [−2N, 2N ] = XA, where
X = {−N,N}. Hence A is a 2-approximate subgroup of the ambient group G = Z.
�
Example. [generalized (or multidimensional) arithmetic progressions]. The previ-
ous example can be extended to higher dimensions. For example the box B =∏d
i=1[−Li, Li] in Zd with Li ∈ N satisfies BB ⊂

∏d
i=1[2Li, 2Li], thus BB ⊂ XB,

where X is the subset of the 2d vectors with coordinates ±Li. So B is a 2d-
approximate subgroup of Zd. Note moreover that if π is any group homomorphism
Zd → Z, then π(B) is a 2d-approximate subgroup of Z. Those are called (symmet-
ric) “generalized arithmetic progressions”. �

Exercise 1.2. Let H be a finite group and A := H\Y , where Y is a symmetric sub-
set of H of size |Y | 6

√
|H| and not containing id. Show that A is a 2-approximate

subgroup of H.

Hint: find x ∈ H such that Y ∩ xY = ∅.

Exercise 1.3. Let H be a finite group of cardinal N . Let A be a random symmetric
subset of H containing id. (a) Show that AA = H with overwhelming probability
as N →∞. (b) Show that for every fixed K > 1, although A constitutes a positive
proportion of H with overwhelming probability as N → ∞ (in fact typically half
of H), the probability that A is a K-approximate subgroup of H decays to zero
exponentially fast as N →∞.

Hint: (a) given x ∈ H, estimate the probability that A ∩ Ax = ∅. (b) given X ⊂ H of size K, estimate the

probability that H ⊂ AX using the fact that for disjoint sets Yi in H the events “A hits Yi” are independent.

We will sometimes need the concept of a Freiman homomorphism between fi-
nite subsets of various groups. This notion is a weakening of the notion of group
homomorphism that is particularly well suited to approximate groups.

1It is possible to define a “local” version of the notion of approximate group. Namely we could drop

the requirement that A lies inside an ambient group, and ask instead to be given the multiplication

table of the first few power sets of A without reference to any preexistent group. Most of the basic
yoga extends without difficulty to this local setting.
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Definition 1.4 (Freiman homomorphism). Let k > 1. A Freiman k-homomorphism
is a map φ : A→ B between a finite subset A of an ambient group G and another
such set B in an another ambient group H, such that for all m 6 2k,

φ(x1)ε1 · ... · φ(xm)εm = 1 (1.4.1)

whenever xε11 · ... · xεmm = 1 for every x1, ..., xm ∈ A and every choice of ε1, ..., εm ∈
{±1}.

Moreover we say that φ is a Freiman k-isomorphism if φ is one-to-one and φ−1 :
φ−1(A)→ A is a Freiman k-homomorphism. This is equivalent to the requirements
that (1.4.1) holds if and only if xε11 · ... · xεmm = 1.

We warn the reader that our terminology for a Freiman isomorphism differs
slightly from that of other authors in the commutative context (e.g. [31]). The dif-
ference is minor, but Definition 1.4 seems to be better suited to the non-commutative
context (see Exercise 1.7 below).

Observe that a Freiman 1-homomorphism is nothing else but a map satisfying
φ(1) = 1 and φ(a−1) = φ(a)−1 whenever 1, a, a−1 ∈ A. Moreover a group homo-
morphism (resp. injective group homomorphism) is a Freiman k-homomorphism
(resp. k-isomorphism) for every k > 2.

Observe further that if φ is a Freiman k-homomorphism defined on A, then φ
extends to a map defined on (A∪A−1∪{1})k by setting φ(1) = 1 and φ(aε11 ...a

εk
k ) =

φ(a1)ε1 ...φ(ak)εk for a1, ..., ak ∈ A. This extension satisfies φ(uv) = φ(u)φ(v) for
all u, v ∈ (A ∪A−1 ∪ {1})[ k2 ].

Conversely, any map φ defined on (A ∪ A−1 ∪ {1})2k taking values in a group
H and satisfying φ(1) = 1 (resp. φ(x) = 1 iff x = 1 for all x ∈ (A ∪ A−1 ∪ {1})2k)
and φ(uv) = φ(u)φ(v) for all u, v ∈ (A ∪ A−1 ∪ {1})k induces on A a Freiman
k-homomorphism (resp. k-isomorphism).

We also have:

Proposition 1.5 (Invariance under Freiman homomorphism). If A is a K-approximate
group and φ a Freiman 2-homomorphism, then φ(A) is a K-approximate group too.
Similarly, if A is a (symmetric) generalized arithmetic progression of dimension d,
then so is φ(A).

Proof. Note that φ(1) = 1, φ(a−1) = φ(a)−1 and φ(ab) = φ(a)φ(b) for ev-
ery a, b ∈ A. The first assertion follows immediately. For the second, let A =
π(B) =

∏d
1 x

[−Li,Li]
i for commuting xi’s, and check by induction on n that φ(xnii ) =

φ(xi)ni for all ni with |ni| 6 Li, and by induction on j 6 d that φ(xn1
1 ...x

nj
j ) =

φ(x1)n1 ...φ(xj)nj and that the φ(xi) commute as well.

Exercise 1.6. Verify the claims after Definition1.4. Show that a map φ from a fi-
nite subset A of a group G into another group H extends to a homomorphism defined
on the subgroup 〈A〉 generated by A if and only if φ is a Freiman k-homomorphism
for every k. Suppose now that 〈A〉 6 G is finitely presented as an abstract group.
Show that there is some finite k such that any Freiman k-homomorphism from A
to another group H extends to a group homomorphism defined on 〈A〉.

Exercise 1.7. In the additive combinatorics literature, a Freiman k-homomorphism
is a map from a finite subset A of an abelian ambient group G to another abelian
group H such that φ(x1) + ...+φ(xk) = φ(y1) + ...+φ(yk) whenever x1 + ...+xk =
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y1 + ... + yk. Let k > 2. Show that every Freiman k-homomorphism in the sense
of Definition 1.4 is a Freiman k-homomorphism in that sense. Conversely, show
that every Freiman 2k-homomorphism in that sense induces on A − A a Freiman
k-homomorphism in the sense of Definition 1.4 by setting φ(a− b) = φ(a)− φ(b).

2. Small doubling and small tripling

Approximate groups were introduced by Tao in order to understand a larger
class of subsets, namely subsets A of an ambient group that have small doubling,
or small tripling.

Definition 2.1 (small doubling/tripling). Let K > 1. We say that a finite subset
A in G has doubling (resp. tripling) at most K, if |AA| 6 K|A| (resp. |AAA| 6
K|A|).

It is clear from the definitions that if A is a K-approximate group, then ∀n >
1, |An| 6 Kn−1|A|, thus A has doubling at most K and tripling at most K2. The
following is a converse to that statement and is one of the main justifications for
the introduction of approximate groups.

Proposition 2.2 (small tripling implies approximate group). There is an (explicit)
absolute constant C such that the following holds. Let A be a finite subset of an
ambient group G. If A has tripling at most K, then (A ∪ A−1 ∪ {1})2 is a CKC-
approximate group of size 6 CKC |A|. More precisely:

(i) if A has tripling at most K, then |An| 6 K2n−5|A| for all n > 3.
(ii) if A has tripling at most K, then B := A ∪ A−1 ∪ {id} satisfies |B3| 6

14K3|A|.
(iii) if A = A−1 and |A5| 6 K|A|, then A2 is a K-approximate group.

In other words, small tripling implies small “n-pling” and symmetrizing and
taking the square of the subset and is enough to “smooth out” the subset A into
an approximate group2. We postpone the proof to the next paragraph, where the
necessary material will be introduced.

Remark. Note that we assume small tripling and not small doubling in this proposi-
tion. In general small doubling alone does not imply small tripling as the following
example shows.

Example. Let A := {x} ∪ H where H is a finite subgroup of G and x ∈ G
is such that H ∩ xHx−1 = {1}. Then clearly A2 = {x2} ∪ Hx ∪ xH ∪ H, thus
|A2| 6 3|H| + 1 = 3|A| − 2 6 3|A| and A has doubling at most 3. On the other
hand A3 contains HxH and |HxH| = |H|2, so |A3| is larger than any given multiple
of |A| as soon as |H| is large enough.

This example is quite typical of the general case, and Tao proved in [29] that if
A has small doubling but not small tripling then one of the “double cosets” AaA
for some a ∈ A must be significantly larger than A, see exercise ??. �

However, when G is abelian, it is true that small doubling implies small tripling.
In fact, one has the Plunnecke-Ruzsa sumset estimates:

2If A has small tripling, it may not itself be an approximate group (see Exercise 1.3 for an
example), although its symmetrized square is.
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Proposition 2.3 (Plunnecke-Ruzsa sumset estimates). Suppose G is an abelian
ambient group and A a finite subset such that |AA| 6 K|A|. Then for every m,n ∈
N one has |AnA−m| 6 Km+n|A|. Moreover H := AA−1 is a K5-approximate group
of size 6 K2|A|.

The original proof of the Plunnecke-Ruzsa estimates relied on a beautiful but
rather intricate graph theoretical construction (see [31] or [16]). Compared to the
simple proof of Proposition 2.2 we are about to give in the next section, the proof
Proposition 2.3 required much more sophisticated tools. However, T. Tao later
found a simple combinatorial proof with a slightly worse constant (Km+n being
replaced by K6(m+n), see [31]), which would be by far enough for our purposes. But
this is not the end of the story, very recently and very unexpectedly G. Petridis, a
graduate student of T. Gowers, found a very short proof of these estimates ([?]).
We will give Petridis’ argument in the next section, after we introduce the Ruzsa
distance.

Assuming only small doubling, one can still say something about A even in the
non-commutative case, and Petridis new argument allows to give a simple proof of
the following.

Proposition 2.4 (Small doubling). There is an (explicit) absolute constant C > 0
such that the following holds. Suppose A is a finite subset of an ambient group G
such that |AA| 6 K|A|. Then, there exists a subset A0 of A with the following
properties

(i) |A0| > |A|/K and |A3
0| 6 K3|A0|.

(ii) H = (A0 ∪ A−1
0 ∪ {1})2 is a CKC-approximate subgroup such that A ⊂

XH∩HY , where X,Y are subsets of size at most K2 and |H| 6 CKC |A0|.

In Section 4, we will also establish the following similar result:

Proposition 2.5 (Control by an approximate group). Assume that A and B are
two subsets of an ambient group such that |AB| 6 K min{|A|, |B|}. Then there is
a CKC-approximate subgroup H of G, with size 6 CKC min{|A|, |B|}, such that
H ⊂ (A−1A)2 ∩ (BB−1)2 for which A ⊂ XH and B ⊂ HY for some subsets X
and Y of size at most CKC .

There is a wide literature on sets with small doubling in various groups, in Z in
particular, where the celebrated Freiman theorem (see Part 2 below) provides the
rough classification of sets of small doubling in Z: any such set is very close (in
some precise sense) to a generalized arithmetic progression.

The constant K here can take real values between 1 and infinity. The following
simple lemma characterizes what happens when K = 1.

Proposition 2.6 (K=1). Suppose A is a finite subset of a group G. The following
are equivalent:

(i) |AA| 6 |A|.
(ii) A = xH, where H is a finite subgroup of G and x normalizes H.

Proof. Clearly (ii) implies (i), so we focus on (i) implies (ii). Given a ∈ A, the
subset aA is contained in AA and both sets have the same size, so aA = AA. It
follows that aA = a′A for every a, a′ ∈ A. In particular A−1A ⊂ AA−1. Similarly
AA−1 ⊂ A−1A and so A−1A = AA−1. Set H = A−1A. Since aA = a′A for every
a, a′ ∈ A, we see that HA ⊂ A. It follows that H2A ⊂ A, i.e. H2 ⊂ AA−1 = H.
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Hence H is a finite subset closed under multiplication: it must be a subgroup of
G. Moreover Ha = A for every a ∈ A, because |H| = |Ha| > |A| and Ha ⊂ A.
Similarly aH = A for every a ∈ A. Hence aH = Ha for every a ∈ A.

When K is close to 1, the requirement that a subset A has doubling at most K
is very strong and one can then deduce the following complete characterization of
such sets, a result due to Freiman [13].

Proposition 2.7 (K < 3
2 ). Suppose A is a finite subset of a group G. Let K be a

positive number with K < 3
2 . The following are equivalent:

(i) |AA| 6 K|A|.
(ii) There is a finite subgroup H in G such that |A| > 1

K |H| and A ⊂ aH for
some a ∈ NG(H), the normalizer of H in G.

If these conditions are satisfied, then one can take H = A−1A = AA−1, and H
is normalized by every element of A.

Note that 3
2 is sharp: if A = {0, 1} ⊂ Z, then |AA| = 3

2 |A| and yet A is not
contained in a coset of a finite subgroup of G = Z.
Proof. First observe that the second item implies the first: if A ⊂ aH, with
a ∈ NG(H), then AA ⊂ a2H, hence |AA| 6 |H| 6 K|A|. So from now on we focus
on the other implication.

Recall that if a finite subset H of a group G is stable under multiplication, i.e.
HH ⊂ H, then H is a subgroup of G. Let H = AA−1. First let us check that
H = A−1A. Observe that for every a, b ∈ A, aA ∩ bA 6= ∅; indeed |aA ∩ bA| =
2|A| − |aA ∪ bA| > 2|A| − |AA| > 1

2 |A| > 0. This means that there are a′, b′ ∈ A
such that aa′ = bb′, i.e. a−1b = a′b′−1. In particular A−1A ⊂ AA−1. Reversing the
roles of A and A−1, we obtain H = AA−1 = A−1A.

Now let us show that HH ⊂ H. The argument above shows that for all a, b ∈
A, |b−1aA ∩ A| = |aA ∩ bA| > 1

2 |A|. In particular, there are strictly more that
|A|/2 couples (c, d) with c, d ∈ A such that b−1ac = d, i.e. b−1a = dc−1. So for
every x ∈ H = A−1A, there are strictly more that |A|/2 representations of x as
x = dc−1, with c, d ∈ A. Consequently, given two elements x, y ∈ H, there must
a representation x = dc−1 and a representation of y = ef−1 with e = c. Then
xy = df−1 ∈ AA−1 = H.

So we have shown that H is a subgroup. Moreover, since H = A−1A, we have
A ⊂ aH for every a ∈ A. Hence H = AA−1 ⊂ aHa−1, and thus A normalizes H.

On the other hand |H| < 2|A|, because, as we have shown, all fibers of the map
A×A→ H, (a, b) 7→ a−1b have size > |A|/2.

Let us write A = aB for some subset B ⊂ H. We have |B| > 1
2 |H|. It follows

that a−1BaB = H, because hB−1 must intersect a−1Ba for every h ∈ H. However
by assumption |AA| = |a−1BaB| 6 K|A|. So |H| 6 K|A|, and we are done.

Exercise 2.8. In the situation of Proposition 2.7 prove that A2 is a coset of a
subgroup.

Exercise 2.9. Show that if K < 3
2 , then |AB| 6 K min{|A|, |B|} if and only if

A lies in some left coset and B in some right coset of a finite subgroup H of size
6 K min{|A|, |B|}.

If the doubling constant K gets larger than 3
2 , no such complete characterization

is available. However if K < 2 we will show in Section ?? that doubling at most K
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forces A to be contained in the union OK(1) cosets of some finite subgroup of G.
This follows from the well-known Kneser theorem when G is abelian (see [31]) and
was recently generalized to non-commutative groups by Y. Hamidoune and by T.
Sanders (see also Tao’s blog, where a short proof of this is given for K < 1+

√
5

2 ).
When K is larger than 2, no such strong results are available, but it is possible

nonetheless to identify some structure. This will be the main topic of the last
section of these notes.

3. Ruzsa calculus

In this paragraph, we prove the results about product sets stated in the last
section and present the standard tool-kit of approximate groups. We will sometimes
refer to this material as Ruzsa calculus. It is essentially due to Ruzsa, who first
pioneered these ideas in the abelian setting, and to Tao who worked out these
results in the non-commutative setting in [29].

The following two lemmas are the basic combinatorial tools that will be used all
over the place: the Ruzsa triangle inequality, and the Ruzsa covering lemma. Let
G be an ambient group and A,B,C three finite subsets in G. We set

d(A,B) = log
|AB−1|√
|A||B|

. (3.0.1)

Note that d(A,B) > 0 always because |AB−1| > max{|A|, |B|} >
√
|A||B|. More-

over d(xA, yB) = d(Ax,Bx) = d(A,B) for all x, y ∈ G. The main reason for
introducing this quantity is the

Lemma 3.1 (Ruzsa triangle inequality). Let A,B,C be finite subsets of G. We
have d(A,B) 6 d(A,C) + d(C,B). Moreover d(A,B) = 0 if and only if A and B
are left cosets of a common finite subgroup H of G.

Proof. For each x ∈ AB−1 pick a couple (ax, bx) ∈ A × B such that x = axb
−1
x .

Consider the map AB−1×C → AC−1×CB−1 sending (x, c) 7→ (axc−1, cbx). Then
this map is clearly injective, thus |AB−1||C| 6 |AC−1||CB−1|, which is equivalent
to the desired triangle inequality.

If d(A,B) = 0, then |A| = |B| = |AB−1|. Note that up to translating A and
B on the left, we may assume that both contain the identity, so A ⊂ AB−1 and
B−1 ⊂ AB−1. It follows that A = AB−1 = B−1. And hence AA = A, so A is
stable under multiplication. It must be a subgroup of G. We are done.

Note that d(A,A−1) = 0 if and only if |AA| = |A|, so this lemma gives another
proof of Proposition 2.6 above.

The next key ingredient is the following simple observation:

Lemma 3.2 (Ruzsa covering lemma). Let A,B be finite subsets of G. Suppose
|AB| 6 K|A|, then there is a subset X ⊂ B with |X| 6 K and B ⊂ A−1AX.

Proof. Let X := {b1, ..., bn} be elements in B such that the Abi’s form a maximal
family of pairwise disjoint subsets of AB−1. The bound |AB| 6 K|A| forces |X| 6
K. But for every b ∈ B, Ab must intersect one of the Abi’s, i.e. b ∈ A−1Abi. We
are done.

We are now ready to prove Proposition 2.2 above.
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Proof of Proposition 2.2 By Ruzsa’s triangle inequality, we may write

d(An, A−2) 6 d(An−1, A−1) + d(A−1, A) + d(A,A−2).

This translates into the following inequality: |An+1| 6 |An| |A
2|
|A|
|A3|
|A| for n > 1. Thus

|An+1| 6 K2|An|. Iterating we obtain |An| 6 K2n−5|A| for all n > 3.
Let B = A ∪ A−1 ∪ id. The product set B3 is a union of 14 subsets of the

form Aε1Aε2Aε3 , εi ∈ {0,±1}. One needs to estimate |AA−2|, |A−1A2| and
|AA−1A|. The first two are at most K2|A| as can be seen by applying Ruzsa’s
triangle inequality in this way: d(A,A2) 6 d(A,A−1) + d(A−1, A2) and then
swapping A with A−1. The last one, i.e. |AA−1A| is at most K3|A|; this fol-
lows again from Ruzsa’s inequality d(A,A−1A) 6 d(A,A−1) + d(A−1, A−1A) using
the estimate on A−2A just obtained to bound d(A−1, A−1A). We then obtain
|B3| 6 2K(3 + 3K +K2)|A| 6 14K3|A|.

If A = A−1, and |A5| 6 K|A|, then Ruzsa’s covering lemma implies that (A2)2 ⊂
XA2, for some X of size at most K. Hence A2 is a K-approximate group.

In order to prove the Plunnecke-Ruzsa estimates (Proposition 2.3) and the structure
result for sets of small doubling (Proposition 2.4) we first need to formulate Petridis’
lemma.

Lemma 3.3 (Petridis lemma, [23]). Let A,B be a finite subsets of an ambient
group G such that |BA| 6 K|A|. Then there exists a subset A0 ⊂ A such that for
every finite subset X in G, one has |BA0X| 6 K|A0X|.

Proof. Let φ be the map from finite subsets of G to finite subsets of G defined
by φ(X) = BX. Choose a subset A0 in A such that |φ(A0)|/|A0| is minimal and
let K0 be this minimal ratio. By the assumption on the doubling of A, we have
K0 6 K. Also note that φ preserves inclusion: i.e. A ⊂ A′ implies φ(A) ⊂ φ(A′).

The proof proceeds by induction on |X|. Clearly the claim holds if |X| = 1. So,
suppose it holds for X and let X ′ = X ∪ {x}. Then φ(A0X

′) = φ(A0X) ∪ φ(A0x),
so |φ(A0X

′)| + |φ(A0X) ∩ φ(A0x)| = |φ(A0X)| + |φ(A0x)|. But φ(A0X ∩ A0x) ⊂
φ(A0X) ∩ φ(A0x), so

|φ(A0X
′)|+ |φ(A0X ∩A0x)| 6 |φ(A0X)|+ |φ(A0x)|.

On the other hand, we may write A0X ∩ A0x = Sx for some subset S ⊂ A0, and
by minimality of A0, we have |φ(Sx)| = |φ(S)| > K0|S| = K0|Sx|. In particular,

|φ(A0X
′)|+K0|A0X ∩A0x| 6 |φ(A0X)|+ |φ(A0x)| 6 K0|A0X|+K0|A0|,

hence
|φ(A0X

′)| 6 K0|A0X
′|

as desired.

We are now ready to prove the Plunnecke-Ruzsa estimates.

Proof of Proposition 2.3. We take X = An−1 in Petridis lemma, and using the
assumption that G is abelian, we get |A0A

n| 6 K0|A0A
n−1| 6 ... 6 Kn

0 |A0|. In
particular |An| 6 Kn|A|. Moreover, by the Ruzsa triangle inequality, d(An, Am) 6
d(An, A−1

0 ) + d(A−1
0 , Am), so |A0||AnA−m| 6 |AnA0||AmA0| 6 Kn+m

0 |A0|2, and in
particular |AnA−m| 6 Kn+m|A| as desired.
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Letting H = A−1A, we have |AH2| = |A3A−2| 6 K5|A| by the above. Hence by
Ruzsa covering, H2 ⊂ XH for some subset X of size at most K5. Hence H is a
K5-approximate group.

Petridis lemma also gives a quick proof of Proposition 2.4.

Proof of Proposition 2.4. From Petridis lemma we have |AA0| 6 K|A0|, so in
particular |A0| 6 |A|/K, and also |AA0X| 6 K|A0X| for every X, hence setting
X = A0 we obtain |A3

0| 6 K|A2
0| 6 K2|A| 6 K3|A0|.

By Proposition 2.2 applied to A0, we see that H = (A0 ∪A−1
0 ∪{1})2 is a CKC-

approximate subgroup of size 6 CKC |A0|. By Ruzsa covering, since |AA0| 6 K|A0|
we get A ⊂ XA0A

−1
0 ⊂ XH for some set X of size 6 K.

On the other hand |A0A| 6 K|A| 6 K2|A0|. Hence by Ruzsa covering A ⊂
A−1

0 A0Y ⊂ HY for some Y of size 6 K2. We are done.

Exercise 3.4. Let K > 2 and assume A,B are two finite subsets of an abelian group
G such that and |A + B| 6 K

√
|A||B|. Show that |n1A − n2A + n3B − n4B| 6

KOn1,...,n4 (1)
√
|A||B| for any n1, ..., n4 ∈ N.

With these basic tools in hand, we can now understand what happens to an
approximate group when it is intersected with a subgroup, or when it is mapped
into another ambient group by a homomorphism, or when it acts on a set via a
group action.

Proposition 3.5 (inheritance to subgroups and quotients). Let A be a K-approximate
subgroup of G.

(i) if H is a subgroup of G, then A2 ∩H is a K3-approximate subgroup of G.
Moreover

∀k > 1, |Ak ∩H| 6 Kk−1|A2 ∩H|.

(ii) if B is an L-approximate group, then A2 ∩ B2 is a (KL)3-approximate
group, in fact

∀k, l > 1, |Ak ∩Bl| 6 Kk−1Ll−1|A2 ∩B2|.

(iii) if π is a group homomorphism G → Q, then π(A) is a K-approximate
subgroup of Q.

Proof. The proofs are simple applications of the definitions and the Ruzsa covering
lemma. Item (iii) is obvious (see also Proposition 1.5). Let us prove (i). We have
Ak ⊂ Xk−1A. But every set of the form (xA) ∩ H is contained in y(A2 ∩ H) for
some y ∈ xA ∩H. So Ak ∩H ⊂ Y (A2 ∩H) for some set Y of size at most Kk−1.
In particular A2 ∩H is a K3-approximate group.

We now prove (ii). Ak ∩ Bl is contained in at most Kk−1Ll−1 “cosets” of the
form xA ∩ yB. Each of them is contained in a “coset” of A2 ∩ B2. In particular
(A2∩B2)2 ⊂ A4∩B4 is contained in at most (KL)3 cosets of A2∩B2, i.e. A2∩B2

is a (KL)3-approximate group.

Proposition 3.6 (Behavior w.r.t group actions). Let G act on a set Ω and A a
K-approximate subgroup of G.
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(i) (size of an orbit) If x ∈ Ω, and Hx is the stabilizer of x, then

∀k > 1, |A| 6 |A · x||A2 ∩Hx| 6 K2|A|.

Moreover if y ∈ A · x, then 1
K 6 |A·y|

|A·x| 6 K.
(ii) (partition into orbits) Let Y be a maximal subset of Ω such that all A ·y’s,

y ∈ Y are disjoint. Then Ω is covered by the A2 · y for y ∈ Y and the
multiplicity of the cover is at most K4.

(iii) (number of orbits) If Y1 and Y2 are two such maximal subsets, and Ω is
finite, then 1

K4 6 |Y1|
|Y2| 6 K4.

Proof. We first prove (i). Consider the map A→ A ·x. The cardinal of the largest
fiber is at most |A2 ∩Hx|. This shows that |A| 6 |A · x||A2 ∩Hx|. Now for each
y ∈ A ·x, let ay ∈ A be such that ay ·x = y. Then |∪y ay(A2∩Hx)| > |A ·x||A2∩Hx|
because this is a disjoint union. Hence |A · x||A2 ∩Hx| 6 |A3| 6 K2|A|. Finally if
y ∈ A · x, then A · y ⊂ A2 · x ⊂ XA · x, so |A · y| 6 K|A · x| and reversing the roles
of x and y we get the required bound.

We now consider item (ii). If x ∈ Ω, then by maximality of Y , A · x intersects
A · y for some y ∈ Y . Hence x ∈ A2 · y. So the A2 · y, y ∈ Y , cover Ω. Moreover if
x ∈ A2 · y, then |A · x| 6 K2|A · y|. Also y ∈ A2 · x so A · y ⊂ A3 · x. Therefore, if
x lies in N sets A2 · yi, for y1, ..., yN ∈ Y , then

N

K2
|A · x| 6

∑
|A · yi| 6 |A3 · x| 6 K2|A · x|.

In particular N 6 K4.
Regarding item (iii), note that (ii) shows that given y ∈ Y2 there are at most K4

elements y1 ∈ Y1 such that A · y1 ∩A · y 6= ∅. So the map Y1 → Y2 that associates
to every y1 ∈ Y1 an element y2 ∈ Y2 such that A · y1 ∩ A · y2 6= ∅ has all its fibers
of size at most K4. This map is well defined because of the maximality of Y2. We
get |Y2| 6 K4|Y1|. Reversing the roles of Y1 and Y2, we are done.

4. Multiplicative energy and the Balog-Szemeredi-Gowers lemma

There are several ways in which one may want to relax the axioms for a group
and thus come up with a notion of an “approximate group”. One way is the small
tripling condition, and we saw in Proposition 2.2 above that this condition is essen-
tially equivalent (up to symmetrizing and taking the product set) to the approxi-
mate group notion defined in 1.1. Another possible way is to count the number of
coincidences of the form a1a2 = a3a4 occurring among elements a1, a2, a3, a4 ∈ A.
This leads to the notion of multiplicative energy of a finite set A. The main result of
this section, the Balog-Szemeredi-Gowers lemma (in short BSG lemma), says that
here again, this leads to a roughly equivalent notion of approximate group.

Let A,B be two finite subsets of an ambient group G and let 1A (resp. 1B) be
the indicator function of A (resp. B).

Definition 4.1 (Multiplicative energy). The multiplicative energy of the pair (A,B)
is the quantity

E(A,B) = ‖1A ∗ 1B‖22 = |{(a, b, a′, b′) ∈ A×B ×A×B; ab = a′b′}|
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To see that the last equality, simply expand

‖1A ∗ 1B‖22 =
∑
x

( ∑
a∈A,b∈B

1
)2 = |{(a, b, a′, b′) ∈ A×B ×A×B; ab = a′b′}|.

Note that E(gA,Bh) = E(A,B) for every g, h ∈ G. If A = B, then we talk about
the multiplicative energy E(A,A) of a single set A. In particular, E(A,A)/|A|4 is
the probability that 4 elements of A chosen at random uniformly and independently
satisfy a1a2 = a3a4. If A were a finite subgroup of G, then this probability would
be exactly 1

|A| and we would have E(A,A) = |A|3. Asking for E(A,A)/|A|3 to
be not too small (say ≥ 1

K ) is therefore another tentative way to approximate the
notion of a finite subgroup. In the next two statements, we will compare this to
the small tripling and approximate group conditions.

In fact, the multiplicative energy can never be larger than |A| 32 |B| 32 and a simple
application of the Cauchy-Schwarz inequality shows that the multiplicative energy
is large whenever the doubling constant is small. This is the content of the following
lemma.

Lemma 4.2 (small doubling implies large multiplicative energy). Given two finite
subsets A,B of G and K > 1 one has

(i) E(A,B) 6 |A| 32 |B| 32 , and

(ii) If |AB| 6 K|A| 12 |B| 12 , then E(A,B) > |A|
3
2 |B|

3
2

K

Proof. We have ‖1A ∗ 1B‖2 6 ‖1A‖1‖1B‖2 = |A||B| 12 . Interchanging A and B and
multiplying the two inequalities, we obtain (i).

To prove (ii), set r(x) = |{(a, b) ∈ A×B;x = ab}| and observe that E(A,B) =∑
x∈AB r(x)2, while

∑
x∈AB r(x) = |A×B|. Applying Cauchy-Schwarz we get

|A×B|2 6 |AB|E(A,B)

and the result follows.

The converse of (ii) does not hold as such. If A is a set of doubling at most
K, then adding to A any set of comparable size may very well ruin completely the
small doubling condition (for example A = {1, ..., n} ⊂ Z has doubling at most 2,
but A∪ {2, 22, ..., 2n} has doubling > n). However this operation will not alter too
much the inequality E(A,A) > |A|/K. Indeed if A ⊂ A′ and |A′| 6 M |A|, then
E(A′, A′) > E(A,A) > |A′|/MK. In that sense the large multiplicative energy
condition is a much more robust one than small doubling.

A consequence of the Balog-Szemeredi-Gowers lemma below will be a partial
converse to Lemma 4.2(ii), namely if E(A,B) is large, then some non trivial pro-
portion of A and B will satisfy the doubling condition.

We will state the BSG lemma first in its graph theoretic form and then describe
its consequences for the multiplicative energy. The BSG lemma is one of the most
important results from combinatorics that will be used in these lectures. Much can
be done without it (for example the Ruzsa calculus that we have been using so far),
but much can be done with it as well.

Lemma 4.3 (Balog-Szemeredi-Gowers lemma, graph theoretic form). There is a
universal constant C > 0 such that the following holds. Suppose A,B are two finite
subsets of an ambient group G with |A| = |B| = N and suppose that G is a bipartite
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graph whose left vertices are elements of A and right vertices are elements of B.
Suppose that the number of edges satisfies

|G| > N2/K,

but that
|A ·G B| 6 KN,

where A ·G B denotes the set of products ab with a ∈ A, b ∈ B and (a, b) is an
edge of G. Then there are subsets A′ ⊂ A and B′ ⊂ B with |A′| > N/CKC and
|B′| > N/CKC such that

|A′B′| 6 CKCN.

In fact the following (obviously) stronger statement holds: for every a′ ∈ A′ and
b′ ∈ B′, there are at least N5/CKC representations of a′b′ in the form

a′b′ = a1b1(a2b2)−1(a3b3),

where a1, a2, a3 ∈ A, b1, b2, b3 ∈ B and each (ai, bi) ∈ G.

Proof. We will not give the full proof of the Balog-Szemeredi-Gowers lemma here,
rather we will show how to derive it from the following purely graph theoretical
statement.

Lemma 4.4 (Existence of many paths of length 3, Lemma 6.20 in [31]). Let G be
a bipartite graph, and suppose that the number of left vertices equals the number of
right vertices equals N and that the number of edges satisfies |G| > N2/K. Then
there are subsets A′ (resp. B′) of left (resp. right) vertices of size > N/CKc such
that for any a′ ∈ A′ and b′ ∈ B′, there are at least N2/CKc paths of length 3 in G
between a′ and b′. Here C, c > 0 are absolute constants (in fact one can take c = 4,
C = 212).

The BSG Lemma is a simple application of the above “paths of length three
lemma”. To see it, we first need to trim our bipartite graph G a little bit by
removing the edges (a, b) such that r(ab) := |{(x, y) ∈ G;xy = ab}| 6 N/2K2. The
number of removed edges is∑

x∈A·GB,r(x)6N/2K2

r(x) 6 |A ·G B| ·N/2K2 6 N2/2K 6 |G|/2.

So we can apply Lemma 4.4 to the resulting bipartite graph G′ and conclude that
there are subsets A′ and B′ of size > N/CKc such that for any a′ ∈ A′ and b′ ∈ B′,
there are at least N2/CKc paths of length 3 in G′ between a′ and b′. This means
we can find at least N2/CKc pairs (a, b) ∈ A×B such that (a′, b), (a, b) and (a, b′)
belong to G′. By definition of G′, for each one of these three pairs, we can find at
least N/2K2 pairs (x, y) ∈ G with the same product. Since a′b′ = a′b(ab)−1ab′,
this makes at least N5/4CKc+2 6-tuples (a1, a2, a3, b1, b2, b3) ∈ A3 ×B3 such that
a′b′ = (a1b1)(a2b2)−1(a3b3) with each (ai, bi) ∈ G.

Corollary 4.5 (Balog-Szemeredi-Gowers lemma, multiplicative energy form). If
A,B are two finite subsets of an ambient group G such that E(A,B) > |A| 32 |B| 32 /K.
Then the following holds

(i) |A| 6 K2|B| and |B| 6 K2|A|,
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(ii) There are subsets A′ ⊂ A and B′ ⊂ B such that |A′| > |A|/CKC and
|B′| > |B|/CKC such that

|A′B′| 6 CKC |A|,

Note that, as we saw in Lemma 4.2, conversely (i) and (ii) imply a lower bound
on the multiplicative energy E(A,B) > |A| 32 |B| 32 /C ′KC′ for some other constant
C ′.
Proof of Corollary 4.5. To see (i), note that E(A,B) = ‖1A∗1B‖22 6 ‖1A‖21‖1B‖22 6
|A|2|B|. From the assumption E(A,B) 6 |A| 32 |B| 32 /K, it follows that |B| 6
K2|A|, and vice-versa exchanging the roles of A and B. In particular |A| 12 |B| 12 >
max{|A|, |B|}/K.

In order to prove (ii) we will apply Lemma 4.3 and build a bipartite graph G
as follows. The set of left and right vertices will be the disjoint union A t B with
N := |A| + |B| elements and we will connect a left vertex a to a right vertex b

if a ∈ A, b ∈ B and ab admits at least |A| 12 |B| 12 /2K representations a′b′, with
a′ ∈ A and b′ ∈ B. Note that if r(x) is the number of representations of x ∈ AB as
x = a′b′, with a′ ∈ A and b′ ∈ B, then

E(A,B) =
∑

(a,b)∈A×B

r(ab).

It follows immediately that

|G| ·max{|A|, |B|}
|A||B|

>
1

|A||B|
∑

(a,b)∈G

r(ab) >
|A| 12 |B| 12

2K
,

hence

|G| > |A||B|
2K2

>
N2

4K4
.

On the other hand, by construction |A ·G B| |A|
1
2 |B|

1
2

2K 6 |A×B|, and hence

|A ·G B| 6 2KN.

We may then apply Lemma 4.3 and conclude that there exist subsets A′ ⊂ A and
B′ ⊂ B with |A′| > |A|/CKC and |B′| > |B|/CKC such that |A′B′| 6 CKCN .
This proves (ii).

A useful observation in connection with multiplicative energy is that, although
E(A,B) 6= E(B,A) for arbitrary finite sets A,B, we nevertheless have E(A,A−1) =
E(A−1, A) for every finite subset A. This allows to obtain the following important
fact.

Lemma 4.6. Let A be a finite subset of an ambient group G, such that |A−1A| 6
K|A|. Then there is a subset A0 ⊂ A such that |A0| > |A|/CKC and

max{|A−1
0 A0|, |A0A

−1
0 |} 6 CKC |A0|.

Moreover we can choose A0 so that both A0A
−1
0 and A−1

0 A0 are CKC-approximate
subgroups.

Observe that a small doubling assumption |AA| 6 K|A| (such as in Proposition
2.4(i)) always implies |A−1A| 6 K2|A| and |AA−1| 6 K2|A|, since d(A,A) and
d(A−1, A−1) are both 6 2d(A,A−1) by the Ruzsa triangle inequality. However the



14 EMMANUEL BREUILLARD

converse does not hold (e.g. take A to be a coset xH of a subgroup H such that
xHx−1 ∩H = {1}).
Proof. By Lemma 4.2 E(A−1, A) > |A|3/K. But since E(A,A−1) = E(A−1, A),
we also have E(A,A−1) > |A|3/K, from where it follows by Corollary 4.5 that there
exists a subset A0 ⊂ A satisfying the desired inequality.

Then by applying Petridis’s lemma (Lemma 3.3) twice to |A−1
0 A0| 6 CKC |A0|

first and then to |A0A
−1
0 | 6 CKC |A0|, we may assume (after changing A0 into

some large subset) that |A−1
0 A0X| 6 CKC |A0X| and |A0A

−1
0 X| 6 CKC |A−1

0 X|
for every finite set X. It follows immediately that |(A−1

0 A0)2A−1
0 | 6 CKC |A0| and

|(A0A
−1
0 )2A0| 6 CKC |A0| and thus that A0A

−1
0 and A−1

0 A0 are CKC-approximate
subgroups, by Ruzsa covering.

We can now prove Proposition 2.5 from Section 2, the statement of which we
now recall.

Corollary 4.7 (Control by an approximate group, Proposition 2.5). Assume that A
and B are two subsets of an ambient group such that |AB| 6 K min{|A|, |B|}. Then
there is a CKC-approximate subgroup H of G, with size 6 CKC min{|A|, |B|}, such
that H ⊂ (A−1A)2 ∩ (BB−1)2 for which A ⊂ XH and B ⊂ HY for some subsets
X and Y of size at most CKC .

Proof. By the Ruzsa triangle inequality, we see that |AA−1| 6 K2|A| and
|B−1B| 6 K2|B|. We can then apply Lemma 4.6 and conclude that there are large
subsets A0 ⊂ A and B0 ⊂ B such that Ha := A−1

0 A0 and Hb := B0B
−1
0 are CKC-

approximate groups of size 6 CKC min{|A|, |B|}. Now, since |AA−1
0 | 6 CKC |A0|,

by Ruzsa covering A ⊂ XaHa, where Xa ⊂ A has size 6 CKC , and similarly since
|A0B| 6 CKC |A0|, we get B ⊂ HaYa for some Ya ⊂ B of size 6 CKC . Similarly
A ⊂ XbHb and B ⊂ HbYb. Let H = H2

a ∩ H2
b . Note that, as in Proposition

3.5(ii) HaYa ∩ HbYb ⊂ HY for some set Y of size 6 |Ya||Yb| 6 CKC . Similarly
XaHa ∩XbHb ⊂ XH. We are done.

Part 2. The sum product phenomenon

In this chapter, we begin our investigation of the structure of approximate groups
by two landmarks of additive combinatorics: the sum-product phenomenon and the
Freiman-Ruzsa theorem. Both results provide some structural information on a set
submitted to a small sumset condition. Such results are sometimes called inverse
theorems, and we already saw two examples of these in Propositions 2.6 and 2.7
which gave a description of sets of very small doubling.

5. Approximate rings and fields

It is natural to ask for the approximate variants of other algebraic structures,
such as rings and fields to begin with. As we shall see, unlike mere approximate
groups, the structure of approximate fields is fairly well understood. Approximate
rings are more delicate as one needs to take zero divisors into account (see [30] for a
detailed treatment of approximate rings). In what follows, we restrict our attention
to approximate fields (except in Lemma 5.5).
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Definition 5.1 (Approximate field). Let F be a field and K > 1 a constant. A
finite subset A of F is said to be a K-approximate subfield of F if A = −A and
A× = (A×)−1, A contains 0 and 1, and if there is a subset X in F with |X| 6 K,
such that AA+A is contained in AX ∩ (A+X).

From this definition, one can very quickly show that an approximate field is
almost stable under all algebraic operations. This is the content of the following
lemma. Given d ∈ N, and a finite subset A is F , let Algd(A) be the set of elements
in F that can be written as a sum of at most d terms each of which is a product
of at most d elements from ±A ∪ ±A−1, or as ratios of any two such elements.
Namely,

Algd(A) =
Bd ± ...±Bd

Bd ± ...±Bd
,

where B := A ∪A−1 ∪ {1}.

Lemma 5.2. Let K > 1 and let A ⊂ F be a K-approximate subfield. Then there
is a subset Yd of size at most KOd(1), such that Algd(A) ⊂ AYd ∩ (A+ Yd).

Proof. This is a rather straightforward exercise using repeated applications of the
Ruzsa covering lemma. Let us briefly sketch the steps. Abusing notation let us
denote by Xn a subset of F of size KOn(1) which may change from line to line as
the argument flows. First one shows by induction on n that An+1 +An ⊂ AX2n−1

writing An+1 + An ⊂ (A + A)(An + An−1) ⊂ AXAX2n−3. Then one deduces
from this (using the Ruzsa covering lemma and induction) that An ⊂ A + Xn for
some Xn of size KOn(1). Adding, one gets

∑
i=1,...,nA

i ⊂ A+Xn (where we have
abused notation). Multiplying by A on the left and applying the Ruzsa covering
once again we get

∑
i=1,...,nA

i ⊂ AXn. Taking inverses and mutiplying we get
Algn(A) ⊂ AXn. Finally using A + Algn(A) ⊂ Algn+1(A) and Ruzsa covering, we
obtain Algn(A) ⊂ A+Xn and we are done.

We are now ready to describe the structure of approximate fields. In fact it
is not so surprising: an approximate field generates a subfield that is itself not
much larger. Equivalently we could phrase this saying that there are no interesting
approximate fields. We have:

Theorem 5.3 (Classification of approximate fields). Let A be a K-approximate
subfield of F . Let FA be the subfield generated by A. Then either |A| 6 KC or
|FA| 6 KC |A|.

Proof. We claim that unless |A| 6 KC , Alg2(A) is a genuine subfield of F , and
hence coincides with FA. By Lemma 5.2, this will clearly conclude the proof of the
theorem. To prove the claim, we make the following key observation: if x /∈ Alg2(A),
then |A+xA| = |A|2. Indeed the map A×A→ A+xA is injective unless x ∈ A−A

A−A .
On the other hand we verify easily that A + (Alg2(A) · Alg2(A))A ⊂ Alg8(A) and
A+ (Alg2(A) + Alg2(A))A ⊂ Alg16(A). But, according to lemma 5.2, both subsets
are of size KO(1)|A|, which is < |A|2 unless |A| 6 KO(1). Hence Alg2(A) is stable
under multiplication and addition : it is a finite subring of F , hence a finite subfield.
We are done.

It is useful to have a simple criterion for when a subset of a field can give rise to
an approximate subfield. We show:
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Proposition 5.4 (Sufficient conditions to get an approximate field). Let A be a
finite subset of a field such that |A| > 2, |A + A| 6 K|A|, and |AA + A| 6 K|A|,
then A−A

A−A is a CKC-approximate subfield of size 6 CKC |A|.

The proof will follow easily from the following analogue of the small tripling
implies small n-pling lemma proved earlier in the context of groups (Proposition
2.2).

Lemma 5.5. Let A be a finite subset of a ring R such that |A + A| 6 K|A|, and
|AA+A| 6 K|A|. Then for every M,m > 1, we have |M(±Am)| 6 OM,m(1)KOM,m(1)|A|.

Proof. Note that A − A is a K5-approximate group (by the Plunnecke-Ruzsa
estimates Prop. 2.3). Now we claim that for every element x ∈ M(±Am) we have
xA ⊂ A−A+Xx,M,m, where Xx,M,m is a subset of R of size KOM,m(1). This easily
follows by induction on M and m. Indeed if x, y satisfy xA ⊂ A − A + X and
yA ⊂ A − A + Y , then (x + y)A ⊂ A − A + A − A + X + Y ⊂ A − A + Z with
|Z| 6 K5|X||Y |. The same holds for x−y. Similarly, to deal with xy, note that since
|AA+A| 6 K|A| we have AA ⊂ A−A+Z for some Z of size 6 K, by Ruzsa covering.
Hence xyA ⊂ x(A−A+Y ) ⊂ AA−AA+xY ⊂ 2(A−A)+Z−Z+xY ⊂ A−A+Z ′

for some Z ′ of size 6 KC |Y |. This proves the claim.
Now let us show by induction on m that Am ⊂ A − A + Xm for some subset

Xm of size 6 Om(1)KOm(1). For m = 2, this follows by Ruzsa covering from the
assumption |AA + A| 6 K|A|. Suppose we know it for m > 2, then Xm can be of
course chosen to lie inside Am+A−A. By the claim we just proved, it follows that
every x ∈ Xm satisfies xA ⊂ A−A+Xx,3,m for some Xx,3,m of size at most KOm(1).
In particular XmA ⊂ A − A + ∪x∈XmXx,3,m ⊂ A − A + Ym where Ym has size at
most Om(1)KOm(1). Hence Am+1 ⊂ AA−AA+XmA ⊂ 3(A−A) +Z −Z +Ym ⊂
A−A+Xm+1 with again |Xm+1| 6 Om(1)KOm(1).

So we have now established that for every m > 2 one has Am ⊂ A−A+Xm for
some Xm of size 6 Om(1)KOm(1). Using Proposition 2.2 additively, we can right
away conclude that M(±Am) ⊂ A − A + XM,m for every M > 1 and some XM,m

of size 6 OM,m(1)KOM,m(1) and this implies the desired bound.

Proof of Proposition 5.4 Let Q = A−A
A−A . Since |A| > 2, there is x ∈ (A − A) \ {0}.

We observe that in order to show that Q is an approximate subfield, it is enough
to check that |Ax + QQ + Q| and |(A − A)(QQ + Q)| are both of size 6 CKC |A|.
Indeed, by additive Ruzsa covering we would get QQ+Q ⊂ A

x −
A
x +X ⊂ Q+X

for some X of size 6 CKC , while by multiplicative Ruzsa covering we would get
QQ + Q ⊂ QY for some Y of size 6 CKC , and hence Q is a CKC-approximate
subfield.

But as one readily checks, both expressions (A−A)(QQ+Q) and A
x +QQ+Q are

contained in 12(±A3)
4(±A3) . Now, recall that the Ruzsa triangle inequality implies that

|BB−1|/|B| 6 (|BB|/|B|)2 for any set B in the multiplicative group of R \ {0}.
Applying this to B = 12(±A3), we will be done if we can bound BB ⊂ 144(±A6).
But we know from Lemma 5.5 that this is of size CKC |A|. We are now done.
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6. The sum-product theorem

One of the corner stones of modern arithmetic combinatorics is the sum-product
phenomenon of Bourgain-Katz-Tao [6]. This result lead to many ground break-
ing applications in particular to exponential sums in number theory (see [5]), to
non-commutative sieve theory (see [4]) and to expander graphs and spectral gap
phenomena ([2], [3]).

Theorem 6.1 (sum-product phenomenon over Fp). For every δ > 0, there is ε > 0
such that if p is a prime and A is a finite subset of Fp, then either |A| > p1−δ, or

min{|AA|, |A+A|} > |A|1+ε.

An analogous result holds over C and in fact over an arbitrary field, where it
takes the following form:

Theorem 6.2 (sum-product over an arbitrary field). There is an absolute constant
C > 0 such that the following holds. Let F be a field and A a finite subset of F
such that max{|AA|, |A+A|} 6 K|A|. Then either |A| 6 CKC , or there is a finite
subfield G ⊂ F with |G| 6 CKC |A| and there is x ∈ F such that A ⊂ xG ∪X for
some finite subset X ⊂ F of cardinal at most CKC .

Note that the conclusion is sharp in the sense that any set A ⊂ xG ∪ X with
|X| 6 KO(1) with |G| 6 O(KO(1))|A| satisfies max{|AA|, |A+A|} 6 O(KO(1))|A|.
Also note that Theorem 6.2 easily implies Theorem 6.1 because Fp has no non
trivial subfields.

We will derive Theorem 6.2 from the classification of approximate fields obtained
in the previous paragraph, i.e. Theorem 5.3. In order to do so, we would need to
show that the small doubling assumption for both multiplication and addition im-
plies a bound on Algd(A) (see §5 for the definition of Algd). This is akin to the
passage from small doubling to small n-pling for approximate groups (i.e. Proposi-
tion 2.2). Unfortunately, very much like in the approximate group situation, such a
bound is not true in this generality (indeed take for A the union of a finite subfield
G and a few other points in F \G: this will have small multiplicative and additive
doubling, but AA + A will contain xG + G, which is of size |G|2). However, it
becomes true for some proportion of A. This is the content of the Katz-Tao lemma,
which we now prove.

Lemma 6.3 (Katz-Tao lemma [6], [30]). Suppose A is a finite subset of a field
F such that max{|AA|, |A + A|} 6 K|A|. Then there is a subset A′ ∈ A with
|A′| > |A|/CKC such that |A′ +A′| 6 CKC |A′| and |A′A′ −A′A′| 6 CKC |A′|.

Proof. First observe that by Plunnecke-Ruzsa (Prop. 2.3), A − A is a K5-
approximate group of size 6 K2|A|. We now proceed to find a large A′ in A with
|A′A′ −A′A′| 6 CKC |A′|. By Proposition 2.2, we know that |nA| 6 KOn(1)|A| for
every n ∈ N. We now claim that there is some b ∈ A such that |A′| > |A|/CKC ,
where A′ := {a ∈ A, d(aA, bA) 6 C logK + logC} and d(·, ·) is the additive Ruzsa
distance.

Before proving the claim, let us see how to finish the proof of Lemma 6.3. For all
a ∈ A′, we have |aA− bA| 6 CKC |A|, hence by Ruzsa covering aA ⊂ b(A−A) +X
for some X of size 6 CKC . It follows that for all a1, ..., a4 ∈ A′, we have (a1a2 −
a3a4)A ⊂ b(A−A+A−A) +X −X ⊂ b(A−A) + Y for some Y of size 6 CKC .
Hence, by the pigeonhole principle, for every c ∈ A′A′−A′A′ there is y ∈ Y and at
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least |A|/CKC elements a ∈ A such that ca ∈ b(A−A) + y. Taking the difference
of two such elements, this makes at least |A|/CKC elements u ∈ A − A such that
cu ∈ b(A − A + A − A). Hence every c ∈ A′A′ − A′A′ has at least |A|/CKC

representations of the form c = v/u, where v ∈ b(A− A+ A− A) and u ∈ A− A.
Since both |A − A + A − A| and |A − A| are 6 CKC |A|, we immediately get the
desired bound |A′A′ −A′A′| 6 CKC |A|.

We now prove the claim. It is enough to find b such that |aA∩bA| > |A|/CKC for
more than |A|/CKC elements a ∈ A, because then by the Ruzsa triangle inequality
d(aA, bA) 6 d(aA, aA∩ bA) +d(aA∩ bA, bA) and both terms are 6 C logK+ logC
because |A − A| 6 CKC |A| (as follows from small doubling by an application of
the Ruzsa inequality). Suppose by way of contradiction that for every b ∈ A, there
are fewer than |A|/2K elements a ∈ A such that |aA ∩ bA| > |A|/2K. Then∑

a,b

|aA ∩ bA| 6 |A|(|A| − |A|/2K)|A|/2K + |A|3/2K < |A|3/K.

But on the other hand we have the identities∑
a,b

|aA∩bA| =
∑
a,b

∑
x∈AA

1aA(x)1bA(x) =
∑
x∈AA

(∑
a∈A

1aA(x)
)2 =

∑
x∈AA

|{(a, b) ∈ A×A; ab = x}|2

while ∑
x∈AA

|{(a, b) ∈ A×A; ab = x}| = |A×A| = |A|2.

From these two identities, applying Cauchy-Schwarz we derive∑
a,b

|aA ∩ bA| > |A|4/|AA| > |A|3/K.

We are done

Proof of Theorem 6.2. Applying the Katz-Tao lemma, we obtain A′ ⊂ A such that
|A′A′ − A′A′| 6 CKC |A| 6 CKC |A′| and |A′| > |A|/CKC . By changing A into
a−1A for some a ∈ A′ if necessary, we may assume that −1 ∈ A′. Without loss of
generality, we may also add {0} to A′ (and to A) if necessary. Then |A′A′ +A′| 6
|A′A′ − A′A′| 6 CKC |A|. On the other hand |A′ + A′| 6 CKC |A′|. Therefore we
are in a position to apply Proposition 5.4 to A′, and we conclude that A′−A′

A′−A′ is a
CKC-approximate subfield G of size 6 CKC |A′| and which contains A′, because
0,−1 ∈ A′.

We know by Theorem 5.3 that the field FA′ generated by A′ has size at most
CKC |A|. On the other hand |A+A′| 6 CKC |A′|, so applying the (additive) Ruzsa
covering lemma (Lemma 3.2) we get A ⊂ FA′ + X for some set X of size CKC

and similarly with the multiplicative Ruzsa covering lemma, we get A ⊂ FA′Y for
some Y of size CKC . Hence A lies in the union of at most CKC sets of the form
FA′y ∩ (FA′ + x). But, as the reader will easily check, each such set is either equal
to FA′ or of size at most 1. Thus A ⊂ FA′ ∪ Z for some Z of size CKC . We are
done.

Proof of Theorem 6.1. Set K = |A|ε and apply Theorem 6.2. There is a subfield G
such that A ⊂ xG ∪X where |G| 6 CKC |A| 6 C|A|1+Cε 6 Cp(1−δ)(1+Cε). Now if
ε is small enough, then Cp(1−δ)(1+Cε) < p, for all p > 2. But on the other hand Fp
has no proper subfields, so G = Fp, a contradiction.
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Theorem 6.1 says nothing when |A| > p1−δ. In fact one can still say something,
namely that the entire field Fp will be covered by a few sums and products of A.
We have:

Lemma 6.4. Let A be a finite subset of Fp such that |A| > p
5
6 , then A2+A2+A2 =

Fp.

Together with the classification of approximate fields given in the previous sec-
tion, we will see that this easily implies the following result, which can also often
serve as a substitute for Theorem 6.1.

Theorem 6.5. There is ε > 0 such that for any prime p and any finite subset A
of Fp, one has

|A2 +A2 +A2| > min{|Fp|, |A|1+ε}.

Lemma 6.4 on the other hand follows by a standard Fourier argument and is a
simple consequence of the following two observations:
Observation 1. Given z ∈ Fp, the number of solutions in 6 variables x1, ..., x6 ∈ A
of the equation z = x1x2 + x3x4 + x5x6 can be expressed in Fourier analytic terms
as follows

p|{(x1, ..., x6) ∈ A×...×A; z = x1x2+x3x4+x5x6}| =
∑

x1,...,x6∈A,ξ∈Fp

e
2iπ
p ξ(z−x1x2+x3x4+x5x6),

Observation 2. If X,Y are subsets of Fp, then for any ξ ∈ F∗p,∣∣ ∑
x∈X,y∈Y

e
2iπ
p ξxy

∣∣ 6√p|X||Y |.
Proof. This is a simple application of Cauchy-Schwarz and the Parseval identity.
We write for every y ∈ Y , ∑

x∈X
e

2iπ
p ξxy = 1̂X(ξy),

then by Cauchy-Schwarz

|
∑
y∈Y

1̂X(ξy)| 6
√
|Y |
√∑
y∈Y
|1̂X(ξy)|2 6

√
|Y |
√∑
r∈Fp

|1̂X(r)|2,

where we have used that ξ 6= 0. Applying Parseval to the right hand side, we
immediately get the desired inequality.

With these two observations, we can give a quick proof of Lemma 6.4.
Proof of Lemma 6.4 Splitting the sum in Observation 2 according to whether ξ = 0
or not, we see that it is enough to prove that

|
∑
ξ∈F∗p

e
2iπ
p ξz

( ∑
x,y∈A

e
2iπ
p ξxy

)3| < |A|6.
By Observation 1, the left hand side satisfies

|
∑
ξ∈F∗p

e
2iπ
p ξz

( ∑
x,y∈A

e
2iπ
p ξxy

)3| 6 (p− 1)p3/2|A|3,

and this is < |A|6 because we assumed |A| > p
5
6 .
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We refer the reader to [31, Lemma 4.10] for an improvement from 5
6 to 3

4 of the
power of p needed in Lemma 6.4, which follows from a slightly more clever, albeit
very similar, argument.
Proof of Theorem 6.5 Without loss of generality, we may assume that 1 ∈ A by
changing A into A/a for some a ∈ A \ {0}. Let K = |A|ε, and suppose that
|3A2| 6 K|A|. Then |A + A|, |AA + A| 6 K|A|, and we may apply Proposition
5.4 to conclude that A−A

A−A is a CKC-approximate field of size 6 CKC |A|. By
the classification of approximate fields, this means that the field generated by this
approximate subfield is also of size 6 CKC |A| 6 C|A|1+Cε. However Fp has no
subfields, so this means that C|A|1+Cε > p and |A| > (p/C)1/(1+Cε). This is > p5/6

as soon as p is large enough. Applying Lemma 6.4, we then get 3A2 = Fp and we
are done.

Note that this proof did not need the Katz-Tao lemma.

Part 3. Fourier techniques

Harmonic analysis and the Fourier transform are very useful tools to understand
the structure of abelian approximate groups: this leads to the Freiman-Ruzsa the-
orem discussed below. When the group is non abelian, then it will come to no
surprise that representation theory and harmonic analysis alone is not sufficient
to understand the structure of non abelian approximate groups. However we will
see that some important information on approximate subgroups can be deduced by
looking at finite dimensional representations of the ambient group.

7. The Freiman-Ruzsa theorem

The Freiman-Ruzsa theorem uncovers the structure of sets of small doubling in
G = Z, or more generally, when G is an arbitrary abelian group (Green-Ruzsa
theorem). As often when dealing with abelian groups, Fourier analytic tools can
be put to use and they turn out to be quite powerful.

A basic example of approximate group was given shortly after Definition 1.1,
namely that of (symmetric) generalized arithmetic progressions. LetB =

∏d
i=1[−Li, Li]

in Zd with Li ∈ N. A (symmetric) generalized arithmetic progression of dimension
d in a group G is by definition any homomorphic image of such a box B. These are
easily seen to be 2d-approximate subgroups of G.

The Freiman-Ruzsa theorem states that in some sense these are the only exam-
ples of approximate subgroups of Z. We have

Theorem 7.1 (Freiman-Ruzsa theorem). Let A be a K-approximate subgroup of
G = Z. Then3 A4 contains a symmetric generalized arithmetic progression P of
rank at most O(KO(1)) and of size at least exp(−O(KO(1)))|A|. Moreover, A is
contained in a symmetric generalized arithmetic progression P of rank at most
O(KO(1)) and of size at most exp(O(KO(1)))|A|.

The theorem was originally proved by Freiman (in a slightly different form) and
Ruzsa later came up with a much simplified proof, which we will give in this section.
Building on this proof Green and Ruzsa extended the result to all abelian groups.
In that case, one needs to take into account finite subgroups of G, since they are

3In this section, we will use both the additive A + A and multiplicative AA notation alike.
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clearly another kind of approximate groups. It is thus convenient to introduce the
following terminology:

Definition 7.2. A coset progression is a finite subset Pc of an ambient group
G which is a union of cosets of a subgroup H of G such that Pc normalizes H
and Pc/H is a symmetric generalized arithmetic progression in the quotient group
〈Pc〉/H.

The rank of a coset progression is defined to be the rank of the generalized
arithmetic progression used to define it. The result takes the following form:

Theorem 7.3 (Green-Ruzsa theorem). Let A be a K-approximate subgroup of an
abelian group G. Then A4 contains a coset progression of size > |A|/exp(−O(KO(1)))
and rank O(KO(1)). Moreover, A is contained of size 6 exp(O(KO(1)))|A| and rank
O(KO(1)).

In these lectures, we will prove Theorem 7.1 in full and reduce the proof of
Theorem 7.3 to the proof of the existence of a good model for an approximate
group in an arbitrary abelian group, a result of Green and Ruzsa ([19]).

The argument can be split into 4 steps. First one shows that (a positive propor-
tion of) A is freiman isomorphic to a subset of an other abelian group of size 6 C|A|,
where C can be bounded in terms of K only. Since the statement of the theorem is
invariant under Freiman 2-isomorphism (see Proposition 1.5), passing to this good
model does not reduce the generality. Then one shows (Bogolyubov argument)
that the set A4 contains a large Bohr set B(ξ1, ..., ξd, α) := {x ∈ Z/pZ; |ξ(x)− 1| <
α for all i}, where the ξ : Z/pZ→ S1 = {z ∈ C; |z| = 1} are suitable characters of
G and α and d are bounded in terms of K only. It turns out that the structure of
Bohr sets can be rather easily described using some simple geometry of numbers
: they contain and are contained in coset progressions whose rank is controlled in
terms of α and d, hence K only. This finishes the first part of both theorems. To
obtain the containment inside a coset progression, one applies a covering argument
(Chang covering) similar but more refined than the Ruzsa covering lemma.

We now pass to the proof of the above theorems. The Fourier transform on a
finite abelian group G exchanges functions on G and functions on the dual group
Ĝ of characters of G, i.e. homomorphisms from G to S1 := {z ∈ C; |z| = 1}. Recall
that |Ĝ| = |G| (see [27]).

If for f : G→ Ĝ, we define

f̂(ξ) =
∑
x∈G

f(x)ξ(x),

then the Parseval identity reads
1

|Ĝ|

∑
ξ∈Ĝ

|f̂(ξ)|2 =
∑
x∈G
|f(x)|2,

and the Fourier inverse formula reads

f(x) =
1
|G|

∑
ξ∈Ĝ

f̂(x)ξ(−x).

The Fourier transform also establishes a correspondence between subgroups of
G and subgroups of Ĝ. Indeed to any subgroup H of G one can associate H⊥ :=



22 EMMANUEL BREUILLARD

{ξ ∈ Ĝ; ξ(H) = 1}, and conversely to every subgroup F 6 Ĝ, one associates
F⊥ =

⋂
ξ∈F ker ξ. It is a basic result of the theory of characters of finite abelian

groups (see e.g. [27]) that F⊥⊥ = F and H⊥⊥ = H.
Note that the transform H → H⊥ is inclusion-reversing. In particular if H is a

large subgroup of G then H⊥ will be a small subgroup of Ĝ. In fact H⊥ ' Ĝ/H
and |H||H⊥| = |G|.

This correspondence works very well between subgroups and one would like to
have a similar correspondence between approximate subgroups. However defining
A⊥ as above by {ξ ∈ Ĝ, ξ(A) = 1} does not work, because this is always a genuine
subgroup of Ĝ, and we know that in many abelian groups, there are many more
approximate subgroups than subgroups.

One way to remedy this is to consider the spectrum of the set A, namely

Sα(A) := {ξ ∈ Ĝ; |1̂A(ξ)| > α|A|},
where α ∈ [0, 1].

Another way is to consider a smaller set, called Bohr set, and defined as follows:

Bα(A) := {ξ ∈ Ĝ;<ξ(x) > α for all x ∈ A}.

This is indeed a smaller set since 1̂A(ξ) =
∑
x∈A <ξ(x).

The following statement can be seen as some approximate analogue of the iden-
tity H⊥⊥ = H for genuine subgroups of G.

Proposition 7.4 (Bogolyubov argument). Let A be a K-approximate subgroup of
a finite abelian group G, then B1/2K(S1/2K(A)) ⊂ A4.

Proof. Let α, δ > 0 to be determined later. We want to prove that if x ∈
Bδ(Sα(A)), then 1A ∗ 1A ∗ 1A ∗ 1A(x) > 0. To achieve this, we write the Fourier
inverse formula:

1A ∗ 1A ∗ 1A ∗ 1A(x) =
1
|G|

∑
ξ∈Ĝ

1̂A(ξ)4<ξ(−x)

=
1
|G|

∑
|1̂A(ξ)|>α|A|

1̂A(ξ)4<ξ(x) +
1
|G|

∑
|1̂A(ξ)|6α|A|

1̂A(ξ)4<ξ(x).

>
δ

|G|
∑

|1̂A(ξ)|>α|A|

1̂A(ξ)4 − 1
|G|

∑
|1̂A(ξ)|6α|A|

1̂A(ξ)4

>
δ

|G|
∑
ξ∈Ĝ

1̂A(ξ)4 − 1 + δ

|G|
∑

|1̂A(ξ)|6α|A|

1̂A(ξ)4.

On the other hand 1
|G|
∑
ξ∈Ĝ 1̂A(ξ)4 = 1

|G|
∑
ξ∈Ĝ

̂1A ∗ 1A(ξ)2 =
∑
x∈G(1A ∗

1A)(x)2 = E(A,A) is the multiplicative energy of A, while we may bound the
other term by

1 + δ

|G|
∑

|1̂A(ξ)|6α|A|

1̂A(ξ)4 6
1 + δ

|G|
α2|A|2

∑
ξ∈Ĝ

1̂A(ξ)2 = (1 + δ)α2|A|3,

where we applied Parseval in the last inequality.
In other words, we have obtained:

1A ∗ 1A ∗ 1A ∗ 1A(x) > δE(A,A)− (1 + δ)α2|A|3.
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But E(A,A) > |A|3/K, since A is a K-approximate group and |AA| 6 K|A| (see
Lemma 4.2). Hence

1A ∗ 1A ∗ 1A ∗ 1A(x) > |A|3(δ/K − (1 + δ)α2).

This is > 0 for instance for δ = α = 1/2K. We are done.

In case of good modelling, i.e. when A is a positive proportion of the group G,
then there are only a bounded number of elements in the spectrum Sα(A). This
observation will be key for finding a large generalized progression in the Bohr set
obtained in the last proposition.

Lemma 7.5 (Few elements in large spectrum). Suppose A is a subset of G such
that |A| > |G|/L and let α ∈ [0, 1]. Then |Sα(A)| 6 L/α2.

Proof. This follows easily from the Parseval formula. Write 1
|G|
∑
ξ∈Ĝ |1̂A(ξ)|2 =∑

x∈A |1A(x)|2 = |A|. Hence |A| > 1
|G| |Sα(A)|α2|A|2, i.e. |Sα(A)| 6 |G|/(α2|A|) 6

L/α2.

We now need to understand the structure of Bohr sets and relate it to generalized
arithmetic progressions.

Proposition 7.6 (Structure of Bohr sets). Let α ∈ (0, 1). Any Bohr set Bα(X) :=
{x ∈ G,<ξ(x) > α for all ξ ∈ X} contains a coset progression of rank 6 |X| and
size > |G|

(
σ
d3/2

)d, where σ = arccos(α)/2π ∈ (0, 1
2 ).

Proof. This result is a rather simple application of Minkowski’s second theorem on
successive minimas of lattices in Euclidean space (see e.g. [?]). Let X = {ξ1, ..., ξd}
and write ξ = exp(2iπσi), where σi : G → R/Z is a homomorphism. Since the
homomorphism πX : G → Rd/Zd, g 7→ (σ1(g), ..., σd(g)) has finite image, its the
inverse image in Rd, i.e. the subgroup ∆ := πX(G) + Zd is a lattice (i.e. discrete
subgroup of full rank) in Rd. Note here that vol(Rd/∆) = 1/|πX(G)|.

Let ||v|| be the Euclidean norm on Rd and ||v||∞ the `∞-norm. Let v1, ..., vd
be a sequence of successive minimas in ∆, i.e. ||v1|| = inf{||x||, x ∈ ∆ \ {0}},
||v2|| = inf{||x||, x ∈ ∆ \ Rv1}, ..., ||vd|| = inf{||x||, x ∈ ∆ \ {Rv1 + ... + Rvd−1}}.
Then Minkowski’s second theorem asserts that, although Zv1 + ...+Zvd may not be
all of ∆, it makes a subgroup of index at most 2d/γd, where γd = vol({x, ||x|| 6 1}),
and in fact we even have ||v1|| · ... · ||vd|| 6 vol(Rd/∆)2d/γd.

Let σ = arccos(α)/2π ∈ (0, 1
2 ) so that Bα(X) = {g ∈ G; |σi(g)| < σ for all i =

1, ..., d} = {g ∈ G; ||πX(g)||∞ < σ}, where we have abused notations and wrote
πX(g) for the unique representative of π(g) in Rd with coordinates in [− 1

2 ,
1
2 ).

For each i = 1, ..., d, let Li = max{n ∈ N; ||nvi||∞ < σ
d }. It follows that

2Li + 1 > σ
d||vi||∞ > σ

d||vi|| .

Now let Pc := {g ∈ G, πX(g) ∈
∑d

1[−Li, Li]vi}. Then Pc is a coset progression
(it is union of cosets of kerπX) and has size |G|

|πX(G)|
∏d

1(2Li + 1). Moreover Pc ⊂
Bα(X).

By the above bound obtained from Minkowski’s theorem, we have
∏d

1(2Li+1) >
σd∏
||vi|| > |πX(G)|γd

2d
σd. An easy lower bound on γd is gotten by observing that the

Euclidean ball of radius 1 contains the `∞ ball of radius d−
1
2 , hence γd > 2dd−

d
2 .

Finally we get |Pc| > |G| σ
d

d3d/2
as desired.
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Lemma 7.7 (Chang covering Lemma). Let G be an abelian group, let L > K
and let A be a K-approximate subgroup of G and B a finite subset of G such that
|A + B| 6 L|B|. Then A ⊂ P + B − B, where P is a symmetric generalized
progression with rank 6 2K(log2 L+ 1) and side lengths 6 1.

Recall that the side lengths of a symmetric generalized progression P of rank d
are the integers Li’s such that P =

∑d
1[−Li, Li]xi. Observe that an application of

the Ruzsa covering lemma would only give A ⊂ X +B −B, for some set X of size
6 L. The Chang covering lemma thus assets that, under the assumption that A is
a K-approximate group, we have can improve L into logL, that is X can be taken
to be a progression of rank 6 2K(log2 L+ 1).
Proof. Let X1 ⊂ A be a subset of A such that the x+ B, x ∈ X are disjoint and
such that X1 is maximal among subsets of size 6 2K in A. We let B1 = B + X1,
and then build X2 ⊂ A such that the x+B1, x ∈ X2 are disjoint and such that X2

is maximal among subsets of size 6 2K in A. We keep going this way and build
Xk ⊂ A and Bk = Bk−1 +Xk. Let n be the first integer such that |Xn+1| < 2K.

Observe that by construction |Bn| = |Bn−1||Xn| = ... = |B||X1|...|Xn| =
|B|(2K)n. However Bn = B +X1 + ...+Xn ⊂ B + nA, and thus |Bn| 6 |B + nA|.
However by the Ruzsa triangle inequality, d(B,−nA) 6 d(B,−A) + d(−A,−nA),
so |B+nA||A| 6 |A+B||nA−A| 6 L|B|Kn|A|. It follows that (2K)n|B| = |Bn| 6
|BnA| 6 LKn|B|. Consequently 2n 6 L, i.e. n 6 log2 L.

By definition of Xn+1, for any a ∈ A, there is x ∈ Xn+1 such that a + Bn
intersects x + Bn non trivially. This means A ⊂ Xn+1 + Bn − Bn ⊂ P + B − B,
where P is the symmetric generalized arithmetic progression

∑
x∈∪n+1

i=1 Xi
[−1, 1]x.

Its rank is clearly 6
∑n+1

1 |Xi| 6 (n+ 1)2K 6 2K(log2 L+ 1). We are done.

We now pass to the conclusion of the proof of the Freiman-Ruzsa and Green-
Ruzsa theorems. The last remaining step is to find a good model for A. This is
provided by:

Proposition 7.8 (Passing to a good model). Let A ⊂ Z be a K-approximate
subgroup and let k > 2. Let p be a prime > K4k|A|. Then there exists a symmetric
subset ∆ of A2 with size |∆| > |A|/8k and a Freiman k-isomorphism φ : ∆→ Z/pZ.

Proof. The idea consists in “reshuffling” the set A by applying a suitable auto-
morphism of Z/`Z, after viewing A as a subset of Z/`Z for some sufficiently large
prime `, and then reduce modulo p.

Let ` be a very large prime, which we will fix so that no element in A2k is a mul-
tiple of `. Then reduction modulo ` is a Freiman k-isomorphism on A and abusing
notation we will consider A as lying in Z/`Z. Let now ψ : Z/`Z→ [− `−1

2 , `−1
2 ] ⊂ Z

be the map assigning the remainder of the Euclidean division mod `. Viewed as a
map from Z/`Z to Z, this is not a homomorphism, but for every k > 1 it induces
a Freiman k-isomorphism on the set ψ−1[− `−1

4k ,
`−1
4k ]. Let ψ : Z/`Z → Z/pZ be

the composition of ψ with the reduction modulo p. If B ⊂ Z/`Z is a symmetric
subset containing {0}, then we observe that ψ induces a Freiman k-isomorphism
on B whenever ψ(B) ⊂ [− `−1

4k ,
`−1
4k ] and ψ(B2k) ∩ pZ = {0}.

We now claim that if p > |A4k|, then there exists α ∈ Z/`Z∗ such that ψ((αA)4k)∩
pZ = {0}. Indeed for every x ∈ A4k \ {0}, the elements αx when α varies in Z/`Z∗
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cover all of Z/`Z∗. On the other hand there are at most `−1
p non zero multiples of

p in [− `−1
2 , `−1

2 ] and thus at most `−1
p elements α ∈ Z/`Z∗ can possibly send αx

on a multiple of p under the map ψ. Hence at most |A4k| `−1
p elements α ∈ Z/`Z∗

could possibly have ψ((αA)4k) ∩ pZ 6= {0}. Since p > |A4k|, the claim is proved.
By the pigeonhole principle, at least one of the 8k intervals of length `/8k in

[− `−1
2 , `−1

2 ] contains > |A|/8k elements from ψ(αA). If Ik is this interval, set α∆ =
αA ∩ ψ−1(Ik)− αA ∩ ψ−1(Ik). Then ∆ ⊂ A2, |∆| > |A|/8k, ψ(α∆) ⊂ [− `−1

4k ,
`−1
4k ]

and ψ((α∆)2k) ∩ pZ = {0}. Hence the composition φ of the automorphism α with
ψ induces the desired Freiman k-isomorphism on ∆ into Z/pZ.

We can now conclude.
Proof of Theorem 7.1 Since the notions of a K-approximate group and that of a
coset progression of rank d are both invariant under Freiman 2-homomorphism,
we may assume applying Proposition 7.8 that |G| 6 KO(1)|A|. It then follows
from Lemma 7.5 that |S1/2K(A)| 6 d := KO(1), and thus Propositions 7.4 and
7.6 say that A4 contains a coset progression Pc of rank O(KO(1)) and size at
least |G|/O(exp(KO(1))). Finally Chang’s covering lemma, Lemma 7.7, applied
to B = Pc, implies that A is contained in a contained in a coset progression of rank
O(KO(1)) and size at most O(exp(KO(1)))|G|.

In the general abelian case, a substitute for the last proposition was proved by
Green and Ruzsa.

Proposition 7.9 (Green-Ruzsa model theorem [19]). Let A be a K-approximate
subgroup of an abelian group G. Let k > 2 be an integer. Then there is a group G′,
with |G′| 6 (10kK)10K

2 |A|, such that A is Freiman s-isomorphic to a subset of G′.

Although the bound here is worse than in Proposition 7.8, it can be combined
with a Chang covering argument to yield a proof of Theorem 7.3. We will not prove
this result here and rather refer the reader to the original paper.

8. Quasirandomness

One way to define a notion of quasirandomness for subsets of a finite group G,
is to look at non trivial irreducible finite dimensional unitary representations π of
G and consider the norm of the averaging operator 1

|A|
∑
a∈A π(a). If A = G, then

this norm is 0 if whenever π is non trivial: this corresponds to saying that non
trivial irreducible representations have no G-invariant vectors.

Definition 8.1 (Quasirandom set). We will say that a finite subset A of a finite
group G is ε-quasirandom if || 1

|A|
∑
a∈A π(a)|| 6 ε|G|/|A| for every non trivial

irreducible unitary representation of G.

This terminology is justified by the following fact.

Proposition 8.2. Let A be a random subset of a finite group G. Then for every
ε > 0, the probability that A is ε-quasirandom tends to 1 as |G| tends to infinity.

Quasirandom sets tend to behave like random sets, in particular with respect
to sumsets. The following is an illustration of this phenomenon (compare with
Exercise 1.3).
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Proposition 8.3. Let n > 3. Suppose A is an ε-quasirandom subset of a finite
group G such that ε < (|A|/|G|)

n−1
n−2 . Then An = G.

For the proof of the above two propositions, we will need to review some basic
facts about non-abelian Fourier analysis on finite groups, which subsume our pre-
vious discussion of similar facts in the abelian setting in the last section. We let
the unfamiliar reader check by himself the facts below and we refer him to [27] or
any textbook on basic representation theory of finite groups.

If G is a finite group Ĝ denotes the set of irreducible unitary representations
of G. Since G is not assumed abelian, Ĝ has no group structure, it is merely
a finite set. The regular representation `2(G), defined by its action on functions
ρ(g)f : x 7→ f(g−1x), decomposes as a direct sum of subrepresentations

`2(G) = ⊕π∈ĜdπVπ,
where Vπ is a G-invariant subspace on which the G-action is isomorphic to the irre-
ducible representation π ∈ Ĝ, and dπ = dim(Vπ) is the dimension of this irreducible
subrepresentation. Note that Vπ appears with multiplicity equal to dπ in `2(G),
and dπVπ is the isotypic component of `2(G) corresponding to π, i.e. the sum of
the subrepresentations isomorphic to π.

Now the Fourier transform on G associates to every function f on G an irre-
ducible representation π ∈ Ĝ, the linear operator f̂(π) = π(f) : Vπ → Vπ defined
by

f̂(π) = π(f) =
∑
g∈G

f(g)π(g).

The space End(Vπ) of endomorphisms of Vπ, when endowed with the Hilbert-
Schmidt scalar product 〈A,B〉HS := trVπ (AB∗), becomes isometric to the isotypic
component of `2(G) corresponding to π via the map A 7→ (g 7→ 〈A, π(g−1)〉HS).

The Fourier inversion formula now reads:

f(g) =
1
|G|

∑
π∈Ĝ

dπtrVπ (f̂(π)π(g−1)).

and the Parseval identity reads:∑
g∈G
|f(g)|2 =

1
|G|

∑
π∈Ĝ

dπ||f̂(π)||2HS .

We also note that 〈π(g)A, π(g)B〉HS = 〈A,B〉HS , and that if ||A||op denotes the
operator norm of A ∈ End(Vπ) associated to the original Euclidean norm on Vπ
(coming from `2), then ||AB||HS 6 ||A||op||B||HS and ||A||op 6 ||A||HS for every
A,B ∈ End(Vπ).
Proof of Proposition 8.3 Let us convolve 1A with itself n times. It is enough to
show that 1A ∗ ... ∗ 1A(g) > 0 for all g ∈ G. By the Fourier inversion formula, we
have

1A∗...∗1A(g) =
1
|G|

∑
π∈Ĝ

dπtr(1̂A(π)nπ(g−1)) =
|A|n

|G|
− 1
|G|

∑
π 6=1

dπ·〈1̂A(π)n−1, (π(g)1̂A(π))∗)〉HS ,

while the right hand side can be bounded below by
|A|n

|G|
− 1
|G|

∑
π 6=1

dπ·||1̂A(π)n−1||HS ||1̂A(π))||HS >
|A|n

|G|
− 1
|G|

∑
π 6=1

dπ·||1̂A(π)||n−2
op ||1̂A(π))||2HS .
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Then applying the Parseval identity we get the lower bound
|A|n

|G|
− ||1̂A(π)||n−2

op |A| >
|A|n

|G|
− (ε|G|)n−2|A| > |G|n−2|A|

[( |A|
|G|
)n−1 − εn−2

]
> 0

Proof of Proposition 8.2 This follows from classical concentration of measure type
bounds such as the Chernoff of Hoeffding inequalities. For instance, if E is say
a Banach space and X1, ..., Xn are independent random variables taking values
in the unit ball, and S = X1 + ... + Xn, then it is known (see e.g. [22]) that
P(||S|| > E(||S||) + r) 6 exp(− r2

8n ) for every r > 0.
In our case the indicator function of a random subsetA ofG is 1A =

∑
g∈G εg1{g},

where the εg are Bernoulli random variables taking value 0 with probability 1
2 and

1 with probability 1
2 . For π ∈ Ĝ, we have π(1A) =

∑
g∈G εgπ(g), thus the random

variables εgπ(g) are independent, take value in the unit ball of End(Vπ) endowed
with the operator norm and satisfy E(

∑
g εgπ(g)) = 0 whenever π 6= 1. On the

other hand E(||π(1A)||) 6 E(||π(1A)||HS) 6 E(||π(1A)||2HS)1/2. But one computes
easily E(||π(1A)||2HS) = E(tr(π(1A)π(1A)∗)) =

∑
g,h εgεhtr(π(gh−1)) = 1

2dπ|G|.
On the other hand

∑
π∈Ĝ d

2
π = |G|, so dπ 6

√
|G| and

P(||π(1A)|| > 2C
log1/2 |G|
|G|1/4

|G|) 6 P(||π(1A)|| > 2C
√
dπ|G| log |G|)

6 P
(
||π(1A)|| > E(||π(1A)||) + C

√
dπ|G| log |G|

)
6 exp(−C

2

8
dπ log |G|) 6 |G|−C

2/8,

where we applied the concentration of measure bound in the last line. In particular

P

(
max
π 6=1
||π(1A)|| > 2C

log1/2 |G|
|G|1/4

|G|

)
6 |G|−(C2−8)/8 (8.3.1)

In [15], Tim Gowers introduced a notion of quasirandomness for finite groups.

Definition 8.4 (Quasirandom group). A finite group G is said to be ε-quasirandom
if every subset of G is ε-quasirandom in the sense of Definition 8.1.

The following gives a handy characterization of quasirandom groups:

Proposition 8.5. Let G be a finite group. Let m(G) := minπ∈Ĝ dπ be the smallest
dimension of an irreducible representation of G. If m(G) > ε−2, then G is ε-
quasirandom. Conversely, if G is ε-quasirandom, then m(G) >

(
ε−1/(4

√
2)
)2/3.

Proof. From the Parseval identity we have

|A| = ||1A||22 =
1
|G|

∑
π∈Ĝ

dπ · ||1̂A(π)||2HS >
1
|G|

m(G) max
π∈Ĝ
||π(1A))||2op,

and hence maxπ∈Ĝ ||π(1A))||op 6
√
|A||G|
m(G) 6 ε|G| since |A| 6 |G| and m(G) > ε−2.

Therefore G is ε-quasirandom.
Conversely, note that if π is a non trivial unitary representation of G with

dimπ = m = m(G), then, given a fixed unit vector v, the vectors π(g)v, g ∈ G are
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unit vectors. Therefore for each of them, there is an index i, 1 6 i 6 m = m(G)
such that |〈π(g)v, ei〉|2 > 1/m, in particular either the real part, its opposite,
or the imaginary part, or its opposite is > 1/

√
2m. This makes 4m possibilities

for π(g)v. By the pigeonhole principle, there must be some i and some subset
A ⊂ G of size > |G|/4m such that, say <〈π(g)v, ei〉 ≥ 1/

√
2m for all g ∈ A.

This implies that ||π(1A)||op > |G|/(4m
√

2m). If G is ε-quasirandom, this forces
m(G) >

(
ε−1/(4

√
2)
)2/3. We are done.

Corollary 8.6. For any n > 3 and any subset A in G, we have: |A| > |G|/m(G)1−
2
n

implies An = G.

Proof. This follows immediately from the combination of Propositions 8.3 and 8.5.

Exercise 8.7. Let G be a finite group and X,Y ,Z finite subsets of G such that
|X||Y ||Z| > |G|3

m(G) , where m(G) is the smallest degree of a non trivial complex
linear representation of G. Then there exists x ∈ X, y ∈ Y and z ∈ Z such that
z = xy. Show that this implies XY Z = G. Hint: mimic the proof of Proposition 8.3

Exercise 8.8. Assuming that G is ε-quasirandom, improve the bound (8.3.1) ob-
tained in the proof of Proposition 8.2.

Every non abelian finite simple group is ε-quasirandom with ε → 0 as |G| →
∞. This follows directly from Jordan’s theorem, according to which every finite
subgroup of GLn(C) has a normal abelian subgroup of index bounded by a function
of n only. From the classical bounds on Jordan’s theorem due to Bieberbach and
Frobenius (see e.g. [?]) one gets that m(G)� (log |G|)1/3. In fact, as Gowers shows
in [15], the argument in the proof of Jordan’s theorem gives m(G) >

√
log |G|/2.

Using the recent sharp bounds of Collins [?] on Jordan’s theorem, one gets m(G)�
log |G|/ log log |G|, which is sharp for the family of alternating groups G = An.

However, much better bounds are known for finite simple groups of Lie type.
Landazuri and Seitz [20] showed that m(G)�d |G|r/d for every finite simple group
of Lie type with rank r and dimension d. Henceforth:

Theorem 8.9 (Landazuri-Seitz [20]). If G = G(Fq), where G is a simple algebraic
group of dimension d defined over a finite field Fq, then every projective complex
linear representation of G has dimension �d q

r, where r is the absolute rank of G.
In particular m(G)�d q

r.

We recall that algebraic groups are subgroups of GLd defined by algebraic equa-
tions in the matrix entries and that simple algebraic groups are algebraic groups
with no proper normal algebraic subgroups of positive dimension. The rank of a
simple algebraic group is the dimension of its maximal tori (i.e. maximal diagonal-
izable algebraic subgroups).

We recall further that simple groups of Lie type are closely related to the groups
of the form G(Fq) considered above. In fact4, they are obtained from G(Fq) by
taking the derived subgroup and passing to the quotient modulo the center. Hence
Theorem 8.9 implies that m(G)�d q

r for every finite simple group of Lie type G.

4apart for the Suzuki and Ree family of finite simple groups, but these also verify the Landazuri-
Seitz theorem, see [20]
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In these notes we will just prove the following special case (a result dating back
to Frobenius).

Proposition 8.10. Let Fq be the finite field with q elements (q a prime power) and
G = PSL2(Fq). Then m(G) > q−1

2 .

Proof. The main idea is that finite simple groups of Lie type have large unipotent
subgroups, with even larger normalizers, while no such thing happens in GLn(C).
Let U be the subgroup of unipotent upper triangular matrices in G, and let N(U)
its normalizer. It is easy to see that N(U) is the set of upper triangular matrices,
that U ' Fq and that under this identification the conjugation action of N(U)/U
on U is multiplication by a square, i.e. N(U)/U ' (F∗q)2. In particular every orbit
of a non trivial element in U has cardinality precisely q−1

2 .
Since G is simple, any non trivial linear representation of G over C is faithful and

we may assume that G 6 GLn(C). Now U is an abelian finite subgroup. Hence it
is diagonalizable and we may write Cn = ⊕χVχ, where Vχ is the eigenspace (weight
space) of U on Cn associated to the character χ : U → C∗. Now N(U) permutes
the Vχ’s and gVχ = Vg.χ, where g.χ(·) = χ(g−1 · g). Since G 6 GLn(C), there
must be at least one non trivial character χ occurring in this decomposition. By
the observation in the previous paragraph, there must be at least q−1

2 different Vχ’s
that are permuted by N(U). Hence n > q−1

2 dimVχ > q−1
2 . We are done.

Part 4. Approximate subgroups of linear groups and applications

In this chapter, we will present some recent results on the structure of approxi-
mate subgroup of linear groups. Given a field k, which we will assume algebraically
closed without loss of generality, we will study approximate subgroups of GLd(k),
where d is fixed. We will also describe some applications to spectral properties of
Cayley graphs of finite linear groups.

9. Approximate subgroups of simple algebraic groups

Our goal in this section will be to establish a structure theorem for approximate
subgroups of simple algebraic groups (Theorem 9.1 below) over arbitrary fields.
The first results of this kind were obtained by Elekes and Kirany [9] for SL2 over
the reals, then by Helfgott for SL2 and SL3 over a finite field of prime order [10, 11],
and Dinai [8] over arbitrary finite fields. The general case presented here follows
the recent works of Breuillard-Green-Tao [7] and Pyber-Szabo [24].

In order to formulate the result, it will be convenient to define a notion of
complexity of algebraic varieties. There are several roughly equivalent ways to
do so. Informally we will say that a closed subvariety of the affine space An has
complexity at most M > 1 if n 6 M and if it is the zero set of polynomials of
degree at most M .

Theorem 9.1 (Structure of approximate subgroups of simple algebraic groups).
Let G be a simple algebraic group over an algebraically closed field k. There is a
constant C = C(dim G) > 0, independent of k, such that the following holds. Let
A ⊂ G(k) be a K-approximate subgroup of G(k). Then one of the following holds

(i) A is contained in a proper algebraic subgroup H(k) of complexity at most C,
(ii) |A| 6 CKC ,
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(iii) |〈A〉| 6 CKC |A|.

The event (i) does not happen if, for example A generates a Zariski-dense sub-
group of G. Then event (ii) can of course happen, as any symmetric set containing
1 and of cardinality at most K is a K-approximate group. The third possibility, i.e.
|〈A〉| 6 CKC |A| implies that A generates a finite subgroup of G and that it is in
fact a large proportion of that finite subgroup. The theorem can be paraphrased as
saying that there are no dense approximate subgroups of simple algebraic groups:
there are either stuck in a proper algebraic subgroup, or they are very close to
genuine subgroups.

As a consequence, we derive the following result, which can be seen as an ana-
logue of the sum-product theorem for simple algebraic groups.

Corollary 9.2 ([24], [7] Product theorem for simple algebraic groups). Let G be
a center-free simple algebraic group over an algebraically closed field k. There are
constants ε = ε(dim G) > 0, C = C(dim G) > 0, independent of k, such that the
following holds. Any finite subset A of G(k) with 1 ∈ A is either contained in a
proper algebraic subgroup H(k) 6 G(k) of complexity at most C, or satisfies

|AAA| > min{|A|1+ε, |〈A〉|}.

We first derive the corollary and then pass to the proof of Theorem 9.1. The
proof of the corollary depends on a deep structural result on finite subgroups of
algebraic groups, which give now state.

This result was initially obtained by Weisfeiler using the classification of finite
simple groups, but a beautiful and completely different classification-free proof was
later found by Larsen and Pink [21].

Theorem 9.3 (Structure of finite subgroups of simple algebraic groups, [21]).
There is an absolute constant C = C(d) > 0 such that the following holds. Let
k be an algebraically closed field and G a center-free simple algebraic group with
dim G 6 d. Let Γ be a finite subgroup of G(k). Then either Γ is contained in a
proper algebraic subgroup H(k) 6 G(k) of complexity at most C, or char(k)= p > 1
and there is finite subfield Fq of k such that

[G(q),G(q)] ⊂ Γ ⊂ G(q),

where5 G(q) = G(Fq). Moreover [G(q) : [G(q),G(q)]] 6 C.

We recall (see [1], [28]), that simple algebraic groups over an algebraic closed
field have a model defined over Z. This allows to speak of the Fq-points of G for
any finite field Fq.

Combining Theorem 9.3 with the Landazuri-Seitz theorem on the quasirandom-
ness of simple groups of Lie type (Theorem 8.9) and Proposition 8.5, we conclude
that either Γ is contained in a proper algebraic subgroup of bounded complexity,
or Γ is |Γ|−η-quasirandom in the sense of Definition 8.4 for some η = η(d) > 0.

We are now ready to deduce Corollary 9.2 from Theorem 9.1.
Proof of Corollary 9.2. Suppose |AAA| 6 |A|1+ε. Setting K = |A|ε, we see that
A has tripling at most K, and therefore, applying Proposition 2.2, we get that

5If p = 2 and G is of type B2 or F4, or if p = 3 and G is of type G2, then G(q) can have a slightly

different definition (giving rise to the Suzuki and Ree groups) and be the set of fixed points of the

composite of the Frobenius map x 7→ xq and a certain non-standard isogeny arising in those cases
only.
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B := (A ∪ A−1 ∪ {1})2 is a cKc-approximate group, where c > 0 is an absolute
constant. We may thus apply Theorem 9.1 and conclude that either B (hence A)
is contained in a proper algebraic subgroup H(k) 6 G(k) of complexity at most C,
or |A| 6 CKC , or |〈A〉| 6 CKC |A|. If we are in the case when |A| 6 CKC , then
|A| 6 C|A|Cε. But choosing ε 6 1/2C, this forces |A| 6 C2. Hence if ε is small
enough (depending on C only), then |AAA| = |A|, and thus A = xH by Proposition
2.6, where H is a finite subgroup of size at most C2. Since 1 ∈ A, A = H and
hence we are back in the case when |〈A〉| 6 CKC |A|.

So we may assume that |〈A〉| 6 CKC |A| and apply Theorem 9.3 to Γ = 〈A〉. By
the remark following Theorem 9.3, we conclude that 〈A〉 is |〈A〉|−η-quasirandom
for some η = η(d) > 0. Since |A|/|〈A〉| > 1/CKC > 1/C|A|Cε > 1/|〈A〉|−η for
ε > 0 small enough, we get A3 = 〈A〉 by Proposition 8.3. We are done.

Exercise 9.4. Recall that finite normal subgroups of center-free simple algebraic
groups are trivial. Show that Corollary 9.2 continues to hold without the assumption
1 ∈ A. Recall that the center of a simple algebraic group of dimension 6 d is a
finite group of order bounded in terms of d only. Show further that the assumption
center-free can be removed as well.

10. Notes

Apart from the original articles, many surveys and notes already exist in the
literature on the above material. See for example Green’s notes [16], [18], [17]. A
basic reference is the book by Tao and Vu ([31]). Tao’s weblog is also a very useful
place to look for information on the topics of these lectures. These references as
well as notes from a course taught at Princeton in 2006 by Elon Lindenstrauss have
helped us a lot in writing the present notes.

- Sections 1 to 3. The definition of an approximate group is due to Tao (see
[29]) and the Ruzsa lemmas (covering and inequality) described in Sections 2 and
3 can be found in this non-commutative setting in [29] or in Tao-Vu [31]. The new
proof of the Plunnecke-Ruzsa estimates in the abelian case and the control of sets
of small doubling by approximate groups given in these notes follow Petridis’ recent
paper [?]. The doubling < 3

2 result dates back to Freiman and can be found on
Tao’s blog. The inheritance to subgroups lemma is implicit in [29] as is the closely
related lemma about group actions.

- Sections 5 and 6. The sum-product theorem is due to Bourgain-Katz-Tao over
Fp. The statement for a general field can be found in Tao-Vu. See these refer-
ences for a history of the sum-product phenomenon, which dates back to Erdos
and Szemeredi. Although implicit in the proofs of the sum-product theorem, ap-
proximate fields have not been defined in the literature prior to these notes. Our
approach however follows quite closely the original proof of Bourgain-Katz-Tao (in
particular Lemma 5.5). The proof that approximate fields are controlled by gen-
uine fields is close in spirit to [5], see also Tao-Vu [31]. The proof of the Katz-Tao
lemma given in Lemma 6.3 is from [30]. Alternatively one can make use of the
Balog-Szemeredi-Gowers theorem as in [6].

- Section 4. Good accounts on multiplicative energy and the Balog-Szemeredi-
Gowers theorem can be found in Tao-Vu [31] and Green’s notes [17]. Balog-
Szemeredi proved Lemma 4.4 with worse bounds and Gowers gave a proof with
polynomial bounds as stated in that lemma. Polynomial bounds are crucial for
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many applications. The non-commutative version of the Balog-Szemeredi-Gowers
theorem and its corollaries (in particular Corollary 4.7) is due to Tao in [29].

- Section 8. The definition of quasirandomness for groups and results of this
section are due to Gowers [15]. The short proof we give of Theorem 8.3 is inspired
from a similar treatment of the abelian case in [31][Lemma 4.13].
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